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Abstract

Refrigeration systems are complex, non-linear, multi-modal, and multi-dimensional. However,

traditional methods are based on a trial and error process to optimize these systems, and a

global optimum operating point cannot be guaranteed. Therefore, this work aims to study a

two-stage vapor compression refrigeration system (VCRS) through a novel and robust hybrid

multi-objective grey wolf optimizer (HMOGWO) algorithm. The system is modeled using

response surface methods (RSM) to investigate the impacts of design variables on the set

responses. Firstly, the interaction between the system components and their cycle behavior is

analyzed by building four surrogate models using RSM. The model fit statistics indicate that

they are statistically significant and agree with the design data. Three conflicting scenarios in

bi-objective optimization are built focusing on the overall system following the Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS) and Linear Programming Tech-

nique for Multidimensional Analysis of Preference (LINMAP) decision-making methods. The

optimal solutions indicate that for the first to third scenarios, the exergetic efficiency (EE) and

capital expenditure (CAPEX) are optimized by 33.4% and 7.5%, and the EE and operational

expenditure (OPEX) are improved by 27.4% and 19.0%. The EE and global warming potential

(GWP) are also optimized by 27.2% and 19.1%, where the proposed HMOGWO outperforms

the MOGWO and NSGA-II. Finally, the K-means clustering technique is applied for Pareto

characterization. Based on the research outcomes, the combined RSM and HMOGWO tech-

niques have proved an excellent solution to simulate and optimize two-stage VCRS.
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1. Introduction

Global energy consumption is a burning issue nowadays, predicted to increase by 50% in the

next forty years [1, 2]. Refrigeration and air-conditioning systems are responsible for around

40% of the total energy consumption [3]. The required energy for residential air conditioners

during the summer will increase around 13 times in 2050 and 30 times in 2100, as reported by

the Intergovernmental Panel on Climate Change (2014) [4]. In addition, between 50 to 65% of

the total electricity consumed in cities is caused by refrigerators and air conditioners [5]. Thus,

reducing energy consumption can decrease the dependence on primary energy sources based

on fossil fuels and CO2 emissions, among other greenhouse gases. Thus, reducing energy con-

sumption in refrigeration can decrease the dependence on primary energy sources based on

fossil fuels and CO2 emissions, and other greenhouse gases [6]. Among other measures, it is

proposed to improve refrigeration systems efficiency by selecting the proper operating condi-

tions [7].

Multi-stage refrigeration is a complex thermodynamic process most widely used in com-

mercial and industrial applications recommended when the pressure ratio is significant. Com-

pared to single-stage cycles, it ensures less power consumption and higher system stability [8].

Given its complex nature, optimization of the process variables is required to enhance the

overall system performance. Optimizing vapor compression refrigeration systems (VCRS) has

been the focus of many researchers due to their importance.

Nikolaidis and Probert [9] observed in a two-stage VCRS a reduction of irreversibility due

to a decrease in exergy loss at the condenser and evaporator. Baakeem et al. [8] optimized a

two-stage VCRS using the conjugate direction method. The authors compared the perfor-

mance of eight different refrigerants based on exergy efficiency, exergy destruction, coefficient

of performance (COP), capital expenditure (CAPEX), and operational expenditure (OPEX).

Finally, ammonia provided the highest COP of 6.17 and showed the best performance for

other measured parameters. Roy et al. [10] investigated the applicability of R32 instead of

R410A in a two stage VCRS with a flash intercooler. They optimized the system concerning

exergy and total cost using Multi-objectives Genetic Algorithm (MOGA) and observed that

R32 performed slightly better for all the criteria. Subsequently, Pak and Ri [11] optimized two-

stage vapor compression steam heat pump parameters using a Genetic Algorithm (GA), con-

sidering R22, R134a, and R717. They improved the global search ability of GA by implement-

ing a selection method that consists of a protective selection of eugenic and elite individuals

and by adjusting the crossover probability according to the population variance and genera-

tion numbers. Finally, they successfully minimized the annual cost by 30% and 40% for the

two cases. The authors also claimed that their new self-adapting, highly parallel encoding

method increased the searchability of GA by 5.5%.

Zhao et al. [12] developed a model-based optimization technique for a single-stage VCRS

and applied modified GA for optimization. They implemented this model on a pilot plant and

generated experimental data sets for different operating conditions. The authors use the Gray

encoding to overcome the limitations of binary representation and store the best populations

in each generation. The daily overall energy saving is 8.5%. In another study, Ghorbani et al.

[13] proposed a systematic method considering mathematical models and thermodynamic

viewpoints to optimize mixed refrigerant cycle parameters. The application of the intelligent

algorithm PSO led to better results, achieving 123.09 kW and 11.24 kW more energy savings

than non-linear programming (NLP). Zendehboudi et al. [14] performed modeling and multi-

objective optimization (MOO) of the R450A single-stage VCRS using RSM and Non-domi-

nated Sorting Genetic Algorithm II (NSGA-II). The authors established the robustness of their

designed NSGA II by testing it for various types of objective functions with different
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complexity. They reduced the motor-compressor electrical power consumption by 18.39%

and discharge temperature by 53.31%. They increased the refrigerant mass flow rate by

215.57%.

Wang et al. [15] built an innovative hybrid air conditioning model, combining an ejector

with a standard VCRS. The authors applied a hybrid Genetic Algorithm-Enabled Particle

Swarm Optimization (PSOGA) algorithm that utilizes the best features of both algorithms,

such as fast convergence and high accuracy, respectively. A comparison between PSOGA and

on-off control showed that PSOGA could decrease the system’s total energy consumption by

7.36%. Salim and Kim [16] designed a combined power generation consisting of an organic

Rankine cycle (ORC), a VCRS, and then applied MOO. For the ORC, they used three dry

refrigerants (R245fa, R245ca, and R236ea), and for the VCRS, they used R410A. The authors

applied the elitist NSGA II and different weight factors for each decision variable based on

their significance. Finally, the maximum efficiency was achieved for R245ca, where the rele-

vant cost is the highest. On the other hand, minimum efficiency was obtained at a minimum

cost of R236ea. R245fa successfully gained optimum performance but lay between the two

extreme cases.

Conventional optimization techniques consider one variable at a time and analyze the

impact of the parameters on the system’s output individually [17]. This process is inefficient

because the interaction between multiple variables cannot be analyzed simultaneously [18, 19].

