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Abstract

Graph Kernels and Applications in Bioinformatics

by

Marco Alvarez Vega, Doctor of Philosophy

Utah State University, 2011

Major Professor: Dr. Xiaojun Qi
Department: Computer Science

In recent years, machine learning has emerged as an important discipline. However,

despite the popularity of machine learning techniques, data in the form of discrete structures

are not fully exploited. For example, when data appear as graphs, the common choice is the

transformation of such structures into feature vectors. This procedure, though convenient,

does not always effectively capture topological relationships inherent to the data; therefore,

the power of the learning process may be insufficient. In this context, the use of kernel

functions for graphs arises as an attractive way to deal with such structured objects.

On the other hand, several entities in computational biology applications, such as gene

products or proteins, may be naturally represented by graphs. Hence, the demanding need

for algorithms that can deal with structured data poses the question of whether the use of

kernels for graphs can outperform existing methods to solve specific computational biology

problems. In this dissertation, we address the challenges involved in solving two specific

problems in computational biology, in which the data are represented by graphs.

First, we propose a novel approach for protein function prediction by modeling pro-

teins as graphs. For each of the vertices in a protein graph, we propose the calculation of

evolutionary profiles, which are derived from multiple sequence alignments from the amino

acid residues within each vertex. We then use a shortest path graph kernel in conjunction
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with a support vector machine to predict protein function. We evaluate our approach under

two instances of protein function prediction, namely, the discrimination of proteins as en-

zymes, and the recognition of DNA binding proteins. In both cases, our proposed approach

achieves better prediction performance than existing methods.

Second, we propose two novel semantic similarity measures for proteins based on the

gene ontology. The first measure directly works on the gene ontology by combining the

pairwise semantic similarity scores between sets of annotating terms for a pair of input

proteins. The second measure estimates protein semantic similarity using a shortest path

graph kernel to take advantage of the rich semantic knowledge contained within ontologies.

Our comparison with other methods shows that our proposed semantic similarity measures

are highly competitive and the latter one outperforms state-of-the-art methods. Further-

more, our two methods are intrinsic to the gene ontology, in the sense that they do not rely

on external sources to calculate similarities.

(109 pages)
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Public Abstract

Graph Kernels and Applications in Bioinformatics

Nowadays, machine learning techniques are widely used for extracting knowledge from

data in a large number of bioinformatics problems. It turns out that in many of such

problems, data observations can be naturally represented by discrete structures such as

graphs, networks, trees, or sequences. For example, a protein can be seen as a cloud of

interconnected atoms lying on a 3-dimensional space. The focus of this dissertation is on

the development and application of machine learning techniques to bioinformatics problems

wherein the data can be represented by graphs. In particular, we focus our attention on

proteins, which are essential elements in the life process. The study of their underlying

structure and function is one of the most important subjects in bioinformatics. As proteins

can be naturally represented by graphs, we consider the use of kernel functions that can

directly deal with data observations in the form of graphs. Kernel functions are the basic

building block for a powerful family of machine learning algorithms called kernel methods.

Concretely, we propose a novel approach for predicting the function of proteins. We

model proteins as graphs, and we predict function using support vector machines and graph

kernels. We evaluate our approach under two types of function prediction, the discrimina-

tion of proteins as enzymes or not, and the recognition of DNA binding proteins. In both

cases, the resulting performance is higher than existing methods.

In addition, given the establishment of ontologies as a popular topic in biomedical

research, we propose two novel semantic similarity measures between pairs of proteins.

First, we introduce a novel semantic similarity method between pairs of gene ontology

terms. Second, we propose an instance of the shortest path graph kernel for calculating the

semantic similarity between proteins. This latter approach, when compared with state-of-

the-art methods, yields an improved performance.
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Chapter 1

Introduction

In many real world problems, data observations occur naturally as complex structures,

which in turn can be represented by powerful formalisms such as graphs. Generally speaking,

a graph is defined as a collection of vertices or nodes where pairs of vertices are connected

by edges. Graphs are increasingly being used to model structured data objects in more

and more domains. For example, in social science, social networks are represented as finite

graphs of ties between social actors [1]. In natural language processing, graphs are used

to encode the meaning and structure of texts [2]. In chemoinformatics, graphs are the

fundamental way for representing chemical compounds [3]. In bioinformatics, graphs and

sequences are also used to represent the information contained in important bodies such as

biomolecules, DNA, RNA, and proteins [4]. Note that from a computational perspective,

sequences are in fact a special case of graphs.

Particularly in bioinformatics, recent scientific and technological advances have con-

tributed to the production of enormous amounts of structured data, which are available in

private and public repositories. This context has brought the attention of machine learning

and data mining researchers, who are increasingly focusing on the study of patterns existing

in such structures [5]. One case of great interest and importance is the study of protein

function.

Proteins are essential macromolecules responsible for performing numerous functions

in living cells. Understanding their function is crucial for promoting the advancement of

knowledge in biology and life sciences in general. Each protein within the body has a specific

function. For example, inside a cell we find a special type of protein, the enzyme, which is

known to increase the rate of chemical reactions.

The structural information contained in proteins is very rich and can be represented
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in distinct ways. Based on the sequence of amino acid residues on protein chains, we

can represent proteins as sequences of letters with each letter representing one amino acid

residue. Based on the structure of a protein, i.e., the spatial coordinates of each of the atoms

constituting a protein, we can represent proteins as point clouds in a 3-dimensional space.

Several structural genomics projects, whose goal is to determine the 3-dimensional structure

of proteins, have been producing a vast number of protein structures. Furthermore, due

to the difficulties involved in the experimental characterization of protein function, these

projects have been generating a large number of proteins with little or unknown functional

information [6]. Consequently, effective and high-throughput computational approaches

are needed for addressing the problem of predicting the unknown function of proteins. In

this dissertation, we investigate graph models for proteins that can effectively represent

their rich structural information. We propose the use of such models in conjunction with

graph kernels and support vector machines for predicting protein function in two specific

problems: the prediction of proteins as enzymes and the prediction of proteins as DNA

binding proteins.

In machine learning, kernel methods such as the widely used support vector machine,

are a class of very powerful algorithms for pattern analysis and prediction [7–9]. A crucial

point in kernel methods is that they depend on the data only through the calculation of

kernel functions. Therefore, algorithms of the family of kernel methods are based upon the

use of kernel functions (or simply “kernels”), which can be thought of as similarity measures

for pairs of objects. In statistical learning theory, a kernel function K(x, y) for a pair of

data observations x and y is a formalism used to extend linear methods to work in a higher

dimensional space where nonlinearities in the data can be detected. Several kernel functions

are available in the literature, the most popular of which assume that the observations are

feature vectors, i.e., arrays of numeric values. A list of some kernels defined to work on

feature vectors include: linear, polynomial, gaussian, exponential, and laplacian kernels [9].

It turns out that we can also define kernel functions for pairs of discrete structures.

More specifically, we can define kernel functions for graph models of proteins. Thus, the
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entire family of kernel methods is available for building prediction models by directly pro-

cessing datasets of graphs. This appears as an elegant and effective way for solving protein

function prediction problems. Among all recent developments, graph kernels based on

shortest paths [10], are a remarkable class of kernel functions. They are able to compare

graphs at acceptable polynomial time. Contrary to most existing graph kernels, shortest

path graph kernels can deal with graphs with continuous feature vectors at their nodes.

In our approach, shortest path graph kernels are used in conjunction with support vector

machines to train models for predicting protein function.

On the other hand, a totally different way to characterize proteins is the use of onto-

logical annotations, that is, by labeling proteins with multiple terms defined in a related

ontology. Ontologies are a popular topic in various fields of computer science [11]. They

are primarily used to represent the knowledge within a domain, by means of a hierarchical

structure of concepts connected by relationships between them. This formal specification

permits the description of entities within the investigated domain, and eventually, the use

of computational methods for reasoning about such entities. In bioinformatics, the gene

ontology [12] is a major initiative to systematically organize biological knowledge across

species and databases.

The gene ontology provides a controlled vocabulary of terms used to characterize gene

products, either RNA or proteins, in terms of their associated biological processes, cellular

components, and molecular functions. The vocabulary of terms is organized as a directed

acyclic graph, where each term has defined relationships to one or more other terms. Given

the vocabulary, proteins can be annotated with terms to describe their characteristics. A

rich repository of protein annotations by gene ontology terms is produced by the GOA

project [13] held at the European Bioinformatics Institute, which provides high-quality an-

notations to proteins in the UniProt KnowledgeBase. The extensive coverage of biological

knowledge in the gene ontology in conjunction with the increasing number of protein anno-

tations deposited in their respective databases, make these resources valuable components

for the analysis of proteins.
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For instance, proteins can be compared based on the semantic similarity between their

respective annotating terms. The term semantic similarity is a measure for the likeness of

the meaning of the involved terms. Therefore, protein semantic similarity can be derived by

analyzing their respective annotation sets and the semantic relationships of such terms in

the gene ontology. In this dissertation, we also propose graph models for proteins based on

their respective annotating terms and relationships in the gene ontology. Given such models,

we propose two novel ways to estimate the semantic similarity between pairs of proteins.

The estimation of semantic similarity between a pair of proteins is a basic building block

that can be incorporated in the study of protein function.

1.1 Contributions

In view of the abundance of structured data in bioinformatics, specifically, data pro-

vided by databases of protein structures, the gene ontology, and databases of annotated

proteins, we focus on the study and proposal of computational approaches that can take ad-

vantage of the rich amount of information contained in proteins, when they are represented

as structured objects. To this end, we consider two distinct problems in bioinformatics,

namely, protein function prediction and protein semantic similarity.

1.1.1 Protein Function Prediction

We address the problem of protein function prediction by proposing a novel approach

for modeling proteins as graphs. For a given protein, a graph model is created by combining

information derived from the protein sequence and structure. We apply our approach to two

separate binary classification problems, namely, the discrimination of proteins as enzymes,

and the discrimination of proteins as DNA-binding proteins. In both cases, graph kernels

and support vector machines are used to train the binary classifiers. In summary, our

contributions for protein function prediction are highlighted below:

• We propose novel graph models for proteins. We analyze the 3-dimensional protein

structure in order to create a protein graph, wherein the vertices represent groups
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of neighboring amino acid residues, and edges connect pairs of vertices that are in

contact, i.e., vertices whose their closest atoms are under a minimum distance defined

as 5Å;

• We propose the calculation of evolutionary profiles for each of the vertices in a protein

graph. These profiles are derived from multiple sequence alignments for the amino acid

residues residing within the vertex. The motivation behind this idea is to characterize

those regions in the protein structure that seem to be more conserved over time;

• We propose to apply our graph models to datasets of protein structures, so that,

shortest path graph kernels can be used in conjunction with the support vector ma-

chine algorithm for binary classification in two distinct protein function problems.

We show that our proposed approach outperforms other state-of-the-art methods in

both problems, the discrimination of enzymes and the recognition of DNA binding

proteins. The publications derived from this work are [14,15].

1.1.2 Protein Semantic Similarity

We also focus our attention on the problem of calculating the semantic similarity be-

tween proteins. We propose two novel methods to estimate protein semantic similarity. In

both methods, the similarity score for a pair of proteins is derived from their respective

annotations from the gene ontology. The hierarchical structure of the gene ontology al-

lows us to model proteins as graphs. For example, for a given protein, a graph model can

be created by extracting a subgraph from the gene ontology, such that it contains all the

terms (vertices) annotating the protein, along with their respective ancestors in the ontol-

ogy. This subgraph also includes the relationships (edges) existing in the gene ontology

between each pair of vertices. Once gene ontology terms and their relationships provide

very valuable semantic knowledge that can be used for estimating functional similarities

between proteins, we present our methods under the common denomination of protein se-

mantic similarity. Our contributions for estimating the semantic similarity between pairs

of proteins are highlighted below:



6

• We propose a semantic similarity method that can work directly on the gene ontol-

ogy. For a pair of input proteins, their similarity is calculated by combining pairwise

semantic similarity scores between their respective annotating terms. To this end,

we estimate the semantic similarity between a pair of gene ontology terms, by taking

into account the length of the shortest path between them, the depth of their nearest

common ancestor, and the semantic similarity between the definitions accompanying

both terms. To the best of our knowledge, this is the first attempt to use similar-

ities between definitions of terms from the gene ontology to compute the semantic

similarity. The publications directly associated with this method are [16–18];

• We propose a novel method for estimating protein semantic similarity. We estimate

similarity by representing two input proteins as induced subgraphs from the gene

ontology, and then applying an instance of the shortest path graph kernel. By using

this kernel function, machine learning methods based on kernels can take advantage

of the rich semantic knowledge contained within ontologies and be directly applied to

datasets of proteins. The publication derived from this method is [19];

• We introduce the above two novel methods with the advantage that they are intrinsic

to the gene ontology, in the sense that they do not rely on external sources to cal-

culate similarities. Most of existing methods include scores calculated from external

annotation databases; therefore, they are likely to be biased by proteins that are stud-

ied more intensively [20]. In a comprehensive evaluation using a benchmark dataset,

both of our proposed methods compare favorably with other existing methods. Our

approaches provide an alternative route, with comparable performance, to methods

that use external resources.

1.2 Organization of This Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce

basic concepts and terminology related to statistical learning theory and kernel methods.
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Such elements are essential for understanding kernel functions for the graph domain. Chap-

ter 3 reviews state-of-the-art kernels for graphs, which are the major ingredients for solving

two computational biology problems: protein function prediction and protein semantic sim-

ilarity. Chapter 4 describes our proposed graph models for protein structures and their

evaluation under two different function prediction problems: the discrimination of proteins

as enzymes and the prediction of DNA binding proteins. Chapter 5 reviews the problem of

protein semantic similarity and describes our two proposed algorithms: SSA and the short-

est path graph kernel, which are accompanied by their respective evaluation and comparison

with state-of-the-art methods. Finally, Chapter 6 summarizes our contributions with their

respective publications. It also suggests directions for future work.
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Chapter 2

Statistical Learning and Kernel Methods

This chapter introduces the basic foundations of learning theory and kernel methods.

They provide the formalisms required to explore and understand kernel methods in the

graph domain and their application to computational biology problems.

The chapter starts by introducing the basic concepts and definitions supporting sta-

tistical learning theory. Then the formulation of support vector machines is described in

detail in conjunction with the connection existing between risk minimization principles and

learning with linear classifiers. Finally, kernels are presented as an attractive way to extend

linear classifiers to nonlinear spaces.

As the protein function prediction problems described in this dissertation are classi-

fication problems involving only two classes, when possible, the examples and settings for

the concepts described in this chapter are primarily concerned with and restricted to the

problem of binary classification.

2.1 Statistical Learning Theory

Machine Learning can be informally viewed as the process of automatically learning

from observed experience, so that models can be constructed and predictions can be made

using such models. Statistical learning theory (SLT) [21] comprises the underlying theoreti-

cal framework for many existing algorithms for the problem of learning from examples [22].

Although the original motivation behind SLT was philosophical in nature, it provided the

basis for new learning algorithms and gained popularity with the development of the well-

known support vector machine (SVM) [23].

In the context of this dissertation, a special case of learning is considered, namely,

supervised learning. Herein, the question of how a machine can learn specific tasks by
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observing data is addressed by feeding the machine a set of known examples. Accordingly,

a model that identifies regularities in the data can be inferred and subsequently used for

future predictions on unseen examples.

Formally, the set of known observations, also called the training set, is the set of n

pairs

(x1, y1), . . . , (xn, yn) ∈ X × Y (2.1)

where X is an input space of instances and Y is an output space of labels. Typically,

yi ∈ R for regression problems while yi is discrete for classification problems. For example,

consider the protein function prediction problems addressed in this dissertation. They are

classification problems restricted to two classes, i.e., binary classification, where the output

space can be defined as Y = {0, 1}. In order to learn a model, the learning algorithm must

find a mapping f , also called a classifier, from the space of functions F , where f : X → Y

makes as few misclassifications as possible. From this point on, this chapter focuses on the

problem of binary classification.

Note that the process of learning a classifier does not make any assumptions on the

nature of X or Y. However, in order to make learning possible, we assume the existence of

an unknown but fixed joint probability distribution P on X×Y, which is the model governing

the phenomenon of data generation. Within this model, both past observations used for

training and future unseen examples are related by P, because they are assumed to be

generated by sampling independent and identically distributed (i.i.d.) random observations

from the distribution P.

2.1.1 Loss Functions and Risk

In summary, the goal of supervised learning consists of the following: given a training

set D = {(xi, yi) ∈ X ×Y} containing n i.i.d. observations sampled from P, find a classifier

f that can later be used with any x ∈ X to predict the corresponding y ∈ Y. Certainly, it is

unavoidable to have a measure of how well the classifier f is performing. More specifically,

we need a loss function l : X × Y × F → R that measures the cost of classifying an input
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example x ∈ X with the label y ∈ Y. For example, the simple 0-1 loss function for

classification is defined as:

l(x, y, f) =


1, if f(x) 6= y

0, otherwise.

