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ABSTRACT

Naqvi, Syed Abbas Zilqurnain PhD, Purdue University, May 2016. Efficient Sparse Bayesian
Learning using Spike-and-Slab Priors. Major Professor: Yuan Qi.

In the context of statistical machine learning, sparse learning is a procedure that seeks a

reconciliation between two competing aspects of a statistical model: good predictive power

and interpretability. In a Bayesian setting, sparse learning methods invoke sparsity induc-

ing priors to explicitly encode this tradeoff in a principled manner. Recently, spike-and-slab

priors have been very popular in the sparse machine learning community. This popularity

stems from the selective shrinkage property of the priors: irrelevant variables are shrunk

aggressively, but relevant variables are regularized mildly. However, classical formulation

of the spike-and-slab priors does not explicitly incorporate information about the correla-

tion structure between the variables which is available in various domains, and could be

useful for revealing the sparsity structure. In this dissertation we focus on supervised para-

metric linear models, and propose a generalized formulation of the spike-and-slab priors

that tries to achieve optimal model complexity by exploiting this domain based correlation

structure information, and hence seeks to improve the predictive power and interpretabil-

ity of the results. Bayesian learning through spike-and-slab priors, though attractive, is

not free of challenges. One huge bottleneck associated with current Bayesian inference

methodologies is the high computational cost at high dimensions. In this dissertation we

also propose scalable Bayesian inference strategies for classical spike-and-slab models.

First, we present a new sparse Bayesian approach, called Network and Node Selection

(NaNOS), for joint group and feature selection. NaNOS extends the classical spike-and-

slab prior for group selection by presenting a generalized formulation of the prior that

incorporates correlation structure information provided by the domain for each group, and

allows our model to induce structured sparsity, guided by domain knowledge, within the
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selected groups. NaNOS also provides a principled framework for jointly selecting relevant

groups as well as relevant features within the selected groups. Simulation and real data re-

sults demonstrate improved predictive performance and selection accuracy of our method

over alternative methods. Second, we propose a scalable approximate Bayesian inference

algorithm based on Laplace’s method for the classical spike-and-slab models. Our method

can be seen as a hybrid of Bayesian and frequentist treatments taking benefits from both

worlds. From a frequentist perspective, our approach is computationally efficient, and pos-

sesses asymptotic consistency properties; and from a Bayesian point of view, our method

performs posterior inference better than or comparable to existing approximate inference

techniques. Experimental results show improved performance of our approach compared to

alternative approximate inference methods, but with computational efficiency comparable

to frequentist l1 approaches.
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1 INTRODUCTION

1.1 Principle of sparsity

One of the main objectives of scientific research is to provide appropriate explanations

for observed phenomena and processes. In its most abstract form, the principle of sparsity

or parsimony states that the best explanation is the simplest one. The principle traces back

its origin to the theory formulated by a philosopher and theologian William of Ockham in

the 14th century [1]. According to this theory, nature favors simplicity over complexity, and

the apparent complexity of any phenomena can be reduced to very simple rules. In the con-

text of statistical modelling, Wrinch and Jeffreys [2] defined simplicity in terms of number

of parameters appearing in the model. Following the framework put forward by Wrinch and

Jeffreys [2], subsequent statistical research has focused on building statistical models with

good generalization performance in terms of prediction. Out of multiple options, simpler

models are preferred over complex ones to explain observed phenomena. This process of

selecting an appropriate model is known as model selection, and the number of parameters

is used as a guide to perform this task [1, 3, 4, 5, 6, 7, 8, 9, 10].

The principle of sparsity also finds its applications in signal processing. Here, signal is

the observed data, and modelling of this data allows the signal to be processed in different

ways: restoration, compression, and also for handling related inverse problems [1]. Signal

processing research focuses on sparse linear combination of basic elements called dictio-

nary elements, leading to a very simple model [11, 12, 13, 14, 15, 16, 17]. The parsimony

principle has also been utilized in some other fields. For example, Markowitz [18] ex-

ploited it for portfolio selection in finance, in geophysics [19, 20], and pioneering work by

Olshausen and Field [21, 22] in neuroscience. Olshausen and Field [21, 22] work was sub-

sequently exploited in numerous applications for image and audio processing [23, 24, 25].
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1.2 Sparse learning

In its most general definition, sparse learning refers to a collection of procedures that

try to find the simplest and best explanation for an observed phenomena. In the context

of statistical modelling, sparse learning seeks to encode the tradeoff between good predic-

tive power and sparsity of the result, the latter enhances the interpretability [26]. Broadly

speaking, there are two approaches for sparse learning in statistical modeling: frequentist

and Bayesian approaches. We will briefly discuss the frequentist and Bayesian paradigms

in the next few sections.

1.2.1 Frequentist sparse learning approaches

In a frequentist setting, problems related to sparse learning are treated as constraint op-

timization problems. The constraints provide a principled way of incorporating the sparsity

conditions as part of the optimization process. The sparsity controlling parameters or the

regularization parameters serve as a knob to adjust the balance between prediction and spar-

sity. Hence, the optimization process directly generates more interpretable results without

requiring any after the fact analysis [26]. This is in contrast to thresholded PCA [27] and

related thresholding techniques that do not incorporate sparsity requirements as part of the

learning algorithm [26]. Most of the frequentist statistical procedures can be formulated as

optimizing an objective function F(w) which can be written as:

F(w) = L(w) + λR(w)

where w is the model parameter vector, L(w) is the loss function, R(w) is the regular-

ization penalty and λ is the regularization coefficient. R(w) enforces the sparsity condi-

tions on the model and λ adjusts the balance between prediction and sparsification. When

R(w) = 0, the problem reduces to the ordinary least square problem. One drawback of

ordinary least square is that it does not enforce any sparsity, and hence generates dense

solutions. In order to improve ordinary least squares, Mallows [3, 4] developed the Cp
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statistics. Akaike [5] and Schwarz [9] later proposed generalizations with AIC and BIC

respectively. For all these methods, R(w) = ||w||0 =
∑p

i=1 I(wi 6= 0), and hence these

methods seek a best subset of parameters that optimizes the objective function. A similar

problem arises in signal processing where a discrete signal x inRp space has to be approxi-

mated by a sparse linear combination of wavelet elements. The problem can be formulated

as finding a sparse vector α with k non zero elements, that minimizes [1]:

1

2
||x−Dα||22 s.t. ||α||0 ≤ k

where D = [d1, · · · , dp] is an orthogonal wavelet basis set satisfying D>D = I with

I being an identity matrix. The above optimization problem is a special case of a more

general formulation in statistics.

