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ABSTRACT 

Semi-supervised learning (SSL) is sub-field of statistical machine learning that is 

useful for problems that involve having only a few labeled instances with predictor (𝑋) and 

target (𝑌) information, and abundance of unlabeled instances that only have predictor (𝑋) 

information.  SSL harnesses the target information available in the limited labeled data, as 

well as the information in the abundant unlabeled data to build strong predictive models.  

However, not all the included information is useful. For example, some features may 

correspond to noise and including them will hurt the predictive model performance. 

Additionally, some instances may not be as relevant to model building and their inclusion 

will increase training time and potentially hurt the model performance. The objective of 

this research is to develop novel SSL models to balance data inclusivity and usability.  My 

dissertation research focuses on applications of SSL in healthcare, driven by problems in 

brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring. 

The first topic introduces an integration of machine learning (ML) and a 

mechanistic model (PI) to develop an SSL model applied to predicting cell density of 

glioblastoma brain cancer using multi-parametric medical images.  The proposed ML-PI 

hybrid model integrates imaging information from unbiopsied regions of the brain as well 

as underlying biological knowledge from the mechanistic model to predict spatial tumor 

density in the brain. 

The second topic develops a multi-modality imaging-based diagnostic decision 

support system (MMI-DDS).  MMI-DDS consists of modality-wise principal components 

analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, 
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connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature 

selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen 

principal components for white-box classification models. 

The final topic develops a new SSL regression model with integrated feature and 

instance selection called s2SSL (with “s2” referring to selection in two different ways: 

feature and instance).  s2SSL integrates cPSO feature selection and graph-based instance 

selection to simultaneously choose the optimal features and instances and build accurate 

models for continuous prediction.  s2SSL was applied to smartphone-based telemonitoring 

of Parkinson’s Disease patients. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The advances of sensing and computer technologies have produced immense 

amounts of data in healthcare.  Some data are easier to obtain than others are.  For example, 

in the application of glioblastoma brain cancer, when a doctor wants to get a better idea of 

the tumor environment, he/she can take biopsy samples and collect medical images of the 

patient.  Biopsies are invasive and the ability to sample is limited, while imaging data is 

non-invasive and available in large quantity. As another example, in monitoring the 

progression of Parkinson’s Disease (PD), one can use telemonitoring signals collected by 

the patients’ smartphones (e.g., voice, tapping, gait) and clinical instruments such as the 

Unified Parkinson’s Disease Rating Scale (UPDRS).  Clinical instruments must be 

administered in specialized clinics so the data is limited, while telemonitoring by 

smartphones is convenient and therefore the data can be available in large quantity.  

In both of the two aforementioned examples, an important task in building a 

predictive model is to use the easy-to-get data to predict the hard-to-get data with purpose 

of minimizing the need for the hard-to-get data in the future. In the brain cancer example, 

if a predictive model can be built to link image features with biopsy-based 

histopathological biomarkers, one can use the model to predict the biomarkers everywhere 

within the tumor using imaging data without the need for additional biopsy samples. This 

predicted biomarker map will help guide surgical resection and precision radiation therapy. 

In the PD example, if a predictive model can be built to link telemonitoring signals with 
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UPDRS scores, one can use the model to predict the UPDRS anytime without requiring 

the patient’s physical presence in a specialized clinic. As UPDRS reflects the severity of 

PD, using the predicted UPDRS that can frequently be obtained will help the doctors 

closely monitor disease progression and make timely medical decisions for treatment 

adjustment.  

In building the predictive models, one option is to use a training dataset that only 

includes labeled data (e.g., biomarkers, UPDRS). Such a dataset will be limited in the 

sample size due to the difficulty in obtaining the hard-to-get data. Another option is to use 

both labeled and unlabeled data. The latter refers to samples, for example, with only 

imaging data available but no biomarker information (another example would be samples 

with only telemonitoring data available but no UPDRS information). This option is studied 

in a subfield of machine learning (ML) called semi-supervised learning (SSL). 

SSL aims to utilize all the available data (labeled and unlabeled), so it is inclusive 

in nature. However, not all the included data is useful. For example, some features may 

correspond to noise and including them will hurt the predictive model performance. Also, 

although unlabeled samples are relatively easier to obtain and therefore come in large 

quantity, some samples may correspond to noise and including them in an SSL model will 

hurt the performance. The objective of my dissertation is to develop novel SSL models 

to balance the data inclusivity and usability, driven by real-world healthcare applications 

especially in radiomics of brain cancer, migraine imaging, and telemonitoring of PD.   
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1.2 State of the Art 

Several subfields of ML are relevant to my proposed work, which are reviewed as 

follows: 

(1) Semi-supervised learning (SSL) has been widely used in applications in which 

labeled data are scarce but unlabeled data are available in large quantity. There are many 

types of SSL algorithms, including generative, self-training, co-training, low-density 

separation, and graph-based models. Graph-based SSL has recently become popular 

because of its relatively high accuracy and efficiency.  The basic idea is to construct a graph 

with vertices being labeled and unlabeled samples in a training set and edges weighted by 

vertex proximity in the feature space. There are two types of graph-based SSL: transductive 

and inductive learning models. The former aims to formulate a method to propagate 

information from labeled samples to unlabeled samples in a specific dataset. In this way, 

the unlabeled samples in the dataset are classified/predicted. The latter aims to train a 

model using labeled and unlabeled samples, which is not only used to predict the unlabeled 

samples in training but also new samples. As examples, for transductive learning, Zhu et 

al. 2003 proposed a Gaussian random field model with the mean of the field characterized 

in terms of harmonic functions. They tested the model on digit and text classification tasks. 

For inductive learning, Belkin et al. 2006 proposed the manifold regularization (MR) 

framework, which relies on properties of reproducing kernel Hilbert spaces (RKHS) to 

enable efficient and accurate prediction. 

(2) Feature selection obtains a non-redundant, relevant subset of features from a 

set of many features to improve model accuracy and interpretability.  Unlike feature 
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extraction, feature selection does not create new features from the original data.  For 

example, principal components analysis (PCA) is a feature extraction method that 

generates new features that are a linear combination of original features (Hotelling 1933).  

Instead, feature selection chooses a subset of existing features that can describe the model 

(Saeys et al. 2007), providing better model interpretability and improved accuracy. 

There are three different types of feature selection, namely (1) filter method, (2) 

wrapper method, and (3) embedded method.  Filter method determines the relevance of 

different features by examining the inherent properties of the data (e.g., information gain, 

correlation-based feature selection). Wrapper method includes the model hypothesis in 

determining the relevance of a specific feature (e.g., the classification accuracy of a 

discriminant classifier). Embedded method “embeds” the search for an optimal subset 

within the model construction (e.g., branch-and-bound method) (Guyon and Elisseeff 

2003). However, most feature selection algorithms were developed as a pre-processing step 

or to be integrated with supervised learning. Limited research has been done for feature 

selection in SSL.  

(3) Sample reduction for graph-based SSL has been shown to be useful for 

improving accuracy and efficiency of the SSL algorithms.  Some graph-based SSL 

techniques have limitations on larger datasets due to the computational complexity of 

incorporating a matrix-embedded graph into model training.  Several sampling 

techniques have been developed to minimize computational time by training on the 

most relevant samples/instances. 

One category of sampling techniques is embedded directly into the objective 
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function to be minimized.  Studies by Zhang et al. 2014 and Zuo et al. 2015 

incorporated the 𝐿1-norm with respect to the kernel coefficients of the response for 

manifold regularization (MR).  Studies by Lu et al. 2015 and Lu and Wang 2015 

employed a Laplacian 𝐿1-norm into the objective function. 

Other sampling methods are used to reduce the population to a representative 

set before SSL model training. Performing sampling before model training can have a 

significant time advantage since the initial graph size before model training is much 

smaller.   Wang and Zhang 2008 used a graph-based sampling method to eliminate 

bridge points, i.e., instances that are noisy or do not have many nearest neighbors in a 

given search radius.  Goldberg et al. 2009 introduced a cover sampling technique that 

produces an approximate cover of the unlabeled instances across the manifold.  Sun et 

al. 2014 employed a method that favors sampling instances that have a higher degree 

in the underlying graph. 

In my dissertation, I will address the gaps in the existing research in the 

following aspects: 

 Lack of integrating underlying medical knowledge of biological processes with 

semi-supervised models in healthcare: It is paramount to have tools that can 

accurately predict spatially heterogeneous biological processes being monitored by 

medical imaging.  There is a lack of machine learning models that combine image-

localized biopsies and imaging data with mechanistic models that convey the 

scientific knowledge of the underlying cellular mechanisms.  Without the marriage 
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of empirical information and scientific knowledge, models are either prone to the 

variability of empirical information or the smoothness of mechanistic models.  

 Need for methods that select a feature subset to produce a near-global optimal 

solution in a semi-supervised learning setting: Given the high-dimensionality of 

the joint feature set produced by multi-modality data, searching for the subset of 

features with the near-global optimal classification accuracy is very challenging. 

An exhaustive search is practically impossible. Greedy search based methods such 

as sequential forward selection and sequential backward selection suffer from a 

variety of problems such as stagnation in local optima and a high computational 

cost. Lately, evolutionary computation (EC) techniques such as genetic algorithms 

(GA) (Fraser and Burnell 1970), genetic programming (GP) (Koza 1990), 

differential evolution (DE) (Storn and Price 1997), and neuroevolution (Floreano 

et al. 2008) have attracted great attention with some initial success in feature 

selection and classification for medical applications. A new emerging field in EC 

is swarm intelligence (Bonyadi and Michalewicz 2017) which models the collective 

behavior of social swarms in nature, such as ant colonies, honeybees, and bird 

flocks. Although individuals in a swarm are relatively unsophisticated with limited 

capabilities on their own, they interact together with certain behavioral patterns to 

cooperatively achieve tasks necessary for their survival. This “intelligent” behavior 

of the swarm has inspired new algorithmic developments in solving large complex 

optimization problems with a wide range of application domains such as machine 

learning (Das et al. 2009), bioinformatics (Das et al. 2008), dynamical systems and 
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operations research (Parsopoulos 2010). Particle swarm optimization (PSO) is a 

computational algorithm based on swarm intelligence that mimics the behavior of 

flying birds and their means of information exchange to solve optimization 

problems. Each potential solution is seen as a particle with a certain velocity, and 

flies through the problem space. Each particle adjusts its flight according to its own 

flying experience and its companions’ flying experiences. The particle swarms find 

optimal regions over complex search spaces through the interaction of individuals 

in a population of particles. PSO has been successfully applied to a number of 

difficult combinatorial optimization problems (Jarboui et al. 2008, Chu et al. 2012). 

PSO has also been shown to be computationally less expensive, converge more 

quickly, and find better solutions than classic EC algorithms such as GA (Wang et 

al. 2007, Jarboui et al. 2007). 

 Need to integrate feature selection and sample reduction methods in an SSL 

regression framework: Most of the existing SSL models target categorical 

response variables, i.e., they are in parallel with classification models in supervised 

learning. Less work has been done with numerical response variables, i.e., in 

parallel with regression models in supervised learning. Many healthcare 

applications have numerical response variables such as tumor cell density in 

glioblastoma and UPDRS in PD. Moreover, this is little work on integrating feature 

selection and sample reduction with regression-type SSL to balance data inclusivity 

(SSL) and usability (from two angles, samples and features).   
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1.3 Expected Original Contribution 

 The objective of my dissertation research is to develop new semi-supervised 

learning methods that overcome the aforementioned limitations of the existing 

methods and demonstrate their utility in healthcare applications.  The expected original 

contributions are as follows: 

 Integration of mechanistic models and ML to develop a new SSL model, which 

was applied to predict intra-tumor cell density of glioblastoma using 

multiparametric MRI. In my first topic, I develop a novel semi-supervised 

learning technique to incorporate labeled and unlabeled data, as well as a bio-based 

mechanistic model, for prediction of brain tumor content in glioblastoma patients.  

In medical imaging there have been several advancements that have improved the 

quality of established imaging techniques and introduced new ones.  There is an 

abundance of heterogeneous imaging types that can be used to discern different 

properties of the organ of interest.  T1+C detects blood brain barrier disruption; 

T2W measures water content; rCBV detects microvascular volume; EPI+C detects 

cell density/size and microvessel volume; MD detects bulk water movement; and 

FA detects directionality of water movement.  In addition, texture algorithms can 

also be used to process the available images to infer additional information.  Gray 

level co-occurrence matrix (GLCM) measures how often pairs of pixels with 

specific values within a specific window of the image occur; local binary patterns 

(LBP) measure local spatial patterns and are robust to monotonic gray-scale 

changes in the image; and Gabor filters determine if there is a frequency content in 
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a specific direction for a particular region of interest.  The fundamental meaning of 

these texture features for particular applications are more abstract and research is 

still being performed to improve their interpretation. Imaging information can be 

used to infer information about the underlying phenotypic information expressed 

by different micro-expressions detected in the tissue.  This area of research is 

known as radiomics.  For example, in glioblastoma, it has been found that imaging 

features can be linked with the tumor density and genetic information inferred from 

a biopsy sample (Hu et al. 2015, Hu et al. 2016).  One limitation in radiomics, 

however, is having an insufficient number of biopsy samples to train an accurate 

machine learning model.  Due to the invasive nature of biopsies, they can be very 

expensive to collect at the cost of patient safety.  Thus, there is a need to utilize 

additional sources of information to improve model prediction.  Imaging 

information of unbiopsied samples can be utilized by a semi-supervised learning 

approach.  Additionally, there is already scientific knowledge of the cell diffusion 

and proliferation patterns of glioblastoma available through mechanistic models. 

These models are derived from imaging information of the patient and utilize 

knowledge of glioblastoma to make its prediction. Information from these 

mechanistic models was utilized as a sort of prior knowledge to guide the prediction 

of the machine learning model. 

 Development of a new constrained particle swarm optimization (cPSO) based 

feature selection algorithm, which was applied to two healthcare applications 

in a supervised learning setting and prepared to be further extended to an SSL 
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setting. In my second work, I address the issue of data usability from the angle of 

selecting informative features and propose a near-globally optimal feature selection 

method called constrained particle swarm optimization (cPSO). I develop cPSO as 

part of a proposed multi-modality imaging-based diagnostic decision support 

system (MMI-DDS).  The cPSO algorithm honors a pre-specified maximum 

number of features to avoid model overfitting, while also evaluating feature quality 

and not including poor quality features in the trained model (thus ensuring that the 

number of features selected will always be less than or equal to the specified 

number).  The algorithm is applied to two healthcare applications: (1) predicting 

genetic mutation in biopsies of glioblastoma patients and making accurate 

predictive maps of genetic mutations in the tumor and peripheral areas, and (2) 

classifying migraine patients and determining potential clinical indicators of the 

disease. 

 Development of a new SSL model with cPSO-integrated feature and instance 

selection, which was applied to smartphone-based telemonitoring of 

Parkinson’s Disease patients. I introduce a first-of-its-kind semi-supervised 

feature and instance selection algorithm for regression tasks that combines SSL, 

cPSO, and graph-sampling.  Because the proposed model integrates both feature 

and sample selection with SSL, it is named as s2SSL, implying being an SSL with 

selection in two aspects: feature and sample. s2SSL aims to balance data inclusivity 

(through the SSL) and usability (through the feature and sample selection). This 

work is done in the context of smartphone-based telemonitoring, an emerging 
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healthcare area that has high potential to closely monitor a patient’s disease 

severity—in particular, Parkinson’s Disease (PD).  Because smartphones have 

improved in technological capabilities (e.g., better quality accelerometers, cameras, 

microphones, etc.), they can now be used to remotely monitor patients, reducing 

the frequency of times a patient needs to visit the clinic to receive assessment on 

disease severity. 

1.4 Dissertation Organization 

 The proposed dissertation research will be presented in three chapters: Chapters 2, 

3, and 4 encapsulate the three topics of my research (described in the previous section).  

Chapter 2 integrates a biologically-based mechanistic model with semi-supervised 

learning, Chapter 3 develops a feature selection approach to select a near-globally optimal 

feature subset from an abundance of heterogeneous imaging features, and Chapter 4 

integrates a cPSO-based feature selection and a graph-sampling approach in an SSL 

framework. 
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CHAPTER 2 

INTEGRATION OF MACHINE LEARNING AND MECHANISTIC MODELS 

ACCURATELY PREDICTS VARIATION IN CELL DENSITY OF GLIOBLASTOMA 

USING MULTIPARAMETRIC MRI 

2.1 Background 

Glioblastoma (GBM) ranks among the most lethal of all human cancers. The 

median survival in the general patient population with first-line treatment is 14 months, 

with a 26% 2-year survival rate (Stupp et al. 2005, Sottoriva et al. 2013). Poor survival and 

treatment failure can largely be attributed to tumor invasion and intratumoral heterogeneity 

(Inda et al. 2014). Intratumoral heterogeneity manifests as the spatial heterogeneity in 

tumor cell density in and around the tumor regions visible on clinical imaging as well as 

the different molecular signatures of tumor cells within different regions of the same tumor. 

As a result, different sub-regions of a tumor may have different therapeutic sensitivities, 

leading to treatment failure and poor survival. Success of the Precision Medicine (PM) 

revolution hinges on the ability to address such heterogeneity within and between patients 

(Martelotto et al. 2014, Brocks et al. 2014, Baldock et al. 2013, Jackson et al. 2015).  

To capture intratumoral heterogeneity, a critical first step is to obtain tumor-rich 

biospecimens for histological and molecular analysis, which has been a challenging task in 

the current clinical practice. For example, in the NIH-funded large-scale cancer genomics 

project, the Cancer Genome Atlas (TCGA), only 35% of the initially submitted biopsy 

samples contained adequate tumor content to make genetic analysis possible (McLendon 

et al. 2008). Ideally, due to the invasive nature of biopsies, and since the abnormality seen 
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on clinical imaging reveals only the tip of the iceberg of the overall tumor invasion 

(Swanson et al. 2000, Swanson et al. 2002, Swanson et al. 2003, Baldock et al. 2014, 

Corwin et al. 2013 Wang et al. 2009, Sodt et al. 2010), one would want to map out the 

tumor cell density distribution across the clinical imaging (magnetic resonance imaging, 

MRI) such that biopsy samples can be prioritized. Such a tumor cell density map would 

offer two additional important clinical benefits: it will assist with enhancing precision of 

surgical resection and optimizing the dose distribution of radiotherapy.  

In GBM, various MRI sequences containing complementary information have been 

used to assist clinical decision making, including the conventional T1- and T2-weighted 

imaging and more advanced imaging such as diffusion tensor imaging (DTI), which 

measures white matter infiltration, and perfusion imaging, which measures microvessel 

morphology. Mapping intratumoral cell density distribution can take advantage of multi-

sequence or multiparametric MRI.  There have been two parallel types of efforts taking as 

inputs multiparametric MRI to generate tumor cell density maps – machine learning and 

mechanistic modeling. 

Machine learning (ML) models can be trained to link localized imaging features of 

multiparametric MRI at each biopsy location with pathologist quantified tumor cell density 

(Durst et al. 2014, Hu et al. 2015, Chang et al. 2017). This results in a predictive tumor cell 

density ML model map that can be applied over the entire tumor.  Since ML models are 

trained on the scant data provided by image-localized biopsies from different regions of 

previous tumors, they are prone to vulnerability with regard to any biases or imbalance in 

the data feeding the model. Based on the breadth and depth of these training data, the 

resultant trained ML model can be used to predict the cell density of any location, including 
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locations that are not biopsied. 

Mechanistic models, on the other hand, are built on first principles understanding 

of cancer biology that constrain interpretation as to how the multiparametric MRIs might 

provide insights into the tumor cell density across the brain.  One well-known mechanistic 

model is the Proliferation-Invasion (PI) model (Swanson et al. 2000, Swanson et al. 2002, 

Swanson et al. 2003, Baldock et al. 2014, Corwin et al. 2013 Wang et al. 2009, Sodt et al. 

2010). The PI model is based on the principle that gliomas are proliferative and invasive, 

and thus simulations of the PI model are based on patient-specific estimates of the tumor 

cell net proliferation and invasion rates, estimated for each patient using the contrast 

enhanced T1-weighted and T2-weighted MRIs. Based on the premise underlying the PI 

model, given outlines of imaging abnormality on these pretreatment images along with 

gray/white matter segmentation of the patients’ brain, the PI model can produce a tumor 

cell density map anywhere within the patients’ brain (Baldock et al. 2014, Wang et al. 

2009, Sodt et al. 2010, Swanson et al. 2013). 

Both ML and mechanistic models have strengths and limitations. ML is a data-

driven approach, which has the strength of utilizing the available data, but is limited in that 

a model built on a particular dataset may not generalize well to other datasets.  For instance, 

ML models for tumor cell density can make predictions that are counter to biological 

intuition and experience including suggesting unrealistic fluctuations in cell density over 

small distances or predicting biologically unlikely significant regions of high tumor cell 

density distant from the imageable component of the tumor.  On the other hand, the PI 

model has better generalizability because it is a mechanistic model based on the underlying 

principles of cancer biology.  But the PI model is limited in that it assumes cell density 
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monotonically decreases from around the center of the tumor mass (i.e., enhancing core on 

a T1+C image) to the surrounding non-enhancing parenchyma, so called brain around the 

tumor (BAT), not allowing significant local fluctuations. While it is generally true that 

higher cell densities are in the center of the imaging abnormality and the lower cell 

densities are on the outskirts, the monotonic nature limits the high resolution accuracy of 

the PI model estimates in BAT. Here I propose to integrate these ML and PI approaches 

into a hybrid model to leverage the strengths of each model and overcome the limitations 

of using each model alone. To the best of my knowledge, such a hybrid model does not 

exist, which motivates this research.  

The focus of this chapter is to develop a novel hybrid model, called ML-PI, that 

integrates ML and PI models to increase accuracy in predicting intratumoral cell density 

distribution for each patient. ML-PI adopts a semi-supervised learning (SSL) framework, 

which utilizes both biopsy samples (called labeled data) and biopsy-free sub-regions of the 

tumor (called unlabeled data). SSL has been widely used in various applications in which 

labeled data are scarce but unlabeled data are readily available and in a large quantity. This 

is also the case for my application in which biopsy samples are very limited for each patient 

and there are abundant sub-regions of the tumor that are not biopsied but with image 

features readily available. The contributions of this research are summarized as follows: 

 Under a graph-based SSL framework, ML-PI incorporates PI-estimated cell density 

to regularize the multiparametric MRI based SSL model. ML-PI is able to learn 

patient-specific predictive relationships between imaging features and cell density 

that is superior to each modeling method alone. The resultant ML-PI model 
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improves the ability to capture substantial intra- and inter-patient heterogeneity.  

 I propose an algorithm called Relief-ML-PI, adapted from the Relief algorithm 

(Robnik-Sikonja and Kononekno 2003), to quantify the contribution from each 

MRI sequence and PI to the final cell density prediction.  One of the major 

distinctions of Relief-ML-PI from the original Relief, is that it is used to examine 

feature contributions of the model post-training, as opposed to being used for 

feature selection pre-model training. Finding their respective contributions to 

prediction of tumor cell density helps knowledge discovery about GBM. Also, 

knowing the contribution from PI relative to imaging features reveals the 

importance of incorporating mechanistic models into data-driven ML.  

 I apply ML-PI to a clinical cohort of primary GBM patients undergoing surgical 

biopsy and resection. High accuracy in cell density prediction is achieved in 

comparison with competing methods. Using Relief-ML-PI, PI is found to 

contribute most significantly to the prediction. Predicted cell density maps are 

generated for each patient across the tumor mass and BAT, allowing for precision 

treatment. 

 

2.2 Literature Review 

This research intersects with three existing research areas: 1) ML models that use 

multiparametric MRI to predict intratumoral regional cell density; 2) mechanistic tumor 

proliferation and invasion models that achieve the same purpose as 1); 3) SSL used to 

incorporate unlabeled samples to improve the model performance. In what follows, I will 
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review the existing work in each area and point out limitations. 

 

2.2.1 ML models for Intratumoral Regional Cell Density Prediction Using Multiparametric 

MRI 

To the best of my knowledge, this area has only limited works so far. One related 

work (Hu et al. 2015) developed an ML pipeline to predict regional cell density within each 

tumor. This pipeline included three key steps, including 1) texture feature extraction from 

co-registered multiparametric MRI images (T1+C, T2W, rCBV, EPI+C, MD, FA) 

localized at biopsied tumoral sub-regions; 2) feature dimension reduction by modality-wise 

principal component analysis (PCA); 3) building of a classifier using an ensemble of 

classification algorithms. This pipeline was used to classify high (≥80%) vs. low (< 80%) 

density for a cohort of 82 biopsy samples from 18 patients – the same cohort I focus on in 

this study. Furthermore, other researchers have developed methods to predict regional cell 

density on a continuous scale (0-100%). For example, Durst et al. used 12 imaging 

variables followed by PCA and generalized estimating equations regression (GEER) to 

predict regional cell density of 10 patients (Durst et al. 2014). Chang et al. 2017 used T1+C, 

T2-FLAIR, and ADC features to predict cell density of 36 patients by a multiple linear 

regression.  

The existing works have limitations: First, except the work in Hu et al. 2015, the 

other papers reported only training accuracy of the predictive models. It is well-known that 

training accuracy over-estimates the true accuracy of a predictive model. Additionally, 

while identification of high tumor regions (e.g., with ≥80% density) like the work in Hu 
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et al. 2015 has significant clinical value for guiding neurosurgery and biopsy, prediction of 

cell density on a continuous scale is more challenging and clinically valuable for guiding 

more nuanced decision making in surgery and dose optimization in radiotherapy. Also, all 

the existing studies were based on biopsy samples alone, without incorporating 1) abundant 

regional samples with imaging feature readily available but not biopsied (i.e., unlabeled 

data), and 2) first principles of tumor cell biology as characterized by mechanistic models 

of proliferation and invasion. 

 

2.2.2 Mechanistic PI Model for Patient-Specific Tumor Cell Density Estimation 

The proliferation-invasion (PI) model aims to capture the most basic understanding 

of what cancer is: cells that grow uncontrollably and invade surrounding tissue. The 

invasion term is particularly relevant here as glioblastomas are known to be diffusely 

invasive with the potential to migrate long distances in the human brain (Baldock et al. 