(2.2)

While the loss function is used to measure the error at individual observations, the risk

of a classifier f according to the distribution P is the expected loss, as given by:

R(f) =

∫
X×Y

l(x, y, f) · dP(x, y) = E [l(x, y, f)] . (2.3)

Naturally, we are interested in the optimal function f∗ from F , which minimizes the

risk. This ideal estimator is the Bayes classifier:

f∗(x) =


1, if PY |X (Y = 1|X = x) ≥ 1

2

0, otherwise.

(2.4)

The Bayes classifier achieves the infimum of the risk over all possible estimators in F .

This optimal risk is called the Bayes risk, and it is defined as

R∗ = inf
f∈F

R(f). (2.5)

In practice, neither the Bayes classifier nor the risk can be directly calculated, because

the underlying distribution P is unknown at the time of learning. In this context, the

problem of learning has to be formulated as finding a classifier f , from the space of functions

F , with risk as close as possible to the Bayes risk.

Even though the actual distribution is unknown, a finite number of observations drawn

from P, that is, the training data D, are available for learning. It turns out that these

examples can be used to approximate the true risk R(f), by means of empirical risk defined

as follows:

Remp(f) =
1

n

n∑
i=1

l(xi, yi, f). (2.6)



11

2.1.2 Risk Minimization

With the hope of learning the underlying distribution from the training set and then

generalizing to unseen examples, many learning algorithms, such as certain neural network

models [24], adopt the strategy of empirical risk minimization (ERM). This inductive prin-

ciple chooses the estimator f̂ ∈ F that yields the minimum empirical risk

f̂ = arg min
f∈F

Remp(f). (2.7)

A natural question arises here, namely, to what extent the empirical risk is a good

approximation of the true risk. According to the law of large numbers, it is possible to give

conditions that ensure that the empirical risk will converge to the true risk, as the number

of training examples tends to infinity [21]

lim
n→∞

Remp(f) = R(f). (2.8)

However, for an arbitrary and large space of functions F , minimizing the empirical risk

on the training set can prove problematic [25]. First, this is usually an ill-posed problem

because for a given training set, there might be many optimal solutions that minimize the

empirical risk. Second, even when a classifier f perfectly predicts the training data, i.e.,

Remp(f) = 0, it almost certainly will not show good generalization on unseen data. In

cases wherein Remp(f) is minimum but R(f) is large, unwanted overfitting takes place. To

illustrate this point, consider a classifier g that “remembers” the class labels for all training

examples by querying a lookup table. It follows that empirical risk is Remp(g) = 0, however,

g cannot correctly classify unseen data.

One way to avoid overfitting is by restricting the space of functions F from which the

estimator f is chosen [21]. Without such restriction, the minimization of the empirical risk

is not consistent. Consistency is determined by the worst case over all estimators that can

be implemented. That is, we need a version of the law of large numbers that is uniform over

all estimators. If the risk minimization is consistent, the minimum of Remp(f) converges to
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R(f) in probability [26].

In SLT, a probabilistic bound can be provided for the difference |Remp(f)−R(f)| in such

a way that overfitting can be controlled by minimizing the bound. Interestingly, the bound

is independent of the underlying distribution, but it is still assumed that both past and

future data are i.i.d. from the same distribution. According to the Vapnik-Chervonenkis

(VC) theory [21], tighter bounds depend on both the empirical risk and the capacity of

the function space, which is a measure of its complexity. In VC theory, the best known

capacity concept is the VC dimension, defined as the largest number h of points that can

be separated for all possible labelings using functions from the space F [27]. If no h exists,

the VC dimension is +∞.

An example of a VC bound is the following: let the VC dimension h < n for a given

space F , then for all estimators from that class and a 0-1 loss function, the following bound

holds with probability at least 1− δ [21]:

R(f) ≤ Remp(f) +

√
h
(
log 2n

h + 1
)
− log δ

4

n
. (2.9)

The second term on the right hand side of Eq. 2.9 is an increasing function of h
n and

δ. That is, overfitting is very likely to occur as the ratio between the capacity and the

number of examples in the training set increases. The capacity plays an interesting role,

because a very small capacity can reduce the second term but it might not be good enough

to learn the training data, yielding a large empirical risk. On the other hand, a very large

capacity will reduce the empirical risk but it will increase the second term. This situation is

analogous to the bias-variance dilemma from neural networks and statistics [8]. In order to

obtain better generalization, the function space must be restricted such that the capacity

is as small as possible, given the available training data. Figure 2.1 shows the intuition

behind Eq. 2.9.

Unfortunately, bounds introduced by VC theory are very difficult to measure in prac-

tice [8], but they can be exploited using the principle of structural risk minimization (SRM).

The idea here is to define a nested family of function classes (spaces) F1 ⊂ · · · ⊂ Fk with
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Empirical Risk

True RiskError

Complexity
OverfittingUnderfitting

Confidence

Best Model

Fig. 2.1: Illustration of Eq. 2.9. Note how the empirical error decreases with higher capacity
but the upper bound on the risk (confidence) becomes worse. The best model lies on the
best trade-off between complexity and empirical error.

their corresponding VC dimensions satisfying h1 ≤ · · · ≤ hk. Given this sequence of in-

creasingly more complex function spaces, SRM consists of choosing the minimizer of the

empirical risk in the function space for which the bound on the structural risk (right hand

side of Eq. 2.9) is minimized [25].

2.2 Support Vector Machines

Although bounds as defined previously suffer from practical problems, they offer prin-

cipled ways to formulate learning algorithms. SVMs, one of the most well-known classifiers,

are built on the basis of SRM. To introduce the basic concepts of SVMs, let us assume that

the input space is restricted to X = Rd. Furthermore, under the context of binary classifi-

cation, i.e., Y = {−1,+1}, we assume that the data belong to two classes (see Figure 2.2),

that can be linearly separable by a hyperplane of the form:

f(x) = 〈w, x〉+ b = 0 (2.10)
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where the decision surface is parametrized by the weight vector w ∈ Rd and the threshold

b ∈ R, and 〈w, x〉 denotes the dot product between w and x.

~w

f(x) = 0 f(x) = +1f(x) = −1

Class +1

Class −1
f(x) < −1

f(x) > +1

x1

x2

1
‖w‖

1
‖w‖

margin = 2
‖w‖

Fig. 2.2: A linear classifier separating two classes. The decision surface (in blue) is a
hyperplane defined by 〈w, x〉+ b = 0. The margin is defined by the distance of the closest
points (x1 and x2).

Consider two points x1 and x2 lying on the decision surface, i.e., f(x1) = f(x2) = 0.

Then, using Eq 2.10 we obtain 〈w, (x1 − x2)〉 = 0, which reveals that the weight vector

w is orthogonal to the decision surface; therefore, it determines the orientation of the

hyperplane. Additionally, note that the value b
‖w‖ determines the perpendicular distance

from the hyperplane to the origin.

All the hyperplanes satisfying yif(xi) > 0, for all i = 1, . . . , n, can be considered as

decision surfaces. With the purpose of selecting the best hyperplane, it turns out that it

is possible to restrict the class of hyperplanes using theoretical insights from VC theory.

More specifically, the VC dimension can be bounded in terms of the margin. The margin

is defined as the minimal distance between an example and the decision surface [8].

A canonical representation of the hyperplane is obtained by rescaling w and b such

that the closest points to the decision surface satisfy |〈w, xi〉 + b| = 1. Now consider two

points x1 and x2 such that 〈w, x1〉 + b = +1 and 〈w, x2〉 + b = −1. After projecting both

points onto the normal weight vector w
‖w‖ , the margin is given by the distance between
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those projections, i.e., perpendicular to the hyperplane. In consequence, the margin can be

expressed in terms of w, because w
‖w‖ · (x1 − x2) = 2

‖w‖ . These properties are geometrically

illustrated in Figure 2.2 for the case d = 2.

It is proven in [21] that the larger the margin of a function from F , the smaller its VC

dimension. Bear in mind that different functions (hyperplanes) can be defined by simply

changing w and b. As the margin of separating hyperplanes expresses the capacity, the SVM

algorithm aims at finding the hyperplane parametrization that yields the largest margin for

separating all examples in the training set.

2.2.1 Hard Margin

For canonical separating hyperplanes of the form depicted by Eq. 2.10, one can achieve

perfect classification of training examples when yi(〈w, xi〉 + b) ≥ 1, for i = 1, . . . , n. In

other words, when the data are linearly separable, the empirical risk can be kept zero by

constraining the parameters w and b. In order to minimize the bound from Eq. 2.9, the

complexity term, which increases monotonically with the VC dimension, can be controlled

by maximizing the margin. That is, we can minimize the complexity by minimizing ‖w‖.

This is nicely formulated as the following quadratic optimization problem (also known as

the primal formulation) [8]:

minimize
w,b

1

2
‖w‖2

subject to yi(〈w, xi〉+ b) ≥ 1, i = 1, . . . , n.

(2.11)

The optimization problem above is convex with linear constraints. We can introduce

Lagrange multipliers in such a way that the constraints are replaced by constraints on

the multipliers themselves, making the problem easier to handle. Furthermore, in this

new formulation, the operations on the examples appear only in the form of dot products.

Later, we will generalize the SVM linear model to nonlinear cases by taking advantage of

this property.

In the Lagrangian formulation, we introduce multipliers αi ≥ 0, i = 1, . . . , n, one for



16

each of the constraints defined in Eq. 2.11. To form the Lagrangian, the rule is that for con-

straints of the form ci ≥ 0, the constraint equations are multiplied by the α’s and subtracted

from the objective function; therefore, from Eq. 2.11 we get the following Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi (yi(〈w, xi〉+ b)− 1)

=
1

2
‖w‖2 −

n∑
i=1

αiyi(〈w, xi〉+ b) +
n∑
i=1

αi.

(2.12)

Once this is a convex quadratic programming problem and those points satisfying

the constraints also form a convex set, we can equivalently formulate and solve the dual

problem [28], wherein the solution is determined by minimizing L(w, b, α) with respect to

w, b and maximizing it with respect to αi. It follows that, the saddle points are given by

the conditions:

∂L(w, b, α)

∂b
= 0 and

∂L(w, b, α)

∂w
= 0 (2.13)

which after rearrangement of terms translate into:

n∑
i=1

αiyi = 0 and w =
n∑
i=1

αiyixi. (2.14)

A further expansion of terms in Eq. 2.12 yields

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αiyi〈w, xi〉 − b
n∑
i=1

αiyi +
n∑
i=1

αi (2.15)

where the third term on the right-hand side is zero because of the first condition of Eq. 2.14.

In addition, we can get rid of w by expanding ‖w‖2 as follows:

‖w‖2 = 〈w,w〉 =

n∑
i=1

αiyi〈w, xi〉 =

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉. (2.16)
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Accordingly, from Eq. 2.15 and 2.16, the dual problem can be simplified and stated as:

maximize
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to αi ≥ 0, i = 1, . . . , n

n∑
i=1

αiyi = 0

(2.17)

where the solution consists of optimal Lagrange multipliers, denoted by α∗i . Consequently,

the optimum weight vector w∗ can be recovered by using the vector α∗ in one of the saddle

points shown in Eq. 2.14 as follows:

w∗ =
n∑
i=1

α∗i yixi. (2.18)

In the solution, there are particular cases called support vectors. Those are the points

lying on one of the hyperplanes f(x) = 1 or f(x) = −1 for which α∗i > 0, while all training

examples that are not support vectors have α∗i = 0.

Once we have the optimum weights, the threshold can be determined by considering

that for any support vector xi, yi(〈w, xi〉 + b) = 1, and thus, b∗ = yi − 〈w∗, x〉. In fact,

instead of calculating b∗ for only one support vector, averaging over all support vectors yields

a better and more numerically stable solution. With the optimum weights and threshold,

the classification rule can be expressed as:

f(x) = sgn (〈w∗, x〉+ b∗) = sgn

(
n∑
i=1

α∗i yi〈xi, x〉+ b∗

)
. (2.19)

In summary, the hard margin formulation of SVMs is applicable when the data are

linearly separable. Learning involves solving the optimization problem stated in Eq. 2.17.

The solution is known to be sparse, in the sense that, for making new predictions we

only have to “remember” the support vectors. Note also that in both the dual formulation

(Eq. 2.17) and the classification rule (Eq. 2.19), the data appear in the form of dot products.

This is a key observation that later will play a role in the definition of SVMs for nonlinear
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cases.

2.2.2 Soft Margin

The formulation described in the previous section is applicable when the data are

linearly separable, corresponding to an empirical error of zero. Nevertheless, in real world

applications, data appear under more complex circumstances and might not be separable

by a linear hyperplane. When data from both classes overlap, we need to modify the SVM

formulation so as to allow for misclassifications of some training points. The idea is to

allow data points to be on the wrong side of the margin; however, they are penalized with

an amount proportional to their distance from the margin. To this end, slack variables

ξi ≥ 0 for i = 1, . . . , n, for each training example are introduced [23]. These variables are

defined by ξi = 0 for points either on the margin or on the correct side of the margin, and

ξi = |yi − f(xi)| for all other cases. Points with ξi > 1 are misclassified because they lie on

the wrong side of the decision surface, and those points for which 0 < ξi ≤ 1 lie inside the

margin but on the correct side of the decision surface, as illustrated in Figure 2.3.

f(x) = 0 f(x) = +1f(x) = −1

Class +1

Class −1
f(x) < −1

f(x) > +1

ξ = 1

ξ < 1

ξ < 1

ξ > 1

ξ > 1

Fig. 2.3: Illustration of the slack variables ξi, for i = 1, . . . , n. Note that only the values
ξi 6= 0 are shown, corresponding to points on the wrong side of the margin. All the other
points lying either on the margin or on the correct side have ξi = 0.

The idea of a soft margin in SVMs comes from the relaxation of the hard margin
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constraints with the use of slack variables. Hence, the margin has to be maximized in the

presence of misclassifications, then the primal problem is formulated in such a way that the

VC dimension is small (large margin) while the empirical risk (slack variables) is minimized:

minimize
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

(2.20)

where the regularization constant C > 0 is used to determine the tradeoff between the

margin and the empirical error. Similar to the case of hard margin SVMs, the primal above

can be equivalently written as a dual problem:

maximize
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to 0 ≤ αi ≤ C, i = 1, . . . , n

n∑
i=1

αiyi = 0.

(2.21)

The dual problem for the soft margin SVM (Eq. 2.21) differs from that of the hard

margin (Eq. 2.17) only on the constraints applied to the Lagrange multipliers. In addition,

for the soft margin the following observations hold. Data points outside the margin will

have α∗i = 0, while points on the margin line have 0 ≤ α∗i ≤ C. Points within the margin

have α∗i = C, including misclassified and correctly classified points. Therefore, support

vectors are characterized by 0 < α∗i < C. The optimum values for the weight vector w∗ and

threshold b∗ can be calculated in the same way as for the hard margin case.

2.3 Kernels

With the introduction of soft margin SVMs, misclassification errors are allowed in

order to deal with noisy data. However, in more complex scenarios, the data might not be

separable by a hyperplane at all. Thus, the choice of linear functions is, to a certain extent,

restricted for learning nonlinearities in the data. We need to generalize the SVM theory
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to deal with nonlinear decision surfaces. Opportunely, the use of kernel functions makes

possible training linear models, while at the same time, decision functions are nonlinear.

In this section, we provide a short description of kernel functions that serve as important

background for the development of later chapters. For the corresponding formal proofs and

further details, refer to [29].

2.3.1 Kernel Functions and the Kernel Trick

The basic idea is to map the input space X into a potentially richer and higher dimen-

sional feature space H. The hope is that nonlinear characteristics of the input space become

linear in the enlarged space, therefore, allowing for linear separation with hyperplanes. The

nonlinear mapping is denoted by a function Φ: X → H called the feature map, illustrated

in Figure 2.4.

x′

x

Φ(x′)

Φ(x)

Φ(·)

Fig. 2.4: Data points are mapped from an input space X into a feature space H by the
function Φ. The dashed boundary shows how data points that are not linearly separable in
X become separable in H.

We can make any learning algorithm work in the feature space H by transforming the

input examples into (Φ(x1), y1), . . . , (Φ(xn), yn) ∈ H × Y. Going into a higher dimensional

space may appear to suffer from the curse of dimensionality problem, therefore requiring

many more examples. However, according to SLT, learning in H can be simpler if one uses a

low complexity class of decision functions, for example, classifiers based on hyperplanes [8].



