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PREFACE 
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high throughput technologies in biology, researchers were beginning to apply statis-
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and gained exciting progress in many areas. I realized that the knowledge of compu-

tation and machine learning would play an essential role in biological studies in the 

near future. So, after four rotations during the frst year, and being inspired by the 

post genomic era, I decided to devote my Ph.D. study to computational biology, and 

dedicate myself to the basic science of human health. 
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ABSTRACT 

Yang, Yifan Ph.D., Purdue University, May 2018. From Pieces To Paths: Combining 
Disparate Information in Computational Analysis of RNA-Seq. Major Professor: 
Michael Gribskov. 

As high-throughput sequencing technology has advanced in recent decades, large-

scale genomic data with high-resolution have been generated for solving various 

problems in many felds. One of the state-of-the-art sequencing techniques is RNA 

sequencing, which has been widely used to study the transcriptomes of biological 

systems through millions of reads. The ultimate goal of RNA sequencing bioinfor-

matics algorithms is to maximally utilize the information stored in a large amount 

of pieced-together reads to unveil the whole landscape of biological function at the 

transcriptome level. 

Many bioinformatics methods and pipelines have been developed for better achiev-

ing this goal. However, one central question of RNA sequencing is the prediction 

uncertainty due to the short read length and the low sampling rate of underexpressed 

transcripts. Both conditions raise ambiguities in read mapping, transcript assembly, 

transcript quantifcation, and even the downstream analysis. 

This dissertation focuses on approaches to reducing the above uncertainty by 

incorporating additional information, of disparate kinds, into bioinformatics models 

and modeling assessments. I addressed three critical issues in RNA sequencing data 

analysis. (1) we evaluated the performance of current de novo assembly methods and 

their evaluation methods using the transcript information from a third generation 

sequencing platform, which provides a longer sequence length but with a higher error 

rate than next-generation sequencing; (2) we built a Bayesian graphical model for 

improving transcript quantifcation and di˙erentially expressed isoform identifcation 



xiv 

by utilizing the shared information from biological replicates; (3) we built a joint 

pathway and gene selection model by incorporating pathway structures from an expert 

database. We conclude that the incorporation of appropriate information from extra 

resources enables a more reliable assessment and a higher prediction performance in 

RNA sequencing data analysis. 
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1. INTRODUCTION 

1.1 A brief history of sequencing technology 

Each small step of a human being is built on the steps of pioneers in history. To 

learn about the history of sequencing technology or even of molecular biology will 

help us understand where we are in this long river of time, and why we carry out 

studies depicted in this dissertation. 

For thousands of years, people persistently pursued the answer of one central 

question about life – what is life and how are the traits of lives inheritated on and 

on? Until 1953, when James D. Watson and Francis Crick frst deduced the struc-

ture of DNA molecules (Watson and Crick, 1953), and when Francis Crick proposed 

the Central Dogma of biology (Crick, 1958), which frst summarized how sequence 

information was transferred from DNA to RNA and from RNA to protein; the era 

of molecular biology had began. Researchers started to wonder whether these magic 

DNA and RNA molecules could be sequenced, and the sequences stored as a “Bible 

of Life” so that our descendants would be able to decipher this huge and treasured 

book, and answer the central question about life. 

DNA sequencing is actually a fairly new feld in our history (Metzker, 2008; Kul-

ski, 2016). From 1977, about 25 years after the discovery of the DNA double helix 

structure, when Sanger and Maxam/Gilbert frst invented the technology of DNA se-

quencing, until today, when sequencing techology has been widely industrialized and 

applied in many felds, it has only been about 40 years. I would like to divide these 

40 years into three big stages, marked by di˙erent historical events as milestones. Of 

course, with the development of sequencing technology, the need for both computer 

hardware and software (e.g. databases and bioinformatics algorithms), has greatly 

increased. 
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The frst stage of sequencing technology is from 1977 to 1990. During this period, 

people, for the frst time, invented DNA sequencing techology with the ability to se-

quence short genomes up to thousands of base pairs; in the same period, databases 

for storing sequences and corresponding algorithms for searching sequences were ini-

tialized. The story should be backdated to 1965, when the frst nucleic acid molecule 

– yeast alanine-tRNA – was sequenced (Holley et al., 1965). Believe it or not, it took 

researchers about 7 years to prepare a 1 gram tRNA sample from yeast, and the se-

quencing was purely based on chromatographic and spectrophotometric procedures, 

which was extremely time-consuming and labrious – only several bases could be se-

quenced per year ! In 1977, two sequencing methods – Maxam and Gilbert’s chemical 

degradation method (Maxam and Gilbert, 1977) and Sanger’s chain-termination se-

quencing method (Sanger et al., 1977) – were published, and competed with each 

other for years. Eventually, Sanger’s method prevailed over the Maxam/Gilbert’s 

method due to its greater simplicity and robustness, and dominated the sequencing 

feld for the next 20 years. In 1986, Sanger’s sequencing method was frst incor-

porated into an automated instrument, which was marketed by Applied Biosystems 

Instruments (ABI), and sequencing speed reached 1,000 base pairs per day. Another 

epoch-making technology, which was invented by Mullis in 1983 (Saiki et al., 1985), 

is the polymerase chain reaction (PCR) technology, facilitating the development of 

sequencing technology by amplifying DNA molecules to a high concentration. In 

the area of databases and bioinformatics algorithms, GenBank was founded in 1982, 

and the BLAST algorithm (Altschul et al., 1990), the most widely used approach to 

identifying similar sequences in sequence databases, was developed in 1990. 

The second stage is from 1990 to 2005. During this period, steady advances 

were made in sequencing technology, and the number of sequences submitted to the 

database explosively increased; Many sequencing centers around the world were estab-

lished; meanwhile, Sanger’s chain-termination sequencing method was still dominant 

in the feld, although signifcant advances were made in increasing throughput by 

moving from gel to capillary electrophoretic methods. In these 15 years, researchers 



3 

started sequencing genomes of many species, ranging from viruses, protists, fungi, 

and plants, to animals (Primorose and Twyman, 2006), e.g. Haemophilus infuen-

zae, the frst genome of a bacterium, was sequenced in 1995; the genome of Saccha-

romyces cerevisiae, the frst eukaryotic genome to be sequenced, was completed in 

1996; Caenorhabditis elegans, the frst genome of a multicellular organism, completed 

in 1998; Arabidopsis thaliana, the frst plant genome, completed in 2000; Homo sapi-

ens, the frst mammalian genome, completed in 2001; Oryza sativa (rice), the frst 

crop genome, completed in 2002; Mus musculus (mouse), a widely used mammalian 

model organism, completed in 2002/3; and Pan troglodytes (chimpanzee), the closest 

relative to humans, completed in 2005. One event that I cannot overemphasize is 

the Human Genome Project (HGP), which started in 1990 and ended in 2003. This 

13-year project, for the frst time, sequenced the genome of humankind, and mapped 

the human genome to many other genomes (Chial, 2008). As an international collab-

oration of eighteen countries, this project not only raised sequencing technology to a 

global scope, but also built a foundation for much of the human health research of 

today. Due to the global impact of the HGP, many centers and institutes for genome 

sequencing and genome study were established at that time, such as The Institute for 

Genome Research (TIGR), now known as the J. Craig Venter Institute, in the USA, 

the Sanger Center in the United Kingdom, and RIKEN in Japan, etc. By the end 

of 1998, sequencing speed had reached 500,000 to 1 million bases per day using the 

ABI Prism 3700 multiple capillary sequencer (Metzker, 2008). For data storage at 

that time, the genomic sequences were kept in relational database management sys-

tems. Researchers could access sequences from websites (and ftp). The data transfer 

was no longer accomplished by mailing magnetic tapes, but done using the internet. 

For bioinformatics algorithms, because most of the genomes were sequenced by the 

shotgun strategy, genome assembly algorithms were developed and widely applied 

(Kulski, 2016; W. Myers Jr, 2016). Meanwhile, the frst technologies for measuring 

gene expression (i.e., RNA abundance), the high density oligonucleotide arrays (mi-
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croarrays), appeared in around 1996. Microarray technology actually dominated the 

feld of gene expression analysis for about a decade (Southern, 2001). 

The third stage is from 2005 to 2017. During this period, a number of new sequenc-

ing methods were widely commercialized and replaced Sanger’s method; RNA se-

quencing (RNA-seq) has become the primary approach for studying transcriptomes of 

biological organisms. The new sequencing methods introduced beginning in 2005 are 

the so-called “second generation sequencing” or “next generation sequencing” (NGS). 

The most commonly used platforms for second generation sequencing were Roche 454 

pyrosequencing (discontinued in 2013), Illumina, SOLiD, DNA nanoball sequencing, 

and Ion torrent (Kulski, 2016; Heather and Chain, 2016; Liu et al., 2014). Instead 

of cloning individual DNA fragments via foreign host cells as in Sanger’s method, 

the new methods have much easier and quicker library preparation procedures using 

adapters, barcodes, primers, new PCR methods, and novel sequencing mechanisms; 

high throughput sequencing can be achieved by amplifying DNA clusters on a solid 

substrate with readout by charge-coupled device (CCD) cameras, producing the se-

quences of hundreds of thousands (Roche 454) to hundreds of millions of fragments 

simultaneously. Though each platform has its own pros and cons, the cost of second 

generation sequencing, (e.g. Illumina HiSeq), is much lower – about 300 thousand 

times cheaper than Sanger’s method – per million bases (Liu et al., 2014; Muir et al., 

2016). The reduced cost of sequencing immediately led to a second wave of increas-

ing amounts of data. To adapt to the drastically increased data scale, remote data 

analysis by cloud computing has become available, and is now starting to be widely 

used (Dai et al., 2012; O’Driscoll et al., 2013). Databases have also become more 

diverse and specialized than before (Zou et al., 2015). Moreover, new bioinformatics 

algorithms, such as read alignment algorithms, read assembly algorithms, data com-

pression algorithms, and data mining algorithms for extracting useful information 

from the omics data have been developed (Berger et al., 2013). 

Very recently, other leading-edge sequencing technologies, such as PacBio, Heli-

cos, Nanopore, and electron microscopy sequencing, have emerged. These sequencing 
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methods are called “third generation sequencing” to di˙erentiate them from the “sec-

ond generation sequencing” (Liu et al., 2014; Heather and Chain, 2016). These new 

methods try to sequence DNA molecules at a single molecule level, without complex 

fragmentation, ligation, or amplifcation steps. In theory, such approaches should be 

less technically biased and able to produce longer read lengths than second generation 

sequencing. However, the problems with these approaches, such as high sequencing 

error rate and low read coverage, etc., are still present, and need to be solved in the 

future. 

Looking back, over a short period of 40 years, sequencing technology has gone 

through from zero to one, and one to more. The overall trend is that the sequenc-

ing has become faster, cheaper, and more precise at determining and measuring the 

expression of real transcriptomes of organisms. As a result, the amount and scale of 

sequencing data will continue to increase; and bioinformatics algorithms for analyzing 

big genomic data are urgently needed. 

My Ph.D. study focuses on developing and evaluating bioinformatics algorithms 

for RNA-seq data analysis. In the next section, I will briefy introduce RNA-seq and 

its applications. 

1.2 Signifcance of RNA Sequencing and its applications 

The NGS technology has a variety of applications depending on the goal of the re-

search. Some common applications include whole genome sequencing (WGS), whole 

exome sequencing (WES), targeted sequencing of specifc genes, chromatin immuno-

precipitation sequencing (ChIP-seq), and RNA-seq. Among the above sequencing 

methods, RNA-seq is a state-of-the-art technique that takes advantage of the high-

throughput of NGS for studying dynamic and tissue-specifc transcriptomes. Another 

method, which was widely used in the 1990s to study transcriptomics, is the microar-

ray technique, based on oligonucleotide hybridization. However, since around 2005, 

as the cost of per base of RNA-seq and the sequencing quality have continuously 
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improved, RNA-seq has taken over from microarray approaches, becoming the frst 

choice for quantitatively assessing gene expressions in biological systems. Extensive 

reviews have been published on how RNA-seq has revolutionized our view of biological 

processes and pushed forward the biomedical feld (Han et al., 2015). Most recently, 

due to the decreasing cost of RNA-seq and its powerful ability for providing fast and 

accurate quantifcation of RNA levels, the RNA-seq technique has been standardized 

and translated to the medicine and healthcare felds in the real world. 

1.2.1 RNA-seq in scientifc explorations 

RNA-seq has completely changed our view of the landscape of the human tran-

scriptome by discovering new transcripts, identifying novel mutations, quantifying 

transcripts at the isoform level, and enabling comprehensive di˙erential expression 

and functional analysis. About 10 years ago, people thought that only 3% of hu-

man genome was transcribed as messenger RNA (mRNA), based on mapping of the 

expressed sequence tags (ESTs) back to the genome. Until very recently, when sub-

stantial RNA-seq data frmly established the reality of pervasive transcription – more 

than 85% of the human genome is transcribed, although only 3% is eventually trans-

lated to proteins (Hangauer et al., 2013). These non-coding transcripts have been 

identifed as belonging to previously unknown classes of RNAs, such as long non-

coding RNA (lncRNA), microRNA (miRNA), small interfering RNA (siRNA), and 

enhancer RNA (eRNA) (Iyer et al., 2015; Guo et al., 2015; Kim et al., 2010). These 

new discoveries have dramatically changed our understanding of the human genome 

and enriched our knowledge of gene regulation. 

In addition to the “junk” regions of human genome, RNA-seq has also led to 

new discoveries in coding sequence regions. Using RNA-seq, many genes have been 

found to have alternative isoforms (an average of 3.4 alternative isoforms per gene 

according to GENCODE human annotation version 271) (Li et al., 2014), although 
1https://www.gencodegenes.org/stats/archive.html 

https://1https://www.gencodegenes.org/stats/archive.html
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most genes have only one dominant isoform in most conditions (Trapnell et al., 2010; 

Gonzàlez-Porta et al., 2013). Multiple isoforms can result from either the switch 

of transcriptional start sites (TSS) on the genome, or from the complex alternative 

splicing process during the transcript maturation. Many studies have found that 

isoforms of the same gene can have the opposite functions by regulating the same 

complex or pathway (Li et al., 2014; Tone et al., 2001). Aberrant splicing events, 

and fusion genes with abnormal exon-intron structures, or copy number variations, 

also have been found to be related to diseases, especially in cancers (Fackenthal and 

Godley, 2008; Eswaran et al., 2013). These discoveries have led to new hypotheses 

for human transcriptome and transcriptional regulation. 

The single nucleotide resolution of RNA-seq enables highly sensitive and accurate 

quantifcation of transcripts. By comparing the transcriptomes of di˙erent tissues, 

or at di˙erent times, many interesting mechanisms have been unraveled at the tran-

scriptome level. 

1.2.2 RNA-seq in translational medicine 

As the a˙ordability and reliability of RNA-seq have improved, many research 

groups and companies have started to translate RNA-seq technology into healthcare. 

One promising direction is personalized medicine, in which a therapeutic plan is made 

based on the genomic information of each patient (Rabbani et al., 2016). Due to ge-

nomic variations in the human population, the conventional strategy of “same disease 

– same drug” has been gradually replaced by a concept of personalized medicine, or a 

“same disease – di˙erent drugs” strategy. One successful case, which has already en-

tered the clinical trial stage, is the design of personalized cancer vaccines for treating 

melanoma2 (Ott et al., 2017; Sahin et al., 2017). RNA-Seq and exome sequencing were 

used to identify tumor-specifc mutations in each patient, and the mutant proteins 

that are most likely to trigger immune system responses to invading cancer cells, were 
2doi:10.1038/nature.2017.22249 
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selected to generate a mixture of vaccines. In two independent studies (Ott et al., 

2017; Sahin et al., 2017), four out of six and eight out of thirteen patients were tumor 

free one year after receiving the vaccine treatment. 

Another direction that RNA-seq has been translated to is precision medicine, in 

which clinical diagnosis, prognosis and medical screening are made by precisely se-

quencing and measuring the biomarkers of individual patients (Byron et al., 2016). 

Based on the genomic information, healthcare providers can make better plans for dis-

ease treatment and lifestyle adjustment. For example, FoundationOne Heme, which 

has been approved by the US Food and Drug Administration (FDA), employs RNA-

seq technology for detecting oncogenic fusions in hematologic malignancies and sarco-

mas. FoundationOne Heme provides useful information to physicians for diagnosing 

hematological cancers. An emerging area is the measurement of the levels of extracel-

lular RNA (exRNA) by RNA-seq for diagnosing a disease or monitoring the process 

of a disease (Byron et al., 2016). It is appealing because exRNAs exist in biofu-

ids, which can be non-invasively acquired from patients. The US National Center 

for Advancing Translational Sciences (NCATS) initiated an exRNA communication 

consortium in 2015 for developing diagnostic tools. 

Aside from the above translational studies and applications using RNA-seq, many 

companies have been launched that seek to translate the sequencing technology into 

healthcare3 . Some companies focus on providing direct healthcare services, including 

cancer gene profling, pharmacogenomic toxicity analysis, and therapy counseling. 

For example, Veritas genetics provides whole genome sequencing, and links the dis-

ease risk analysis using smartphone apps; IBM Watson for genomics, announced in 

January 2017 that it will be integrated into Illumina’s TruSight Tumor 170 tool for 

speeding up drug recommendations for cancer patients; Rosetta genomics employs 

a NGS-platform for providing genome-wide oncogenomic tumor profling and phar-

macogenomic toxicity analysis specifcally for lung cancer patients. Some companies 

emphasize integrating machine learning methods into data analysis. For example, 
3http://medicalfuturist.com/top-companies-genomics/ 

https://3http://medicalfuturist.com/top-companies-genomics
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Verge genomics, which uses machine learning and genomics data for providing new 

treatment options specifcally for neurodegenerative diseases; Verily Life Science, a 

healthcare company subsidiary of Google, aims to use mature google learning algo-

rithms for solving healthcare issues. 

1.3 General workfow of RNA-seq data analysis and related bioinformat-

ics algorithms 

Currently, the most typical RNA-seq platform provides sequencing of paired-end 

reads with the length of about 100 – 250 base pair (bp), and the numbers of reads 

ranging from 5 to 60 million per sample, depending on the goal of the sequencing. 

However, because of the broad applications of RNA-seq, as I introduced in Section 

1.2, there is not a universal workfow for all RNA-seq data analyses. Considering the 

majority of studies, which aim to systematically interpret biological functions using 

RNA-seq data, I outline a general workfow of RNA-seq data analysis in Figure 1.1, 

which also highlights the focus of this dissertation. 

Figure 1.1 (A) shows the major steps of RNA-seq data analysis including the 

construction of a transcriptome (assembled transcripts) from RNA-seq reads, the 

quantifcation of transcripts, and the interpretation of biological functions (e.g. using 

networks) based on the experimental design. Following such a workfow, the massive 

information stored as millions of short-read sequences will be transferred into orga-

nized biological networks, which can be visualized and analyzed by domain experts. 

After sequencing, RNA-seq raw reads will frst be pre-processed by removing low-

quality reads (e.g. the reads with a total base quality in a window lower than a 

threshold) and artifacts (e.g. adaptors, contaminant DNAs and PCR duplicates) 

(Martin and Wang, 2011). Then the preprocessed reads will be used for constructing 

transcripts depending on the availability of a reference genome/transcriptome. Figure 

1.1 (B) shows a detailed workfow of RNA-seq data analysis. If the reference genome 

or transcriptome are highly reliable, we can directly use the annotations for quanti-
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Fig. 1.1.: A general workfow of RNA-seq data analysis. (A) is a cartoon fowchart 
that shows how the information fows from RNA-seq short reads to transcripts, and 
then to gene expression and functional networks. (B) shows a detailed workfow 
based on the availability of reference genome and transcriptome (red crosses mark 
information that is unavailable). My three works (chapter 2, 3, and 4) focus on the 
parts with green color. 

fying transcripts; if only the reference genome is available, and the transcriptome is 

unknown or unreliable, we can rely on a reference-based assembly method to obtain 

assemblies as transcripts; if neither the reference genome nor the transcriptome is 

available, de novo assembly becomes the only choice for identifying transcripts from 

RNA-seq reads. Then, based on the known or assembled transcripts (reference-based 

assemblies or de novo assemblies), we can quantify the transcripts by mapping pre-

processed RNA-seq short reads back to the transcripts/assemblies and estimating the 

count of reads that are potentially coming from each transcript/assembly. Based on 

the expression levels of transcripts, functional analysis is performed for illustrating 

important genes/gene clusters/pathways associated with a phenotype or a disease. 
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Fig. 1.2.: Overview of the RNA-seq de novo transcriptome assembly strategy. (A) 
shows all substrings of length k (kmers) are generated from every single read. (B) 
shows the generation of a De Bruijn graph using kmers. Each node represents a 
unique kmer and each arrow represents the overlap of k-1 bases between two kmers. 
(C) shows that the non-branching chains in a De Bruijn graph can be collapsed into a 
single node. (D) shows all the possible transcripts assembled by traversing the paths 
in the De Bruijn graph. 
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Because Chapter 2 focuses on RNA-seq de novo assembly, I will briefy introduce 

some basic concepts and nomenclatures used in RNA-seq de novo assembly. Figure 

1.2 shows a typical strategy of RNA-seq de novo assembly with four steps. In the frst 

step (A), all the RNA-seq reads will be chopped into substrings of length k (kmers) 

by shifting one base at each time; in the second step (B), De Bruijn graphs will be 

constructed using all or the most frequent kmers; Each node represents a unique kmer 

and each arrow represents the overlap of k-1 bases between two kmers; in the third 

step (C), De Bruijn graphs will be simplifed by collapsing non-branching chains of 

nodes and trimming o˙ the branches with low weights (e.g. less frequent and low-

quality kmers); in the last step (D), transcripts will be generated by traversing paths 

in De Bruijn graphs. Some algorithms call these resulting transcripts as contigs, and 

connect contigs which are supported by read evidence for generating transcripts. 

Transcriptome assembly is potentially more complicated than genome assembly. 

In genome assembly, the sequencing depth is presumably the same at each base if not 

considering the technical bias and sample decay, because there are no copy variations 

of DNA. In contrast, transcriptome assembly methods have to consider the variations 

of expression levels of transcripts in a sample, so we cannot assume the sequencing 

depths are even at all bases; the PCR amplifcation step may even enlarge these 

variations; also, low-expressed transcripts often have too few reads, which are hard 

to be assembled. Therefore, transcriptome assembly and its evaluation methods are 

still challenging questions in RNA-seq data analysis. 

Lastly, for each part of the fowchart in Figure 1.1, I summarize the properties of 

state-of-the-art bioinformatics algorithms and the methods related to this dissertation 

in Table 1.1, including read preprocessing methods, read alignment methods, de novo 

assembly methods, de novo assembly evaluation methods, transcript quantifcation 

methods, di˙erential analysis methods, and functional analysis methods. 
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Table 1.1.: Summary of commonly used bioinformatics 

programs and the methods related to this dissertation 

for RNA-seq data analysis. 