It can be shown that the best subset selection procedure is optimal in terms of prediction

error, and in terms of achieving the trade off between sparsity and prediction, but there are

certain drawbacks: since the procedure is inherently discrete, the optimization procedure

is combinatorial in nature, which leads to an exponential increase in the computational

complexity with the number of parameters. Secondly, due to the discreteness of the process,

the learning algorithm is unstable: a small change in the data could lead to a significant

change in the outcome of the process.

In order to address the above mentioned issues with subset selection approaches, l1

norm based approaches were proposed. [19, 20] were pioneering works in geophysics;

Tibshirani [10] introduced them as a lasso estimator in statistics, and Chen [15] proposed

basis pursuit formulations in signal processing. l1 optimization corresponds to the case

where R(w) = ||w||1 =
∑p

i=1 |wi| which is a continuous convex surrogate of the l0

penalty, and hence it overcomes some of the issues with l0 optimization: first, since the

penalty is convex continuous, we no longer have to deal with combinatorial optimization

procedures. Instead, we can use well developed convex optimization tools to significantly

improve computational efficiency. Secondly, since the process is continues, it imparts sta-

bility to the learning algorithms. Despite these benefits, there are certain drawback: l1
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approaches suffer from over sparsification. If there is high correlation between variables, l1

methods only select one or few from the set of these variables, and do not care which one to

chose. This leads to performance degradation as they might select irrelevant or redundant

variables. Due to the same reason, l1 estimators are inconsistent under high correlation

settings. Secondly, l1 methods do not have a grouping effect. They select only one vari-

able from a group of variables [28]. Some variants of l1 approaches have been proposed

to overcome these limitations: Elastic net [28] was introduced to induce grouping effect,

and adaptive techniques [29, 30] have been proposed to impart consistency to the l1 based

estimators.

1.2.2 Bayesian sparse learning

In general, Bayesian learning can be represented by the following relation:

P (w|D) = P (D|w)× P (w)/Z

where P (D|w) is the likelihood, Z is a partition function, P (w) is a prior, and P (w|D) is

the posterior. In the context of sparse learning, P (w) are the sparsity inducing priors, and

they are the Bayesian counter part to R(w) in the frequentist settings. We can establish a

one to one correspondence between frequentist regularization penalties and sparse priors

by transforming the priors in the log domain. For example:

• l1↔ Laplace prior

• l2↔ Gaussian priors.

In general, frequentist regularized optimization has correspondence with the optimization

of −log(P (w|D)).
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Background on sparse Priors

Most sparse Bayesian learning approaches assume independence in the components

(wi) of the model parameter vector w, and employ a sparse prior on each component sepa-

rately which can be represented as a scale mixture of normals [31, 32, 33]:

p(wi) =

∫
N (wi; 0, σ0γi)f(γi)dγi (1.1)

where σ0 can be assumed to be fixed, or can be applied a hyperprior. γi can be thought of

as the relevance measure for the component wi. If γi is large it encourages larger values for

wi, smaller values lead to shrinkage of wi [34]. Different choices for the prior on γi define

a whole spectrum of sparse priors on wi. For example, assuming an inverse gamma prior

on γi leads to a student t prior on wi [34], and defining f(γi) ∝ γ−1i recovers the ARD prior

[35, 36].

A unified perspective on sparse priors can be achieved by employing a generalized beta

distribution of the second kind for γi [34]:

p(γi) = γa−1i (1 + γi/d)−a−bd−a/B(a, b) (1.2)

where B(a, b) is a the beta function. A horse shoe prior [37] corresponds to the case where

a = b = 1/2 [34]. The normal exponential gamma prior [38] corresponds to case a = 1

[34] whereas normal gamma prior [38] is obtained by setting b = d = ∞ [34]. When the

above two conditions are met at the same time, we recover the prior for Bayesian lasso

[39].

1.2.3 Group sparsity and structured sparsity

In many applications, one needs to select groups of variables instead of individual vari-

ables. For example, in signal processing, a group could be defined according to neighbour-

hood relationship of wavelet coefficients [1]. Then, if it is known that the data could be

explained by a few groups of variables, selecting those relevant groups enhances the pre-
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dictive performance and interpretability of the output [1, 40, 41, 42, 43]. Group lasso [44]

is a popular approach for inducing group level sparsity, and is defined as:

R(w) =
∑
g∈G

||wg||q

where || · ||q is either l2 or l∞ norm. The penalty corresponding to q = 2 was introduced in

[45, 46], and for q = ∞ in [40]. The Group lasso penalty can be seen as an l1 penalty on

the vector [||wg||q]g∈G of size |G| [1]. Hence, it induces sparsity at the group level. There

is also a strong link between this penalty and the group thresholding approach for wavelets

in signal processing [1].

In a Bayesian framework, sparse learning techniques employ special priors that enforce

sparsity on groups. [47] provides a unified perspectives on some of these sparse priors by

presenting the idea of scale mixtures of multivariate Normals [34]:

p(wg) =

∫
N (wg; 0,Λgug)f(ug)dug (1.3)

where wg consist of variables in group g, ug is the group level scalar parameter of rele-

vance, and Λg is a diagonal matrix of variances [34]. By defining f(ug) appropriately, one

can recover group horseshoe, group ARD [48] and Bayesian group lasso [49] from this

formulation[34].

Group sparsity is the simplest case of a more general notion called structured sparsity

[50, 51, 52, 53]. In this setting, regularization functions are specifically designed to enforce

sparsity with a particular structure [1]. For example, NP hard combinatorial approaches for

overlapping groups were proposed in [53, 54], generating sparse solutions having support

as the union of few number of groups [1]. In order to address some of the drawbacks of

these discrete approaches, a convex relaxation of the penalties proposed in [53] was pro-

posed [51]. Group lasso penalty has also been applied to cases with overlapping groups

[50, 52]. This strategy was exploited in [50] to develop a regularization penalty that en-

courages sparse solutions with rooted subtree structures [1]. The idea is very similar to the
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zero tree coding scheme [55] in signal processing literature as it attaches the relevance of

a variable to its parent variable in the subtree [1]. A generalization of the work in [55] was

proposed in [52] to address more general group structures [1]. Network constraint regular-

ization approaches [56] have also been proposed to address complex variable correlation

structures. These methods are applied under the settings in which each variable is repre-

sented by a node in a network, and an edge between two nodes represents some association

or correlation between variables. Any kind of network topology can be encoded through,

for example, a Laplacian matrix which is subsequently employed to design a network con-

straint regularization penalty that encourages smooth solutions satisfying the constraints

enforced by the topology of the network.