By contrast, the RSM is a statistical technique that overcomes these limitations by allowing

users to simultaneously analyze the interaction between multiple independent variables and

their effects on the dependent variables using a few experimental data sets [14]. The Central

Composite Design (CCD) of RSM is a robust design technique that works better for a small

number of data sets, where the built models are not sensitive to missing data. The CCD is also

superior to other DOE-based techniques such as Box–Behnken Design, Fractional Factorial

Design, Block Design, Quasi-Experimental Design, and the Taguchi Method [20]. By contrast,

machine learning techniques such as Artificial Neural Networks (ANN), Kriging, Support

Vector Machines (SVM), and hybrid methods work better for large-scale data sets [21].

However, optimizing the refrigeration system’s components, such as compressors and heat

exchangers, is a trial and error procedure that requires studying many thermodynamic proper-

ties, design rules, empirical knowledge, and calculation [22, 23]. Additionally, the nature of the

refrigeration system optimization problem is complex, non-linear, multi-modal, and multi-

dimensional [22, 24]. Classic optimization techniques are time-consuming, require gradient

information, and may not guarantee the global optima cost-effectively. Therefore, there is

always the risk that the designed results are not the optimal ones. This uncertainty leads

researchers to apply intelligent optimization algorithms such as GA, PSO, and differential evo-

lution (DE) to refrigeration systems [25, 26]. Subsequently, these algorithms can handle a large

amount of data and non-linearities and do not require detailed information about the system

and the differentiability of the model. They have superiority over deterministic methods and

can generate global or near-global solutions. Nevertheless, because of their heuristic nature,

these algorithms sometimes fail to confirm global optima.

The area of metaheuristics is continuously evolving with new, advanced, and efficient algo-

rithms [27]. Grey Wolf Optimizer (GWO) is a novel population-based metaheuristic algo-

rithm that falls under swarm intelligence. This algorithm gained significant attention for

applications in every engineering field because of its simplicity, good precision for search, and

very few controlling parameters. GWO was successfully applied to optimal power flow [28,

29], parameter estimation [30, 31], feature selection [32–34], wind speed forecasting [35], eco-

nomic dispatch [36, 37], pattern recognition [38], unit commitment [39, 40], optimal design of

photovoltaic arrays [41]. Nonetheless, the basic GWO algorithm suffers from premature
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convergence in non-linear, non-convex, and multi-modal problems. So, hybrid MOGWO

(HMOGWO) utilizes the best features of GWO (strong exploitation ability) and DE (strong

exploration capability) algorithms.

Though, multi-objective optimization can represent the optimal realistic scenario of any

process by satisfying multiple criteria simultaneously while addressing the trade-off between

different objectives. However, to the best of the authors’ knowledge, two-stage VCRS have not

been studied for various conflicting objectives of multi-objective optimization, such as EE ver-

sus CAPEX, OPEX, and GWP. Additionally, the MOGWO algorithm has not been evaluated

by studying and comparing its performance with other metaheuristic approaches for refrigera-

tion system optimization. Therefore, the main goal of this research is to optimize a two-stage

VCRS using a novel HMOGWO and demonstrate the robustness and efficiency of the hybrid

algorithm for various objectives. The second aim is to analyze the impact of design variables

on the considered objectives and model the system using RSM. The purpose is to apply differ-

ent decision-making methods to determine the optimal design variables and their effective-

ness. Finally, the Pareto optimal solution sets are characterized using K-means clustering

techniques.

To achieve these goals, the two-stage VCRS is rigorously designed in Aspen HYSYS version

10, and 32 experimental data sets are generated in Design-Expert software based on the

bounds of design variables. Each data set is tested in Aspen HYSYS, and four RSM-based sur-

rogate models are constructed from input-output data. Moreover, an HMOGWO with a novel

velocity and position update equation was developed in the MATLAB R2019B environment to

optimize two different thermo-economic and one thermo-environmental scenario of conflict-

ing bi-objective optimization to ensure the robustness and efficiency of the proposed algo-

rithm. Furthermore, Euclidean non-dimensionalization has been applied, followed by Linear

Programming Technique for Multidimensional Analysis of Preference (LINMAP) and Tech-

nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision-making tech-

niques to select the optimal point on the Pareto front. Their corresponding deviation index is

also studied. Finally, the best results of HMOGWO are further compared with the MOGWO

and NSGA-II algorithms; here, NSGA-II is the most widely used multi-objective optimization

algorithm in refrigeration system research.

2. Methodology

2.1 System modeling

The base case of the studied two-stage VCRS with a flash chamber is developed based on the

concept of Baakeem’s published literature [8] that also followed the general model of two-stage

VCRS proposed by Torrella et al. [42]. This general model can be easily adapted to any config-

uration of two-stage VCRS and is appropriate for a detailed thermo-economic-environmental

analysis of the system. In this study, the modeling of a two-stage refrigeration system is based

on the following assumptions.

• The system is running at a steady state.

• There are no kinetic or potential energy losses.

• There is no pressure loss between the evaporator and the condenser.

• The refrigerant is saturated when it exits the evaporator and condenser.

• The expansion valve’s throttling operation is isenthalpic.

Table 1 provides the conditions of the base model design and their corresponding sources.
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The detailed process flow diagram of the two-stage VCRS with flash inter-cooling and its

corresponding pressure-enthalpy (P-h) diagram is represented in Figs 1 and 2. Fig 1 shows

that the refrigerant R134a leaves the evaporator at the saturated condition at point a. After-

wards, it is compressed by the first stage compressor to an intermediate pressure at point b2,

where the refrigerant turns into superheated vapor. The superheated refrigerant vapor from b2

enters the flash chamber. It is mixed with the cooled refrigerant coming from the condenser.

The combined desuperheated refrigerant stream enters the suction of the high-pressure stage

compressor at point c and is compressed into superheated refrigerant at point d2. The

Table 1. Base model design parameters.

Parameter Value Unit Reference

Evaporator temperature 0 ˚C [8]

Condenser temperature 45 ˚C [8]

Outdoor temperature 35 ˚C [8]

Indoor temperature 25 ˚C

Compressor efficiency 91% Unitless [43]

Cooling load 1 kW [8]

Evaporator heat transfer coefficient (HTC) 0.5 kW m–2 K–1 [44]

Condenser HTC 0.5 kW m–2 K–1 [44]

Maintenance factor 1.06 Unitless [10]

Annual interest rate 14% Unitless [10]

Plant lifetime 20 years [10]

Annual operational hour 4266 hours [10]

Electrical power cost 0.09 USD kWh–1 [45]

Emission factor 0.968 kg kWh–1 [45]

Cost of CO2e avoided 0.09 USD kgCO2e–1 [45]

R134a critical temperature 101 ˚C [8]

R134a critical pressure 4059 kPa [8]

R134a ODP 0 Unitless [8]

R134a GWP100 1300 Unitless [8]

https://doi.org/10.1371/journal.pone.0272160.t001

Fig 1. Schematic of the two-stage VCRS with flash inter-cooling.

https://doi.org/10.1371/journal.pone.0272160.g001
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superheated refrigerant loses some enthalpies through point d2 to the condenser; the super-

heated refrigerant loses some enthalpies. After entering the condenser, it cools down to satu-

rated liquid at point e. The refrigerant separates into two streams at the condenser’s outflow

point e. A stream passes via an expansion valve before entering the flash chamber. A different

stream is first subcooled at point g and then sent via an expansion valve. Because of the throt-

tling action, some refrigerant evaporates when the stream passes through the expansion valve,

and vapor is generated at point h. The refrigerant’s mixed vapor and liquid streams enter the

evaporator, where the refrigerant provides cooling, and the cycle continues.