Steps Methods Properties and comments 

Read pre-

processing 

FastQC • A sequencing base quality evaluator 

• Provides visualization of read statistics and 

qualities 
Trimmomatic • Removes adapters 

• Trims low qualilty bases for RNA-seq reads 
Read 

alignment 

(mapping) 

BWA • Maps low-divergent sequences against a large 

reference genome based on Burrows-Wheeler 

transform 

• BWA-backtrack is designed for Illumina se-

quence reads up to 100bp 

• BWA-SW and BWA-MEM mapped reads from 

70bp to 1Mbp 
Bowtie • A fast RNA-seq short read (< 50 bp) aligner 

• Aligns reads to a reference genome indexed by 

Burrows-Wheeler transform 

• Only non-gapped and end-to-end alignment 
Bowtie2 • A fast read aligner supporting longer read 

length (< 1, 000 bp) 

• Both gapped and local alignment 
Tophat • An RNA-seq read aligner built on Bowtie 

• Detects splice junctions 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

STAR • An RNA-seq read aligner using maximum map-

pable prefx search 

• Handles both RNA-seq paired-end short reads 

and long single reads generated by the third 

generation sequencing technologies 

• Detects both splice junctions and chimeric tran-

scripts 
GMAP • Initially designed for cDNA alignment to refer-

ence genome (splice-aware) 

• Applicable to single RNA-seq short reads (< 75 

bp) with specifc parameter settings as sug-

gested in manual4 

• Applicable to PacBio long reads with optimized 

parameters as recommended in tutorial5 

De novo 

assembly 

SOAPdenovo-

Trans 

• An RNA-seq short read assembler based on 

SOAPdenovo 

Trans-ABySS • An RNA-seq short read assembler based on 

ABySS 

• TransABySS-merge can merge multiple de novo 

assemblies with di˙erent kmers 

• No gene-isoform relation preserved 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

IDBA-Tran • Employs a progressive probabilistic approach to 

iteratively remove erroneous kmers in de Bruijn 

graph construction, instead of using a global 

threshold 

• Designed for better assembly of low-expression 

transcripts 

• No gene-isoform relationship preserved 
Trinity • Both genome-guided and de novo transcrip-

tome assembly 

• Three steps: searching paths in kmer graphs to 

generate linear contigs; clustering the contigs 

and constructing individual De Bruijn graph for 

each cluster; tracing the paths and reporting 

transcripts 

• Kmer size only varies from 25 bp to 32 bp 
Oases • An RNA-seq short read assembler based on the 

Velvet assembler 

• Merges assemblies made with multiple kmers 
De novo 

assembly 

evaluation 

rnaQUAST • A metric-based RNA-seq assembly evaluator 

• Only provides reference-based evaluation 

• Allows to de novo assemble transcripts using 

several thrid-party tools, such as BUSCO and 

GeneMarkS-T 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

DETONATE • A model-based RNA-seq assembly evaluator 

• Module REF-EVAL is used for reference-based 

evaluation 

• Module RSEM-EVAL is used for de novo as-

sembly evaluation without reference 
TransRate • A model-based de novo asssembly evaluator 

• Provides contig scores for all contigs and an as-

sembly score for the whole set of assemblies 

• Removes low quality assemblies by optimizing 

an empirical function 
Transcript 

quantifca-

tion 

Cu˜inks • Provides reference based RNA-seq assembly for 

detecting novel transcripts 

• Estimates expression levels of genes/transcripts 

based on a given reference or a self-assemblied 

transcriptome 

• Cu˙di˙ used for di˙erential expression analysis 

of genes/transcripts 
MISO • No assembly function 

• Exon-centric model estimates the expression 

levels of exons 

• Isoform-centric model estimates the expression 

levels of spliced isoforms 

• Bayes factor (BF) evaluates the signifcance of 

di˙erentially expressed (DE) isoforms 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

RSEM • Estimates expressions of genes/transcripts with 

or without a reference genome 

• Employs EBSeq to evaluate DE 

genes/transcripts 

• Provides visualization tools 

• An RNA-seq read simulator if given the expres-

sion levels of trancripts 
BitSeq • A 2-step model for estimating gene/transcript 

expression levels frst in each replicate, and then 

the mean expressions in each condition 

• The probability of log-ratio of expression in con-

dition 2 over expression in condition 1 is used 

to evaluate transcript DE levels 
DEIsoM • A one step integrated model for estimating 

gene/transcript expression levels in a whole 

condition which is comprised of multiple bio-

logical replicates 

• No loss of any sources of variations from either 

ambiguous mapping or biological replication 

• Kullback-Leibler (KL) divergence is used to 

evaluate transcript DE levels between two con-

ditions 
Di˙erential DESeq2 • Identifes DE genes based on RNA-seq count 

analysis data 

• Models the count data as a negative binonial 

distribution and a shrinkage estimator for dis-

tribution variance 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

EdgeR • Examines di˙erential expression of replicated 

count data using an overdispersed Poisson 

model accounting for both biological and tech-

nical variability 

• Empirical Bayes methods are used to moderate 

the degree of overdispersion across transcripts 

• Applicable to other data (e.g. proteome peptide 

count data) 
EBSeq • Identifes not only DE genes but also DE 

isoforms by considering the uncertainty from 

ambiguous read mapping using an empirical 

Bayesian method 

• Evaluates DE between two or more conditions 
Pathway 

analysis 

GSEA • Determines whether an a pre-defned set of 

genes shows statistically signifcant, concordant 

di˙erences between two biological states 

• The pre-defned set of genes can be from the 

Molecular Signature Database (MSigDb) or 

from users’ gene set fles. 
SeqGSEA • Improved from GSEA to adapt to RNA-seq 

data with fewer biological replicates 

• Incorporates the absolute gene statistic in one-

tailed GSEA to lower the false positive rate in 

the GSEA gene permutation method 

• Uses negative binomial distribution to model 

read count data 
Continued on next page 
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Table 1.1 – continued from previous page 

Steps Methods Properties and comments 

NaNOS • Jointly selects both genes and pathways associ-

ated with a phenotype 

• Incorporates pathway structures encoded in the 

database 

• Eÿcient inference algorithm 

In this dissertation, I will focus on three parts of the fowchart (Figure 1.1), shaded 

in green, including the assessment of de novo assembly methods, the modeling of 

transcript quantifcation and DE isoform identifcation, and the association of genes 

and pathways with phenotypes using high throughput genomic data. I will discuss 

the challenges and potential solutions in the next section. 

1.4 Three critial issues in RNA-Seq analysis (Outline of the dissertation) 

Despite many successful applications of RNA-seq in both scientifc explorations 

and translational medicine, as I introduced in Section 1.2, multiple challenges in RNA-

seq data analysis are still present. The central goal of RNA-seq data analysis is to 

maximally use the information stored in millions of RNA-seq reads for reconstructing 

the transcriptome and understanding the biological functions associated with the 

specifc spatiotemporal phenotype. 

Many bioinformatics algorithms and pipelines have been developed to accom-

plish this goal. However, one critical challenge is the prediction uncertainty due to 

the short read length and the low sampling rate of weakly expressed transcripts. 

Both conditions lead to ambiguities in read mapping, transcript assembly, transcript 

quantifcation, and even downstream analyses, when dealing with RNA-seq data. A 

central idea behind reducing the uncertainty is to incorporate additional informa-
4Align Pacbio long reads using GMAP: https://github.com/PacificBiosciences/cDNA_primer/ 
wiki/Aligner-tutorial:-GMAP,-STAR,-BLAT,-and-BLASR 
5Align RNA-seq short reads using GMAP: https://github.com/juliangehring/GMAP-GSNAP 

https://github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-tutorial:-GMAP,-STAR,-BLAT,-and-BLASR
https://github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-tutorial:-GMAP,-STAR,-BLAT,-and-BLASR
https://github.com/juliangehring/GMAP-GSNAP
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tion into bioinformatic models for consolidating the results. This extra information 

could be from other sequencing platforms, from technical or biological replicates, from 

databases containing expert knowledge, etc. 

This dissertation will cover three critical issues in RNA-seq modeling and model 

assessments, and in each case, the problem is solved by incorporating additional 

information. Chapter 2 discusses how to assess de novo assembly methods and de novo 

assembly evaluation methods using a third generation sequencing technology; Chapter 

3 discusses how to improve the transcript quantifcation and DE isoform identifcation 

by capturing the shared information from biological replicates; Chapter 4 discusses 

a joint pathway and gene selection model that incorporates pathway structures from 

an expert database. 
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2. CHAPTER 2. ASSESSMENTS ON RNA-SEQ DE NOVO 

ASSEMBLY BY PACBIO LONG READ SEQUENCING 

2.1 Abstract 

RNA-Seq de novo assembly is an important method to generate transcriptomes 

for non-model organisms before any downstream analysis. Given many great de novo 

assembly methods developed by now, one critical issue is that there is no consensus on 

the evaluation of de novo assembly methods yet. Therefore, to set up a benchmark for 

evaluating the quality of de novo assemblies is very critical. Addressing this challenge 

will help us deepen the insights on the properties of di˙erent de novo assemblers and 

their evaluation methods, and provide hints on choosing the best assembly sets as 

transcriptomes of non-model organisms for the further functional analysis. 

In this article, we generate a “real time” transcriptome using PacBio long reads 

as a benchmark for evaluating fve de novo assemblers and two model-based de novo 

assembly evaluation methods. By comparing the de novo assemblies generated by 

RNA-Seq short reads with the “real time” transcriptome from the same biological 

sample, we fnd that Trinity is best at the completeness by generating more assemblies 

than the alternative assemblers, but less continuous and having more misassemblies; 

Oases is best at the continuity and specifcity, but less complete; The performance of 

SOAPdenovo-Trans, Trans-ABySS and IDBA-Tran are in between of fve assemblers. 

For evaluation methods, DETONATE leverages multiple aspects of the assembly set 

and ranks the assembly set with an average performance as the best, meanwhile the 

contig score can serve as a good metric to select assemblies with high completeness, 

specifcity, continuity but not sensitive to misassemblies; TransRate contig score is 

useful to remove misassemblies, and TransRate can optimize the assembly set by 
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fltering out the assemblies with low contig scores, yet often the assemblies in the 

optimal set is too few to be used as a transcriptome. 

2.2 Introduction 

With the rapid development of sequencing technology, transcriptome assembly 

by RNA-Seq short reads has become increasingly important in many felds, such as 

plant science (Brereton et al., 2016; Ranjan et al., 2014), animal science (Moreton 

et al., 2014) and disease related studies (Mittal and McDonald, 2017; Mamrot et al., 

2017; Wang et al., 2015). Current transcriptome assembly methods mainly fall into 

three categories: reference-based assembly, de novo assembly and a hybrid assembly 

that merges the above two (Martin and Wang, 2011). For non-model organisms 

with no available reference genome or transcriptome, de novo assembly becomes the 

only choice to determine the transcriptome before any downstream analysis. Many 

de novo assembly methods have been developed, however, there is no consensus on 

how to evaluate these methods. Therefore, establishing a reliable benchmark for 

understanding the property of each de novo assembly tool has become a critical issue 

(Moreton et al., 2015). 

Recently, powerful tools, such as Trinity (Grabherr et al., 2011), Oases (Schulz 

et al., 2012), SOAPdenovo-Trans (Xie et al., 2014), Trans-ABySS (Robertson et al., 

2010), and IDBA-Tran (Peng et al., 2013), have been developed for de novo assem-

bly of transcriptomes from RNA-Seq short reads. From the data perspective, when 

evaluating de novo assembly methods, researchers can either simulate RNA-Seq short 

reads base on a known reference genome or transcriptome (O’Neil and Emrich, 2013), 

or use real RNA-Seq datasets and evaluate the performance of assemblers by compar-

ing the assemblies with the reference transcriptome or the transcriptome of a related 

species (Honaas et al., 2016; Wang and Gribskov, 2017). In the frst case, even though 

it is convenient to control the properties of simulated data, such as the expression 

levels of transcripts, the sequencing error rate , the sequencing depth and etc, the 
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simulated data cannot completely represent the real data. In the latter case, the eval-

uation heavily relies on the quality of the reference transcriptome. Nevertheless, the 

expressed transcripts may even vary among biological replicates or di˙erent tissues 

(Melé et al., 2015). The presence of assemblies that are missed in the reference tran-

scriptome does not necessarily mean that those assemblies are misassemblies. The 

novel transcript could be representing mutated or fusion transcripts that hasn’t been 

annotated in the reference. Similarly, the absence of assemblies compared with the 

reference transcriptome does not necessarily indicate incompleteness of an assembly. 

It could be that the transcripts that are not expressed in a particular sample. Even 

though the reference transcriptome is well annotated for a species, e.g., Homo sapiens, 

the reference transcriptomes still vary between di˙erent instititional sites (Ensembl 

and RefSeq) and versions still exist, which complicate the issue from another perspec-

tive (Section 2.4.1). 

Two types of methods are used for assessing de novo assemblies: metrics-based 

methods and model-based methods. However, without a reference transcriptome, 

metrics-based methods can only provide an empirical description rather than an as-

sessment of the quality of the assemblies, such as the total number and the length 

information of assemblies. With a reference transcriptome, the metrics-based meth-

ods have the ability to comprehensively evaluate the accuracy, completeness, conti-

nuity, and misassembly rate of the assemblies. However, this analysis is based on 

the assumption that the reference transcriptome is complete and reliable (Martin and 

Wang, 2011; Bushmanova et al., 2016). Model-based methods, such as DETONATE 

(Li et al., 2014a) and TransRate (Smith-Unna et al., 2016), focus on how well the as-

semblies can be explained by the read evidence. However, each model-based method 

has its own defnition of the “optimal” assembly, which is inconsistent among di˙erent 

models. Furthermore, model-based methods themselves are hard to evaluate if we do 

not have a reliable reference transcriptome in hand. 

In this study, we utilize the PacBio long read sequencing technology to generate a 

“real time” transcriptome as a benchmark for assessing (1) the properties of fve com-
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monly used de novo assembly methods and (2) the e˙ectiveness of two model-based 

evaluation methods. By comparing the assemblies from the short reads to the “real 

time” transcriptome from PacBio long reads of the same biological sample, we elim-

inate the biological uncertainties to a large extent. We conclude that Trinity is best 

at completeness, but assembled transcripts are less continuous and have more misas-

semblies than the alternative methods; Oases is best at continuity and specifcity (we 

followed the nomenclature used in rnaQUAST (Bushmanova et al., 2016); the speci-

fcity refers to the percentage of the assemblies that can be well mapped back to the 

annotated transcripts), but less complete; The performance of SOAPdenovo-Trans, 

Trans-ABySS and IDBA-Tran are in between. For the model-based evaluation meth-

ods, DETONATE ranks the method with all aspects having the average performance 

as the best, while TransRate doesn’t penalize any downsides but only encourages the 

good aspects of the assemblies; The contig scores of DETONATE can help select the 

assemblies with high completeness, specifcity and continuity but not a low misassem-

bly rate, while the contig scores of TransRate are helpful in removing misassemblies. 

2.3 Methods 

2.3.1 RNA-Seq datasets 

The datasets we used were from the Sequencing Quality Control (SEQC)/MAQC-

III Consortium, which sequenced a human brain sample by multiple platforms, in-

cluding MiSeq short read sequencing and PacBio long read sequencing (Li et al., 

2014b). MiSeq generated 7.85 million paired-end reads with the length equal to 250 

bp. PacBio generated 0.68 million Reads of Insert (RoIs) with an average length 

equal to 1, 640 bp. 
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2.3.2 Quality control for short read de novo assemblies 

We frst trimmed the adapters and fltered out the low quality reads from the 

MiSeq dataset using Trimmomatic (version 0.32). Adaptors and low quality reads 

with average quality below 16 over a 5 base window were removed. And only trimmed 

reads with length over 30 bases were used for de novo assembly. FastQC (version 

0.11.2) 1was then used to visualize the read quality before and after cleaning, shown 

in Supplementary Figure 2.5. 

To determine the best kmer for de novo assembly, we used Kmergenie (version 

1.6982) (Chikhi and Medvedev, 2014). Kmergenie examines multiple kmers and 

counts the frequency of kmers under each k. Then Kmergenie estimates the best 

k value, which potentially could recover the most possible contigs. Our dataset has 

the best k = 31 bp, shown in Supplementary Figure 2.6. 

Cleaned reads were used for de novo assembling by fve di˙erent assemblers, in-

cluding Trinity (version 2.2.0), Oases (version 0.2.08), SOAPdenovo-Trans (version 

1.03), Trans-ABySS (version 1.5.1), and IDBA-Tran (version 1.1.2). All the methods 

were tested under the default parameters. 

2.3.3 Quality control for the “real time” transcriptome generated by PacBio 

long reads 

To obtain the real time transcriptome, we ran PacBio long reads through RS_IsoSeq 

(v2.3.0) pipeline (Gordon et al., 2015) using default parameters. After clustering, we 

fltered out the non-human genes by aligning both the full length high-quality and 

full length low-quality consensus sequences to the hg19 human reference genome using 

STAR (Dobin et al., 2013) and GMAP (Wu and Watanabe, 2005) as recommended 

by RS_IsoSeq. The detailed steps and the number of sequences generated in each 

step are shown in Supplementary Figure 2.7. Then we collapsed the aligned consensus 
1FastQC is available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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sequences by pbtranscript-tofu 2with the minimum alignment identity equal to 0.85 

and the minimum coverage to 0.90, as shown in Supplementary Figure 2.2. 

2.4 Results 

2.4.1 The real time transcriptome can be served as a reliable benchmark 

for assessing de novo assemblies 

Analysis of PacBio long reads with RS_IsoSeq pipeline, produced 9, 636 genes 

(33, 307 transcripts). All 33, 307 transcripts were corrected versus the hg19 human 

genome. 244 full length, low-quality transcripts can be aligned to the hg19 human 

genome by neither STAR nor GMAP. We pooled these 33, 307 alignable sequences 

and 244 unalignable sequences together, rendering 33, 551 transcripts and 9, 880 genes 

in total as the “real time” transcriptome, shown in Supplementary Figure 2.7. 

First, to show the relationship between the “real time” transcriptome generated 

from PacBio long reads and the well annotated human transcriptomes, we drew a 

Venn diagram between the reference transcriptomes from Ensembl and RefSeq and 

the “real time” transcriptome using vennBLAST (Zahavi et al., 2015). Ensembl refer-

ence transcriptome has 191, 891 transcripts; RefSeq has 63, 874 transcripts; the “real 

time” transcriptome has 33, 551 transcripts. In Figure 2.1, Ensembl has the most 

transcripts, which almost cover RefSeq and the real time transcriptome. The real 

time transcriptome is about half the size of RefSeq and largely overlaps with RefSeq. 

Apparently, the three transcriptomes do not completely overlap each other, which 

indicates that the evaluations on the de novo assemblies would be very di˙erent if 

we chose di˙erent reference transcriptomes. Though the “real time” transcriptome 

is not the most complete set of human transcripts, it derives from the same biolog-

ical sample as the short reads, which eliminates the uncertainty of sample variance. 
2pbtranscript-tofu is available at: https://github.com/PacificBiosciences/cDNA_primer/ 
wiki/tofu-Tutorial-(optional).-Removing-redundant-transcripts 

https://github.com/PacificBiosciences/cDNA_primer/wiki/tofu-Tutorial-(optional).-Removing-redundant-transcripts
https://github.com/PacificBiosciences/cDNA_primer/wiki/tofu-Tutorial-(optional).-Removing-redundant-transcripts
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Fig. 2.1.: The Venn diagram of three di˙erent reference transcriptomes. A is the “real 
time” transcriptome. B is the RefSeq transcriptome. C is the Ensembl transcriptome. 
Note that the reason that the total number of transcripts in RefSeq and the real time 
transcriptome is smaller than the numbers mentioned in the text is because there are 
multiple transcripts in RefSeq and the real time transcriptome aligning to the same 
transcript in Ensembl. 

Therefore, the real time transcriptome should be more optimal as a benchmark for 

assessing short read assemblies than the other two references. 

Second, we checked whether the abundance of PacBio long reads was corresponds 

to that of the MiSeq short reads. If yes, it will provide another evidence that the 

“real time” transcriptome generated from PacBio long reads can serve as a reliable 

reference for assessing short read assemblies. A scatter plot of the ranks of the 

abundances estimated by PacBio long reads, and MiSeq short reads is shown in 

Figure 2.2. Each data point represents a gene from the “real time” transcriptome. 

Most highly expressed genes in PacBio also have high expressions as estimated by 

short reads, and lie in the right up corner. The low expression genes in PacBio have 

di˙erent expression patterns, ranging from low to high as estimated by short reads, 
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and lie along the bottom. This pattern is due to the di˙erent throughputs of two 

sequencing technologies. PacBio has a lower sequencing thoughput than the short 

read platform. Many transcripts have only one copy detected in PacBio, but these 

transcripts may have many short reads sampled in MiSeq. This relationship between 

the abundances of PacBio long reads and MiSeq short reads suggests that a majority 

of transcripts from the “real time” transcriptome should be recovered by the short 

read assembly. 

In summary, the generation of the real time transcriptome agrees with both the 

well annotated reference transcriptome and the real time sampling. Therefore, the 

real time transcriptome can be a better benchmark for assessing short read de novo 

assembling in terms of both suÿcency and specifcity. 

2.4.2 Assessments on short read de novo assembly methods 

Assemblies were performed by each method and for each method the number and 

the length of predicted transcripts are compared. In Table 2.1, Trinity generates the 

most assemblies, while Oases generates the fewest assemblies, but with longest average 

length, median length and N50. The numbers of assemblies in SOAP-denovoTrans, 

and IDBA-Tran are between those of Trinity and Oases. The distribution of the 

assembly length in Figure 2.3 shows that the assemblers can be categorized into 

three groups. Trinity tends to give more assemblies in the range of 200 − 400 bp than 

alternative methods; Oases tends to give the fewest assemblies in the range of 200−400 

bp but the curve gradually goes up, having the largest N50 = 1, 090 bp. Trans-ABySS, 

SOAPdenovoTrans, and IDBA-Tran share very similar distributions yet IDBA-Tran 

reports a slightly higher number of assemblies in the range of 300 − 400 bp than 

Trans-ABySS and SOAPdenovoTrans. This fnding is consistent with the result in 

(Wang and Gribskov, 2017), which tested the above assemblers using two authentic 

RNA-Seq datasets from Arabidopsis thaliana. Also, by comparing the assemblies with 

three reference transcriptomes in Figure 2.3, including RefSeq, Ensembl, and the “real 
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Fig. 2.2.: Correlation between the abundance ranks of PacBio long reads and MiSeq 
short reads. The gene with the lowest abundance is ranked as the frst. X-axis shows 
the ranks of gene expression in Fragments Per Kilobase of transcript per Million 
mapped reads (FPKM) estimated by RSEM (Li and Dewey, 2011) using MiSeq short 
reads. Y-axis shows the ranks of gene counts from PacBio long reads. If a gene is 
supported by 1f5p in PacBio long read sequencing, it means this gene is supported 
by one full length read and fve partial length reads in PacBio. The expression of this 
gene would be given as (1+ 0.5x5) = 3.5. 



33 

time” transcriptome, it is clear that all assemblers provide redundant assemblies; and 

the redundant assemblies are mostly in the short length range. 
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Fig. 2.3.: Cumulative curves of the assembly length from fve de novo assembly 
methods. There reference transcriptomes are also plotted as quality controls. 

The more short reads that can be aligned back to the assembly, the higher prob-

ability that the assembler has generated the correct assembly, if the gene expres-

sion level is not taken into account at this stage. Table 2.2 shows that Trinity, 

SOAPdenovo-Trans, and Trans-ABySS have 75% − 78% short reads that can be 

mapped back, while Oases and IDBA-Tran only have 56% − 59%. If we only count 

the number of concordant reads (see the second column in Table 2.2), the trend is 

the same as when we count the total number of aligned reads. This suggests that 

Trinity, SOAPdenovo-Trans and Trans-ABySS assemblies potentially contain more 
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information from the short reads than those of Oases and IDBA-Tran. However, if 

we measure the number of reads mapped back per kilobase of assembly, SOAPdenovo-

Trans, Trans-ABySS, and Oases have about 60 − 64 short reads mapped back per 

kilobase of assembly, while IDBA-Tran has 39 and Trinity has only 10. This is be-

cause, even though Trinity covers the highest number of short reads, it reports many 

more predicted assemblies than the other methods. 

Table 2.2.: The number of short reads that can be mapped back to the assemblies. 