21

While it is true that for certain applications we can define and apply an appropriate

function Φ(·), the explicit mapping to a higher dimensional space H can be intractable

due to the space required and the computational cost involved in the transformation of

all examples. It turns out that for certain spaces, there is an attractive way to implicitly

calculate dot products in H without even knowing the function Φ(·):

k(x, y) = 〈Φ(x),Φ(y)〉 (2.22)

where k : X × X → R is known as the kernel function. Such a kernel can be intuitively

thought of as a similarity measure for any pair of objects from X .

Learning algorithms can take advantage of kernel functions by implementing the kernel

trick. Any algorithm that exclusively uses dot products to interact with input examples

from X can use a kernel function instead to solve the problem in the feature space H. There

is no need to compute the mapping Φ(·) explicitly. For example, the soft SVM from Eq. 2.21

can be extended to a nonlinear space by replacing the dot product 〈xi, xj〉 with a kernel

function k(xi, xj).

2.3.2 Positive Definite Kernels

In order to make possible similarities in the input space corresponding to dot products

in a feature space, kernel functions must be valid. A valid kernel function satisfies symmetry,

i.e., k(xi, xj) = k(xj , xi), and positive definiteness in the following sense:

Definition 1 (positive definite kernel) A symmetric function k : X × X → R is a pos-

itive definite 1 kernel if, for any n ∈ N, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ R

n∑
i=1,j=1

cicjk(xi, xj) ≥ 0. (2.23)

1In mathematics, functions for which this sum is strictly positive when ci 6= 0 and cj 6= 0 are called
positive definite functions, whereas functions for which this sum is only non-negative are called positive
semidefinite functions. For brevity, we will use the term positive definite indifferently for both cases.
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Definition 2 (kernel matrix) Given a positive definite kernel function k and a set of

examples x1, . . . , xn ∈ X , the n×n matrix K such that K(i, j) = k(xi, xj) for i, j = 1, . . . , n

is called the kernel matrix (or gram matrix).

From the definitions above, it follows that if k is a positive definite kernel, we can

construct a Hilbert space H in which k is a dot product. It is shown in [28] that every kernel

function is associated with a Reproducing Kernel Hilbert Space (RKHS) and that every

RKHS is associated with a kernel function. Furthermore, Eq. 2.23 is considered essential

for practitioners. One of the most powerful kernel methods for classification, the SVM, has

the advantage of finding a unique solution. This is only possible when the optimization

problem is convex. It turns out that the SVM problem is convex whenever the used kernel

matrix satisfies the definitions above.

2.3.3 Properties of Kernels and Examples

Positive definite kernel functions have attractive properties that can be used to create

new kernel functions, by combining existing ones. Assuming that X is an input space and

k1 and k2 are arbitrary positive definite kernels defined over X × X , the following are also

positive definite kernels: α · k1, for α > 0; k1 + k2; k1 · k2; and exp(k1).

The distance between two points in the feature space can also be calculated using the

kernel trick. Consider two objects xi, xj ∈ X such that, their respective mappings are Φ(xi)

and Φ(xj) in H. The distance dij in H can be computed as:

dij = ‖Φ(xi)− Φ(xj)‖

= (〈Φ(xi),Φ(xi)〉+ 〈Φ(xj),Φ(xj)〉 − 2〈Φ(xi),Φ(xj)〉)
1
2

=
√
k(xi, xi) + k(xj , xj)− 2k(xi, xj)

(2.24)

where k is a positive definite kernel function.

It is often a good practice to normalize or scale the training data before applying

kernel functions. This is trivial when the data come as a set of vectors, because we can

apply the transformation to each column. In a more general case, we only have the kernel
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matrix. Sometimes the kernel matrix is created from objects from a complex input space,

not necessarily a Euclidean space. In these cases, it is considered effective to normalize the

kernel matrix such that the diagonal elements are all equal to 1, according to:

K(i, j) =
K(i, j)√

K(i, i) ·K(j, j)
for all i, j = 1, . . . , n (2.25)

where K(i, j) denotes the (i, j)th element of the kernel matrix K [30].

A few instances of kernels for vectorial data have been very popular among SVM

practitioners, and they are implemented by default in widely used software packages for

SVMs, such as LibSVM2 and SVMlight.3 Table 2.1 shows a list of well-known positive

definite kernels.

Table 2.1: List of known positive definite kernels for vectorial data.

Kernel Definition Parameters

Linear 〈xi, xj〉
Polynomial (〈xi, xj〉+ c)p p ∈ N, c ≥ 0

Gaussian exp
(
−‖xi−xj‖

2

2σ2

)
σ > 0

In summary, there are two major benefits in the use of kernels. First, it allows the

definition of similarities between arbitrary objects. Once there are no restrictions on the

input space X , kernels can be designed for any kind of data, as long as they are valid

kernels. For example, several kernels have been proposed to work with complex objects,

such as strings, sequences, trees, or graphs (illustrated in Figure 2.5). Second, valid kernel

functions can be embedded in any learning task, that is, clustering, classification, regression,

or feature extraction, provided that the respective algorithms are based on dot product

calculations. For instance, the family of kernel methods includes learning algorithms where

observations in the training set only come into the algorithm via dot product calculations

with each other.

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3http://svmlight.joachims.org/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/
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Fig. 2.5: Instances of structured objects, such as sequences, trees and, undirected graphs.
One of the major advantages of kernel functions is that they can be defined to measure the
similarity between structured objects.
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Chapter 3

Kernels for Graphs

In this chapter, several kernels for graphs are reviewed. Graph kernels are a central

topic in this dissertation, since the computational biology problems addressed in later chap-

ters are based on graph models of proteins. One can think of graph kernels as similarity

functions designed for graph structures. Such similarities must be valid kernels in order

to be employed in kernel-based learning tasks as classification or clustering. The design of

graph kernels is based on a rich set of fundamentals from graph theory. The challenge is to

define similarity measures capable of capturing the structural commonalities between pairs

of graphs.

Initially, a brief introduction to graph theory [31] is presented with the purpose of

defining terminology and notation for the remaining sections. Next, a brief review of existing

algorithms for graph matching is presented (for more details refer to [32]). Then, we present

a concise analysis of the major kernel functions for graphs existing in the literature. When

possible, we make their connection with graph matching algorithms, as well as highlighting

their advantages and shortcomings.

3.1 Introduction to Graph Theory

Formally, a graph G is defined as a pair 〈V,E〉, where V denotes the nonempty set of

vertices (nodes), and E ⊆ V × V denotes the set of edges. An edge e ∈ E connects a pair

of vertices u, v ∈ V , and it is denoted as (u, v). The order of a graph G, denoted by |G|,

is defined as the number of vertices in the graph. A graph of order 1 is called trivial. If

the vertices or edges of a graph are assigned labels we obtain a labeled graph, sometimes

referred to as an attributed graph. When graphs are used to model real world artifacts,

e.g., protein structures, the vertices are used to represent entities, and the edges are the
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relationships between pairs of entities.

Vertices u, v ∈ V are adjacent if there exists e = (u, v) ∈ E, where edge e is called

incident to the vertices u and v. When two vertices are adjacent, they are called neighbors.

The degree of a vertex v is defined as the number of incident edges to v. We define the

adjacency matrix of an unlabeled graph G = 〈V,E〉 as An×n = [aij ] where aij = 1 if (vi, vj)

is an edge of G and 0 otherwise.

When the edges in E are ordered pairs of vertices, the graph is called directed. Any

directed edge connects a source vertex to a target vertex. Graphs are undirected when the

edges in E do not have a particular order or direction. A graph is called simple if there

is no edge connecting a vertex to itself (loop) and there are no multiple edges connecting

the same pair of vertices. A multigraph is a graph that contains multiple edges. A graph

is complete if all of their vertices are connected to each other. The complete graph with n

vertices is denoted by Kn. Graphs can be represented pictorially, as in Figure 3.1.

A B

CD

1

52 2

1

Fig. 3.1: Illustration of a graphical representation of graphs. The graph on the left is an
undirected graph containing one loop. The graph on the right is a labeled directed and
simple graph.

Let G ∪G′ = 〈V ∪ V ′, E ∪ E′〉 and G ∩G′ = 〈V ∩ V ′, E ∩ E′〉. If G ∩G′ = ∅, then G

and G′ are disjoint graphs. If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G (also written

as G′ ⊆ G), and G is a supergraph of G′. A complete subgraph from G is referred to as a

clique. If G′ ⊆ G and E′ contains all the edges e = (u, v) such that e ∈ E with u, v ∈ V ′,

we say that G′ is an induced subgraph of G.
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A walk w in a graph G is a nonempty sequence of vertices v1, . . . , vk connected by edges

e1, e2, . . . , ek−1 such that ei = (vi, vi+1) for all 1 ≤ i < k. The length of a walk is the number

of edges in the sequence. If the vertices in the sequence are all distinct, w is called a path

p in G. If v1 = vk in the path p, p is called a cycle in G. We can also say that a graph G

is connected if for every pair of distinct vertices in G, there exists a path connecting both

vertices.

Let G = 〈V,E〉 and G′ = 〈V ′, E′〉 be two graphs. The graphs G and G′ are isomorphic,

denoted byG ' G′, if there exists a bijection f : V → V ′ with (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′

for all u, v ∈ V . The map f is called an isomorphism. This bijection expresses the general

notion of isomorphism being a structure preserving function. However, further restrictions

may be imposed so that additional elements are preserved. For example, vertex labels

commonly taken from a discrete alphabet. The graph isomorphism relation satisfies the

conditions of reflexivity, symmetry, and transitivity [33].

3.2 Graph Matching

Algorithms for graph matching can roughly be classified into two broad categories:

methods that aim to determine whether two graphs or subgraphs are identical by means of

an exact matching, and methods that are error tolerant by means of inexact matching [33].

Note that while exact matching for strings, sequences, or vectors are trivial tasks, the same

task applied to pairs of graphs is much more complex. Checking if two graphs are identical

involves checking if the graphs are isomorphic, or in some cases, if the graphs are identical

in terms of topology and labels.

3.2.1 Algorithms Based on Graph Isomorphism

In general, checking isomorphism between graphs demands an exponential computa-

tional cost with respect to the number of vertices of the involved graphs. A weaker form

of matching is a particular case of isomorphism called subgraph isomorphism, which exists

between two graphs G and H, if the larger graph H can be turned into a graph that is

isomorphic to G by removing some edges and nodes. From this definition it follows that
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G is contained in H. Note that matching graphs by means of graph and subgraph isomor-

phism implies a binary decision, that says whether the graphs are identical or not. This

is a shortcoming when the goal is to infer graph similarities. Imagine two graphs that are

not isomorphic but present several identical vertices and edges. In such a case, the existing

degree of similarity between the graphs is not taken into account by methods based on

graph and subgraph isomorphism.

In order to avoid this situation, the maximum common subgraph can be calculated. Let

G and H be graphs, a graph F is called a common subgraph of G and H if F is isomorphic

to G and H. Then, the maximum common subgraph is the common subgraph with the

maximum order. The solution to this problem is not unique, in the sense that there may

be several common subgraphs with the same maximum order.

The similarity (or distance) between graphs can be defined in terms of the maximum

common subgraph. Intuitively, the larger the common subgraph, the higher the similarity.

Although this might work for graphs with discrete labels or unlabeled graphs, the presence

of continuous values in labels makes computing similarity between graphs practically im-

possible. Imagine two graphs with identical structures consisting of very similar but not

identical continuous labels. In this case, the resultant maximum common subgraph is an

empty graph, because its calculation relies on isomorphism checks.

All the matching approaches mentioned above are NP-complete, with the exception of

graph isomorphism, for which there is no proof that it belongs to the class NP-complete. Al-

though polynomial time algorithms exist for particular and constrained instances of graphs,

no polynomial time algorithms exist for the general case. Thus, exact matching or at least

matching among subparts, has prohibitive time complexity for large graphs in the worst

case [32].

3.2.2 Graph Edit Distance

Given the shortcomings of exact graph matching methods, their applicability to real

world problems is restricted. To overcome this, several inexact matching methods have been

proposed. The idea of inexact matching is that the algorithms evaluate similarities between
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graphs by relaxing the constraints that define the matching. A very common approach along

these lines is the graph edit distance, roughly defined as the cost of the minimum amount of

edit operations that is required to transform one graph into the other. A standard set of edit

operations include insertions, deletions, and substitutions of both vertices and edges. Graph

comparison methods based on edit distance are convenient because they are expressive and

they can be applied to arbitrary graphs, where structural errors and continuous labels are

allowed. However, they are hard to parametrize and have a high cost associated with time

and space complexity. Therefore, these methods are only applicable to relatively small

graphs. For a detailed survey of graph edit distance methods, refer to [34].

3.2.3 Graph Embedding

Another approach for graph comparison is graph embedding in vector spaces. The

goal is to find feature vector representations in a real vector space Rn for graphs from

some graph domain G. These feature vectors are also referred to as topological descriptors.

Formally, embedding is denoted by a function ψ : G → Rn. The motivation for graph

embedding methods is that the whole arsenal of pattern recognition tools developed for

feature vectors becomes automatically available for the domain of graphs. A popular class

of graph embedding methods is based on spectral graph theory [35,36]. Here, graph features

are characterized using the spectral decomposition of the Laplacian matrix [36]. A major

limitation of methods based on spectral graph theory is that the decomposition is sensitive

to structural errors, such as missing or spurious vertices. Furthermore, spectral methods are

only applicable to unlabeled graphs or labeled graphs with restricted label alphabets [37].

Recently, a new class of graph embedding methods tolerant to structural errors that

allows graphs with arbitrary labels on nodes and edges has been proposed [38]. The basic

idea of this approach is the calculation of distances from an input graph G to a number

of particular graphs selected from the training set called prototype graphs. The resulting

distances are expressed as a vectorial signature of G. Unfortunately, despite the advantages

offered by machine learning tools for vectorial data, methods based on graph embedding still

suffer from the high cost in runtime complexity. Computation of topological descriptors may
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require exponential runtime. In fact, graph embedding using prototype graphs resorts to the

calculation of graph edit distances between G and the prototypes. Hence, the calculation

of optimal solutions is prohibitive for large graphs because the edit distance of graphs is

exponential in the number of nodes of the involved graphs. Therefore, the embedding is

carried out using approximation algorithms with polynomial time.

3.3 Review of Graph Kernels

Kernel functions for graphs can make the connection between structural data and the

powerful set of tools and learning algorithms called kernel methods. Intuitively, a graph

kernel is a measure of similarity between two input graphs satisfying the conditions of

symmetry and positive definiteness. The formal definition of a graph kernel is given below.

Definition 3 (graph kernel) Let G be the domain of graphs. The function k : G ×G → R

is called a graph kernel if there exists a Hilbert space H and a mapping Φ: G → H such

that:

k(G,G′) = 〈Φ(G),Φ(G′)〉 for all G,G′ ∈ G. (3.1)

3.3.1 R-Convolution Kernels

Many of the existing kernels for graphs are based on the seminal idea of R-convolution

kernels [39], which provides a general framework for dealing with discrete compound ob-

jects. In convolution kernels, complex objects are decomposed into smaller parts, for which

a simpler similarity measure can be defined and computed more efficiently. Given the sim-

ilarities between the smaller parts, a convolution operation can be used to define a kernel

function between a pair of complex objects. Assume that a sample x ∈ X can be decom-

posed into parts ~x = x1, . . . , xd ∈ X1, . . . ,Xd, for example, the decomposition of graphs into

subgraphs. We define the relation R, where R(~x, x) is true whenever ~x is a valid decom-

position of x and false otherwise. Now consider the inverse R−1 = {~x|R(~x, x) = true}, the
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set of all valid decompositions of an object. The R-convolution of the kernels k1, . . . , kd

denoted k1 ? k2 ? · · · ? kd(x, x′) with ki : Xi ×Xi → R is defined as:

k(x, x′) = k1 ? k2 ? · · · ? kd(x, x′) =
∑

~x∈R−1(x)
~x′∈R−1(x′)

d∏
i=1

ki(xi, x
′
i) (3.2)

where k(x, x′) is a valid kernel, provided that all the individual k1, . . . , kd are valid kernels

and R is a finite relation [39]. This deliberately vague formulation leads to a framework

wherein many different kernels can be defined by changing the decomposition. The appli-

cation of R-convolution kernels to graphs involves the decomposition of graphs into smaller

substructures computable in polynomial time. Several instances of graph kernels based on

this framework have been proposed, for which some of the most frequently used substruc-

tures are random walks, subtrees, cycles, and shortest paths [40].

3.3.2 Random Walk Kernels

The basic idea of random walk kernels is to count the number of matching walks in both

graphs. In [41], it is shown that the number of matching walks in two graphs G = 〈V,E〉

and G′ = 〈V ′, E′〉 can be calculated by means of the direct product graph G× = G × G′,

which identifies the compatible vertices and edges between the two input graphs. The sets

of vertices and edges for G× are respectively defined as:

V× =
{

(u, v) : u ∈ V ∧ v ∈ V ′ ∧ label(u) = label(v)
}

E× =
{

((u, v), (x, y)) : (u, x) ∈ E ∧ (v, y) ∈ E′ ∧ label(u, x) = label(v, y)
}
.