2013, Jackson et al. 2015). Mathematically, the PI model is written as follows: 

 

where 𝑐(𝑥, 𝑡) is the tumor cell density, 𝐷(𝑥) is the net rate of diffusion taken to be 

piecewise constant with different values in gray and white matter, 𝜌 is the net rate of 

proliferation and 𝐾 is the cell carrying capacity. This model has been used to predict 

prognosis (Wang et al. 2009), radiation sensitivity (Rockne et al. 2010), benefit from 

resection (Baldock et al. 2014), and IDH1 mutation status (Baldock et al. 2014b). 

Additionally, this model was used to create untreated virtual controls for use in defining 
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response metrics that are more prognostically significant than those currently in use (Neal 

et al. 2013a, Neal et al. 2013b). 

I note that the vast majority of the clinically relevant PI literature focuses on the 

intuition derived from the patient-specific parameter values (𝐷 and 𝜌), i.e. the gross tumor 

growth profile, rather than a voxel by voxel cell density prediction. This is exactly because 

the PI model tends to smooth local regional cell density differences on this scale. The use 

of the PI model cell densities in the hybrid model presented here is for a similar purpose: 

these predictions provide an insight into the expected overall pattern but need to be 

augmented by more sophisticated data-driven ML methods to achieve local accuracy. That 

is, the biological insights provided by the PI model provides a means to regularize the 

biologically unrealistic spatially heterogeneity seen in the ML models for tumor cell 

invasion.  

 

2.2.4 Semi-Supervised Learning (SSL)  

SSL has been widely used in applications in which labeled data are scarce but 

unlabeled data are available in large quantity. There are many types of SSL algorithms, 

including generative (Holub et al. 2005, Fujino et al. 2005), self-training (Li et al. 2008, 

Tanha et al. 2017, Bache and Lichman 2013), co-training (Wan 2009, Zhou et al. 2007), 

low-density separation (Zhu and Lafferty 2005, Lawrence and Jordan 2005), and graph-

based models. This study utilizes a graph-based SSL method to integrate PI with ML, and 

so a brief summary of different graph-based SSL methods will be provided in this section. 

Graph-based SSL has recently become popular because of its relatively high 
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accuracy and efficiency.  The basic idea is to construct a graph with vertices being labeled 

and unlabeled samples in a training set and edges weighted by vertex proximity in the 

feature space. There are two types of graph-based SSL: transductive and inductive learning 

models. The former aims to formulate a method to propagate label information from 

labeled samples to unlabeled samples in a specific dataset. In this way, the unlabeled 

samples in the dataset are classified/predicted. The latter aims to train a model using labeled 

and unlabeled samples, which is not only used to predict the unlabeled samples in training 

but also new samples. 

For transductive learning, Zhu et al. 2003 proposed a Gaussian random field model 

with the mean of the field characterized in terms of harmonic functions. They tested the 

model on digit and text classification tasks. Reference Zhou et al. 2004 introduced a local 

and global consistency framework based on the quadratic loss of prediction on labeled 

samples regularized by a normalized Laplacian matrix. For inductive learning, Zhu and 

Lafferty 2005 regularized generative mixture models with graph Laplacian and 

demonstrated its performance on handwritten digit and teapots image datasets. Belkin et 

al. 2006 proposed the manifold regularization (MR) framework, which relied on properties 

of reproducing kernel Hilbert spaces (RKHS) to enable efficient and accurate prediction. 

This chapter aims to adopt the SSL concept by leveraging the abundant intratumoral 

regional samples that are not biopsied (unlabeled data) to compensate for the limited biopsy 

samples (labeled data). I chose to use the graph-based SSL by Belkin et al. 2006 as my 

baseline model because of its proven high accuracy and efficiency in various applications, 

as well as its inductive learning ability that allows the trained model to be used to predict 

new patients. Furthermore, using the SSL model by Belkin et al. 2006 as baseline, I 
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innovate it by 1) incorporating the mechanistic PI model, leading to a hybrid ML-PI model; 

and 2) proposing a post-analysis step of ML-PI for identifying contributions from different 

MRI sequences and PI. 

 

2.3 Development of ML-PI 

2.3.1 Patient Recruitment 

Patients were recruited with clinically suspected GBM undergoing preoperative 

stereotactic MRI for first-line surgical resection prior to any treatment, as per institutional 

review board protocol. Approval was obtained from the institutional review boards at 

Barrow Neurological Institute (BNI) and Mayo Clinic in Arizona (MCA) in accordance 

with the Declaration of Helsinki. All patients provided written and informed consent prior 

to enrollment.  The patient cohort presented here has also been described in previous 

studies (Hu et al. 2015).  82 biopsy samples were collected from 18 GBM patients, with 

each patient having 2-14 biopsy samples. 

 

2.3.2 Surgical Biopsy 

Pre-operative conventional MRI, including T1-Weighted contrast-enhanced 

(T1+C) and T2-Weighted sequences (T2W), was used to guide biopsy selection. Each 

neurosurgeon collected an average of 5–6 tissue specimens from each tumor by using 

stereotactic surgical localization, following the smallest possible diameter craniotomies to 

minimize brain shift. Specimens were collected from both enhancing mass (as seen on 

T1+C) and non-enhancing BAT (as seen on T2W) for each tumor. The neurosurgeons 
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recorded biopsy locations via screen capture to allow subsequent coregistration with 

multiparametric MRI datasets. The biopsy tissue specimens were reviewed blinded to 

diagnosis by a neuropathologist and assessed for tumor content. Taking into account all 

visible cells (neurons, inflammatory cells, reactive glia, tumor cells, etc.), the percent tumor 

nuclei were estimated. Additional details of methods for surgical biopsy and pathological 

density measurement can be found in (Hu et al. 2015). 

 

2.3.3 Multiparametric MRI and ROI Segmentation 

Six multiparametric images were included in the present study, including T1+C, 

T2W, EPI+C, MD, FA, and rCBV (detailed MRI protocols and image co-registration can 

be found in Hu et al. 2015 and the supplementary information). The main goal was to 

generate cell density predictions for the extent of the abnormality shown on T2W (called 

T2W ROI hereafter), which includes both the tumor mass enhanced on T1+C and non-

enhanced BAT. The latter is known to harbor residual tumor cells after resection, which 

lead to treatment failure and recurrence (Hu et al. 2015). The T2W ROI of each tumor was 

manually segmented by a board-certified neuroradiologist.  

 

2.3.4 Image Feature Computation and PI Density Estimation. 

An 8x8 voxel box was placed at the location of co-registered images that 

corresponds to each biopsy sample. The average gray-level intensity over the 64 voxels 

within the box was computed for each image sequence. In addition to computing features 
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for the biopsy samples (i.e., labeled samples), I also computed features for unlabeled 

samples in the following way: One slice of MRI was chosen for each patient, which is 

approximately the cross-section that included a balanced amount of enhancing mass and 

non-enhancing BAT. Furthermore, 8x8 voxel boxes were placed one pixel apart on the 

T2W ROI of the chosen slice, and the same image features as those of the biopsy samples 

were computed for each box.  

Using the T1+C and T2W images of each patient as input, voxel-wise density 

estimation was generated by the PI model. Average PI density over the pixels in each 8x8 

box on the selected slice was computed. 

 

2.3.5 Data Augmentation by Virtual Biopsies 

To provide a balanced dataset for ML-PI model training, virtual biopsies were 

identified for each patient (if necessary) to balance the high density samples with ‘virtual’ 

low density samples according to the steps described in the supplementary information. A 

total of 39 virtual biopsy samples were added with each patient having 0-6 samples. In 

Appendix A, Figure A1(a) shows a histogram of pathological density for the real biopsy 

samples in my dataset, which indicates a clear imbalance toward high density. Figure A1(b) 

shows a histogram of augmented samples, which indicates good balance. Furthermore, for 

each virtual biopsy sample, I used the same approach as that for real biopsy samples to 

compute imaging features and average PI density.  Note that virtual biopsy samples were 

only used in model training, but not in validation of the model performance. The latter was 

based purely on real biopsy samples.   
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2.3.6 Development of a Hybrid ML-PI Model 

The basic idea of ML-PI is to incorporate PI-estimated regional cell density into a 

graph-based SSL. ML-PI is a significant expansion from a typical supervised model that 

takes the following form:  

𝑓∗ = argmin
𝑓∈ℋ𝐾

    
1

𝐿
∑ (𝑦𝑙 − 𝑓(𝐳𝑙))2𝐿

𝑙=1 + 𝛾𝐴‖𝑓‖𝐾
2 .   (2.1) 

𝐿 is the number of biopsy samples in a training dataset. 𝑦𝑙 is the pathologically measured 

tumor cell density for the 𝑙-th sample. 𝐳𝑙 contains gray-level intensity of each MRI 

sequence averaged over the 8x8 voxel box placed at the 𝑙-th biopsy sample location. 𝑓(𝐳𝑙) 

is a predictive function for cell density. (𝑦𝑙 − 𝑓(𝐳𝑙))2 is a loss function that measures the 

discrepancy between the pathological and predicted density of each biopsy sample. 𝑓 is a 

function on the reproducing kernel Hilbert space (RKHS), ℋ𝐾, with a Mercer kernel 𝐾. 

‖𝑓‖𝐾
2  is a norm on ℋ𝐾, which encourages stability and generalizability of the solution. 𝛾𝐴 

is a tuning parameter. 

Equation (2.1) is a supervised learning model because it uses only the biopsy samples 

(labeled data). To incorporate unlabeled data and PI-estimated density into the model, I 

follow the idea of SSL and build a graph on all labeled and unlabeled samples. Specifically, 

one graph 𝐺 = (𝐕, 𝐖) is built for each patient. 𝐕 is the set of vertices and 𝐖 contains the 

weight of edge between each pair of vertices. Let 𝑛 = 𝐿 + 𝑈 be the number of vertices of 

the graph. 𝐿 is the number of all biopsy samples and 𝑈 is the number of voxels on the T2W 

ROI for the target patient. The edge weight between vertices 𝑣𝑖 and 𝑣𝑗, 𝑖, 𝑗 = 1, … , 𝑛, can 

be computed using a product of two Gaussian functions, i.e.,  
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𝑤𝑖𝑗 = 𝑤𝑖𝑗,𝑧 × 𝑤𝑖𝑗,𝑃𝐼 = 𝑒𝑥𝑝 (−
‖𝐳𝑖−𝐳𝑗 ‖

2

2𝜓𝑧
2 ) × 𝑒𝑥𝑝 (−

(𝑃𝐼𝑖−𝑃𝐼𝑗 )
2

2𝜓𝑃𝐼
2 ).   (2.2) 

𝑃𝐼𝑖 is PI-estimated cell density averaged over the 8x8 box centered at the 𝑖-th voxel. 𝐳𝑖 

contains gray-level intensity of each MRI sequence averaged over the 8x8 box centered at 

the 𝑖-th voxel.  

In essence, 𝑤𝑖𝑗  reflects the closeness between two samples/vertices in terms of their 

respective image features (𝑤𝑖𝑗,𝑧) and PI estimations (𝑤𝑖𝑗,𝑃𝐼). 𝜓𝑧 and 𝜓𝑃𝐼 are parameters to 

adjust contributions to the weight from image features and PI, respectively. 

Furthermore, the graph 𝐺 can be encoded into a Laplacian matrix defined as 𝛀 =

𝐃 − 𝐖, where 𝐃 is the vertex degree matrix, i.e., a diagonal matrix with diagonal elements 

being the total sum of edge weights associated with each vertex, and 𝐖 is the matrix of all 

the edge weights. Then, the model in (2.1) can be augmented by incorporating the graph 

Laplacian matrix, which gives the proposed ML-PI model as:  

𝑓∗ = argmin
𝑓∈ℋ𝐾

     
1

𝐿
∑ (𝑦𝑙 − 𝑓(𝐱𝑙))

2𝐿
𝑙=1 + 𝛾𝐴‖𝑓‖𝐾

2 +
𝛾𝐼

∑ 𝑤𝑖𝑗𝑖,𝑗
𝐟𝑇𝛀𝐟.       (2.3) 

𝐱𝑙 = (𝐳𝑙, 𝑃𝐼𝑙). 𝐟 contains predictive density for each labeled and unlabeled sample, i.e., 𝐟 =

(𝑓(𝐱1), … , 𝑓(𝐱𝐿), 𝑓(𝐱𝐿+1), … , 𝑓(𝐱𝐿+𝑈))
𝑇
. ∑ 𝑤𝑖𝑗𝑖,𝑗  is a sum of all the edge weights in the 

graph. Because of patient heterogeneity, I found that the graph of each patient has a wide 

range of sparsity levels, which causes difficulty in choosing a common search range for 

the tuning parameter 𝛾𝐼 . Adding ∑ 𝑤𝑖𝑗𝑖,𝑗  solves this problem by normalizing patient-

specific graphs to allow for 𝛾𝐼  to be tuned within a common range.  

Through some algebra, the last term in (2.3) can be shown to become:  

𝐟𝑇𝛀𝐟 = ∑ (𝑓(𝐱𝑖) − 𝑓(𝐱𝑗))2𝑤𝑖𝑗,𝑧 × 𝑤𝑖𝑗,𝑃𝐼
𝐿+𝑈
𝑖,𝑗=1 .       (2.4) 
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Then, it is clear that the minimization in (2.3) pushes samples that are closer in image 

features (i.e., with a larger 𝑤𝑖𝑗,𝑧) and in PI estimations (i.e., with a larger 𝑤𝑖𝑗,𝑃𝐼) to have 

more similar predictions. This is traded off with the loss on the labeled data (the first term 

in (2.3)) and the smoothness of the predictive function in RKHS (the second term in (2.3)). 

In the extreme case when 𝑤𝑖𝑗,𝑧 = 𝑤𝑖𝑗,𝑃𝐼 = 0 for all the edges, (2.3) becomes the supervised 

learning model in (2.1). In essence, the role of PI in the proposed model is to regularize the 

learning of the predictive function in order to make sure the spatial proximity of predicted 

densities conform with that of PI densities to some extent. This implicitly takes into account 

the bio-mechanism of tumor growth, which is the foundation of the PI model.  

The Representer Theorem (Scholkopf et al. 2001) can be used to show that an 

analytical solution for (2.3) exists in ℋ𝐾, described in Theorem 1 below (proof is provided 

in the supplementary information). 

Theorem 2.1: The solution of the optimization in (2.3) is the following expansion in terms 

of both labeled and unlabeled samples: 

𝑓∗(𝐱) = ∑ 𝛼𝑖𝐾(𝐱𝑖, 𝐱)𝐿+𝑈
𝑖=1 ,       (2.5) 

where 𝐱 is any sample for which the cell density is to be predicted, which can be an 

unlabeled sample included in the ML-PI model in (2.3) or not (e.g., a sample outside the 

ROI or on a different slice of the tumor). 𝛼𝑖’s are coefficients.  

With the form of the solution to (2.3) given in Theorem 1, the coefficients, 𝛼𝑖’s, 

need to be estimated. To achieve this, insert (2.5) into (2.3), and obtain the following 

convex differentiable objective function of 𝛂 = [𝛼1 ⋯ 𝛼𝐿+𝑈]𝑇: 
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𝛂∗ = argmin  
1

𝐿
(𝐲 − 𝐉𝐊𝛂)𝑇(𝐲 − 𝐉𝐊𝛂) + 𝛾𝐴𝛂𝑇𝐊𝛂 +

𝛾𝐼

∑ 𝑤𝑖𝑗𝑖,𝑗
𝛂𝑇𝐊𝛀𝐊𝛂 

𝐉 is an (𝐿 + 𝑈) × (𝐿 + 𝑈) diagonal matrix in which the first 𝐿 entries are 1 and the rest are 

0. 𝐊 is an (𝐿 + 𝑈) × (𝐿 + 𝑈) Gram matrix over labeled and unlabeled samples. 𝐲 is an 

(𝐿 + 𝑈) × 1 vector defined by 𝐲 = [𝑦1 ⋯ 𝑦𝐿 , 0 ⋯ 0]𝑇. Furthermore, taking the derivative 

with respect to 𝛂, the following is obtained 

1

𝐿
(𝐲 − 𝐉𝐊𝛂)𝑇(−𝐉𝐊) + (𝛾𝐴𝐊 +

𝛾𝐼𝐿

∑ 𝑤𝑖𝑗𝑖,𝑗
𝐊𝛀𝐊) 𝛂 = 0. 

Solving for 𝛂, the solution is 

𝛂∗ = (𝐉𝐊 + 𝛾𝐴𝐿𝐈 +
𝛾𝐼𝐿

∑ 𝑤𝑖𝑗𝑖,𝑗
𝛀𝐊)−1𝐲.   (2.6) 

𝐈 is an (𝐿 + 𝑈) × (𝐿 + 𝑈)  identity matrix. Inserting the 𝛼𝑖’s obtained above into (4), the 

predictive function, 𝑓∗(𝐱), is finally obtained.  𝑓∗(𝐱) can be used to generate a predicted 

cell density for every voxel within the ROI and thus forming an intratumoral cell density 

map.   The tuning parameters of (2.3)—namely, 𝛾𝐴, 𝛾𝐼 , and η (width of the radial basis 

function kernel 𝐾(𝐱𝑖 , 𝐱𝑗) = 𝑒−‖𝐱𝑖−𝐱𝑗‖
2

2𝜂2⁄ )—are then adjusted to find the value for 𝑓∗(𝐱) 

that maximizes accuracy of ML-PI. Figure 1 summarizes the workflow of building the ML-

PI model and using the model to generate a predicted cell density map for the T2W ROI of 

each tumor. 
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Figure 1: Workflow of building ML-PI and using the model to generate a predicted cell 

density map for the T2W ROI of each tumor/patient. 

 

 

2.3.7 Feature Contribution Analysis for ML-PI 

It is important to determine the quantitative contribution of each feature (i.e., 

imaging features and PI-estimated density) to the prediction made by ML-PI. It is a 

reasonable belief that all of the included MRI sequences and PI are biologically relevant to 

tumor cell density. Therefore, inclusion of all of them as features in building the ML-PI 

model is valuable, while their relative contributions may vary. Thus, instead of employing 

feature selection (a step prior to building a predictive model with purpose of removing 

irrelevant features), I chose to use a post-processing step that identifies how much each 

feature contributes to the prediction. 

Let 𝑥 be a feature used in ML-PI, which can be a feature computed from an MRI 

sequence or PI-estimated cell density. The objective is to compute a score for 𝑥, 𝑠(𝑥), that 
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represents the contribution of 𝑥. To achieve this, I develop an algorithm based on the well-

known Relief algorithm (Robnik-Sikonja and Kononenko 2003), which I call “Relief-ML-

PI”. Note that Relief was developed as a feature selection algorithm for supervised learning 

models. My innovation in this chapter is to modify it to become a post-analysis algorithm 

for feature contribution analysis of SSL models, specifically the ML-PI model. The 

proposed definition of 𝑠(𝑥) is the following: let 𝐓 be the training dataset from which ML-

PI is built. 𝐓 includes both labeled and unlabeled samples. Let 𝑖 and 𝑖𝑟 be samples in 𝐓; 𝑖𝑟 

is the 𝑟th nearest neighbor of 𝑖 on the graph 𝐺. Furthermore, consider the predicted cell 

density of the two samples by ML-PI, �̂�𝑖 and �̂�𝑖𝑟
, and their respective measurements on 

feature 𝑥, 𝑥𝑖 and 𝑥𝑖𝑟
. The definition of 𝑠(𝑥) can be based on the difference between two 

probabilities, i.e., 

𝑠(𝑥) = 𝑃(𝑥𝑖 and 𝑥𝑖𝑟
𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡|�̂�𝑖  and �̂�𝑖𝑟

 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡) 

−𝑃(𝑥𝑖 and 𝑥𝑖𝑟
𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡|�̂�𝑖  and �̂�𝑖𝑟

 𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑖𝑎𝑟).       (2.7) 

The first term represents the probability that feature 𝑥 is able to separate samples 

with different prediction values, while the second term represents the probability that 𝑥 

separates samples with similar prediction values. The larger the first probability and the 

smaller the second, the higher the 𝑠(𝑥). Furthermore, using the Bayes’ rule, (2.7) can be 

written as: 

𝑠(𝑥) = 
𝑃(�̂�𝑖 and �̂�𝑖𝑟  𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.|𝑥𝑖 and 𝑥𝑖𝑟𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)×𝑃(𝑥𝑖 and 𝑥𝑖𝑟𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)

𝑃(�̂�𝑖 and �̂�𝑖𝑟  𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)
 

−
{1−𝑃(�̂�𝑖 and �̂�𝑖𝑟  𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.|𝑥𝑖 and 𝑥𝑖𝑟𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)}×𝑃(𝑥𝑖 and 𝑥𝑖𝑟𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)

1−𝑃(�̂�𝑖 and �̂�𝑖𝑟  𝑎𝑟𝑒 𝑑𝑖𝑓𝑓.)
.  (2.8) 

The format of 𝑠(𝑥) in (2.8) makes it relatively easier than (2.7) to develop an 
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algorithm to estimate 𝑠(𝑥). The algorithm, Relief-ML-PI, is presented in Algorithm 2.1. 

The basic idea is to randomly select 𝑚 samples from 𝐓. For each 𝑖 = 1, … , 𝑚, find its 𝑘 

nearest neighbors 𝑖𝑟, 𝑟 = 1, … , 𝑘. Then, estimate the probabilities in (2.8) and eventually 

the 𝑠(𝑥) using lines 7-9 of the algorithm, in which 

𝑑(�̂�𝑖 , �̂�𝑖𝑟
) =

|�̂�𝑖− �̂�𝑖𝑟|

𝑚𝑎𝑥(�̂�𝑗|𝑗∈𝐓)−𝑚𝑖𝑛(�̂�𝑗|𝑗∈𝐓)
, 

𝑑(𝑥𝑖, 𝑥𝑖𝑟
) =

|𝑥𝑖− 𝑥𝑖𝑟|

𝑚𝑎𝑥(𝑥𝑗|𝑗∈𝐓)−𝑚𝑖𝑛(𝑥𝑗|𝑗∈𝐓)
, 

as the normalized difference between the response variables or feature values of two 

samples, and  

𝛿(𝑖, 𝑖𝑟) =  
𝛿′(𝑖,𝑖𝑟)

∑ 𝛿′(𝑖,𝑖𝑟)𝑘
𝑙=1

, 𝛿′(𝑖, 𝑖𝑟) = 𝑒−(
𝑟𝑎𝑛𝑘(𝑖,𝑖𝑟)

𝜎
)2

. 

𝛿′(𝑖, 𝑖𝑟) weights each of the 𝑘 nearest neighbors for sample 𝑖 and 𝛿(𝑖, 𝑖𝑟) normalizes the 

weights. I choose to use the rank of the 𝑘 nearest neighbors instead of computing the 

numerical distance due to the same reason as Relief, i.e., to make sure different samples 

are equally accounted for.  
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Algorithm 2.1  Relief-ML-PI 

Input: measurement data 𝑥𝑖 and predicted response �̂�𝑖 for each  

sample in training set 𝐓; tuning parameters 𝑚, 𝑘. 

Output: 𝑠(𝑥)  

1: Initialize: 

2:  𝑠(𝑥) ← 0; 𝑁𝑑𝑦(𝑥) ← 0; 𝑁𝑑𝑥(𝑥) ← 0; 𝑁𝑑𝑦&𝑑𝑥(𝑥) ← 0; 

3: for 𝑖 = 1 to 𝑚 do 

4:      Randomly select a sample 𝑖 from 𝐓; 

5:      Find 𝑘 nearest neighbors for sample 𝑖, 𝑖1, … , 𝑖𝑘  on graph 

     𝐺; 

6:      for 𝑟 = 1 to 𝑘 do 

7:           𝑁𝑑𝑦(𝑥) ←  𝑁𝑑𝑦(𝑥) + 𝑑(�̂�𝑖 , �̂�𝑖𝑟
) × 𝛿(𝑖, 𝑖𝑟); 

8:           𝑁𝑑𝑥(𝑥) ←  𝑁𝑑𝑥(𝑥) + 𝑑(𝑥𝑖, 𝑥𝑖𝑟
) × 𝛿(𝑖, 𝑖𝑟); 

9:           𝑁𝑑𝑦&𝑑𝑥(𝑥) ←  𝑁𝑑𝑦&𝑑𝑥(𝑥) + 𝑑(�̂�𝑖 , �̂�𝑖𝑟
) × 

𝑑(𝑥𝑖, 𝑥𝑖𝑟
) × 𝛿(𝑖, 𝑖𝑟); 

10:      end for 

11:  end for 

12:  𝑠(𝑥)  ←
𝑁𝑑𝑦&𝑑𝑥(𝑥)

𝑁𝑑𝑦(𝑥)
−

𝑁𝑑𝑥(𝑥)−𝑁𝑑𝑦&𝑑𝑥(𝑥)

𝑚−𝑁𝑑𝑦(𝑥)
; 

  

 

2.4 Application of ML-PI to Glioblastoma Patient Cohort 

2.4.1 Accuracy on Prediction of Biopsy Samples 

Before applying ML-PI, a graph was constructed for each patient/tumor (called 

target patient hereafter). Vertices of the graph correspond to boxes placed on the T2W ROI 

of the selected slice for the target patient as well as biopsy samples from other patients. 

The ML-PI model includes three main parameters that need to be tuned: 𝛾𝐴, 𝛾𝐼 , and 𝜂. The 

tuning parameter 𝜂 is the width of the radial basis function kernel, 𝐾(𝐱𝑖 , 𝐱𝑗) =

𝑒−‖𝐱𝑖−𝐱𝑗‖
2

2𝜂2⁄ . The tuning ranges used were 𝛾𝐼 , 𝛾𝐴 ∈ {10−10, … , 104};  𝜂 ∈

{10−1, … , 102}. I compared two tuning strategies: patient-specific tuning and uniform 

tuning. The former finds the optimal tuning parameters for each patient while the latter 
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assumes the same optimal tuning parameters across all patients. Specifically, in patient-

specific tuning, I trained an ML-PI model for each patient using the augmented biopsy 

samples from other patients in the loss term. No real or virtual biopsy samples from the 

target patient were used in training in order to avoid overfitting. Then, the trained model 

was used to predict the real biopsy samples of the target patient. The optimal tuning 

parameters were those that minimized the mean absolute prediction error (MAPE) of the 

target patient. In uniform tuning, I looked for a single set of tuning parameters that 

minimized the MAPE across all patients. Theoretically, uniform tuning should perform no 

better than patient-specific tuning. This experiment aimed to find out to what extent patient 

difference would cause difference in the optimal tuning parameters of ML-PI. Table 1 

shows the comparison result using two metrics: MAPE and Pearson correlation between 

the predicted and pathological cell density measurements. Both metrics considered a 5% 

error margin for the pathological measurement, i.e., if a predicted value is within ±5% of 

the pathological measurement, the prediction is considered correct (i.e., with zero 

prediction error). An MAPE of 0.106 means that if the pathologically measured density of 

a sample is % (0 ≤ 𝑏 ≤ 100) , the predicted density by ML-PI deviates from 𝑏% by 10.6% 

on average. From Table 1 it is clear to see that patient-specific tuning has a significantly 

better accuracy than uniform tuning in terms of both a smaller MAPE (p<0.0025) and a 

higher Pearson correlation (p<0.001). 