Total number of 
read support 

Number of 
concordant reads 

Number of reads 
per 1K assmblies 

Trinity 
SOAPdenovo-Trans 
Trans-ABySS 
Oases 
IDBA-Tran 

11,897,117(78.45%) 
11,355,630(74.88%) 
11,372,597(74.99%) 
9,021,448(59.49%) 
8,595,231(56.68%) 

3,318,984(21.89%) 
2,807,074(18.51%) 
2,809,522(18.53%) 
2,089,026(13.78%) 
1,992,794(13.14%) 

9.98 
62.59 
63.64 
60.24 
38.59 

The total number of read support include both the concordantly and disconcordantly mapped 
reads. Concordant read support means both of the paired end reads can be mapped into an 
assembly in the right orientation. The disconcordant reads mean either the paired end reads 
cannot map to the same assembly or map to an assembly in a reversed manner. The number 
of aligned reads per kilobases of assemblies = the total number of read support / the total 
number of assemblies. 

We evaluated the qualities of assemblies by aligning them back to the “real time" 

transcriptome using rnaQUAST (Bushmanova et al., 2016) (version 1.4.0). We con-

sidered all main statistics reported by rnaQUAST to evaluate the quality of assem-

blies, including alignability, accuracy, completeness/sensitivity, specifcity, continuity, 

and misassembly. The overall performance of SOAPdenovo-Trans, Trans-ABySS and 

IDBA-Tran (Table 2.3,) are similar; SOAPdenovo has the highest accuracy and the 

lowest number of misassemblies in fve methods. Oases and Trinity perform very 

di˙erently, yet each has its own advantages. Oases has the longest average alignment 

length, the best continuity, specifcity, and mean isoform coverage, but Oases assem-

blies are less complete at both the gene and isoform level. Trinity has the highest 

completeness at both the gene and isoform level, and a slightly lower specifcity than 

Oases, but a relatively poor continuity and the highest rate of misassemblies. Note 
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that the specifcities are very low in all fve methods, which indicates a redundancy 

of assemblies reported. 

2.4.3 Assessments on model-based de novo assembly evaluation methods 

There are two state-of-the-art methods having been assessed here, DETONATE 

(version 1.9) and TransRate (version 1.0.1). The RSEM-EVAL module of DETO-

NATE is used for evaluating de novo assemblies without a reference transcriptome. 

The RSEM-EVAL score is the sum of three components; the likelihood estimates 

how well the assemblies are explained by the mapped short reads; the assembly prior 

assumes the assembly length follows a negative binomial distribution and the tran-

scripts are independent from each other (the number of isoforms or homogenous genes 

will infuence this component); the BIC penalty penalizes the prediction of too many 

bases and assemblies. Table 2.4 shows that the likelihood makes the largest contri-

bution to the RSEM-EVAL score. Consistent with Table 2.2 and 2.3, Trinity has the 

highest likelihood, but the lowest assembly prior and BIC penalty, which lowers its 

overall RSEM-EVAL score. On the contrary, SOAPdenovo-Trans and Trans-ABySS 

do not score highly any component, which is consistent with Table 2.3, but achieve 

the best overall RSEM-EVAL score, because no single component dominates the fnal 

evaluation. IDBA-Tran and Oases have low RSEM-EVAL scores mainly due to the 

low likelihoods, though Oases has the best assembly prior and BIC penalty, which is 

also consistent with Table 2.2 and 2.3. 

TransRate shows the opposite pattern compared with DETONATE. The Tran-

sRate assembly score is the geometric mean of the contig scores multiplied by the pro-

portion of short reads that positively support the assemblies. Each contig score is the 

product of four components: the nucleotide score measuring the alignment distance 

between the assembly and the short reads, the coverage score measuring the fraction 

of the assembly length covered by reads, the order score measuring the orientation 

of the paired-end read mapping, and the segment score measuring the per-nucleotide 
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read coverage. In Table 2.5, we fnd that Oases has the highest TransRate score.q�Q � 1 

However, after optimizing an empirical target function – T = c
n 
=1 S(C) 

n Rvalid, 

where S(C) is the contig score, n is the number of selected contigs, and Rvalid is the 

proportion of reads that can be mapped to the selected contigs – as recommended by 

TransRate, the TransRate scores of all methods greatly increase, and Trinity has the 

best optimal score. 

2.4.4 Contig scores can serve as a good metric for removing low quality 

assemblies 

In Section 2.4.2, we found that the number of predicted assemblies produced by 

de novo approaches was about 15 times of the number of transcripts in the“real time” 

transcriptome, on average; In Section 2.4.3, we found that a large portion of assem-

blies have low DETONATE and TransRate contig scores. Together, this indicates a 

redundancy of assemblies. Therefore, the question is whether DETONATE and Tran-

sRate contig scores can serve as good metrics for removing low-quality assemblies. 

We selected the top 40, 000 assemblies based on the DETONATE score, the Tran-

sRate score, and the FPKM of each assembly. An ideal selection would be an assembly 

set with no change in completeness, but with increased specifcity and continuity, and 

decreased misassembly rate, compared with the full set of assemblies. Figure 2.4 

shows the comparison between the full set and the selected set of assemblies in the 

completeness, specifcity, continuity and the misassembly rate. For completeness, the 

database coverage rates are decreased in all selected sets compared to the full set, but 

DETONATE selections show higher completeness than TransRate and FPKM. For 

specifcity, DETONATE selections show a generally higher mean fraction of matched 

assemblies than the full set of assemblies in all methods, but not the other two metrics. 

For continuity, DETONATE selections also show a generally higher mean fraction of 

isoform length assembled than the full set of assemblies; FPKM selections also have 

a higher continuity than the full set in all methods, except for Trinity. For the misas-
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sembly rate, both TransRate and FPKM selections can greatly decrease the number 

of misassemblies but not DETONATE, which might because TransRate takes the 

order score into account. 
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Fig. 2.4.: Eÿciency to remove low quality assemblies by three di˙erent metrics, 
including DETONATE contig score, TransRate contig scores and the FPKMs of con-
tigs. Four major aspects have been evaluated by comparing the top 40, 000 selected 
assemblies with the“real time" transcriptome. We evaluate the assembly quality in 
terms of the completeness, specifcity, continuity, and the misassembly rate, as that in 
Table 2.3. The misassembly rate is calculated as the number of misassemblies divided 
by the number of assemblies. 
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Table 2.3.: Evaluations of assemblies from fve de novo assembly methods by com-
paring with the “real time" transcriptome. We followed the nomenclatures used in 
rnaQUAST. 

SOAPdenovo-Trans Trans-ABySS IDBA-Tran Oases Trinity 
Alignment 
Number of alignments (hit=50bp) 
Avg aligned length (bp) 

489,823(99.87%) 
367.8 

491,598(99.86%) 
360.1 

537,458 (99.85%) 
408.8 

224,564(99.87%) 
649.8 

820,611(99.85%) 
368.4 

Accuracy 
Avg mismatches (bp) per 1K alignment 1.4 1.6 1.7 1.5 3.0 
Completeness/Sensitivity 
Gene level 
Number of > 50% covered genes 
Number of > 95% covered genes 

6,390(66.31%) 
2,805(29.11%) 

6,385(66.26%) 
2,851(29.59%) 

6,539(67.86%) 
2,796(29.02%) 

6,193(64.27%) 
2,845(29.52%) 

6,895(71.55%) 
3,085(32.02%) 

Isoform level 
Number of > 50% covered isoforms 
Number of > 95% covered isoforms 
Database coverage 
Mean isoform coverage 

7,020(21.08%) 
2,865(8.60%) 

24.1% 
48.8% 

6,952(20.87%) 
2,885(8.66%) 

23.8% 
47.9% 

7,964(23.91%) 
2,974(8.93%) 

26.4% 
52.7% 

7,726(23.20%) 
3,104(9.32%) 

25.5% 
59.9% 

10,396(31.21%) 
3,423(10.28%) 

33.7% 
53.3% 

Specifcity 
Number of > 50% matched assemblies 
Number of > 95% matched assemblies 
Mean fraction of assemblies matched 
Unannotated assemblies 

16,175(3.30%) 
10,391(2.12%) 

3.4% 
459,792(93.74%) 

16,309(3.31%) 
10991(2.23%) 

3.4% 
458,408 (93.12%) 

24,250(4.51%) 
13003(2.42%) 

4.5% 
492,515(91.50%) 

19,694(8.76%) 
9505(4.23%) 

8.6% 
192,489(85.61%) 

62,758(7.64%) 
35316(4.30%) 

7.6% 
708,017 (86.14%) 

Continuity 
Gene Level 
Number of > 50% assembled genes 
Number of > 95% assembled genes 

5,228(54.25%) 
2,270(23.56%) 

5,243(54.41%) 
2,243(23.28%) 

5,266(54.65%) 
2,123(22.03%) 

5,370(55.73%) 
2,381(24.71%) 

4,967(51.55%) 
1,800(18.68%) 

Isoform Level 
Number of > 50% assembled isoforms 
Number of > 95% assembled isoforms 
Mean isoform continuity 

5,604(16.83%) 
2,313(6.94%) 

42.4% 

5,561(16.70%) 
2,268(6.81%) 

41.5% 

6,287(18.88%) 
2,265(6.80%) 

45.5% 

6,663(20.00%) 
2,605(7.82%) 

54.3% 

7,160(21.50%) 
2,002(6.01%) 

42.9% 
Misassemblies 3,233(0.66%) 5,859(1.19%) 9,874(1.83%) 4,332(1.93%) 30,915(3.76%) 

• Completeness/sensitivity is calculated by aligning the assemblies to the genes/isoforms in the 
database, showing how completely the assemblies can cover the database. 

• Specifcity is calculated by aligning the isoforms/genes in the database to the assemblies, 
showing how specifc or redundant the assemblies are in the database. 

• Continuity is always calculated using the longest assemblies that can continuously mapped 
to the genes/isoforms in the database, showing whether the assemblies are integral. 

• Misassemblies are confrmed by both GMAP and BLASTN, meaning partial alignments from 
the one assembly can be equally well mapped to di˙erent locations in the database. 

• Genes/isoforms mean the transcripts from the real time transcriptome. Assemblies means 
the de novo assemblies generated by each assembler. 

• Gene/isoform coverage is a percentage calculated as the number of bases on the gene/isoform 
covered by the assemblies divided by the length of this gene/isoform. 

• x% covered genes/isoforms means the number of genes/isoforms that have at least x% 
gene/isoform coverage. 

• Database coverage means the total number of bases covered by assemblies divided by the 
total length of all isoforms in the database. 

• The matched fraction of each assembly is calculated as the number of matched bases on the 
assembly divided by the length of this assembly. 

• x% matched assemblies means the total number of assemblies that have at least x% matched 
fraction. 

• Unannotated assemblies mean the total number of assemblies that do not cover any isoform 
from the database. 

• Gene/isoform continuity is also a percentage calculated as the number of bases on the 
gene/isoform covered by the longest continuous assembly divided by the length of this 
gene/isoform. 

• x% assembled genes/isoforms means the number of genes/isoforms that have an at least x% 
gene/isoform continuity. 
Dark green: the best performance; Light green: good performance, slightly lower than the 
best, but better than the rest methods; Red: the lowest performance. For those having no 
color marked, their performance are comparable to each other, but obviously better than the 
red and worse than the green. 
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2.5 Discussion 

In this study, we propose a reliable benchmark – a real time transcriptome, pro-

duced by PacBio long read sequencing – for assessing the de novo assembly and 

evaluation methods. As opposed to other de novo assembly assessment strategies, 

which either simulate RNA-Seq data or utilize well annotated reference transcrip-

tome as a ground truth for real data, our study takes the advantage of sequencing 

the same biological sample using both the short read and long read technologies to 

eliminate the biological uncertainty. The real time transcriptome relies on both the 

well annotated reference transcriptome and the real time sampling, thus, the real time 

transcriptome can serve as a better reference for assessing de novo assemblies than 

the alternative simulation or a reference transcriptome. 

By comparing the de novo assemblies from fve commonly used methods to the 

real time transcriptome, we fnd that the properties of the tested assemblers vary 

signifcantly. For instance, Trinity has the highest read mapping rate (shown in 

Table 2.2), and the best completeness, but generates too many short assemblies in the 

range between 200 − 400 bases (shown in Figure 2.3). This makes Trinity assemblies 

less continuous, and potentially increasing the number of assemblies that can be 

linked by short reads (shown in Table 2.5). Trinity also has the highest misassembly 

rate of the fve methods (shown in Table 2.3). An improvement to Trinity would 

be to decrease the number of misassemblies while increasing the continuity. Oases 

generally generates the longest and the fewest assemblies in all fve methods (shown 

in Table 2.1), which gives it the best continuity and specifcity (shown in Table 2.3). 

However, Oases has a low read mapping rate (shown in Table 2.2), which makes 

it less complete than the other methods. An improvement to Oases would be to 

increase the completeness of the assemblies. The performance of SOAPdenovo-Trans, 

Tran-AByss, and IDBA-Tran are very similar, but SOAPdenovo-Trans has the lowest 

number of mismatches and misassemblies of the fve methods (shown in Table 2.3). 
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Because of the overall redundancy of de novo assemblies in all the methods, DET-

ONATE and TransRate can serve as good metrics to evaluate and remove low-quality 

assemblies, but with di˙erent patterns. The DETONATE assembly score mainly con-

siders the read mapping rate, the independence of transcripts, the total number of 

assemblies, and the number of assembled bases when evaluates the assemblies. DET-

ONATE ranks the method with no extreme disadvantages in the above aspects as the 

best (shown in Table 2.4). The TransRate assembly score is an empirical function 

that takes many di˙erent aspects into account, mainly including the mapping accu-

racy, the mapping orientation, the mapping depth, the mapping coverage, and the 

fraction of mapped reads. By taking the product of the frst four terms as the contig 

score, TransRate actually treats the frst four aspects equally, then weights the contig 

score by the fraction of mapped reads. TransRate only encourages the advantages 

but doesn’t penalize the disadvantages of the assembly, as the way DETONATE does. 

The optimization of the TransRate assembly score is a good way to select the best 

quality assemblies, but the number of selected assemblies is often low, and cannot be 

controlled by users. 

Both DETONATE and TransRate provide contig scores as an evaluation for each 

assembly. The contig scores can be used as metrics for removing redundant low quality 

assemblies. When the top 40, 000 assemblies ranked by DETONATE, TransRate 

and FPKM are examined, we fnd that the DETONATE contig score can e˙ectively 

remove the redundant assemblies while keeping a high completeness and continuity 

rate, but not be able to remove misassemblies. The TransRate contig score is very 

sensitive in removing misassemblies but not helpful in the completeness, specifcity 

and continuity. 

There is weakness in this study. For instance, only one dataset has been tested 

here, because it is not very easy to obtain the datasets which have been sequenced 

by both short read and long read technologies. It would be better to include further 

benchmark datasets to eliminate any bias from the sequencing platforms or organ-

isms. Also, we evaluated the assemblies from several major perspectives, including 
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length, the total number of assemblies, the read mapping rate, completeness, speci-

fcity, continuity and misassembly, by comparing the assemblies with the real time 

transcriptome. There may be additional perspectives that the model-based evaluation 

methods take into account, but are not included in our metrics. 

2.6 Supplementary materials 

Fig. 2.5.: MiSeq read quality visualization by FastQC before and after trimming. 
(A) and (B) are the positional qualities of forward and backward reads in the raw 
dataset. (C) and (D) are the positional read qualities of forward and backward reads 
after trimming. 
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Fig. 2.6.: Kmergenie shows kmer = 31bp is the best choice for short read assembly. 
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Fig. 2.7.: The fowchart of processing PacBio long reads into real time transcrip-
tome. We begin from the .bax.h5 raw data. The frst step is classifcation, namely 
to classify Reads of Inserts (RoIs) into full-length and non-full-length RoIs based on 
the adaptors, meanwhile removing the chimeric RoIs. The second step is clustering, 
namely to cluster RoIs into consensus, while each consensus can be viewed as a tran-
script. The third step is collapsing and correction, namely to align the consensus 
sequences back to the reference genome and get the real time transcriptome. 
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Fig. 2.8.: Selections of the thresholds for coverage and identity when align the 
consensus sequences back to the human reference genome. Because the coverage and 
identity are the only parameters the user has to set when running the collapse step in 
pbtranscript-tofu.py, and these parameters will eventually infuence the numbers of 
transcripts and genes in the real time transcriptome, we carefully select the values of 
these two parameters. (A) and (B) show the number of transcripts and genes in the 
real time transcriptome when we set di˙erent coverages and identities, respectively. 
Note that when the coverage is from 0.90 to 0.95, more transcripts/genes will be 
dropped out than the previous columns, which indicates many consensus sequences 
having a coverage between 0.90 and 0.95. To keep as much information from PacBio 
long reads as possible, we consider coverage = 0.9 is a long enough to represent 
a transcript/gene. Similarly for identity, when identity is from 0.85 to 0.90, more 
transcripts/genes will be dropped out than the previous columns. Taking the facts 
that the error rate of PacBio sequencing was about 10%-15% in 2013 and the average 
length of consensus sequence (1, 640 bp) was long enough to align the consensus 
sequence to the right position on the genome into account, we choose identity = 0.85 
in our dataset. 

https://pbtranscript-tofu.py
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3.1 Abstract 

Motivation: High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for 

quantifying gene expression. Identifcation of transcript isoforms that are di˙eren-

tially expressed in di˙erent conditions, such as in patients and healthy subjects, can 

provide insights into the molecular basis of diseases. Current transcript quantifca-

tion approaches, however, do not take advantage of the shared information in the 

biological replicates, potentially decreasing sensitivity and accuracy. 

Results: We present a novel hierarchical Bayesian model called DEIsoM (Di˙erentially 

Expressed Isoform detection from Multiple biological replicates) for identifying DE 

(Di˙erentially Expressed) isoforms from multiple biological replicates representing 

two conditions, e.g., multiple samples from healthy and diseased subjects. DEIsoM 

frst estimates isoform expression within each condition by (1) capturing common pat-

terns from sample replicates while allowing individual di˙erences, and (2) modeling 

the uncertainty introduced by ambiguous read mapping in each replicate. Specifcally, 

we introduce a Dirichlet prior distribution to capture the common expression pattern 

of replicates from the same condition, and treat the isoform expression of individual 

replicates as samples from this distribution. Ambiguous read mapping is modeled 

as a multinomial distribution, and ambiguous reads are assigned to the most prob-

able isoform in each replicate. Additionally, DEIsoM couples an eÿcient variational 

inference and a post-analysis method to improve the accuracy and speed of identif-

cation of DE isoforms over alternative methods. Application of DEIsoM to an HCC 

(Hepatocellular Carcinoma) dataset identifes biologically relevant DE isoforms. The 

relevance of these genes/isoforms to HCC are supported by PCA (Principal Compo-

nent Analysis), read coverage visualization, and the biological literature. 

Availability: The software is available at : https://github.com/hao-peng/DEIsoM 

Contact: pengh@purdue.edu 

mailto:pengh@purdue.edu
https://github.com/hao-peng/DEIsoM
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3.2 Introduction 

RNA-seq is a powerful tool for investigating the transcriptomes of various organ-

isms. There are many complex issues in RNA-seq and transcriptome analysis ranging 

from RNA-seq read correction (Le et al., 2013), transcriptome assembly (Martin and 

Wang, 2011) to alternative splicing and gene fusion detection (Ozsolak and Milos, 

2011). However, one of the most fundamental issues is to quantify and identify iso-

forms di˙erentially expressed in two conditions, while each containing multiple repli-

cates. Most DE isoform quantifcation methods treat each replicate independently, 

ignoring the fact that, because the underlying biological mechanism is the same in 

a given condition, the replicates tend to share similar expression patterns. DEIsoM 

improves DE isoform identifcation and quantifcation by catching the information 

shared between replicate samples; rather than separately estimating the isoform ex-

pression for each replicate, it captures the common expression pattern of the whole 

condition in one single model. 

Although many computational tools have been developed for quantifying and iden-

tifying DE isoforms using RNA-seq data, nearly all approaches estimate the isoform 

abundance in each replicate separately, and do not attempt to actively capture the 

aforementioned shared information. For instance, MISO (Mixture of ISOforms) (Katz 

et al., 2010) infers the isoform fractions for each replicate and evaluates the DE of 

every pair of replicates using the Bayes Factor, not considering replicates as a group. 

Additionally, MISO is slow due to its use of MCMC sampling, which is computa-

tionally challenging to adapt to the rapid growth in the amount of RNA-seq data 

(Kakaradov et al., 2012). DRIMSeq (a Dirichlet-Multinomial framework) (Nowicka 

and Robinson, 2016) infers the isoform fractions for each replicate in a Dirichlet-

Multinomial model with a fxed hyperparameter and evaluates DE between two con-

ditions by likelihood ratio test. Cu˜inks (Trapnell et al., 2012) quantifes the iso-

form abundance in individual replicates by maximum a posteriori (MAP) and detects 

DE isoforms by the hypothesis test based on Jensen-Shannon divergence. RSEM 
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(RNA-Seq by Expectation Maximization) (Li and Dewey, 2011) estimates isoform 

abundance for each replicate using an Expectation Maximization (EM) algorithm. 

EBSeq (Empirical Bayesian Seq) (Leng et al., 2013) then takes the expected counts 

from all replicates to ft a joint model and estimates the probability of DE for each 

isoform between multiple conditions. However, the variance of the expected counts 

stemming from ambiguous read mapping is simply lost in this process, compromising 

the DE isoform detection. BitSeq (Bayesian inference of transcripts from Sequencing 

data) (Glaus et al., 2012) (Hensman et al., 2015) estimates the per condition mean 

isoform abundance from multiple replicates. However, BitSeq accomplishes this esti-

mation in two stages rather than in an integrated model, which could potentially lose 

information when the “pseudo-data” from each ftted model in stage 1 is fed to the 

conjugate normal-gamma model in stage 2. Some other models do take the strategy of 

utilizing the shared information from multiple biological replicates, such as rMATS 

(Shen et al., 2014), and MAJIQ (Vaquero-Garcia et al., 2016). However, they are 

both exon-centric, quantifying and identifying alternative splicing at the exon level 

not the isoform level. 

Here, we present DEIsoM, a hierarchical Bayesian model for quantifying and iden-

tifying DE isoforms between two conditions. Other than estimating the isoform abun-

dance in each replicate separately, DEIsoM actively captures the shared information 

of perconditioned replicates in one principle framework. Specifcally, DEIsoM uses 

a Dirichlet prior distribution to capture the shared information among replicates in 

each condition, and implements a fast VB (Variational Bayesian) method to gain 

computational eÿciency instead of MCMC sampling when computing the posterior 

distributions of isoform fractions. Figure 3.1(A) shows a typical design for an RNA-

Seq experiment with three replicates in each condition. Because we assume that the 

replicates in one condition share the same underlying biological mechanism, their 

expression patterns tend to be the same within a certain sample variance. We cap-

ture this common pattern through a Dirichlet prior with a tracable and e˙eciently 

updated hyperparameter. Additionally, we evaluate the DE isoforms by computing 
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the KL (Kullback–Leibler) divergence between the posterior distributions of the two 

conditions, which is intrinsically fast in our model. Figure 3.1(B) gives a qualitative 

idea of how KL divergence is used to evaluate DE; the DE level is represented as the 

non-overlapping areas between the two posterior distributions. 

Simulations in Section 3.4 demonstrate the superior performance of DEIsoM over 

alternative methods for quantifying and predicting DE isoforms, as well as the im-

proved computational speed of VB method compared to MCMC sampling. Further-

more, on a real HCC dataset (Section 3.5), DEIsoM identifes HCC relevant DE 

isoforms which are supported by PCA, read coverage visualization, and the biological 

literature. 
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Fig. 3.1.: DEIsoM estimation concept. (A) shows a typical RNA-Seq experimental 
setting targetted by DEIsoM. There are two conditions, each of which comprises three 
replicates shown as pie charts representing the expression fractions of two isoforms 
of a particular gene. We assume that the replicates in one condition are more likely 
to share a similar expression pattern, which will be modelled by the Dirichlet prior 
distribution. (B) shows the posterior distribution of fractional isoform expression 
for each condition. The DE level of the isoform between two conditions can be 
represented by the non-overlapping regions (purely blue and yellow) under the two 
curves. In other words, the smaller the overlapping region is, i.e., the more distinct 
the two posteriors, the more di˙erentially expressed the isoforms of this gene. We 
measure this distinction by KL divergence, which is a widely recognized method to 
capture the di˙erence between two probability distributions. 
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3.3 Methods 

DEIsoM consists of three parts: the hierarchical graphical model for isoform quan-

tifcation (Section 3.3.1), the VB algorithm for model estimation (Section 3.3.2) and 

the identifcation of DE isoforms between two conditions (Section 3.3.3). 