(3.3)

For any two input graphs G and G′, let A× denote the adjacency matrix of their direct

product graph G×, if the limit of the matrix power series exists. The product graph kernel

is defined as:

k×(G,G′) =

|V×|∑
i,j=1

[ ∞∑
k=0

λkA
k
×

]
ij

(3.4)

where λ is a sequence of weights λ0, λ1, . . . such that λi ∈ R and λi ≥ 0. To compute this
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graph kernel, it is necessary to compute the above matrix power series. According to [41],

the limit of k× can be computed efficiently for two choices of λ.

A geometric series
∑

i γ
i is known to converge if and only if |γ| < 1, where the limit is

given by limk→∞
∑k

i=0 γ
i = 1

1−γ . The geometric series of a matrix can be defined similarly,

leading to the geometric random walk kernel as follows:

kgrw(G,G′) =

|V×|∑
i,j=1

[ ∞∑
k=0

λkAk×

]
ij

=

|V×|∑
i,j=1

[
(I − λA×)−1

]
ij

(3.5)

for λ < 1
a , where a is no less than the maximum degree of a vertex in the direct product

graph. As matrix inversion is roughly of cubic time complexity, its application to (I−λA×)

of size n2 × n2 leads to an overall complexity of O(n6).

Analogously, using exponential series and setting λk = βk

k! , we obtain the exponential

random walk kernel as follows:

kerw(G,G′) =

|V×|∑
i,j=1

[ ∞∑
k=0

(βA×)k

k!

]
ij

=

|V×|∑
i,j=1

[
eβA×

]
ij

(3.6)

which can be calculated using matrix diagonalization, a matrix eigenvalue problem. Once

the matrix A× is diagonalized, computing the exponential can be done in linear time [41].

Diagonalization of a matrix is roughly cubic time; thus, the overall complexity for this

kernel is again O(n6).

Once the random walk kernel defined above is constrained to discrete attributes, based

on ideas from [42], this kernel is redefined in [43]. The idea originally was to handle contin-

uous labels, by allowing similarities between walks that are not identically labeled. In the

modified version, vertex and edge labels along the walks are compared with kernel functions.

Another limitation of this kernel is that the direct product graph might result in n2×n2

matrices, requiring significant time and memory resources. However, in [40], the same

problem is stated in terms of Kronecker products that can be exploited in order to reduce

the runtime complexity to O(n3).

Besides the runtime limitations, these graph kernels are subject to tottering [44], that
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is, the generation of high similarity scores by the presence of redundant small identical

substructures. As walks allow for repetitions of vertices, visiting iteratively the same vertices

can lead to artificially large contributions to the kernel value. Alternative extensions are

proposed in [44] to improve both efficiency and expressiveness. First, vertices are relabeled

in order to insert information about the environment of each vertex. Therefore, computation

time is reduced because the number of identical labeled paths decreases. Second, the random

walk model from [42] is modified in order to avoid tottering, by preventing the walk from

coming back to a vertex that was just visited.

3.3.3 Cycle and Subtree Pattern Kernels

A graph kernel based on the decomposition of graphs into cycles and tree patterns is

presented in [45]. For each graph G, the set of cyclic patterns, denoted by C(G), and the

set of tree patterns, denoted by T (G), are calculated. Both sets are induced by the set of

simple cycles and bridges of the graph respectively, wherein bridges are defined as the edges

not belonging to simple cycles. Simple cycles are cycles with no repeated vertices or edges,

aside from the necessary repetition of the start and end vertex. The cycle pattern kernel

is then defined as the number of common patterns occurring in both graphs, for which the

intersection kernel k∩ is used as follows:

kcycle(G,G
′) = k∩(C(G) ∪ T (G), C(G′) ∪ C(G′))

= |C(G) ∩ C(G′)|+ |T (G) ∩ T (G′)|.
(3.7)

The problem of computing cyclic pattern kernels is NP-hard. Since required compu-

tations are intractable for the general case, the approach presented in [45] is limited to

well-behaved graph databases, wherein graphs are constrained to have a small upper bound

on the number of simple cycles. Thus, this function is only applicable to a restricted set of

databases.

An alternative formulation based on the number of common subtree patterns in two

graphs is given in [46]. Given two input graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉, this subtree
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pattern kernel iteratively compares the neighborhoods of all pairs of nodes u ∈ V and

v ∈ V ′. The subtree patterns considered may include repeated vertices or edges. Formally,

the subtree pattern kernel is defined as:

ktree(G,G
′) =

∑
u∈V

∑
v∈V ′

k(u, v, h) (3.8)

where k(u, v, h) is the weighted count of pairs of identical subtree patterns with a height

less than or equal to h, with the first subtree rooted at u ∈ V and the second one rooted at

v ∈ V ′. If h = 0 and label(u) = label(v) then k(u, v, h) = 1. If h = 0 and label(u) 6= label(v),

we have k(u, v, h) = 0. For h > 0, k(u, v, h) can be computed as follows:

k(u, v, h) = λuλv
∑

R∈Mu,v

∏
(u′,v′)∈R

k(u′, v′, h− 1) (3.9)

where λu and λv are positive values smaller than 1 to cause higher trees to have a smaller

weight in the overall sum, and Mu,v is the set of all exact matchings from the set of neighbors

of u to the set of neighbors of v.

Although the subtree pattern kernel is based on more expressive substructures, it is still

subject to tottering because the same vertices may be visited more than once. Moreover,

the complexity of this kernel is O(n2h4d) for which d denotes an upper bound for the

degree of vertices [47]. This kernel is more computationally expensive than kernels based

on walks. Motivated by chemical applications, the subtree pattern kernel above is revisited

and extended in [48]. The extensions are defined to avoid tottering and to control the

complexity of the subtrees. However, the complexity is still exponential in d.

3.3.4 Shortest Path Graph Kernels

Graph kernels based on shortest paths are proposed in [10]. Roughly speaking, this

kernel counts the number of shortest paths of the same length having similar start and end

vertex labels in two input graphs. One of the motivations for this kernel is the presence

of tottering in graph kernels using walks. Unlike walks, vertices are not repeated in paths,
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thus, tottering can be avoided by restricting graph kernels to paths. Following the R-

convolution kernel, one can easily derive an all-paths kernel. However, the calculation of

such a kernel is NP-hard, because by knowing all paths one could determine whether a graph

has a Hamiltonian path or not, a problem known to be NP-complete [10]. In a similar way,

one can prove that determining all longest paths in a graph is NP-hard.

It turns out that the problem of determining all shortest distances in a graph is solvable

in polynomial time. The Floyd-Warshall algorithm [49] depicted in Algorithm 3.1, for

example, allows the calculation of shortest distances for all pairs of nodes in O(n3) time,

where n denotes the number of vertices. This algorithm allows graphs with negative edge

labels, but not containing any negative cycles, which happen when all edge labels in the

cycle sum to a negative value. In order to define a kernel that counts shortest paths of

similar distances, the original graphs must be transformed into shortest path graphs. This

step is a preprocessing requirement before calculating the shortest path graph kernel.

Algorithm 3.1 The Floyd-Warshall Algorithm.

Input: V : set of vertices from G
Output: M : pairwise shortest distance matrix

1: M [i][j]← 0, for every i == j
2: M [i][j]← 1, for every edge (vi, vj) ∈ G
3: M [i][j]←∞, for pairs (vi, vj) /∈ G
4: n← length(V )
5: for k ← 1 to n do
6: for i← 1 to n do
7: for j ← 1 to n do
8: M [i][j]← min(M [i][j],M [i][k] +M [k][j])
9: end for

10: end for
11: end for

Given a graph G = 〈V,E〉, a shortest path graph is a graph Gsp = 〈V ′, E′〉, where

V ′ = V and E′ = {e′1, . . . , e′m} such that e′i = (u′i, v
′
i) if the corresponding vertices ui and vi

are connected by a path in G. The edges in the shortest path graph are labeled with the

shortest distance between the two nodes in the original graph. Figure 3.2 illustrates the

transformation of a labeled graph into a shortest path graph.



36

1

2

1

4

1

3

1

5

1

6

1

(a) Original Graph

1

3

2

2

1

5

3

4

1

6

3

1

1

3

1

2

2

24

2

4

(b) Shortest Path Graph

Fig. 3.2: Illustration of the transformation of a labeled graph into a shortest path graph.
Note that the set of vertices is the same in both graphs. Every edge connecting a pair of
vertices in the shortest path graph (3.2(b)) is labeled with the length of the shortest path
between such vertices in the original graph (3.2(a)).
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A shortest path graph kernel for two shortest path graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉

is defined as:

ksp(G,G
′) =

∑
e∈E

∑
e′∈E′

kwalk(e, e
′) (3.10)

where kwalk is a positive definite kernel for comparing two edge walks of length 1.

The edge walk kernel kwalk is the product of kernels on nodes and edges along the walk.

Since the length of the walk is 1, kwalk can be calculated in terms of the start vertex, the

end vertex, and the edge connecting both. Let e be the edge connecting vertices u and v,

and e′ be the edge connecting nodes u′ and v′. The edge walk kernel is defined as follows:

kwalk(e, e
′) = knode(u, u

′) · kedge(e, e′) · knode(v, v′) (3.11)

where knode is a valid kernel function for comparing two vertices, and kedge is a valid kernel

function for comparing two edges. The positive definiteness of the kernel in Eq. 3.10 follows

from its definition as a R-convolution kernel.

This kernel is attractive because it retains expressivity while avoiding tottering. More-

over, it can be applied to all graphs on which Floyd-Warshall can be performed, as well as

the fact that it allows for continuous labels in vertices and edges. The runtime complexity of

this kernel is O(n4), because the Floyd-Warshall transformation can be done in O(n3) and

the kernel calculation requires a pairwise comparison on the number of edges of the shortest

path graphs. The latter takes O(n2 ∗ n2), because in the worst case the shortest graph is

complete, having n vertices and n(n−1)
2 edges. While O(n4) is an obvious improvement over

other graph kernels, it is still expensive for large graphs or datasets. On the other hand,

a limitation of this kernel may arise in applications wherein longest paths contain decisive

information.

3.4 Other Kernels for Graphs

In addition to the kernels described in previous sections, other approaches have been

proposed. The optimal assignment kernel [50] defined for chemical compounds is based on
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the idea of computing the optimal assignment from the atoms of one molecule to the atoms

of the other. In a general setting, this kernel assigns the vertices from one graph to the

vertices of another such that the total similarity between the vertices is maximized. While

finding the optimal assignment of substructures sounds more appealing than the all-pairs

comparison of R-convolution kernels, the optimal assignment kernel is not always positive

definite [40], limiting its use in kernel-based learning methods. Efforts to employ graph edit

distances in graph kernels have been presented in [33]. Unfortunately, edit distance does

not define a metric, and kernels are not guaranteed to be positive definite [51].

Given that most graph kernels do not scale to large graphs having hundreds or thou-

sands of vertices, a kernel based on counting graphlets (small subgraphs of three to five

vertices) has been proposed in [52]. Since enumerating all graphlets is unfeasible in prac-

tice, two efficient computation schemes are used, which are based respectively on graphlet

sampling and the limitation of bounded degree graphs. Let d denote the maximum degree

of a graph. All the connected graphlets of size k = {3, 4, 5} in a bounded graph G can

be enumerated in O(ndk−1) time, where n is the number of vertices of G. Although this

function can scale to large graphs, it can only be applied to unlabeled graphs. Along the

same lines, the Weisfeiler-Lehman test of isomorphism from graph theory is used to calcu-

late fast kernels based on subtrees [52]. These kernels can nicely handle large graphs with

discrete labels in O(mh) time, where m is the number of edges and h denotes the height of

the subtrees.

3.5 Final Remarks

This chapter presents a review of existing graph kernels. The main goal of such func-

tions is to calculate similarities between pairs of input graphs while being positive definite.

Given the complexity inherent in structured data in general, the design of similarity func-

tions that are valid kernels is limited by conflicting quality requirements.

Acceptable graph kernels have to fulfill certain basic conditions. They are required to

be expressive, in the sense that they measure similarity by really taking into account the

topology and labels on vertices and edges. Meanwhile, a higher expressiveness is frequently
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associated with a higher computational cost. For practical purposes, graph kernels are

required to have a low computational cost, as well as scaling to large graphs. Due to

these conflicting criteria, some conditions are relaxed, yielding more specific graph kernels

only appropriate to applications framed under a restricted set of settings. From the graph

kernels reviewed in this chapter, we can conclude that a general limitation is given by the

high computational cost. In cases where the complexity is acceptable, as in graphlets or

fast subtree kernels, such kernels do not allow the use of continuous labels, preventing their

use in a wide range of applications.

In later chapters, we present computational biology applications wherein proteins are

modeled as graphs. An essential characteristic of such models is the presence of continuous

labels at vertices and/or edges. Therefore, we are interested in graph kernels that are not

restricted to special classes of graphs. Evidently, an additional criterion is the computational

cost. Fast subtree kernels exhibit a very attractive running time. Unfortunately, they

are ineligible because according to their formulation, continuous labels are not allowed at

vertices. Other kernels are ineligible for the same reason, or because their computational

cost is prohibitive. However, the class of shortest path graph kernels is highly appropriate

because they retain expressiveness at a relatively low computational cost, when compared

with others. Moreover, results from benchmarks presented in [47] show that shortest path

graph kernels are competitive, in terms of accuracy and runtime, when compared with

several other graph kernels. Experiments were performed on datasets with approximately

4, 100 examples, wherein graphs have a maximum order |G| = 111.1

The next two chapters discuss specific computational biology problems involving pro-

teins that can be modeled as graphs. In both cases, shortest path graph kernels are used

to calculate similarities between proteins modeled as graphs.

1Authors also show that its runtime degenerates to 1 day for a dataset of 1178 examples with graphs
having a maximum order of |G| = 5748
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Chapter 4

Protein Function Prediction

This chapter deals with the application of graph kernels to the problem of protein

function prediction. The methods and concepts presented in Chapters 2 and 3 are used to

propose and evaluate a novel approach for exploiting protein structures in order to predict

protein function. In particular, we present the results of experiments for two separate

problems, namely, the prediction of proteins as enzymes and the recognition of DNA-binding

proteins (DBPs). In both cases, the results achieved by our approach outperform other

state-of-the-art methods.

Section 4.1 presents a brief introduction to basic molecular biology concepts that are

relevant to the applications discussed in this chapter. For more technical elements, in-

terested readers may refer to [53]. In Section 4.2, we outline the motivation behind our

proposed novel methods for protein function prediction and an analytic summary of ex-

isting methods in the literature. Our approach is described in Section 4.3, wherein we

introduce several graph models for protein structures. We explore three different strategies

for modeling graphs. When protein graphs are created by clustering amino acid residues

into vertices and labeling vertices with evolutionary profiles, the accuracy of protein func-

tion prediction improves by a large margin. With such a model fixed, we compare our

approach against existing methods. Our results outperform others for the discrimination of

proteins as enzymes (Section 4.4), and the recognition of DBPs (Section 4.5).

4.1 A Primer on Protein Structure

The most abundant macromolecules found within cells are proteins. They are composed

of repeating structural units called amino acids connected by chemical bonds. Amino acids

are molecules containing an amino group (NH2) and a carboxyl group (COOH) bonded by
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the α-carbon atom (also referred to as C-alpha atom). The α-carbon is also bonded to a

hydrogen atom and to the R group. This group determines the identity of a particular

amino acid.

Among all possible amino acids, only 20 are commonly found in proteins. They are

known as the standard amino acids, and they are usually represented by three-letter abbre-

viations. A more compact one-letter code is also used to express sequences of amino acids.

Both representations for the standard 20 amino acids are presented in Table 4.1.

Table 4.1: List of standard amino acids and their respective three-letter abbreviations and
one-letter codes.

Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Methionine Met M
Aspartic acid Asp D Phenylalanine Phe F
Cysteine Cys C Proline Pro P
Glutamic acid Glu E Serine Ser S
Glutamine Gln Q Threonine Thr T
Glycine Gly G Tryptophan Trp W
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val V

As the result of a chemical reaction between the carboxyl group of one molecule and

the amino group of the other, by releasing a molecule of water, a pair of amino acids can be

linked by a peptide bond. Polymers composed of many amino acids linked by such bonds are

often referred to as polypeptides, which can be represented by ordered strings of characters

from the alphabet of 20 one-letter codes. The portion of an amino acid that remains after

a peptide bond formation is called residue. Figure 4.11 illustrates the reaction between two

amino acids, forming a dipeptide.