2.2 Model validation

To validate the studied model, the performance parameters of the designed two stage refrigera-

tion system, including the evaporator temperature, condenser temperature, compressor effi-

ciency, mass flow ratio, plant capacity, COP, total exergy destruction, and exergy efficiency of

the designed model, are further compared with the corresponding parameters reported in the

literature by Baakeem et al. [44], Table 2. It can be noticed from Table 2 that there is a good

agreement between the present model and that developed by Baakeem et al. [44], where the

deviations are less than 5% respectively for each index, which further ensures the accuracy of

the build model. The modeled refrigeration system reflects the desuperheating and subcooling

effect by introducing a flash chamber in the intermediate pressure stage. The intermediate

stage pressure is further considered as the basis of this design that relies on the condenser and

evaporator pressure and the effectiveness of sub-cooler and compressor parameters [44].

2.3 Energy, exergy, economic and environmental (4E) analysis

4E analysis in thermal systems represents the process in terms of thermodynamics, costs, and

the environment, which is very important for industrial processes and provides detailed infor-

mation about the systems and their interactions with economics and environment. The basic

thermodynamic equations are used in this study for 4E analysis, which is further explained in

the Section 2.4 Response Surface Method (RSM) in S1 File.

RSM is a statistical technique that fits empirical models to experimental data and can be

used for process modeling and optimization. It works based on the correlation between the

Fig 2. P-h diagram of the designed two-stage VCRS.

https://doi.org/10.1371/journal.pone.0272160.g002
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manipulated (independent) variable and the response (dependent) variable [18, 46, 47]. The

primary purpose of RSM is to get an optimal response by analyzing the interaction between

variables upon evaluating a series of experiments. The main steps of RSM are experimental

design, modeling, model testing, finding optimal setpoints, etc., as shown in S1 Fig in the S1

File [19]. RSM can successfully analyze the impact of every single variable and their coupled

impact on the process and evaluate the correlation between different design factors and

their responses. Therefore, it has been considered a powerful tool widely used for designing,

developing, modifying, and optimizing any product or process. In RSM, three types of design

are available: and they are a) Central Composite Design (CCD), b) Box Behnken Design

(BBD), and c) Optimal (Custom) Design [47]. The CCD is the most widely used and robust

technique. Therefore, we applied the CCD for detailed analysis and modeling of the two-stage

VCRS.

2.4 Hybrid Multi-Objective Grey Wolf Optimizer (HMOGWO)

Swarm intelligence mainly works based on the hunting, searching, flock maintaining mecha-

nisms, and social hierarchy of biological creatures [48, 49]. Grew Wolf Optimizer (GWO) is a

novel swarm intelligence algorithm proposed by Mirjalili et al. in 2014 [50]; subsequently, the

multi-objective GWO was also proposed by Mirjalili et al. in 2016 [51]. The Grey Wolves

(Canis Lupus) are nature’s top predators, having intense prey searching and capturing ability

and maintaining social hierarchy and leadership [49]. While most swarm intelligence algo-

rithms advance the search process by following one best solution, the GWO continues by fol-

lowing the three best wolves: alpha, beta, and delta. It makes the GWO less prone to falling

into local solutions and premature convergence. The other wolves are called omega wolves,

who follow the best three leader wolves. The position has been updated iteratively towards the

best position during the search process based on the leader wolves (alpha, beta, delta) posi-

tions. The main steps of grey wolf hunting are described below [50].

• Tracking, chasing, proceeding towards the prey.

• Chasing, encompassing, distressing the prey.

• Attacking the prey.

Table 2. Validation of the base model.

Input parameter Values

Evaporator temperature [˚C] 0

Condenser temperature [˚C] 40

Indoor temperature [˚C] 25

Outdoor temperature [˚C] 35

Reference temperature [˚C] 25

Evaporator HTC [kW m–2 K–1] 0.5

Condenser HTC [kW m–2 K–1] 0.5

Compressor efficiency [%] 91

Cooling capacity [kW] 1

Output parameter Baakeem et al. [44] This study Difference

Mass flow ratio (r) 1.232 1.243 +0.89%

COP 3.61 3.60 -0.27%

Exergy efficiency 33.1% 34.0% +0.9%

Exergy destruction [W] 117 121 +3.4%

https://doi.org/10.1371/journal.pone.0272160.t002
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The basic equations of MOGWO are similar to GWO, and the wolves follow the following

equation for prey encircling, Eq (1) and (2).

D!¼ jC
!
:X!PðjÞ � X!ðjÞj ð1Þ

X!ðjþ1Þ ¼ X!PðjÞ � A
!
:D! ð2Þ

A
!

and C
!

are the randomly generated vectors of coefficients defined below, j is the current

iteration number, X!P is the prey position vector and X! is the position vector of one omega

wolves. Here, the position vector refers to some location in the multi-dimensional space of

decision variables, which is the search space of the optimum. Coefficient vectors, A
!

and C
!

are

defined as Eq (3) and (4).

A
!
¼ 2 a!:r1

!
� a! ð3Þ

C
!
¼ 2r2
!

ð4Þ

r1
!

and r2
!

are random vectors with elements in the range of [0,1] and a! is a linearly

decreasing acceleration constant from [2–0]. The distance of an omega wolf to the best wolves

(alpha, beta, and delta) is calculated using the following equations, Eq (5) to (7).

Da

�!
¼ j C1

�!
:X!a � X!j ð5Þ

Db

�!
¼ j C2

�!
:X!b � X!j ð6Þ

Dd

�!
¼ j C3

�!
:X!d � X!j ð7Þ

C1

�!
; C2

�!
and C3

�!
are random vectors with elements in the range of [0,1], X!a; X

!
b and X!d

are positions of three leaders (alpha, beta, and delta) wolves, X! is the current position of all

wolves. Eq (5) to (7) determine the distance between the current omega wolves and the leaders;

they also indicate the step size of wolves to continue the search. The (omega) wolves typically

consider those leader wolves are probably the best position of prey. Accordingly, they update

their positions by following leader wolves. Further, they can change their positions through

random vectors A1

�!
; A2

�!
and A3

�!
as follows, Eq (8) to (11).