1.3 Main goal of the dissertation

In the first part of this dissertation we focus on the issue of structured sparsity, and

perform variable selection in a high dimensional structured space [57]. Instead of simply

relying on the inherent characteristics of sparsity inducing strategies, we focus on exploit-

ing valuable structure information about the variables that is available in various domains

to enhance the structured sparsity inducing effect of a statistical model. We consider data

sets in which the number of variables far exceed the number of samples. Below we describe

a motivating example to show the application of this issue:

• By capturing various biochemical interactions, biological pathways provide insight

into underlying biological processes. Given high-dimensional microarray or RNA-

sequencing data, a critical challenge is how to integrate them with rich information

from pathway databases to jointly select relevant pathways and genes for phenotype

prediction or disease prognosis. Addressing this challenge can help us deepen bio-

logical understanding of phenotypes and diseases from a systems perspective. In the

context of parametric linear models, features are the genes, and the response is the

related phenotype. The high dimensional space of genes is a highly structured fea-

ture space consisting of groups of highly correlated genes. These groups of highly
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correlated genes behave as one functional group or pathway. The task is to per-

form good phenotype prediction, and at the same time select important pathways and

genes relevant to the phenotype guided by the structural information revealed by the

pathways.

In the above example, the known structural information about the variables can be repre-

sented by an undirected graph [57]. In this graph, each node represents a gene, and an edge

between two nodes represents some association or correlation between the genes. We need

to exploit this valuable correlation structure information to develop our sparse modelling

framework. With this approach we not only select relevant groups, but induce structured

sparsity within selected groups dictated by this structural information. Bayesian paradigm

is an appropriate choice to incorporate this prior structural information [57]. Hence, we

focus on sparse Bayesian learning in this dissertation. In Bayesian learning, the choice

of prior could be crucial in the performance of the learning algorithm. Our choice in this

dissertation is the spike-and-slab prior [58, 59]. Our choice for spike-and-slab priors is

dictated by the selective shrinkage effect induced by the priors. We will exploit this critical

property to perform variable selection in high dimensional spaces [57]. However, since

classical formulation of spike-and-slab priors does not explicitly incorporate correlation

structure information about the variables which is available from various domains, we pro-

pose a generalized formulation of the classical prior for group selection that incorporates

this valuable structure information, and allows our model to generate structured sparse re-

sults for each selected group. This structural constraint regularization capability, guided

by domain knowledge, combined with the selective shrinkage effect makes our proposed

prior an attractive tool for sparse Bayesian learning. Details of the spike-and-slab prior and

selective shrinkage effect are given in the later sections of this introduction.

Sparse Bayesian learning using spike-and-slab priors, though attractive, is not free of

challenges. A major computational bottleneck is the Bayesian inference of intractable pos-

terior distribution. Due to the intractability of the posterior, approximate inference tech-

niques have to be employed. Stochastic approximate inference methods (MCMC) [59],

though provide convergence guarantees, are extremely slow to converge at high dimen-
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sions. Deterministic approximate inference approaches, (Expectation propagation (EP),

Variational Bayes (VB)) [60, 61] have to impose factorization constraints on the posterior

to improve computational efficiency, but at the cost of reduced approximation quality. The

second part of this dissertation focuses on developing fast posterior inference strategies for

sparse Bayesian classical spike-and-slab models. The goal is to perform fast posterior in-

ference, but without compromising the quality of the posterior approximation significantly,

and by imposing no factorization constraints on the joint posterior. The details will be given

in the related chapter.

1.4 Organization of the dissertation

Section 1.3 gives a background on spike-and-slab priors. Contributions for this disser-

tation are briefly described in 1.4. Chapter 2 and 3 discuss the technical details of the con-

tributions. Specific terminologies and mathematical symbols are explained in each chapter.

Related work is also provided in each chapter based on the context of each chapter. Finally,

Chapter 4 summarizes the dissertation and lists possible directions for future work.

1.4.1 Spike-and-slab priors

Recently, spike-and-slab priors have been very popular in the sparse machine learning

community. This popularity stems from the selective shrinkage property of the spike-and-

slab priors: unlike the L1 penalization, (i.e., equivalently, the Laplace prior) which shrinks

all features—regardless of relevance or not—in the same way, the spike-and-slab prior is a

mixture of two components: one component regularizes relevant variables mildly while the

other one shrinks irrelevant variables aggressively. Let us consider an example to further

illustrate the concept of selective shrinkage. In this example, we will going to compare the

regularization penalty of lasso with adaptive lasso [29]:

• Lasso: R(w) = λ
∑p

i=1 |wi|

• Adaptive Lasso: R(w) =
∑p

i=1 λi|wi|



10

By comparing the two penalties above it can be seen that while in lasso there is only one

regularization coefficient λ for all components, adaptive lasso contains a separate regular-

ization coefficient λi for the ith component, and it is assigned a value λi = 1/wOLSi. Here,

wOLSi is the solution of the ordinary least squares problem, and it is a measure of rele-

vance for the ith feature. This is unlike lasso where λ is not affected by the relevance of

the features. If the value of wOLSi is small, it indicates the irrelevance of the feature, and

λi, in adaptive lasso, is set to a large value which shrinks the ith component to 0. On the

other hand, larger values of wOLSi indicate the importance of the ith feature to the response

variable, λi is now set to a small value which encourages the ith component to take bigger

values. In this scheme, the output of ordinary least squares algorithm is used as a measure

of relevance to decide whether to shrink a variable , or not. This is the basic idea behind

selective shrinkage. In adaptive lasso, however, the selective shrinkage effect is not induced

in a principled manner. The formulation of the adaptive lasso penalty does not create this

effect inherently. It requires a preprocessing step to induce such an effect. Unlike adaptive

lasso, spike-and-slab priors do not require any preprocessing step, the formulation of the

priors inherently generates this affect.