3.3.1 Model 

Suppose we have collected RNA-seq data from M replicates in each condition. 

For the mth replicate, there are in total N (m) paired-end reads that can be aligned to 

a given gene with K isoforms. Here, we utilize the previous annotated or assembled 

isoforms, so K is known for each gene. We use a K-dimensional binary vector, Rn 
(m), to 

represent the read alignment to isoforms. If the nth read from the mth replicate maps 
(m) (m)to the kth isoform, the kth element of Rn , Rn,k , is set to be 1, and 0 otherwise. 

The unsequenced fragment length between the nth paired-end reads is denoted as 
(m) (m) (m)
λ = [λn,1 , . . . , λ ].n n,K 

First, we model how a read is generated from an isoform. We use a binary ran-
th thdom variable Z(m) to represent whether the n read of the m replicate is actually n,k 

(m)generated from the kth isoform. We call Zn,k the latent read origin. Although a read 

can map to multiple isoforms, it can only be sequenced from one isoform. Therefore, 

Zn 
(m) is a K-dimensional vector with exactly one element equal to 1 and all the oth-PK (m) (m)ers equal to 0, where Z = 1. We assume that for the mth replicate, Znk=1 n,k 

follows a multinomial distribution p(Zn 
(m)|ψ(m)), where ψ(m) is a K-dimensional vec-

tor representing the fractions of isoforms in the mth replicate for a given gene. Thus, 
(m) PK (m)

ψk ∈ [0, 1] for all k and ψk = 1. The fractions of isoforms {ψ(m)}m=1..M cank=1 

vary among replicates, but we assume that the replicates all follow the same Dirichlet 

prior distribution p(ψ|α) in each condition. Di˙erent from MISO, which uses one 

fxed prior p(ψ) for each replicate, DEIsoM shares the same prior among replicates. 

The underlying reason is that the distributions of isoforms from di˙erent replicates of 

the same condition are not independent, but share some common patterns. DEIsoM 



58 

summarizes the shared information in the hyperparameter α. In Section 3.3.2, we 

will further explain how the hyperparameter α is updated using the information from 

all replicates. 

We assume that the observed read alignments R(m) and the unsequenced fragment n,k 

length λ(m) are conditionally independent given the corresponding latent read origin n,k 

Z(m) and some fxed parameters Θ: 

(m) (m) (m) (m) (m) (m)
p(Rn,k , λn,k |Zn,k , Θ) = p(Rn,k |Zn,k , Θ)p(λn,k |Θ) 

where Θ includes lk, L, µ and σ2 . lk is the length of the kth isoform; L is the 

sequenced read length; µ and σ2 are the mean and variance of λn 
(m) respectively. The 

(m) (m)frst part, p(R |Zn,k , Θ), represents the probability that a read can be aligned ton,k 

a specifc region of the kth isoform conditioned on whether it is generated from this 

isoform. If the nth read is generated from the kth isoform, this read is assumed to be 

uniformly generated from one of all the possible positions in this isoform. Otherwise, 
(m) (m) (m) (m)

p(R |Zn,k , Θ) is 0. The number of all possible positions is ̃l = lk −(2L+λ )+1,n,k n,k n,k 

Then the conditional distribution is: 

(m) (m)
p(Rn,k = 1|Zn,k , Θ) = 

⎧⎨ ⎩ 
(m) (m)

1/l̃ if Z = 1n,k n,k 

0 otherwise. 

The second part, p(λ(m)|Θ), is the probability of observing a paired-end read withn,k 

unsequenced length λn 
(m) , which follows a normal distribution with mean µ and vari-

ance σ2 . Both µ and σ2 can be given or estimated from the aligned RNA-seq data. 

As a result, we have the following generative process for each of M replicates (Figure 

3.2): 

1. ψ(m) ∼ Dirichlet(α) 

2. For each of N (m) reads: 

(a) Zn 
(m) ∼ Multinomial(1, ψ(m)) 
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(m) (m) (m)(b) Rn,k ∼ p(Rn,k |Zn,k , Θ) 

(m)(c) λn,k ∼ Normal(µ, σ2) 

Θ
α Ψ

(m)
Zn

(m)

n

(m)

Rn
(m)

n = 1 .. N
(m)

m = 1 .. M

Fig. 3.2.: The graphical model representation of DEIsoM. 

3.3.2 Estimation 

To compute the posterior distribution of isoform fractions and read assignments, 

p(ψ, Z, R|α, Θ) 
p(ψ, Z|R, α, Θ) = 

p(R|α, Θ) 

we need to compute the denominator: 

ZY YXh 
(m) (m)

p(R|α, Θ) = p(ψ(m)|α) p(Z = 1|ψ )×n,k k 
m n k i 

(m) (m) (m)
p(R , λ |Z = 1, Θ) dψ(m) 

n,k n,k n,k 

which is computationally intractable, so we have to use approximate inference tech-

niques, such as Markov Chain Monte Carlo (MCMC) sampling method or Variational 

Bayesian method. Classical MCMC methods may take a long time to converge due 

to the high correlation between the latent variables (Section 3.4.2). The Variational 

Bayesian method (Jordan et al., 1999) tends to be faster and better scalable to large 

data for many graphical models. The VB algorithm approximates the intractable 

posterior p by a proposed distribution q, where q belongs to a family of distributions 

controlled by the variational parameters. We can optimize the variational parameters 
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to minimize the Kullback-Leibler divergence between q and the posterior p, KL(q||p). 

This is equivalent to maximizing a variational evidence lower bound. In such a way, 

the inference problem is cast to an optimization problem, which can be eÿciently 

solved by gradient-based optimization algorithms. 

For our model, we propose a family of variational distributions, which has the 

form: 

Y Y 
q(ψ(m); β(m)) q(Z(m) (m)q(ψ, Z) = n ; rn ), 

m n 

(m) (m)where q(ψ(m); β(m)) is a Dirichlet distribution parameterized by β(m) and q(Zn ; rn ) 

is a multinomial distribution parameterized by rn 
(m) . 

We use the following iterative variational EM algorithm updates to fnd the opti-

mal parameters for our model: 

1. (E-step) For each replicate, estimate the variational parameters rn 
(m) , β(m); 

2. (M-step) Maximize the variational evidence lower bound with respect to the 

hyperparameter α. 

In E-step, we estimate the posterior distribution using a very commonly used algo-

rithm, coordinate ascent variational inference (CAVI) (Bishop, 2006). We iteratively 

update: 

(m) NX(m)

ρ(m) n,k (m) (m)
rn,k = PK (m) 

and βk = αk + rn,k (3.1) 
ρl=1 n,l n=1 

where 

� � 
(m) (m) (m) (m)
ρ =p R , λ |Z = 1, Θ ×n,k n,k n,k n,k" # 

KX 
(m) (m)

exp z(βk ) − z( βl ) (3.2) 
l=1 
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and z denotes the digamma function which is the derivative of the log-gamma func-

tion. 

In M-step, we can use the Newton-Raphson method to update the hyperparame-

ter α. This method is widely used for parameter estimation of models with Dirichlet 

priors (Ronning, 1989; Minka, 2000; Blei et al., 2003). Here, we initialize the hyper-

parameter α = 1. The Newton-Raphson method fnds the stationary point of an 

objective function using the iterative updates: 

αnew = αold − H(αold)
−1 g(αold) (3.3) 

where g and H denote the gradient and the Hessian matrix of the objective function 

respectively. However, some new αk may become non-positive during the iterative 

updates, which is invalid for Dirichlet distributions. Therefore, instead of working on 

α directly, we update log(α) frst and then take the exponential of it. Let γ = log(α). 

The gradient and the Hessian of the variational lower bound with respect to γ can 

be computed as: 

KX ! 
gk(γ) =M z( αl) − z(αk) αk+ 

MX l=1 

KX ! 
αk 

(m)z(β ) − z(k 
(m)
β )l (3.4) 

m=1 l=1 

KX ! 
Hi,j (γ) = M 0(z αl)αiαj + σ(i, j)Δi(α) (3.5) 

l=1 

where we defne σ(i, j) = 1 if i = j, otherwise σ(i, j) = 0, z0 is the trigamma function, 

and ! 
KX 

Δi(α) = M z( αl) − z0(αi)αi − z(αi) αi 
l=1 ! 

M KX X 
(m) (m)

+ αi z(βi ) − z( βl ) (3.6) 
m=1 l=1 
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A drawback of taking the logarithm is that we can no longer use the special structure 

of Hessian to compute H−1g eÿciently as in Blei et al. (2003). Since Hessian com-

putation can be expensive for large K, we update γ with L-BFGS method using the 

gradient only. Updates for α will terminate when the maximum number of iterations 

is reached or the change in evidence lower bound is smaller than our threshold. 

3.3.3 Identifcation 

The DE level of an isoform can be represented as the di˙erence between the 

posterior distributions of isoform fractions under two conditions. As used in the 

Variational Bayesian method, KL divergence measures the di˙erence between any 

two distributions. Therefore, we compute the KL divergence between the posterior 

distributions of isoform fractions under the two conditions to evaluate the DE level of 

the isoforms. A higher KL divergence implies that the isoforms of this gene are more 

di˙erentially expressed under the two conditions. Specifcally, we train the model and 

estimate the posterior distribution p(ψ|R, α, Θ) with data from healthy and diseased 

conditions respectively. As described in Section 3.3.2, although the exact posterior 

distribution cannot be computed, we use the approximate posterior distributions from 

two conditions, q(ψ; β) and q0(ψ0; β0), to compute the KL divergence. Because q(ψm) 

or q0(ψm) are independent Dirichlet distributions, the KL divergence, DKL can be 

computed analytically as: 

M PK (m) K 0(m)Xn Xβ Γ(β )k=1 k kDKL(q||q 0) = log PK 0(m) 
+ log +

(m)
β Γ(β )m=1 k=1 k k=1 k 

K KX X o 
(m) 0(m) (m) (m)

[β − β ][z(β ) − z( β )] (3.7)k k k l 
k=1 l=1 

To remove the asymmetry of DKL between two conditions, we further compute the 

Jensen-Shannon divergence DJS = 1 [DKL(q||q0) + DKL(q
0||q)].

2 
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3.4 Simulations 

In this section, we present four simulation studies to test that (1) whether DEIsoM 

benefts from the shared information from the multiple biological replicates compared 

with alternative methods; (2) whether the VB inference speeds up the computation 

without loss of accuracy; (3) whether DEIsoM is robust to di˙erent simulation set-

tings; (4) whether the quantifcation of DEIsoM outperforms alternative methods 

under a more realistic setting. 

3.4.1 Comparison of fve methods on synthetic data 

To test whether the shared information contributes to DE isoform detection, we 

generate synthetic data and compare DEIsoM with four commonly used programs: 

Cu˜inks (v2.2.1), MISO (v0.5.3), RSEM (v1.2.30), and BitSeqVB (v0.7.5). The 

synthetic data are generated as follows. We frst randomly select 200 genes (1395 

isoforms) from the annotation of chromosome 1 in the hg19 human reference genome, 

in which 100 genes are labeled as containing DE isoforms and the rest are non-DE. To 

make the synthetic data more realistic, we sample the expression levels of genes from a 

log-normal distribution (Gierli«ski et al., 2015). Isoform fractions are generated from 

a symmetric Dirichlet distribution with α = 1, which means the chance of sampling 

any fraction of isoforms is equally probable. For instance, if there are three isoforms, 

the probability of sampling the isoform fraction as (0.1, 0.2, 0.7) is the same as (0.2, 

0.3, 0.5). For DE isoforms, we draw two di˙erent samples for two conditions respec-

tively; for non-DE, we draw only one sample shared by both conditions. To model the 

variation among replicates, we add Gaussian noise with a standard deviation equal to 

10% of the expression level of each replicate. According to Standards, Guidelines and 

Best Practices for RNA-Seq V1.01 , the number of paired-end RNA-Seq reads used in 

current studies is around 30 million per replicate. And for each tissue, it is generally 
1Standards, Guidelines and Best Practices for RNA-Seq V1.0 can be found at: https://genome. 
ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf 

https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
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expected more than 10, 000 genes are expressed (Consortium, 2015). Following the 

above empirical read numbers, we generate 600, 000 RNA-Seq reads for 200 genes 

using RNASeqReadSimulator 2 for each of fve replicates in both conditions, using 

default settings.3 To test the robustness of DEIsoM, we repeat the above simulation 

process 10 times. For RSEM, BitSeq, MISO, and DEIsoM, the simulated reads are 

mapped back to the reference transcriptom using Bowtie2 (Langmead and Salzberg L, 

2012). For Cu˙di˙, the reads are mapped back to the hg19 reference genome using 

Tophat (Trapnell et al., 2009). The machine used to run all experiments has two 

8-Core Intel Xeon-E5 processors and 64GB memory. 

First, we compare the quantifcation performance of DEIsoM with MISO, Cu˙di˙, 

RSEM and BitSeqVB in terms of the correlations between the predicted isoform 

fractions and the ground truth on the synthetic data. Figure 3.3 (A) summarizes 

the means and the standard errors of the correlation coeÿcients in 10 replicates. 

They show that the correlation coeÿcients in DEIsoM is higher than the alternative 

methods. 

Second, we compare the DE isoform identifcation performance of DEIsoM with 

MISO, Cu˙di˙, RSEM-EBSeq, and BitSeqVB in terms of the AUC (Area Under 

Curve) of ROC (Receiver Operating Characteristic) curves on the synthetic data. The 

ROC curves are computed based on di˙erent ranking criteria for the four methods. 

DEIsoM uses the KL divergence; MISO uses both the average of Bayes factors of 

all pairs of subjects (MISO-BF) and the average of KL divergences of posteriors of 

isoform factions (MISO-KL); Cu˙di˙ uses a log-fold-change based p-value; RSEM-

EBSeq uses the PPDE (Posterior Probability of Di˙erential Expression); BitSeqVB 

uses the PPLR (Probability of Positive Log Ratio). And we choose the “isoform-

centric” mode for MISO. Also, PPLR is more sensitive to the upregulated DE isoforms 

than the downregulated ones by defnition. Figure 3.4 (A) shows the ROC curves 
2RNASeqReadSimulator is available at: http://alumni.cs.ucr.edu/~liw/ 
rnaseqreadsimulator.html
3Our simulation code is available at: https://github.com/hao-peng/DEIsoM/tree/master/ 
simulation 

http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
https://github.com/hao-peng/DEIsoM/tree/master/simulation
https://github.com/hao-peng/DEIsoM/tree/master/simulation
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for one of the 10 repeated experiments. Figure 3.3 (B) summarizes the means and 

standard errors of the AUCs over 10 runs. They show that DEIsoM consistently 

outperforms MISO-BF, MISO-KL, Cu˙di˙, and RSEM-EBSeq on the synthetic data 

under our settings. 

Third, we compare the CPU time of DEIsoM, Cu˙di˙, RSEM-EBSeq and Bit-

SeqVB. The time we count is from the point we give the alignment fles as input to 

the point that the programs generate the quantifcation results. We summarize it in 

Supplementary Table 3.2 for one run of the simulated data and the real data which 

will be discussed in Section 3.5. The numbers of hours used by the three algorithms 

are comparable, where Cu˙di˙ is always the fastest in all methods. However, DEI-

soM has better DE isoform identifcation and quantifcation performance than the 

alternative methods, which is shown in both Section 3.4 and Section 3.5. 

3.4.2 Comparison of VB and MCMC on synthetic data 

To test whether the VB inference algorithm speeds up the computation over 

MCMC sampling without loss of accuracy, we compare the ROC curves and running 

time of the two implementations. We set the maximum iteration number as 1500 

for both VB and MCMC. The burn-in time of MCMC is 150 iterations. Note that 

the MCMC sampling here is not completely the same as MISO. MISO combines the 

Metropolis-Hasting algorithm with a Gibbs sampler. We follow the same approach 

to estimate ψ, but we iteratively sample α from its posterior distribution given a 

non-informative prior which depends on all fve replicates. Details of our MCMC 

sampling method are described in the Supplementary 3.8.1. The VB inference shows 

an advantage over MCMC in both the ROC curve and computing time within the 

limited number of iterations. Figure 3.4(B) shows the ROC curves for both imple-

mentations; VB inference achieves an AUC=0.9445 in 1.4 CPU hours, whereas the 

MCMC method has AUC=0.8844 in 56 CPU hours. Although MCMC theoretically 

can give samples from the exact target posterior distribution, it converges slowly on 
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this dataset, which may cause inaccurate predictions and long running time. How-

ever, VB usually converges before the limit is reached under the same number of 

maximum iterations. Therefore, the VB method achieves a faster speed and a higher 

accuracy than the MCMC sampling. 
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Fig. 3.3.: RNA-Seq simulation studies. (A) Means and standard errors of correlation 
coeÿcients between the estimation and the ground truth in 10 replicates, using DEI-
soM, MISO, RSEM, BitSeqVB and Cu˙di˙. (B) Means and standard errors of AUCs 
of 10 repeated simulations for DEIsoM, MISO-KL, MISO-BF, Cu˙di˙, RSEM-EBSeq 
and BitSeqVB. 

3.4.3 Comparison of sensitivity of fve methods 

To demonstrate the robustness of DEIsoM, we vary the parameter of Dirichlet 

distribution α used for generating isoform fractions. When we increase α, the variance 

of generated isoform fractions under two conditions becomes smaller, but the mean 

remains the same. As a result, the diÿculty of distinguishing DE genes from non-

DE genes increases. In this experiment, we set α = 1, 3 and 5 and keep the other 

settings unchanged to simulate the data. We test all above fve methods on the 

simulated reads to see whether they are sensitive to the change of α. Table 3.1 shows 

that as α increases, the AUCs of all methods decrease, since the task becomes harder. 
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Fig. 3.4.: RNA-Seq simulation studies. (A) ROC curve comparison of MISO, Cu˙d-
i˙, RSEM-EBSeq, BitSeqVB and DEIsoM from one run of 10 repeated experiments. 
For MISO we use two evaluation methods, MISO-KL and MISO-BF. MISO-KL de-
notes the average of KL divergences of the posteriors of isoform fractions. MISO-BF 
denotes the average of Bayes factors. (B) ROC curve comparison of VB and MCMC 
implementations of DEIsoM on the same dataset. 

However, DEIsoM consistently outperforms the alternative methods throughout all 

α settings. 

α 1 3 5 
MISO-BF 0.849 0.727 0.673 
MISO-KL 0.912 0.878 0.844 
Cu˙di˙ 0.890 0.834 0.815 

RSEM-EBSeq 0.873 0.798 0.762 
BitSeqVB 0.807 0.771 0.704 
DEIsoM 0.931 0.915 0.887 

Table 3.1.: AUCs for MISO, Cu˙di˙, RSEM-EBSeq, BitSeqVB, and DEIsoM on 
simulated data with di˙erent α. 

3.4.4 Comparison of abundance estimation 

To test the quantifcation performance of DEIsoM under a more realistic setting, we 

simulate RNA-Seq reads using real data. Two RNA-Seq datasets of human stom-
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ach tissue were chosen from the ENCODE project4 . Following the same percedure 

in Hensman et al. (2015), we estimate the abundance of 196, 317 transcripts using 

four models, RSEM, Cu˙di˙, BitSeqVB and DEIsoM, as the ground truth for each 

scenario. By feeding the ground truth to Spanki (Sturgill et al., 2013), we generate 

about 10 millions paired-end reads for each of the fve replicates under each sce-

nario. Four di˙erent evaluation criteria are used, see Supplementary 3.8.2: Theta, 

Theta-Group, WGE-True and WGE-Inter. Theta measures the accuracy of transcript 

fraction estimation for all the replicates; Theta-Group measures the accuracy of tran-

script fraction estimation for the whole group; WGE-True measures the accuracy of 

within-gene relative fractional estimation; WGE-Inter measures the predictive con-
4The datasets from ENCODE project can be found at: https://www.encodeproject.org/ 
experiments/ENCSR853WOM/ and https://www.encodeproject.org/experiments/ENCSR752UNJ/ 

https://www.encodeproject.org/experiments/ENCSR853WOM/
https://www.encodeproject.org/experiments/ENCSR853WOM/
https://www.encodeproject.org/experiments/ENCSR752UNJ/
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sistency among all replicates. Figure 3.5 summarizes the relative root mean square 

errors (RMSE) of DEIsoM, RSEM, BitSeqVB and Cu˙di˙ on four simulated datasets. 

They show that the DEIsoM RMSEs in both Theta-Group and WGE-Inter are lower 

than the other three methods, indicating that DEIsoM tends to give more consistent 

and accurate estimates for the whole condition. This result is consistent with the one 

in (Hensman et al., 2015). A similar result evaluated by the relative mean absolute 

errors (MAE) is shown in Supplementary Figure 3.9. 

3.5 Real data experiments and results 

In this section, we test whether DEIsoM successfully identifes DE isoforms in real 

data. We apply DEIsoM and alternative programs to a Hepatocellular Carcinoma 

(HCC) RNA-seq dataset, and evaluate the predicted DE isoforms by PCA, read cov-

erage visualization, and comparison to the biological literature. Aberrant alternative 

splicing is known to be involved in HCC (Berasain et al., 2010), so DE isoforms should 

be present. 

3.5.1 Data pre-processing 

RNA-seq data was collected from nine pairs of HCC tumors and their matched 

adjacent normal tissues (Sung et al., 2012) (Kan et al., 2013). The mRNA of each 

sample was extracted, amplifed and sequenced using the Illumina HiSeq 2000 plat-

form. 150 base paired-end reads were generated and aligned to the hg19 human 

reference genome using RUM (RNA-Seq Unifed Mapper) (Grant et al., 2011). The 

aligned reads are used as input to three methods, Cu˙di˙, RSEM-EBSeq, and DEI-

soM, for DE isoform detection. MISO is not included because it cannot perform a 

group-wise analysis. 
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3.5.2 PCA 

Because there is no exact ground truth for the HCC real data, we evaluate the 

quantifcation ability of each method by PCA plots. We frst choose 38 signifcantly 

DE genes that are verifed by polymerase chain reaction (PCR) from the previous 

publications (Dong et al., 2009; Wang et al., 2015; Huang et al., 2017; Wang et al., 

2017). For each gene, we sum up the Fragments Per Kilobase of transcript per 

Million mapped reads (FPKM) of all the child isoforms as the gene expression. If 

the gene/isoform expressions associated with the HCC are correctly estimated, these 

gene/isoforms can be used as features to distinguish between the normal and tumor 

samples in PCA plots. Figure 3.6 shows that DEIsoM and RSEM can linearly separate 

tumor samples from their matched normal samples; BitSeqVB has one tumor sample 

(9) very closed to the normal cluster; Cu˙di˙ misses three tumor samples (4,5,6) in 

the normal cluster. 

3.5.3 Read coverage visualization 

To understand the expression patterns of the DE isoforms selected by DEIsoM, we 

visualize the read coverage on the hg19 reference genome. Because it may be possible 

to align a read to multiple isoforms, it is hard to determine the exact expression level 

of each isoform from the read coverage visualization. But it is possible to tell the 

change in isoform expression in some cases. A previous study successfully identifed 

the genes with DE isoforms by testing the di˙erence in read coverage between two 

conditions (Stegle et al., 2010). Following the same logic, we assume that if the read 

coverage of a gene is similar in the two conditions, the isoforms of that gene will be 

predicted as non-DE. Otherwise, they are more likely to be DE. 