The reactions described above are relevant because proteins are molecules that might

contain one or more polypeptide chains. Due to their high degree of complexity, proteins are

usually described in terms of four levels of organization: their primary, secondary, tertiary,

and quaternary structure.

1Figure was released into the public domain at Wikimedia Commons
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Fig. 4.1: Illustration of the formation of a peptide bond between two amino acids. The
figure also shows that each amino acid has a C-alpha atom linking a hydrogen atom, and
the amino, carboxyl and R groups.

Primary structure is a linear sequence of amino acids forming the polypeptide chain, or

chains if the protein consists of more than one chain. The space of different possible

sequences is astonishingly huge. For a protein of n residues, there are 20n possible

sequences.

Secondary structure is the arrangement of highly regular structures resulting from hy-

drogen bonding. Two types of secondary structure elements (SSEs) that frequently

occur are the α-helix and the β-sheet.

Tertiary structure is the arrangement of all atoms in a 3-dimensional space. In gen-

eral, this tertiary structure is determined by an experimental technique called x-ray

crystallography.

Quaternary structure is a complex of several protein molecules, called subunits under

this context.
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The applications described in this chapter are based on modeling proteins as graphs,

as described in Section 4.3. To this end, we use the tertiary structure of proteins, that is,

the 3-dimensional structure of proteins. Indirectly, the primary structure is also considered

for calculating evolutionary profiles, which are used as labels for vertices. On the other

hand, we do not rely on secondary structure elements. They have been considered in [43];

however, experiments using our approach show better performance. Quaternary structure

is not used because we focus on single proteins.

Information related to the different levels of organization of proteins can be freely down-

loaded from the protein data bank (PDB) [54]. The PDB archive is a centralized repository

of protein structures from large biological molecules, including proteins and nucleic acids.

Those molecules are found in all organisms including bacteria, yeast, plants, other animals,

and humans.

4.2 Motivation

While genome sequencing projects have produced a large amount of protein sequences,

several structural genomic projects have been targeting the large-scale determination of

protein structures. Transforming such structural data into reliable insights about protein

function and their underlying interaction patterns is still a major challenge. To enable

researchers to keep pace with the growing number of structures, reliable and efficient com-

putational methods that can reveal such patterns are critical.

The study of protein function, and particularly enzyme prediction, plays a central role

in biology. For example, enzymes catalyze a series of chemical reactions occurring in cells,

known as metabolic pathways. These are essential elements for understanding functional

aspects of individual genes [55]. Therefore, accurate enzyme discrimination is an impor-

tant step toward pathway prediction and functional annotation of genes. Moreover, the

design of computational methods for enzyme discrimination can enable fast annotation of

novel uncharacterized proteins, consequently, offering extensive advantages over experimen-

tal methods in terms of time and cost.
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In general, earlier work on protein function prediction can be divided into three cat-

egories: (1) approaches based on sequence alignment, wherein new proteins are annotated

with the same function associated with homologous proteins; (2) approaches based on struc-

tural alignment, wherein protein function is inferred based on structural similarity; and (3)

approaches that compare proteins based on features extracted from sequence, structure,

and other properties.

Function prediction using sequence comparison is based on the belief that similarity in

sequence leads to similarity in function. Nevertheless, it is known that similar sequences

can lead to different functions, and dissimilar sequences can also correspond to similar

functions [56]. Despite the known disadvantages of this approach, according to Syed and

Yona [55], sequence comparison is still the most commonly used method for function predic-

tion. When sequence similarity is not sufficient for function prediction, researchers also rely

on protein structure alignments. Structure alignments need to be considered carefully for

function prediction, because a structural fold adopted by a given protein does not directly

imply a function [57]. However, rather than performing sequence or structure alignments,

some researchers represent proteins using local and global features extracted from proteins,

and then apply machine learning methods to discover feature-function relationship for pro-

tein function prediction [57–60].

Particularly, earlier work on the discrimination of proteins as enzymes or not includes

the method proposed by Dobson and Doig [58, 59]. They represented proteins as feature

vectors computed from structures and used them for classification. Subsequently, Borgwardt

et al. [43] modeled proteins as graphs using SSEs and introduced the use of graph kernels

for classification. Likewise, we are motivated to model proteins as graphs because protein

structures contain rich topological information that is important for protein function and

should be preserved as much as possible.

Although graphs are a convenient way to represent structured objects, graphs cannot

be easily used with common machine-learning methods. We explore different strategies of

graph models for representing protein structures. We also integrate evolutionary profiles
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into our graph models of proteins. Finally, we use shortest path graph kernels and a SVM

classifier to discriminate proteins as enzymes.

4.3 Graph Models for Proteins

In our approach, every protein structure is modeled as a graph. To this end, we define

the protein graph, as a labeled, undirected, and simple graph G = 〈V,E〉, where V is a set

of vertices and E is a set of edges connecting pairs of vertices. Different from the methods

described in [43,58], wherein SSEs are used as structural units to build the graphs, we model

graphs by exclusively relying on the 3-dimensional coordinates of the protein C-alpha atoms.

Given a protein structure, the idea is to partition their amino acid residues into different

groups. Then, a vertex is created for each group of residues and is labeled accordingly. A

pair of vertices u, v ∈ V is connected by an edge e ∈ E with weight w = 1 if the closest

distance between atoms from the two vertices is less than 5Å. Residues are considered

in contact when the minimum inter-residue distance of all pairs of atoms is less than 5Å.

Figure 4.22 illustrates the reduction of a protein structure to an undirected graph with

continuous labels at their nodes.

4.3.1 Partitioning Residues into Vertices

We explore three different strategies to partition amino acid residues into groups based

on their C-alpha atoms: binning, pca-binning, and clustering. In binning, the smallest 3-

dimensional enclosing box to include all C-alpha atoms of the protein is calculated. Then,

according to an external parameter b, the box is partitioned into a 3-dimensional grid of b3

equally sized bins. An amino acid is assigned to a bin if its C-alpha atom lies inside the bin.

Finally, every non-empty bin is a vertex of the graph. Thus, the graph has a maximum of

b3 vertices. Figure 4.3 illustrates how binning can be applied to a set of points.

One advantage of binning is its simplicity. However, the resulting residue groups depend

on the coordinate system being used. Rotating the protein structure leads to a different

partition. In order to make binning more robust to transformations of protein structures,

2Figure on the left-hand side was released into the public domain at Wikimedia Commons
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1: <0.2,0.1,0,0,0,0,0.1,0,0,0,0.2,0,0,0,0,0.1,0,0,0.3,0>
2: <0,0.1,0,0,0.2,0,0.1,0,0.1,0,0.2,0,0.1,0,0.1,0.1,0,0,0,0>

14: <0,0.1,0,0,0.2,0.1,0.1,0,0,0,0.3,0,0,0,0,0.1,0,0,0,0.1>
15: <0,0.1,0.1,0.1,0,0,0.1,0,0,0,0.1,0.1,0,0,0,0.3,0,0,0.1,0>

....

(b) Protein Graph

Fig. 4.2: Illustration of a protein graph. A protein structure (4.2(a)) is transformed into
an undirected graph (4.2(b)) by grouping their atoms into vertices, and connecting pairs of
contacting vertices. Every vertex in the graph is labeled with a feature vector.
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Fig. 4.3: Binning applied to a set of 2-dimensional points with parameter b = 3 . In this
example, the graph will contain only 7 vertices because two bins do not contain any points.
Bear in mind that 2-dimensional points are used only for illustration purposes. In our work,
the points lie on a 3-dimensional space.

we propose pca-binning. The set of C-alpha atoms is transformed into a new coordinate

system by applying principal component analysis (PCA) and selecting all three principal

components, which include all the information related to C-alpha atoms in the transformed

domain. In this way, simple binning can be applied, and the partitioning is invariant to

rotation. The application of pca-binning to the same set of points shown in Figure 4.3 is

illustrated in Figure 4.4. Note how the resulting graph is completely different from merely

applying binning on the original C-alpha atoms.

The third strategy explored to partition residues is hierarchical agglomerative clustering

(HAC). We choose HAC because the resulting clusters after different runs remain the same,

which is a desirable characteristic because there is a one-to-one relationship between a

protein and its respective clustering partition. Some other traditional methods like k-means

or a mixture of gaussians are not suitable because they yield different partitions after every

run. Furthermore, by using HAC, the partition is invariant to protein rotation. Thus, it is

not necessary to align all the protein 3-dimensional coordinates.

When using HAC, initially, each C-alpha constitutes an independent cluster. Then the

number of clusters is reduced by hierarchically merging pairs of nearest clusters. We use

the Ward’s linkage method for merging clusters. This linkage method is known to be very
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Fig. 4.4: PCA-binning applied to the same set of points as in Figure 4.3. The calculation
of the principal components is shown in Figure 4.4(a) and the application of simple binning
to the transformed points is illustrated in Figure 4.4(b). Note how the points tend to be
distributed in all the bins. A 2-dimensional space is used for illustration purposes. C-alpha
atoms are in fact 3-dimensional.

robust when used with Euclidean distances [61], as in our case. The outcome of HAC is

invariant to the rotation of protein structures. Figure 4.5 shows the clusters after applying

HAC on a set of 12 amino acid residues.

Fig. 4.5: Clustering applied to a set of 12 amino acid residues. For this illustration four
clusters, shown in different colors within the four rounded rectangles, are found by the HAC
algorithm. Note how HAC chooses neighboring points to form final clusters. Non-empty
clusters become vertices in the graph.
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4.3.2 Labeling Vertices

After the partitioning of amino acid residues has been generated, every non-empty

group of residues becomes a vertex of the graph, and a feature vector is created at every

vertex. To this end, we explored two types of labels for vertices, namely the composition

vector, which is a common choice in the protein function prediction literature, and the

homologous vector, which is one of our contributions. In this dissertation, the homologous

vector is also referred to as the evolutionary profile.

Composition vector Each vertex is labeled with a normalized vector of 20 values that

correspond to the frequency of the 20 types of amino acid residues in the vertex.

Homologous vector For each protein of interest, we performed 4 runs of PSI-BLAST [62]

search to find homologous sequences from the NCBI non-redundant (nr) database,

and built a multiple alignment. Then, each amino acid residue of the protein of

interest was associated with a column of the multiple alignment. For each vertex,

the residue composition was calculated by averaging all columns associated with the

amino acids that belong to the vertex. The vertex was then labeled with the 20 values

representing that residue composition. In this implementation, the vector not only

takes into account the residue composition of the protein of interest, but also the

residue composition of its homologous sequences.

4.3.3 Defining a Graph Kernel

Among all the graph kernels methods presented in Chapter 3, we use the shortest path

class of graph kernels described in Section 3.3.4. This class allows the use of labeled graphs

with continuous labels in polynomial time. We use the Floyd-Warshall method presented

in Algorithm 3.1 for transforming graphs into shortest path graphs.

The kernel function presented in Eq. 3.10 requires the definition of kernels for vertices

and edges in order to calculate the corresponding values of kwalk(e, e
′). Following the

notation of Eq. 3.11, we adapted the formulas presented in [43]. The kernel function for a



50

pair of vertices u and v is a Gaussian kernel over their respective feature vectors as shown

in Eq. 4.1:

knode(u, v) = exp

(
−‖fv(u)− fv(v)‖2

2δ2

)
(4.1)

where δ is the kernel width, fv(·) denotes the feature vector (label) of a vertex, and

‖fv(u)− fv(v)‖ represents the Euclidean distance between two feature vectors.

Similarly, we define the kernel function for a pair of edges e and f as a Brownian bridge

kernel that assigns the highest value to edges with identical weights, and 0 to all edges that

differ in weight more than a constant c, as shown in Eq. 4.2:

kedge(e, f) = max(0, c− |weight(e)− weight(f)|) (4.2)

4.3.4 Embedding Graph Kernels into SVMs

SVMs are widely used in many computational biology problems due to their high

accuracy, their ability to deal with large and high-dimensional datasets, and their flexibility

in modeling diverse sources of data [7]. As demonstrated in Section 2.3.1, we can easily

take advantage of the kernel trick by embedding the shortest path graph kernel in the dual

formulation for SVMs as follows:

maximize
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjksp(xi, xj)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n

n∑
i=1

αiyi = 0.

(4.3)

Likewise, the classification rule can be expressed in terms of a kernel between graphs

as follows:

f(x) = sgn

(
n∑
i=1

α∗i yiksp(xi, x) + b∗

)
. (4.4)

In order to evaluate our proposed graph models and the use of shortest path graph

kernels for protein function prediction, the following sections describe the experiments we
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conducted with SVMs for two specific supervised learning problems: the discrimination of

proteins as enzymes and the recognition of DBPs.

4.4 Enzyme Discrimination

This section describes the experiments conducted for enzyme discrimination. This is a

binary classification problem, in which we evaluate the graph models described in Section 4.3

with the use of a shortest path kernel and the SVM classifier.

4.4.1 Dataset and General Settings

To evaluate our different strategies for representing proteins as graphs, we considered

the same dataset used in previous work [43,58]. The original dataset consists of 1178 proteins

with 691 (58.66%) enzymes and 487 (41.34%) non-enzymes. This dataset is challenging

because no chain in any protein structurally aligns to any other chain with a Z-score of 3.5

or above.

Dobson and Doig [58] reported 76.86% accuracy in 10-fold cross-validation when using

52 features extracted from each protein, and 80.17% accuracy when using an optimized

subset of features generated by adaptive search. Borgwardt et al. [43] considered a subset

of the Dobson and Doig dataset. The subset consisted of 1128 proteins whose secondary

structure is available at the PDB [54], with 59% of such proteins being enzymes. They

reported 77.30% accuracy for their random walk graph kernel and 84.04% accuracy when

global features were incorporated to vertices in the protein graph. We considered the 1, 128

proteins from Borgwardt’s dataset. The structures were downloaded from PDB. Then, a

total of 28 enzymes and 22 non-enzymes were discarded because their PDB files contain

only C-alpha atoms. The fraction of enzymes remained at 58.77%, conserving the same

proportion of positive examples.

In our experiments, we used 10-fold cross validation in order to find the best parameter

settings for both graph kernel and SVM classifier. Specifically, for the edge kernel we used

c = 2 while for the node kernel we select δ from the interval [0.05, 0.25] with values increasing

at the stepsize of 0.1. Finally, for the C parameter required by SVMs, we selected the best
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value from the exponentially growing sequence of C values given by 2x where −1 ≤ x ≤ 9

with an increasing stepsize of 0.1.

4.4.2 Evaluating the Use of Evolutionary Profiles

With the goal of evaluating the performance of graph kernels on graphs with evolu-

tionary profiles at vertices, we computed accuracy, specificity, sensitivity and the Matthews

correlation coefficient (MCC) after applying our approach to graphs generated using the

binning strategy. Accuracy indicates the overall percentage of correct predictions, specificity

measures the percentage of non-enzymes that have been correctly recognized, sensitivity is

the percentage of enzymes that have been correctly predicted as enzymes, and MCC shows

the overlapping between the predictions and the actual distribution. MCC is a value in

the range of [−1,+1], with +1 indicating perfect predictions, −1 indicating totally wrong

predictions, and 0 represents random predictions. Table 4.2 shows all these indicators for

evaluating the performance of classifiers trained with composition vectors and homologous

vectors at vertices, where parameter b determines the number of bins in the partitioning of

amino acid residues. In Table 4.2, we clearly confirm that the use of homologous vectors

(evolutionary profiles) makes a significant positive impact on all indicators. For this reason,

all the remaining experiments were carried out with graphs generated only with homologous

vectors at their nodes.

Table 4.2: Performance for classifying proteins as enzymes versus non-enzymes using binning
on graphs with composition vectors and homologous vectors. Parameter b determines the
number of bins in the partitioning of amino acid residues (e.g., the number of bins equals
to b3).

Composition Homologous
b = 2 b = 3 b = 2 b = 3

Accuracy 0.7828 0.7944 0.8431 0.8413
Specificity 0.7011 0.7377 0.7849 0.7977
Sensitivity 0.8401 0.8341 0.8839 0.8718
MCC 0.5487 0.5761 0.6773 0.6720
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4.4.3 Improving Performance with PCA

The binning strategy yields different partitioning if the same protein is rotated. This

shortcoming is addressed by identifying the principal components of the C-alpha atoms

prior to the partitioning of residues into vertices. We tested both approaches, binning and

pca-binning on the same dataset, using evolutionary profiles at the nodes. Table 4.3 shows

a clear advantage of pca-binning over binning. For pca-binning, the accuracy, specificity

and MCC are higher when b = 3. Higher values of b have been explored as well, but the

performance decreases when b becomes greater than 3. A possible explanation is that when

b becomes too large, most vertices only contain a very small number of residues, which

makes the resulting graph less useful in capturing the structural properties of the protein.

Table 4.3: Performance for classifying proteins as enzymes versus non-enzymes using binning
and pca-binning strategies and evolutionary profiles. Parameter b determines the number
of bins in the partitioning of amino acid residues.