X!ð1Þ ¼ X!a � A1:
�!

Da

�!
ð8Þ

X!ð2Þ ¼ X!b � A2:
�!

Db

�!
ð9Þ

X!ð3Þ ¼ X!d � A3:
�!

Dd

�!
ð10Þ

X!ðjþ1Þ ¼
X!ð1Þ þ X!ð2Þ þ X!ð3Þ

3
ð11Þ

C1

�!
; C2

�!
; C3

�!
; A1;
�!

A2;
�!

A3

�!
are random vectors, X!1; X

!
b; X
!

d are positions of three leader

wolf alpha, beta, and delta, X! is the current position of wolves. Eq (5) to (7) determine the
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distance between the current wolves and the leaders; these equations also indicate the step size

of the wolves to continue the search process. The omega wolves update their positions based

on Eq (8) to (13). The proposed velocity update equation for the HMOGWO is defined by the

following equation.

Vjþ1

��!
¼ w:Vj
!
þ C1

�!
:rand: ðX

�!
1 � X!Þ þ C2

�!
:rand: ðX

�!
2 � X!Þ þ C3

�!
:rand: ðX

�!
3 � X!Þ ð12Þ

Here, Vj
!

and Vjþ1

��!
is the velocity of a wolf at two successive iterations. The following equa-

tion defines the modified position update equation concerning the previous position and

velocity. In this research, Eq 13 is used for updating the position of each wolf instead of Eq 11.

X!ðjþ1Þ ¼ X!ðjÞ þ Vjþ1

��!
ð13Þ

Naturally, the evolutionary operators such as mutation and crossover are known as the

most prominent features of nature, which also helps the animal to evolve to a better level.

Since the GWO algorithm doesn’t have any evolutionary operator in its original algorithm,

this study considers adding the evolutionary operator of DE to the modified GWO to increase

the diversity among the wolves and strengthen the search process. Two weight variants are

added to the wolves after an individual is chosen to offer variation. The main variation element

of DE is the parent difference vector, and each vector includes the parents of a distinct wolf.

The mutation operator can be defined as the following equation.

Wðtþ1Þ

j ¼ X3 þ F � ðX2 � X1Þ ð14Þ

Here 1, 2, and 3 are three separate wolves index numbers from the target vector. Wj means

the difference vector. The difference vector is (X2-X1), and F is the scaling factor. A dynamic

scaling factor is intended to improve the algorithm’s exploration capacity at the start of the

search process to avoid local solutions and strengthen the local search later. The scaling factor

is determined dynamically using the following Eq 8.

F ¼ fmin þ fmax � fminð Þ �
Maxit � ðit � 1Þ

Maxit
ð15Þ

Here, it, Maxit, fmin, fmax, and F indicates iteration number, maximum iteration number,

minimum and maximum values of the scaling factor, and F is the scaling factor. Later, a cross-

over is done between the target vector Xi and the variation vector Vðtþ1Þ

j for producing test

wolves Uðtþ1Þ

j . In the case of crossover, a random crossover technique is applied to confirm that

at least one bit of test wolves comes from the variation vector. To determine the other bits, a

random number is generated and compared with crossover probability that the following

equation can define.

Utþ1
j ¼Wtþ1

j ; randðjÞ � Pc

¼ XjrandðjÞ � Pc
ð16Þ

where j = 1, 2, . . .. . . D. Xj Wj, Uj are the position, trial and variation vectors, and Pc is cross-

over probability. The greedy method is applied as the selection procedure. The trial vector is

created and compared with the position vector after finishing crossover and mutation, and the

best one is selected as the new wolf and replaces the old one.

Xtþ1
j ¼ Utþ1

j ; f ðUtþ1
j Þ < f ðXt

j Þ

¼ Xt
j ; f ðU

tþ1
j Þ � f ðXt

j Þ
ð17Þ
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Here, t and t+1 are two sequential iteration steps. Xj is the position of a random wolf, and Uj

is the trial vector. The space between the wolves is greater at the start of the search, and the

mutation operator enhances exploration ability; afterwards, it develops exploitation ability

with a smaller distance between the wolves. Fig 3 summarizes the detailed methodology fol-

lowed in a flow diagram.

In addition to the addressed basic equations of HMOGWO (Eqs 1 to 17), the prominent

features that make the proposed HMOGWO efficient to apply to complex MOO problems of

two-stage refrigeration systems are described here.

• A novel velocity and position update equation has been developed to improve the searchabil-

ity of the HMOGWO algorithm.

• The authors incorporated the evolutionary crossover and mutation operators of the differen-

tial evolution (DE) algorithm into the basic MOGWO algorithm to strengthen its exploration

and exploitation abilities, which aids in avoiding premature convergence and local optima.

• The adaptive parameters a and A allow a smooth transition from global exploration to local

exploitation in MOGWO. Whereas the first half of the iterations are dedicated to explora-

tion, the last half is devoted to exploitation.

• The parameter C is generated randomly during the search process to strengthen local optima

avoidance.

• The authors applied the roulette wheel selection mechanism to select the leaders from less

crowded hypercubes.

• The grid mechanism and the selection leader component are utilized to maintain the diver-

sity in the archive.

2.5 Non-dimensionalization and decision making

Non-dimensionalization eliminates the impact of dimensionality on any variables or cost func-

tion in the final solution. Otherwise, the solution could be biased or dominated by any specific

objectives, which will imbalance the relevant weight or priority of the cost functions. The

authors applied the Euclidean non-dimensionalization method to all objective function value

matrices in this research. A non-dimensionalized objective can be expressed as Eq (18) [52].

Fn
ij ¼

Fij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Pm

i¼1
F2
ijÞ

q ð18Þ

The Fn
ij matrix consists of the non-dimensionalized solutions of the Pareto frontier, i and j

indicate the solution index and objective index in the objective area. After non-dimensionali-

zation, we apply LINMAP and TOPSIS to find the best and compare their solutions. Using the

LINMAP decision-making, an ideal or equilibrium point is fixed where both objectives have

their best values. This point is not an expected solution and is not on the Pareto curve. A point

that has a minimum distance from the ideal point is considered the best solution. The distance

between the ideal solution and any point of the Pareto front is given by Eq (19) [53].

Ediþ ¼
Pm

j¼1
ðFij � Fideal

j Þ
2
; i ¼ 1; . . . ; n ð19Þ

m represents the objective number, and "i" indicates each solution of the Pareto front, Fidealj

is the considered ideal value. In TOPSIS decision-making, ideal and non-ideal solutions are

considered, where the non-ideal has the worst fitness value. Two principles are applied when
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Fig 3. Working principle of HMOGWO.

https://doi.org/10.1371/journal.pone.0272160.g003
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selecting optimum points; the optimum solution has the lowest and highest distances from the

ideal point and the highest distance from the non-ideal point. The distance from the non-ideal

solution can be represented as Eq (20).