A pioneering work on spike-and-slab priors was done by Lampers [58] and Mitchels

and Baeuchamp [59]. They proposed a two point mixture distribution for the regression

weight vector w which consisted of uniform flat distribution (slab) and a degenerate dis-

tribution at zero(spike) [62]. In this dissertation, we adopt the prior formulation proposed

by [62]. Their model formulation is significantly different from the classical one proposed

by [58], but it essentially creates the same effect as the original model. In their model, w

is assigned a multivariate Normal scale mixture distribution specified through the prior on

hyper variances γ [62]:

(w|γ) ∼ N (w|0,Γ) (1.4)

γ ∼ π(dγ)
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where 0 is a p dimensional zero vector, Γ is a p × p diagonal matrix diag(γ1, ..., γp), and

π is a prior measure for γ = (γ1, ..., γp)
> [62]. In this setting, sparsity is achieved through

manipulating the values of the hyper variances of the Normal distributions. Smaller values

of the hyper variances force the coefficients to zero while larger values inflate coefficients

[62]. In this dissertation, we will more specifically focus on spike-and-slab prior formula-

tions introduced by George and McCulloch [63] which can be considered as a special case

of the prior introduced by [62]. In their prior settings, a two point discrete prior is assigned

on each hyper variance γj; the complete hierarchical prior for each wj is as follows:

(wj|γj)
ind∼ N (wj|0, γj)

(γj|zj)
ind∼ (1− zj)δr0() + zjδr1()

(zj|sj)
ind∼ (1− sj)δ0() + sjδ1()

where zj is a binary indicator variable for feature selection, and sj ∈ [0, 1] represents the

selection probability for the j-feature, j varies from 1 to p. By marginalizing out γj , the

hierarchical prior for wj reduces to:

(wj|zj)
ind∼ N (wj|0, r0)(1−zj)N (wj|0, r1)zj (1.5)

(zj|sj)
ind∼ (1− sj)δ0() + sjδ1()

where r0 and r1 are the variances of the two Gaussian components. To provide the required

selective shrinkage, the spike component is assigned a very small variance, hence it is

concentred around zero and favors less significant variables, while the slab component is

assigned a large variance which leads to a mild regularization of relevant variables. This

prior formulation switches its regularization level based on the indicator variable zj , which

is either 0 or 1. Therefore, complete separation of spike and slab regularizations is achieved,

and hence it creates a very strong selective shrinkage effect.
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If zj is marginalized, the prior becomes:

(wj|sj)
ind∼ N (wj|0, r0)× (1− sj) +N (wj|0, r1)× (sj) (1.6)

This prior setting switches its regularization level based on the value of sj . Since sj is

a continuous variable taking a range of values from the set [0, 1], complete separation of

spike and slab penalizations is not possible, and hence selective shrinkage is not as strong

as the previous formulation.

Assuming a beta prior for sj with parameters a0 = b0 = 1 and marginalizing it we get:

p(wj) =
1

2
N (wj|0, r1) +

1

2
N (wj|0, r0) (1.7)

In this setting, the prior always has a mixture of two penalizers. Since the mixture weights

are not influenced by features, this prior formulation has the least selective shrinkage effect.

1.5 Contributions of the dissertation

The contribution of this dissertation is two fold: we propose a new sparse Bayesian ap-

proach, called Network and Node Selection (NaNOS), for joint group and feature selection;

and a scalable Laplace approximation for sparse Bayesian spike-and-slab models (FLAS).

1.5.1 Efficient spike-and-slab models for joint group and feature selection

Various domains provide correlation structure information about the variables which

could be helpful for sparse learning in revealing the underlying sparsity pattern. Clas-

sical formulation of spike-and-slab priors is not designed to incorporate this correlation

structure information. The embedding of this critical information into the classical formu-

lation could greatly enhance the modelling power of the priors. To accomplish this task,

we present a novel sparse Bayesian model for joint network (group) and node (features)

selection (NaNOS). Our model includes a generalized formulation of the classical spike-
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and-slab prior for group selection that incorporates domain based correlation structure in-

formation for each group. This generalization step allows the prior to induce a structural

constraint regularization effect on the selected groups. Combined with the selective shrink-

age effect, this generalized prior can serve as an attractive tool for sparse Bayesian learning.

Secondly, our model provides a principled framework for exploiting this correlation struc-

ture information in the joint selection of relevant groups as well as relevant features within

the selected groups. Specifically, our model is a combination of conditional and genera-

tive components: the conditional component includes the generalized spike-and slab prior

that induces network level sparsity via the selective shrinkage effect, and imposes struc-

tural constraints, guided by domain knowledge, on each network through the use of graph

Laplacian matrices. The generative component imposes node level sparsity, within a net-

work, through the application of standard spike-and-slab prior on the network nodes. This

modelling approach will find its application in genomic data analysis where there is a need

to jointly discover pathways and genes that are relevant for phenotype prediction or disease

prognosis.

1.5.2 Scalable sparse Bayesian learning for spike-and-slab models

We consider the application of Bayesian spike-and-slab models in high-dimensional

feature selection problems. To do so, we propose simple yet effective fast approximate

Bayesian inference algorithms based on Laplace’s method (FLAS,FLAS*,FLAS**). We

exploit two efficient optimization methods, GIST [64] and L-BFGS [65], to obtain the

mode of the posterior distribution. Then we propose an ensemble Nyström approach to

calculate the diagonal of the inverse Hessian over the mode to obtain the approximate pos-

terior marginals in O(knp) time, k << p. The theoretical analysis of the ensemble method

is also provided. With the posterior marginals of model weights, we use quadrature integra-

tion to estimate the marginal posteriors of selection probabilities and indicator variables for

all features, which quantify the selection uncertainty. Unlike existing approximate infer-

ence methods, our approach does not require any factorization constraints on the posterior
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to enhance its computational efficiency. Our method can be seen as a hybrid of Bayesian

and frequentist treatments taking benefits from both worlds. From a frequentist perspective,

our approach is computationally efficient, and possesses asymptotic consistency properties;

and from a Bayesian point of view, it performs posterior inference better than or compa-

rable to existing approximate inference methods. On simulated data, our methods perform

feature selection better than or comparable to the alternative approximate methods, with

less running time, and provide higher prediction accuracy than various sparse methods

including VB, EP, automatic relevance determination, lasso, elastic net and a capped-L1

method. On large real benchmark datasets, our methods often achieve improved predic-

tion accuracy compared to alternative methods, but with a convergence time comparable

to frequentist l1 methods. Finally, application on Region-of-Interest (ROI) analysis of high

dimensional brain image data shows interesting discoveries, many of which are supported

by existing literature.

1.5.3 Significance of the contributions

In the final part of this chapter we present two tables highlighting the significance of

our contributions compared to the existing trends.

As can be seen from table 1.1, our method, NaNOS, not only performs group and fea-

ture selection, but exploits the domain based correlation structure information provided for

each group to induce structured sparsity within each selected group. Since our model builds

upon spike-and-slab formulation, it also has the advantage of selective shrinkage effect. In

brief, our method combines the strong points of existing approaches in a principled manner,

and show improved performance both in terms of prediction and selection results.