First, we examine the read coverage of IGF2, a gene identifed by DEIsoM as 

having DE isoforms. IGF2 is the 2nd most DE gene identifed by DEIsoM. Eight iso-

forms of IGF2 have been observed according to the human transcriptome annotation. 

Figure 3.7 (A, B) shows the read coverage of IGF2 in nine pairs of normal and tumor 
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Fig. 3.6.: PCA plots for nine pairs of HCC samples and their matched normal 
samples. Each sample is represented by a vector with 38 gene expressions. All 
these 38 genes are PCR verifed DE genes in HCC. A, B, C, D are PCA plots using 
the estimations from DEIsoM, BitSeqVB, RSEM and Cu˙di˙, respectively. Circle: 
normal sample. Cross: tumor sample. Percentage: the proportion of variance of the 
corresponding principle component. 

samples. Note that the reads aligned to the last two exons (in the box) can only 

contribute to isoform 4 (ENST00000300632). Figure 3.7(B) shows that the absolute 

numbers of reads aligned to the last two exons in all tumor samples are much lower 

than that in normal samples. Figure 3.7(C) is the same as Figure 3.7(B) but with an 

automatically scaled y-axis. (C) shows that in eight of nine tumor samples (1T, 2T, 

4T – 9T), the fractions of reads aligned to the last two exons are much lower in the 

HCC samples than that in the normal samples. This indicates that IGF2 isoform 4 

is down-regulated in HCC tumors. However, in the Cu˙di˙ results, this isoform has 
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Fig. 3.7.: Read coverage of IGF2 – a top selection by DEIsoM. The data was nor-
malized across replicates by scaling the total number of reads to that of 1N (replicate 
1 under normal condition). (A) Read coverage patterns of nine normal samples with 
y-axis scaled to 5000. (B) Read coverage patterns of nine matched tumor samples 
with y-axis scaled to 5000. (C) is the same as (B) but uses an automatically scaled 
y-axis. This illustrates that 1-5 and 8-9 tumor samples have very low read abundance 
in the last two exons, and the low signals are not due to the imposition of a fxed 
large y-axis scale. The exon positions of eight isoforms are listed under each panel. 
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a p-value of 0.039 with rank 95; in RSEM-EBSeq, the PPDE equal to 1 out of 1147 

DE isoforms all with PPDE = 1. But if we further rank the RSEM-EBSeq result 

by transcript real fold change (condition 1 over condition 2) as recommended, this 

isoform ranks 671 out of 1147 DE isoforms. 

Second, we show the read coverage of IGF2BP1, a gene identifed by Cu˙di˙ as 

having DE isoforms. Isoform 1 (ENST00000290341) of IGF2BP1 is the 6th most DE 

gene. Supplementary Figure 3.10 shows the read coverage of IGF2BP1 in normal 

and tumor samples. Note that the reads aligned to the last exon only contribute 

to isoform 1 (the box indicates the last exon). However, only four of nine tumor 

samples show moderate di˙erential expression of isoform 1 (lower than 500), and the 

expression level is near zero in all normal samples and fve of the tumor samples (1T – 

4T, 8T). Cu˙di˙ evaluates DE level using the log-fold-change between the conditions. 

This “fold” will be extremely large when the expression of one condition is near zero 

and the other is slightly higher. However, due to the low count numbers in both 

conditions, the confdence of calling this gene as having DE isoforms is low. Often, 

an empirical value is set to avoid low signals (NOTEST or LOWDATA). On the 

contrary, DEIsoM ranks IGF2BP1 as 244. Because both large sample variance and 

low read coverage lead to relatively “fat” posterior distributions in both normal and 

tumor conditions, which are close to the prior distribution. Thus, the KL divergence 

between two posterior distributions is small and the isoforms are not identifed as DE. 

Lastly, we visualize the fve least di˙erentially expressed isoforms identifed by 

DEIsoM, showing that the low ranked isoforms have very similar read coverage pat-

terns in both normal and tumor samples. Supplementary Figure 3.11 shows COX16 

has a similar read coverage pattern among all samples in both normal and tumor 

conditions. This is because a low KL divergence requires a high similarity between 

two posterior distributions of isoform fraction. 
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3.5.4 Biological relevance of predicted DE isoforms 

To further understand the functions of DE isoforms selected by DEIsoM, we ex-

amine whether they are supported by HCC relevant literature. PubMed searches 

were performed using the keywords “gene name + hepatocellular carcinoma”. Since 

most current experimental work focuses on the expression levels of genes rather than 

isoforms, we associate the DE isoforms identifed by DEIsoM, Cuÿdi˙ and RSEM-

EBSeq with their gene names. Also, we assume that if the expression of a gene 

changes, it is very likely caused by a change of its isoforms. DE isoforms/genes are 

then categorized into four groups (3, 2, 1, 0) according to their relevance to HCC. 

“Category 3” refers to a gene whose function in HCC has been well studied and can 

be used as a potential biomarker for prognosis or diagnosis. “Category 2” indicates 

that di˙erential expression of a gene has been detected in vivo, but not used as a 

biomarker. “Category 1” indicates a gene whose function has only been studied in 

vitro but not in patient biopsies. “Category 0” indicates a gene for which we found 

no HCC relevant literature. 
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Fig. 3.8.: HCC relevance of DE isoforms identifed by DEIsoM, BitSeqVB, Cu˙di˙ 
and RSEM-EBSeq. Relevance is defned as Category 3: HCC biomarkers, Category 
2: DE genes verifed in HCC tissues, Category 1: DE genes verifed in HCC cell lines, 
and Category 0: HCC non-related genes. We analyze both the top 10 and top 50 
selections for all four methods. 
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First, we compare the number of genes that are HCC biomarkers (Category 3) 

in the predictions by DEIsoM, BitSeqVB, RSEM-EBSeq and Cu˙di˙ (the frst four 

columns in Figure 3.8). In the top 10 lists, more genes are identifed as HCC biomark-

ers by DEIsoM than BitSeqVB, RSEM-EBSeq or Cu˙di˙. Specifcally, 6/10 genes 

identifed by DEIsoM (ASS1, TTR, IGF2, AHSG, GPC3, CRP) vs. 4/10 genes identi-

fed by BitSeqVB (GPC3, AFP, IGF2BP3, UBE2C), 3/10 genes identifed by Cu˙di˙ 

(SKP2, C-FOS, SOCS2) and 3/10 genes identifed by RSEM-EBSeq (PEG10, TERT, 

ACAN) and belong to Category 3. 

Second, we have examined the six specifc HCC biomarkers status (ASS1,TTR, 

IGF2, AHSG, GPC3, CRP) in the top 10 list of DEIsoM. Specifcally, ASS1 is de-

tected to be down-regulated in HCC liver samples, which can be used to predict 

metastatic relapse with a high sensitivity and specifcity (Tan et al., 2014); TTR is 

down-regulated in HCC patient serum (Qiu et al., 2008); Seon-Hee Yim et al. (Yim 

and Chung, 2010) state that both IGF2 and GPC3 are e˙ective biomarkers for HCC 

– particularly, circulating IGF2 mRNA is positive in 34% of HCC patients and 100% 

correlated with the extrahepatic metastasis; GPC3 has been reported to interact 

with the Wnt signaling pathway to stimulate cell growth in HCC; GPC3 has also 

been used combined with PEG10, MDK, SERPINI1, and QP-C as a classifer that 

successfully distinguishes noncancerous hepatic tissues from HCCs (Yim and Chung, 

2010); AHSG combined with two other HCC-associated antigens – KRT23 and FTL – 

can be used to diagnose HCC with sensitivity up to 98.2% in joint tests and specifcity 

up to 90.0% in serial tests. (Wang et al., 2009); CRP, an infammatory cytokine, is 

highly expressed in HCC and its expression is correlated with tumor size, Child-Pugh 

function and survival time (Jang et al., 2012). 

Generally, DEIsoM ranks genes/isoforms highly associated with HCC on the top. 

In the top 10 list (the frst four columns in Figure 3.8), 60% of genes identifed by 

DEIsoM as having DE isoforms are experimentally proven HCC biomarkers (Category 

3), and 90% are HCC biomarkers plus DE genes verifed in vivo (Category 3 + 2 ). 

On the contrary, BitSeqVB, RSEM-EBSeq and Cu˙di˙ show a lower performance 
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than DEIsoM – 30% to 40% of genes having DE isoforms that are experimentally 

proved HCC biomarkers (Category 3), and 40% to 50% are HCC biomarkers plus DE 

genes verifed in vivo (Category 3 + 2 ). 

Even if we expand this search to top 50 lists (the ffth column in Figure 3.8 and 

Supplementary Table 3.5), DEIsoM still identifes 18 genes (36%) as HCC biomarkers, 

and 10 genes (20%) as DE genes verifed in vivo. However, BitSeqVB, RSEM-EBSeq 

and Cu˙di˙ identify fewer literature proven DE genes than DEIsoM in the top 50 

list (the last three columns in Figure 3.8 and Supplementary Table ??). BitSeqVB 

identifes 16 genes (32%) as HCC biomarkers, 12 genes (24%) as DE genes in vivo; 

RSEM-EBSeq identifes 12 genes (24%) as HCC biomarkers and 3 genes (6%) as DE 

genes verifed in vivo; Cu˙di˙ identifes 11 genes (22%) as HCC biomarkers, 12 genes 

(24%) as DE genes in vivo. Therefore, DEIsoM has a clear superior ability to select 

DE genes that are supported by the published literature. 

Moreover, the isoforms of four genes (FGFR2, survivin, ADAMTS13 and CD44) 

identifed as DE by DEIsoM have been found to be up or down-regulated in HCC. 

This provides additional support for DE genes identifed by DEIsoM. In the case of 

FGFR2 (ranked 62 of 11950 genes), the FGFR2-IIIb isoform is down-regulated and 

has been related to HCC aggressive growth, while the FGFR2-IIIc isoform is expressed 

at the same level in normal and HCC tissues (Amann et al., 2010). All three isoforms 

of survivin (ranked 120 of 11950 genes), survivin normal, survivin 2B and survivin 

Delta Ex3 have been detected in well, moderately and poorly di˙erentiated HCC but 

none of these are found in normal tissues (Takashima et al., 2005). RT-PCR results 

are available for ADAMTS13 (ranked 201 of 11950 genes) showing di˙erences in the 

expression of three known isoforms (WT and 1, 2) between normal liver tissue and 

hepatoma cell lines (Shomron et al., 2010). For CD44 (ranked 607 of 11950 genes), 

CD44-v6 is up-regulated in HCC, while CD44 standard form remains stable (Zhang 

et al., 2010). 

To more clearly understand the performance of di˙erent methods, we also ex-

amine the overlapping DE genes in the top 200 lists from the compared methods. 
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Supplementary Table 3.3 shows the overlapping DE genes by feeding the FPKM of 

all isoforms from each method to EBSeq. This tests the quantifcation similarity 

between any two methods. According to the number of overlapping DE genes, the 

quantifcation performance of RSEM and BitSeqVB are the most similar, followed 

by RSEM and DEIsoM. Supplementary Table 3.4 shows the overlapping DE genes 

using the DE evaluation methods of their own. This tests the performance of both 

the quantifcation and DE identifcation. After changing the DE evaluation method, 

the number of overlapping DE genes between RSEM and BitSeq decreases from 96 

to 62, while this number between RSEM and DEIsoM decreases from 74 to 14, which 

suggests that KL divergence performs di˙erently from PPDE or PPLR. PPDE and 

PPLR are only sensitive to the absolute abundance change of an isoform, while KL 

divergence is sensitive to the overall isoform fractional pattern change within a gene, 

not limited to the absolute abundance change. This is useful in searching isoform 

switching events in many cases. 

3.6 Discussion 

In contrast to the models that treat each biological replicate separately, DEIsoM 

incorporates all biollogical replicates in one seamless framework. By capturing the 

shared information across multiple biological replicates, DEIsoM achieves a higher 

prediction accuracy and inter-replicate consistency than the alternative methods in 

the simulation studies (Section 3.4.1, 3.4.3, 3.4.4). This shared information comes 

from the intrinsic fact that all the replicates in one condition share the same underly-

ing biological mechanism. As described in model construction (Section 3.3.1), we use 

a Dirichlet prior to represent a base fraction–which is characterized by the hyperpa-

rameter α and learned from data—and then sample the instance-specifc fraction for 

each replicate. The fractions for di˙erent replicates are not necessarily the same — 

because we allow some within-condition variance — however, those fractions retain 

underlying coherence since they are sampled from the same Dirichlet prior (or the 
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base fraction). In addition, as the conjugate prior for the multinomial distribution, 

the Dirichlet prior enables close-form, eÿcient updates in our VB inference, which 

greatly benefts the computation. Furthermore, faster computing speed is gained 

using the VB algorithm, instead of the MCMC sampling used in MISO, during the 

inference step. The VB method converts a sampling problem to an optimization prob-

lem and speeds up the estimation (Section 3.4.2). DEIsoM is also promising in real 

applications. On the HCC dataset, by PCA plotting, we fnd that the normal and 

tumor samples can be linearly separated by the estimated expression levels of PCR 

verifed DE genes, suggesting an accurate quantifcation of DE isoforms in DEIsoM. 

Using read coverage visualization, we fnd that the DEIsoM KL divergence is capable 

of identifying isoforms whose read coverage patterns change, and does not give false 

positive results for isoforms with low read abundance in both conditions. This prop-

erty is desirable in practice, since a low number of reads causes a large uncertainty 

in estimation. In DEIsoM, the posterior distributions of both conditions are close 

to the uniformly distributed prior if the read number is low, which reduces the KL 

divergence between the two conditions. However, neither Cu˙di˙ nor RSEM-EBSeq 

will automatically prune such isoforms (Section 3.6, 3.7). Moreover, a great number 

of isoforms predicted to be DE by DEIsoM are supported by the biological literature, 

providing encouraging results for real applications. 

However, there are still some improvements that could be incorporated into DEI-

soM. First, DEIsoM builds on the approach of MISO, which considers the quantifca-

tion of isoforms gene by gene. In order to handle the reads multi-mapped to di˙erent 

gene loci, we have also added a variant version of DEIsoM that simultaneously con-

siders all transcript isoforms, rather than performing a gene by gene analysis. This 

enhancement will allow the inclusion of multiply mapped reads into the analysis. 

However, the KL divergence is not applicable to this version, since KL divergence 

measures the isoform pattern change within a gene. Second, the KL divergence as a 

DE evaluation method is not based on a hypothesis test, but rather on the di˙erence 

of the posterior distributions of fractional isoform expression between two conditions, 



79 

so it only provides a rank instead of p-values to infer “signifcantly” DE genes. How-

ever, KL divergence is sensitive to the overall isoform pattern change within a gene, 

and more di˙erentiable for ranking isoforms/genes than p-values, which tend to give 

the same rank to many genes. DEIsoM allows the estimated isoform levels to be 

reported as FPKM, thereby allowing p-values to be calculated by many existing dif-

ferential expression analysis methods. Lastly, DEIsoM assumes a known reference 

genome/transcriptome and the uniform read distribution. The misannotation or the 

non-uniformity of the read data may compromise the estimation accuracy in DEI-

soM. We are considering including the novel isoform construction and the modeling 

of non-uniformly distributed read data into our future versions. 

3.7 Conclusion 

We propose a hierarchical Bayesian model, DEIsoM, for detecting DE isoforms 

using multiple biological replicates from two conditions. DEIsoM captures the infor-

mation shared across replicates, and provides fast and accurate prediction compared 

to alternative methods in simulations. On the HCC real dataset, the estimated ex-

pression levels of PCR verifed DE genes can be used as features to separate the tumor 

samples from their matched normal samples in PCA plots; read coverage visualization 

confrms that DEIsoM KL divergence is capable of identifying DE isoforms. DEIsoM 

is relatively resistant, compared to alternative methods, to identifying isoforms with 

low read abundance in both conditions as DE. Biological literature review suggests 

that the DE isoforms selected by DEIsoM have high relevance to HCC. 
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3.8 Supplementary materials 

3.8.1 Model 

Derivations for the variational Bayesian inference 

First we compute a variational lower bound for the log model evidence: 

ZY YX h i 
log p(R|α, Θ) = log p(ψ(m)|α) p(Z(m)|ψ(m)

)p(R(m), λ(m)|Z(m), Θ) dψ(m) 
n k n n n 

m n (m)
Zn 

(3.8) 
MX� 

≥ Eq[log p(ψ
(m)|α)] − Eq[log q(ψ

(m))]+ 
m=1 

NX(m) h i 
Eq[log p(Z

(m)|ψ(m)
)] + Eq[log p(Rn 

(m) , λ(m)|Zn 
(m) , Θ)] − Eq[log q(Zn 

(m))]n k n 
n=1 

(3.9) 
M K K K KX� X X X X 

(m) (m)
= log Γ( αk) − log Γ(αk) + (αk − 1)(z(βk ) − z( βl )) 

m=1 k=1 k=1 k=1 l=1 

K K K KX X X X 
(m) (m) (m) (m) (m)− log Γ( β ) + Γ(β ) − (β − 1)(z(β ) − z( β ))k k k k l 

k=1 k=1 k=1 l=1 

NX(m) K K�X X 
(m) (m) (m)

+ r (z(β ) − z( β ))n,k k l 
n=1 k=1 l=1 

KX 
(m) (m) (m) (m)

+ r log p(R , λ |Z = 1, Θ)n,k n,k n,k n,k 
k=1 XK �	(m) (m)− r log r (3.10)n,k n,k 
k=1 

=L. (3.11) 
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The gradient with respect to βk 
(m) is 

NX(m) K NX(m) KX X∂L (m) (m) (m) (m) (m) (m) 
(m) 

= (αk − βk + rn,k )z
0(βk ) − (αl − βl + rn,l )z

0( βk ). 
∂βk n=1 l=1 n=1 l=1 

(3.12) 

Setting the gradient to zero for k = 1, . . . , K, we have the optimum 

NX 
(m) (m)
β r (3.13)k = αk + n,k . 

n=1 

(m)The gradient with respect to rn,k is 

KX∂L (m) (m) (m) (m) (m) (m)
= z(β ) − z( β ) + log p(R , λ |Z = 1, Θ) − log r − 1 

(m) k l n,k n,k n,k n,k
∂rn,k l=1 

(3.14) 

Setting the gradient to zero, we have the optimum 

" # 
KX 

(m) (m) (m) (m) (m) (m) (m)
r ∝ ρ = p(R , λ |Z = 1, Θ) exp z(β ) − z( β ) (3.15)n,k n,k n,k n,k n,k k l 

l=1 

PK (m)Since r = 1, we have k=1 n,k 

(m)
ρ(m) n,k 

rn,k = PK (m) 
. (3.16) 

ρl=1 n,l 

The gradient with respect to αk is ! ! 
K M KX X X∂L (m) (m)

=M z( αl) − z(αk) + z(βk ) − z( βl ) . (3.17)
∂αk 

l=1 m=1 l=1 
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The (i, j)th element of the Hessian matrix is 

!X∂L 
=M z0( 

K 

αl) − σ(i, j)z0(αj ) , (3.18)
∂αi∂αj 

l=1 

while σ(i, j) = 1 if and only if i = j, otherwise σ(i, j) = 0. To ensure α is always 

positive during optimization, we let γ = log(α) and optimize γ instead. Taking the 

gradient with respect to γk, we have ! ! 
K M KX X X∂L (m) (m)

=M z( αl) − z(αk) αk + αk z(βk ) − z( βl ) . (3.19)
∂γk 

l=1 m=1 l=1 

The (i, j)th element of the Hessian matrix is 

!X∂L 0( 
K 

=M z αl)αiαj (3.20)
∂γi∂γj 

l=1 " ! !# 
K M KX X X 

(m) (m)
+ σ(i, j)αi M z( αl) − z0(αi)αi − z(αi) + z(βi ) − z( βl ) 

l=1 m=1 l=1 

Model inference with MCMC sampling 

We use the Markov chain Monte Carlo (MCMC) inference method to compare 

with our proposed Variational Bayesian (VB) inference method. Similarly to MISO, 

we use a combination of Metropolis-Hastings (MH) algorithm and a Gibbs sampling 

algorithm. Within a replicate, the sampling steps are exactly the same as MISO. 

To sample the target posterior distribution, p(ψ(m)|R, λ), we use a softmax-normal 

distribution as the purposed the distribution for the MH algorithm. To sample the 

target posterior distribution, p(Z|R, λ), we use the usual Gibbs steps for Dirichlet-

Multinomial models. Di˙erent from MISO, we assume a non-informative prior for 

α, such that p(α) is a constant. We use an additional MH sampling step to sample 

α from its posterior distributions given the samples of {ψ(m)}M , where we use a 

log-normal distribution as the proposal distribution. The sampling scheme follows: 
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(m) (m) (m)1. Initialize α0, and for m = 1..M initialize µ , ψ and Z0 0 0 

2. For t = 1..[max number of iterations]: 

(a) For m = 1..M : 

(m) (m)i. Propose µ and ψ as:t+1 t+1 

(m) (m)
µ ∼N (µ , Σ)t+1 t 

(m) (m)
ψ ∼σ(µ )t+1 t+1 

ewhere σ(·) is the softmax function σ(v) = PK 

v 

vk 
. 

k=1 e 

(m) (m)ii. Accept µ and ψ with probability: t+1 t+1 ! 
(m) (m) (m) (m)

p(ψt+1 , Zt , αt)q(ψt |ψt+1 )Paccept = min , 1 
(m) (m) (m) (m)

p(ψ , Z , αt)q(ψ |ψ )t t t+1 t 

where q(·) is the proposed softmax-normal distribution. 

iii. For n = 1..N (m): 

A. Compute the conditional posterior of assigning a read for every 

isoform 1 ≤ k ≤ K: 

(m) (m)
θi = p(Z = 1|ψ , R(m), λ(m))n,k t+1 n n 

B. Sample an assignment for this read: 

Z
(m) ∼ Multinomial(1, [θ1, ...θK ])n,t+1 

(b) Propose αt+1 as: 

˜αt+1 ∼ ln N (ln(αt), Σ) 

where ln N (·) denotes the log-normal distribution. 
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(c) Accept αt+1 with probability: � � 
p(ψt+1, αt+1)q(αt|αt+1)

P̃  
accept = min , 1 

p(ψt+1, αt)q(αt+1|αt) 

(1) (M)where ψt+1 includes ψt+1..ψt+1 and q(·) is the proposed log-normal distri-

bution. 

3.8.2 Simulated data 

Evaluation measures 

The following evaluation measures with root mean square errors are used: 

r � �2 
1 PM 1 PK (m) − ˆ(m) (m) ˆ(m)Theta: ψ ψ , where ψ and ψ denote the true
M m=1 K k=1 k k k k 

and estimated fraction for transcript k of replicate m, k = 1, . . . , K and m = 1, . . . ,M . 

r �2 
1 PK 

� 
1 PM (m) (m)Theta-Group: ψ̄ 

k − ψ̂ , where ψ̂ denotes the estimated 
K k=1 M m=1 k k 

¯fraction for transcript k of replicate m, k = 1, . . . , K and m = 1, . . . ,M , and ψk 

denotes the true group mean fraction for transcript k before generating the fraction 

for each replicate using negative binomial process. 

r � �2 (m) 
1 PM 1 PK (m) (m) (m) ψk (m)WGE-True: q − q̂  , where q = P (m) and q̂ = 
M m=1 K k=1 k k k kψj∈Tk j 

(m)
ψkP 
ˆ

ˆ denote the within gene true and estimated fraction for transcript k of repli-(m)
ψj∈Tk j 

cate m, k = 1, . . . , K and m = 1, . . . ,M . Also Tk denotes the set of transcripts in the 

same parent gene as transcript k: Tk = {j : transcript j is in the same gene as transcript k}. 

r � 
2 P 

1 PK (i) (j) 
�2 

WGE-Inter: q̂  − q̂  .
M(M−1) 1≤i<j≤M K k=1 k k 

Supplementary fgures and tables 
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Fig. 3.9.: Relative mean absolute errors (MAEs) of DEIsoM, RSEM, BitSeq and 
Cu˙di˙ on four simulated datasets. Theta: estimated relative transcript expression 
compared with the ground truth for replicates. Theta-Group: mean estimated relative 
transcript expression of replicates compared with the true group means. WGE-True: 
within gene estimates compared with the ground truth. WGE-Inter: inter-replicate 
consistency of within gene estimates. 

