860 research outputs found

    Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework

    Get PDF
    Simplicity and flexibility of meta-heuristic optimization algorithms have attracted lots of attention in the field of optimization. Different optimization methods, however, hold algorithm-specific strengths and limitations, and selecting the best-performing algorithm for a specific problem is a tedious task. We introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme. SC-SAHEL explores performance of different EAs, such as the capability to escape local attractions, speed, convergence, etc., during population evolution as each individual EA suits differently to various response surfaces. The SC-SAHEL algorithm is benchmarked over 29 conceptual test functions, and a real-world hydropower reservoir model case study. Results show that the hybrid SC-SAHEL algorithm is rigorous and effective in finding global optimum for a majority of test cases, and that it is computationally efficient in comparison to algorithms with individual EA

    Distribution network reconfiguration considering DGs using a hybrid CS-GWO algorithm for power loss minimization and voltage profile enhancement

    Get PDF
    This paper presents an implementation of the hybrid Cuckoo search and Grey wolf (CS-GWO) optimization algorithm for solving the problem of distribution network reconfiguration (DNR) and optimal location and sizing of distributed generations (DGs) simultaneously in radial distribution systems (RDSs). This algorithm is being used significantly to minimize the system power loss, voltage deviation at load buses and improve the voltage profile. When solving the high-dimensional datasets optimization problem using the GWO algorithm, it simply falls into an optimum local region. To enhance and strengthen the GWO algorithm searchability, CS algorithm is integrated to update the best three candidate solutions. This hybrid CS-GWO algorithm has a more substantial search capability to simultaneously find optimal candidate solutions for problem. Furthermore, to validate the effectiveness and performances of the proposed hybrid CS-GWO algorithm is being tested and evaluated for standard IEEE 33-bus and 69-bus RDSs by considering different scenarios

    Simultaneous optimal integration of photovoltaic distributed generation and battery energy storage system in active distribution network using chaotic grey wolf optimization

    Get PDF
    Goal. The integration of photovoltaic distributed generations in the active distribution network has raised quickly due to their importance in delivering clean energy, hence, participating in solving various problems as climate change and pollution. Adding the battery energy storage systems would be considered as one of the best choices in giving solutions to the mentioned issues due to its characteristics of quick charging and discharging, managing the quality of power, and fulfilling the peak of energy demand. The novelty of the proposed work is the development of new multi-objective functions based on the sum of the three technical parameters of total active power loss, total voltage deviation, and total operation time of the overcurrent protection relay. Purpose. This paper is dedicated for solving the allocation problem of hybrid photovoltaic distributed generation and battery energy storage systems integration in the standard IEEE 33-bus and IEEE 69-bus active distribution networks. Methodology. The optimal integration of the hybrid systems is formulated as minimizing the proposed multi-objective functions by applying a newly developed metaheuristic technique based on various chaotic grey wolf optimization algorithms. The applied optimization algorithms are becoming increasingly popular due to their simplicity, lack of gradient information needed, ability to bypass local optima, and versatility in power system applications. Results. The simulation results of both test systems confirm the robustness and efficiency of the chaotic logistic grey wolf optimization algorithm compared to the rest of the algorithms in terms of convergence to the global optimal solution and in terms of providing the best and minimum multi-objective functions-based power losses, voltage deviation and relay operation time values. Practical significance. Recommendations have been developed for the use of optimal allocation of hybrid systems for practical industrial distribution power systems with the renewable energy sources presence.Мета. Інтеграція фотоелектричної розподіленої генерації в активну розподільчу мережу швидко зросла завдяки її важливості для доставки чистої енергії, отже, участі у вирішенні різних проблем, таких як зміна клімату та забруднення. Додавання акумуляторних систем накопичення енергії може бути розглянуто як один з найкращих варіантів вирішення зазначених питань завдяки своїм характеристикам швидкої зарядки та розрядки, управління якістю енергії та задоволення піку енергетичних потреб. Новизна запропонованої роботи полягає у розробці нових багатоцільових функцій на основі суми трьох технічних параметрів сумарних втрат активної потужності, загальних відхилень напруги та загального часу спрацьовування реле захисту від перевантаження по струму. Мета. Стаття присвячена вирішенню проблеми розподілу гібридних фотоелектричних розподілених систем генерації та інтеграції систем накопичення енергії в стандартні активні розподільчі мережі з 33-шинами IEEE та 69-шинами IEEE. Методологія. Оптимальна інтеграція гібридних систем сформульована як мінімізація запропонованих багатоцільових функцій шляхом застосування нещодавно розробленої метаевристичної методики, заснованої на різних хаотичних алгоритмах оптимізації сірого вовка. Застосовані алгоритми оптимізації стають дедалі популярнішими завдяки своїй простоті, відсутності необхідної інформації щодо градієнту, можливості обходу локальних оптимумів та універсальності в застосуваннях щодо енергосистеми. Результати. Результати моделювання обох тестових систем підтверджують надійність та ефективність хаотичного логістичного алгоритму оптимізації сірого вовка в порівнянні з іншими алгоритмами з точки зору збіжності до глобального оптимального розв‘язання та з точки зору забезпечення найкращих і мінімальних багатоцільових функцій на основі втрат потужності, відхилення напруги та значень часу спрацювання реле. Практичне значення. Розроблено рекомендації щодо використання оптимального розподілу гібридних систем для реальних промислових розподільчих енергосистем із наявністю відновлюваних джерел енергії

    4E analysis of a two-stage refrigeration system through surrogate models based on response surface methods and hybrid grey wolf optimizer