Edi� ¼
Xm

j¼1

ðFij � Fnon� ideal
j Þ

2
ð20Þ

Consequently, the final form of the TOPSIS decision-making method is represented as Eq (21).

Cli ¼
Edi�

EdiþþEdi�
ð21Þ

2.6 Optimization problem formulation

This section discussed the cost functions, design variables, and relevant constraints of the stud-

ied cases. To increase the efficiency of a refrigeration system, the relevant cost will be increased

subsequently [54]. This conflicting issue needs to be adequately addressed during the optimi-

zation problem formulation, so both can be satisfied simultaneously. This MOO consists of

four different and conflicting objective functions, where the first scenario is built to maximize

the EE and minimize the CAPEX. Moreover, the second scenario was constructed to maximize

EE and minimize OPEX. Likewise, the last scenario is planned to maximize EE and minimize

GWP subsequently. The optimization results are represented as a Pareto optimal front so that

the designer can choose any point according to each cost function’s weight and importance.

The optimization problem has been formulated as Eqs (22) to (25).

Min FðxÞ ¼¼ ½f1ðxÞ; f2ðxÞ� ð22Þ

Subject to

gðxÞ � 0 ð23Þ

hðxÞ � 0 ð24Þ

xl < x < xu ð25Þ

Here, f1(x) and f2(x) represent the cost functions for each case. The design variables are rep-

resented as x, and equality and inequality constraints of the problem are indicated by h(x) and

g(x). The considered decision variables and their range is presented in Table 3.

The design specification and other properties are described in Table 1.

3. Results and discussion

3.1 Modelling of the system

The ANOVA test results of the RSM are summarized in Tables 1–4 (in the S2 File Section A).

Parameters such as the source, sum of squares, mean of the square, F-value, P-value,

Table 3. Operating range of the design variables.

Parameter Name Range Unit

Evaporator temperature –30 to 0 ˚C

Condenser temperature 40 to 60 ˚C

Intermediate stage pressure 500 to 800 kPa

Refrigerant mass flow rate 0.006 to 0.008 kg s–1

Compressor efficiency 0.7 to 0.9 Unitless

https://doi.org/10.1371/journal.pone.0272160.t003
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significance, and contribution of the factors are included. This test determines the importance

of the factors and the interaction between them. Single terms A-E represent the outcomes of

changing one factor. The interaction terms (AB-DE) and self-interaction terms A2 to E2 repre-

sent the interaction among the variables and how it affects the dependent variables concur-

rently. It has been noticed that all of the factors (A-E2) have a positive effect on EE, CAPEX,

OPEX, and GWP, which indicates a positive correlation between the independent and depen-

dent variables.

The authors conducted Fisher’s statistical test to determine the degree of significance for

each factor according to their F values [55, 56]. The F-value of the factors that are more than

the F-value of the model is significant [55]. The higher F values (108.32 and 254.560, 358.908

and 358.910) represent significant models [55]. According to the F values, the terms A, B, C, E,

and A2 are significant for EE, whereas the terms A and D are significant for CAPEX analysis.

Consequently, the terms A, B, and D are significant for both OPEX and GWP. The probability

value (P) indicates the importance of factors, where a value of less than 0.05 indicates that the

term is significant with a confidence level of 95% [47]. For the EE analysis, the terms A, B, C,

E, BC, A2, B2, and C2 are significant with a contribution of 12.3, 52.7, 11.4, 9.6, 0.5, 10.2, 0.5,

and 0.8, respectively. On the other hand, A, B, C, D, E, and AC are noteworthy for the CAPEX,

and their corresponding contribution to the overall model is 74.3, 4.6, 5, 10.8, 4.2, and 0.2,

respectively. Subsequently, the significant terms for the calculation of OPEX and GWP are

similar. They are A, B, C, D, E, AD, AE, A2, and C2 and their respective contributions are 75.2,

5.7, 4.4, 8.2, 4.3, 0.4, 0.2, 0.1, and 0.8, respectively.

The coefficient of determination (R2) is above 0.995 for all four developed models, indicat-

ing a perfect fit for the set. These models can explain more than 99.5% of the changes in the

variable range. The model’s accuracy is represented by adjusted R2, so a higher value of

adjusted R2 (more than 0.90) is desirable [47]. The adjusted R2 value for the EE model is 0.986,

0.994 for CAPEX, and subsequently 0.996 for both the OPEX and GWP models. The higher

values of adjusted R2 indicate that the models have been developed with significant accuracy.

The predicted values of R2 are 0.944 for EE, 0.966 for CAPEX, and 0.979 for both OPEX and

GWP, which means a good agreement between R2, adjusted R2, and predicted R2. The excel-

lent precision values are standard for all models and indicate adequate signal-to-noise ratios.

The EE model shows the lowest STD value of 0.006; the GWP shows the highest STD value

among the four models. The coefficient of variation (CV) is the ratio of the standard deviation

to the mean value. The CV values are significantly lower and lie between 0.709 and 1.780 for

each model.

From the fit statistics of S4 Table in S1 File, it is noticeable that between the considered

seven indexes, the OPEX and GWP models achieved a similar numerical value for four indexes

(R2, Adjusted R2, Predicted R2, Adeq Precision). Finally, the P values of the models are small

(less than 0.0001), which designates all the models are significant with more than 95%

Table 4. Parameters used by HMOGWO.

Parameters Value

Grey wolves number 100

Selection Roulette-wheel

Archive size 100

Maximum Iteration 100

Crossover percentage 70%

Fmax and Fmin 1.50 and 0.25

a 2 to 0

https://doi.org/10.1371/journal.pone.0272160.t004
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confidence level. The correlation between the designed and predicted parameters for all the

models (EE, CAPEX, OPEX, GWP) is represented in Fig 4. It is explicit that the data has been

distributed evenly along the line with a minimum percentage of deviations.

3.2 Bi-objective optimization results

The optimization scenarios are maximizing EE and minimizing CAPEX of the system, includ-

ing maintenance costs, maximizing EE and minimizing OPEX, and maximizing EE and mini-

mizing GWP. There is a conflict between the objectives of all three cases, as we need to

increase the EE and decrease the other objectives. At the same time, increasing the EE value

leads to an increase in the corresponding CAPEX, OPEX, and GWP, making them more chal-

lenging to solve and inspiring the authors to design a more robust algorithm. An efficient and

Fig 4. Predicted vs. actual values of a) Exergetic Efficiency, b) CAPEX, c) OPEX, and d) GWP.

https://doi.org/10.1371/journal.pone.0272160.g004
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robust HMOGWO technique is applied to optimize the conflicting objectives. The corre-

sponding decision variables are evaporator and condenser temperature, intermediate stage

pressure, the refrigerant mass flow rate through the evaporator, and compressors’ efficiency.