Binning PCA-Binning
b = 2 b = 3 b = 2 b = 3

Accuracy 0.8431 0.8413 0.8580 0.8617
Specificity 0.7849 0.7977 0.8043 0.8238
Sensitivity 0.8839 0.8718 0.8958 0.8884
MCC 0.6773 0.6720 0.7070 0.7146

4.4.4 Introducing Clustering of Amino Acids

With the hope of finding expressive graphs of smaller order, we used the HAC method

with different values for k, the number of clusters (or vertices in the graph), ranging from

8 to 32. The results are shown in Table 4.4. Note when k = 24, the classifier achieved best

performance, reaching 87% accuracy.

4.4.5 Comparisons with Existing Methods

Finally, the different graph representation strategies proposed in this work are com-

pared with previous work. Table 4.5 shows that the accuracy obtained by the proposed
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Table 4.4: Performance statistics for classification of proteins as enzymes versus non-
enzymes when hierarchical clustering is used to partition amino acid residues into groups.
k indicates the number of clusters.

k Accuracy Specificity Sensitivity MCC

8 0.8502 0.8172 0.8734 0.6920
12 0.8484 0.7762 0.8990 0.6861
16 0.8492 0.7611 0.9110 0.6874
20 0.8581 0.8085 0.8929 0.7065
24 0.8697 0.7980 0.9186 0.7307
28 0.8555 0.7918 0.9003 0.7030
32 0.8556 0.8046 0.8913 0.7029

strategies outperforms that of previous methods, with hierarchical clustering achieving the

best performance in terms of all measures.

Table 4.5: Accuracy for discriminating enzymes using ten-fold cross-validation. The strate-
gies proposed in this project outperform those reported in previous work using the same
dataset.

Method Accuracy

Clustering (ours) 86.97
PCA Binning with 3 bins (ours) 86.17
Binning with 2 bins (ours) 84.31
Graph kernel [43] (with global info) 84.04
Optimized vector kernel [58] 80.17
Graph kernel [43] 77.30
DALI classifier [43] 75.07

4.5 Recognition of DNA Binding Proteins

DNA binding proteins are part of several crucial processes in cells, such as DNA tran-

scription, replication and packing [63]. Their correct identification is of great importance.

In this section, we describe our experiments for the recognition of DBPs. We create graphs

from the 3-dimensional structure of proteins using clustering of amino acid residues. Then,

evolutionary profiles are used to label vertices. The SVM classifier, in conjunction with

a shortest path graph kernel, is used for evaluating our approach. When the results are
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compared with other methods, our approach shows higher performance.

4.5.1 Datasets

We used three different datasets from previous studies. Two of them contain DNA-

binding proteins (positive examples) and one contains non-DNA binding proteins (negative

examples). The first dataset (P138) has 138 DNA-binding proteins and was created by

Szilágyi and Skolnick [64]. The mutual sequence similarity between any two chains in

this dataset is no more than 35%. The second dataset (P78) was created by Ahmad and

Sarai [65]. P78 contains 78 DNA-binding proteins, with pairwise sequence identity less than

25%. For the negative dataset, we used 110 non-DNA-binding proteins (N110) created by

Ahmad and Sarai [65].

4.5.2 Experiments

Two different experiments were performed. First, we trained and evaluated SVM clas-

sifiers using 10-fold cross validation with datasets P78 and N110. Then we repeated the

same process using P138 and N110. We tried different values of k for clustering and explored

both composition vectors and homologous vectors. As in the enzyme discrimination experi-

ments, our method achieved better results when the homologous vector was used. However,

different from enzyme identification, the method achieved best results with k = 20. When

k = 20, the method (with homologous vector) achieved 95.73% accuracy in the experiment

using datasets P78 and N110 and 92.33% accuracy in the experiment using P138 and N110.

As a comparison, when k = 24, the method (with homologous vector) achieved 94.71%

accuracy in the experiment using datasets P78 and N110 and 91.53% accuracy in the ex-

periment using P138 and N110. The fact that different optimal values of k were found in

enzyme discrimination and DNA-binding protein discrimination may suggest that different

numbers of clusters should be used to capture the unique patterns of residue distribution

in the space for different types of function. In other words, the amino acids’ distribution

on the structures may follow different patterns for different types of function.

In previous studies, Ahmad and Sarai [65] and Szilágyi and Skolnick [64] have used
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datasets P78 and N110 to evaluate their methods. Szilgyi and Skolnick [64] only reported

MCC for their study. Ahmad and Sarai did not report MCC in their original paper, Szilágyi

and Skolnick recalculated the MCC for the Ahmad and Sarai method based on the published

data when they compare the two methods [64]. In Table 4.6, we show performance statistics

comparing our method with previous work.

Table 4.6: Comparison of our method with others using datasets P78 and N110.

Method Accuracy (%) Specificity (%) Sensitivity (%) MCC

Our method 95.73 96.36 94.64 0.92
Ahmad and Sarai [65] 83.90 87.00 80.80 0.68
Szilágyi and Skolnick [64] – – – 0.79

Szilágyi and Skolnick [64], Nimrod et al. [63], and Langlois and Lu [66] have used

datasets P138 and N110 to evaluate their methods. Table 4.7 shows the comparisons be-

tween our method and theirs using P138 and N110. Szilágyi and Skolnick [64] only reported

MCC for their study and Nimrod et al. [63] did not report accuracy. Tables 4.6 and 4.7

show that our method outperforms the others. Specifically, when comparing to the best

performance in prior studies on the same dataset, our method improves the MCC value

from 0.79 to 0.92 on datasets P78 and N110 and from 0.80 to 0.85 on datasets P138 and

N110, respectively.

Table 4.7: Comparison of our method with others using datasets P138 and N110.

Method Accuracy (%) Specificity (%) Sensitivity (%) MCC

Our method 92.33 91.82 92.75 0.85
Nimrod et al. [63] – 90.00 90.00 0.80
Szilágyi and Skolnick [64] – – – 0.74
Langlois and Lu [66] 85.90 80.90 89.90 0.75

4.6 Conclusions

In this chapter, three different strategies for representing protein structures were ex-

plored. The results obtained for protein function prediction in two specific applications
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show that the proposed graph modeling and kernel design is very competitive for problems

involving protein structures.

Using a simple binning strategy, our proposed approach achieves better performance

than state-of-the-art methods in classifying enzymes versus non-enzymes. With pca-binning

and clustering strategies, performance is not only better than using simple binning, but the

methods are also invariant to rotation of protein structures.

We also explored two different types of vertex labels: a composition vector, that showed

the frequencies of different types of amino acids in a vertex, and a homologous vector,

that took into account the residue composition from homologous sequences. When the

homologous vector was used to label vertices, the accuracy was significantly improved.
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Chapter 5

Protein Semantic Similarity

As the gene ontology (GO) plays an increasingly important role in bioinformatics re-

search, there has been great interest in developing objective and accurate methods for

calculating semantic similarities between GO terms and, at a higher level of abstraction,

semantic similarities between proteins. In this chapter, two semantic similarity methods for

proteins are proposed and discussed. Such methods exploit the knowledge available at the

GO, and they are based on graph models and graph kernels.

An introduction to the basic concepts related to the GO is given in Section 5.1. Then,

semantic similarity methods for GO terms and proteins are presented progressively in Sec-

tions 5.2 and 5.3. All sections include relevant information about the current advances and

challenges in the development of methods for calculating semantic similarity based on GO

annotations. We conclude the chapter in Section 5.4, by presenting a summary and some

thoughts on the directions for future research in this field.

5.1 Introduction

Researchers have made great effort to develop objective and accurate methods to cal-

culate semantic similarities, which measure the degree of similarity between the meanings of

pairs of objects. For example, in the natural language processing community, the problem

of estimating the semantic similarity between concepts has been a central topic for several

years. Numerous methods based on the WordNet ontology have been produced to estimate

semantic similarities [67]. In recent years, ontologies have grown to be a popular topic in

the biomedical research community, creating a demand for computational methods that can

exploit their knowledge and hierarchical structure.

The semantic relationships represented in ontologies are the basic building blocks for
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the calculation of semantic similarities between concepts. In the particular case of the GO,

the underlying ontology for the methods presented in this chapter, semantic similarities

between pairs of GO terms are expected to reflect their biological closeness. Moreover,

semantic similarity methods can easily be extended to infer higher level semantic relation-

ships. Considering the case for estimating protein semantic similarity. Similarity scores

for a given protein pair at the protein level can be calculated by combining the pairwise

semantic similarities for the GO terms associated with such proteins.

Methods for calculating similarities between GO terms, or between proteins, are a rel-

evant topic in computational biology. They can be used in a broad range of applications,

including: clustering of genes in pathways [68–71], prediction of protein-protein interac-

tions [72], and the evaluation of similarity between gene products with respect to expression

profiles [73], protein sequence [74–76], protein function [77], and protein family [78].

5.1.1 The Gene Ontology

The most successful effort for systematically describing current biological knowledge

is the GO project [12], which maintains a dynamic, structured, precisely defined, and con-

trolled vocabulary of terms for expressing the roles of gene products (biochemical material,

either RNA or protein) across species. The GO is dynamic in the sense that its struc-

ture changes as more information is available. The GO consists of three different ontologies

describing: 1) biological processes (BP), wherein a process often involves a chemical or phys-

ical transformation (e.g., cell growth); 2) molecular functions (MF), wherein functions are

defined as the biochemical activity of gene products (e.g., enzymes); and 3) cellular compo-

nents (CC), which refers to places in the cell where gene products are active (e.g., nuclear

membranes). Each ontology is structured as a rooted directed simple graph, in which nodes

(GO terms) are linked to each other through “is-a,” “part-of,” or “regulates” relationships.

Such organization enables the retrieval and visualization of biological knowledge at different

levels of abstraction.
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5.1.2 Gene Ontology Annotations

The annotation of gene products is the process of assigning ontology terms to gene

products in order to describe their activities and localization. For example, the GOA

project [13], at the European Bioinformatics Institute (EBI), aims to provide high-quality

annotations to UniProt KnowledgeBase (UniProtKB) entries. GOA annotations are ob-

tained from strictly controlled manual and electronic methods, wherein every association

is supported by a distinct evidence source. A protein can be annotated with multiple GO

terms from any of the three ontologies in the GO. Functional annotations of UniProtKB

proteins currently consist of over 32 million annotations, which cover more than 4 million

proteins [13].

5.1.3 Semantic Similarity based on the Gene Ontology

Database entries generated manually and electronically by the GO and GOA projects

are available for a new generation of methods that aim to estimate relationships between

proteins by exploiting their semantic closeness. A common procedure of these methods is to

calculate semantic similarities between the annotating GO terms of any two given proteins

and combine those pairwise semantic similarities to obtain an overall final semantic simi-

larity score. Different methods have been used to combine pairwise GO term similarities in

previous research [17,69,73,75,76,79]. A representative collection of methods for calculating

the semantic similarity between GO terms has been reviewed in [80].

Most of those methods use the information content (IC) of the nearest common ancestor

(NCA) or the most informative common ancestor (MICA) in order to quantify the amount

of shared information between two GO terms. The NCA of two terms is the common

ancestor of both terms that is located farthest from the root in the GO. The IC can be

calculated from the frequency of annotation of GO terms in external resources, such as the

GOA database. Note that external resources change as knowledge is updated (e.g., more

annotations are included in GOA). Consequently, for the same pair of GO terms, their

semantic similarity computed by these methods might change as the external resources

evolve. Semantic similarities between GO terms should not be affected by such changes
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in the external resources. Semantic similarities should not show the occurrence of biased

results, which are caused by certain frequent annotations in popular research topics.

Some other methods infer GO term semantic similarities based on distance mea-

sures [81,82], e.g., counting the number of edges on the shortest path between the involved

terms in the GO. One shortcoming of this approach is that the edges in the GO do not

imply equal length in semantics. Although some methods tried to address this issue by

assigning different weights to edges at different levels, they still suffer from the fact that

GO terms at the same level do not necessarily have the same specificity.

Additional methods calculate the semantic similarity between gene products without

considering the semantic similarity between GO terms. In such methods, a gene product

is represented by a set or a vector of GO terms that annotate it. Then, the semantic

similarity between gene products is calculated as the overlap between sets or the inner

product of vectors [69,75]. However, those methods do not exploit the structure of the GO

and thus ignore the relationship between GO terms.

5.2 A Semantic Similarity Algorithm for Proteins

In this section, we describe a semantic similarity algorithm (SSA) that depends exclu-

sively on the GO. SSA was originally proposed in our earlier work with the intention of

calculating semantic similarity between pairs of English words using the WordNet ontol-

ogy [16]. Herein, we present a new version of SSA with an improved formulation adapted to

the GO. One of the main advantages in our method is that it does not assume a consistent

quantity of parent-child specialization across relations in the gene ontology, as most purely

structural methods do [68,83,84]. Another advantage is that SSA can be easily extended to

calculate semantic similarity between gene products. In this study, we use proteins as ex-

amples of gene products. But it is worth pointing out that the GO also contains functional

annotations for other gene products like non-coding RNA.

Given a pair of input proteins, SSA creates a subgraph of the GO including all terms

annotating both input proteins and their respective ancestors in the GO hierarchy. Then,

SSA exploits the subgraph to calculate pairwise semantic similarities between the GO terms
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annotating the input proteins. Finally, such pairwise semantic similarities are combined to

obtain a semantic similarity score for the two proteins. The reliability of our approach is

evaluated by comparing the resulting semantic similarities between proteins against func-

tional similarities between proteins derived from expert annotations. In the following sec-

tions, we describe this approach step by step.

5.2.1 Building the Subgraph from the Gene Ontology

For a pair of input proteins, all their annotating GO terms are collected. Next, a

subgraph (denoted as Gsim) of the GO is created. Each vertex of Gsim is a GO term that

either annotates one or both of the input proteins or it is an ancestor of the annotating

terms. Each edge corresponds to a relationship between the two adjacent terms. We only

focus on the two most common types of relationships in the GO: “is-a” and “part-of.” Note

that, once the GO includes three different ontologies, the resulting subgraph is different

depending on which ontology is being used.

5.2.2 Semantic Similarity Between Gene Ontology Terms

Given two annotating GO terms t1 and t2, the semantic similarity between them is

calculated on their respective subgraph Gsim according to:

SSA(t1, t2) =
spsim(t1, t2) + ncasim(t1, t2) + ldsim(t1, t2)

3
(5.1)

where spsim is the distance of the shortest path between t1 and t2 in Gsim converted into a

similarity value, ncasim is a score proportional to the depth of the nearest common ancestor

(NCA) of t1 and t2 in Gsim, and ldsim is a similarity score between the definitions of the

two terms.

All terms in Eq. 5.1 return values in the range of 0 to 1; consequently, their aver-

age is also a value between 0 and 1. We have also explored different weighting strategies

by analyzing the contributions and correlation of the three terms. No weighting strategy

could achieve consistent improvement on all the datasets. That is, although some weighting
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choices gave minor improvement on some datasets, they also achieved worst performance in

other datasets. Additionally, we explored the feasibility of calculating SSA(t1, t2) without

considering the similarity score between the definitions of the two terms. In those experi-

ments, SSA(t1, t2) was just the average of spsim and ncasim. The three terms in Eq. 5.1

are detailed in the following sections.

Shortest Distance

One challenge in calculating semantic similarities derived from ontologies is that on-

tology relationships do not reflect equal semantic distances between terms. In the case of

the GO, edges closer to the root usually represent larger differences in function (or other

properties) than edges farther away from the root. To address this challenge, we assign

weights (in the range of [0, 1]) to edges using Eq. 5.2, so that edges closer to the root have

higher weights.

weight(ti, tj) = 1− depth(ti) + depth(tj)

2 ·max (5.2)

where, ti and tj are the endpoint vertices (terms) of the edge, depth(ti) and depth(tj) are

their corresponding depths in the graph, and max is the maximum depth in the respective

ontology. We then define the length of a path as the sum over the weights of the edges on

the path. In SSA, the length of the shortest path between t1 and t2 is first calculated and

then converted into a similarity score using:

spsim(ti, tj) =

(
sp(ti, tj)

max
− 1

)2

(5.3)

where sp(ti, tj) is the length of the shortest path from node ti to node tj , and max is the

maximum depth in the ontology. Note that in Eq. 5.3 we normalize the value of sp(ti, tj)

by max which is the maximum depth. It can be easily shown that after weighting edges

according to Eq. 5.2, the (weighted) length of the longest path between two GO terms

in the graph is less than or equal to the maximum depth(max). Thus, the normalization

provides values in the interval [0, 1]. Finally, to convert distances into similarity values, we
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subtract the distance by 1 and apply a quadratic function. In this way, longer distances

between two terms give lower scores of similarity. We have also tried a linear function

(absolute function) instead of a quadratic function to convert distance into similarity. No

improvement was observed.