    Get PDF
    Refrigeration systems are complex, non-linear, multi-modal, and multi-dimensional. However, traditional methods are based on a trial and error process to optimize these systems, and a global optimum operating point cannot be guaranteed. Therefore, this work aims to study a two-stage vapor compression refrigeration system (VCRS) through a novel and robust hybrid multi-objective grey wolf optimizer (HMOGWO) algorithm. The system is modeled using response surface methods (RSM) to investigate the impacts of design variables on the set responses. Firstly, the interaction between the system components and their cycle behavior is analyzed by building four surrogate models using RSM. The model fit statistics indicate that they are statistically significant and agree with the design data. Three conflicting scenarios in bi-objective optimization are built focusing on the overall system following the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) decision-making methods. The optimal solutions indicate that for the first to third scenarios, the exergetic efficiency (EE) and capital expenditure (CAPEX) are optimized by 33.4% and 7.5%, and the EE and operational expenditure (OPEX) are improved by 27.4% and 19.0%. The EE and global warming potential (GWP) are also optimized by 27.2% and 19.1%, where the proposed HMOGWO outperforms the MOGWO and NSGA-II. Finally, the K-means clustering technique is applied for Pareto characterization. Based on the research outcomes, the combined RSM and HMOGWO techniques have proved an excellent solution to simulate and optimize two-stage VCRS

    Task Scheduling Based on Grey Wolf Optimizer Algorithm for Smart Meter Embedded Operating System

    Get PDF
    In recent years, with the rapid development of electric power informatization, smart meters are gradually developing towards intelligent IOT. Smart meters can not only measure user status, but also interconnect and communicate with cell phones, smart homes and other cloud devices, and these core functions are completed by the smart meter embedded operating system. Due to the dynamic heterogeneity of the user program side and the system processing side of the embedded system, resource allocation and task scheduling is a challenging problem for embedded operating systems of smart meters. Smart meters need to achieve fast response and shortest completion time for user program side requests, and also need to take into account the load balancing of each processing node to ensure the reliability of smart meter embedded systems. In this paper, based on the advanced Grey Wolf Optimizer, we study the scheduling principle of the service program nodes in the smart meter operating system, and analyze the problems of the traditional scheduling algorithm to find the optimal solution. Compared with traditional algorithms and classical swarm intelligence algorithms, the algorithm proposed in this paper avoids the dilemma of local optimization, can quickly allocate operating system tasks, effectively shorten the time consumption of task scheduling, ensure the real-time performance of multi task scheduling, and achieve the system tuning balance. Finally, the effectiveness of the algorithm is verified by simulation experiments

    QIBMRMN: Design of a Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks

    Get PDF
    Multimedia networks utilize low-power scalar nodes to modify wakeup cycles of high-performance multimedia nodes, which assists in optimizing the power-to-performance ratios. A wide variety of machine learning models are proposed by researchers to perform this task, and most of them are either highly complex, or showcase low-levels of efficiency when applied to large-scale networks. To overcome these issues, this text proposes design of a Q-learning based iterative sleep-scheduling and fuses these schedules with an efficient hybrid bioinspired multipath routing model for large-scale multimedia network sets. The proposed model initially uses an iterative Q-Learning technique that analyzes energy consumption patterns of nodes, and incrementally modifies their sleep schedules. These sleep schedules are used by scalar nodes to efficiently wakeup multimedia nodes during adhoc communication requests. These communication requests are processed by a combination of Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) models, which assist in the identification of optimal paths. These paths are estimated via combined analysis of temporal throughput & packet delivery performance, with node-to-node distance & residual energy metrics. The GWO Model uses instantaneous node & network parameters, while the GA Model analyzes temporal metrics in order to identify optimal routing paths. Both these path sets are fused together via the Q-Learning mechanism, which assists in Iterative Adhoc Path Correction (IAPC), thereby improving the energy efficiency, while reducing communication delay via multipath analysis. Due to a fusion of these models, the proposed Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks (QIBMRMN) is able to reduce communication delay by 2.6%, reduce energy consumed during these communications by 14.0%, while improving throughput by 19.6% & packet delivery performance by 8.3% when compared with standard multimedia routing techniques

    QIBMRMN: Design of a Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks

    Get PDF
    Multimedia networks utilize low-power scalar nodes to modify wakeup cycles of high-performance multimedia nodes, which assists in optimizing the power-to-performance ratios. A wide variety of machine learning models are proposed by researchers to perform this task, and most of them are either highly complex, or showcase low-levels of efficiency when applied to large-scale networks. To overcome these issues, this text proposes design of a Q-learning based iterative sleep-scheduling and fuses these schedules with an efficient hybrid bioinspired multipath routing model for large-scale multimedia network sets. The proposed model initially uses an iterative Q-Learning technique that analyzes energy consumption patterns of nodes, and incrementally modifies their sleep schedules. These sleep schedules are used by scalar nodes to efficiently wakeup multimedia nodes during adhoc communication requests. These communication requests are processed by a combination of Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) models, which assist in the identification of optimal paths. These paths are estimated via combined analysis of temporal throughput & packet delivery performance, with node-to-node distance & residual energy metrics. The GWO Model uses instantaneous node & network parameters, while the GA Model analyzes temporal metrics in order to identify optimal routing paths. Both these path sets are fused together via the Q-Learning mechanism, which assists in Iterative Adhoc Path Correction (IAPC), thereby improving the energy efficiency, while reducing communication delay via multipath analysis. Due to a fusion of these models, the proposed Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks (QIBMRMN) is able to reduce communication delay by 2.6%, reduce energy consumed during these communications by 14.0%, while improving throughput by 19.6% & packet delivery performance by 8.3% when compared with standard multimedia routing techniques

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    corecore