Table 1: Prediction accuracy of ML-PI: patient-specific and uniform tuning 

 Patient-specific tuning Uniform tuning 

MAPE 0.106 ± 0.125 0.176 ± 0.177 
Pearson correlation 0.838 0.588 
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Furthermore, I investigated which of the three tuning parameters have a greater 

effect on model accuracy when allowed to be patient-specific. To achieve this purpose, I 

added a third tuning strategy, partially-uniform tuning, in which two of the three tuning 

parameters were kept the same across all patients while the remaining one was allowed to 

vary from patient to patient. This results in three models correspond to 𝛾𝐴, 𝛾𝐼 , or 𝜂 as the 

parameter allowed to be patient-specific, respectively. Table 2 shows the performance of 

the three models. Compared with the result of uniform tuning in Table 1, it is clear that 

allowing patient-specific tuning of 𝛾𝐴 resulted in a significantly improved MAPE and 

Pearson correlation (𝑝 =  0.023 and 0.011). Patient-specific tuning of 𝜂 does not result in 

a significantly improved MAPE and Pearson correlation, however the improvement of 

MAPE approaches the 0.05 significance threshold (𝑝 =  0.087 and 0.17). Patient-specific 

tuning of 𝛾𝐼  does not significantly improve the MAPE and Pearson correlation (𝑝 =  0.22 

and 0.35). Compared with the result of patient-specific tuning of all three parameters in 

Table 1, patient-specific tuning of 𝛾𝐴 alone does not significantly deteriorate the 

performance in terms of MAPE and Pearson correlation (𝑝 =  0.14 and 0.39), while 

patient-specific tuning of 𝜂 alone shows a greater difference in MAPE and Pearson 

correlation (𝑝 =  0.057 and 0.044) and 𝛾𝐼  exhibits a significant deterioration in MAPE 

and Pearson correlation (𝑝 = 0.012 and 0.014).   These results show that 𝛾𝐼  (and, to some 

extent, 𝜂) requires less sensitive tuning between patients, suggesting that the Laplacian 

matrix that incorporates PI similarities successfully accounts for patient differences (thus 

not necessitating the need for a patient-specific 𝛾𝐼). 
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Table 2: Prediction accuracy of ML-PI with partially-uniform tuning 

 Parameter allowed to be patient-specific 

 𝛾𝐴 𝛾𝐼  𝜂 

MAPE 0.127 ± 0.129 0.156 ± 0.154 0.140 ± 0.153 
Pearson correlation 0.792 0.676 0.713 

 

Next, I compared the performance of ML-PI with PI and ML used alone. The ML 

model is a supervised learning model that takes the same form of ML-PI except with 𝛾𝐼 =

0, i.e., a model that does not leverage unlabeled data. Table 3(a) shows the MAPE and 

Pearson correlation of each model. Compared with ML-PI with patient-specific tuning of 

all parameters, PI and ML alone had a significantly worse accuracy in terms of both MAPE 

and Pearson correlation (𝑝 < 0.001 in all comparisons). Also, I present the patient-wise 

MAPEs of ML-PI, PI, and ML in Table A1, found in the supplementary information, to 

allow for comparison on the patient-level. ML-PI was able to predict more accurately than 

ML and PI in 17 out of 18 patients. 

Table 3: Prediction accuracy of ML-PI, PI, and ML on (a) all samples and (b) BAT samples 

(a) ML-PI PI ML 

MAPE 0.106 ± 0.125 0.227 ± 0.215 0.199 ± 0.186 
Pearson 

correlation 
0.838 0.437 0.518 

(b) ML-PI PI ML 

MAPE 0.132 ± 0.118 0.204 ± 0.204 0.233 ± 0.209 
Pearson 

correlation 
0.820 0.416 0.208 

 

Prediction on the BAT is critically important and challenging. Therefore, I further 

compared the performance of ML-PI, PI, and ML on samples in the BAT. Out of the 82 

total samples, 33 are in this area. Table 3(b) shows the MAPE and Pearson correlation of 

each model and Figure A3, found in the supplementary information, additionally shows 
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the predicted vs. pathological cell density for the 33 samples. ML-PI significantly 

outperforms PI and ML in all the comparisons (𝑝 < 0.05).  Figure 2 additionally shows 

the predicted vs. pathological cell density for all the samples and the 33 BAT samples in 

the patient-wise ML-PI, PI, and ML models. 
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Figure 2: Predicted cell density maps of selected patients and scatter plots of ML-PI, PI, 

and ML predictions. The left side of the figure shows predicted cell density maps overlaid 

on T2W image for patients 8 and 16 by three different models. Red to blue colors represent 

100%-0% density. A pink circle indicates location of a biopsy sample.  For patient 8, the 

pathological density of the biopsy is 90% and predicted densities by ML-PI, PI, and ML 

are 79.0%, 59.2%, and 56.4%, respectively.     For patient 16, the pathological density of 

the biopsy is 70% and predicted densities by ML-PI, PI, and ML are 79.4%, 82.9%, and 

54.9%, respectively.  Below each predicted cell density map are the corresponding patient-

wise histograms of the predicted cell densities in the non-enhancing (BAT) regions. The 

right side of the figure shows predicted density by (a) ML-PI, (b) PI, and (c) ML against 

pathological density for 82 biopsy samples; predicted density by (d) ML-PI, (e) PI, and (f) 

ML against pathological density for 33 biopsy samples in non-enhancing (BAT) region. 

Note that the red and purple boxes indicate the corresponding biopsies shown in the 

predicted cell density maps for patients 8 and 16 respectively.  Additionally, r denotes the 

Pearson correlation coefficient. 

2.4.2 Use of the Trained Model to Generate Whole-Tumor Predicted Density Maps 

Ultimately, I would like to generate a predicted cell density map for the T2W ROI 

in order to guide neurosurgery and radiation therapy. In this experiment, I used the trained 
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ML-PI model in the previous section to predict tumor cell density on every 8x8 voxel box 

placed one pixel apart on the T2W ROI. This generated a predicted density map on the 

T2W ROI. PI can also generate such a map. I compared the maps by ML-PI and PI by 

generating a patient-wise histogram on predicted density at the BAT. The histograms are 

shown in Figures A2 and A3, found in Appendix A. It is clear that PI predicted the vast 

majority of the non-enhancing area to be low density. This is indeed a fundamental 

assumption of PI. In contrast, ML-PI was able to predict a wider spread of density making 

it possible to capture high-density regions in the BAT. 

Furthermore, I show the predicted cell density maps over the T2W ROIs for two 

patients in Figure 2.  For comparison, maps were predicted by the ML-PI, PI, and ML 

models for each patient. Pink circles indicate the location where biopsy samples were 

taken. It can be observed that the map by ML-PI conforms to the global shape of the PI 

map, and meanwhile predicts more accurately than using PI and ML alone. 

 

2.4.3 Contributions from MRI sequences and PI 

Using Relief-ML-PI, I can compute a contribution score for each image feature 

(one feature per MRI sequence) and PI from the ML-PI model specific to each patient. To 

identify the contributions aggregated over all the patients, I normalize the score of each 

feature within each patient to be between 0 and 1 by dividing the score by a sum over the 

scores of all the features. Then, the normalized scores from each patient are added together 

to produce an aggregated score showing contribution from each feature. Figure 3 shows 

the contribution from each MRI sequence and PI. It is clear that PI contributes the most. 
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Figure 3:  Contributions of PI and MRI sequences to ML-PI cell density prediction. 

 

2.5 Conclusion 

In this chapter I proposed the ML-PI model that used multiparametric MRI and PI 

and to regularize tumor cell density prediction under a graph-based SSL framework. ML-

PI had capabilities of learning patient-specific relationships between imaging features and 

cell density, and was found to have a greater prediction accuracy than ML or PI alone when 

applied to a GBM patient cohort.  Additionally, ML-PI showed a more balanced prediction 

in the T2W ROIs when compared to PI, while the latter underestimated the cell density, 

indicating that ML-PI was more capable of capturing high density regions in BAT.  An 

algorithm called Relief-ML-PI was also proposed to determine contributions of each 

individual feature to ML-PI prediction. It was found that PI contributed most significantly 

to the prediction.  This highlighted the importance of incorporating mechanistic models in 

the form of PI to help improve tumor cell density prediction. 

 The present study has several limitations. The proposed ML-PI only considers the 

mechanistic model, PI, as a regularizer in a two-dimensional fashion, whereas PI prediction 
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is derived as a waveform in three-dimensional (3-D) space.  Further work will be performed 

to incorporate PI as a 3-D regularizer in the model, as this should better utilize the PI 

prediction and potentially improve the results.  Additionally, due to the small number of 

biopsy samples that can be collected from each patient, an ML-PI active sampling method 

can be developed to determine optimal locations to sample the tumor before a surgeon 

collects the stereotactic biopsies. 
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CHAPTER 3 

A CLINICAL DECISION SUPPORT SYSTEM USING MULTI-MODALITY 

IMAGING DATA FOR DISEASE DIAGNOSIS 

 

3.1 Background 

Imaging has become an indispensable part of modern medicine, and is being 

extensively used to support diagnosis and other clinical decision making on various 

diseases such as brain diseases, cardiovascular diseases, and cancer. With the rapid advance 

of imaging technologies, it is now possible to acquire multiple modalities of imaging data 

for the same patient. These modalities consist of different but complementary information 

about the organ of interest, providing an opportunity for better clinical decision support. 

Taking brain diseases as an example, such as migraine and Alzheimer’s disease (AD), a 

number of imaging modalities can be acquired, which can be broadly classified into 

structural imaging and functional imaging. Typical structural imaging modalities include 

computed tomography (CT) and magnetic resonance imaging (MRI): CT shows the gross 

structure of the brain based on differential absorption of X-rays. MRI produces detailed 

structural images of the brain using magnetic field and radio waves. Typical functional 

imaging modalities include functional MRI (fMRI), positron emission tomography (PET), 

and magnetoencephalography (MEG): fMRI measures blood oxygenation related to neural 

activity. PET measures physiologic functions in the brain by measuring radiation emitted 

from tracers injected in the bloodstream. MEG measures magnetic fields produced by the 

brain’s electrical activity using superconducting quantum interference devices. 
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Recognizing the importance of combining multi-modality imaging data to support 

disease diagnosis, extensive research has been done, which can be generally categorized 

into data fusion and data integration. The former interrogates the covariation between 

different imaging modalities, facilitating knowledge discovery and understanding of the 

disease biophysiology (Groves et al. 2011, Sui et al. 2011, Calhoun et al. 2006). However, 

it does not directly support the diagnosis of each individual patient. Data integration aims 

at utilizing the different but complementary information contained in the multiple imaging 

modalities in order to assist with disease diagnosis. Methods for data integration share a 

common idea of building a classifier that links a combined set of features from individual 

imaging modalities with the diagnostic result. Commonly used classification models 

include linear discriminant analysis (LDA) (Huang et al. 2011, Hu et al. 2015), quadratic 

discriminant analysis (QDA) (Schwedt et al. 2015, Chong et al. 2017, Zhang et al. 2016), 

support vector machines (SVM) (Fan et al. 2008, Yang et al. 2010, Zhang et al. 2011), and 

multitask learning (Yu et al. 2014, Yuan et al. 2012). Integrating multi-modality imaging 

data has been shown to produce better classification accuracy than using a single modality 

alone in a number of diseases such as AD (Huang et al. 2011, Fan et al. 2008, Zhang et al. 

2011, Yu et al. 2014, Yuan et al. 2012), schizophrenia (Yang et al. 2010), migraine (Chong 

et al. 2017, Schwedt et al. 2015), and glioblastoma (Hu et al. 2015, Hu et al. 2016).  

Despite the abundance of existing research, the research has not yet been 

transformed into a clinical decision support system due to the lack of three important traits: 

flexibility, sufficient accuracy, and interpretability. Flexibility means that the system can 

incorporate image features defined at various aggregation levels such as voxels and regions 

of interest (ROIs). Both voxel-level and ROI-level features are commonly used in imaging-
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based studies and have their respective strengths: The former preserves the raw information 

in an image, which avoids information loss. The latter combines prior knowledge (e.g., the 

anatomical structure of an organ) to guide feature definition. Furthermore, a system with 

flexibility should be able to take image features of various types such as element (voxel or 

ROI)-wise features and connectivity-based features. Examples of element-wise features 

include cortical thickness, area, and volume using MRI and regional metabolism using 

PET. Examples of connectivity-based features include functional connectivity z-maps 

using fMRI and white matter tractography using diffusion tensor imaging (DTI). Lastly, 

most multi-modality imaging based studies require co-registration to ensure the images are 

aligned into the same coordinate system (Maintz and Virgever 1998, Hajnal and Hill 2001), 

which is time consuming and error-prone. A system with flexibility should provide an 

option for opting out this procedure.  

Sufficient accuracy means a superior performance of the classification model which 

can be used for individual patient diagnosis instead of group-based analysis. Given the 

high-dimensionality of the joint feature set produced by multi-modality images, searching 

for the subset of features with the near-global optimal classification accuracy is very 

challenging. An exhaustive search is practically impossible. Greedy search based methods 

such as sequential forward selection and sequential backward selection suffer from a 

variety of problems such as stagnation in local optima and a high computational cost. 

Lately, evolutionary computation (EC) techniques such as genetic algorithms (GA) (Fraser 

and Burnell 1970), genetic programming (GP) (Koza 1990), differential evolution (DE) 

(Storn and Price 1997), and neuroevolution (Floreano et al. 2008) have attracted great 

attention with some initial success in feature selection and classification for medical 
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applications. A new emerging field in EC is swarm intelligence (Bonyadi and Michalewicz 

2017) which models the collective behavior of social swarms in nature, such as ant 

colonies, honeybees, and bird flocks. Although individuals in a swarm are relatively 

unsophisticated with limited capabilities on their own, they interact together with certain 

behavioral patterns to cooperatively achieve tasks necessary for their survival. This 

“intelligent” behavior of the swarm has inspired new algorithmic developments in solving 

large complex optimization problems with a wide range of application domains such as 

machine learning (Das et al. 2009), bioinformatics (Das et al. 2008), dynamical systems 

and operations research (Parsopoulos 2010). Particle swarm optimization (PSO) is a 

computational algorithm based on swarm intelligence that mimics the behavior of flying 

birds and their means of information exchange to solve optimization problems. Each 

potential solution is seen as a particle with a certain velocity, and flies through the problem 

space. Each particle adjusts its flight according to its own flying experience and its 

companions’ flying experiences. The particle swarms find optimal regions over complex 

search spaces through the interaction of individuals in a population of particles. PSO has 

been successfully applied to a number of difficult combinatorial optimization problems 

(Jarboui et al. 2008, Chu et al. 2012). PSO has also been shown to be computationally less 

expensive, converge more quickly, and find better solutions than classic EC algorithms 

such as GA (Wang et al. 2007, Jarboui et al. 2007).  

Interpretability is another important trait that a clinical decision support system 

should possess. In general, mathematical models can be described as black-box, white-box, 

or grey-box (Khan and Khan 2012).  Black-box models do not convey information about 

their inner-workings, and only the input and output are known. White-box models convey 
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explicit information about their internal structure, allowing the user to infer the different 

components and their connections.  Grey-box models display partial theoretical 

information and use the data that is available to complete the model.  In this research, 

white-box approaches in feature processing and model building are employed to achieve 

interpretability as it would allow for identification of an analytic pathway that traces back 

from the classification accuracy to the contributing features and their respective 

contributing weights. This has at least two benefits: First, it facilitates identification of 

biomarkers for the disease. Biomarker identification is of vital importance in medical 

research not only for disease diagnosis but also for understanding the biological basis and 

developing effective treatments. Second, practitioners tend to be reluctant to adopt black-

box approaches regardless of the performance. White-box approaches allow for ready 

clinical adaptation and dissemination.  

In this research, I develop a multi-modality imaging based diagnostic decision 

support system (MMI-DDS) aiming to possess the aforementioned three traits. MMI-DDS 

includes three key steps: First, a modality-wise principal component analysis (PCA) is 

applied to each imaging modality independently. Imaging features are typically high-

dimensional. Some features are naturally highly correlated due to their spatial proximity or 

functional similarity. These pose challenges to downstream classification model 

development. PCA is a well-known statistical method for dimension reduction and de-

correlation. PCA is also a white-box approach because it applies a linear transformation to 

the imaging features, which allows for a later inverse-transformation to identify the 

contributing features to the classification accuracy (i.e., the biomarkers). In MMI-DDS, a 

modality-wise PCA is employed in order to account for the fact that different imaging 
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modalities may measure the organ of interest from different perspectives. This also 

provides an option for opting out tedious and error-prone co-registration for the multi-

modality images. Second, a novel constrained PSO (cPSO) based classifier is built on the 

joint set of principal components (PCs) across the multi-modalities. cPSO is an optimizer 

that searches through the joint PC set to find a small subset of PCs with near-global optimal 

classification accuracy. In this sense, cPSO combines feature (i.e., PCs) selection and 

classification in a single framework. The ability of feature selection is important for 

medical applications since medical data tend to contain many features. Simply training a 

classifier to all the available features would likely cause overfitting since many of the 

features are likely to be noise. In theory, the cPSO optimizer can be used for all 

classification models. In this chapter, I choose white-box models such as LDA, QDA, and 

linear SVM (LSVM) to enable inverse-transformation and biomarker identification in the 

next step. Third, a clinical utility engine is developed to derive the analytic pathway that 

traces back from the classification accuracy to the contributing features (i.e., biomarkers) 

and their respective contributing weights. This allows for interpretation of the diagnostic 

result and knowledge discovery about the disease. 

The rest of the chapter is structured as follows: Section 3.2 provides a literature 

review. Section 3.3 presents development of the MMI-DDS. Section 3.4 presents an 

application of MMI-DDS in using multiparametric MRI to predict intra-tumor 

heterogeneity. Section 3.5 presents an application of MMI-DDS for migraine diagnosis 

using multi-modality structural and functional imaging data. Section 3.6 is the conclusion.  
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3.2 Literature Review 

As mentioned in the Section 3.1, research on combining multi-modality imaging 

data falls into two categories: data fusion and data integration. This chapter belongs to the 

latter category, but I will review the existing work in both categories in this section due to 

their relevance.  

For data fusion, multivariate statistical methods such as canonical correlation 

analysis (CCA), partial least squares (PLS), and independent component analysis (ICA) 

provide viable approaches. CCA finds linear combinations of two sets of variables, called 

canonical variables, with the maximum correlation between each other. The original CCA 

can only model two datasets. It was later extended to a multiset-CCA (M-CCA) that finds 

canonical variables from multiple datasets to achieve the maximum overall correlation 

(Kettenring 1971). M-CCA was used to perform data fusion of concurrently acquired fMRI 

and EEG in an auditory task to find covarying amplitude modulations in both modalities 

and the corresponding spatial activations (Correa et al. 2010). It was also used to fuse fMRI, 

EEG, and MRI to make group inference for schizophrenia patients compared with healthy 

controls (Correa et al. 2009).  

PLS is a statistical model that finds the multidimensional direction in the space of 

the independent variables that explains the maximum multidimensional variance direction 

in the space of the dependent variables. Multiway PLS, as an extension to PLS, was 

developed for fusion of EEG and fMRI by decomposing EEG and fMRI each as a sum of 

“atoms” (Martinez-Montes et al. 2004). Each EEG atom was the outer product of spatial, 

spectral, and temporal signatures and each fMRI atom the product of spatial and temporal 

signatures. The decomposition was constrained to maximize the covariance between 
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corresponding temporal signatures of the EEG and fMRI. This fusion aimed at identifying 

the coherent systems of neural oscillators that contribute to the spontaneous EEG.    

ICA is a generative model that assumes the observed multivariate data to be 

weighted sums of unobserved independent components. ICA is a popular approach in 

image analysis. Earlier work focused on single imaging modalities such as fMRI and EEG 

with the purpose of separating the imaging data into meaningful constituent components 

correlated with subjects’ experimental task performance. Recently, ICA has been extended 

in a number of ways for multi-modality data fusion. Joint ICA (jICA) assumes that the data 

from multiple imaging modalities share a common demixing matrix (Calhoun and Adali 

2009). Several studies demonstrated the use of jICA in fusion of fMRIs from multiple 

tasks, MRI and fMRI, fMRI and EEG, and MRI and DTI for identifying group difference 

between patients with schizophrenia and controls (Calhoun et al. 2006, Calhoun and Adali 

2009, Xu et al. 2009]. Parallel ICA (paraICA) (Sui et al. 2011, Calhoun and Adali 2009, 

Liu et al. 2009) was developed to relax the strong “common demixing matrix” assumption 

posed by jICA and provided a more flexible approach by creating the mixing matrices for 

different modalities separately with the goal of maximizing the independence of 

components within each modality while maximizing the correlation between the mixing 

matrices. paraICA was used to fuse fMRI and SNP (a genetic modality) in studying 

schizophrenia (Liu et al. 2009) and to fuse fMRI and DTI in comparing schizophrenia with 

bipolar disorder (Sui et al. 2011). Tensor ICA (Beckmann and Smith 2005) was developed 

to fuse three-way (spatial, temporal, and cross-subject) fMRI data by decomposing the data 

into a set of independent spatial maps together with associated time courses and estimated 

subject modes. It was applied to fMRI data collected under a visual, cognitive, and motor 
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paradigm and was able to extract plausible activation maps, time courses, and 

session/subject modes as well as provide a rich description of additional processes of 

interest such as image artifacts and secondary activation patterns. Link ICA adopted a 

Bayesian framework for simultaneously modeling and discovering common features 

across multiple modalities (Groves et al. 2011). It enjoyed the flexibility of fusing imaging 

modalities with completely different units, signal- and contrast-to-noise ratios, voxel 

counts, spatial smoothness and intensity distributions by using a Bayesian formulation to 

automatically weigh the modalities appropriately.  

While being a popular research area, multi-modality imaging data fusion does not 

directly support diagnosis of each individual patient, but instead provides an exploratory 

tool for knowledge discovery and group inference. The former is the objective of multi-

modality imaging data integration. Research on data integration shares a common idea of 

building a classifier from a training dataset, which links a combined set of features from 

individual imaging modalities with a diagnostic result. This classifier can then be used to 

produce a probability of having the target disease for each new patient, thus providing 

decision support for clinical diagnosis. In theory, such a classifier can be built using any 

statistical classification method. Typical methods that have been used for integrating multi-

modality imaging data include LDA (Huang et al. 2011, Hu et al. 2015), QDA (Schwedt 

et al. 2015, Chong et al. 2016), SVM (Fan et al. 2008, Yang et al. 2010, Zhang et al. 2011), 

and multitask learning (Yu et al. 2014, Yuan et al. 2012). Integrating multi-modality 

imaging data has been shown to produce better classification accuracy than using a single 

modality alone in a number of brain diseases such as AD (Huang et al. 2011, Fan et al. 

2008, Zhang et al. 2011, Yu et al. 2014, Yuan et al. 2012), schizophrenia (Yang et al. 2010), 
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migraine (Schwedt et al. 2015, Chong et al. 2017), and glioblastoma (Hu et al. 2015, Hu et 

al. 2016). Despite the abundance of existing literature, the research is still limited in clinical 

usability due to lack of flexibility (e.g., only applicable to certain imaging modalities or 

requiring co-registration), insufficient accuracy (e.g., using off-the-shelf software to build 

a classification model without exploiting advanced optimizers to improve the 

performance), and insufficient interpretability (e.g., black-box methods prohibiting 

rigorous identification of contributing features or biomarkers). 

 

3.3 Development of MMI-DDS 

 

Figure 4: Layout of MMI-DDS   

  As shown in Figure 4, MMI-DDS includes the following main components: (1) a 

modality-wise PCA, (2) a cPSO-based classifier for diagnosis, and (3) a clinical utility 

engine for biomarker identification. 
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3.3.1  Modality-wise PCA  

PCA is a statistical method that transforms the imaging features that are potentially 

high-dimensional and correlated into a small number of uncorrelated PCs. Each PC is a 

linear combination of the imaging features. The transformation is performed in such a way 

that the first PC has the largest possible variance and each succeeding PC has the highest 

variance possible under the constraint that it is uncorrelated with all the preceding PCs. I 

propose to perform PCA on each imaging modality separately. This is to account for the 

fact that different imaging modalities measure the organ of interest from different 

perspectives and therefore combining their features in a single PCA is inappropriate. This 

also provides the flexibility for opting out co-registration of the multi-modality images. 

Specifically, suppose there are 𝑀 imaging modalities. Let 𝐗𝑚 = [𝑋1,𝑚 , … , 𝑋𝑛𝑚,𝑚]𝑇 be the 

set of features corresponding to the 𝑚-th modality, 𝑚 = 1, … , 𝑀. 𝑛𝑚 is the number features 

for the 𝑚-th modality. Let 𝐙𝑚 = [𝑍1,𝑚 , … , 𝑍𝑝𝑚,𝑚]𝑇 be the set of PCs. Each PC is a linear 

combination of the features, i.e., 𝑍𝑖,𝑚 = 𝐰𝑖,𝑚
𝑇 𝐗𝑚. 𝒘𝑖,𝑚 consists of the combination 

coefficients and is called the loading vector. To obtain the loading vectors for all the PCs, 

a dataset on the features 𝐗𝑚 needs to be collected, which consists of measurements on 𝐗𝑚 

from 𝑁 samples (i.e., patients). Using the dataset, a sample correlation matrix of 𝐗𝑚, 𝐒𝑚, 

can be computed and an eigen-decomposition is further performed on 𝐒𝑚. The eigenvalues 

will be ordered from the largest to the smallest, 𝜆1,𝑚 , … , 𝜆𝑝𝑚,𝑚, and the corresponding 

eigenvectors are the loading vectors for the first through the last PC. Note that not all the 

PCs need to be kept for subsequent analysis, since the PCs corresponding to small 

eigenvalues are likely to capture noise in the data but not useful information. To determine 
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the number of PCs to keep, a typical approach is to keep track of the cumulative percentage 

of variance explained by adding more PCs until a pre-specified threshold is reached. 