Depth of NCA

The depth of the NCA is calculated using Eq. 5.4, which is the depth of the nearest

term that is a common ancestor of ti and tj , normalized by the maximum depth of the

corresponding ontology in GO; therefore, ncasim is limited to the interval [0, 1].

ncasim(ti, tj) =
depthnca(ti, tj)

max
(5.4)

where depthnca(·) simply returns the depth of the nearest common ancestor. Note that in

this formula, the deeper the NCA is, the more similar the two terms are.

Similarity between the Definitions

In the GO, each term is associated with a definition, which is a text note that encloses

a rich source of knowledge about the meaning of the term. For example, the definition of

the term GO:0051210 (isotropic cell growth) is “The process by which a cell irreversibly

increases in size uniformly in all directions. In general, a rounded cell morphology reflects

isotropic cell growth.” We define the long definition of a term as the union of the terms’

name and its definition. In the case of GO:0051210, the corresponding long definition is:

“isotropic cell growth. The process by which a cell irreversibly increases in size uniformly

in all directions. In general, a rounded cell morphology reflects isotropic cell growth.”

The similarity score between the long definitions of t1 and t2 is given by ldsim(t1, t2).

First, we refine every term’s long definition in the GO by removing common words (e.g., of,

a, the, is, etc.) and applying the Porter algorithm [85] for stemming. Then, for each term,

we create a long definition vector in an n-dimensional ontology space. The dimensionality

of the ontology space is defined by n, the total number of unique stemmed words found in



65

the long definitions of all terms in the respective ontology. Each value in the long definition

vector represents the tf-idf (term frequency-inverse document frequency) weight [86] for the

corresponding word. This weight evaluates how important a word is to its long definition.

A high tf-idf weight is reached by a high word frequency in the long definition and a low

occurrence of the word in the collection of long definitions in the ontology. Finally, the

similarity score between the long definition vectors of two terms is defined as their cosine

similarity:

ldsim(ti, tj) =
~ldi · ~ldj

‖ ~ldi‖ · ‖ ~ldj‖
(5.5)

where ~ldi and ~ldj are the long definition vectors for terms ti and tj , respectively.

5.2.3 Semantic Similarity Between Proteins

Although SSA had been designed for calculating semantic similarity between GO terms,

we can combine term similarities to obtain the semantic similarity between proteins as fol-

lows. Let A(Pk) = {tk1, tk2, . . . } be the set of non-redundant GO terms annotating protein

Pk. Then, given two input proteins Pi and Pj with annotation sets A(Pi) = {ti1, ti2, . . . , tim}

and A(Pj) = {tj1, tj2, . . . , tjn}, we obtain the similarity matrix Mm×n, where M(a, b) is the

semantic similarity between terms tia and tjb given by SSA(tia, tjb).

Based on this matrix of pairwise similarities, we can calculate the semantic similarity

between Pi and Pj using three different methods described in previous research [68, 73, 74,

76,78,79], namely, the maximum, the average, and the best match average. The maximum

method takes the maximum value from the similarity matrix M and considers it as the

semantic similarity between the proteins. The average method calculates the average of all

entries in M and assigns it to the semantic similarity between the proteins. The best match

average method considers the maximum values in each row (row maxima) and each column

(column maxima). The average of row maxima and the average of column maxima are first

calculated. Then, the average of the two is the semantic similarity between the proteins.

In other words, the semantic similarity computed by the best match average method is
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denoted by simbma and calculated as follows:

simbma(Pi, Pj) =
rowmax(Pi, Pj) + colmax(Pi, Pj)

2
(5.6)

where

rowmax(Pi, Pj) =
1

m

m∑
a=1

max
1≤b≤n

SSA(tia, tjb)

colmax(Pi, Pj) =
1

n

n∑
b=1

max
1≤a≤m

SSA(tia, tjb).

(5.7)

Intuitively, the maximum value in a row (or column) corresponds to the best hit when a

term annotating a protein is compared with all the terms annotating the other. The average

over row maxima (rowmax) reflects the best hits when comparing terms from the protein

associated with the rows against the protein associated with the columns. Conversely, the

average over column maxima (colmax) reflects the best hits when comparing terms from the

protein associated with the columns against the protein associated with the rows. Thus,

the score given by the best match average method (simbma) reflects the best scores in both

directional comparisons.

5.2.4 Experiments

In this section, we describe the experiments conducted with the purpose of evaluat-

ing the performance of SSA. First, four different versions of SSA are defined and used to

calculate semantic similarities for a dataset of proteins. Then, correlations are calculated

between the resulting similarities and functional similarities derived from family annota-

tions. Finally, based on the correlations, the SSA version with the higher performance is

selected to be compared against existing methods.

Protein Functional Similarity Derived from Pfam Annotations

In our work, the reliability of SSA is evaluated by comparing the resulting semantic

similarities against protein functional similarity derived from expert annotations. Func-

tional similarities between proteins were derived from the Pfam database [87], following the
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same approach described in [78]. Thus, let F (Pi) = {fi1, fi2, . . . , fim} be the set of Pfam

annotations for protein Pi and F (Pj) = {fj1, fj2, . . . , fjn} be that of Pj . The functional

similarity between the two proteins can then be estimated using the Jaccard coefficient

between the two annotation sets as follows:

simpfam(Pi, Pj) =
|F (Pi) ∩ F (Pj)|
|F (Pi) ∪ F (Pj)|

(5.8)

where the ∩ and ∪ operators denote, respectively, the resulting intersection and union sets

between the Pfam annotation sets.

In our experiments, for a set of proteins, their pairwise semantic similarities were cal-

culated using SSA. Separately, the pairwise functional similarities were calculated based on

their Pfam annotation as mentioned above. As in [78], the Pearson’s correlation coefficient

(PCC) between the semantic similarities and functional similarities was used for perfor-

mance comparisons. The values of PCC range from −1 to 1. In this context, higher values

of PCC indicate better performance in the calculation of semantic similarity. The PCC is

calculated as follows:

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )√
n∑
i=1

(Xi − X̄)2

√
n∑
i=1

(Yi − Ȳ )2

(5.9)

where X and Y are two variables with means X̄ and Ȳ , respectively. In our case, such

variables correspond to the semantic and the functional similarities.

Datasets

We downloaded the revision 1.723 of the GO, for which Table 5.1 shows a summary

of statistics. For the set of proteins, we used the release 15.6 of UniprotKB/Swiss-Prot.

On the other hand, we used the release 74.0 of GOA-Uniprot as the database for protein

annotations. In our preliminary experiments, we explored a few variations of SSA. To

compare the performance of different versions, we selected the top 500 proteins with the

most total number of annotations in GOA-Uniprot and created subsets with the top 100,
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200, 300, 400, and 500 most annotated proteins. These subsets are referred to as T-100, T-

200, T-300, T-400, and T-500 respectively. We ensured that all selected proteins existed in

UniprotKB/Swiss-Prot and had at least one annotation from each of the three GO ontologies

in GOA-Uniprot. On the other hand, we also made sure that the selected proteins had at

least one Pfam-A annotation by checking the online service provided by the Pfam database.

Table 5.1: Statistics for the revision 1.723 of the gene ontology. For each of the ontologies
we show respectively the number of GO terms, the number of “is-a” links, the number of
“part-of” links, and the maximum depth.

Ontology terms “is-a” links “part-of” links max-depth

Biological Process 16,819 27,532 3,446 14
Molecular Function 8,628 10,079 3 14
Cellular Location 2,416 3,670 941 10

Combining Pairwise GO Term Similarities

We compared the three different methods for combining pairwise semantic similarities

between GO terms to obtain a semantic similarity between a pair of proteins, namely the

maximum (MAX), average (AVE), and best match average (BMA). We implemented a

very simple version of SSA, which considered only “is-a” relationships when constructing

the subgraph, and did not use the similarity score between the definitions of the two terms.

Table 5.2 shows the results when the MF ontology was used to build the subgraph. The

results show that BMA outperforms MAX and AVE in all datasets used. The same trend

was observed when the BP and CC ontologies were respectively used to build the subgraph.

We also repeated this experiment using different versions of SSA (see details in the next

section), and the same trend was observed. Since BMA outperforms AVE and MAX, in all

of the following experiments, BMA was chosen to combine semantic similarities between

GO terms to obtain the semantic similarity between proteins.
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Table 5.2: Correlations between semantic similarities and functional similarities for different
combination methods. This table shows that BMA outperforms MAX and AVE for the MF
ontology. The same trend was observed when the BP and the CC ontologies were used.

Dataset MAX AVE BMA

T-100 0.41 0.45 0.77
T-200 0.24 0.33 0.62
T-300 0.25 0.25 0.65
T-400 0.23 0.23 0.57
T-500 0.21 0.21 0.51

Exploring Several Versions of SSA

In the GO, each term is associated with a text definition. To the best of our knowledge,

no existing method, based on the GO, explores the use of term definitions in the calculation

of semantic similarity. Thus, we are interested in validating whether the use of similarities

between term definitions improves the performance or not. We are also interested in ob-

serving the contributions of the most common types of relationships, to be precise, “is-a”

and “part-of.” Here, if a type of relationship is taken into account, the edges corresponding

to this type of relationship are included in the subgraph. In order to achieve our goals, we

performed experiments using distinct versions of SSA, described in Table 5.3.

Table 5.3: Different versions of SSA used in our experiments.

Version Relationships considered Term definitions considered

SSAv1 “is-a” No
SSAv2 “is-a” and “part-of” No
SSAv3 “is-a” Yes
SSAv4 “is-a” and “part-of” Yes

We do not evaluate SSA versions for which only “part-of” relationships are considered,

because they lead to poor performance and “is-a” relationships are vital to represent the

semantic relations between GO terms. Moreover, in the MF ontology, as shown in Table 5.1,

the distribution of “is-a” and “part-of” relationships differ drastically. Note also that in

SSAv2 and SSAv4, both the edges corresponding to “is-a” relationships and the edges
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corresponding to “part-of” relationships are included in the subgraph, while that in SSAv1

and SSAv3, only the edges corresponding to “is-a” relationships are included. For each

version of SSA, we calculated pairwise semantic similarities between proteins. Then the

correlation between their resulting semantic similarities and functional similarities derived

from Pfam annotations was used to evaluate the performance of each different version. This

step was repeated for each of the five datasets and for each of the three ontologies in the

GO. Table 5.4 shows the results of experiments with all versions.

Table 5.4: Correlations between protein functional similarities derived from Pfam annota-
tions and semantic similarities given by four different versions of SSA.

Version Dataset SSAv1 SSAv2 SSAv3 SSAv4

BP T-100 0.79 0.79 0.81 0.80
T-200 0.68 0.66 0.70 0.68
T-300 0.73 0.70 0.74 0.73
T-400 0.64 0.61 0.66 0.64
T-500 0.59 0.56 0.61 0.59

MF T-100 0.77 0.77 0.78 0.78
T-200 0.62 0.62 0.64 0.64
T-300 0.65 0.65 0.66 0.66
T-400 0.57 0.57 0.58 0.58
T-500 0.51 0.51 0.53 0.53

CC T-100 0.53 0.51 0.56 0.54
T-200 0.39 0.37 0.41 0.40
T-300 0.43 0.41 0.46 0.44
T-400 0.34 0.32 0.36 0.35
T-500 0.30 0.29 0.32 0.31

SSAv3 yields higher correlations than SSAv1 across all datasets and all ontologies. The

only difference between SSAv1 and SSAv3 is that SSAv3 takes into account the similarity

between the definitions of GO terms and SSAv1 does not. Thus, we can conclude that taking

into account the definitions of GO terms can improve the performance. This conclusion is

also supported by comparing the results of SSAv2 with those of SSAv4. Table 5.4 also shows

that the correlations achieved by SSAv2 are lower than or equal to those of SSAv1 while

the correlations achieved by SSAv4 are lower than or equal to those of SSAv3. From this,

we can conclude that the use of “part-of” relationships does not improve the performance.
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When the MF ontology is used to build the graph, SSAv2 achieves the same results as

SSAv1 while SSAv4 achieves the same results as SSAv3. This is because there are only

three “part-of” relationships in the MF ontology, which is too few to affect the results. In

comparison, there are 3446 “part-of” relationships in the BP ontology and 944 in the CC

ontology.

When the dataset and the method are fixed, SSA achieves much lower correlations

when CC ontology is used to build the subgraph than when BP or MF is used. One possible

explanation is that the BP and MF ontologies describe gene products using terms associated

with biological processes and molecular functions, both of which are directly related to

protein function. Consequently, the semantic similarities calculated using these ontologies

correlate better with functional similarities. In contrast, the CC ontology describes gene

products using terms associated with cellular components, which are only indirectly related

to protein function. Another possible cause of this is that proteins in the dataset have

different numbers of annotations from the three ontologies. For example, in dataset T-500,

the 500 proteins have a total of 16, 248 unique annotations from the BP ontology, 5, 029

unique annotations from the MF ontology and only 4, 298 unique annotations from the CC

ontology. In Table 5.4, we can observe a general trend of decreasing performance from T-100

to T-500 (with the exception of T-300). Note that from T-100 to T-500, the average number

of annotations per protein decreases. These results suggest that having more annotations

per protein in the dataset leads to more reliable functional similarity estimation. This claim

is also supported by the results from [72].

Comparisons with Previous Methods

In this section, we compare SSA against previously published methods. We used the col-

laborative evaluation of GO-based semantic similarity measures (CESSM) online tool [88],

developed by the XLDB research group at the University of Lisbon. For the purpose of

comparison, CESSM provides a standard dataset consisting of 13, 340 pairs of proteins

involving 1, 039 distinct proteins and implements 11 state-of-the-art semantic similarity

methods, namely, simGIC [89], simUI [74], and the average, maximum and best-match
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average combinations of three different term similarity methods proposed by Resnik [90],

Lin [91], and Jiang and Conrath [92]. As a result, users can compare their methods with

the 11 methods using the standard dataset.

In CESSM, sequence similarity is calculated using RRBS [74], which is a relative mea-

sure of sequence similarity based on BLAST bitscores. In the evaluation of a semantic

similarity method, CESSM compares the pairwise semantic similarities between proteins

given by the method with the pairwise sequence similarities between the proteins. CESSM

uses resolution to evaluate how well semantic similarities match sequence similarities.

First, the semantic similarity is plotted against sequence similarity. Then, the data

points are divided into sequence similarity intervals, with all intervals having an equal

number of data points. Let y be the variable representing the averaged semantic similarity

of the intervals and x be the variable representing the averaged sequence similarity of the

intervals. The behavior of y versus x is modeled using two normal cumulative distribution

functions (NCDF) as y = a+ b ·NCDF1(x) + c ·NCDF2(x). Finally, the resolution of the

semantic similarity method is given by the sum of the scale factors, i.e., b+ c. Based on the

authors’ definition, resolution is the relative intensity in which variations in the sequence

similarity scale are translated into the semantic similarity scale. A higher resolution value

means that the semantic similarity method has a higher capability to distinguish between

different levels of protein function. Therefore, a method with higher resolution performs

better than a method with lower resolution. A detailed description of resolution can be

found in [74].

In addition to resolution, CESSM provides three different ways for evaluating a seman-

tic similarity method. Specifically, it calculates correlations between the resulting semantic

similarities and (1) functional similarities measured as sequence similarities, (2) functional

similarities derived from enzyme commission (EC) classification, and (3) functional similar-

ities derived from Pfam annotations.

Since the results presented in Table 5.4 confirmed that SSAv3 achieves better perfor-

mance than other versions of SSA, we compare SSAv3 with the methods implemented in
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CESSM. In this comparison, only the MF ontology is used, because, as stated in [76], the

use of BP and CC ontologies yielded worse correlation between semantic similarity and

sequence similarity. Table 5.5 presents the resolution scores achieved by applying differ-

ent methods to the standard dataset provided by CESSM. It shows that SSA achieves the

highest resolution, outperforming other previously published methods. In addition to the

high resolution, SSA has the advantage that it does not rely on an external database of

functional annotation observations in the calculation of semantic similarity. In comparison,

all the other methods shown in Table 5.5 need such a database (in this case, the annotations

in GOA). Note also that the MAX and AVE combination methods, in all cases, give worse

scores than BMA. Table 5.5 also lists the correlation values computed by CESSM, when

comparing semantic similarity with function similarity derived from EC classification and

Pfam annotations, respectively. The correlation values between semantic and sequence sim-

ilarities are not listed because their relationship is not linear [74]. Instead, resolution values

discussed earlier are used to evaluate how well the semantic similarity matches sequence

similarity.

Table 5.5: Resolution values obtained for sequence similarity and correlation values obtained
for EC class and Pfam similarities for SSAv3 and other methods implemented in CESSM.