Table 3.2.: A comparison between the total CPU times for methods evaluated on 
synthetic data and real data. We include the user time and system time in computing 
the total CPU time. 

DEIsoM Cu˙di˙ RSEM-EBSeq BitSeq 
Simulated data 
Real HCC data 

1.4h 
137h 

1.1h 
56.9h 

1.5h 
353h 

3.2h 
95.8h 
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3.8.3 Real data 
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Fig. 3.10.: The read coverage visualization of the top DE isoform selected by Cu˙di˙. 
The isoform 1 (blue box) of IGF2BP1 has been identifed as the 6th most DE isoform 
by Cu˙di˙. The left panels show the read coverage patterns of nine normal samples, 
whereas the right panels show the read coverage of nine matched tumor samples. 

Table 3.3.: The number of overlapped genes in the top selected DE genes between 
methods. All methods use the same evaluation method to rank the gene. The FPKM 
have been computed by DEIsoM, Cu˙di˙, RSEM and BitSeqVB frst. Then EBSeq 
is used to rank the DE genes. 

# of selected genes 10 20 50 100 200 
BitSeq and RSEM-EBSeq 
RSEM-EBSeq and DEIsoM 
RSEM-EBSeq and Cu˙di˙ 

BitSeq and DEIsoM 
BitSeq and Cu˙di˙ 
Cu˙di˙ and DEIsoM 

1 
0 
1 
1 
1 
2 

1 
2 
4 
2 
3 
3 

14 
12 
11 
10 
9 
6 

39 
33 
34 
34 
24 
23 

96 
74 
73 
71 
62 
51 
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Fig. 3.11.: The read coverage visualization of the bottom selection by DEIsoM. The 
isoforms of COX16 are selected as non-DE. The left panels show the read coverage 
patterns of nine normal samples, whereas the right panels show nine matched tumor 
samples. It illustrates that the read coverage patterns are very similar between two 
conditions. 

Table 3.4.: The number of overlapped genes in the top selected DE genes between 
methods. Di˙erent methods use di˙erent DE evaluations to rank the gene. Cu˙di˙ 
uses log-fold-change based p-values; RSEM uses PPDE and further real fold change 
estimated by EBSeq; BitSeqVB uses PPLR; DEIsoM uses KL divergence. 

# of selected genes 10 20 50 100 200 
BitSeq and RSEM-EBSeq 
RSEM-EBSeq and Cu˙di˙ 
RSEM-EBSeq and DEIsoM 

BitSeq and Cu˙di˙ 
BitSeq and DEIsoM 
Cu˙di˙ and DEIsoM 

2 
0 
0 
0 
1 
0 

5 
0 
0 
0 
2 
0 

11 
1 
1 
0 
2 
0 

26 
3 
4 
2 
6 
1 

62 
23 
14 
13 
11 
3 
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Table 3.5.: Biological relevance of the top 50 DE genes selected by DEIsoM on HCC 
data and the corresponding references (Date: by 2016-11-12). 

Rank Gene ID Symbol Level Reference 
1 ENSG00000130707 ASS1 3 https://www.ncbi.nlm.nih.gov/pubmed/24946162 
2 ENSG00000118271 TTR 3 https://www.ncbi.nlm.nih.gov/pubmed/17828420 
3 ENSG00000167244 IGF2 3 https://www.ncbi.nlm.nih.gov/pubmed/21769080 
4 ENSG00000145192 AHSG 3 https://www.ncbi.nlm.nih.gov/pubmed/19304375 
5 ENSG00000011465 DCN 2 https://www.ncbi.nlm.nih.gov/pubmed/12521301 
6 ENSG00000243649 CFB 2 https://www.ncbi.nlm.nih.gov/pubmed/24195504 
7 ENSG00000188257 PLA2G2A 0 -
8 ENSG00000250722 SEPP1 2 https://www.ncbi.nlm.nih.gov/pubmed/19304375 
9 ENSG00000147257 GPC3 3 https://www.ncbi.nlm.nih.gov/pubmed/22706665 
10 ENSG00000132693 CRP 3 https://www.ncbi.nlm.nih.gov/pubmed/1337988 
11 ENSG00000019582 CD74 0 -
12 ENSG00000138115 CYP2C8 0 -
13 ENSG00000166710 B2M 2 https://www.ncbi.nlm.nih.gov/pubmed/10879242 
14 ENSG00000055957 ITIH1 0 -
15 ENSG00000081051 AFP 3 https://www.ncbi.nlm.nih.gov/pubmed/22620007 
16 ENSG00000151655 ITIH2 0 -
17 ENSG00000159403 C1R 0 -
18 ENSG00000100197 CYP2D6 2 https://www.ncbi.nlm.nih.gov/pubmed/16048566 
19 ENSG00000244255 0 -
20 ENSG00000169439 SDC2 0 -
21 ENSG00000167711 SERPINF2 2 https://www.ncbi.nlm.nih.gov/pubmed/16980951 
22 ENSG00000185813 PCYT2 0 -
23 ENSG00000166741 NNMT 3 https://www.ncbi.nlm.nih.gov/pubmed/19216803 
24 ENSG00000160862 AZGP1 3 https://www.ncbi.nlm.nih.gov/pubmed/22625427 
25 ENSG00000167996 FTH1 0 https://www.ncbi.nlm.nih.gov/pubmed/12029631 
26 ENSG00000122786 CALD1 0 -
27 ENSG00000142541 RPL13A 2 https://www.ncbi.nlm.nih.gov/pubmed/16820872 
28 ENSG00000117601 SERPINC1 3 https://www.ncbi.nlm.nih.gov/pubmed/16820872 
29 ENSG00000109971 HSP70 3 https://www.ncbi.nlm.nih.gov/pubmed/14673798 
30 ENSG00000185624 P4HB 0 -
31 ENSG00000142192 APP 1 https://www.ncbi.nlm.nih.gov/pubmed/9243801 
32 ENSG00000160868 CYP3A4 3 https://www.ncbi.nlm.nih.gov/pubmed/23891548 
33 ENSG00000204628 GNB2L1 2 https://www.ncbi.nlm.nih.gov/pubmed/16820872 
34 ENSG00000008394 MGST1 0 -
35 ENSG00000197111 PCBP2 3 https://www.ncbi.nlm.nih.gov/pubmed/27748915 
36 ENSG00000148672 GLUD1 0 -
37 ENSG00000136011 STAB2 2 https://www.ncbi.nlm.nih.gov/pubmed/23870052 
38 ENSG00000116171 SCP2 0 -
39 ENSG00000110492 MDK 3 https://www.ncbi.nlm.nih.gov/pubmed/17317821 
40 ENSG00000213494 CCL14 0 -
41 ENSG00000166278 C2 0 -
42 ENSG00000114867 EIF4G1 0 -
43 ENSG00000142748 FCN3 2 https://www.ncbi.nlm.nih.gov/pubmed/17006932 
44 ENSG00000003436 TFPI 0 -
45 ENSG00000198363 ASPH 3 https://www.ncbi.nlm.nih.gov/pubmed/22245894 
46 ENSG00000116882 HAO2 3 https://www.ncbi.nlm.nih.gov/pubmed/26658681 
47 ENSG00000197746 PSAP 0 -
48 ENSG00000198848 CES1 3 https://www.ncbi.nlm.nih.gov/pubmed/19658107 
49 ENSG00000138674 SEC31A 0 -
50 ENSG00000127831 VIL1 3 https://www.ncbi.nlm.nih.gov/pubmed/22530999 

https://www.ncbi.nlm.nih.gov/pubmed/24946162
https://www.ncbi.nlm.nih.gov/pubmed/17828420
https://www.ncbi.nlm.nih.gov/pubmed/21769080
https://www.ncbi.nlm.nih.gov/pubmed/19304375
https://www.ncbi.nlm.nih.gov/pubmed/12521301
https://www.ncbi.nlm.nih.gov/pubmed/24195504
https://www.ncbi.nlm.nih.gov/pubmed/19304375
https://www.ncbi.nlm.nih.gov/pubmed/22706665
https://www.ncbi.nlm.nih.gov/pubmed/1337988
https://www.ncbi.nlm.nih.gov/pubmed/10879242
https://www.ncbi.nlm.nih.gov/pubmed/22620007
https://www.ncbi.nlm.nih.gov/pubmed/16048566
https://www.ncbi.nlm.nih.gov/pubmed/16980951
https://www.ncbi.nlm.nih.gov/pubmed/19216803
https://www.ncbi.nlm.nih.gov/pubmed/22625427
https://www.ncbi.nlm.nih.gov/pubmed/12029631
https://www.ncbi.nlm.nih.gov/pubmed/16820872
https://www.ncbi.nlm.nih.gov/pubmed/16820872
https://www.ncbi.nlm.nih.gov/pubmed/14673798
https://www.ncbi.nlm.nih.gov/pubmed/9243801
https://www.ncbi.nlm.nih.gov/pubmed/23891548
https://www.ncbi.nlm.nih.gov/pubmed/16820872
https://www.ncbi.nlm.nih.gov/pubmed/27748915
https://www.ncbi.nlm.nih.gov/pubmed/23870052
https://www.ncbi.nlm.nih.gov/pubmed/17317821
https://www.ncbi.nlm.nih.gov/pubmed/17006932
https://www.ncbi.nlm.nih.gov/pubmed/22245894
https://www.ncbi.nlm.nih.gov/pubmed/26658681
https://www.ncbi.nlm.nih.gov/pubmed/19658107
https://www.ncbi.nlm.nih.gov/pubmed/22530999
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Table 3.6.: Biological relevance of the genes of the top 50 DE isoforms selected 
by RSEM-EBSeq on HCC data and the corresponding references (Date: by 2016-11-
12).(∗: Clone-based (Vega)) 

Rank Gene ID Symbol Level Reference 
1 ENSG00000242265 PEG10 3 https://www.ncbi.nlm.nih.gov/pubmed/24369324 
2 ENSG00000187243 MAGED4B 0 -
3 ENSG00000130829 DUSP9 0 -
4 ENSG00000164362 TERT 3 https://www.ncbi.nlm.nih.gov/pubmed/26099527 
5 ENSG00000206557 TRIM71 0 -
6 ENSG00000225546 LVCAT5 0 -
7 ENSG00000157766 ACAN 3 https://www.ncbi.nlm.nih.gov/pubmed/22912547 
8 ENSG00000225210 AL589743.1∗ 0 -
9 ENSG00000159217 IGF2BP1 2 https://www.ncbi.nlm.nih.gov/pubmed/24395596 
10 ENSG00000238107 RP11-495P10.5∗ 0 -
11 ENSG00000139219 COL2A1 1 https://www.ncbi.nlm.nih.gov/pubmed/21731504 
12 ENSG00000185686 PRAME 0 -
13 ENSG00000231196 RP11-495P10.8∗ 0 -
14 ENSG00000223572 CKMT1A 0 -
15 ENSG00000096088 PGC 0 -
16 ENSG00000126752 SSX1 1 https://www.ncbi.nlm.nih.gov/pubmed/24798046 
17 ENSG00000254233 LVCAT8 0 -
18 ENSG00000253293 HOXA10 1 https://www.ncbi.nlm.nih.gov/pubmed/25120782 
19 ENSG00000214814 FER1L6 0 -
20 ENSG00000136231 IGF2BP3 3 https://www.ncbi.nlm.nih.gov/pubmed/18802962 
21 ENSG00000233539 LOC730338 0 -
22 ENSG00000110347 MMP12 3 https://www.ncbi.nlm.nih.gov/pubmed/21683576 
23 ENSG00000228651 RP11-556E13.1∗ 0 -
24 ENSG00000181617 FDCSP 0 -
25 ENSG00000081051 AFP 3 https://www.ncbi.nlm.nih.gov/pubmed/22620007 
26 ENSG00000043355 ZIC2 1 https://www.ncbi.nlm.nih.gov/pubmed/26426078 
27 ENSG00000106031 HOXA13 3 https://www.ncbi.nlm.nih.gov/pubmed/25341685 
28 ENSG00000107984 DKK1 3 https://www.ncbi.nlm.nih.gov/pubmed/27458854 
29 ENSG00000133063 CHIT1 0 -
30 ENSG00000147485 PXDNL 0 -
31 ENSG00000179083 FAM133A 0 -
32 ENSG00000264424 MYH4 0 -
33 ENSG00000172016 REG3A 2 https://www.ncbi.nlm.nih.gov/pubmed/16314847 
34 ENSG00000226674 TEX41 0 -
35 ENSG00000074211 PPP2R2C 0 -
36 ENSG00000086548 CEACAM6 0 -
37 ENSG00000154277 UCHL1 2 https://www.ncbi.nlm.nih.gov/pubmed/18666234 
38 ENSG00000178999 AURKB 3 https://www.ncbi.nlm.nih.gov/pubmed/20799978 
39 ENSG00000168955 TM4SF20 0 -
40 ENSG00000183837 PNMA3 0 -
41 ENSG00000163993 S100P 3 https://www.ncbi.nlm.nih.gov/pubmed/23785431 
42 ENSG00000168243 GNG4 0 -
43 ENSG00000112818 MEP1A 3 https://www.ncbi.nlm.nih.gov/pubmed/26660154 
44 ENSG00000236849 LINC01474 0 -
45 ENSG00000171243 SOSTDC1 0 -
46 ENSG00000198074 AKR1B10 3 https://www.ncbi.nlm.nih.gov/pubmed/27672277 
47 ENSG00000204832 ST8SIA6-AS1 0 -
48 ENSG00000251049 RP11-685F15.1∗ 0 -
49 ENSG00000123496 IL13RA2 0 -
50 ENSG00000229183 PGA4 0 -

https://www.ncbi.nlm.nih.gov/pubmed/24369324
https://www.ncbi.nlm.nih.gov/pubmed/26099527
https://www.ncbi.nlm.nih.gov/pubmed/22912547
https://www.ncbi.nlm.nih.gov/pubmed/24395596
https://www.ncbi.nlm.nih.gov/pubmed/21731504
https://www.ncbi.nlm.nih.gov/pubmed/24798046
https://www.ncbi.nlm.nih.gov/pubmed/25120782
https://www.ncbi.nlm.nih.gov/pubmed/18802962
https://www.ncbi.nlm.nih.gov/pubmed/21683576
https://www.ncbi.nlm.nih.gov/pubmed/22620007
https://www.ncbi.nlm.nih.gov/pubmed/26426078
https://www.ncbi.nlm.nih.gov/pubmed/25341685
https://www.ncbi.nlm.nih.gov/pubmed/27458854
https://www.ncbi.nlm.nih.gov/pubmed/16314847
https://www.ncbi.nlm.nih.gov/pubmed/18666234
https://www.ncbi.nlm.nih.gov/pubmed/20799978
https://www.ncbi.nlm.nih.gov/pubmed/23785431
https://www.ncbi.nlm.nih.gov/pubmed/26660154
https://www.ncbi.nlm.nih.gov/pubmed/27672277
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Table 3.7.: Biological relevance of the gene of the top 50 DE isoforms selected by 
Cu˙di˙ on HCC data and the corresponding references (Date: by 2016-11-12).(∗: 
Clone-based (Vega)) 

Rank Gene ID Symbol Level Reference 
1 ENSG00000145604 SKP2 3 https://www.ncbi.nlm.nih.gov/pubmed/27779207 
2 ENSG00000170345 C-FOS 3 https://www.ncbi.nlm.nih.gov/pubmed/22582734 
3 ENSG00000171848 R2 0 -
4 ENSG00000232001 AC108868.6∗ 0 -
5 ENSG00000116761 CTH 0 -
6 ENSG00000197408 CYP2B6 2 https://www.ncbi.nlm.nih.gov/pubmed/25024626 
7 ENSG00000130635 COL5A1 0 -
8 ENSG00000120833 SOCS2 3 https://www.ncbi.nlm.nih.gov/pubmed/23475171 
9 ENSG00000238106 0 -
10 ENSG00000236786 TSPY15P 0 -
11 ENSG00000171408 PDE7B 0 -
12 ENSG00000121691 CAT 3 https://www.ncbi.nlm.nih.gov/pubmed/21985599 
13 ENSG00000174992 ZG16 2 https://www.ncbi.nlm.nih.gov/pubmed/17307141 
14 ENSG00000183748 LOC101928757 0 -
15 ENSG00000216649 GAGE12E 0 -
16 ENSG00000167780 ACAT2 2 https://www.ncbi.nlm.nih.gov/pubmed/24163426 
17 ENSG00000090889 KIF4A 2 https://www.ncbi.nlm.nih.gov/pubmed/25998931 
18 ENSG00000263585 RP11-498C9.13∗ 0 -
19 ENSG00000205362 MT1A 3 https://www.ncbi.nlm.nih.gov/pubmed/16703398 
20 ENSG00000219607 PPP1R3G 0 -
21 ENSG00000249842 CTD-2331D11.4∗ 0 -
22 ENSG00000226164 FGFR3P6 0 -
23 ENSG00000260886 TAT-AS1 0 -
24 ENSG00000128266 GNAZ 2 https://www.ncbi.nlm.nih.gov/pubmed/16264227 
25 ENSG00000162769 FLVCR1 2 https://www.ncbi.nlm.nih.gov/pubmed/27387388 
26 ENSG00000184374 COLEC10 0 -
27 ENSG00000232164 LOC729348 0 -
28 ENSG00000072080 SPP2 0 -
29 ENSG00000092621 PHGDH 1 https://www.ncbi.nlm.nih.gov/pubmed/25872475 
30 ENSG00000116017 ARID3A 2 https://www.ncbi.nlm.nih.gov/pubmed/27458175 
31 ENSG00000156510 HKDC1 3 https://www.ncbi.nlm.nih.gov/pubmed/27155152 
32 ENSG00000162409 PRKAA2 2 https://www.ncbi.nlm.nih.gov/pubmed/27216817 
33 ENSG00000136040 PLXNC1 0 -
34 ENSG00000157131 C8A 3 https://www.ncbi.nlm.nih.gov/pubmed/26414287 
35 ENSG00000143842 SOX13 2 https://www.ncbi.nlm.nih.gov/pubmed/24160375 
36 ENSG00000230328 RP11-35N6.6∗ 0 -
37 ENSG00000224902 GAGE12H 0 -
38 ENSG00000099860 GADD45B 3 https://www.ncbi.nlm.nih.gov/pubmed/12759252 
39 ENSG00000172073 TEX37 0 -
40 ENSG00000104549 SQLE 2 https://www.ncbi.nlm.nih.gov/pubmed/25787749 
41 ENSG00000169174 PCSK9 3 https://www.ncbi.nlm.nih.gov/pubmed/26674961 
42 ENSG00000130222 GADD45G 2 https://www.ncbi.nlm.nih.gov/pubmed/23897841 
43 ENSG00000108448 TRIM16L 0 -
44 ENSG00000126231 PROZ 2 https://www.ncbi.nlm.nih.gov/pubmed/22689435 
45 ENSG00000006074 CCL18 1 https://www.ncbi.nlm.nih.gov/pubmed/26449829 
46 ENSG00000143369 ECM1 3 https://www.ncbi.nlm.nih.gov/pubmed/27460906 
47 ENSG00000236362 GAGE12F 0 -
48 ENSG00000126752 SSX1 1 https://www.ncbi.nlm.nih.gov/pubmed/24798046 
49 ENSG00000235494 RP11-498P14.4∗ 0 -
50 ENSG00000130427 EPO 3 https://www.ncbi.nlm.nih.gov/pubmed/26097591 

https://www.ncbi.nlm.nih.gov/pubmed/27779207
https://www.ncbi.nlm.nih.gov/pubmed/22582734
https://www.ncbi.nlm.nih.gov/pubmed/25024626
https://www.ncbi.nlm.nih.gov/pubmed/23475171
https://www.ncbi.nlm.nih.gov/pubmed/21985599
https://www.ncbi.nlm.nih.gov/pubmed/17307141
https://www.ncbi.nlm.nih.gov/pubmed/24163426
https://www.ncbi.nlm.nih.gov/pubmed/25998931
https://www.ncbi.nlm.nih.gov/pubmed/16703398
https://www.ncbi.nlm.nih.gov/pubmed/16264227
https://www.ncbi.nlm.nih.gov/pubmed/27387388
https://www.ncbi.nlm.nih.gov/pubmed/25872475
https://www.ncbi.nlm.nih.gov/pubmed/27458175
https://www.ncbi.nlm.nih.gov/pubmed/27155152
https://www.ncbi.nlm.nih.gov/pubmed/27216817
https://www.ncbi.nlm.nih.gov/pubmed/26414287
https://www.ncbi.nlm.nih.gov/pubmed/24160375
https://www.ncbi.nlm.nih.gov/pubmed/12759252
https://www.ncbi.nlm.nih.gov/pubmed/25787749
https://www.ncbi.nlm.nih.gov/pubmed/26674961
https://www.ncbi.nlm.nih.gov/pubmed/23897841
https://www.ncbi.nlm.nih.gov/pubmed/22689435
https://www.ncbi.nlm.nih.gov/pubmed/26449829
https://www.ncbi.nlm.nih.gov/pubmed/27460906
https://www.ncbi.nlm.nih.gov/pubmed/24798046
https://www.ncbi.nlm.nih.gov/pubmed/26097591
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Table 3.8.: Biological relevance of the gene of the top 50 DE isoforms selected by 
BitSeqVB-PPLR on HCC data and the corresponding references (Date: by 2016-11-
12).(∗: Clone-based (Vega)) 

Rank Gene ID Symbol Level Reference 
1 ENSG00000159217 IGF2BP1 2 https://www.ncbi.nlm.nih.gov/pubmed/24395596 
2 ENSG00000260518 BMS1P8 0 -
3 ENSG00000147257 GPC3 3 http://www.ncbi.nlm.nih.gov/pubmed/22706665 
4 ENSG00000158402 CDC25C 0 -
5 ENSG00000043355 ZIC2 1 https://www.ncbi.nlm.nih.gov/pubmed/26426078 
6 ENSG00000081051 AFP 3 http://www.ncbi.nlm.nih.gov/pubmed/22620007 
7 ENSG00000136231 IGF2BP3 3 https://www.ncbi.nlm.nih.gov/pubmed/18802962 
8 ENSG00000206557 TRIM71 0 -
9 ENSG00000099953 MMP11 0 -
10 ENSG00000175063 UBE2C 3 https://www.ncbi.nlm.nih.gov/pubmed/17354233 
11 ENSG00000198074 AKR1B10 3 https://www.ncbi.nlm.nih.gov/pubmed/27672277 
12 ENSG00000143228 NUF2 2 https://www.ncbi.nlm.nih.gov/pubmed/25374179 
13 ENSG00000024526 DEPDC1 3 https://www.ncbi.nlm.nih.gov/pubmed/25605201 
14 ENSG00000164362 TERT 3 https://www.ncbi.nlm.nih.gov/pubmed/26099527 
15 ENSG00000175329 ISX 2 https://www.ncbi.nlm.nih.gov/pubmed/23221382 
16 ENSG00000112742 TTK 3 https://www.ncbi.nlm.nih.gov/pubmed/24859455 
17 ENSG00000034063 UHRF1 3 https://www.ncbi.nlm.nih.gov/pubmed/28060737 
18 ENSG00000074410 CA12 0 -
19 ENSG00000101057 MYBL2 3 https://www.ncbi.nlm.nih.gov/pubmed/18624722 
20 ENSG00000130829 DUSP9 0 -
21 ENSG00000109805 NCAPG 2 https://www.ncbi.nlm.nih.gov/pubmed/28238542 
22 ENSG00000085831 TTC39A 0 -
23 ENSG00000089685 BIRC5 2 https://www.ncbi.nlm.nih.gov/pubmed/28238542 
24 ENSG00000125780 TGM3 0 -
25 ENSG00000175793 SFN 2 https://www.ncbi.nlm.nih.gov/pubmed/24859455 
26 ENSG00000123485 HJURP 0 -
27 ENSG00000117650 NEK2 3 https://www.ncbi.nlm.nih.gov/pubmed/28101574 
28 ENSG00000113296 THBS4 3 https://www.ncbi.nlm.nih.gov/pubmed/28177895 
29 ENSG00000154545 MAGED 0 -
30 ENSG00000011426 ANLN 3 https://www.ncbi.nlm.nih.gov/pubmed/23717429 
31 ENSG00000163808 KIF15 2 https://www.ncbi.nlm.nih.gov/pubmed/24859455 
32 ENSG00000111206 FOXM1 2 https://www.ncbi.nlm.nih.gov/pubmed/26289845 
33 ENSG00000198758 EPS8L3 0 -
34 ENSG00000142945 KIF2C 0 -
35 ENSG00000187243 MAGED4B 0 -
36 ENSG00000165480 SKA3 0 -
37 ENSG00000174371 EXO1 0 -
38 ENSG00000185686 PRAME 0 -
39 ENSG00000156970 BUB1B 2 https://www.ncbi.nlm.nih.gov/pubmed/25753876 
40 ENSG00000228651 RP11-556E13.1∗ 0 -
41 ENSG00000111665 CDCA3 2 https://www.ncbi.nlm.nih.gov/pubmed/25236463 
42 ENSG00000169213 RAB3B 0 -
43 ENSG00000135451 TROAP 0 -
44 ENSG00000066279 ASPM 3 https://www.ncbi.nlm.nih.gov/pubmed/18676753 
45 ENSG00000198203 SULT1C2 0 -
46 ENSG00000176092 CRYBG2 0 -
47 ENSG00000166851 PLK1 3 https://www.ncbi.nlm.nih.gov/pubmed/19725153 
48 ENSG00000169679 BUB1 2 https://www.ncbi.nlm.nih.gov/pubmed/28238542 
49 ENSG00000129173 E2F8 2 https://www.ncbi.nlm.nih.gov/pubmed/20068156 
50 ENSG00000072571 HMMR 3 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906898/ 
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4. CHAPTER 4. JOINT NETWORK AND NODE 

SELECTION FOR PATHWAY-BASED GENOMIC DATA 

ANALYSIS 

This is a side project of my dissertation. The main tasks I did in this project were searching and 

processing three cancer datasets, extracting and integrating KEGG pathway structures as matrices, 

analyzing the biological results, and writing the section of “application to expression data”. Mean-

while, I learned the basic ideas of building a graphical Bayesian model and its inference method 

from two other members in this team. 
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4.1 Abstract 

Motivation: By capturing various biochemical interactions, biological pathways pro-

vide insight into underlying biological processes. Given high-dimensional microarray 

or RNA-sequencing data, a critical challenge is how to integrate them with rich in-

formation from pathway databases to jointly select relevant pathways and genes for 

phenotype prediction or disease prognosis. Addressing this challenge can help us 

deepen biological understanding of phenotypes and diseases from a systems perspec-

tive. 