Setting the threshold to be a number between 80%-90% has been found to be adequate for 

most applications (Hu et al. 2015, Schwedt et al. 2015, Chong et al. 2017).  

 

3.3.2 cPSO-based Feature Selection and Classification  

PSO was originally developed as a population-based stochastic optimization 

technique, and then extended for feature selection in classification. In this section, I first 

briefly introduce how generic PSO works for solving an optimization problem and for 

feature selection. Then, I propose a modified PSO algorithm that can honor a pre-specified 

maximum number of features to better avoid overfitting, called cPSO.  

Consider an optimization problem with decision variables 𝑥1, … , 𝑥𝐷 and an 

objective function 𝑓(𝑥1, … , 𝑥𝐷) to optimize. PSO is initialized with a population of random 

solutions called particles. Let 𝐱𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝐷) represent the 𝑖-th particle, 𝑖 = 1, … , 𝐼. 

Each particle adjusts its position according to its own experience and the positions of other 

particles. Specifically, at the 𝑡-th iteration, let 𝐩𝑖
𝑡 be the best previous position of the 𝑖-th 

particle (i.e., the position giving the best value for the objective function) and 𝐩𝑔
𝑡  be the 

best position among all the particles. Then, the position adjustment, called velocity, of the 

𝑖-th particle along the 𝑑-th dimension is given by: 

𝑣𝑖𝑑
𝑡 = ω𝑡𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1(𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ),        (3.1) 

𝑑 = 1, … , 𝐷. Here, ω𝑡, 𝑐1, and 𝑐2  are called the inertia weight, cognitive learning factor, 

and social learning factor, respectively. A proper choice for ω𝑡 provides a balance between 
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global and local exploration, and results in fewer iterations on average to find a sufficiently 

optimal solution. 𝑐1 and 𝑐2 represent the weighting of the stochastic acceleration terms that 

pull each particle toward 𝐩𝑖
𝑡 and 𝐩𝑔

𝑡  (Wang et al. 2007). ω𝑡, 𝑐1, and 𝑐2 can be treated as 

tuning parameters of the PSO algorithm. Alternatively, they can be set by users. A number 

of appropriate values for the three parameters have been suggested (Poli et al. 2007). 𝑟1 

and 𝑟2 are sampled from a uniform distribution 𝑈[0,1]. Furthermore, according to the 

velocity in (1), the 𝑖-th particle can move to a new position, i.e.,  

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡 .         (3.2) 

Kennedy and Eberhardt proposed modifications on the afore-described generic 

PSO, so that the resulting algorithm can be used for feature selection in classification 

(Kennedy and Eberhart 1997). Suppose there are 𝐷 features, 𝑍1, … , 𝑍𝐷. Each feature 𝑍𝑑 is 

associated with a binary decision variable 𝑥𝑑. 𝑥𝑑 = 1 if 𝑍𝑑 is selected and 𝑥𝑑 = 0 

otherwise. The objective function 𝑓(𝑥1, … , 𝑥𝐷) is a cross-validated classification error that 

is computed using the selected features on a training dataset. Because of the binary nature 

of the decision variables, (3.2) is changed to (3.3) while (3.1) remains the same.  

      𝑥𝑖𝑑
𝑡+1 = {

1,     𝑖𝑓  𝑆(𝑣𝑖𝑑
𝑡 ) > 𝑟

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,              (3.3) 

where 𝑆(𝑣𝑖𝑑
𝑡 ) is a sigmoid function used to map 𝑣𝑖𝑑

𝑡  to [0,1], i.e., 𝑆(𝑣𝑖𝑑
𝑡 ) =

1

1+𝑒
−𝑣𝑖𝑑

𝑡 . r is 

sampled from 𝑈[0,1].  

In this chapter, I propose a cPSO algorithm that can honor a pre-specified maximum 

number of features to avoid overfitting. Specifically, I modify (3.3) as follows: Let 𝐾 

denote the maximum number of features allowed in the classification model. For each 

particle, I order its velocities along all the dimensions from the largest to the smallest. 
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Without loss of generality, I denote the ordered velocities of the 𝑖-th particle by 𝑣𝑖1
𝑡 , … , 𝑣𝑖𝐷

𝑡 . 

Keep the first 𝐾 largest velocities, 𝑣𝑖1
𝑡 , … , 𝑣𝑖𝐾

𝑡 . A simple modification on (3.3) could be to 

make 𝑥𝑖𝑑
𝑡+1 = 1 if 𝑑 ≤ 𝐾 and 𝑥𝑖𝑑

𝑡+1 = 0 otherwise. Although this approach guarantees 𝐾 

features to be selected, the selected features may have poor quality. Here, I consider a 

feature to have poor quality if it has a negative velocity, 𝑣𝑖𝑑
𝑡 < 0, which leads to the sigmoid 

function 𝑆(𝑣𝑖𝑑
𝑡 ) < 0.5. Therefore, (3.3) is modified into (3.4) in cPSO: 

𝑥𝑖𝑑
𝑡+1 = {

1,     𝑖𝑓  𝑑 ≤ 𝐾 𝑎𝑛𝑑 𝑆(𝑣𝑖𝑑
𝑡 ) > 0.5

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.                 (3.4) 

 

Using (3.4), only the 𝐾 largest features that have good quality, i.e., have a higher 

probability of being selected than not being selected, will be kept. Therefore, the number 

of selected features can be less than or equal to 𝐾.  

Next, I present the detailed steps of the cPSO algorithm. The input to cPSO includes 

a training dataset on the joint set of PCs by pooling together the PCs from each imaging 

modality, denoted by 𝑍1, … , 𝑍𝐷, and a diagnostic result 𝑌. The input also includes several 

user-specified parameters: the maximum number of PCs, 𝐾; the number of particles, 𝐼; the 

number of iterations, 𝑇; the maximum velocity used to limit further exploration after 

convergence to an optimal value, 𝑉𝑚𝑎𝑥 . Set ω𝑡 = 0.9 − 𝑡 ∙ 0.5/𝑇, 𝑐1 = 2, and 𝑐2 = 2, 

which are recommended values by the literature (Poli et al. 2007). In addition, a 

classification model needs to be specified. In theory, cPSO can work with any classification 

model. In this chapter, I focus on white-box models such as LDA, QDA, and LSVM. This 

is to facilitate identification of the contribution features (i.e., biomarkers) and their 

respective contributing weights to the classification accuracy in a mathematically and 

computationally tractable way.  
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The proposed cPSO algorithm:  

Step 1 (initialization): Set the initial position of the 𝑖-th particle, 𝐱𝑖
0, by randomly choosing 

𝐾 elements in 𝐱𝑖
0 to be one while making other elements to be zero. Use the PCs 

corresponding to the non-zero elements in 𝐱𝑖
0 to compute a cross validated (CV) 

classification error on the training dataset, 𝑓(𝐱𝑖
0 ). Set the initial velocity, 𝐯𝑖

0, by sampling 

each element in 𝐯𝑖
0 from 𝑈[−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥]. Use (4) to update the initial position of each 

particle and get 𝐱𝑖
1. Iterate Steps 2-3 with 𝑡 = 1,2, … 𝑇.  

Step 2 (velocity updating): Examine all previous positions of the 𝑖-th particle, 

𝑓(𝐱𝑖
0 ), … , 𝑓(𝐱𝑖

𝑡−1 ), and find the position giving the smallest CV classification error, 𝐩𝑖
𝑡. 

Examine the current positions of all the particles, 𝑓(𝐱1
𝑡  ), … , 𝑓(𝐱𝐼

𝑡  ) and find the position 

giving the smallest CV classification error, 𝐩𝑔
𝑡 . Sample 𝑟1 and 𝑟2 from 𝑈[0,1]. Use (1) to 

compute the velocity 𝐯𝑖
𝑡. If 𝑣𝑖𝑑

𝑡 > 𝑉𝑚𝑎𝑥 , set 𝑣𝑖𝑑
𝑡 = 𝑉𝑚𝑎𝑥 ; if 𝑣𝑖𝑑

𝑡 < −𝑉𝑚𝑎𝑥, set 𝑣𝑖𝑑
𝑡 = −𝑉𝑚𝑎𝑥 . 

Step 3 (position updating): Order the elements in 𝐯𝑖
𝑡 from the largest to the smallest. Use 

(4) to compute the new position 𝐱𝑖
𝑡+1. If the maximum number of iterations has been 

reached, i.e., 𝑡 + 1 = 𝑇, examine the current positions of all the particles, 

𝑓(𝐱1
𝑡+1 ), … , 𝑓(𝐱𝐼

𝑡+1 ), and output the position giving the smallest CV classification error 

as the optimal solution, together with the corresponding CV error and the PCs that are 

selected. Otherwise, go back to Step 2.  

Finally, I discuss how to select the maximum number of PCs, 𝐾. A general trend is 

that the CV classification error will decrease as 𝐾 increases. However, this does not mean 

that a larger 𝐾 is always preferred, because the decrease in the CV error after 𝐾 is beyond 

a certain value is so minimal that it is neither statistically significant nor practically useful.  
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Allowing a larger K than needed will produce an over-complicated model that likely has 

problems with over-fitting. Therefore, a recommended approach for choosing the optimal 

𝐾, i.e., 𝐾∗, is to plot the CV errors against different values of 𝐾 with 𝐾 ranging from the 

smallest to the largest, and look for the “elbow” point as the 𝐾∗. This is a similar idea to 

the scree plot used to find the optimal number of PCs in PCA. Alternatively, a more 

rigorous approach that uses hypothesis testing may be adopted (e.g., a two-sample t test) 

to compare the CV errors corresponding to 𝐾 and 𝐾 + 1, 𝐾 = 1,2, …. The 𝐾∗ could be one 

whose CV error is significantly smaller than that of 𝐾∗ − 1 but not than 𝐾∗ + 1. Other 

methods for choosing 𝐾∗ might also be adopted, such as penalizing the error with K (similar 

to the methods used with AIC and BIC). I acknowledge that this is an open area that no 

single approach dominates. In practice, these alternative approaches could be tried and the 

results may be cross-referenced with each other.  

 

3.3.3 Clinical Utility Engine for Clinical Interpretation and Biomarker Identification 

The goal of the clinical utility engine is to identify the contributing original features 

and their respective contributing weights to the model with best classification accuracy 

found by cPSO. These can be analytically derived for white-box classification models such 

as LDA, QDA, and LSVM. I first define some common notations: Let 𝐳 be the set of PCs 

selected by cPSO. 𝐳 = [𝐳1
𝑇 , … , 𝐳𝑀

𝑇 ]𝑇, where  𝐳𝑚 represents the selected PCs from the m-th 

modality, 𝑚 = 1, … , 𝑀.  

                                                          𝐳𝑚 = 𝐖𝑚
𝑇 𝐗𝑚 ,                                                    (3.5) 
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where 𝐖𝑚 is the loading matrix obtained from the modality-wise PCA discussed in Section 

3.1. Let 𝐰𝑚
𝑗 𝑇 

 be the 𝑗-th row of 𝐖𝑚. Then, (3.5) can be written as 

                                          𝐳𝑚 = ∑ 𝐰𝑚
𝑗

𝑋𝑗,𝑚
𝑛𝑚
𝑗=1 .                                                 (3.6) 

Next, I will present the development of three inverse-operators for LDA, QDA, and LSVM 

in achieving the goal of the engine.  

 

LDA inverse operator 

The LDA model takes the following form: 

  𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐳)

𝑃(𝑌 = 0|𝐳)
= (𝛍1 − 𝛍0)𝑇𝚺−1𝐳 −

1

2
𝛍1

𝑇𝚺−1𝛍1 +
1

2
𝛍0

𝑇𝚺−1𝛍0 + 𝑙𝑜𝑔
𝜋

1−𝜋
,     (3.7) 

where 𝛍1 and 𝛍0 are the means of 𝐳 for the two classes. LDA assumes that the two classes 

have the same covariance matrix of 𝐳, which is represented by 𝚺. 𝜋 = 𝑃(𝑌 = 1). The 

classification rule of LDA is that if 𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐳)

𝑃(𝑌 = 0|𝐳)
> 0, assign the sample to class 1, and 

to class 0 otherwise.  

𝛍1, 𝛍0, 𝚺, and 𝜋 can be estimated from training data by maximum likelihood 

estimation (MLE). Then, (3.7) can be simplified as: 

                                       𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐳)

𝑃(𝑌 = 0|𝐳)
= 𝐯𝑻𝐳 + 𝑣0,                                                    (3.8) 

where 𝐯 = 𝚺−1(𝛍1 − 𝛍0) and 𝑣0 = −
1

2
𝛍1

𝑇𝚺−1𝛍1 +
1

2
𝛍0

𝑇𝚺−1𝛍0 + 𝑙𝑜𝑔
𝜋

1−𝜋
. Letting 𝐯 =

[𝐯1
𝑇 , … , 𝐯𝑀

𝑇 ]𝑇, where  𝐯𝑚 are the coefficients corresponding to  𝐳𝑚, and substituting (3.6) 

into (3.8), the following is obtained 

                       𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
= ∑ ∑ 𝐯𝑚

𝑇 𝐰𝑚
𝑗

𝑋𝑗,𝑚
𝑛𝑚
𝑗=1

𝑀
𝑚=1 + 𝑣0.                                 (3.9) 
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It is clear from (3.9) that the magnitude of 𝐯𝑚
𝑇 𝐰𝑚

𝑗
 indicates the contribution of each imaging 

feature 𝑋𝑗,𝑚 to the classification accuracy. The sign of 𝐯𝑚
𝑇 𝐰𝑚

𝑗
 indicates the direction of the 

contribution.  

 

QDA inverse operator 

The QDA model takes on the following form: 

𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐳)

𝑃(𝑌 = 0|𝐳)
= −

1

2
𝐳𝑇(𝚺1

−1 − 𝚺0
−1)𝐳 + (𝛍1

𝑇𝚺1
−1 − 𝛍0

𝑇𝚺0
−1)𝐳 −

1

2
𝛍1

𝑇𝚺1
−1𝛍1 + 

1

2
𝛍0

𝑇𝚺0
−1𝛍0 +  𝑙𝑜𝑔

𝜋

1−𝜋
+ 𝑙𝑜𝑔√|𝚺0| |𝚺1|⁄ ,                       (3.10) 

QDA assumes that the two classes have the different covariance matrices of 𝐳, which are 

represented by 𝚺1 and 𝚺0. Then, (3.10) can be simplified as:  

                          𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐳)

𝑃(𝑌 = 0|𝐳)
= 𝐳𝑻𝚽𝐳 + 𝐪𝑻𝐳 + 𝑞0,                                   (3.11) 

where 𝚽 = −
𝟏

𝟐
(𝚺1

−1 − 𝚺0
−1), 𝐪 = 𝚺1

−1𝛍1 − 𝚺0
−1𝛍0, and 𝑞0 =  −

1

2
𝛍1

𝑇𝚺1
−1𝛍1 +

1

2
𝛍0

𝑇𝚺0
−1𝛍0 + 𝑙𝑜𝑔

𝜋

1−𝜋
+ 𝑙𝑜𝑔√|𝚺0| |𝚺1|⁄ . 𝚽 is a block diagonal matrix under the 

assumption that the modalities are independent, i.e., 𝚽 = [
𝚽1 𝟎 𝟎
𝟎 ⋱ ⋮
𝟎 ⋯ 𝚽𝑀

], where 𝚽𝑚  is 

the matrix corresponding to the 𝑚-th modality, 𝑚 = 1, … , 𝑀. Letting 𝐪 = [𝐪1
𝑇 , … , 𝐪𝑀

𝑇 ]𝑇, 

where  𝐪𝑚 are the coefficients corresponding to  𝐳𝑚, and substituting (3.6) into (3.11), I 

get 
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𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
= ∑ ∑ 𝐰𝑚

𝑗 𝑇
𝚽𝑚𝐰𝑚

𝑗
𝑋𝑗,𝑚

2𝑛𝑚
𝑗=1

𝑀
𝑚=1 + ∑ ∑ 𝐪𝑚

𝑇 𝐰𝑚
𝑗

𝑋𝑗,𝑚
𝑛𝑚
𝑗=1

𝑀
𝑚=1 +

                                                       ∑ ∑ ∑ 𝐰𝑚
𝑗 𝑇

𝚽𝑚𝐰𝑚
𝑘 𝑋𝑗,𝑚𝑋𝑘,𝑚

𝑛𝑚
𝑘=1
𝑘≠𝑗

𝑛𝑚
𝑗=1

𝑀
𝑚=1 + 𝑞0.              (3.12) 

It is difficult to assess the contribution of each imaging feature 𝑋𝑗,𝑚 to the 

classification accuracy based on (3.12), because of the existence of the cross terms 

𝑋𝑗,𝑚𝑋𝑘,𝑚, 𝑘 = 1, … , 𝑛𝑚 , 𝑘 ≠ 𝑗. To tackle this difficulty, I propose to take the expectation 

of 𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
 with respect to the 𝑋𝑘,𝑚’s, or equivalently the conditional expectation of 

𝑙𝑜𝑔
𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
 with respect to 𝐗𝑚 given 𝑋𝑗,𝑚. This would average out the contribution 

from each 𝑋𝑘,𝑚 and leave only the 𝑋𝑗,𝑚 to be linked with the classification accuracy. 

Specifically,  

𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑙𝑜𝑔

𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
] =  

                 𝐰𝑚
𝑗 𝑇

𝚽𝑚𝐰𝑚
𝑗

𝑋𝑗,𝑚
2 + 𝐪𝑚

𝑇 𝐰𝑚
𝑗

𝑋𝑗,𝑚 + ∑ 𝐰𝑚
𝑘 𝑇𝚽𝑚𝐰𝑚

𝑘 ∙ 𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚

2 ]𝑛𝑚
𝑘=1
𝑘≠𝑗

+  

 ∑ 𝐪𝑚
𝑇 𝐰𝑚

𝑘 ∙ 𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚]

𝑛𝑚

𝑘=1
𝑘≠𝑗

+ 2 ∙ ∑ 𝐰𝑚
𝑗 𝑇𝚽𝑚𝐰𝑚

𝑘 ∙ 𝑋𝑗,𝑚 ∙ 𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚]

𝑛𝑚

𝑘=1
𝑘≠𝑗

+  

                  ∑ ∑ 𝐰𝑚
𝑘 𝑇𝚽𝑚𝐰𝑚

𝑙 ∙ 𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚𝑋𝑙,𝑚]

𝑛𝑚
𝑙=1
𝑙≠𝑗
𝑙≠𝑘

𝑛𝑚
𝑘=1
𝑘≠𝑗

+ 𝑞0,𝑚 + 𝑓(𝐗−𝑚),    (3.13)                                                             

where 𝑞0,𝑚  denotes the portion of 𝑞0 that is associated with the m-th modality. Since my 

purpose here is to assess the contribution of 𝑋𝑗,𝑚, the imaging features from other 

modalities than the m-th modality are not relevant. Therefore, the terms involving these 

features are put into 𝑓(𝐗−𝑚). Furthermore, assume that the imaging features in each 

modality follows a multivariate normal distribution, i.e., 𝐗𝑚~𝑁(𝛍𝑚 , 𝚺𝑚 ), where 𝛍𝑚 =
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(𝜇1,𝑚 … 𝜇𝑛𝑚,𝑚)
𝑇
 and 𝚺𝑚 = (

𝜎1,1,𝑚 ⋯ 𝜎1,𝑛𝑚,𝑚

⋮ ⋱ ⋮
𝜎𝑛𝑚,1,𝑚 ⋯ 𝜎𝑛𝑚,𝑛𝑚,𝑚

). 𝝁𝑚 and 𝚺𝑚 can be estimated from 

training data. Under this distribution, the expectations in (3.13) can be derived as: 

     𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚] =  𝜇𝑘,𝑚 +

𝜎𝑘,𝑗,𝑚(𝑋𝑗,𝑚−𝜇𝑗,𝑚)

𝜎𝑗,𝑗,𝑚
,                                 (3.14a) 

       𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚

2 ] = 𝜎𝑘,𝑘,𝑚 −
𝜎𝑘,𝑗,𝑚

2

𝜎𝑗,𝑗,𝑚
+ (𝜇𝑘,𝑚 +

𝜎𝑘,𝑗,𝑚(𝑋𝑗,𝑚−𝜇𝑗,𝑚)

𝜎𝑗,𝑗,𝑚
)

2

,              (3.14b) 

𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑋𝑘,𝑚𝑋𝑙,𝑚] = 𝜎𝑘,𝑙,𝑚 −

𝜎𝑘,𝑗,𝑚𝜎𝑙,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
+ (𝜇𝑘,𝑚 +

𝜎𝑘,𝑗,𝑚(𝑋𝑗,𝑚−𝜇𝑗,𝑚)

𝜎𝑗,𝑗,𝑚
) (𝜇𝑙,𝑚 +

𝜎𝑙,𝑗,𝑚(𝑋𝑗,𝑚−𝜇𝑗,𝑚)

𝜎𝑗,𝑗,𝑚
). 

(3.14c) 

 After substituting (3.14a-c) into (3.13), (3.13) can be simplified to the general form 

of 

𝐸𝐗𝑚|𝑋𝑗,𝑚
[𝑙𝑜𝑔

𝑃(𝑌 = 1|𝐗)

𝑃(𝑌 = 0|𝐗)
] = 𝑄𝑗,𝑚 ∙ 𝑋𝑗,𝑚

2 + 𝐿𝑗,𝑚 ∙ 𝑋𝑗,𝑚 + 𝑐𝑗,𝑚, 

where 𝑄𝑗,𝑚 and 𝐿𝑗,𝑚 given by: 

              𝑄𝑗,𝑚 =  𝐰𝑚
𝑗 𝑇𝚽𝑚𝐰𝑚

𝑗 + ∑ (
𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
)

2

𝐰𝑚
𝑘 𝑇𝚽𝑚𝐰𝑚

𝑘𝑛𝑚
𝑘=1
𝑘≠𝑗

+ 2 ∙ ∑ (
𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
) 𝐰𝑚

𝑗 𝑇𝚽𝑚𝐰𝑚
𝑘𝑛𝑚

𝑘=1
𝑘≠𝑗

+

                               ∑ ∑ (
𝜎𝑘,𝑗,𝑚𝜎𝑙,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
2 ) 𝐰𝑚

𝑘 𝑇𝚽𝑚𝐰𝑚
𝑙𝑛𝑚

𝑙=1
𝑙≠𝑗
𝑙≠𝑘

𝑛𝑚
𝑘=1
𝑘≠𝑗

,                                                  (3.15a) 

      𝐿𝑗,𝑚 = 𝐪𝑚
𝑇 𝐰𝑚

𝑗
+ ∑ (

𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
) 𝐪𝑚

𝑇 𝐰𝑚
𝑘𝑛𝑚

𝑘=1
𝑘≠𝑗

+ 2 ∙ ∑ (
𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
(𝜇𝑘,𝑚 −

𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
𝜇𝑗,𝑚)) 𝐰𝑚

𝑘 𝑇𝚽𝑚𝐰𝑚
𝑘𝑛𝑚

𝑘=1
𝑘≠𝑗

+

                   2 ∙ ∑ (𝜇𝑘,𝑚 −
𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
𝜇𝑗,𝑚) 𝐰𝑚

𝑗 𝑇𝚽𝑚𝐰𝑚
𝑘𝑛𝑚

𝑘=1
𝑘≠𝑗

+ ∑ ∑ (
𝜎𝑙,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
(𝜇𝑘,𝑚 −

𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
𝜇𝑗,𝑚) +

𝑛𝑚
𝑙=1
𝑙≠𝑗
𝑙≠𝑘

𝑛𝑚
𝑘=1
𝑘≠𝑗

                    
𝜎𝑘,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
(𝜇𝑙,𝑚 −

𝜎𝑙,𝑗,𝑚

𝜎𝑗,𝑗,𝑚
𝜇𝑗,𝑚)) 𝐰𝑚

𝑘 𝑇𝚽𝑚𝐰𝑚
𝑙 ,                                                                                (3.15b) 
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and 𝑐𝑗,𝑚 includes terms that do not have 𝑋𝑗,𝑚 so there is no need to explicitly spell it out. It 

is clear that 𝑄𝑗,𝑚 and 𝐿𝑗,𝑚 indicate the quadratic and linear contribution of each imaging 

feature 𝑋𝑗,𝑚 to the classification accuracy, respectively. 

  

LSVM inverse operator 

The LSVM model takes the following form: 

                                          𝑓(𝐳) = 𝐬𝑻𝐳 + 𝑠0,                                                   (3.16) 

where 𝐬 and 𝑠0 are estimated from the objective function min
𝐬,𝑠0,𝝃

1

2
𝐬𝑻𝐬 + 𝐶 ∑ 𝜉𝑖𝑖  subject to 

𝑦𝑖𝑓(𝐳𝑖) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0 ∀𝑖, where 𝐶 is the penalty parameter, 𝜉𝑖 is the slack variable 

for sample 𝑖 in a training dataset, 𝑦𝑖 is the class of sample 𝑖, and 𝑓(𝐳𝑖) is the predicted value 

of sample 𝑖.  Letting 𝐬 = [𝐬1
𝑇, … , 𝐬𝑀

𝑇 ]𝑇, where  𝐬𝑚 are the coefficients corresponding to  𝐳𝑚, 

and substituting (3.6) into (3.16), the following is obtained 

                𝑓(𝐗) = ∑ ∑ 𝐬𝑚
𝑇 𝐰𝑚

𝑗
𝑋𝑗,𝑚

𝑛𝑚
𝑗=1

𝑀
𝑚=1 + 𝑠0.                                  (3.17) 

It is clear from (3.17) that the magnitude of 𝐬𝑚
𝑇 𝐰𝑚

𝑗
 indicates the contribution of each 

imaging feature 𝑋𝑗,𝑚  to the classification accuracy. The sign of 𝐬𝑚
𝑇 𝐰𝑚

𝑗
 indicates the 

direction of the contribution.  