Algorithm Resolution EC Correlation Pfam Correlation

SSA – BMA (ours) 0.972 0.631 0.590
simUI 0.967 0.637 0.618
Resnik – BMA 0.958 0.603 0.572
simGIC 0.956 0.622 0.638
Lin – BMA 0.571 0.642 0.564
Lin – AVE 0.451 0.423 0.447
Resnik – AVE 0.415 0.397 0.440
Resnik – MAX 0.381 0.454 0.182
Lin – MAX 0.248 0.453 0.180
Jiang & Conrath – BMA 0.241 0.561 0.491
Jiang & Conrath – AVE 0.175 0.341 0.332
Jiang & Conrath – MAX 0.084 0.362 0.128

5.3 Graph Kernels for Protein Semantic Similarity
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In this section, we present a shortest path graph kernel for calculating the semantic

similarity between gene products. In this approach, each gene product is represented as a

graph that is an induced subgraph of the GO. Then, the shortest path graph kernel from

Section 3.3.4 is used to calculate the semantic similarity between a pair of graphs. This

method is intrinsic to the GO, i.e., it does not rely on external resources to calculate the

semantic similarity. Thus, it does not have the same drawbacks as methods based on the IC

of GO terms. At the same time, it uses a graph to explicitly explore the GO structure and

exploit the relationship between GO terms. Graph matching is computationally expensive

in general. However, we designed an instance of the shortest path graph kernel to efficiently

calculate the similarity between graphs. Using a comprehensive evaluation benchmark pro-

vided by CESSM, we compare our approach with other state-of-the-art methods.

5.3.1 A Shortest Path Graph Kernel for Proteins

We model a protein using a subgraph of the ontology that consists of all the GO terms

annotating the protein and their ancestors in the ontology. In this subgraph, each edge

corresponds to a relationship between two terms in the ontology. Figure 5.1 shows the

graph generated from the CC ontology for UniprotKB protein P17252.

We used a shortest-path graph kernel to compare two graphs as described in Sec-

tion 3.3.4, as well as, using the Floyd-Warshall method from Algorithm 3.1 for transforming

graphs into shortest path graphs. As the instantiation of shortest-path graph kernels in-

volves the definition of kernels for vertices and edges, we define the vertex kernel as a Dirac

kernel and the edge kernel as a Brownian bridge kernel. Both the Dirac and the Brownian

bridge kernels are known to be positive definite [29].

From Section 3.3.4, given two shortest path graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉, a

shortest path graph kernel is defined as:

ksp(G,G
′) =

∑
e∈E

∑
e′∈E′

kwalk(e, e
′) (5.10)

where kwalk(e, e
′) = knode(u, u

′) · kedge(e, e′) · knode(v, v′) for e = (u, v) and e′ = (u′, v′). In
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Fig. 5.1: Graph including all terms annotating protein P17252 (protein kinase C alpha type)
from the cellular component ontology. All the ancestors of the annotating terms are also
included in the graph.
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our case, the kernel function for a pair of vertices is a Dirac kernel on their respective GO

identifiers, formally defined as:

knode(u, u
′) =


1, if id(u) == id(u′)

0, otherwise

(5.11)

where the function id(·) simply returns the identifier for the GO term involved.

The kernel function for a pair of edges is a Brownian bridge kernel defined as follows:

kedge(e, e
′) = max(0, c−

∣∣weight(e)− weight(e′)∣∣) (5.12)

where c is a constant. This kernel returns the largest value c, when two edges have identical

weight, and 0 when the edges differ in weight more than c. In this study, we use c = 2.

5.3.2 Experiments

To compare our approach (referred to as simspgk) with other existing methods, we

used the CESSM online tool [88], introduced in Section 5.2.4. As pointed out in [74], the

maximum and average versions of term similarity methods have limitations from a biological

point of view. Results presented in Table 5.5 also confirmed that the best-match average

version has better performance than the maximum and average versions for Resnik [90],

Lin [91], and Jiang and Conrath [92] methods. Thus, in this section, we compare simspgk

with simGIC, simUI, and the best-match average versions of Resnik, Lin, and Jiang and

Conrath methods. Bear in mind that the MF ontology is more closely related to function

than the BP and CC ontologies; thus, we use the MF ontology to compare simspgk against

different methods.

Table 5.6 shows the resolution values for different methods when sequence similarity

is compared with semantic similarity. Tables 5.7 and 5.8 show the resulting Pearson’s

correlation coefficients for EC classification and Pfam annotations, respectively. To facilitate

reading, we present the resolution and correlation values in separate tables, with algorithms
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listed in descending order of performance.

Table 5.6: Resolution values for simspgk and other methods implemented in CESSM. Note
also that simspgk yields higher resolution than SSA, described in Section 5.2.

Algorithm Resolution

simspgk (ours) 0.976
SSA – BMA (ours) 0.972
simUI 0.967
Resnik – BMA 0.958
simGIC 0.956
Lin – BMA 0.571
Jiang & Conrath – BMA 0.241

The simspgk method achieves the best results in Tables 5.6 and 5.7, and it is the second

best in Table 5.8. In addition to the better performance, the key advantage of simspgk is that

it is intrinsic to the ontology, i.e., it does not rely on external resources in the calculation

of the semantic similarity. In contrast, all the other methods, with the exception of simUI

and SSA, rely on external resources, i.e., the annotations in GOA.

Table 5.7: Correlation values between semantic similarities and functional similarities de-
rived from EC classification.

Algorithm EC Correlation

simspgk (ours) 0.646
Lin – BMA 0.642

simUI 0.637
SSA – BMA (ours) 0.631

simGIC 0.622
Resnik – BMA 0.603

Jiang & Conrath – BMA 0.561

Among other semantic similarity methods listed in Table 5.6, simUI achieves the highest

resolution. It computes the semantic similarity between two proteins as the ratio of the

number of GO terms shared by the two proteins and the number of GO terms in their

union. Thus, simUI requires only a linear time O(n) and has the advantage that it is
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simpler and faster for calculation. However, Tables 5.6, 5.7, and 5.8 show that simspgk

outperformed simUI in all cases.

Table 5.8: Correlation values between semantic similarities and functional similarities de-
rived from Pfam annotations.

Algorithm Pfam correlation

simGIC 0.638
simspgk (ours) 0.622

simUI 0.618
SSA – BMA (ours) 0.590

Resnik – BMA 0.572
Lin – BMA 0.564

Jiang & Conrath – BMA 0.491

Despite the high computational cost involved in graph comparisons, simspgk does not

suffer from this drawback. Using the shortest-path graph kernel, simspgk requires a poly-

nomial time O(n4), where n is the number of vertices. In addition, each step of the graph

kernel is simple to compute. For example, knode only needs to compare whether two vertex

IDs are identical since a Dirac kernel is used, and kedge considers the length difference be-

tween two edges. Thus, the constant factors associated with the polynomial time complexity

are very small, and simspgk can run fast in real applications.

5.4 Conclusion

This chapter presents two novel methods based on graph models and graph kernels,

SSA and simspgk respectively, for the GO-based calculation of semantic similarity between

proteins. In addition to their highly competitive performance, a major difference between

them and other previous methods is that they rely exclusively on the GO. Furthermore,

they do not assume a consistent quantity of parent-child specialization across relations in

the gene ontology, as most purely structural methods do.

Particularly for SSA, other contributions include: (1) exploring the inclusion of defi-

nitions of GO terms in the semantic similarity calculation and confirmed that using such

information can improve the performance; and (2) exploring the usefulness of “part-of”



79

and “is-a” relationships in the semantic similarity calculation and showing that taking into

account “part-of” relationships does not help to improve the performance.

On the other hand, we show that our method based on graph kernels compares favorably

with other state-of-the-art methods, including SSA. A big difference between simspgk and

others is that simspgk takes into account the structure of the ontology. Since the structure

of the ontology contains important information, it is beneficial to exploit it to capture

semantic similarity. The results presented here show that simspgk provides an alternative

to both methods that rely on external resources and intrinsic methods with comparable

performance. Moreover, the use of graph kernels for comparing graphs has a very important

advantage. It allows the direct embedding of semantic similarity measures into machine

learning tasks, such as clustering and classification of gene products.

The evaluation of semantic similarity measures is especially difficult. In previous pub-

lications, the evaluation method was based on how well semantic similarity correlated with

sequence similarity or functional similarity. Such an evaluation method assumes that there

exist positive correlations between them, and the higher the correlation the better the mea-

sure. In this research, we follow the same assumptions made in previous studies. Although,

it is probably true that there exists positive correlation between them, the claim that higher

correlations mean better semantic similarity measures is still debatable. Further studies are

still needed to test the validity of the assumptions.
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Chapter 6

Conclusions

In this chapter, we present a summary of our work. In Section 6.1, we highlight our

major contributions and present a list of publications associated with this dissertation. We

show that our novel models for graphs in conjunction with shortest path graph kernels

are suitable and effective for applications involving protein function prediction and protein

semantic similarities. Section 6.2 gives an overview of some of the problems we want to

address in our future work.

6.1 Summary

Recent technological advances have lead to an explosion of structured data, which are

being produced at very high rates across a broad spectrum of disciplines and domains. In

this context, graph kernels, which can be seen as similarity scores between graphs, appear

as attractive and principled means to deal with discrete structures. They allow kernel based

learning methods to be directly used on the data without resorting to vectorial representa-

tions. In this dissertation, we focus on the study of graph kernels and their applications to

different computational biology problems.

The basic foundations of statistical learning theory, reviewed in Chapter 2, are the

building blocks for understanding the kernel trick and support vector machines. Kernels are

attractive because they allow the definition of similarity between pairs of objects, without

imposing restrictions on the nature of the objects, as long as the kernels are valid with

respect to symmetry and positive definiteness.

When the objects are graphs, the design of kernels faces two conflicting requirements.

One is to find a representation that adequately captures the structural closeness of the

input graphs. The other is to ensure the kernel is inexpensive to calculate. Existing graph
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kernels, surveyed in Chapter 3, have been proposed in the literature to address this conflict.

However, as a rule of thumb, increasing the expressivity of kernels demands higher, possibly

exponential, computational time. Interestingly, the class of shortest path graph kernels

provides a representation for graphs that is able to retain expressivity in polynomial time.

Furthermore, instances of shortest path graph kernels are widely applicable because they

do not impose limitations on the graph structure and they allow for labeling of vertices and

edges.

Based on statistical learning theory and the recent advances in graph kernels, this

dissertation presents contributions to the solution of two specific problems in bioinformatics.

In Chapter 4, we propose novel models for protein structures, where compact graphs are

created after applying hierarchical agglomerative clustering to the C-alpha atoms of the

amino acid residues in the protein backbone. We also propose the use of evolutionary

profiles at the vertices of each graph. We evaluate our approach under the context of protein

function prediction. In particular, we use an instance of the class of shortest path graph

kernels in conjunction with the SVM classifier, for solving the discrimination of proteins

as enzymes and the recognition of DNA binding proteins. In both cases, the results were

favorable to our approach. Preliminary results were presented in a conference [14] and

extensions to this work were accepted for publication in a journal [15].

• Alvarez, M. A. and Yan, C. Exploring structural modeling of proteins for kernel-based

enzyme discrimination. In Symposium on Computational Intelligence in Bioinformat-

ics and Computational Biology (CIBCB), pp. 1–5, Montreal, Canada, 2010

• Alvarez, M. A. and Yan, C. A new protein graph model for function prediction. Com-

putational Biology and Chemistry, 2012, to appear

In Chapter 5, we presented our findings for the problem of estimating semantic simi-

larity between proteins. For a given pair of proteins, we explored the semantic relationships

between their respective GO annotations. In previous work, we presented a novel algorithm
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for semantic similarities between pairs of English words [16, 93]. This algorithm was ex-

tended for inferring the similarity of GO terms from the Gene Ontology, and subsequently

refined to calculate the semantic similarity between proteins [17,18].

Additionally, with the purpose of exploiting the rich structural information in the se-

mantic space of the gene ontology, we proposed an instance of a shortest path graph kernel

for calculating the semantic similarity of proteins [19]. To the best of our knowledge, this

is the first attempt to use graph kernels for estimating semantic similarity. The results

presented in Chapter 5 confirm that our proposed measures are highly competitive with

standard techniques. Moreover, the use of graph kernels has an important impact in the

estimation of semantic similarity based on ontologies, because, it turns the similarity mea-

sure into a positive definite function, allowing its use in powerful machine learning methods.

The following is a list of publications derived from this work.

• Alvarez, M. A. and Lim, S. A graph modeling of semantic similarity between words. In

International Conference on Semantic Computing (ICSC), pp. 355–362, Irvine, CA,

USA, 2007

• Alvarez, M. A., Qi, X., and Yan, C. Go-based term semantic similarity. In Ontology

Learning and Knowledge Discovery Using the Web: Challenges and Recent Advances,

ch. IX. IGI Publishing, 2011

• Alvarez, M. A. and Yan, C. A graph-based semantic similarity measure for the gene

ontology. Journal of Bioinformatics and Computational Biology, 2011

• Alvarez, M. A., Qi, X., and Yan, C. A shortest-path graph kernel for estimating gene

product semantic similarity. Journal of Biomedical Semantics, vol. 2, no. 1, p. 3, 2011

6.2 Extensions and Future Work

In general, most of the kernel functions described in Chapter 3 are derived from con-

volution kernels. That is, they are based on matching simple sub-structures like walks,

trees, or cyclic patterns. Even though attractive kernels have been proposed under this
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framework, challenges still remain for the development of more expressive kernels that can

capture the semantics involved in graph similarities and are reasonably efficient to compute.

In such a context, possible avenues for further work are: 1) the exploration of new

graph kernels for the efficient evaluation of graph similarities; 2) the investigation of graph

signatures, which can provide more efficient algorithms not only for calculating graph sim-

ilarities, but also for generating new graphs; 3) the innovative application of graph simi-

larities and kernels in complex domains. For example, systems researchers and developers

face challenges to keep pace with microprocessor evolution. Meaningful representation of

programs structured as graphs can leverage novel machine learning applications such as

automatic tuning of optimizations to be applied to a program [94], or the identification of

vulnerabilities in both binary and source code.



84

References

[1] Snijders, T. Statistical models for social networks. Annual Review of Sociology, vol. 37,
no. 1, pp. 131–153, 2011.

[2] Mihalcea, R. and Radev, D. Graph-Based Natural Language Processing and Informa-
tion Retrieval. Cambridge University Press, 2011.

[3] Kashima, H., Saigo, H., Hattori, M., and Tsuda, K. Graph kernels for chemoinformat-
ics. In Chemoinformatics and Advanced Machine Learning Perspectives, ch. I. IGI
Publishing, 2011.
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Bosco, Brazil

02/98 – 03/99 Invited Professor, Department of Computer Science, Universidade de Franca,
Brazil
Operating Systems, Theory of Computation

01/96 – 03/97 System Analyst, Dataprev – INSS, Campo Grande, MS, Brazil



94

Honours and Awards

2011 Scholarship to attend the International Conference on Machine Learning
(ICML), Bellevue, WA, USA

2011 Scholarship to attend the Machine Learning Summer School (MLSS) at Pur-
due University, West Lafayette, IN, USA

2011 Travel grant for the Richard Tapia Celebration of Diversity in Computing
Conference, San Francisco, CA, USA

2011 Travel grant for the NSF-Sponsored Academic Workshop for Under-
represented Assistant & Associate Professors, and Senior Doctoral Students,
Los Angeles, CA, USA

2010 1st place in the Computer Science session of the 13th Annual Intermountain
Graduate Research Symposium (cash prize), Utah State University, Logan,
UT, USA

2010 Scholarship to attend the 2010 Google GRAD CS Forum, Mountain View, CA,
USA

2008 Graduate Student Senate Enhancement Award (scholarship), Utah State Uni-
versity, Logan, UT, USA

2004 Huésped Distinguido (special honor in recognition of his contribution to
academic teaching), Rectoral Resolution 3962-2004-R-UPAO, Universidad
Privada Antenor Orrego, Trujillo, Peru

2001-2004 Member of the University Council at Universidade Católica Dom Bosco,
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12. Tendencias y Áreas de Investigación en Ciencia de la Computación (2008). Jun 16th, Universidad
Nacional de Ingenierı́a. Lima, Peru.

13. Perspectivas de Desarrollo de la Computación e Informática en el Paı́s (2008). Jun 13th, Universidad
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29. Computación e Informática: Perspectivas de la Educación Superior (2005). Nov 16th, II CICIS -
Congreso Internacional de Computación, Informática y Sistemas, Universidad José Carlos
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Peru. Lima, Peru.

38. El Impacto del Avance Tecnológico en la Sociedad Contemporanea (2005). Aug 13th, X Congreso In-
ternational de Secretarias y Asistentes Ejecutivas. Arica, Chile.
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