Results: In this article, we propose a novel sparse Bayesian model for joint network 

and node selection. This model integrates information from networks (e.g. pathways) 

and nodes (e.g. genes) by a hybrid of conditional and generative components. For the 

conditional component, we propose a sparse prior based on graph Laplacian matrices, 

each of which encodes between network nodes. For the generative component, we use 

a spike and slab prior over network nodes. The integration of these two components, 

coupled with eÿcient variational inference, enables the selection of networks as well 

as correlated network nodes in the selected networks. 

Simulation results demonstrate improved predictive performance and selection accu-

racy of our method over alternative methods. Based on three expression datasets for 

cancer study and the KEGG pathway database, we selected relevant genes and path-

ways, many of which are supported by biological literature. In addition to pathway 

analysis, our method is expected to have a wide range of applications in selecting 

relevant groups of correlated high-dimensional biomarkers. 

Availability: The code can be downloaded at : 

http://www.cs.purdue.edu/homes/szhe/software.html 

Contact: alanqi@purdue.edu 

mailto:alanqi@purdue.edu
http://www.cs.purdue.edu/homes/szhe/software.html
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4.2 Introduction 

With the popularity of high-throughput biological data such as microarray and 

RNA-sequencing data, many variable selection methods – such as lasso (Tibshirani, 

1996) and elastic net (Zou and Hastie, 2005) – have been proposed and applied to se-

lect relevant genes for disease diagnosis or prognosis. Nevertheless, these approaches 

ignore invaluable biological pathway information accumulated over decades of re-

search; hence their selection results can be diÿcult to interpret biologically and their 

predictive performance can be limited by a small sample size of expression profles. To 

overcome these limitations, a promising direction is to integrate expression profles 

with rich biological knowledge in pathway databases. Because pathways organize 

genes into biologically functional groups and model their interactions that capture 

correlation between genes, this information integration can improve not only the pre-

dictive performance but also interpretability of the selection results. Thus, a critical 

need is to integrate pathway information with expression profles for joint selection 

of pathways and genes associated with a phenotype or disease. 

Despite their success in many applications, previous sparse learning methods are 

limited by several factors for the integration of pathway information with expression 

profles. For example, group lasso (Yuan and Lin, 2007) can be used to utilize mem-

berships of genes in pathways via a l1/2 norm to select groups of genes, but they 

ignore pathway structural information. An excellent work by Li and Li (2008) over-

comes this limitation by incorporating pathway structures in a Laplacian matrix of a 

global graph to guide the selection of relevant genes. In addition to graph Laplacians, 

binary Markov random feld priors can be used to represent pathway information to 

infuence gene selection (Wei and Li, 2007, 2008; Li and Zhang, 2010; Stingo and Van-

nucci, 2010). These network-regularized approaches do not explicitly select pathways. 

However, not all pathways are relevant and pathway selection can yield insight into 

underlying biological processes. A pioneering approach to joint pathway and gene 

selection by Stingo et al. (2011) uses binary Markov random feld priors and couples 
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gene and pathway selection by hard constraints – for example, if a gene is selected, 

all the pathways it belongs to will be selected. However, this consistency constraint 

might be too rigid from a biological perspective: an active gene for cancer progres-

sion does not necessarily imply that all the pathways it belongs to are active. Given 

the Markov random feld priors and the nonlinear constraints, posterior distributions 

are inferred by a Markov Chain Monte Carlo method (Stingo et al., 2011). But the 

convergence of MCMC for high dimensional problems is known to take a long time. 

To overcome these limitations, we propose a new sparse Bayesian approach, called 

Network and NOde Selection (NaNOS), for joint pathway and gene selection. NaNOS 

is a sparse hybrid Bayesian model that integrates conditional and generative compo-

nents in a principled Bayesian framework Lasserre et al. (2006). For the conditional 

component, we use a graph Laplacian matrix to encode information of each network 

(e.g. a pathway) and incorporate it into a sparse prior to select individual networks. 

For the generative component, we use a spike and slab prior to choose relevant nodes 

(e.g. genes) in selected networks. For this hybrid model, we do not impose the hard 

consistency constraints used by Stingo et al. (2011). Furthermore, the prior distribu-

tion of our model does not contain intractable partition functions. This enables us to 

give a full Bayesian treatment over model parameters and develop an eÿcient varia-

tional inference algorithm to obtain approximate posterior distributions for Bayesian 

estimation. As described in Section 4.4, our inference algorithm is designed to handle 

both continuous and discrete outcomes. 

Simulation results in Section 4.5 demonstrate superior performance of our method 

over alternative methods for predicting continuous or binary responses, as well as com-

parable or improved performance for selecting relevant genes and pathways. Further-

more, on real expression data for large B cell lymphoma, pancreatic ductal adenocar-

cinoma, and colorectal cancer, our results yield meaningful biological interpretations 

supported by biological literature. 
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4.3 Model 

In this section, we present the hybrid Bayesian model, NaNOS, for network 

and node selection. First, let us start from the classical variable selection prob-

lem. Suppose we have N independent and identically distributed samples D = 

{(x1, t1), . . . , (xN , tN )}, where xi and ti are the explanatory variables and the re-

sponse of the i-th sample, respectively. The explanatory variables can be various 

biomarkers, such as gene expression levels or single-nucleotide polymorphisms. Fol-

lowing the tradition in variable selection, we normalize the values of each variable so 

that its mean and standard deviation are zero and one, respectively. The response 

can be certain phenotype or disease status. We aim to predict the response vector 

t = [t1, . . . , tN ]
> based on the explanatory variables X = [x1, . . . , xN ]

T and to select 

a small number of variables relevant for the prediction. Because the number of vari-

ables (e.g. genes) is often much bigger than the number of samples, the prediction 

and selection tasks are statistically challenging. 

To reduce the diÿculty of variable selection, we can use valuable information 

from networks, each of which contains certain variables as nodes and represents their 

interactions. For example, biological pathways cluster genes into functional groups, 

revealing various gene interactions. Based M networks, we organize the explanatory 

variables xi into M subvectors, each of which comprises the values of explanatory 

variables in its corresponding network. If a variable (i.e. a gene) appears in multiple 

networks (i.e. pathways), we duplicate its value in these networks. Note that networks 

here are exchangeable with graphs; we can use them to represent not only biological 

pathways but also linkage disequilibrium structures for genetic variation analysis. 

Our model is a Bayesian hybrid of conditional and generative models based on a 

general framework proposed by (Lasserre et al., 2006). The conditional component 

selects individual networks via “discriminative" training; the generative component 

chooses relevant nodes in the selected networks; and the two models are glued to-
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Fig. 4.1.: The graphical model representation of NaNOS. 
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gether through a joint prior distribution, so that the selected networks can guide 

node selection and, in return, the selected nodes can infuence network selection. 

Specifcally, for the conditional model, we use a Gaussian data likelihood function 

for the continuous response 
NY 

p(t|X, w, τ) = N (ti|xi T w, τ−1). (4.1) 
i=1 

where w are regression weights, each of which represents the contribution of the 

corresponding node to the response, and τ is the precision parameter. For the un-

known variance τ , we assign an uninformative di˙use Gamma prior, Gam(τ |g, h) with 

g = h = 10−6 . 

For the binary response, we use a logistic likelihood YN 
p(t|X, w) = σ(xi 

T w)ti [1 − σ(xi 
T w)]1−ti , (4.2)

i=1 

where ti ∈ {0, 1}, w are classifer weights, and σ(·) is the logistic function (i.e. σ(y) = 

(1 + exp(−y))−1). Based on the M networks, we partition w into M groups, so that 

w = [w1, . . . , wM ]
> where wk are the weights for the explanatory variables in the 

k-th network. 

To incorporate the topological information of a network, we use its normalized 

Laplacian matrix representation. Specifcally, given an adjacent matrix Gk that rep-

resents the edges (i.e. interactions) between nodes in the k-th network, the normalized 

Laplacian matrix Lk is defned as ⎧ 
1 i = j and deg(i) =6 0⎪⎨ 

Lk(i, j) = −√ 1 i =6 j and Gk(i, j) 6= 0 deg(i)deg(j) ⎪⎩0 otherwise 

P 
where deg(i) = j Gk(i, j) is the degree of the i-th node in the k-th network. 
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Based on the graph Laplacian matrices, we design the following mixture prior over 

wk to select relevant networks: 

p(wk|αk)=N (wk|0, s1L−1)αk N (wk|0, s2Ik)1−αk (4.3)k 

where αk is a binary variable indicating whether the k-th network is selected, s1 > s2, 

s2 ≈ 0, and Ik is an identity matrix. We set the hyperparameters s1, and s2 based on 

cross-validation in our experiments. To make sure Lk is strictly positive-defnite, we 

add a diagonal matrix 10−6Ik to Lk. In (4.3), Lk captures the correlation information 

between nodes in the k-th network. Note that if we replace Lk by Ik in the slab 

component, the prior (4.3) becomes a simple generalization of the classical spike and 

slab prior (George and McCulloch, 1997) for group selection. When αk = 1, the 

k-th network is selected and the elements of wk are encouraged to be similar to each 

other due to the Laplacian matrix Lk; when αk = 0, because s2 is close to zero, 

the corresponding Gaussian prior prunes wk. We use a Bernoulli prior distribution 

to refect the uncertainty in αk, p(αk) = (uk)αk (1 − uk)1−αk where uk ∈ [0, 1] is the 

selection probability. Without any prior preference over selecting or pruning the k-th 

network, we assign a uniform prior over uk: p(uk) = 1 (i.e. p(uk) = Beta(uk; a, b) 

where a = b = 1). 

To identify relevant nodes, we introduce a latent vector w̃ k in the generative model 

for each network k, which is tightly linked to wk as explained later. We use a spike 

and slab prior: 

pkY 
p(w̃ k|βk) = N (w̃kj |0, r1)βkj N (w̃kj |0, r2)1−βkj (4.4) 

j=1 

pkY 
= N (0|w̃kj, r1)βkj N (0|w̃kj , r2)1−βkj 

j=1 

= p(0|w̃ k, βk) 
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where pk is the number of nodes in the k-th network, r2 ≈ 0, and βkj is a binary 

variable indicating whether to select the j-th node in the k-th network. We give 

βkj a Bernoulli prior, p(βkj ) = (vkj )
βkj (1 − vkj )1−βkj , and a uniform prior over vkj : 

p(vkj ) = 1 (i.e., p(vkj ) = Beta(vkj |c, d) where c = d = 1). As shown above, the spike 

and slab prior p(w̃ k|βk) has the same form as p(0|w̃ k, βk), which can be viewed as a 

generative model – in other words, the observation 0 is sampled from w̃ k. This view 

enables us to combine the sparse conditional model for network selection with the 

sparse generative model for node selection via a principled hybrid Bayesian model. 

Specifcally, to link the conditional and generative models together, we introduce 

a prior on w̃ k: 

p(w̃ k|wk) = N (w̃ k|wk, λI) (4.5) 

where the variance λ controls how similar w̃ k and wk are in our joint model. For 

simplicity, we set λ = 0 so that p(w̃ k|wk) = δ(w̃ k − wk) where δ(f) = 1 if f = 0 and 

δ(f) = 0 otherwise. The graphical model representation of the joint model is given 

in Figure 4.1. 

The network and node selections are consistent with each other in a probabilistic 

sense. If a network is pruned, all its node are removed. Because wk = w̃ k is enforced 

by the prior δ(w̃ k − wk), when αk = 0, wk = 0 implies w̃ k = 0. As a result, the spike 

component in (4.4) will be selected for all the nodes in the k-th network (i.e., βkj = 0 

for j = 1, . . . , pk) with a higher probability than the slab component. On the other 

hand, it is easy to see that, if one or multiple nodes in a network are selected, then 

this network will be selected too. Note that, if a node appears in multiple networks 

and is selected, our model will not force all the networks that contain this node to 

be chosen. The reason is that we duplicate the value of this node in the networks 

and treat their corresponding regression or classifcation weights as separate model 

parameters. 
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4.4 Algorithm 

In this section, we present the variational Bayesian algorithm for model estima-

tion. Specifcally, we develop the variational updates to eÿciently approximate the 

posterior distribution of weights w, the network-selection indicators α, the node-

selection indicators β, the network- and node-selection probabilities u and v, and the 

precision parameter τ for regression. Based on the posteriors of α and β, we can 

decide which networks and nodes are selected. 

For regression, based on the model specifcation in Section 4.3, the posterior dis-

tribution of our model is 

p(w, w̃ , α, β, u, v, τ |t, X) 
1 

= N (t|Xw, τ−1I)Gamma(τ)· 
ZY 

p(wk|αk)p(w̃ k|wk)p(0|w̃ k, βk)Bern(αk|uk)Beta(uk)· 
kY 

Bern(βkj |vkj )Beta(vkj ) (4.6) 
j 

where p(wk|αk) and p(0|w̃ k, βk) are defned in (4.3) and (4.4), p(w̃ k|wk) = δ(w̃ k − 

wk), and Z is the normalization constant. For classifcation, the posterior distribution 

is similar to (4.6), except that we replace the Gaussian likelihood (4.1) by the logistic 

function (4.2) and remove the precision parameter τ and its prior for regression in 

(4.6). 

Classical Markov chain Monte Carlo methods can be applied to approximate the 

posterior distribution. However, given the high dimensionality of the parameters (e.g., 

w and α), it would take a long time for a sampler to converge. In practice it is even 

diÿcult to judge the sampler’s convergence. Thus, we resort to a computationally 

eÿcient variational approximation to (4.6). 

Specifcally, we approximate the exact posterior distribution in (4.6) by a factor-

ized distribution: Q(θ) = Q(w)Q(α)Q(β) 

Q(u)Q(v)Q(τ), where θ denotes all the latent variables. Note that, for classifcation, 
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we do not have Qτ (τ). Since we set p(w̃ |w) = δ(w̃ − w), we do not need a separate 

distribution Q(w̃). To solve Q(θ), we minimize the Kullback-Leibler (KL) divergence 

between the exact and approximate posterior distributions of θ: 

Z 
Q(θ)

KL(Q(θ)||p(θ|t, X)) = Q(θ) ln dθ. (4.7)
p(θ|t, X) 

Applying coordinate descent for the minimization of (4.7), we obtain eÿcient up-

dates for the variational distributions as described in the following sections. The 

updates are iterative: we update one of the variational distributions at a time while 

having all the other variational distributions fxed, and iterate these updates until 

convergence. Since these updates monotonically decrease the value of the KL diver-

gence (4.7), which is lower bounded by zero, they are guaranteed to converge in terms 

of the KL value (Bishop, 2006). 

4.4.1 Regression 

The variational distributions for regression have the following forms: 

Q(w) = N (w|m, Σ) (4.8)Y 
Q(α) = γk

αk (1 − γk)
1−αk (4.9)Yk Y 

Q(β) = (ηkj )
βkj (1 − ηkj )

1−βkj (4.10)Yk j 

b̃k −1Q(u) ∝ (uk)
ãk−1(1 − uk) (4.11)Yk Y 

˜ckj −1(1 − vkj )
dkj −1Q(v) ∝ (vkj )

˜ (4.12)
k j 

˜Q(τ) = Γ(τ |g,˜ h). (4.13) 
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Their parameters are iteratively updated as follows: 

Σ = (A + hτiXTX)−1 m = hτiΣXTt (4.14) 

ãk = γk + a b̃k = 1 − γk + b (4.15) 

c̃kj = ηkj + c d̃  
kj = 1 − ηkj + d (4.16) 

pk s1
γk = 1/(1 + exp(hln(1 − uk)i − hln uki + ln 

2 s2 
1 1 1 1 − ln |Lk| + tr(hwkwk 

Ti( Lk − Ik)) (4.17)
2 2 s1 s2 

ηkj = 1/(1 + exp(hln(1 − vkj )i − hln vkj i 
1 r1 1 1 1 

+ ln + h(wkj)2i( − ))) (4.18)
2 r2 2 r1 r2X 

˜ T TXT Th = h +
1 
t t − m t +

1 
xi hww Tixi (4.19)

2 2 i 

g̃ = g + 
N 

(4.20)
2 

1 1 1 1where A = diag({γkLk}k) + diag({(1 − γk)Ik}k) + diag(η) + diag(1 − η)
s1 s2 r1 r2 

(note that diag({γkLk}k) is a block-diagonal matrix), h·i means expectation over 
the corresponding variational distribution, and the required moments in the above 
equations are 

Thww Ti = Σ + mm g/˜hτi = ˜ h 

hln uki = ψ(ãk) − ψ(ẽk) hln(1 − uk)i = ψ(b̃k) − ψ(ẽk) 

hln vkj i = ψ(c̃kj ) − ψ(f̃  
kj ) hln(1 − vkj )i = ψ(d̃  

kj ) − ψ(f̃  
kj ) 

where ψ(x) = 
dx
d ln Γ(x), ẽk = ãk + b̃k and f̃  

kj = c̃kj + d̃  
kj . 

4.4.2 Classifcation 

Compared to regression, the classifcation task is more challenging. Because of 

the logistic function (4.2), we cannot directly solve the variational distribution Q(w). 
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Therefore, we use a lower bound proposed by (Jaakkola and Jordan, 2000) to replace 

the logistic function in the joint distribution: � �1−t 
σ(y)t 1 − σ(y) �(2t − 1)y − ξ � �� 

≥ σ(ξ) exp − f(ξ) (2t − 1)2 y 2 − ξ2 (4.21)
2 

where f(x) = 
4
1 
ξ tanh(ξ/2), and ξ is a variational parameter. Note that the equality 

is achieved when ξ = (2t − 1)y. Since the logarithm of the lower bound (4.21) is 

quadratic in y, it essentially converts the logistic function into a Gaussian form so 

that the variational inference becomes tractable. 

Combining the maximization of the lower bound (4.21) with the minimization of 

the KL divergence (4.7), we obtain the variational updates for classifcation. They 

are the same as those for the regression task, except for that Q(w) = N (w|m, Σ), 

now we have � X �−1 1 
Σ = A + 2 f(ξi)xix T 

i m= ΣXT(2t − 1) (4.22)
i 2 

where A is the same as in the regression. 

In addition, maximization of the lower bound of the logistic function gives the 

update for the variational parameter ξi: 

ξ2 T 
i = xi hww Tixi. (4.23) 

4.4.3 Computational cost 

The computational cost of the proposed algorithm is dominated by (4.14) for 

regression and (4.22) for classifcation. For both cases, it takes O(p3) for matrix 

inversion to obtain Σ and O(Np + p2) to obtain m for each iteration. Thus, the total 

cost is O(p3 + Np) and, for most applications where p > N , it simplifes to O(p3). 
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Fig. 4.2.: Prediction errors and F1 scores for gene selection in Experiment 1. ENet, 
S&S, and GLasso stand for elastic net, the spike and slab model, and group lasso, 
respectively; and Data 1 and 2 indicate the frst and second data generation models. 



111 

Data 1 Data 2
30

40

50

60

P
M

S
E

Data 1 Data 2
0.4

0.6

0.8

1

F
1

Regression: PMSE Regression: F1 

Data 1 Data 2
5

10

15

20

E
rr

or
 r

at
e 

(%
)

Data 1 Data 2
0.4

0.6

0.8

1

F
1

Classifcation: Error rate Classifcation: F1 

Fig. 4.3.: Prediction errors and F1 scores for gene selection in Experiment 2. 
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4.5 Experiments 

In this section, we apply NaNOS to synthetic and real gene expression data to 

select pathways (i.e., networks) and genes (i.e., nodes), and provide biological anal-

ysis of our results. We also compare NaNOS with alternative methods, including 

lasso Tibshirani (1996), elastic net Zou and Hastie (2005), group lasso Yuan and Lin 

(2007); Jacob et al. (2009), the network-constrained regularization approach (Li and 

Li (2008), henceforth “LL"), and the sparse Bayesian model with the classical spike 

and slab prior (George and McCulloch, 1997). For lasso and elastic net, we used the 

Glmnet software package 1 . For group lasso, we treat each pathway as a group. To 

handle genes appearing in multiple pathways (i.e., groups), we frst duplicated their 

expression levels for each group – as suggested by (Jacob et al., 2009) – and then 

used the SLEP software package 2 for group lasso estimation. For the spike and slab 

model, we implemented variational inference similar to our updates in Section 4.4. 

