620 research outputs found

    Algorithms Implemented for Cancer Gene Searching and Classifications

    Get PDF
    Understanding the gene expression is an important factor to cancer diagnosis. One target of this understanding is implementing cancer gene search and classification methods. However, cancer gene search and classification is a challenge in that there is no an obvious exact algorithm that can be implemented individually for various cancer cells. In this paper a research is con-ducted through the most common top ranked algorithms implemented for cancer gene search and classification, and how they are implemented to reach a better performance. The paper will distinguish algorithms implemented for Bio image analysis for cancer cells and algorithms implemented based on DNA array data. The main purpose of this paper is to explore a road map towards presenting the most current algorithms implemented for cancer gene search and classification

    A Survey of Feature Selection Strategies for DNA Microarray Classification

    Get PDF
    Classification tasks are difficult and challenging in the bioinformatics field, that used to predict or diagnose patients at an early stage of disease by utilizing DNA microarray technology. However, crucial characteristics of DNA microarray technology are a large number of features and small sample sizes, which means the technology confronts a "dimensional curse" in its classification tasks because of the high computational execution needed and the discovery of biomarkers difficult. To reduce the dimensionality of features to find the significant features that can employ feature selection algorithms and not affect the performance of classification tasks. Feature selection helps decrease computational time by removing irrelevant and redundant features from the data. The study aims to briefly survey popular feature selection methods for classifying DNA microarray technology, such as filters, wrappers, embedded, and hybrid approaches. Furthermore, this study describes the steps of the feature selection process used to accomplish classification tasks and their relationships to other components such as datasets, cross-validation, and classifier algorithms. In the case study, we chose four different methods of feature selection on two-DNA microarray datasets to evaluate and discuss their performances, namely classification accuracy, stability, and the subset size of selected features. Keywords: Brief survey; DNA microarray data; feature selection; filter methods; wrapper methods; embedded methods; and hybrid methods. DOI: 10.7176/CEIS/14-2-01 Publication date:March 31st 202

    Novel modelling of clustering for enhanced classification performance on gene expression data

    Get PDF
    Gene expression data is popularized for its capability to disclose various disease conditions. However, the conventional procedure to extract gene expression data itself incorporates various artifacts that offer challenges in diagnosis a complex disease indication and classification like cancer. Review of existing research approaches indicates that classification approaches are few to proven to be standard with respect to higher accuracy and applicable to gene expression data apart from unaddresed problems of computational complexity. Therefore, the proposed manuscript introduces a novel and simplified model capable using Graph Fourier Transform, Eigen Value and vector for offering better classification performance considering case study of microarray database, which is one typical example of gene expression data. The study outcome shows that proposed system offers comparatively better accuracy and reduced computational complexity with the existing clustering approaches

    From Pieces To Paths: Combining Disparate Information in Computational Analysis of RNA-Seq.

    Get PDF
    As high-throughput sequencing technology has advanced in recent decades, large-scale genomic data with high-resolution have been generated for solving various problems in many felds. One of the state-of-the-art sequencing techniques is RNA sequencing, which has been widely used to study the transcriptomes of biological systems through millions of reads. The ultimate goal of RNA sequencing bioinformatics algorithms is to maximally utilize the information stored in a large amount of pieced-together reads to unveil the whole landscape of biological function at the transcriptome level. Many bioinformatics methods and pipelines have been developed for better achieving this goal. However, one central question of RNA sequencing is the prediction uncertainty due to the short read length and the low sampling rate of underexpressed transcripts. Both conditions raise ambiguities in read mapping, transcript assembly, transcript quantifcation, and even the downstream analysis. This dissertation focuses on approaches to reducing the above uncertainty by incorporating additional information, of disparate kinds, into bioinformatics models and modeling assessments. I addressed three critical issues in RNA sequencing data analysis. (1) we evaluated the performance of current de novo assembly methods and their evaluation methods using the transcript information from a third generation sequencing platform, which provides a longer sequence length but with a higher error rate than next-generation sequencing; (2) we built a Bayesian graphical model for improving transcript quantifcation and di˙erentially expressed isoform identifcation by utilizing the shared information from biological replicates; (3) we built a joint pathway and gene selection model by incorporating pathway structures from an expert database. We conclude that the incorporation of appropriate information from extra resources enables a more reliable assessment and a higher prediction performance in RNA sequencing data analysis

    Network-guided data integration and gene prioritization

    Get PDF

    SCDT: FC-NNC-structured Complex Decision Technique for Gene Analysis Using Fuzzy Cluster based Nearest Neighbor Classifier

    Get PDF
    In many diseases classification an accurate gene analysis is needed, for which selection of most informative genes is very important and it require a technique of decision in complex context of ambiguity. The traditional methods include for selecting most significant gene includes some of the statistical analysis namely 2-Sample-T-test (2STT), Entropy, Signal to Noise Ratio (SNR). This paper evaluates gene selection and classification on the basis of accurate gene selection using structured complex decision technique (SCDT) and classifies it using fuzzy cluster based nearest neighborclassifier (FC-NNC). The effectiveness of the proposed SCDT and FC-NNC is evaluated for leave one out cross validation metric(LOOCV) along with sensitivity, specificity, precision and F1-score with four different classifiers namely 1) Radial Basis Function (RBF), 2) Multi-layer perception(MLP), 3) Feed Forward(FF) and 4) Support vector machine(SVM) for three different datasets of DLBCL, Leukemia and Prostate tumor. The proposed SCDT &FC-NNC exhibits superior result for being considered more accurate decision mechanism

    Novel Semi-Supervised Learning Models to Balance Data Inclusivity and Usability in Healthcare Applications

    Get PDF
    abstract: Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring. The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain. The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models. The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Efficient Sparse Bayesian Learning using Spike-and-Slab Priors

    Get PDF
    In the context of statistical machine learning, sparse learning is a procedure that seeks a reconciliation between two competing aspects of a statistical model: good predictive power and interpretability. In a Bayesian setting, sparse learning methods invoke sparsity inducing priors to explicitly encode this tradeoff in a principled manner
    • …
    corecore