The range of the considered decision variables is mentioned in Table 3. The tuning parameters

of the HMOGWO are listed in Table 4.

3.2.1 Results of the first scenario. Employing bi-objective optimization using the

HMOGWO technique, the EE and CAPEX of the overall system, including maintenance costs,

are optimized concurrently. The quadratic polynomial models of EE and CAPEX are devel-

oped by RSM as described in Section 3.1 and have been considered as the cost functions to be

optimized. The decision variables presumed for the optimization procedure and the respective

upper and lower bounds of the decision variables are described in Section 2.6.

Fig 5 demonstrates the bi-objective optimization results as a Pareto frontier for the consid-

ered two objectives of the first scenario. The conflicting nature of the optimized objectives is

visible while increasing the EE also increases the overall CAPEX of the system. In this Pareto

frontier, the EE improvement from 42% to 49% caused the corresponding CAPEX increase

from 1250 to 1600 (USD per year). The optimum points achieved by the decision-makers are

also highlighted in Fig 5.

Additionally, Table 5 summarizes the optimal solutions achieved for the cost functions,

decision variables, and the corresponding deviation index for each solution set engaging TOP-

SIS and LINMAP techniques for the first case, where the LINMAP method shows the mini-

mum deviation for the first scenario. The deviation index indicates the deviation of the

achieved optimal solutions concerning both the ideal and non-ideal points, and it can be

numerically formulated as indicated in Eqs (26) to (68).

Ediþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEEd � EEidealÞ
2
þ ðCAPEXd � CAPEXidealÞ

2

q

ð26Þ

Fig 5. Pareto optimal solutions of the first scenario using HMOGWO.

https://doi.org/10.1371/journal.pone.0272160.g005
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Edi� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEEd � EEnon� idealÞ
2
þ ðCAPEXd � CAPEXnon� idealÞ

2

q

ð27Þ

Cli ¼
Ediþ

Ediþ þ Edi�
ð28Þ

EEideal, EEnon-ideal, CAPEXideal, and CAPEXnon-ideal represent the cost function values at

ideal and non-ideal points of the Pareto frontier for EE and CAPEX, respectively. Likewise,

EEd and CAPEXd indicate the optimal cost function values achieved by applying the "d" deci-

sion-making methods, LINMAP or TOPSIS. Additionally, di+ and di- represent the Euclidian

distance concerning the ideal and non-ideal points, and D is the final deviation index. Fig 6

compares the base case with the result of the first scenario.

3.2.2 Results of the second scenario. In this scenario, the EE is maximized, and OPEX is

minimized. The quadratic polynomial RSM models of EE and OPEX are considered cost func-

tions to optimize. Fig 7 shows the bi-objective optimization results as a Pareto frontier. The EE

varied from 0.40% to 0.49%, and the OPEX from 80 to 148 USD per year.

Finally, the optimal solutions suggested by the decision-makers, including the cost func-

tions, decision variable values, and the deviation indexes, are summarized in Table 6. The

Table 5. Optimal solutions obtained for the first scenario using decision-making methods.

Methods Decision variables Objectives Deviation index

Tevp [˚C] Tcon [˚C] Pint [kPa] _m_ [kg s–1] ηc EE [%] CAPEX [USD per year]

TOPSIS –5.28 40 500 0.006 0.9 44.79 1286.29 0.15

LINMAP –6.74 40 500 0.006 0.9 45.70 1304.97 0.03

Ideal Solution 48.56 1218.519

Non-Ideal Solution 41.97 1621.081

https://doi.org/10.1371/journal.pone.0272160.t005

Fig 6. Comparison of EE and CAPEX for the first scenario.

https://doi.org/10.1371/journal.pone.0272160.g006
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results recommended by TOPSIS show a minimum deviation for the second scenario. Addi-

tionally, Fig 8 compares the optimal solutions of the second scenario recommended by both

decision-makers with the base case.

3.2.3 Results of the third scenario. HMOGWO is used for simultaneous EE maximiza-

tion and GWP minimization in the last scenario. The mathematical representation of the cost

functions and their corresponding decision variables’ limitations are presented in Section 3.1

and 2.6, correspondingly.

Fig 9 illustrates the bi-objective optimization results of EE and GWP as a Pareto optimal

front. The improvement of the EE from 0.40 to 0.49 also increases the GWP from 900 to 1572

kgCO2e per year. The best solutions recommended by the TOPSIS and LINMAP methods are

also highlighted in Fig 9.

The details of the recommended solutions set with their respective optimal design parame-

ters are reported in Table 7. The results obtained by the TOPSIS technique are comparatively

superior in terms of fitness values and their corresponding deviation index. Subsequently, Fig

10 compares the base case with the optimal solutions of the third case suggested by the TOPSIS

Fig 7. Pareto optimal solutions of the second scenario using HMOGWO.

https://doi.org/10.1371/journal.pone.0272160.g007

Table 6. Final solutions obtained via decision-making methods for the second scenario.

Methods Decision variables Objectives Deviation index

Tevp [˚C] Tcon [˚C] Pint [kPa] _m_ [kg s–1] ηc EE [%] OPEX [USD per year]

TOPSIS –2.93 40 5 0.006 0.9 43.85 87.06 0.07

LINMAP –3.23 40 5 0.006 0.9 43.95 88.34 0.10

Ideal Solution 48.56 88.32

Non-Ideal Solution 40.05 147.13

https://doi.org/10.1371/journal.pone.0272160.t006
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and LINMAP decision-making methods. Please note that in Figs 6 and 10, the authors multi-

ply the EE values by a factor of 10 to make the bar chart more visible and explicit to the

readers.