Just as NaNOS, all these software packages use the Gaussian likelihood for regression 

and the logistic likelihood for classifcation. We used the default confguration of 

these software packages for the maximum number of iterations, initial values, and the 

threshold for convergence. To tune regularization weights in lasso, group lasso and 

the LL approach, we conducted thorough 10-fold cross validation (CV) on training 

data (i.e., not using the test data) using a large computer cluster. The CV grids on 

the free parameters are summarized here: for lasso, α = [0 : 0.01 : 1]; for elastic net, 

α = [0 : 0.01 : 1] and β = [0 : 0.01 : 1]; for group lasso (both regression and logistic 

regression), α = [0 : 0.01 : 1]; and for the LL approach, λ1 = [1 : 25 : 300] and 

λ2 = [1 : 25 : 300] (we also did a second-level CV after we pruned the range of λ1 and 

λ2 values based on the frst-level CV). Finally, for NaNOS, the cross-validation grids 

are s1 = r1 = [0.1, 1, 3] and s2 = r2 = [10−3 , 10−4 , 10−5 , 10−6]. 

On the synthetic data for which we knew the true relevant pathways, we also 

compared NaNOS with the popular tool for gene set enrichment analysis (GSEA) 
1www-stat.stanford.edu/˜tibs/glmnet-matlab/ 
2www.public.asu.edu/˜jye02/Software/SLEP/ 

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www.public.asu.edu/~jye02/Software/SLEP/
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(Mootha et al., 2003; Subramanian et al., 2005). We treated each pathway as a set, 

used GSEA’s default confguration, and applied its suggested criterion FDR < 25% 

to discover enriched pathways. We then identifed all the genes in these enriched 

pathways as target genes. Because GSEA cannot provide predictions on responses t, 

we did not include it for comparison on the real data. 

4.5.1 Simulation studies 

We frst compare all the methods on synthetic data in the following three experi-

ments. 

Experiment 1. We followed the frst and second data generation models used by Li 

and Li (2008). Specifcally, we simulated expression levels of 200 transcription factors 

(TFs), each controlling 10 genes in a simple tree-structured regulatory network, and 

assumed that 4 pathways – including all of their genes – have e˙ect on the response 

t. We sampled the expression levels of each TF from a standard normal distribution, 

xTF ∼ N (0, 1) and the expression level of each gene that this TF regulates from 

N (0.7xTF , 0.51). This implies a correlation of 0.7 between the TF and its target 

genes. 
For the frst model with the continuous response, we designed a weight vector 

√1 √1for each pathway, ρ = [1, , . . . , ], corresponding to the TF and 10 genes it 
10 10 

regulates, and then sampled t as follows: 

w = [5ρ, −5ρ, 3ρ, −3ρ, 0>]> 

t = Xw + � 

where � ∼ N (0, σe 
2) and 0 is a vector of all zeros. 
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Fig. 4.4.: Prediction errors and F1 scores for gene selection in Experiment 3. 

The second model is the same as the frst one, except that the genes regulated by 
the same TF can have either positive or negative e˙ect on the response t. Specifcally, 
we set 

−1 −1 −1 1 1 
ρ = [1, √ , √ , √ , √ , . . . , √ ]. 

10 10 10 10 10| {z } 
7 

For the frst and second models, the noise variance was set to be σe 
2 = (Σj wj 

2)/4 so 

that the signal-to-noise ratio was 12.85 and 7.54, respectively. 

For the binary response, we followed the same procedure as for the continuous 

response to generate expression profles X and the parameters w. Then we sampled 

t from (4.2). 

For each of the settings, we simulated 100 samples for training and 100 samples for 

test. We repeated the simulation 50 times. To evaluate the predictive performance, 

we calculated the prediction mean-squared error (PMSE) for regression and the error 

rate for classifcation. To examine the accuracy of gene and pathway selection, we 
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also computed sensitivity and specifcity and summarized them in the F1 score, F1 = 

2 (sensitivity × specificity)/(sensitivity + specificity). The bigger the F1 score, the 

higher the selection accuracy. 
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Fig. 4.5.: F1 scores for pathway selection. “EXP” stands for “Experiment” and “D” 
stands for “Data model”. 

All the results are summarized in Figure 4.2, in which the error bars represent 

the standard errors. For all the settings, NaNOS gives smaller errors and higher 

F1 scores for gene selection than the other methods, except that, for classifcation 

of the samples from the second data model, NaNOS and group lasso obtain the 

comparable F1 scores. All the improvements are signifcant under the two-sample 

t-test (p < 0.05). We also show the accuracy of group lasso, GSEA and NaNOS for 

pathway selection in Figure 4.5. Again, NaNOS achieves signifcantly higher selection 

accuracy. Because the LL approach was developed for regression, we did not have its 

classifcation results. While the LL approach uses the topological information of all 

the pathways, they are merged together into a global network for regularization. In 

contrast, using a sparse prior over individual pathways, NaNOS can explicitly select 

pathways relevant to the response, guiding the gene selection. This may contribute 

to its improved performance. 
Experiment 2. For the second experiment, we did not require all genes in relevant 
pathways to have e˙ect on the response. Specifcally, we simulated expression levels 
of 100 transcription factors (TFs), each regulating 21 genes in a simple regulatory 
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network. We sampled the expression levels of the TFs, the regulated genes, and their 
response in the same way as in Experiment 1, except that we set 

1 1 
ρ = [1, √ , . . . , √ , 0, . . . , 0]

21 21 | {z }| {z } 11 
10 

for the frst data generation model and 

−1 −1 −1 1 1 
ρ = [1, √ , √ , √ , √ , . . . , √ , 0, . . . , 0] (4.24)

21 21 21 21 21 | {z }| {z } 11 
7 

for the second data generation model. Note that the last eleven zero elements in ρ 

indicate that the corresponding genes have no e˙ect on the response t, even in the 

four relevant pathways. 

The results for both the continuous and binary responses are summarized in Fig-

ures 4.3 and 4.5. For regression based on the frst data model, NaNOS and LL obtain 

the comparable F1 scores; for all the other cases, NaNOS signifcantly outperforms 

the alternative methods in terms of both prediction and selection accuracy (p < 0.05). 

Experiment 3. Finally, we simulated the data as in Experiment 2, except that we 
√ 

replaced 21 in the denominators in (4.24) with 21, to obtain a weaker regulatory 

e˙ect of the TF. Again, as shown in Figures 4.4 and 4.5, NaNOS outperforms the 

competing methods signifcantly. 

4.5.2 Application to expression data 

Now we demonstrate the proposed method by analyzing gene expression datasets 

for the cancer studies of di˙use large B cell lymphoma (DLBCL) (Rosenwald et al., 

2002), colorectal cancer (CRC) (Ancona et al., 2006), and pancreatic ductal ade-

nocarcinoma (PDAC) (Badea et al., 2008). We used the probeset-to-gene map-

ping provided in these studies. For the CRC and PDAC datasets in which multi-

ple probes were mapped to the same genes, we took the average expression level of 

these probes. We used the pathway information from the KEGG pathway database 
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Fig. 4.6.: Predictive performance on three gene expression studies of cancer. 

(www.genome.jp/kegg/pathway.html) by mapping genes from the cancer studies 

into the database, particularly in the categories of Environmental Information Pro-

cessing, Cellular Processes and Organismal Systems. 

Di˙use large B cell lymphoma. We used gene expression profles of 240 DLBCL 

patients from an uncensored study in the Lymphoma and Leukemia Molecular Pro-

fling Project (Rosenwald et al., 2002). From 7399 probes, we found 752 genes and 

46 pathways in the KEGG dataset. The median survival time of the patients is 2.8 

years after diagnosis and chemotherapy. We used the logarithm of survival times of 

patients as the response variable in our analysis. 

We randomly split the dataset into 120 training and 120 test samples 100 times 

and ran all the competing methods on each partition. The test performance is visu-

alized in Figure 4.6.a. NaNOS signifcantly outperforms lasso, elastic net and group 

lasso. Although the results of the LL approach can contain connected sub-networks, 

these sub-networks do not necessarily correspond to (part of) a biological pathway. 

For instance, they may consist of components from multiple overlapped pathways. In 

contrast, NaNOS explicitly selects relevant pathways. Four pathways had the selec-

www.genome.jp/kegg/pathway.html
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tion posterior probabilities larger than 0.95 and they were consistently chosen in all 

the 100 splits. Two of these pathways are discussed below. 

First, NaNOS selected the antigen processing and presentation pathway. The part 

of this pathway containing selected genes is visualized in Figure 4.7.a. A selected 

regulator CIITA was shown to regulate two classes of antigens MHC I and II in 

DLBCL (Cycon et al., 2009). The loss of MHC II on lymphoma cells – including the 

selected HLA-DMB, -DQB1, -DMA, -DRA, -DRB1, -DPA1, -DPB1, and -DQA1 – 

was shown to be related to poor prognosis and reduced survival in DLBCL patients 

(Rosenwald et al., 2002). The selected MHC I (e.g., HLA-A,-B,-C,-G) was reported 

to be absent from the cell surface, allowing the escape from immunosurveillance of 

lymphoma (Amiot et al., 1998). And the selected Ii/CD74 and HLA-DRB were 

proposed to be monoclonal antibody targets for DLBCL drug design (Dupire and 

Coiÿer, 2010). 

Second, NaNOS chose cell adhesion molecules (CAMs). Adhesive interactions 

between lymphocytes and the extracellular matrix are essential for lymphocytes’ mi-

gration and homing. For example, the selected CD99 is known to be over-expressed in 

DLBCL and correlated with survival times (Lee et al., 2011), and LFA-1 (ITGB2/ITGAL) 

can bind to ICAM on the cell surface and further lead to the invasion of lymphoma 

cells into hepatocytes (Terol et al., 1999). 

Colorectal cancer. We applied our model to a colorectal cancer dataset (Ancona 

et al., 2006). It contains gene expression profles from 22 normal and 25 tumor tissues. 

We mapped 2455 genes from 22,283 probes into 67 KEGG pathways. The goal was to 

predict whether a tissue has the colorectal cancer or not and select relevant pathways 

and genes. 

We randomly split the dataset into 23 training and 24 test samples 50 times and 

ran all the methods on each partition. The test performance is visualized in Figure 

4.6.b. Again, based on a two-sample t-test, NaNOS outperforms the alternatives 

signifcantly (p < 0.05). Three out of the four pathways with the selection posterior 
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probabilities larger than 0.95 are discussed below. They were selected 20, 50 and 50 

times in the 50 splits. 

First, NaNOS selected the cell cycle pathway. This selection is consistent with the 

original result by Ancona et al. (2006). As shown in 4.7.b, NaNOS selected mitotic 

spindle assembly related genes. Specifcally, Bub1 and Mad1 may regulate the check-

point complex (MCC) containing Mad2, BubR1 and Bub3. The upregulated MCC 

may in turn inhibit ability of APC/C to ubiquitinate securin and further lead to mi-

totic event extension in CRC (Menssen et al., 2007). NaNOS also chose cyclin/CDK 

complexes, among which CycD/CDK4 overexpression is found in mouse colon tumor 

and CDK1, CDK2, CycE are increased in human CRC Wang et al. (1998); Vermeulen 

et al. (2003). NaNOS further identifed MCM (minichromosome maintenance) com-

plex – MCM2 and MCM5 – which are biomarkers for the CRC stage identifcation 

(Giaginis et al., 2009). Moreover, the selected TP53 and c-Myc are known to be 

closely related to CRC (Menssen et al., 2007). 

Second, NaNOS chose the intestinal immune network for IgA production. A 

greatly increased level of IgA – as a result of long-term intestinal infammation – can 

increase the chance of CRC (Rizzo et al., 2011) and serve as an e˙ective biomarker 

for early diagnosis of CRC (Chalkias et al., 2011). Also, selected chemkines in this 

pathway, such as CXCR4 and CXCL12, may contribute to CRC progression (Sakai 

et al., 2012). 

Third, NaNOS selected the cytokine-cytokine receptor interaction pathway as well 

as several well-known CRC-related molecules in this pathway. For instance, CXCL13 

is a biomarker for stage II CRC prognosis (Agesen et al., 2012); CXCL10 dramatically 

increases with CRC progression (Toiyama et al., 2012); and IL10 secreted by CRC cells 

can accelerate tumor proliferation and be used for the prognosis of CRC progression 

(Toiyama et al., 2010). 

Pancreatic ductal adenocarcinoma. This cancer dataset includes expression pro-

fles from 39 PDAC and 39 normal subjects (Badea et al., 2008). By mapping 2781 

genes from 54677 probes into KEGG pathways, we obtained 67 pathways. Our goal 
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was to predict whether a subject has the pancreatic cancer and select relevant path-

ways and genes. We randomly split the dataset into 39 training and 39 test samples 

50 times and ran all the methods on each partition. The test performance is visual-

ized in Figure 4.6.c. Based on a two-sample t-test, NaNOS signifcantly outperforms 

lasso, elastic net and group lasso. 
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Fig. 4.8.: The predictive performance of NaNOS when the pathway structures are 
inaccurate. When more edges are randomly selected and removed from each pathway, 
the performance of NaNOS degrades smoothly, but still better than the competing 
methods. 

To investigate the sensitivity of NaNOS to the structural noise in the pathway 

database, we randomly chose 20%, 50%, 80% and 100% edges in each pathway and 

removed them. We tested NaNOS for each case and reported the average test error 

rate in the new Figure 4.8. As expected, the error rate of NaNOS gradually increases 

with more edges being removed because less topological information in pathways is 

available. But NaNOS still consistently outperformed all the alternative methods 

such as elastic net, the second best method on this dataset. This experiment demon-

strates i) that, by exploiting subtle correlation information embedded in the pathway 

topology, NaNOS can boost its modeling power and predictive performance, and ii) 

that NaNOS is robust to small perturbation in pathway topology. 
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We also examined the impact of the important prior distributions on pathway 

and gene selection probabilities uk and vkj . As described in Section 4.3, we used 

the uniform priors (i.e., the Beta(1,1) prior) over uk and vkj , indicating no prior 

preference over selecting a pathway or gene or not. The average test error based on 

the uninformative priors is 9.15 ± 0.5, as visualized in Figure 4.6.c. If we change 

the prior to a very informative one Beta(1,10) (mean 0.09 and standard deviation 

0.083) that strongly prefers sparsity, then the average test error increases slightly to 

10.0±0.4. This minor increase in error may stem from the over-sparifcation caused by 

the sparsity prior that are over-confdent (suggested by a small variance). Now if we 

use another informative prior Beta(10,1) (mean 0.91 and standard deviation 0.083) 

that strongly prefers dense – instead of sparse – estimation, then the average test 

error increases to 11.2 ± 0.5. This relatively larger error increase is exactly what we 

expected because now the wrong dense prior aims to select most pathways and genes. 

What is important is that, no matter which of these two informative priors we chose, 

NaNOS consistently outperformed lasso and group lasso in 4.6.c. Between these two 

extreme cases, if we use an uninformative or weak sparse prior (e.g., Beta(0.5,0.5)), 

we fnd that similar prediction error rates were obtained for NaNOS as in 4.6.c. The 

above analysis indicates that NaNOS is robust to the prior choice. 

In addition to using the even splitting strategy with the same number of training 

and test samples, we also tested the performance of all the algorithms in another 

setting with more training samples – specifcally, 62 training and 16 test samples. We 

repeated the random partitioning 50 times. The average error rates for NaNOS, elastic 

net, lasso and group lasso are 8.00 ± 0.89, 9.90 ± 1.00, 12.0 ± 1.0 and 11.0 ± 0.14, 

respectively. Again, the two-sample t test indicates that NaNOS outperforms the 

alternative methods signifcantly (p < 0.05). 

Three out of the fve pathways with the selection posterior probabilities larger 

than 0.95 are discussed below. They were selected 35, 50 and 50 times in the 50 

splits. 
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The frst selected pathway was the TGF-β signaling pathway. It is essential in 

epithelial-mesenchymal transition (EMT) – a critical component for developmental 

and cancer processes – and related to PDAC (Krantz et al., 2012). The selected part 

of this pathway is visualized in Figure 4.7.c. It shows that IFNG, TNF-α, LTBP1, 

DCN, TGF-β, and its receptor TGF-β R1 were selected. The TGF-β ligand – via 

its receptor – propagates the signal through phosphorylation of Smads including the 

selected Smad 4, which in turn translocate into the nucleus and interact with Snail 

TFs to regulate EMT (Krantz et al., 2012). The selected BMP ligand (i.e., BMP2) is 

bound to BMP R1 and R2 receptors to activate Smad1, which is in a protein complex 

including Smad4. (Gordon et al., 2009) showed that in PANC-1 cell line this protein 

complex mediates EMT partially by increasing the activity of MMP-2. 

The second identifed pathway was extracellular matrix (ECM)-receptor inter-

action. It is associated with desmoplastic reaction, a hallmark in PDAC (Shields 

et al., 2012). In this pathway, NaNOS selected the integrin receptors – including 

ITGB1, ITGA2, ITGA3, ITGA5, ITGA6 – and the ECM proteins – collagens inlcud-

ing COL1A1 and COL1A2 and laminins including LAMC2 and LAMB3. Important 

interactions among them were revealed in a previous study by Weinel et al. (1992). 

The third chosen pathway was CAMs. CAMs are pivotal in pancreatic cancer inva-

sion by mediating cell-cell signal transduction and cell-matrix communication (Keleg 

et al., 2003). In this pathway, the selected molecules include calcium-dependent cad-

herin family molecules (CDH2, CDH3) and neural-related molecules (MAG); both of 

them have shown to be related to PDAC (Kameda et al., 1999) (Keleg et al., 2003). 

4.6 Discussion 

As shown in the previous section, the new Bayesian approach, NaNOS, outper-

formed the alternative sparse learning methods on both simulation and real data by 

a large margin. Now we discuss three factors that may contribute to the improved 

performance of NaNOS. 
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First, the spike and slab prior (4.3) and its generalization (4.4) in NaNOS separate 

weight regularization from the selection of variables (pathways or genes). Both the 

(generalized) spike and slab prior and elastic net can be viewed as mixture models, 

in which one component encourages the selection of variables and the other helps 

remove irrelevant ones. However, unlike the elastic net where the weights over l1 and 

l2 penalty functions are fxed, the spike and slab prior has the selection indicators over 

these two components estimated from data. When a variable is selected, the model 

has a Gaussian prior over its value (i.e., weight) that is equivalent to a l2 regularizer 

(as in ridge regression) and does not shrink the value of the selected variable as l1 

penalty would do. By contrast, lasso or elastic net, with a fxed mixture weight, has 

sparsity penalty over both pruned and selected variables, which can greatly shrink 

the values of selected variables and hurt predictive performance. 

Second, NaNOS incorporates correlation structures encoded in pathways for vari-

able selection. Specifcally, it uses pathway structures into the extended spike and 

slab prior to explicitly model the detailed relationships between correlated genes. In 

contrast, Lasso and elastic net do not use this valuable correlation information in their 

models. By comparing prediction accuracies of NaNOS when 0% and 100% edges are 

removed from pathways (See Figure 4.8), we can see that the detailed correlation 

information captured by the pathway topology can greatly improve modeling quality. 

Third, NaNOS has the capability of selecting both relevant pathways and genes 

due to its two-layer sparse structure. By contrast, with l1/l2 penalty, group lasso 

encourages the selection of all the genes in chosen pathways, leading to dense estima-

tion. This may be undesirable in practice and deteriorate the predictive performance 

of group lasso. NaNOS enhances the fexibility of group lasso by conducting sparse 

estimation at both the pathway (or group) and gene levels. Meanwhile, our Bayesian 

estimation e˙ectively avoids overftting, a problem often plaguing fexible models. 

NaNOS has been applied to joint pathway and gene selection in this paper. In-

spired by the seminal works in (Frohlich et al., 2006; Chuang et al., 2007; Srivas-

tava et al., 2008; Zycinski et al., 2013), we can use NaNOS in a variety of biomedi-
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cal applications where there are abundant high-dimensional biomarkers of individual 

samples and other information sources – for example, the gene ontology (GO) and 

protein-protein interaction networks information – that capture correlation in the 

high-dimensional space. Here we discuss two approaches to apply NaNOS when we 

have only GO or other group information without network topology. The frst ap-

proach is to compute some distance or similarity scores between genes based on the 

GO information (e.g., following the approach by Srivastava et al. (2008)) and then 

estimate the network topology based on a network learning method, for example, 

graphical lasso (Friedman et al., 2008). With the estimated network topology, we 

can compute the graph Laplacian matrices and apply NaNOS to select genes and 

groups of genes. The second approach is to directly use the group membership infor-

mation in NaNOS by replacing the graph Laplacian matrices with identity matrices. 

This approach becomes useful when we even do not have any information available 

to learn the network topology. As shown in Figure 8, even when all the edges were 

removed and we had only group information, NaNOS still outperformed the second 

best method, elastic net, in terms of prediction accuracy. 
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5. SUMMARY 

5.1 Discussions 

The ultimate goal of RNA-seq data analysis is to interpret biological mechanisms 

based on the massive information stored in RNA-seq reads. Despite many success-

ful applications of RNA-seq, how to extract solid and consistent information from 

millions of pieced-together reads, and meanwhile to reduce the noise level is still a 

critical challenge in RNA-seq data analysis. One of the most eÿcient strategies is 

to utilize the additional information to facilitate this process. In this dissertation, 

I have presented three studies in RNA-seq data analysis by incorporating disparate 

information. The frst study takes the advantage of long read information in PacBio 

sequencing for assessing the performance of de novo assembly by RNA-seq short reads. 

The second study relies on the common information shared in sample replicates for 

accurately quantifying the expression levels of transcripts, while keeping the sample 

variations in estimation. The last study utilizes the pathway structural information 

summarized by domain experts for selecting phenotype-associated genes and path-

ways from high-throughput genomic data. All the above studies demonstrate that, 

by incorporating disparate information, the performance of RNA-seq data analysis 

can be better assessed or improved in the steps from assembly to quantifcation, and 

to functional analysis. 

5.2 Perspectives 

Aside from RNA sequencing, which quantifes and identifes the transcriptome of a 

sample, many new sequencing techniques have been developed for measuring di˙erent 

omics of a sample. For instance, exome sequencing only quantifes the protein-coding 
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genes in a genome rather than quantifes the whole transcriptome as RNA-seq does; 

ChIP-seq combines the chromatin immunoprecipitation with DNA sequencing for 

identifying targeted protein binding sites on DNA; Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-seq) identifes DNA regions which are accessible 

to transposase, namely the regions having no proteins binding with; DNA-methylation 

sequencing measures the epigenomic status of a sample. 

One interesting direction is to combine multiple omics data to enhance the pre-

diction performance, and to better illustrate the mechanism of gene regulation. Even 

though each of the above sequencing techniques has focused on measuring di˙erent 

aspects of a sample, they should provide consistent information for mutually sup-

porting each other when the signal is true. For example, if we fnd high levels of 

methylations in the promoter regions of a certain genes, the transcriptional rates of 

these genes should be low in RNA-seq data. 

From the perspective of computer science, machine learning and deep learning 

algorithms can be applied to the multi-omics data. By reorganizing the multi-omics 

data into meaningful and eÿcient data structures, and by appropriately choosing the 

variables, both supervised learning and unsupervised learning algorithms, which have 

been successfully used in many other areas, such as image processing, natural lan-

guage processing, etc., can be applied to sequence data, for illustrating new biological 

mechanisms. However, as the data has boomed, the curse of dimensionality has be-

come increasingly severe. How to properly reduce the dimensionality by capturing 

the correlative information remains as a critical question. 

The other interesting direction is to investigate the “individual –population” re-

lations of genomes or transcriptomes. Here, the “individual” can refer to a human 

or a single cell. The 1000 genomes project sequenced the genomes of 1092 people 

from di˙erent races/populations from all over the world. Single cell RNA-seq has the 

ability to sequence the small amount of RNAs from each single cell. By clustering 

the samples using each individual omics information, the history of human evolution 

and the mechanism of disease progression can be revealed. 
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Again, during only four decades, the feld of DNA sequencing has become more 

prosperous than ever, by quickly absorbing knowledge from diverse areas, including 

but not limited to chemistry, materials science, computer science, and engineering. 

In the near future, the sequencing technology can be envisioned to enter the real life 

of each person and better serve the world. 
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