2,212 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Graph Kernels and Applications in Bioinformatics

    Get PDF
    In recent years, machine learning has emerged as an important discipline. However, despite the popularity of machine learning techniques, data in the form of discrete structures are not fully exploited. For example, when data appear as graphs, the common choice is the transformation of such structures into feature vectors. This procedure, though convenient, does not always effectively capture topological relationships inherent to the data; therefore, the power of the learning process may be insufficient. In this context, the use of kernel functions for graphs arises as an attractive way to deal with such structured objects. On the other hand, several entities in computational biology applications, such as gene products or proteins, may be naturally represented by graphs. Hence, the demanding need for algorithms that can deal with structured data poses the question of whether the use of kernels for graphs can outperform existing methods to solve specific computational biology problems. In this dissertation, we address the challenges involved in solving two specific problems in computational biology, in which the data are represented by graphs. First, we propose a novel approach for protein function prediction by modeling proteins as graphs. For each of the vertices in a protein graph, we propose the calculation of evolutionary profiles, which are derived from multiple sequence alignments from the amino acid residues within each vertex. We then use a shortest path graph kernel in conjunction with a support vector machine to predict protein function. We evaluate our approach under two instances of protein function prediction, namely, the discrimination of proteins as enzymes, and the recognition of DNA binding proteins. In both cases, our proposed approach achieves better prediction performance than existing methods. Second, we propose two novel semantic similarity measures for proteins based on the gene ontology. The first measure directly works on the gene ontology by combining the pairwise semantic similarity scores between sets of annotating terms for a pair of input proteins. The second measure estimates protein semantic similarity using a shortest path graph kernel to take advantage of the rich semantic knowledge contained within ontologies. Our comparison with other methods shows that our proposed semantic similarity measures are highly competitive and the latter one outperforms state-of-the-art methods. Furthermore, our two methods are intrinsic to the gene ontology, in the sense that they do not rely on external sources to calculate similarities

    An ontology matching approach for semantic modeling: A case study in smart cities

    Get PDF
    This paper investigates the semantic modeling of smart cities and proposes two ontology matching frameworks, called Clustering for Ontology Matching-based Instances (COMI) and Pattern mining for Ontology Matching-based Instances (POMI). The goal is to discover the relevant knowledge by investigating the correlations among smart city data based on clustering and pattern mining approaches. The COMI method first groups the highly correlated ontologies of smart-city data into similar clusters using the generic k-means algorithm. The key idea of this method is that it clusters the instances of each ontology and then matches two ontologies by matching their clusters and the corresponding instances within the clusters. The POMI method studies the correlations among the data properties and selects the most relevant properties for the ontology matching process. To demonstrate the usefulness and accuracy of the COMI and POMI frameworks, several experiments on the DBpedia, Ontology Alignment Evaluation Initiative, and NOAA ontology databases were conducted. The results show that COMI and POMI outperform the state-of-the-art ontology matching models regarding computational cost without losing the quality during the matching process. Furthermore, these results confirm the ability of COMI and POMI to deal with heterogeneous large-scale data in smart-city environments.publishedVersio

    IsoRankN: spectral methods for global alignment of multiple protein networks

    Get PDF
    Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species. Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient.National Science Council of Taiwan (NSC-096-2917-I- 002-114)National Science Council of Taiwan (NSC-095-2221-E-001-016-MY3)Fannie and John Hertz Foundatio

    Structural Graph-based Metamodel Matching

    Get PDF
    Data integration has been, and still is, a challenge for applications processing multiple heterogeneous data sources. Across the domains of schemas, ontologies, and metamodels, this imposes the need for mapping specifications, i.e. the task of discovering semantic correspondences between elements. Support for the development of such mappings has been researched, producing matching systems that automatically propose mapping suggestions. However, especially in the context of metamodel matching the result quality of state of the art matching techniques leaves room for improvement. Although the traditional approach of pair-wise element comparison works on smaller data sets, its quadratic complexity leads to poor runtime and memory performance and eventually to the inability to match, when applied on real-world data. The work presented in this thesis seeks to address these shortcomings. Thereby, we take advantage of the graph structure of metamodels. Consequently, we derive a planar graph edit distance as metamodel similarity metric and mining-based matching to make use of redundant information. We also propose a planar graph-based partitioning to cope with large-scale matching. These techniques are then evaluated using real-world mappings from SAP business integration scenarios and the MDA community. The results demonstrate improvement in quality and managed runtime and memory consumption for large-scale metamodel matching

    Intelligent blockchain management for distributed knowledge graphs in IoT 5G environments

    Get PDF
    This article introduces a new problem of distributed knowledge graph, in IoT 5G setting. We developed an end-to-end solution for solving such problem by exploring the blockchain management and intelligent method for producing the better matching of the concepts and relations of the set of knowledge graphs. The concepts and the relations of the knowledge graphs are divided into several components, each of which contains similar concepts and relations. Instead of exploring the whole concepts and the relations of the knowledge graphs, only the representative of these components is compared during the matching process. The framework has outperformed state-of-the-art knowledge graph matching algorithms using different scenarios as input in the experiments. In addition, to confirm the usability of our suggested framework, an in-depth experimental analysis has been done; the results are very promising in both runtime and accuracy.publishedVersio

    Incremental spectral clustering and its application to topological mapping

    Get PDF
    This paper presents a novel use of spectral clustering algorithms to support cases where the entries in the affinity matrix are costly to compute. The method is incremental – the spectral clustering algorithm is applied to the affinity matrix after each row/column is added – which makes it possible to inspect the clusters as new data points are added. The method is well suited to the problem of appearance-based, on-line topological mapping for mobile robots. In this problem domain, we show that we can reduce environment-dependent parameters of the clustering algorithm to just a single, intuitive parameter. Experimental results in large outdoor and indoor environments show that we can close loops correctly by computing only a fraction of the entries in the affinity matrix. The accompanying video clip shows how an example map is produced by the algorithm

    Uncertainty Analysis for Spatial Image Extractions in the context of Ontology and Fuzzy C-Means Algorithm

    Get PDF
    This paper emphasis on spatial feature extractions and selection techniques adopted in content based image retrieval that uses the visual content of a still image to search for similar images in large scale image databases, according to a user2019;s interest. The content based image retrieval problem is motivated by the need to search the exponentially increasing space of image databases efficiently and effectively. It is also possible to classify the remotely sensed image to represent the specific feature of the target images. In this research we first imposed the Fuzzy C-means algorithm to our sample image and observed its value. After getting the experimental result from Fuzzy C-means we have had designed Ontological Matching algorithm which aftereffect better than the previous one. We have had espy that our Ontological Matching algorithm is twenty (20%) percent better than Fuzzy C-means algorithm
    corecore