Table 1.2 compares our approaches (FLAS, FLAS*,FLAS**) with popular approximate

inference approaches. The table clearly shows the benefit of our approaches compared to

others. While Expectation propagation (EP) and Variational Bayes (VB) require structural

or factorization constraints in the joint posterior to achieve linear time complexity, our

methods do not require such constraints, and still achieve linear time complexity. The fac-
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torization constraints might lead to performance degradation especially when the variables

are correlated. Since we do not impose such constraints, our approaches perform better

than or comparable to the existing approximate inference methods both in terms of predic-

tion and selection results. Lastly, although, MCMC based posterior inference techniques

provide convergence guarantees, they are extremely slow to converge at high dimensions,

and hence not scalable.

Table 1.1.: Sparsity inducing methods. EN: elastic net; ss: classical spike-and-slab; NCR:
network constraint regularization

Approaches l1 Group l1 EN ss Group ss NCR NaNOS
Feature sparsity Yes No Yes Yes No Yes Yes
Group sparsity No Yes No No Yes No Yes

Selective shrinkage No No No Yes Yes No Yes
Structured sparsity No No No No No Yes Yes

Sparsity within groups No No No No No No Yes

Table 1.2.: Posterior inference methods for spike-and-slab models. EP: Expectation prop-
agation; VB: Variational Bayes; MCMC: Markov Chain Monte Carlo. n is the number of
samples and p is the number of dimensions.

methods VB EP MCMC FLAS,FLAS*,FLAS**
Factorization constraints Yes Yes No No

Computational complexity O(np) O(np) very high O(np)
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2 EFFICIENT SPIKE-AND-SLAB MODELS FOR JOINT GROUP AND FEATURE

SELECTION

2.1 Motivation

A major objective of sparse learning is to strike a balance between predictive power

and generating results that are more interpretable. The task becomes more complicated if

there is high correlation between variables. Various frequentist approaches try to address

this issue by proposing smoothing penalties or incorporating sparsity constraints. They re-

cast a sparse learning problem into an optimization problem, and embed sparsity into the

optimization procedure. In a Bayesian setting, this regularization effect is achieve through

the application of sparsity inducing priors. Sparse priors essentially encode our prior be-

liefs about the sparsity pattern of the parameters. Recently, spike-and-slab priors have been

very popular in the sparse machine learning community. This popularity stems from the

selective shrinkage property of the spike-and-slab priors: unlike most of the frequentist ap-

proaches, these priors selectively shrink irrelevant variables, and mildly regularize relevant

ones. However, classical formulation of spike-and-slab priors is not designed to incorporate

correlation structure information about the variables which is provided by various domains,

and could be helpful in revealing the sparsity pattern. The embedding of this critical in-

formation into the classical formulation could greatly enhance the modelling power of the

spike-and-slab priors.

To accomplish this task, we present a novel sparse Bayesian model for joint network

(group) and node (features) selection. Specifically, our model is a combination of con-

ditional and generative components: the conditional component includes the generalized

spike-and slab prior that induces network level sparsity via the selective shrinkage effect,

and imposes structural constraints, guided by domain knowledge, on each network through

the use of graph Laplacian matrices, details will be given later. The generative component
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imposes node level sparsity, within a network, through the application of standard spike-

and-slab prior on the network nodes. The integration of these two components provides a

principled framework for joint selection of networks and relevant correlated nodes in the

selected networks, guided by the domain based correlation structure information. To make

the selection process efficient, we employ a variational Bayes procedure for the Bayesian

inference.

In order to demonstrate the predictive power and selection accuracy of our model, we

conduct extensive simulation experiments. The simulation results clearly reveal the ad-

vantage our method has over other alternative approaches. We also apply our method for

genomic data analysis. We use three expression datasets for cancer study and the KEGG

pathway database. The pathways and genes selected by our method are shown to be quite

relevant to the cancer growth. Some of the pathways and genes are also supported by

existing biological literature.

2.2 Model

This section discusses the specific details of our hybrid sparse Bayesian model, NaNOS,

for network and node selection. Assume n independent and identically distributed samples

D = {(x1, t1), . . . , (xn, tn)}, where xi is the p dimensional node vector of the i-th sample,

and ti is its response. Our aim is to predict the response vector t = [t1, . . . , tn]> based

on the design matrix X = [x1, . . . ,xn]> and selecting a small number of networks as well

as nodes within selected networks relevant to the prediction. For real-world scenarios, we

have n� p in many cases, and hence the selection task becomes challenging.

To perform variable selection efficiently, we can exploit the valuable correlation struc-

ture information of the nodes encoded in the networks. For example, biological pathways

consist of a set of highly correlated genes acting together to perform certain biological

functions. Hence, representing various gene interactions. Assume that we have M net-

works, we organize the node vector xi into M subparts, each part corresponds to one of
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the M networks. If a node appears in multiple networks, we distribute its value across all

participating networks.

Following the general framework proposed by [66], we formulate our model as a hybrid

of conditional and generative formulations: the conditional component induces network

level sparsity, and selects relevant networks; the generative component enforces node level

sparsity within selected networks; and the two models are linked through a joint prior

distribution. In this modelling framework, both the conditional and generative components

influence and help each other to facilitate the joint selection of network and nodes.

For the conditional component, we use Gaussian likelihood function for regression

analysis:

p(t|X,w, τ) =
n∏
i=1

N (ti|x>i w, τ−1). (2.1)

where w are regression weights, and τ is the precision parameter. We employ a diffuse

Gamma prior, Gam(τ |g, h) with g = h = 10−6 for τ .

For classification, we use a logistic likelihood

p(t|X,w) =
∏n

i=1
σ(x>i w)ti [1− σ(x>i w)]1−ti , (2.2)

where ti ∈ {0, 1}, w are classifier weights, and σ(·) is the logistic function (i.e., σ(y) =

(1+exp(−y))−1). We divide the vector w into M subparts, each part corresponding to one

of the M networks. The partitioned vector w = [w1, . . . ,wM ]> where wk are the weights

for the node variables in the k-th network.

To exploit the correlation structure information embedded in a network, we compute the

normalized Laplacian matrix representation of the network. More Specifically, if we are

given the adjacency matrix Gk of the k-th network where each entry of the adjacency matrix

represents edges between nodes in the k-th network, the normalized Laplacian matrix Lk

is defined as

Lk(i, j) =


1 i = j and di 6= 0

− 1√
didj

i 6= j and Gk(i, j) 6= 0

0 otherwise
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where Gk is the adjacency matrix for the k-th network, and di =
∑

j Gk(i, j) is the degree

of the i-th node in the k-th network.

Once the graph Laplacian matrices have been computed, we utilize them to formulate a

sparse prior over wk. The prior is essentially a generalization of the classical spike-and-slab

prior for sparse group selection:

p(wk|αk) = N (wk|0, s1L−1k )αkN (wk|0, s2Ik)1−αk (2.3)

where αk is a binary variable indicating the selection of the k-th network, s1 > s2, s2 ≈ 0,

and Ik is an identity matrix. s1, and s2 are computed based on cross-validation procedure.