 

3.4 Clinical Application: A Glioblastoma Study 

3.4.1 Background 

Glioblastoma (GBM) is one of the most deadly types of cancer, with a median 

patient survival rate of 14 months (Sottoriva et al. 2013).  One of the greatest challenges in 
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treating GBM is determining the optimal treatment therapies for different regions of the 

tumor, since GBM exhibits a broad intra-tumoral genetic variability.  Namely, each tumor 

consists of several genetically distinct clonal populations that may require different types 

of therapy (Ene and Fine 2011).  There has been a lack of available localized biopsy 

information for different regions of a tumor, which has caused most groups to sample a 

non-localized biopsy and use it to infer a single genetic profile for the entire tumor (Brown 

et al. 2008, Gutman et al. 2013, Jain et al. 2014, Itakura et al . 2015, Yang et al. 2015, Pope 

et al. 2008, Tykocinski et al. 2012, Gupta et al. 2015, Ryoo et al. 2013, Aghi et al. 2005).  

The latter approach may not be effective for treatment since the genetic profile of one 

region may not be characteristic of the genetic profile of another region, resulting in an 

incomplete or inferior treatment response (Marusyk et al. 2012). In essence, effective 

treatment of GBM needs a higher precision that goes beyond inter-tumor genetic difference 

but looks deeper into each tumor to characterize intra-tumor regional genetic variability.  

To achieve this deeper level of precision, biopsy is a gold standard approach. 

However, biopsy is invasive, so that it is clinically infeasible to take a sufficiently large 

number of biopsy samples from each tumor in order to capture the regionally varying 

genetic landscape. On the other hand, magnetic resonance imaging (MRI) is non-invasive, 

enables assessment of the tumor in its entirety, and has shown capabilities of conveying a 

wide range of tumoral phenotypes that can potentially serve as surrogate markers for 

underlying genetics (Itakura et al. 2015, Stadlbauer et al. 2006, Hu et al. 2012a, Drabycz 

et al. 2010). Textural analysis of MRI images has been shown useful in characterizing the 

tissue structures in local areas of the image (Brown et al. 2008, Drabycz et al. 2010). 
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Building machine learning models that use localized image texture features to inform 

regional tumor genetics falls into the general research area of “radiomics”, but it should be 

more accurately called “precision radiomics” due to its objective of deeply characterizing 

intra-tumor regional genetic heterogeneity.  

3.4.2 Subject Selection and Image Acquisition and Preprocessing 

Patient recruitment: Patients with clinically suspected with GBM and undergoing 

preoperative stereotactic MRI for surgical resection were recruited from Barrow 

Neurological Institute. It was confirmed that there was no previous treatment (including 

steroid administration), and approval was obtained from the institutional review boards.  

Written and informed consent was obtained from each subject prior to enrollment.  

Copy Number Variant (CNV) aberrations of interest: The Cancer Genome Atlas 

(TCGA) has identified a set of biologically significant and highly recurrent DNA 

gains/losses through copy number analysis (Sottoriva et al. 2013, Brennan et al. 2013). 

These CNVs constitute known therapeutic targets and/or core GBM pathways; namely, 

RTK, PI3K, MAPK, p53, and Rb1 (Sottoriva et al. 2013, Brennan et al. 2013).  For this 

study, tumor samples that demonstrated aberrations for each CNV were determined.  To 

adequately power the radiogenomic models, CNVs were only included if they had 

alterations of at least 20% of the collection of tumor samples.  From the biopsies that 

demonstrated sufficient abberations for a CNV, I built classification models to predict the 

status of each CNV (abberant vs. diploid/normal). 

Multiparametric MRI and ROI Segmentation: Six multiparametric images were 

included in the present study, including T1+C, T2W, EPI+C, MD, FA, and rCBV (detailed 
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MRI protocols and image co-registration can be found in Hu et al. 2015 and the 

supplementary information). The T2W ROI of each tumor was manually segmented by a 

board-certified neuroradiologist.  

Texture analysis, image processing, and Principal Component Analysis (PCA): 

Following image coregistration, all MRI data had uniform voxel size (1.2x1.2x3mm) 

across all the MRI contrasts (x,y,z dimensions). Regions of interest (ROIs) measuring 

8x8x1 voxels (9.6x9.6x3mm) were generated at locations that correspond to each biopsy 

site.  To ensure accuracy, a board-certified neuroradiologist visually inspected all ROIs. 

Before texture analysis, first order statistics were first acquired from raw image signals:  

mean (M) and standard deviation (SD) of gray-level intensities. Intensity values were then 

mapped within each ROI onto the range 0–255. This step helped standardize intensities 

between ROIs and reduced intensity non-uniformity effects on features extracted in 

subsequent texture analysis. Next, texture analysis was performed, incorporating 3 separate 

but complementary texture algorithms (as previously described (Brown et al. 2008, 

Tykocinksi et al. 2012, Drabycz et al. 2010, Haralick and Shanmugam 1973)): Gray Level 

Co-Occurrence Matrix (GLCM) (Urish et al. 2013), Local Binary Patterns (LBP) (Haralick 

and Shanmugam 1973), and Gabor filters (Grigorescu et al. 2002).  35 texture features were 

generated for each of six total MRI contrasts, which yielded 210 MRI-texture features and 

12 raw features (i.e., mean and SD for six MRI contrasts) for a total of 222 image-based 

features for each ROI. Due to the high-dimensionality of image features relative to the 

sample size and the fact that features produced from the same algorithm and same contrast 

may be highly correlated, I performed PCA and determined Principal components (PCs) 
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for each texture algorithm-contrast combination – a total of 18 sets of PCA (Hu et al. 2015). 

The PCs were used in subsequent predictive modeling. 

Radiogenomic model using MMI-DDS: I identified the subset of image-based PCs 

(determined from PCA above) with the greatest leave-one-out-cross-validated (LOOCV) 

area under the curve (AUC) for predicting the CNV status of each gene. LOOCV was used 

to avoid overfitting. AUC is a more robust metric than overall accuracy for a classifier due 

to its insensitivity to class imbalance. In the dataset, several genes are heavily imbalanced. 

To represent several types of classification methodologies, I separately applied three 

commonly used classification algorithms: Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA) and Support Vector Machines (LSVM) (Lin et al 2010, 

Dixon and Brereton 2009, Zacharaki et al. 2009). In building a classification model with 

sequential forward selection, the PC with greatest LOOCV AUC was first added to the 

model. A second PC was added whose incremental gain in LOOCV AUC is the largest 

among all the remaining PCs and the gain is statistically significant by a Hanley and 

McNeil’s test (Hanley and McNiel 1983). Otherwise, only the first added PC is used in the 

classification model. This process continues with more PCs added if needed and only if the 

added PC improves the LOOCV AUC with statistical significance. Different classifiers 

(i.e., LDA, QDA, and LSVM) achieved the best performance in different genes. Therefore, 

I will report the results of the best classifier for each gene. 

3.4.3 Results 

Patient, tissue samples, CNV aberrations of interest:  A total of 61 tissue specimens 

(21 BAT, 40 ENH) were collected from 18 patients.  Of the core GBM pathways reported 
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by TCGA (Sottoriva et al. 2009, Brennan et al. 2013, Bonavia et al. 2011) CNVs associated 

with six driver genes met inclusion criteria for further radiogenomic analysis.  PTEN 

deletion on 10q23 was the most commonly observed genetic alteration (80% of total 

samples), followed by CDKN2A deletion on 9p21.3 (72%), RB1 deletion on 13q14 (59%), 

EGFR amplification on 7p11 (41%), TP53 deletion on 17p13 (33%), and PDGFRA 

amplification on 4q12 (20%).   

Performance of MMI-DDS: Table 4 shows the LOOCV AUCs for each gene. The 

significant PCs selected by MMI-DDS to be included in each model are provided in Table 

5. 

Table 4: PCs selected by SFFS to include in the radiogenomic models from conventional 

and advanced MRI sequences T1W+C, T2W, EPI+C, rCBV, FA, and MD. The PC number 

from each contrast-texture algorithm combination is shown in parentheses. The p-value of 

each additional PC beyond the first one that was added to the model is also shown. 

 
CNV 

PCs selected by SFFS 

All 

EGFR ++ 
(7p11) 

MD-GLCM (1) 

PDGFRA ++ 
(4q12) 

MD-GLCM (2) 

PTEN – 
(10q23) 

FA-LBP (5) 

CDKN2A – 
(9p21.3) 

T2W-LBP (2) 

T1W+C-LBP (1); p<0.03 

RB1 – 
(13q14) 

FA-LBP (2) 

T1W+C-LBP (1); p<0.05 

TP53 – 
(17p13) 

rCBV-LBP (5) 
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Table 5: LOOCV AUCs on all samples, BAT samples, and ENH samples for conventional 

and advanced MRI sequences T1W+C, T2W, EPI+C, rCBV, FA, and MD. 

 
CNV 

LOOCV AUC 

Overall BAT ENH 

EGFR ++ 
(7p11) 

0.70 
 

0.72 
 

0.69 

PDGFRA ++ 
(4q12) 

0.77 
 

0.85 
 

0.75 
 

PTEN – 
(10q23) 

0.71 
 

0.44 
 

0.92 
 

CDKN2A – 
(9p21.3) 

0.81 
 

0.82 
 

0.80 
 

RB1 – 
(13q14) 

0.78 
 

0.72 
 

0.81 
 

TP53 – 
(17p13) 

0.68 
 

0.61 
 

0.70 
 

 

3.4.4 Discussion 

GBM’s intratumoral genetic heterogeneity, hypothesized to derive from clonal 

expansion of multiple genetically divergent tumor populations, requires targeted therapy 

to mitigate tumoral resistance. A clonal population may express varying sensitivities and 

drug targets, which increases the chance that pre-existing resistant clones will result in 

failed treatment therapy and subsequent tumor recurrence. Adjacent clonal populations can 

also exert influence on therapeutic response through biological interactions (Ene and Fine 

2011, Marusyk et al. 2012, Bonavia et al. 2011). Thus efforts are needed to develop 

combinatorial strategies that can take advantage of genetic heterogeneity to enhance 

current therapeutic methods (Ene and Fine 2011, Marusyk et al. 2012, Bonavia et al. 2011). 

As genetically informed technologies become more feasible, characterizing intratumoral 

heterogeneity will have an even greater role in strategizing effective targeted therapies. 
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 Although CE-MRI is used to help neurosurgeons when collecting surgical biopsies 

from the ENH, CE-MRI alone lacks the precision to predict regional, genetically distinct 

clonal sub-populations within each tumor. As a result, other imaging features have been 

evaluated as potential biomarkers for genetic status (Brown et al. 2008, Gutman et al. 2013, 

Jain et al. 2014, Itakura et al. 2015, Yang et al. 2015, Pope et al. 2008, Tykocinski et al. 

2012, Gupta et al. 2015, Ryoo et al. 2013, Aghi et al. 2005, Barajas et al. 2010). However, 

most of these studies fail to be informative of intratumoral heterogeneity since they used 

non-localizing biopsies (usually from a small representative sub-region) to infer a single 

genetic profile for an entire tumor.  This method is sub-optimal since genetic profiles from 

one biopsy location may not accurately correspond with those from other tumor sub-

regions.  Gutman et al. 2013 and Jain et al. 2014 independently reported a lack of 

correlation between imaging features and common GBM drivers such as EGFR, PDGFRA, 

PTEN, and CDKN2A.  These drivers typically show regional intratumoral heterogeneity 

(Sottoriva et al. 2013, Van Meter et al. 2006).  Other studies have reported imaging that 

has mixed correlations with GBM subtypes (Jain et al. 2014, Yang et al. 2015). However, 

these studies did not take into consideration that multiple subtypes can exist together in a 

single tumor (Sottoriva et al. 2013). Additionally, several groups using non-localizing 

biopsies in their analysis have conflicting results on whether perfusion MRI measures 

correlate with EGFR (Jain et al. 2014, Tykocinski et al. 2012, Gupta et al. 2015, Ryoo et 

al. 2013, Aghi et al. 2005).  

 Other studies have also utilized image-guided biopsies (Barajas et al. 2010, Van 

Meter et al. 2006). However, my study is different in that it includes development of 
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clinically interpretable models for driver genes known to play a role in GBM.  These facets 

have facilitated the recognition of several significant associations between regional CNV 

status and imaging features.   

I used classification algorithms (i.e., LDA, QDA, and SVM) coupled with 

sequential forward selection (SFFS) to identify subsets of image-based PCs that achieved 

the highest LOOCV AUC for each gene.  The model development presented in this paper 

is limited and can be augmented in the future with additional models such as regression, 

artificial neural networks, Bayesian networks, and deep learning (if the dataset being 

analyzed is large enough). 

Additional limitations to the analysis of the current analysis are as follows:  (1) 

Since this study examines a small data set, the derived models need to be validated in a 

larger GBM cohort.  Having a larger dataset should also increase the ability to capture more 

GBM driver gene alterations (e.g., CDK4, c-MET, etc.), which were too infrequent in the 

current cohort to sufficiently characterize through imaging.  Prospective validation can also 

aid targeting of biopsies for genetically diverse regions within each tumor, which can 

facilitate integration these predictive models with surgical neuronavigation. (2) 

Misregistration errors may be present because of image distortions as well as brain shift 

post craniotomy. To minimize these errors, small craniotomy sizes are taken to reduce brain 

shift and stereotactic image location were visually validated with intracranial 

neuroanatomic landmarks to help adjust for random brain shifts. Potential geometric 

distortions were also reduced by rigid-body coregistration of stereotactic and DSC-MR 

imaging (Hu et al. 2015, Hu et al. 2012a, Barajas et al. 2010, Barajas et al. 2012, Hu et al. 
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2012b). Combined misregistration is estimated to be about 1–2 mm from both brain shift 

and registration technique—similar to that from previous studies by using stereotactic 

needle biopsy (Stadlbauer et al. 2006).   Additionally, multiple tissue samples from 

spatially distinct subregions were collected within the same tumor for each patient. To 

minimize potential effects of sample overlap, small ROI sizes were used. So impact from 

these minority samples is estimated to be negligible. 

 

3.5 Clinical Application: A Migraine Study  

Approximately 36 million Americans suffer from migraine (Daniel and Mauskop 

2016). Current clinical diagnosis is primarily symptom-based, which is prone to patient 

subjectivity. Imaging has shown great promise for providing objective measures of the 

disease and for improving the diagnostic accuracy (Schwedt et al. 2015, Chong et al. 2017). 

However, most existing research on migraine diagnosis focuses on single modalities. In 

this section, I present a study of using MMI-DDS to integrate multi-modality structural and 

functional imaging data for migraine diagnosis. 

 

3.5.1 Subject Selection and Image Acquisition and Preprocessing 

The data used for this application were obtained from Mayo Clinic Arizona and 

Washington University School of Medicine in St. Louis: A total of 106 subjects who had 

structural and functional MRI data were included in this analysis, consisting of 57 

individuals with migraine (PMs) and 49 healthy controls (HCs). These 106 subjects were 

a subset of subjects included in prior analyses (Schwedt et al. 2015, Chong et al. 2017). 
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PMs were diagnosed in accordance with the diagnostic criteria defined by the International 

Classification of Headache Disorders (Arnold 2018)   

Structural MRI data were obtained from two Siemens 3T MRI machines. Using a 

cortical reconstruction and segmentation program in the FreeSurfer image analysis suite 

(version 5.3, http://www.surfer.nmr.mgh.harvard.edu/), cortical area, thickness and 

volume measurements of 68 ROIs were extracted. Additionally, resting-state functional 

connectivities, i.e., fMRI data, were collected for each subject. Standard Statistical 

Parametric Mapping (SPM) methods were used to preprocess the fMRI data. Specifically, 

fMRI signals were temporally filtered between 0.01 to 0.1 Hz to retain the low frequency 

components. Variance relating to signals of no interest was removed through linear 

regression. 33 ROIs were chosen based on commonly cited regions for which PMs show 

abnormalities (Mainero et al. 2011, Russo et al. 2012). Among the 33 ROIs, there are 16 

pairs; each pair consists of two regions with the same name but located at the left and right 

sides of the brain, respectively. The remaining one ROI is located in the middle of the 

brain. Each pair of ROIs was aggregated into one ROI by averaging their respective time 

courses. This reduces the number of ROIs to 16+1=17. Partial correlations between the 17 

ROIs were computed, forming 136 connectivity features. Note that I also tried keeping the 

original 33 ROIs without pair-wise aggregation, but the result was not as good as the one 

with aggregation.  

In summary, this study utilizes two imaging modalities in terms of the image 

acquisition techniques, i.e., structural MRI and fMRI. Structural MRI produces three sets 

of features for 68 ROIs, i.e., area features, thickness features, and volume features. Because 

these three sets measure different aspects of the brain structure, they are treated as three 

http://www.surfer.nmr.mgh.harvard.edu/
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modalities in my analysis. As a result, four modalities are used in MMS-DDS, including 

cortical area (68 features), thickness (68 features), volume (68 features), and resting-state 

functional connectivity (136 features).  

 

3.5.2 Classification Accuracy by Multi-Modality Imaging Data Integration 

In this experiment, I show the performance of my system in integrating all the 

imaging modalities. Specifically, I first apply modality-wise PCA to each modality and 

keep the PCs that explain 85% of the variance in the data of the respective modality. Then, 

cPSO takes as input the data on the combined PC set across all the modalities. The optimal 

parameter 𝐾 for cPSO is found to be 𝐾∗ = 8, 6, and 9, respectively. K* was chosen as the 

value at the “elbow” of the plot of CV errors against different values of K. Table 4 (last 

column) shows the CV classification errors corresponding to LDA, QDA, and LSVM 

under their respective 𝐾∗. For comparison, I also apply my system to integrating the three 

sets of features from structural MRI, i.e., cortical area, thickness, and volume, and the result 

is shown in the first column of Table 6. Furthermore, I report the result on using resting-

state functional connectivity from fMRI alone. These analyses aim to show the benefit of 

integrating structural and functional imaging data.  

 

Table 6: CV classification errors (avg ± std error) of the proposed MMI-DDS applied to 

MRI alone, fMRI alone, and MRI+fMRI combined 

 
 MRI (area+thickness+volume) fMRI MRI+fMRI 

LDA 24.43% ± 0.79% 27.17% ± 0.74% 21.79% ± 0.50% 
QDA 26.32% ± 0.53% 29.72% ± 0.75% 22.45% ± 0.48% 

LSVM 20.38% ± 0.63% 25.38% ± 0.89% 17.17% ± 0.19% 
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In all three classifiers, the system’s ability for integrating data from structural and 

functional imaging modalities is evident. Using a two-sample t-test, the CV error of 

MRI+fMRI is significantly lower than MRI alone with p values of 0.0062, 2.2 x 10-5 and 

2.8 x 10-4 for LDA, QDA, and LSVM, respectively. Because the CV errors of MRI are 

lower than fMRI, there is no need to compare MRI+fMRI with fMRI. I conclude the 

integration of multi-modality imaging can significantly improve the diagnosis accuracy. 

Furthermore, among the three classifiers, LSVM achieves the lowest error, i.e., highest 

accuracy of 83%, using MRI+fMRI.  

Please note in the single modality migraine study (Schwedt et al. 2015) where 

structural MR data were analyzed, the classification accuracy was 68%; and the single 

modality migraine study using fMRI data had 81% classification accuracy (Chong et al. 

2017). One may argue that the 83% accuracy reported in this study is a marginal 

improvement compared to 81% accuracy. I contend that first, Table 6 indicates the 

statistical differences between the two approaches (fMRI+MRI vs. fMRI) using the same 

features sets. Second, a voxel-by-voxel connectivity approach was adopted in (Chong et 

al. 2017) while 136 features measuring the correlations among 17 ROIs were used in this 

research. Since one of the key traits of the proposed MMI-DDS is interpretability, the use 

of a ROI based approach may have easy adoption in clinical practice. It is certainly the 

interest of the team to explore the use of a voxel-by-voxel approach to investigate whether 

a better accuracy may be achieved from this dataset. 
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3.5.3 Biomarker Identification 

For each classification model in the last column of Table 4, I apply the proposed 

clinical utility engine to find the contribution of each feature in the respective imaging 

modality. Because LSVM gives the highest accuracy, next I examine the result for LSVM 

more closely. Specifically, I would like to focus on the features that have large positive or 

negative contributions to the classification accuracy, i.e., features whose contribution 

weights are large in magnitude. These features have higher likelihood of being potential 

migraine biomarkers. To this end, I pool the weights from all the modalities together and 

rank them from the largest to the smallest in terms of their magnitudes. This would give us 

a rank for the features. Table 7 lists the features that rank in the top 5%. These roughly 

correspond to features that are significant at 0.05 significance level, a common choice for 

assessing statistical significance. Figure 5 highlights the ROIs corresponding to the area 

features in Table 7 on the brain surface. Figure 6 shows the resting-state functional 

connectivity in Table 7 on the brain surface.  
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Table 7: Imaging features that rank in the top 5% in terms of the magnitudes of contribution 

weights for LSVM (L: left hemisphere of the brain; R: right hemisphere of the brain) 

 
Feature set Features 

Area (MRI) Frontal pole (L), Inferior temporal (L), Middle temporal (L), 

Transverse temporal (L), Transverse temporal (R), Banks of the 

superior temporal (R), Precentral (R), Paracentral (R), Entorhinal 

(R) 

Thickness (MRI) Insula (R) 

Volume (MRI) None 

Resting-state functional 

Connectivity (fMRI) 

<Posterior cingulate, Dorsolateral prefrontal> 

<Anterior cingulate, Amygdala> 

<Inferior lateral parietal, Supplementary motor> 

<Primary somatosensory, Temporal pole> 

<Temporal pole, Caudate> 

<Middle cingulate, Secondary somatosensory> 

<Inferior lateral parietal, Temporal pole> 
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Figure 5: ROIs corresponding to the area features in Table 7 shown on an average inflated 

brain surface. front. pole=frontal pole; inf. temporal=inferior temporal; mid. 

temporal=middle temporal; sup. temp (bank)= bank of the superior temporal; transv. 

temporal=transverse temporal 
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Figure 6: Resting-state functional connectivities corresponding to Table 7. For illustration 

purposes, functional connectivities are shown on an inflated right hemisphere average brain 

surface. DLPC=dorsolateral prefrontal; ant. cingulate=anterior cingulate; inf. lat. 

parietal=inferior lateral parietal; mid. cingulate=middle cingulate; post. 

cingulate=posterior cingulate;  prim.  somatosensory=primary somatosensory; sec. 

somatosensory=secondary somatosensory; supp. motor=supplementary motor; temp. 

pole=temporal pole 

 

As expected, given the symptoms of migraine, brain regions most contributing to 

migraine classification (those listed in Table 7) play important roles in pain processing and 

processing of multisensory stimuli. Whereas some are regions that are predominantly 

responsible for sensory-discriminative pain processing (e.g. somatosensory cortex), others 

are responsible for affective-emotional processing (e.g. amygdala, anterior cingulate 
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cortex), cognitive processing (e.g. prefrontal cortex), or integration of incoming sensory 

information from different domains (e.g. temporal pole). Several of these regions have 

commonly been identified as having atypical structure or function in previous migraine 

studies. The temporal pole, a multisensory region that integrates somatosensory, visual, 

auditory, and olfactory stimuli (Schwedt 2013), has frequently been identified to have 

atypical structure, function and functional connectivity in migraine studies (Schwedt et al. 

2014, Rocca et al. 2006). Atypical function of the temporal pole in PMs might contribute 

to common migraine symptoms such as the exacerbation of migraine headache intensity 

when exposed to lights and sounds. The anterior cingulate cortex is involved in affective 

components of pain processing including pain anticipation (Palermo et al. 2015), and has 

been shown to have atypical activation, structure, and functional connectivity in PMs 

(Russo et al. 2012, Jin et al. 2013, Schwedt et al. 2013). The amygdala and middle cingulate 

cortex are also involved with determining pain affect, with the middle cingulate cortex 

possibly having additional roles in the integration of other aspects of pain processing (e.g. 

sensory discriminative, affective, cognitive) (Palermo et al. 2015, Simons et al. 2014). One 

fMRI study on heat pain processing found that interictal PMs showed stronger middle 

cingulate cortex activation than HCs (Schwedt et al. 2014). PMs have also been 

demonstrated to have atypical stimulus-induced activation of the amygdala during 

migraine attacks and atypical functional connectivity of the amygdala compared to HCs 

(Schwedt et al. 2013, Stankewitz and May 2011). My findings are consistent with these 

previous findings.  
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3.6 Conclusion 

In this chapter, I developed a clinical decision support system, MMI-DDS, that 

integrates multi-modality imaging data for disease diagnosis. The system was designed to 

achieve flexibility, sufficient accuracy, and interpretability, which are three important traits 

required for clinical decision support systems, but unfortunately are inadequately 

addressed by prior research. Specifically, my proposed system included a modality-wise 

PCA, a cPSO algorithm for classification, and a clinical utility engine for identifying 

contributing features to facilitate biomarker identification. I applied the proposed MMI-

DDS to using multiparametric MRI to predict intra-tumor genetic variability of 

glioblastoma brain cancer. A high AUC of 0.81 was achieved for predicting the CDKN2A- 

aberrant CNV.  I also applied MMI-DDS to migraine diagnosis by integrating cortical 

thickness, area, and volume data acquired from structural MRI and resting-state functional 

connectivity data from fMRI. A high accuracy of 83% was achieved by integrating the 

structural and functional modalities together, which is significantly better than using single 

modalities alone. Furthermore, the clinical utility engine identified contributing features to 

the classification accuracy. Highly ranked features according to their respective 

contributing weights were found to be relevant to migraine as confirmed by existing 

studies. Future research includes extending the system’s capability to multi-class 

classification that is useful for disease subtype classification, and to prediction of numerical 

response variables such as disease severity.    
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CHAPTER 4  

INTEGRATED FEATURE AND INSTANCE SELECTION IN SEMI-SUPERVISED 

REGRESSION FOR SMARTPHONE-BASED TELEMONITORING OF 

PARKINSON’S DISEASE PATIENTS 

4.1 Background 

As mobile phone technology has improved in recent years, there has been an 

unprecedented opportunity to collect high-resolution data from users.  Now that 

approximately 77% of American adults own a smartphone (according to 2018 Pew 

Research surveys), there is capability to collect this high-resolution data on a large scale.  

Because smartphones are equipped with many sensors, they are capable of collecting an 

abundance of useful information on user’s daily activities, including data measured by the 

microphone, camera, accelerometer, and gyroscopes. With this large amount of 

information, there is an increasing number of endeavors to improve healthcare through 

mobile-powered patient portals, mobile health (mHealth) apps, and telemedicine.  There 

have been recent efforts to utilize this technology for telemonitoring of Parkinson’s Disease 

(PD).  PD is the second most common neurodegenerative disease and affects seven to ten 

million people worldwide (Goetz et al. 2009).  PD is a movement disorder characterized 

by a lack of dopamine production in cells of the midbrain.  Common symptoms include 

speech changes, voice tremor, slowed movement, tight muscles, and loss of balance.  