The optimal solutions for all three cases indicate that a higher evaporator temperature,

compressor efficiency, lower condenser temperature, intermediate stage pressure, and

Fig 8. Comparison of EE and OPEX for the second scenario.

https://doi.org/10.1371/journal.pone.0272160.g008

Fig 9. Pareto optimal solutions of the third scenario using HMOGWO.

https://doi.org/10.1371/journal.pone.0272160.g009
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refrigerant mass flow rate are preferable for maximum EE and minimum CAPEX, OPEX, and

GWP. The evaporator temperature changes slightly (–2.61 to –6.74˚C) for all three optimiza-

tion cases, but a higher value of evaporator temperature is generally noticeable for all cases. A

higher evaporator temperature decreases the pressure ratio between the first and intermediate

stages and the compression work required by the first stage compressor. This reduces the

exergy destruction, energy consumption, OPEX, and GWP and increases EE. A lower evapora-

tor temperature, by contrast, increases the temperature difference between the refrigerant and

the heat source, hence reducing the heat transfer area and the CAPEX of the evaporator. How-

ever, it increases the system’s compression work, OPEX, and GWP and decreases the EE. This

contradictory issue indicates a trade-off between CAPEX and other objectives such as OPEX

and EE of the overall system. Therefore, the optimal evaporator temperature of the first case

study, EE vs. CAPEX (–6.74˚C), is comparatively higher than the second EE vs. OPEX (–

2.93˚C) and the third case study EE vs. GWP (–2.61˚C).

On the other hand, a constant lower condenser temperature (40˚C) is observed for all three

optimum cases. Here, a lower condenser temperature reduces the second-stage compression

pressure ratio, resulting in reduced power consumption, exergy destruction in the condenser,

OPEX, GWP, and increased EE. Similarly, the algorithm suggests a lower intermediate stage

pressure for all three optimum cases. Decreased intermediate stage pressure minimizes the

first stage compression work, overall compression work, and OPEX. By contrast, the rise in

Table 7. Optimal solutions obtained via decision-making methods for the third scenario.

Methods Decision variables Objectives Deviation index

Tevp [˚C] Tcon [˚C] Pint [kPa] _m_ [kg s–1] ηc EE [%] GWP [kgCO2e per year]

TOPSIS –2.61 40 5 0.006 0.9 43.59 945.57 0.09

LINMAP –3.02 40 5 0.006 0.9 43.78 958.16 0.11

Ideal Solution 48.61 874.71

Non-Ideal Solution 40.25 1571.26

https://doi.org/10.1371/journal.pone.0272160.t007

Fig 10. Comparison of EE and GWP for the third scenario.

https://doi.org/10.1371/journal.pone.0272160.g010
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intermediate stage pressure increases the pressure ratio of the first stage compression and

increases the corresponding compression work, cost, and condenser cost. It has been seen

from the optimal solutions for all three cases that a lower refrigerant mass flow rate is recom-

mended. A lower mass flow rate decreases the system’s compression work and exergy destruc-

tion. Moreover, the algorithm suggests increased compressor efficiency (90%) for each

optimization case. A more efficient compressor can convert the highest amount of provided

electric energy to compression work, reducing exergy destruction and overall energy con-

sumption of the system.

Moreover, all the four objectives (surrogate models) are further combined to run another

simulation and see the difference between the optimal solutions of the first three bi-objective

cases and the fourth objective case. It can be seen from the reported results in Table 8 that the

bi-objective cases produce results slightly better than the four-objective cases. Since the trade-

off among the objectives gets more complex in the case of four-objective optimization, the

optimal solution must satisfy more criteria. The solutions are slightly worse compared to the

previous bi-objective cases.

3.2.5. Comparison of the optimization results. The best results accomplished for all

three scenarios engaging HMOGWO are further compared with the best results achieved by

MOGWO and NSGA-II in Table 10 (parameters of the algorithms are shown in Table 9). The

parameters reported in Table 9 indicate that the proposed HMOGWO needs two extra param-

eters compared to the basic MOGWO algorithm, and it needs significantly fewer parameters

than NSGA-II. Additionally, utilizing fewer parameters than the NSGA-II, it can obtain better

optimal results within a short computation period.

Table 8. Fourth objective optimization of the considered case.

Methods Decision variables Objectives Deviation index

Tevp [˚C] Tcon [˚C] Pint [kPa] m[kg s–1] ηc EE [%] CAPEX OPEX GWP

[USD/year] [USD/year] [KgCO2e/year]

TOPSIS -7.01 40.04 5.06 0.01 0.89 45.55 1346.42 98.28 1059.78 0.18

LINMAP -1.53 40.03 5.06 0.01 0.89 43.12 1267.15 86.98 938.17 0.15

Ideal Solution 47.96 1241.24 83.29 898.48

Non-Ideal Solution 40.96 1545.27 132.68 1430.43

https://doi.org/10.1371/journal.pone.0272160.t008

Table 9. Parameter settings of the NSGA-II, MOGWO, and HMOGWO.

Parameter Values

NSGA-II MOGWO HMOGWO

Iteration 250 100 100

Population type Double Vector

Population 100 100 100

Selection Tournament Roulette-wheel Roulette-wheel

Crossover type Intermediate

Crossover percentage 70% 70%

Mutation Constraint Dependent

Random migrant 20%

Migration Forward

Pareto fraction 0.6

Archive size 100 100

Fmax and Fmin 1.50 and 0.25

a 2 to 0 2 to 0

https://doi.org/10.1371/journal.pone.0272160.t009
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It is explicit that the results (Table 10) obtained by HMOGWO for the third scenario are

comparable with NSGA-II and MOGWO. In contrast, the results of the HMOGWO for the

first and second scenarios are better than NSGA-II and MOGWO. It is also noticeable from

Table 10 that the HMOGWO can achieve superior results with fewer parameters than

NSGA-II, making it computationally inexpensive and saving the time of trial and error-based

parameter tuning. Among the three algorithms, the MOGWO works based on the position

update mechanism of wolves following the best three wolves. NSGA-II works depending on

the evolutionary crossover and mutation operator. By contrast, the proposed HMOGWO

incorporates the evolutionary crossover and mutation operators of DE with the novel velocity

and position update mechanism of MOGWO. Incorporating the features of the velocity and

DE algorithm into the MOGWO algorithm increases the exploration ability of the proposed

hybrid algorithm and provides superior solutions.

The statistical analysis of the Pareto optimal solutions is done to compare the algorithms’

performances further. The statistical indexes are significant for comparing and measuring the

algorithms’ superiority. Here, we considered five indexes for comparison: mean, median, min-

imum, maximum, and standard deviation (Std) values. We maximized the EE and minimized

the CAPEX, OPEX, and GWP among the three optimization scenarios. For EE, the higher the

value is, the better the solution, and for others, the lower value indicates better solutions. In

Table 11, the best indexes for all three cases are made bold. For case 1, the HMOGWO pro-

vides the best values for a total of five indexes (2 for EE and 3 for CAPEX), whereas the

MOGWO and NSGA-II provide the best values for two indexes, respectively. Similarly, for

cases 2 and 3, the HMOGWO provides the best values for 4 and 7 indexes, while MOGWO

provides the best values for 3 and 2 indexes, and NSGA-II obtains the best values for 3 and 0

indexes. These statistical comparisons also validate the superiority of the proposed novel

HMOGWO algorithm.