Lk is a positive semi definite matrix based on the original definition, and hence using the

inverse of Lk as the covariance matrix of a Gaussian distribution is not justified. Therefore,

we deviate slightly from the classical definition, and add a scaled diagonal matrix 10−6Ik

to Lk. The diagonal perturbation does not disturb the correlation information of the k-th

network encoded by Lk, and hence fits well into our modelling framework. The classical

spike-and-slab prior for group selection is a special case of our general framework. Indeed,

if Lk is replaced by Ik, the prior (2.3) reduces to the classical prior [67]. We can analyze the

regularization effect of the generalized prior by transforming the prior in the log domain.

Taking the negative log of the prior gives us the following expression:

−log(p(wk|αk)) =
αk
2s1

w>k Lkwk +
1− αk

2s2
||wk||22 (2.4)

When the binary indicator variable αk = 0, due to very small value of s2, the regularization

effect is similar to the square of the l2 penalty with very large regularization coefficient

( 1
s2

). Consequently, wk vector is shrunk towards zero. On the other hand, if αk = 1, the

prior has a network constraint regularization effect given by the following expression:

w>k Lkwk =
∑

(i,j)∈Ek

(
wi√
di
− wj√

dj
)2 (2.5)
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where Ek is the edge set of the kth network. From the expression above it can be seen

that correlated nodes with similar degrees, within the k-th network, are encouraged to have

similar weight values. If two connected nodes have different degrees, the one with a higher

degree is given more weigh. This is a desirable property because nodes with higher degrees

are expected to be more influential, and hence more significant.

From the discussion above it can be seen that our generalized prior combines the selec-

tive shrinkage effect with network regularization ability in a principled manner, and plays

a critical role in giving our model the capability to induce the required structured sparsity

effect.

To model uncertainty in αk, we assign a Bernoulli prior distribution: p(αk) = (uk)
αk(1−

uk)
1−αk , uk ∈ [0, 1] is the selection probability. We assign an uninformative prior over uk:

p(uk) = 1 (i.e.,, p(uk) = Beta(uk; a, b) where a = b = 1).

For the purposes of selecting relevant nodes within each selected network, for each

network k, we introduce a latent auxiliary vector w̃k in the generative model. The vector

w̃k is tightly linked to the k-th network vector wk via a special linking prior distribution.

The details will be given shortly. To induce sparsity into the vector w̃k, we simply apply

the classical spike-and-slab prior:

p(w̃k|βk) =

pk∏
j=1

N (w̃kj|0, r1)βkjN (w̃kj|0, r2)1−βkj (2.6)

=

pk∏
j=1

N (0|w̃kj, r1)βkjN (0|w̃kj, r2)1−βkj

= p(0|w̃k,βk)

where pk is the size of the k-th network, r2 ≈ 0, and βkj is a binary indicator variable

for the j-th node in the k-th network. We assign a Bernoulli prior to βkj: p(βkj) =

(vkj)
βkj(1 − vkj)

1−βkj , and a uniform prior to vkj: p(vkj) = 1 From the rearrangement

shown above, it can be seen that from a modelling perspective, the spike-and-slab prior term

p(w̃k|βk) and p(0|w̃k,βk) will have the same effect on our model. The term p(0|w̃k,βk)

can be considered as a generative model, the observation 0 is sampled from w̃k. Since a
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Figure 2.1.: The graphical model representation of NaNOS.

variable can not be sampled twice in a Bayesian network, this rearrangement is essential

for our modelling framework as it allows the spike-and-slab prior term p(w̃k|βk) to be

incorporated into our Bayesian model. This trick also allows us to integrate the two sparse

components of our modelling framework in a principled manner.

As explained earlier, we design a special prior distribution to establish a link between

the conditional and generative components. To accomplish this, we propose the following

prior on w̃k:

p(w̃k|wk) = N (w̃k|wk, λI) (2.7)

Since lambda is the variance parameter of the Gaussian distribution, it controls the degree

to which w̃k is concentrated around wk. In the limit λ → 0, the Gaussian distribution

approaches the delta function and with probability 1, wk = w̃k. We enforce this equality

constraint by setting λ = 0. The constraint allows us to not only influence the wk vector as

a whole, but also its individual components via the vector w̃k. It is essentially this feature

that allows sparsity at both the network and node level. Figure 2.1 shows the graphical

model diagram for our joint model.
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Probabilistically speaking, our modelling framework ensures consistency in the selec-

tion of networks and nodes. If a network is discarded, all nodes contained in that network

are removed. Our model ensures this by enforcing an equality constraint wk = w̃k through

the delta prior δ(w̃k −wk). Hence, when αk = 0, wk = 0 implies w̃k = 0. Consequently,

the spike component will be dominant for all the nodes in the k-th network, and force the

weight values of the nodes towards zero. Our modelling framework also ensures that if at

least one node in a network is selected, then that network is also selected. One novel feature

of our approach is that it does not impose the hard consistency constraint: our model will

not select all the networks that share one common selected node. We avoid this constraint

by duplicating the value of the common selected node across all the participating networks,

and using the duplicated weights as separate model parameters.

2.3 Algorithm

In this section we will explain the Bayesian inference algorithm of our model. In order

to perform efficient Bayesian inference, we employ variational Bayesian (VB) approach for

approximate inference. Specifically, we present variational updates equations to approxi-

mate the posteriors of w, α, β, u, v, and τ , τ is required for regression only. Once the

posteriors have been computed, network and node selection can be performed based on α

and β.

The joint posterior distribution for our regression model is

p(w, w̃,α,β,u,v, τ |t,X) =
1

Z
N (t|Xw, τ−1I)Gamma(τ)·

∏
k

p(wk|αk)p(w̃k|wk)p(0|w̃k,βk)Bern(αk|uk)Beta(uk)·∏
j

Bern(βkj|vkj)Beta(vkj) (2.8)
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where p(wk|αk) and p(0|w̃k,βk) are defined in (2.3) and (2.6), p(w̃k|wk) = δ(w̃k −wk),

and Z is the partition function. The expression for the joint posterior in the classification

model is similar to (2.8), except that the Gaussian likelihood (2.1) is replaced by the logistic

function (2.2), and the prior term for τ is removed from (2.8).

Stochastic approximate inference techniques such as Classical Markov chain Monte

Carlo methods are attractive due to their convergence properties, but they lack scalability

with respect to the number of dimensions. Even for moderate dimensions, the MCMC

algorithms exhibit slow mixing times. In addition to that, there are no practical tools avail-

able to accurately gauge the convergence of MCMC samplers. Thus, we decide to employ

computationally efficient variational Bayes procedure for approximate inference of (2.8).