Although there is no known cure for PD, effective treatment can slow down and ameliorate 

the progression of the disease. 

In order to have effective treatment, the disease progression and severity must be 

monitored on a frequent basis.  Typically, this requires the patient’s presence in a 
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specialized clinic, which is expensive and burdensome to both the patient and medical staff.  

Thus, having inconsistent evaluations in disease condition is not an uncommon occurrence, 

which results in insufficient therapy since the treatment will always be behind the disease 

progression. 

Smartphones have emerged as an alternative to provide an inexpensive and 

consistent way of monitoring symptoms of PD.  Activity collected from smartphones can 

be transformed to useful features that can help better understand characteristics of the 

disease and monitor disease progression.  Sage Bionetworks created a mobile application 

called mPower for smartphone telemonitoring of PD patients 

(http://sagebionetworks.org/research-projects/mpower-researcher-portal/).  mPower 

collects several different types of information by having the user perform activities such as 

speaking, walking, memorizing, and tapping.  This information is sufficient to measure the 

different symptoms of PD with minimal interruption to the patient’s daily routine since 

these activities can be performed at home.  Information can be generated from these 

exercises in the form of features that can be used for better inferring disease progression.  

Because using mPower is convenient and low-cost, the patient’s PD status and progression 

can be assessed consistently and therapy can be adjusted in a timely manner to provide the 

best treatment. 

In order to utilize features generated from the mPower app, statistical modelling 

techniques can be used to decipher the features into some indicator of disease severity.  To 

quantify disease severity, the most common metric is the Unified Parkinson’s Disease 

Rating Scale (UPDRS).  The UPDRS is generated as a summary score from 42 question-

survey administered to the patient to assess PD-related symptoms.  Developing a model 

http://sagebionetworks.org/research-projects/mpower-researcher-portal/
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that connects the UPDRS score to features generated from the tasks on the mPower app, 

would provide huge value to monitoring patient disease condition on a consistent basis. 

However, predictive modeling of PD using telemonitoring signals of PD patients 

has the following issues: First, there is an insufficient number of instances in which the 

patient visited the clinic to obtain a UPDRS score and has corresponding telemonitoring 

signals from their smartphone.  This provides inadequate information from which to build 

an accurate model. Semi-supervised learning methods are needed to also utilize instances 

that do not have a corresponding UPDRS score to build an accurate model.  Second, there 

is plethora of features collected from smartphones from which to train a model, however 

many of the features are irrelevant to predicting UPDRS.  Thus feature selection techniques 

must be employed to determine the optimal subset of available features to include in the 

final model. 

To address these challenges, I introduce a first-of-its-kind semi-supervised feature 

selection algorithm for continuous prediction of Parkinson’s Disease severity.  This 

approach combines particle swarm optimization (PSO) for selection of smartphone-based 

telemonitoring features and semi-supervised learning (SSL) to utilize all available data 

collected from smartphones.  I further extend this algorithm by introducing a graph 

sampling method that reduces the computational time and trains the model on a smaller-

representative subset of the larger training data population. Because the proposed model 

integrates both feature and sample selection with SSL, it is named s2SSL, implying an SSL 

with selection in two aspects: feature and sample. s2SSL aims to balance data inclusivity 

(through SSL) and usability (through feature and sample selection). 
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The remainder of this chapter is organized as follows: Section 4.2 provides a 

literature review of semi-supervised learning, feature selection, and sampling techniques 

relevant to s2SSL.  Section 4.3 presents the methodological development of s2SSL.  

Section 4.4 provides some simulation tests of s2SSL to demonstrate the utility of different 

aspects of the algorithm.  Section 4.5 provides an application study of s2SSL used on 

smartphone-based telemonitoring of Parkinson’s Disease patients.  Section 4.6 discusses 

the results and concludes the chapter. 

 

4.2 Literature Review 

4.2.1 Semi-supervised learning 

Semi-supervised learning (SSL) has been widely used in applications in which 

labeled data are scarce but unlabeled data are available in large quantity. There are many 

types of SSL algorithms, including generative, self-training, co-training, low-density 

separation, and graph-based models. 

Supervised generative models assume that the data take on a probability distribution 

𝑝(𝐱, 𝑦) = 𝑝(𝑦) 𝑝(𝐱|𝑦), where 𝐱 are features, 𝑦 is the response variable, and 𝑝(𝐱|𝑦) follows 

some identifiable mixture distribution.  Semi-supervised generative models incorporate the 

probability distribution of unlabeled data such that the probability distribution becomes 

𝑝(𝐃) = 𝑝(𝑦) 𝑝(𝐱𝐿|𝑦)𝑝(𝐱𝑈), where 𝐃 = {(𝐱𝐿, 𝑦), 𝐱𝑈} is the dataset consisting of labeled 

(𝐱𝐿, 𝑦) and unlabeled (𝐱𝑈) samples. Using an optimization method such as expectation 

maximization (EM), parameters of the mixture distribution can be estimated.  For example, 

Holub et al. used a generative model to transform face image data into fixed-length Fisher 
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score vectors, and inputted the transformed features to a standard discriminative classifier 

(Holub et al. 2005). Fujino et al. introduced a hybrid generative-‘bias correction’ model for 

text classification based on the maximum entropy principle (Fujino et al. 2005).  

Self-training starts by training a classifier using only labeled data, then uses the 

classifier to predict unlabeled data and adds most confidently predicted unlabeled samples 

to re-train the classifier. Li et al. presented self-trained support vector machines (SVMs) 

and applied them to an electroencephalography (EEG)-based brain computer interface 

(BCI) speller (Li et al. 2008). Tanha et al. modified the basic decision tree learner for self-

training and applied the model to several datasets from the UCI Machine Learning 

Repository (Tanha et al. 2017, Bach and Lichman 2013).   

Co-training extends the idea of self-training by training separate classifiers on two 

sub-feature sets and adding most confidently predicted unlabeled samples by one classifier 

to the other classifier’s re-training process. Wan used co-training of a sentiment classifier 

to utilize abundant information of English sentiment classification and unlabeled Chinese 

data for the problem of cross-lingual sentiment classification (Wan 2009). Reference Zhou 

et al. showed that by utilizing the correlations between the two feature subsets using 

canonical correlation analysis, co-training can be successfully performed using only one 

labeled training sample (Zhou et al. 2007).   

Low-density separation aims to find a classification boundary that separates not 

only labeled data of different classes but also unlabeled data at a low-density region in the 

feature space. Reference Zhu and Lafferty demonstrated a heuristic to minimize the 

average label entropy by utilizing a harmonic function summed over unlabeled data (Zhu 

and Lafferty 2005). Lawrence and Jordan proposed a Gaussian Process with a “null 
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category noise model” and demonstrated its performance on labeled and unlabeled 

handwritten digits (Lawrence and Jordan 2005). 

Graph-based SSL has recently become popular because of its relatively high 

accuracy and efficiency.  The basic idea is to construct a graph with vertices being labeled 

and unlabeled samples in a training set and edges weighted by vertex proximity in the 

feature space. There are two types of graph-based SSL: transductive and inductive learning 

models. The former aims to formulate a method to propagate label information from 

labeled samples to unlabeled samples in a specific dataset. In this way, the unlabeled 

samples in the dataset are classified/predicted. The latter aims to train a model using labeled 

and unlabeled samples, which is not only used to predict the unlabeled samples in training 

but also new samples. 

For transductive learning, Zhu et al. 2003 proposed a Gaussian random field model 

with the mean of the field characterized in terms of harmonic functions. They tested the 

model on digit and text classification tasks. Zhou et al. 2004 introduced a local and global 

consistency framework based on the quadratic loss of prediction on labeled samples 

regularized by a normalized Laplacian matrix. For inductive learning, Zhu and Lafferty 

2005 regularized generative mixture models with graph Laplacian and demonstrated its 

performance on handwritten digit and teapots image datasets. Belkin et al. 2006 proposed 

the manifold regularization (MR) framework, which relied on properties of reproducing 

kernel Hilbert spaces (RKHS) to enable efficient and accurate prediction. 
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4.2.2 Semi-supervised Feature Selection 

Just as in conventional feature selection, semi-supervised feature selection can be 

divided into three areas—filter method, wrapper method, and embedded method 

(Sheikhpour et al. 2017). 

Filter methods are known to be very efficient in selecting features as they are 

primarily a screening technique that reduces features before a model is trained.  They 

examine the inherent properties of the labeled and unlabeled data to choose features prior 

to training a model. Laplacian score ranks features based on their locality preserving power, 

i.e., features that preserve the underlying geometry of the data (Cheng et al. 2011, Zhao et 

al. 2008, Doquire and Verleysen 2013).  The Fisher criterion chooses features based on 

their discriminant capability (their ability to minimize within-class variance and maximize 

between-class distance), and is the SSL analogue of the classic Fisher score (Chen et al. 

2010, Yang et al. 2010, Yang et al. 2011, Liu et al. 2013, Liu et al. 2010).  RELIEF-based 

methods are also emerging as an effective method for calculating a weight vector that ranks 

features based on the differences of given samples and their nearest neighbors.  Currently 

there are RELIEF methods that can handle two-class and multi-class data (Cheng et al. 

2008, Tang and Zhang 2018).  Other filter methods include those based on pairwise 

constraints (Kalakech et al. 2011, Benabdeslem and Hindawi 2011), spectral graph theory 

and cluster assumption (Zhao and Liu 2007), sparse models (Han et al. 2015), local 

discriminative information (Zeng et al. 2016), and conditional mutual information/entropy 

(Quinzán et al. 2009).  The disadvantage of using filter methods are that the feature 

selection is not integrated with the model training. 
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Wrapper methods utilize an existing learner (or an ensemble of learners) in a 

framework to choose the optimal number of features.  Methods based on a single learner 

(Ren et al. 2008, Wang et al. 2008) use self-training based semi-supervised learning.  

Initially, a supervised learner is trained on the labeled instances, employing a greedy 

feature selection method such as sequential forward selection (SFS).  The selected features 

are then used to train a model to predict the labels of the unlabeled data.  Predictions are 

selected as pseudo-labels to augment the current labeled dataset (either through random 

selection or based on confidence in prediction), then a new feature selection model is 

trained.  This process is repeated several times to accumulate several different subsets of 

selected features, and those with the highest frequency are chosen for the final model.  

Ensemble learner methods (Bellal et al. 2012, Han et al. 2011, Barkia et al. 2011) utilize 

multiple classifiers and then combine their output results either through self-training or co-

training.  A confidence measure is then used to select unlabeled data as pseudo-labels 

augment the labeled dataset.  Different labeled training sets are typically created through 

methods like bagging, and different feature subsets are generated through random subspace 

methods (RSMs). 

Embedded methods incorporate feature selection in the model training process 

utilizing labeled and unlabeled data.  Methods based on support vector machines (Yang 

and Wang 2007, Xu et al. 2010, Ang et al. 2015, Dai et al. 2013) maximize the decision 

boundary margin between classes while incorporating the local structure of the labeled and 

unlabeled data instances.  Embedded feature selection based on sparse models and the 

graph Laplacian (Song et al. 2016, Ma et al. 2012, Shi et al. 2014, Ma et al. 2011) employ 

a variety of sparse model techniques and graph-based semi-supervised learning to utilize 
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the information in the labeled and unlabeled instances. Manifold regularization (MR) is the 

most popular in this group, as it can use the graph Laplacian to diffuse information in the 

labeled instances to unlabeled instances in a way that can easily integrate with many 

existing algorithms (Ma et al. 2012, Ma et al. 2011). 

In the existing literature to date, the only algorithm that is directly applicable to 

semi-supervised feature selection in regression problems (with a continuous response) is 

the Laplacian score (Doquire and Verleysen 2013).  However, the graph Laplacian that is 

built to rank the features to be chosen is calculated from noisy and relevant features, which 

causes the features to be chosen based on a suboptimal criteria.  Thus there is a need to 

create a semi-supervised feature selection method that selects a relevant subset based on a 

more proper criterion. 

 

4.2.3 Graph sampling 

Manifold regularization (MR) has become a popular technique for semi-supervised 

learning. However there are some limitations on larger datasets due to the computational 

complexity of incorporating a matrix-embedded graph into model training, and there is a 

need to develop a sampling technique to minimize computational time and train on the 

most relevant instances. 

One category of graph sampling techniques is embedded directly into the objective 

function to be minimized.  Studies by Zhang et al. and Zuo et al. incorporated the 𝐿1-norm 

with respect to the kernel coefficients of the response for manifold regularization (MR) 

(Zhang et al. 2014, Zuo et al. 2015).   By the classical Representer Theorem, I can find the 
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optimal solution for MR to be 𝑓∗(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥)𝑙+𝑢
𝑖=1 , where 𝛼𝑖 is the Lagrangian 

multiplier for instance 𝑖, and 𝐾(𝑥𝑖, 𝑥) is the Mercer kernel associated with instance 𝑖.  To 

reduce the computation complexity of calculating this solution, an 𝐿1-norm can be applied 

to the 𝛼𝑖’s that cause some of the 𝛼𝑖’s to shrink to zero.  

Additionally, there are studies that employed a Laplacian 𝐿1-norm into the 

objective function (Lu et al. 2015, Lu and Wang 2015).  The intrinsic Laplacian 

regularization term in MR can be modified to become an 𝐿1 regularizer by reducing the 

Laplacian matrix to be 𝐿 = 𝑉𝛴−1𝑉𝑇 = (𝛴1/2𝑉𝑇)𝑇𝛴1/2𝑉𝑇 = 𝐵𝑇𝐵, where 𝑉 is the set of 

eigenvectors of 𝐿 and 𝛴 is a diagonal matrix of the eigenvalues for 𝐿.  Once 𝐵 is derived, 

it can be used to substitute an 𝐿1 version of 𝐟𝐓𝐿𝐟 (i.e., |𝐵𝐟|1) in the MR formula, which 

will induce sparsity based on the Laplacian.   

Other sampling methods are used to reduce the population to a representative set 

before SSL model training. Performing sampling before model training can have a 

significant time advantage since the initial graph size before model training is much 

smaller.  Wang and Zhang used a graph-based sampling method to eliminate bridge points, 

i.e., instances that are noisy or do not have many nearest neighbors in a given search radius 

(Wang and Zhang 2008).  By performing eigendecomposition of the covariance matrix of 

instance 𝑖, one can calculate the confusion rate of each covariance matrix as 𝑐𝑖 =

∑ 𝜆𝑖𝑘 �̅�𝑖𝑘⁄K
𝑘=1 , where 𝜆𝑖𝑘  is the 𝑘th eigenvalue of the covariance matrix for 𝐱𝑖, �̅�𝑖𝑘 =

∑ 𝜆𝑗𝑘𝐱𝑗∈𝒩(𝐱𝑖) , where 𝒩(𝐱𝑖) is the neighborhood of points around 𝐱𝑖.  Points with a higher 

confusion rate, 𝑐𝑖, have a higher chance of being bridge points.  Typically, this procedure 

is performed by visually examining the graph, or by running several tests with different 
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values of confusion rate thresholds and choosing the threshold that maximizes the 

accuracy.  For continuous 𝑌, this procedure can be used to eliminate noise or outliers.   

Block sparsity (Zhao et al. 2014) used the 𝐿2,1-norm to make instances in the same 

class share the same sparse pattern.  Using the framework of sparse congruency 

representation, the method first solves the problem min
𝑍,𝐸

‖𝑍𝑇‖2,1 + ‖𝐸‖2,1, subject to 𝑋 =

𝑋𝑍 + 𝐸, 𝑍 ≥ 0, where 𝑋𝑑×𝑁 is the data matrix with 𝑑 dimensions and 𝑁 instances, 𝑍𝑁×𝑁 

is the reconstruction coefficients matrix, and 𝐸𝑑×𝑁 is the noise term.  After solving for 𝑍, 

one can derive a Laplacian matrix to be used for SSL. 

Goldberg et al. 2009 introduced a cover sampling technique that selects one 

instance at a time and removes unlabeled data.  Given a few labeled data and many 

unlabeled data, the algorithm retains all the labeled data and derives an approximate cover 

of the unlabeled data as follows: (1) choose a random unlabeled point, 𝑥(0), (2) remove its 

unlabeled neighbors 𝑁(𝑥(0)), (3) select 𝑥(1)—the next nearest neighbor to 𝑥(0), and (4) 

repeat the procedure until there are no more points to eliminate.  This procedure is attractive 

in that it significantly reduces the number of unlabeled instances, but it is greedy in the 

way that it creates the cover since it chooses each 𝑥 one-at-a-time.   

Sun et al. 2014 employed a method that favors instances that have a higher degree 

in the underlying graph.  This seems to be an intuitive approach since it retains instances 

that have the most connections, and thus play a more important role in the underlying 

manifold of the data.   The paper makes an interesting proposal to reduce the instances such 

that the inherent manifold that underlies the instances is retained.  The objective function 

that is proposed is 



90 

 

   max
1

𝑚−𝑡
∑ ( max

𝑗=1,…,𝑡
𝑊𝑖𝑗)𝑚

𝑖=𝑡+1     (4.1) 

where 𝑚 is the number of vertices in the original graph 𝐺; 𝑡 is the number of vertices the 

user chooses to have in the reduced (sparse) graph 𝐺𝑆; and 𝑊𝑖𝑗  is the weight between 

instance 𝑖 in �̅�𝑆  and instance 𝑗 in 𝐺𝑆.  In short, this objective function attempts to find 𝐺𝑆 

from 𝐺 such that the sum of the maximum weights between each node outside of 𝐺𝑆 

(i.e., �̅�𝑆) and each node within 𝐺𝑆 is maximized.  This objective encourages a high spatial 

connectivity between 𝐺𝑆 and 𝐺.  Encouraging this high spatial connectivity has two 

functions—(1) to remove outliers/noise, and (2) to break up the domination of instances 

that are very close to each other. 

The problem of obtaining a manifold preserving graph 𝐺𝑆 defined by (4.1)is NP-

hard, so the authors propose a greedy method to solve it.  In each of the t iterations, the 

greedy algorithm chooses the vertex with highest degree in 𝐺, adds it to 𝐺𝑆, removes all 

edges associated with that vertex, and repeats the process until the sparse graph consists of 

t vertices. 

Having the user choose the number of vertices in 𝐺𝑆 and using a greedy method to 

solve the problem will almost certainly result in a reduced graph that with produce a 

suboptimal result when combined with an MR function.  Thus, there is a need to develop 

a method that finds an underlying manifold of the graph and has a near-globally optimal 

solution. 
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4.3 Methodological Development 

My semi-supervised method incorporates both feature selection and graph 

sampling to improve the accuracy and efficiency of model prediction by eliminating noisy 

or redundant instances and features.  The base model that I use for semi-supervised 

regression is Laplacian Regularized least squares (LapRLS), a manifold regularization 

algorithm (Belkin et al. 2006). For feature selection I introduce a wrapper method called 

constrained particle swarm optimization-SSL (cPSO-SSL), and for graph sampling, I 

develop a sampling method called nearest neighbors graph reduction (NNGR). 

 

4.3.1 Laplacian-Regularized Least Squares (LapRLS) 

I adopted the graph-based SSL (Belkin et al. 2006) as the base learner model 

because of its proven high accuracy and efficiency in various semi-supervised applications, 

as well as its inductive learning ability that allows the trained model to be used to predict 

new patients. The formula for LapRLS is summarized as follows: 

𝑓∗ = argmin
𝑓∈ℋ𝐾

     
1

𝐿
∑ (𝑦𝑙 − 𝑓(𝐱𝑙))

2𝐿
𝑙=1 + 𝛾𝐴‖𝑓‖𝐾

2 +
𝛾𝐼

∑ 𝑤𝑖𝑗𝑖,𝑗
𝐟𝑇𝛀𝐟   (4.2) 

𝐿 is the number of labeled instances in the training set. 𝑦𝑙 is the response value of the 𝑙-th 

instance. 𝐱𝑙 are the predictive features for the 𝑙-th instance. 𝑓(x𝑙) is the predictive function 

of the 𝐱𝑙. (𝑦𝑙 − 𝑓(𝐱𝑙))2 is a loss function that measures the discrepancy between actual 

and predicted response. 𝑓 is a function on the reproducing kernel Hilbert space (RKHS), 

ℋ𝐾, with a Mercer kernel 𝐾. ‖𝑓‖𝐾
2  is a norm on ℋ𝐾, which encourages stability and 

generalizability of the solution. 𝛾𝐴 is a tuning parameter. The graph encoded Laplacian 

matrix, 𝛀 = 𝐃 − 𝐖, where 𝐃 is the vertex degree matrix, i.e., a diagonal matrix with 
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diagonal elements being the total sum of edge weights associated with each vertex, and 𝐖 

is the matrix of all the edge weights.  The 𝐟𝑇𝛀𝐟 term encourages instances that have similar 

𝐱-values also have similar predictions. 𝛾𝐼  is a tuning parameter and ∑ 𝑤𝑖𝑗𝑖,𝑗  is used as a 

scaling factor.  More discussion on this algorithm and its properties can be found in Belkin 

et al. 2006. 

 

4.3.2 Constrained Particle Swarm Optimization (cPSO) 

To perform feature selection, I utilize a modified version of a wrapper method 

called particle swarm optimization (PSO), originally developed as a population-based 

stochastic optimization technique, and then extended for feature selection in classification.  

I use constrained PSO (cPSO), which can honor a pre-specified maximum number of 

features to better avoid overfitting (Gaw et al. 2018).  The advantage of using cPSO versus 

classical sequential forward selection is that it is more likely to find a near-global optimal 

solution. 

In theory, cPSO can work with any classification or regression model. In this paper, 

I focus on LapRLS to demonstrate a first-of-its-kind semi-supervised feature selection 

method for regression problems.  In cPSO, there are a number of particles in our solution 

space, for which each particle contains a potential feature set that is used for the solution. 

Each feature in each particle has a corresponding velocity 

𝑣𝑖𝑑
𝑡 = ω𝑡𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1(𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )    (4.3) 

Where 𝑣𝑖𝑑
𝑡  is the velocity of the dth dimension of the ith particle for tth iteration, ω𝑡 is an 

inertia value, 𝑐1 and 𝑐2 are pre-defined constants, 𝑟1 and 𝑟2 are uniform(0,1) random 
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variables, 𝑥𝑖𝑑
𝑡  is the current position of the particle, 𝑝𝑖𝑑

𝑡  is the current best position for the 

individual particle, and 𝑝𝑔𝑑
𝑡  is the current best global position for the population of 

particles.  The velocities are then put through a sigmoid function 𝑆, then they are ranked 

from highest to lowest.  The top 𝑘 velocities are chosen as features in the particle as long 

as the feature has a good quality (i.e., 𝑆(𝑣𝑖𝑑
𝑡 ) > 0.5).  The position formula is shown below. 

𝑥𝑖𝑑
𝑡+1 = {

1,     𝑖𝑓  𝑑 ≤ 𝑘 𝑎𝑛𝑑 𝑆(𝑣𝑖𝑑
𝑡 ) > 0.5

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (4.4) 

More in-depth explanation for the mechanics of the cPSO algorithm can be found in 

Chapter 3 and Gaw et al. 2018. 

 

4.3.3 Nearest Neighbors Graph Reduction (NNGR) 

Let us suppose that there is a set of unlabeled and labeled instances that are 

connected to each other by a sparse graph, such that there is a density requirement that 

requires each instance to have at least 𝑘 nearest neighbors within a radius of constant length 

휀.  To sample the graph such that the inherent manifold is retained (without having more 

points than necessary), the following heuristic can be used for each instance: either (1) keep 

the instance of interest, or (2) keep one of the instance’s nearest neighbors within a fixed 

ε-radius. 

This algorithm can be formulated by a simple integer programming (IP) problem 

that can be solved easily by common optimization heuristics, such as branch and bound 

(Land and Doig 1960). 
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min
𝐛

∑ 𝑏𝑖
𝑢+𝑙
𝑖=1      (4.5) 

𝑠. 𝑡.         ∑ 𝐴𝑗𝑖𝑏𝑖
𝑢+𝑙
𝑖=1 > 1     ∀ 𝑗 = 1, … , 𝑢 + 𝑙   (4.5.1) 

𝑏𝑖 = 1     ∀ 𝑖 = 1, … , 𝑙             (4.5.2) 

𝑏𝑖 ∈ {0,1}    ∀ 𝑖 = 𝑙 + 1, … , 𝑙 + 𝑢           (4.5.3) 

Where 𝐛(𝑢+𝑙)×1 is a vector that indicates whether each instance is included in the sample, 

and 𝐴𝑗𝑖 is the 𝑗th row and 𝑖th column of 𝐀.  𝐀 is a binary matrix that indicates connections 

between instances in the sparse graph (and includes self-connections for each node).  

Constraint (4.5.1) ensures that either instance 𝑗 (𝑗 = 1, … , 𝑢 + 𝑙) or one of its nearest 

neighbors is included in the reduced graph.   Constraint (4.5.2) forces all labeled instances 

to be included in the reduced graph (since labeled instances are few and therefore not 

disposable).  Constraint (4.5.3) makes 𝑏𝑖 for the unlabeled instances constrained to 0 or 1 

(i.e., whether or not the instance is included in the final graph). 

A modification to (4.5.1) can give more flexibility to modulate the sparsity of the 

reduced graph.  Instead of ensuring that only the instance of one of its nearest neighbors is 

included in the sample, there can be a heuristic that ensures that greater than 𝜆 instances 

are sampled for each group of instance 𝑗 and its nearest neighbors (𝑗 = 1, … , 𝑢 + 𝑙).  This 

allows increased flexibility with sampling and provides another tuning metric that can 

potentially improve model accuracy. 
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The proposed Nearest Neighbors Graph Reduction (NNGR) method that 

incorporates the above modification is defined below: 

min
𝐛

∑ 𝑏𝑖
𝑢+𝑙
𝑖=1      (4.6) 

𝑠. 𝑡.         ∑ 𝐴𝑗𝑖𝑏𝑖
𝑢+𝑙
𝑖=1 > 𝜆     ∀ 𝑗 = 1, … , 𝑢 + 𝑙   (4.6.1) 

𝑏𝑖 = 1     ∀ 𝑖 = 1, … , 𝑙             (4.6.2) 

𝑏𝑖 ∈ {0,1}    ∀ 𝑖 = 𝑙 + 1, … , 𝑙 + 𝑢           (4.6.3) 

(4.6), (4.6.2), and (4.6.3) are identical in formulation to (4.5), (4.5.2), and (4.5.3), 

respectively.  Constraint (4.6.1) ensures that greater than 𝜆 instances are sampled for each 

group of instance 𝑗 and its nearest neighbors (𝑗 = 1, … , 𝑢 + 𝑙).  