3.3 Pareto characterization

Generally, in MOO problems, we get a set of non-dominated solutions called the Pareto opti-

mal front. It is common to obtain a single point from the non-dominated solution sets by uti-

lizing higher-order information and abandoning the remaining solutions [57]. This procedure

is somehow influential. However, it cannot offer detailed information about the solution set.

By contrast, data analytical methods, also known as Pareto characterization, can help us deter-

mine the hidden pattern and information in the solution sets [58]. Therefore, the Pareto opti-

mal solutions are clustered using the K-means technique to get credible information about the

decision variables, which could be helpful to the industrialist to operate the plant in optimal

condition successfully.

Table 10. Comparison of the optimum solutions obtained by MOGWO, NSGA-II, and HMOGWO.

Scenario Index Algorithms

MOGWO NSGA-II HMOGWO

First EE [%] 45.24 45.32 45.70

CAPEX [USD per year] 1305.05 1307.16 1304.97

Second EE [%] 43.61 43.73 43.85

OPEX [USD per year] 87.12 88.03 87.06

Third EE [%] 43.18 43.09 43.59

GWP [kgCO2e per year] 938.14 935.96 945.57

Computation time seconds 135 190 147

https://doi.org/10.1371/journal.pone.0272160.t010
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The Pareto optimal data sets of each Pareto frontier are divided into three different clusters,

such that each cluster represents different operating conditions with different sets of objective

function values. The cluster sets of Pareto optimal solutions in the objective spaces are presented

in Fig 11. The 100 optimum solutions are split into three groups, labeled cluster #1, cluster #2,

and cluster #3, to illustrate if the design variable sets of the points within each cluster are compa-

rable. A centroid point is displayed in each cluster, which may be regarded as the best optimum

solution among the other solutions in the cluster. Additionally, each cluster’s respective decision

variable sets (evaporator temperature, condenser temperature, intermediate stage pressure,

refrigerant mass flow rate, and compressor efficiency) are presented in S2 File.

4. Conclusions

The refrigeration system’s non-linear, non-convex, and multi-modal nature makes optimiza-

tion challenging. Additionally, it imposes an additional computational burden on obtaining a

Table 11. Statistical analysis and comparison of the optimum results obtained by three algorithms.

NSGA-II MOGWO HMOGWO NSGA-II MOGWO HMOGWO

EE CAPEX

Mean 0.466 0.462 0.463 1410.705 1382.821 1375.229

Median 0.473 0.463 0.474 1412.000 1341.050 1346.363

Minimum 0.419 0.422 0.419 1220.600 1218.898 1218.519

Maximum 0.486 0.486 0.486 1606.800 1630.800 1621.081

Std 0.019 0.018 0.016 114.197 119.233 101.289

EE OPEX

Mean 0.463 0.455 0.459 109.123 100.619 108.027

Median 0.472 0.458 0.469 108.560 96.557 105.336

Minimum 0.404 0.400 0.403 81.369 81.066 81.021

Maximum 0.485 0.486 0.487 139.000 146.230 146.154

Std 0.023 0.022 0.027 17.824 15.979 14.192

EE GWP

Mean 0.457 0.458 0.459 1113.097 1103.134 1101.574

Median 0.463 0.463 0.469 1077.850 1075.850 1068.237

Minimum 0.402 0.403 0.404 874.590 873.730 872.198

Maximum 0.484 0.485 0.486 1438.900 1571.300 1569.024

Std 0.023 0.021 0.026 171.857 166.069 210.899

https://doi.org/10.1371/journal.pone.0272160.t011

Fig 11. K-means clustering of the Pareto optimal solutions, a) CAPEX, b) OPEX, and c) GWP.

https://doi.org/10.1371/journal.pone.0272160.g011
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feasible solution for multi-objective optimization with many conflicting objectives. To tackle

these issues, this article proposes a novel approach for modeling and bi-objective optimization

of a two-stage vapor compression refrigeration system, considering both surrogate modeling

and an HMOGWO technique for the first time.

The overall system is designed using rigorous process simulation software Aspen Hysys and

modeling of the system is done on Design Expert software. RSM investigates the impacts of

each design variable (evaporator and condenser temperature, intermediate stage pressure,

refrigerant mass flow rate through the evaporator, and compressor efficiency) on the overall

system where the individual and pairwise (interaction and self-interaction) impacts are com-

prehensively investigated. Four surrogate models (EE, CAPEX, OPEX, GWP) have been devel-

oped based on the system’s input and output data sets. Three bi-objective scenarios requiring a

different difficulty level are optimized using the HMOGWO algorithm. Two robust and effi-

cient decision-making methods were further employed to determine the optimal solution

from Pareto optimal solution sets. Finally, the K-means clustering method is applied for Pareto

characterization.

Based on the fitted correlation, the RSM recommended the quadratic models as optimal for

all four considered cases (EE, CAPEX, OPEX, and GWP). The fit statistics and the model sum-

maries show that all the quadratic polynomial models are highly significant, with a confidence

level of 95%. Moreover, the coefficient of determination values (R2), adjusted R2, and predicted

R2 values are more than 0.994 for all the models, indicating higher accuracy of the built mod-

els. The ANOVA test results indicate that the condenser temperature is EE’s most dominant

decision variable, with a 52.74% contribution. In contrast, the evaporator temperature has the

highest impact on the other three models, with 74.3%, 75.2%, and 75.2% contributions in

CAPEX, OPEX, and GWP.

The optimal solutions are compared with the base case. It has been noticed that the

HMOGWO successfully optimized all the considered cases with a minimum amount of

computational effort and deviation index. In the first scenario, EE and CAPEX are optimized

by 33.41% and 7.45%, respectively. Consequently, EE and OPEX are improved for the second

scenario, up to 27.44% and 19.00%. Likewise, EE and GWP are optimized by 27.18% and

19.10% for the last scenario, respectively. Furthermore, the optimum design variables and

objectives reveal that a greater evaporator temperature and compressor efficiency and a lower

condenser temperature, intermediate stage pressure, and refrigerant mass flow rate are essen-

tial for the overall system’s optimal operation, cost and GWP.

Finally, the optimal results of HMOGWO are further compared with MOGWO and

NSGA-II, where the first method outperformed the others and accomplished superior results

for two scenarios. Moreover, it has been noticed that the proposed algorithm requires signifi-

cantly less parameter handling, which makes it computationally inexpensive and easily adapt-

able for optimization. Furthermore, Pareto characterization is done using the K-means

clustering technique to understand the hidden pattern of the cost functions and decision vari-

ables, which could be helpful to researchers and industrialists. Finally, it can be concluded that

the modeling and optimization techniques presented in this research can be easily adapted to

any refrigeration system.
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