In variational approximate inference, we enforce a factorization constraint on the exact

joint posterior distribution, and try to learn this factorized distribution instead of the true

posterior. Specifically, for our model, we learn the following factorized distribution as an

approximation to (2.8): Q(θ) = Q(w)Q(α)Q(β)Q(u)Q(v)Q(τ), where θ combines all

the variables in the distribution on which inference is being performed. It is to be noted

that for the classification model, we do not need to do Bayesian inference for Qτ (τ) as it is

not part of the joint distribution. Since we have enforced an equality constraint on w̃ and

w, we do not need to separately update a posterior distribution for w̃.

The variational inference procedure explores the space of factorized distributions of the

form Q(θ), and seeks to find the optimal distribution that minimizes the KL divergence

between the exact and the approximate posterior of θ:

KL(Q(θ)||p(θ|t,X)) =

∫
Q(θ) ln

Q(θ)

p(θ|t,X)
dθ. (2.9)

The variational updates are derived by applying coordinate descent procedure to the KL

divergence minimization problem. This leads to efficient update equations for the posterior

distributions as explained in the coming sections. The overall procedure is iterative in

nature: one posterior distribution is updated at a time by keeping all others fixed. This

procedure is repeated until convergence is achieved. The variational updates ensure that
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the value of KL divergence decreases with every iteration, and since KL divergence is

bounded from below by zero, the procedure is guaranteed to converge [68].

2.3.1 Regression

The variational updates for the regression model are as follows:

Q(w) = N (w|m,Σ) (2.10)

Q(α) =
∏

k
γk

αk(1− γk)1−αk (2.11)

Q(β) =
∏

k

∏
j
(ηkj)

βkj(1− ηkj)1−βkj (2.12)

Q(u) ∝
∏

k
(uk)

ãk−1(1− uk)b̃k−1 (2.13)

Q(v) ∝
∏

k

∏
j
(vkj)

c̃kj−1(1− vkj)d̃kj−1 (2.14)

Q(τ) = Γ(τ |g̃, h̃). (2.15)

The update equations for the parameters of the above posterior distributions are given by:

Σ = (A + 〈τ〉X>X)−1 m = 〈τ〉ΣX>t (2.16)

ãk = γk + a b̃k = 1− γk + b (2.17)

c̃kj = ηkj + c d̃kj = 1− ηkj + d (2.18)

γk = 1/(1 + exp(〈ln(1− uk)〉 − 〈lnuk〉+
pk
2

ln
s1
s2

−1

2
ln |Lk|+

1

2
tr(〈wkwk

>〉( 1

s1
Lk −

1

s2
Ik)) (2.19)

ηkj = 1/(1 + exp(〈ln(1− vkj)〉 − 〈ln vkj〉

+
1

2
ln
r1
r2

+
1

2
〈(wkj)2〉(

1

r1
− 1

r2
))) (2.20)

h̃ = h+
1

2
t>t−m>X>t +

1

2

∑
i
x>i 〈ww>〉xi (2.21)

g̃ = g +
n

2
(2.22)

where A = 1
s1

diag({γkLk}k) + 1
s2

diag({(1 − γk)Ik}k) + 1
r1

diag(η) + 1
r2

diag(1 − η).
diag({γkLk}k) is a block-diagonal matrix, and 〈·〉 denotes expectation with respect to a
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posterior distribution. All the moments appearing in the update equations are computed as
follows:

〈ww>〉 = Σ + mm> 〈τ〉 = g̃/h̃

〈lnuk〉 = ψ(ãk)− ψ(ẽk) 〈ln(1− uk)〉 = ψ(b̃k)− ψ(ẽk)

〈ln vkj〉 = ψ(c̃kj)− ψ(f̃kj) 〈ln(1− vkj)〉 = ψ(d̃kj)− ψ(f̃kj)

where ψ(x) = d
dx

ln Γ(x) , ẽk = ãk + b̃k and f̃kj = c̃kj + d̃kj .

From a frequentist perspective the posterior mean of w can be shown to have estimation

consistency for the case when p =
∑M

k=1 pk is fixed and n → ∞. Let us assume that

w0 is the true coefficient vector of the regression model. Define S0 = {j : w0j 6= 0}.

Let S denote the space in which S0 lies. We will use the following assumptions for the

consistency proof:

Assumption 1 [69]. Let CSS = n−1(X>SXS) for any S ∈ S . Let λi be the ith eigen-

value of CSS , then the following condition holds:

0 < c1 ≤ λmin(CSS) ≤ λmax(CSS) ≤ c2 <∞ (2.23)

Assumption 2. For parameters r1, r2, s1, s2, and τ , assume that there exist finite

positive constants klow, kup, τmin, and τmax such that klow ≤ r1, r2, s1, s2 ≤ kup, and

τmin ≤ τ ≤ τmax.

Assumption 1 enforces positive definiteness of the sample covariance matrix. This

assumption is reasonable for large sample sizes because the covariance matrix is full rank.

Assumption 2 is mild as it only requires a compact support for the parameters.

The form of the argument presented in the following theorem is very similar to the one

given in [69], but it can be applied to prove estimation consistency result for our case.

Theorem 2.3.1 Assuming that 1, 2 are satisfied, with p fixed, then

P (||m−w0||2 > ξn) ≤ c0 exp{− log(nξn)} (2.24)

for some positive finite constant c0 and ξn. Assume that ξn ∝ n−α
∗

for some α∗ > 0. Then

if 0 < α∗ < 1, P (||m−w0||2 > ξn)→ 0 as n→∞.
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Proof. Let k1 = max(2γ1, ..., 2γM), and k2 = max(1− γ1, ..., 1− γM) < 1. Since we
assume positive definiteness of X>X, the proof is only valid for disjoint groups. In case

of overlapping groups, we use duplication procedure that renders the matrix X>X singular

for any value of n. Since the maximum eigenvalue of every Lk is upper bounded by 2, and

every element of the vector η and every γk is less than 1, by Weyle’s inequality,

||A||22 = λ2max(A)

≤ (
1

s1
λmax(diag({γkLk}k)) +

1

s2
λmax(diag({(1− γk)Ik}k))

+
1

r1
λmax(diag(η)) +

1

r2
λmax(diag(1− η)))2

≤ (
1

s1
k1 +

1

s2
k2 +

1

r1
+

1

r2
)2

≤ (
1

klow
(k1 + 3))2

= µ2
0

Now

m−w0 = −(τX>X + A)−1Aw0+

τ(τX>X + A)−1X>ε

which implies

E(||m−w0||22) ≤ 2||(τX>X + A)−1Aw0||22+

2E(||τ(τX>X + A)−1X>ε||22)