This method can be shown to be quite effective.  Even with noisy data, there are 

simple pre-processing methods (e.g., covariance matrices, clustering techniques, etc.) that 

can eliminate most outliers (for example, Wang and Zhang 2008). 

 

4.3.4 Standard Error Scree 

Including too many features in the model can cause generalization issues with 

predicting new instances.  By running cPSO at several different maximum feature settings 

(i.e., 𝑘 = 1, … , 𝐽), one can generate a plot of model error at different maximum feature 

settings).  If cPSO is forced to include the best solution from the previous 𝑘 for each 

maximum feature setting, the error will monotonically decrease as maximum features are 

tested.  The standard error scree (SES) method was utilized to automatically determine the 

optimal number of features to choose for the model (Zoski and Jurs 1996).  Originally used 

for scree plots, SES can be directly applied since scree plots also decrease monotonically.  
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Multiple linear regression analysis was utilized to find the optimal number of features for 

the model by solving for the standard error of estimate 𝑠𝑌∙𝑋 (described in the paragraph 

below) for each regression. 

The regression line for each maximum number feature setting was determined (the 

maximum feature number as the predictor, 𝑋, and MAE as the target, 𝑌).  The results were 

tabulated as follows (1) the maximum feature settings used in the calculations (1 through 

𝐽, 2 through 𝐽, …, 𝐽 − 2 through 𝐽), and (2) the standard error of each regression (𝑠𝑌∙𝑋1
, 

𝑠𝑌∙𝑋2
, …, 𝑠𝑌∙𝑋𝐽−2

).  Finishing the series of regressions with calculations for 𝐽 − 2 through 

𝐽 is consistent with Cattell’s first guideline (i.e., three sequential points form an undesirable 

low limit for drawing a scree plot).  To calculate standard error, 𝑠𝑌∙𝑋 =

√(𝑌 − �̂�)
2
/(𝐾 − 2) was used, where 𝑌 is the error value, �̂� is the predicted value of 

regression, and 𝐾 is the largest maximum features setting that is in the test. 

The value of 1/𝐽 was chosen as the threshold for the standard error from which to 

determine whether allowing more maximum number of features produces nontrivial 

improvement in the results.  This threshold value is based on recommendation from Zoski 

and Jurs 1996.  Thus, each SES corresponding to a maximum feature setting that exceeds 

1/𝐽 indicates a nontrivial improvements, whereas values less than or equal to 1/𝐽 indicates 

trivial improvements. 
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4.3.5 Model framework 

Figure 7 summarizes the main functionalities of the proposed s2SSL algorithm. The 

steps of the s2SSL algorithm are also summarized below: 

Step 1 (hyperparameter initialization): Set the following hyperparameters for s2SSL, 

 s2SSL parameters: 𝑘 =  1, … , 𝐽: the range of maximum number of features to set 

for cPSO 

 cPSO parameters: 𝐼, the number of particles; 𝑇, the maximum number of iterations 

for the particles 

 NNGR parameters: 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑖𝑛
𝑠𝑎𝑚𝑝𝑙𝑒

: the minimum number of instances for 

instances pre- and post-sampling to be connected in the graph; 𝜆, the parameter that 

controls sampling sparsity 

 LapRLS parameters: values of 𝛾𝐴, 𝛾𝐼 , and 𝜂 for tuning in a graph search fashion 

Iterate steps 2-4 with 𝑘 = 1 … 𝐽. 

Step 2 (cPSO initialization): Set the initial position of the 𝑖-th particle, 𝐱𝑖
0, by randomly 

choosing 𝑘 elements in 𝐱𝑖
0 to be one while making other elements to be zero.  If 𝑘 > 1, 

include the global best solution found in 𝑘 − 1 as one of the best particles.  This ensures 

that cPSO at the current 𝑘 obtains a solution that is at least as good as the previous 𝑘 −

1. Use the features corresponding to the non-zero elements in 𝐱𝑖
0 to compute an error 

on the validation set, 𝑓(𝐱𝑖
0)—error is calculated by the NNGR + LapRLS sub-step 

(defined below).  Set the initial velocity, 𝐯𝑖
0, by sampling each element 𝐯𝑖

0 from 

𝑈[−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥]. Use (4.4) to update the initial position of each particle and get 𝐱𝑖
1.  

Iterate Steps 3-4 with 𝑡 = 1, … , 𝑇. 
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Step 3 (velocity updating): Examine all previous positions of the 𝑖-th particle, 

𝑓(𝐱𝑖
0),…, 𝑓(𝐱𝑖

𝑡−1) and find the position giving the smallest validation error, 𝐩𝑖
𝑡. 

Examine the current positions of all the particles, 𝑓(𝐱𝑖
𝑡),…, 𝑓(𝐱𝐼

𝑡), and find the position 

giving the smallest validation error, 𝐩𝑔
𝑡 . Sample 𝑟1 and 𝑟2 from 𝑈[0,1]. Use (4.3) to 

compute the velocity 𝐯𝑖
𝑡.  If 𝑣𝑖𝑑

𝑡 > 𝑉𝑚𝑎𝑥 , set 𝑣𝑖𝑑
𝑡 = 𝑉𝑚𝑎𝑥 ; if 𝑣𝑖𝑑

𝑡 < −𝑉𝑚𝑎𝑥, set 𝑣𝑖𝑑
𝑡 =

−𝑉𝑚𝑎𝑥 . 

Step 4 (position updating): Order the elements in 𝐯𝑖
𝑡 from the largest to the smallest.  Use 

(4.4) to compute the new position 𝐱𝑖
𝑡+1. If the maximum number of iterations has been 

reached—i.e., 𝑡 + 1 = 𝑇—examine the current positions of the particles, 

𝑓(𝐱𝑖
𝑡+1),…, 𝑓(𝐱𝐼

𝑡+1), and output the position giving the smallest validation error as the 

optimal solution, together with the corresponding validation error and the features that 

are selected.  Otherwise, go back to step 3. 

Step 5 (determining optimal maximum features setting): Using the standard error scree 

method, the optimal maximum feature setting is found by applying a regression line to 

the error of each maximum feature setting and selecting the 𝑘 such that the standard 

error of the regression is less than 1/𝐽.  Output the corresponding position as the 

optimal solution, together with the corresponding validation error and the features that 

are selected. 

NNGR + LapRLS sub-step: Generate a graph that ensures each instance has at least 𝑘𝑚𝑖𝑛 

nearest neighbors, and then apply NNGR sampling.  With the sampled subset, create a 

graph Laplacian that ensures each instance has at least 𝑘𝑚𝑖𝑛
𝑠𝑎𝑚𝑝𝑙𝑒

 nearest neighbors.  
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Apply LapRLS to the samples and optimize the error on a separate validation set by 

performing a graph search with varying values of 𝛾𝐴, 𝛾𝐼 , and 𝜂. 

 
Figure 7: The framework of s2SSL.  (a) s2SSL is ran at several different settings of 

maximum features (1 …  𝐽 maximum features).  (b) cPSO is initialized and set to run for 𝑇 

maximum iterations. (c) For each of the 𝑝 particles in the cPSO algorithm there is a 

potential feature subset solution that is tested. (d) In each particle, NNGR instance 

sampling selects a sample of instances for model training. (e) LapRLS is then trained on 

this sample to minimize the error by tuning 𝛾𝐴, 𝛾𝐼 , and 𝜂. (f)  The global and individual 

best solutions are then updated, and cPSO continues until error is no longer decreasing 

enough or maximum iterations are reached. (g) Finally, the standard error scores are 

calculated for MAE of maximum features 1 …  𝐾 to determine the optimal maximum 

feature setting. 

 

 

4.4 Simulation Tests 

4.4.1 Simulation: Overview 

Simulation data was generated according to the make_s_curve function found on 

sci-kit learn 
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(https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html).  

Appendix B at the end of this work provides details how the s curve was calculated.  For 

comparing the utility of the semi-supervised learning baseline model (LapRLS) to its 

supervised learning counterpart (RLS), I generated an s curve with s-curve noise = 0.15 

and 150 data instances shown in Figure 8, where there were 6 labeled instances (in color) 

and 144 unlabeled instances (in gray).  The range of labeled instances was from -5 (blue) 

to +5 (yellow). 

 
Figure 8: S curve used in model training to compare utility of semi-supervised over 

supervised learning.  There are 144 unlabeled instances (in gray) and 6 labeled instances 

(in color and circled in red).  The range of the labeled instances is from -5 (blue) to +5 

(yellow). 

 

The error metric used for simulation tests is the mean absolute error (MAE), which is 

defined as MAE =  ∑ |�̂�𝑖 − 𝑦𝑖|𝑛
𝑖=1 . �̂�𝑖 is the predicted value of instance 𝑖, 𝑦𝑖 is the true value 

of instance 𝑖, and 𝑛 is the total number of instances of in the set of response values 𝐲𝑛×1.  

For model training, hyperparameters were tuned to minimize the MAPE of an 

independently generated validation set consisting of 25 instances.  The tuning parameters 

and ranges are 𝛾𝐴 = [1 × 10−3, … , 1 × 101], 𝛾𝐼 = [1 × 10−3, … , 1 × 101], 𝜂 =

[1,2.5,4,5.5,7,8.5,10], 𝑘𝑚𝑖𝑛 = 6, 𝑘𝑚𝑖𝑛
𝑠𝑎𝑚𝑝𝑙𝑒

= 4. 

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html
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4.4.2 Simulation: Semi-supervised Learning vs. Supervised Learning 

Below in Table 8 is a comparison of the performance of s2SSL using LapRLS as 

the base classifier versus RLS.  In the validation results, LapRLS performed significantly 

better than RLS both in terms of MAE and Pearson Correlation (𝑝 = 0.00271 and 𝑝 =

 6.35 × 10−4).  Figure 9 shows the graph generated for the LapRLS model. 

Table 8: Comparison of the LapRLS and RLS base models.  Mean absolute error (MAE ± 

standard deviation) and Pearson correlation were used to compare the methods. 

 

 LapRLS RLS 

 Training Validation Training Validation 

MAE 0.453 ± 0.310 0.293 ± 0.249 0.661 ± 0.585 0.659 ± 0.578 

Correlation 0.983 0.993 0.941 0.949 

  

 

 
Figure 9: Graph generated by LapRLS such that each instance has at least 𝑘𝑚𝑖𝑛 = 6 nearest 

neighbors 

 

4.4.3 Simulation: Feature Selection 

Next, the utility of the graph sampling algorithm in distinguishing between trivial 

and nontrivial features was examined.  Tests were ran adding different numbers of noise 

(trivial) features such that each noise feature was distributed according to 𝑁(0,5).  For this 

section 1, 5, 10, 50, and 100 noise features were added to the dataset of two nontrivial 
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features to observe (1) the effect of adding noise on s2SSL without feature selection, and 

(2) the subsequent utility of cPSO feature selection. 

cPSO was ran at several different maximum feature settings (from 𝑘 =  1, … , 5 

maximum features), and the minimum error was chosen.  In more sophisticated tasks, 

where greater than 2 nontrivial features are expected it is recommended to use a more 

sophisticated method to select features such as SES (Zoski and Jurs 1996), which will be 

used to select the optimal maximum feature setting in the application section.  Table 9 

summarizes the results from different feature settings.  As more noise features were added, 

the performance of the model deteriorated.  However, s2SSL with cPSO feature selection 

was able to successfully select the nontrivial features (summarized in the first row of Table 

9).  This is partially due to the deterioration of the graph when adding more noise features. 

Figure 10 demonstrates the graph deterioration as more features were added.  In the 

validation results, cPSO performed better than no feature selection in terms of MAE and 

Pearson Correlation across all noisy feature settings (𝑝 <  5 × 10−5 in all cases). 
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Table 9: Comparison of LapRLS with cPSO feature selection to LapRLS without feature 

selection. Accuracy metrics are mean absolute error (MAE ± standard deviation) and 

Pearson Correlation.  In all noise feature settings, cPSO chose the correct nontrivial 

features (results summarized in the first row).  The remaining table shows how the 

performance without feature selection deteriorates as more noise features are added. 

 

  Mean Absolute Error (MAE) Pearson Correlation 

 
Noise 

Features 
Training Validation Training Validation 

Feature 
Selection 

All 
Settings 

0.453 ± 0.310 0.293 ± 0.249  0.983 0.993 

No 
Feature 

Selection 

1 0.821 ± 0.549 0.875 ± 0.573 0.925 0.923 

5 1.251 ± 0.952 1.481 ± 0.825 0.829 0.804 

10 1.655 ± 1.127 1.863 ± 1.081 0.637 0.608 

50 2.029 ± 1.355 1.805 ± 1.224 0.384 0.651 

100 2.117 ± 1.316 2.200 ± 1.317 0.301 0.305 

 

 

 

 

 
Figure 10: The deterioration of the graph between different instances as more noise features 

were added.  The results present are for (a) no added noise features, (b) 1 added noise 

feature, (c) 5 added noise features, (d) 10 added noise features, (e) 50 added noise features, 

and (f) 100 added noise features.  The deterioration of the graph reduces model 

performance. 
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4.4.4 Simulation: Graph-based sampling 

In the next set of tests, I generated an S curve using s-curve noise = 0.15 and 2000 

data instances.  Figure 11 below shows the S curve that was generated, where there 1994 

unlabeled instances (in gray) and were 6 labeled instances (in color).  The range of labeled 

instances was from -5 (blue) to +5 (yellow). 

 
Figure 11: S curve used in model training to compare utility of sampling over not sampling.  

There are 1994 unlabeled instances (in gray) and 6 labeled instances (in color and circled 

in red).  The color bar for the labeled date ranges from -5 (blue) to +5 (yellow). 

 

 Because there is a large number of instances in this dataset, to train my model in an 

efficient matter, it is necessary to use a sampling technique to reduce the number of 

instances to train.  To achieve this purpose, the NNGR graph sampling technique (proposed 

in the Methodology section in 4.3.3) was employed. 

 Table 10 compares the result of LapRLS + NNGR at different settings of 𝜆 to better 

understand 𝜆’s effect on sampling sparsity and accuracy.  The result for without sampling 

is also included as the baseline example.  As one can observe, sampling greatly improves 

the (sample +) train + test times time (for LapRLS + NNGR, the time to sample is also 

included for a fair comparison).  The best sampling result was found to be at 𝜆 = 1.  For 

this setting, the validation MAE and Pearson Correlation were better than LapRLS without 
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sampling.  When compared, Pearson Correlation was not found to be significantly different 

(𝑝 =  0.437), however improvement in MAE approached significance (𝑝 =  0.0818).  

This indicates that sampling may not only have capabilities to improve model train + test 

time, but also the model performance. 

Table 10: Comparison of LapRLS + NNGR at different levels of 𝜆.  Training and validation 

errors are in terms of mean absolute error (MAE ± standard deviation) and Pearson 

Correlation, time refers to the time to sample + train + test, number sampled is the number 

of instances sampled from the dataset.  The best sampling result is 𝜆 = 1 (in bold). 

 

  Mean Absolute Error (MAE) 
Pearson 

Correlation 
  

 𝝀 Train Validation Train Validation 
Time 

(s) 
Number 
Sampled 

No 
Sampling 

N/A 0.480 ± 0.340 0.495 ± 0.343 0.984 0.984 41.9 N/A 

Sampling 

0  0.524 ± 0.390 0.506 ± 0.375 0.982 0.986 8.5 65 

1 0.439 ± 0.332 0.363 ± 0.315 0.985 0.990 12.4 106 

2 0.465 ± 0.343 0.460 ± 0.331 0.985 0.987 6.6 169 

3 0.603 ± 0.490 0.568 ± 0.516 0.971 0.972 8.9 235 

4 0.557 ± 0.400 0.594 ± 0.438 0.978 0.976 8.9 236 

5 0.591 ± 0.437 0.611 ± 0.458 0.974 0.974 9.7 285 

6 0.599 ± 0.451 0.611 ± 0.467 0.973 0.972 7.7 309 

 

 Figure 12 shows the original graph made on the 2000 instances before graph 

sampling.  As one can observe, the graph is very dense.  This graph density is the major 

cause of the heavy computational cost of training s2SSL without sampling. 
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Figure 12: Graph made on 2000 instances (with 𝑘𝑚𝑖𝑛 = 6) before sampling. 

Figure 13 summarizes the different graphs made on the instances post sampling at 

different levels of 𝜆 (all with 𝑘𝑚𝑖𝑛
𝑠𝑎𝑚𝑝𝑙𝑒

= 4).  One can observe the gradual change in the 

shape of the graph (moderately lower values of lambda, especially at 𝜆 = 1 to capture the 

underlying shape of the ‘S’ curve better than the higher values of lambda, which have some 

discontinuities in the graph due to the greater number of sampled instances when 𝜆 = 5 

and 𝜆 = 6). 

 
 

Figure 13: Graphs made on sampled instances post sampling at different levels of  

𝜆 (all with 𝑘𝑚𝑖𝑛
𝑠𝑎𝑚𝑝𝑙𝑒

= 4). 
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4.4.5 Simulation: Feature selection + Graph-based sampling 

Additional tests were performed to show feature selection and graph-based 

sampling working together to demonstrate the ability of s2SSL to build a model by 

selecting the most relevant features and instances.  For all tests in this section, 𝜆 = 1 for 

graph-based sampling, since this value produced the best result in the previous section.  

Table 11 below demonstrates the performance of s2SSL at various numbers of added noise 

features with the model trained on the 2000 instance S curve dataset.  The performance of 

the base model, LapRLS (without sampling or feature selection) is compared in all settings.  

s2SSL performed better than LapRLS in terms of validation MAE and Pearson Correlation 

for all noise feature settings (𝑝 < 0.001 for all cases). 

 

Table 11: Summary of the performance of s2SSL versus the LapRLS baseline (without 

feature or sample selection) at several different added noise feature settings. Mean 

Absolute Error (MAE) ± standard deviation and Pearson Correlation are the accuracy 

metrics.  s2SSL successfully chose the correct features at all noise feature settings and 

results for all tests are summarized in the first result row. 

 

  Mean Absolute Error (MAE) Pearson Correlation 

 Noise 
Features Training Validation Training Validation 

s2SSL All 
Settings 0.439 ± 0.332 0.363 ± 0.315 0.985 0.990 

 
 
 
LapRLS 

1 1.016 ± 0.832 1.088 ± 1.025 0.895 0.877 

5 1.269 ± 0.962 1.129 ± 0.905 0.824 0.847 

10 1.537 ± 1.193 1.987 ± 1.270 0.729 0.661 

50 2.286 ± 1.329 2.240 ± 1.411 0.345 0.311 

100 2.378 ± 1.364 2.276 ± 1.416 0.249 0.552 

 

 Table 12 summarizes the (sample +) train + test times for s2SSL versus LapRLS 

(sampling time was included in the calculation for s2SSL to allow for a fair comparison to 

LapRLS).  As one can see, at relatively low number of features, the times are not very 
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different from each other.  However, as one increases the number of noise features, the 

sample + train + test time for s2SSL explodes. In the age of parallel computing and high 

computer processing power, this does not become a large issue since processes can run in 

parallel on a computing cloud. 

Table 12: Summary of (sample +) train + test times for s2SSL versus LapRLS compared 

at different numbers of noise features. 

 

Noise 
Features 

s2SSL 
Sample + Train + Test 

Time (s) 

LapRLS 
Train+ Test 

Time (s) 

1 128.1 s 74.0 s 

5 127.0 s 92.5 s 

10 109.9 s 98.7 s 

50 197.8 s 80.5 s 

100 318.7 s 85.7 s 

 

4.5 Application to Parkinson’s Disease (PD) Telemonitoring 

4.5.1 Parkinson’s Disease Telemonitoring: Background 

In this section, I demonstrate the utility of s2SSL to building parsimonious models 

to predict disease severity of PD patients using features collected from the mPower app 

installed on patient’s iPhones. Utilizing the Apple ResearchKit library, Sage Bionetworks 

released the mPower app in March 2015 for an observational study on smartphone-based 

telemonitoring of PD (Bot et al. 2016).  The mPower app obtains information from daily 

exercises performed by patients with the purpose of monitoring PD disease progression. 

To participate in the mPower study, each participant had to self-navigate through 

eligibility criteria (i.e., age at least 18 years, U.S. Resident, comfortability with reading and 

writing English on the iPhone) and submit e-consent to the conditions.  The study was 

performed in accordance with the Western Institutional Review Board.  Once the consent 
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process is finished, users were presented with the option of performing four different 

activities in the app—namely, ‘tapping’, ‘voice’, ‘memory’, and ‘walking’—each of which 

can be performed at most three times per day.  Among the available studies, I extract 

features from the tapping and voice studies since both capture well-known symptoms of 

PD (tapping: Lainscek et al. 2012, Lee et al. 2016; voice: Holmes et al. 2000, Skodda et al. 

2009, Chattopadhyay et al. 2012). 

The purpose of the tapping study is to measure speed and dexterity of each user’s 

tapping ability.  Users are instructed to use two fingers on the same hand to tap alternately 

between two fixed points on the screen for a period of 20 seconds.  To generate features, 

time series signals are collected by the accelerometer and touch screen on the smartphone. 

The voice study made recordings of user’s sustained phonation by instructing users 

to say ‘Aaaaah’ into the microphone at a steady volume for at most 10 s.  Included in the 

data for this activity are the audio files that contain measures from the iPhone microphone 

for 10 s of phonation.  Using the Voice Analysis Toolbox (available at: 

https://people.maths.ox.ac.uk/tsanas/software.html), features were processed for the 

objective characterization of the user’s voice (Tsanas et al. 2010).  The features generated 

from the Voice Analysis Toolbox are mainly directed at quantifying amplitude (shimmer 

variants), frequency (jitter variants) and increased noise (signal-to-noise measures). 

 The most popular metric used to quantify the severity of PD is UPDRS, which is a 

summary score from a survey administered to patients.  Recently, the Movement Disorder 

Society UPDRS (MDS-UPDRS) was developed by the Movement Disorder Society to 

address a number of ambiguities, weaknesses, and areas of inclusions needed in light of 

new scientific developments (Goetz et al. 2008).  The MDS-UPDRS is a summary score 

https://people.maths.ox.ac.uk/tsanas/software.html


110 

 

from a subset of the questions used in the UPDRS survey.  An MDS-UPDRS score of 0 

denotes no disability, while an MDS-UPDRS score of 64 indicates the worst possible 

disability.  Usually, the MDS-UPDRS score is obtained in a specialized clinic, which 

requires the patient to be physically present during testing.  It will be shown that there is 

capability to accurately predict the MDS-UPDRS score using smartphone-collected 

tapping and voice signals.  To enable this proof of concept, actual MDS-UPDRS scores 

from the clinic were collected from each user on a monthly basis.  Typically, daily MDS-

UPDRS scores are obtained through linear interpolation, as a linear trend of UPDRS has 

been validated in previous works (Chan and Holford 2001, Schüpbach et al. 2009, Tsanas 

et al. 2010).  However, it would be better to train models based on the monthly collected 

ground truth MDS-UPDRS scores instead of relying on approximated values.  Thus s2SSL 

will be utilized to train models only needing a few labeled instances and select features 

from the set of those that are available. 

 

4.5.2 Parkinson’s Disease Telemonitoring: Dataset Description 

 A subset of 37 PD patients were included in the current study.  These patients were 

selected on the basis of having monthly MDS-UPDRS scores for at least three months as 

well as complete daily tapping and voice information. 

43 tapping features were extracted from the tapping time series data, based on 

previous studies (Taylor et al. 2005, Arora et al. 2015, Kassavetis et al. 2016).  Taylor et 

al. connects the UPDRS motor score with kinematics of an alternating finger-tapping task 

using features generated from Quantitative digitography (QDG) (Taylor et al. 2005).  Arora 

et al. presents a summary of measures to quantify tremor, fatigue, tapping speed, inter-tap 
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interval and tapping speed from using time series finger tapping data (Arora et al. 2015).  

Kassavetis et al. also presents several tapping-related features (Kassavetis et al. 2016). 

339 voice features were extracted from the voice time series data, based on previous 

studies (Tsanas et al. 2010, Yoon and Li 2019).  Tsanas et al. proposed a number of novel 

signal processing algorithms for speech signals collected from at-home-testing devices 

(AHTDs) (Tsanas et al. 2010).  They utilized robust feature selection algorithms to select 

the voice measures as input to non-parametric regression and classification algorithms to 

predict the UPDRS score.  Yoon and Li built a positive transfer learning model to develop 

patient-wise predictions on voice features generated from AHTDs (Yoon and Li 2019). 

s2SSL was trained on three different datasets: (1) tapping, (2) voice, (3) tapping + 

voice combined.  The reason why I decided to test on combined datasets of tapping and 

voice is because there is significant variability in the presentation and progression of PD 

symptoms (Bot et al. 2016) across patients, and I hypothesize that having a model trained 

on different types of PD symptoms will result in significantly improved results.  Tuning on 

the labeled data in the validation set was used to optimize the parameters 𝛾𝐴 = [1𝑒 ×

10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2], 𝛾𝐼 = [1 × 10−3, 5 × 10−3, … ,1 × 101, 5 × 101] 

and 𝜂 = [1,2.5,4,5.5,7,8.5,10]. 

To expedite the training process, computing was performed using two Intel Xeon 

E5-2680 v4 CPUs running at 2.40 GHz, which provide 28 CPU cores to perform 

calculations for each particle in cPSO in parallel.  The advantage of using an evolutionary 

algorithm, such as cPSO, is that utilizing parallel computing is straightforward to 

implement and easy to scale for datasets with a large number of features. 
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For this data set, labeled samples are those that have both features collected from 

mobile data and MDS-UPDRS scores collected on the same day.  Unlabeled samples have 

features collected from mobile data but no MDS-UPDRS scores.  For each dataset, two 

labeled samples were randomly selected from each patient such that they were selected 

from different days.  Ensuring that samples were collected from different days avoid a 

potential breakdown in the “similar 𝑋  similar 𝑌” assumption that is required by the 

semi-supervised base model, LapRLS (i.e., in order for LapRLS to work properly, 

instances with similar 𝑋-values must have similar 𝑌-values; for additional information 

regarding this property, refer to Belkin et al. 2006). 

To test the generalizability of the model, a validation set was made from the 

remaining labeled samples such that all labeled samples were selected from different days. 

Unlabeled samples were selected randomly once per week.  For all tests, the training set 

contained a total of 563 unlabeled instances and 74 labeled instances, while the validation 

set contained 70 instances. 

 

4.5.3 Parkinson’s Disease Telemonitoring: Accuracy results on semi-supervised regression 

feature selection task 

s2SSL was tested on several different maximum feature settings of cPSO (from 1-

20 maximum features allowed to be selected for model training).  The standard error scree 

(SES) method, described in section 4.3.4, was used to determine the optimal feature 

number.  Figure 14 and Table 13 show the elbow plots of MAE along with their 
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corresponding tables of MAE’s and SES’s.  Tapping, voice, and tapping + voice chose 6, 

8, and 10 features to include in the final model, respectively. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 14: The elbow plots of the mean absolute error (MAE ± standard error) for (a) 

tapping features, (b) voice features, and (c) tapping + voice features.  The orange dot 

indicates the place for which the optimal maximum features setting was selected.  Tapping, 

voice, and tapping + voice chose 6, 8, and 10 features to include in the final model, 

respectively. 
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Table 13: The resulting mean absolute error (MAE ± standard error) and standard error 

scree (SES) for several different maximum feature settings of s2SSL applied to (a) tapping 

features, (b) voice features, and (c) tapping + voice features.  The chosen maximum feature 

number threshold is in bold and marked with a ‘*’.  This chosen maximum feature number 

threshold corresponds with the first SES that is less than 1/20. 

(a) Tapping Features 

Maximum # Features MAPE SES 

1 4.235 ± 0.379 0.159 
2 4.049 ± 0.410 0.129 
3 3.856 ± 0.417 0.103 
4 3.751 ± 0.397 0.0891 
5 3.751 ± 0.397 0.0777 
6 3.580 ± 0.328* 0.0402* 

7 3.452 ± 0.338 0.011 
8 3.407 ± 0.355 3.28E-16 
9 3.407 ± 0.355 1.28E-15 

10 3.407 ± 0.355 9.24E-16 
11 3.407 ± 0.355 5.87E-16 
12 3.407 ± 0.355 3.75E-16 
13 3.407 ± 0.355 5.13E-16 
14 3.407 ± 0.355 0 
15 3.407 ± 0.355 9.42E-16 
16 3.407 ± 0.355 1.40E-15 
17 3.407 ± 0.355 4.44E-16 
18 3.407 ± 0.355 0 
19 3.407 ± 0.355 N/A 
20 3.407 ± 0.355 N/A 

(b) Voice Features 

Maximum # Features MAPE SES 

1 4.040 ± 0.483 0.230 
2 3.577 ± 0.428 0.177 
3 3.453 ± 0.413 0.161 
4 3.308 ± 0.395 0.141 
5 3.202 ± 0.383 0.122 
6 3.030 ± 0.362 0.0941 
7 2.932 ± 0.350 0.0742 
8 2.823 ± 0.337* 0.0487* 

9 2.683 ± 0.321 0.0161 
10 2.623 ± 0.314 0.000102 
11 2.623 ± 0.313 3.14E-16 
12 2.623 ± 0.313 2.37E-16 
13 2.623 ± 0.313 4.80E-16 
14 2.623 ± 0.313 5.25E-16 
15 2.623 ± 0.313 2.22E-16 
16 2.623 ± 0.313 4.44E-16 
17 2.623 ± 0.313 5.44E-16 
18 2.623 ± 0.313 7.69E-16 
19 2.623 ± 0.313 N/A 
20 2.623 ± 0.313 N/A 
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Table 13 (continued) 

(c) Tapping + Voice Features 

Maximum # Features MAPE SES 

1 4.040 ± 0.483 0.234 
2 3.577 ± 0.428 0.188 
3 3.428 ± 0.410 0.176 
4 3.245 ± 0.388 0.164 
5 3.245 ± 0.388 0.158 
6 3.127 ± 0.374 0.132 
7 2.847 ± 0.340 0.0881 
8 2.725 ± 0.326 0.0712 
9 2.648 ± 0.316 0.0591 
10 2.600 ± 0.311* 0.0457* 

11 2.450 ± 0.293 0.00711 
12 2.425 ± 0.290 0 
13 2.425 ± 0.290 6.01E-16 
14 2.425 ± 0.290 7.16E-16 
15 2.425 ± 0.290 3.14E-16 
16 2.425 ± 0.290 2.56E-16 
17 2.425 ± 0.290 8.31E-16 
18 2.425 ± 0.290 4.44E-16 
19 2.425 ± 0.290 N/A 
20 2.425 ± 0.290 N/A 

 

Table 14 provides a summary of the performance of the final models chosen by 

SES for s2SSL trained on tapping, voice, and tapping + voice features.  s2SSL trained on 

tapping and voice features combined was not found to be significantly better than s2SSL 

trained on voice features only in both MAE and Pearson Correlation (𝑝 =  0.29 and 𝑝 =

 0.27).  s2SSL trained on voice features performs significantly better than s2SSL trained 

on tapping features in terms of MAE (𝑝 <  0.05), but not in terms of Pearson correlation 

(𝑝 = 0.16).  However, when s2SSL is trained on tapping and voice features combined, 

performance is significantly improved both in terms of MAPE and Pearson Correlation 

(𝑝 =  0.01 for both), indicating that including features from both modalities (tapping and 

voice) provides a greater improvement on the results than using either feature modality 
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alone.  Figure 15 shows the scatter plots of predicted MDS-UPDRS versus true MDS-

UPDRS for s2SSL trained on tapping, voice, and tapping + voice features. 

 

Table 14: Summary of the final models chosen by s2SSL for tapping features, voice 

features, and tapping + voice features.  MAE (training) and MAE (validation) refer to the 

mean absolute errors on the training and validation sets, respectively; Correlation (training) 

and Correlation (validation) refer to the Pearson correlation on the training and validation 

sets, respectively; and sample + train + test time is the total time required to sample, train, 

and validate the models. 

 
 MAE 

(training) 
Correlation 
(training) 

MAE 
(validation) 

Correlation 
(validation) 

Sample + 
Train + Test 

time (s) 

Tapping 3.448 ± 0.346 0.717 3.580 ± 0.328 0.636 590.1 
Voice 2.119 ± 0.181 0.936 2.823 ± 0.337 0.759 644.8 

Tapping + 
Voice 

1.850 ± 0.192 0.933 2.600 ± 0.311 0.828 598.8 

   

  

Figure 15: Scatter plots of predicted MDS-UPDRS score versus true MDS-UPDRS score 

for (a) tapping, (b) voice, and (c) tapping + voice features.  Tapping + voice produces the 

best correlation results. 
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4.5.3 Parkinson’s Disease Telemonitoring: Biomarker Identification 

 Table 15 summarizes the features chosen by s2SSL when trained on tapping, 

voice, and tapping + voice features.  Table 16 provides definitions for each feature 

chosen.  Additional information about the meaning of the chosen tapping and voice 

features can be found in and https://github.com/Sage-

Bionetworks/mpowertools/blob/master/FeatureDefinitions.md and (Arora et al. 2015), 

respectively. Since s2SSL trained on tapping + voice features achieved the highest 

accuracy, I examine this result more closely. 

The tapping features chosen were the kurTapInter and madDriftRight.  kurTapInter 

is the kurtosis of the inter-tap interval.  madDriftRight is the median absolute deviation of 

drift of finger position between consecutive taps in the right button.  PD patients have been 

found to have a higher intra-individual variability of finger tapping due to a lack of control 

in fine motor capabilities (Roalf et al. 2018). 

The voice features chosen fit under three categories: 

(1) Shimmer (Shimmer->F0_PQ5_classical_Schoentgen and Shimmer->F0_FM),  

(2) Mel Frequency Cepstral Coefficients (MFCCs) (mean_MFCC_1st, 

mean_MFCC_6th, and std_8th_delta_delta), and  

(3) Wavelet measures (det_TKEO_mean_10_coef, app_LT_entropy_log_1_coef, 

and app_LT_entropy_log_5_coef).   

The shimmer (cycle-to-cycle variation in amplitude) of voice signal is known to be higher 

in PD patients than healthy controls (Ramig et al. 1988, Hertrich et al. 1995, Jiang et al. 

1999).  Shimmer has frequently been used as a measure of voice signal for PD.  Mel 

Frequency Cepstral Coefficients (MFCCs) capture variation in both vocal folds and the 

https://github.com/Sage-Bionetworks/mpowertools/blob/master/FeatureDefinitions.md
https://github.com/Sage-Bionetworks/mpowertools/blob/master/FeatureDefinitions.md


119 

 

vocal tract (i.e., tongue, lips, jaw, etc.).  PD research has demonstrated that, in addition to 

the vocal folds that traditional measures capture, articulators of the vocal tract (i.e., tongue, 

lips, jaw, etc.) are affected by the disease (Ho et al. 1998).  Wavelet measures are derived 

from the discrete wavelet transform (DWT), which can quantify both regularity effects 

(scale aspects) and transient processes (time aspects) (Tsanas 2012).  DWT decomposes 

the wavelet signal into detail information (detail coefficients) and course approximation 

(approximation coefficients).  The main rationale for wavelet measures is that people with 

pathological voices cannot sustain a vowel with minimum deviation from exact periodicity, 

while healthy controls can (Titze 2000).  

Table 15: Features chosen for s2SSL training on (a) tapping features, (b) voice features, 

and (c) tapping + voice features. 

 
(a) Tapping (b) Voice (c) Tapping + Voice 

iqrTapInter 
ar2TapInter 

meanDriftLeft 
kurDriftLeft 

skewDriftRight 
madDriftRight 

Shimmer->F0_dif_percent 
Shimmer-

>F0_PQ11_classical_Baken 
Shimmer->F0_abs0th_perturb 

VFER->SNR_TKEO 
std_MFCC_6th 

det_entropy_log_4_coef 
app_entropy_shannon_6_coef 
det_LT_entropy_log_4_coef 

Tapping: 
kurTapInter 

madDriftRight 
Voice: 

Shimmer-
>F0_PQ5_classical_Schoentgen 

Shimmer->F0_FM 
mean_MFCC_1st 
mean_MFCC_6th 

std_8th_delta_delta 
det_TKEO_mean_10_coef 

app_LT_entropy_log_1_coef 
app_LT_entropy_log_5_coef 
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Table 16: Description of features chosen for (a) Tapping, (b) Voice, and (c) Tapping + 

Voice. 
(a) Tapping 

Feature Definition 

iqrTapInter Interquartile Range of inter-tap interval 

ar2TapInter 
Autoregressive coefficient of inter-tap intervals 
(characterizes relationship between inter-tap 
intervals at lag = 2) 

meanDriftLeft 
Mean of drift of finger position between 
consecutive taps in the left button 

kurDriftLeft Kurtosis of drift of finger position between 
consecutive taps in the left button 

skewDriftRight Skewness of drift of finger position between 
consecutive taps in the right button 

madDriftRight 
Median absolute deviation of drift of finger position 
between consecutive taps in the right button 

 
 (b) Voice 

Feature Definition 

Shimmer->F0_dif_percent 
Mean absolute difference of shimmer for 
successive cycles 

Shimmer->F0_PQ11_classical_Baken 
Classical Baken of the shimmer signal using 11 
cycle samples 

Shimmer->F0_abs0th_perturb Zeroth order perturbation of shimmer signal 

VFER->SNR_TKEO Vocal fold excitation ratio of the signal-to-noise 
ratio of the Teager-Kaiser energy operator 

std_MFCC_6th 
Standard deviation of 6th Mel Frequency Cepstral 
Coefficient 

det_entropy_log_4_coef Log entropy of 4th detail coefficient 

app_entropy_shannon_6_coef Shannon entropy of 6th approximation coefficient 

det_LT_entropy_log_4_coef 
Log entropy of 4th detail coefficient (with prior F0 
transform) 
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Table 16 (continued) 

(c) Tapping + Voice 

 Feature Definition 

Tapping 

kurTapInter Kurtosis of inter-tap interval 

madDriftRight 
Median absolute deviation of drift of finger 
position between consecutive taps in the right 
button 

Voice 

Shimmer-
>F0_PQ5_classical_Schoentgen 

Classical Schoentgen of the shimmer signal 
using 5 cycle samples. 

Shimmer->F0_FM Frequency modulation of the shimmer signal 

mean_MFCC_1st 
Mean of 1st Mel Frequency Cepstral 
Coefficient 

mean_MFCC_6th 
Mean of 6th Mel Frequency Cepstral 
Coefficient 

std_8th_delta_delta Standard deviation of the 8th delta delta (2nd 
derivative) Mel Frequency Cepstral Coefficient 

det_TKEO_mean_10_coef 
Mean Teager-Kaiser energy operator 10th 
detail coefficient 

app_LT_entropy_log_1_coef 
Log entropy of 1st approximation coefficient 
(with prior F0 transform) 

app_LT_entropy_log_5_coef 
Log entropy of 5th approximation coefficient 
(with prior F0 transform) 

 

4.6 Conclusion 

In this chapter, I developed s2SSL, a semi-supervised regression technique that 

applies both feature and instance selection to improve model building of datasets with few 

labeled instances and many available features.  The model was applied to data collected 

from a smartphone app that performs telemonitoring of Parkinson’s Disease patients.  

s2SSL utilized a particle swarm optimization method for selection of the smartphone-based 

telemonitoring features and a graph-sampling technique to reduce the computational time 

of training the semi-supervised learning algorithm.  A high accuracy of 0.828 was 

achieving using both tapping and voice features collected from the smartphone app.  

Clinically relevant features were also selected and provide more information about which 

features are more effective at predicting the MDS-UPDRS Parkinson’s Disease severity 
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score.  s2SSL is capable of balancing data inclusivity (through SSL) and usability (through 

feature and sample selection).  Future work will entail expanding the application of this 

model to other domains that have a large number of features and few labeled data instances. 

Such domains include telemonitoring other disease conditions such as Alzheimer’s 

Disease, as well medical imaging of disease conditions, such as glioblastoma brain cancer 

or migraine. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 In the dawn of the information age in healthcare, improved technologies in imaging 

and telemonitoring have provided an unprecedented opportunity to harness massive 

amounts of data for improving patient care.  Some data can be easier to acquire than others 

(for example biopsies of brain tumor are more difficult to obtain than images of brain 

tumor).  Therefore, there is a need to develop predictive models that can utilize the easy-

to-obtain data with the purpose of minimizing the need to get hard-to-obtain data in the 

future.  At the same time, it is also important to choose only the most relevant information 

for model building to improve generalization capabilities on new patients.  In my 

dissertation, I focused on building semi-supervised learning (SSL) models to balance data 

inclusivity and usability on a number of healthcare applications. 

 In my first topic, I developed an algorithm that integrates mechanistic models and 

machine learning to develop a new SSL model, which was applied to predict intra-tumor 

cell density of glioblastoma brain cancer using multiparametric MRI.  This model was 

derived from imaging information of the patient and utilized scientific knowledge of 

glioblastoma diffusion and growth to make its prediction.  Information from these 

mechanistic models was utilized as a sort of prior knowledge to guide the prediction of the 

machine learning model.  The next topic focused on the development of a new constrained 

particle swarm optimization (cPSO)-based feature selection algorithm, which was applied 

to radiomics of glioblastoma brain cancer and migraine imaging.  The algorithm was 

developed in a supervised learning setting and prepared to be further extended to an SSL 

setting.  The final topic presented a novel SSL model with cPSO-integrated feature 



124 

 

selection and graph-based instance selection, which was applied to smartphone-based 

telemonitoring of Parkinson’s Disease patients. I introduced a first-of-its-kind semi-

supervised feature selection algorithm for regression tasks that combines cPSO feature 

selection and a graph-based instance selection method that reduces the model training time. 

 For future work, I plan to develop multi-task learning algorithms that take into 

account patient demographics (e.g., sex, genetic predisposition, etc.) during model training.  

Having models segmented to different patient types will help improve patient 

personalization and result in more accurate predictive models.  Additionally, I plan to 

extend the semi-supervised models presented in this work to make recommendations on 

which hard-to-obtain data to collect in order to improve model prediction.  This machine 

learning sub-field, known as active learning, can make recommendations on which samples 

to collect in real-time to improve the intelligence of data collection, resulting in improved 

model predictions.  Having models work interactively with the clinicians will take 

healthcare data science to another level, allowing clinicians to directly interface with the 

models and obtain immediate recommendations on patient treatment and therapy.  
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Proof of Theorem 1 

Given any function 𝑓 ∈ ℋ𝐾 , 𝑓 can be uniquely comprised of 𝑓∥ and 𝑓⊥, where 𝑓∥ is in the 

linear subspace spanned by the kernel functions {𝐾(𝐱𝑖,∙)}𝑖=1
𝐿+𝑈 and 𝑓⊥ is the orthogonal 

component. By the reproducing property, the value of 𝑓 on any point 𝐱𝑗, 1 ≤ 𝑗 ≤ 𝐿 + 𝑈 is 

independent of 𝑓⊥, as shown below: 

𝑓(𝐱𝑗) =  〈𝑓, 𝐾(𝐱𝑗 ,∙)〉 = 〈∑ 𝛼𝑖𝐾(𝐱𝑖 ,∙), 𝐾(𝐱𝑗,∙)𝐿+𝑈
𝑖=1 〉 + 〈𝑓⊥, 𝐾(𝐱𝑗,∙)〉  

It follows that 〈𝐾(𝐱𝑖 ,∙), 𝐾(𝐱𝑗,∙)〉 = 𝐾(𝐱𝑖, 𝐱𝑗) and 〈𝑓⊥, 𝐾(𝐱𝑗,∙)〉 vanishes. Therefore, the 

above formulation simplifies to 

𝑓(𝐱𝑗) =  ∑ 𝛼𝑖𝐾(𝐱𝑖, 𝐱𝑗)𝐿+𝑈
𝑖=1 , 

which means that the terms of the optimization in (3) only rely on the gram matrix of the 

kernel function and the coefficients {𝛼𝑖}𝑖=1
𝐿+𝑈. Furthermore, the norm of 𝑓 in ℋ𝐾 has the 

following decomposition: 

    ‖𝑓‖𝐾
2 = ‖∑ 𝛼𝑖𝐾(𝐱𝑖,∙)

𝐿+𝑈
𝑖=1 ‖

𝐾

2
+ ‖𝑓⊥‖𝐾

2 ≥ ‖∑ 𝛼𝑖𝐾(𝐱𝑖 ,∙)𝐿+𝑈
𝑖=1 ‖

𝐾

2
  

The above inequality is true because 𝑓⊥ will only increase ‖𝑓‖𝐾
2 , so it follows that the 

minimizer of (3) must result in 𝑓⊥ = 0, leading to 

𝑓∗(𝐱) = ∑ 𝛼𝑖𝐾(𝐱𝑖, 𝐱)𝐿+𝑈
𝑖=1 .       ∎ 
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Virtual biopsy selection procedure 

Step 1: For each patient, count the number of biopsy samples with density >70%. Denote 

this number by 𝑟.  𝑟’ is the number of real biopsies with low-density. 𝑣 = 𝑟 − 𝑟’   is the 

number of virtual biopsy samples with low-density (<30%) that are to be found, in order 

to create balanced samples for the patient. 

Step 2: Locate the BAT for the patient by subtracting the ROI segmented on T1+C from 

the ROI segmented on T2W. On the PI-estimated density map over the BAT, pick a sub-

area to take virtual biopsy from according to the following biological criteria:  

1) The sub-area needs to be away from the skull and the midline of the brain, since PI 

estimation tends to be less accurate at locations with physical barriers. 

2) The sub-area should be close to the peripheral of the T2W ROI, where there is much 

lower chance to harbor high cell density.   

3) Considering spatial continuity of cell density distribution, the PI estimation at a 

neighborhood of the biopsy sample should be more likely to be accurate if there is 

a real biopsy sample with low density whose PI density is also low. If the density 

of the real biopsy sample disagrees with PI density, the neighborhood of the sample 

should be avoided. 

Step 3: On the sub-area that is picked according to Step 2, the following statistical criteria 

are further applied to select 𝑣 virtual biopsy samples: 

1) Spatial consistency of PI density: For each pixel in the sub-area, place an 8x8 voxel 

box around it. Then, compute the mean and variance of PI densities over the 64 

pixels within the box. Keep the boxes with a low mean (<30%) and a low variance 
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as potential virtual biopsy samples. 

2) Separation in the imaging feature space: Good virtual biopsy samples need to be at 

a certain distance away from each other in the input (imaging features) space – 

called leverage samples in statistics – in order to stabilize model fitting. To find the 

leverage samples, I use a highly flexible and efficient clustering algorithm called 

DBSCAN (Ester et al. 1996) to cluster the boxes that have survived sub-step 1) 

using imaging features. Parameters of DBSCAN are set to produce approximately 

𝑣 clusters. Then, one box from each cluster is picked as the virtual biopsy sample. 

      

MRI protocol, image co-registration, and normalization 

     All imaging was performed on a 3 Tesla system (Sigma HDx; GE-Healthcare, 

Milwaukee, Wisconsin) within 1 day prior to stereotactic surgery. Conventional MRI 

included standard pre- and post-contrast T1-Weighted and pre-contrast T2-Weighted 

sequences. In addition, DTI imaging was performed using Spin-Echo Echo-planar imaging 

(EPI). I normalized the signal for T1+C, T2W, and EPI+C image datasets using the Simple 

Insight Segmentation and Registration Toolkit (SimpleITK v1.0.1) (Lowekamp et al. 2013) 

in Python (v3.6.2). The CurvatureFlow algorithm was applied to remove image noise 

(Sethian 1999) and the N4ITK algorithm to correct for image intensity nonuniformity bias 

that could be due to factors such as local magnetic field heterogeneity (Tustison et al. 

2010). Following these corrections, the cerebrospinal fluid (CSF) of the lateral ventricles 

was used as a reference tissue to normalize the intensity distributions of each dataset using 

a previously described linear scaling process (Mitchell et al. 1997). Several parametric 
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maps were calculated, such as mean diffusivity (MD) and fractional anisotrophy (FA) 

based on previously published methods (Hu et al. 2015). Also, DSC-pMRI were acquired 

as previously described and calculated relative cerebral blood volume (rCBV) using IB 

Neuro (Hu et al. 2015). Multiparametric images were coregistered from each patient 

according to (Hu et al. 2012b), using tools from ITK (www.itk.org) and IB (Imaging 

Biometrics) Suite. After coregistration, the imaging data had a plane voxel resolution of 

~1.2 mm (256 × 256 matrix) and slice thickness of 3 mm. Following our previous 

publications (Hu et al. 2015, Hu et al. 2016), six multiparametric images were included in 

the present study, including T1+C, T2W, EPI+C, MD, FA, and rCBV. 
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                         (a) Real biopsies            (b) Real and virtual biopsies 
 

Figure A1:  Distribution of cell density in (a) real biopsies, and (b) virtual biopsies. 
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Figure A2:  Histograms of ML-PI prediction at the BAT for each patient (1-18). The 

median of each histogram is indicated in red. 
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Figure A3: Histograms of PI prediction at the BAT for each patient (1-18). The median of 

each histogram is indicated in red. 

 

 

 

 

 

 

 



150 

 

Table A1: Patient-wise MAPEs of ML-PI, PI, and ML 

Patient #biopsy samples ML-PI PI ML 

1 7 0.086 ± 0.098* 0.147 ± 0.133 0.255 ± 0.163 

2 2 0 ± 0* 0.204 ± 0.066 0.098 ± 0.034 

3 5 0.085 ± 0.148* 0.295 ± 0.158 0.229 ± 0.291 

4 3 0.094 ± 0.039* 0.157 ± 0.16 0.169 ± 0.122 

5 2 0.006 ± 0.008* 0.017 ± 0.024 0.219 ± 0.289 

6 5 0.294 ± 0.041* 0.682 ± 0.067 0.508 ± 0.145 

7 3 0.106 ± 0.184* 0.172 ± 0.253 0.424 ± 0.085 

8 6 0.117 ± 0.066* 0.203 ± 0.06 0.164 ± 0.121 

9 3 0.166 ± 0.219* 0.251 ± 0.337 0.24 ± 0.192 

10 3 0.075 ± 0.09* 0.144 ± 0.15 0.111 ± 0.089 

11 6 0.044 ± 0.062* 0.223 ± 0.211 0.103 ± 0.096 

12 4 0.135 ± 0.155* 0.307 ± 0.304 0.229 ± 0.259 

13 14 0.164 ± 0.166* 0.243 ± 0.224 0.193 ± 0.204 

14 4 0.119 ± 0.119 0.21 ± 0.177 0.1 ± 0.124* 

15 3 0 ± 0* 0.007 ± 0.011 0.002 ± 0.004 

16 4 0.077 ± 0.059* 0.084 ± 0.101 0.22 ± 0.091 

17 2 0 ± 0* 0.344 ± 0.224 0.158 ± 0.079 

18 6 0.04 ± 0.043* 0.169 ± 0.188 0.096 ± 0.114 

The smallest mean absolute prediction error (MAPE) among the ML-PI, PI, and ML 

models is emphasized with an asterisk (*). 
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APPENDIX B 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 
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‘make_s_curve’ Function Definition 

 

make_s_curve(n_samples, noise, random_state) 

 

Input: 

n_samples: # sample points on the S curve 

noise: standard deviation of the Gaussian noise 

random_state: determines the random number generation for dataset creation; pass an 

integer for reproducible output across multiple function calls 

 

Output: 

𝑥 = [𝑥1| 𝑥2]: ‘the points’ along the S curve (array of size n_samples × 2) 

𝑡: the univariate position of the sample according to the main dimension of the points in 

the manifold (array of size (n_samples × 1) 

 

Mathematical definitions: 

𝑡 =  3𝜋 ∙ 𝑍𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠×1; 𝑍𝑖~𝑈(−0.5,0.5), 𝑖 = 1, … , 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑥1 = sin (𝑡); 𝑥2 = 𝑠𝑖𝑔𝑛(𝑡) ∙ (cos(𝑡) − 1); 𝑠𝑖𝑔𝑛(𝑡) returns the sign of 𝑡: +1, -1, or 0 

𝑥 = [𝑥1| 𝑥2]; define X as the concatenation of 𝑋1 and 𝑋2 

𝑥 = 𝑥 + 𝑛𝑜𝑖𝑠𝑒 ∙ 𝑊𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠×2; 𝑊𝑖𝑗~𝑁(0,1), 𝑖 = 1, … , 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑗 = 1,2 

 

 

 