≤ 2||(τX>X + A)−1||22||Aw0||22+

2τ 2λ−2min(τX>X + A)E(ε>X>Xε)

≤ 2µ2
0λ
−2
min(τX>X + A)||w0||22+

2τ 2λ−2min(τX>X + A)E(ε>X>Xε)

≤ 2λ−2min(τX>X + A)

(µ2
0||w0||22 + τTr(X>X))



27

≤ 2λ−2min(τX>X + A)

(µ2
0||w0||22 + pλmax(X

>X)τ)

≤ 2µ2
0||w0||22 + 2τpnc2

(τnc1)2

≤ 2n−1µ2
0||w0||22 + 2τpc2
τ 2nc21

≤ 2n−1µ2
0||w0||22 + 2τmaxpc2
τ 2minnc

2
1

Now by using Markov inequality

P (||m−w0||22 > ξn) ≤ 2n−1µ2
0||w0||22 + 2τmaxpc2
τ 2minnc

2
1ξn

≤ 2µ2
0||w0||22 + 2τmaxpc2

τ 2minnc
2
1ξn

for n > 1. Let c0 =
2µ20||w0||22+2τmaxpc2

τ2minc
2
1

. Then,

P (||m−w0||2 > ξn) ≤ c0 exp{− log(nξn)}

If ξn ∝ n−α
∗ , then nξn = n1−(α∗). Then under the condition 0 < α∗ < 1, the term

n1−(α∗) →∞ as n→∞. Therefore if 0 < α∗ < 1, P (||m−w0||2 > ξn) will approach 0,

which completes the proof.

2.3.2 Classification

Unlike regression, there are no closed form variational updates for Classification. Due

to the logistic function (2.2), variational distributionQ(w) can not be computed in a straight

forward manner. Therefore, in order to make variational approximation tractable, we em-

ploy a lower bound on the logistic function proposed by [70] and replace the logistic func-

tion with this approximate expression in the joint distribution:

σ(y)t
(
1− σ(y)

)1−t
≥ σ(ξ) exp

((2t− 1)y − ξ
2

− f(ξ)
(
(2t− 1)2y2 − ξ2

))
(2.25)
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where f(x) = 1
4ξ

tanh(ξ/2), and ξ is a variational parameter. The approximate expression

becomes equal to the exact expression when ξ = (2t − 1)y. From the expression of the

lower bound (2.25), it can be seen that it is quadratic in y once the logarithmic transforma-

tion is applied. Hence, variational inference becomes tractable as the expressions resembles

the Gaussian form.

The update equations for the classification model are almost similar to the regression

case except for minor changes in the update of Q(w) = N (w|m,Σ):

Σ =
(
A + 2

∑
i
f(ξi)xix

>
i

)−1
m=

1

2
ΣX>(2t− 1) (2.26)

where A is the same as in the regression.

Additionally, maximization of the lower bound (2.25) allows an updating procedure for

the parameter ξi:

ξ2i = x>i 〈ww>〉xi. (2.27)

2.4 Related work

Despite their success in many applications, previous sparse learning methods are lim-

ited by several factors for the integration of correlation structure information into the learn-

ing framework. For example, group lasso [71] can be used to utilize memberships of fea-

tures in groups via a l1/2 norm to select relevant groups of features, but they ignore struc-

tural information about the group. Additionally, they select all the features of the selected

groups leading to dense estimation. NaNOS, on the other hand, incorporates correlation

structure information through the generalized spike-and-slab prior, and avoids dense esti-

mation of the selected groups due to its two layered sparsity structure accomplished through

the hybrid combination of its conditional and generative components. Adaptive group lasso

[72] extends the group lasso by assigning different weights to different groups, but it still

can not avoid the dense estimation problem. An excellent work by [56] overcomes the lim-

itation of ignoring structural information by incorporating group structures in a Laplacian
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matrix of a global graph to guide the selection of relevant features. In addition to graph

Laplacians, binary Markov random field priors can be used to represent correlation struc-

ture information to influence feature selection [57, 73, 74, 75]. However, unlike NaNOS,

these network-regularized approaches do not explicitly select relevant groups. However,

not all groups are relevant and group selection can yield insight into underlying generative

processes. For example, in genomic data applications, there is a need to determine relevant

pathways for disease diagnosis and prognosis. A pioneering approach to joint group and

feature selection by [76] uses binary Markov random field priors and couples feature and

group selection by hard constraints – for example, if a feature is selected, all the groups

it belongs to will be selected. However, this consistency constraint might be too rigid for

certain applications: an active gene for cancer progression does not necessarily imply that

all the pathways it belongs to are active. NaNOS overcomes this constraint by duplicat-

ing the weights of the features appearing in multiple groups, and treating each weight as

a separate model parameter. Given the Markov random field priors and the nonlinear con-

straints, posterior distributions are inferred by a Markov Chain Monte Carlo method [76].

But the convergence of MCMC for high dimensional problems is known to take a long

time. NaNOS, on the other hand, employs variational inference approach that converges

much faster than MCMC methods.

2.5 Experiments

For the purposes of evaluating the performance of NaNOS both in terms of predictive

power and selection accuracy, we conducted thorough synthetic and real data experiments.

We specifically focused on genomic data applications. We simulated gene expression data

sets consisting of pathways and genes, and examined the quality of results generated by

NaNOS on these datasets. We also tested NaNOS on real gene expression data sets, and

analyzed the results. In order to demonstrate the superior performance of NaNOS, we com-

pared its results with other alternative methods such as lasso [77], elastic net [78], group

lasso [71, 79], the method proposed by [56] and denoted as“LL”, and the classical spike-
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and-slab prior [67]. We employed the Glmnet software package 1 to generate results for

lasso and elastic net. In case of group lasso, all the results were generated using the SLEP

software package 2. Since group lasso does not handle over lapping groups, we applied the

duplication operator [79] on the expression level of genes appearing in multiple pathways or

groups before feeding the data into SLEP package. The classical spike-and-slab model was

implemented in a way similar to NaNOS. We used the same variational inference strategy

as in NaNOS to generate prediction and selection results. We did not change the default

configurations of all the software packages, and used 10-fold cross validation to tune all

free parameters. We give a brief summary of all the CV grids we used for various methods:

(1) lasso: α = [0 : 0.01 : 1]; (2)elastic net: α = [0 : 0.01 : 1] and β = [0 : 0.01 : 1]; (3)

group lasso: α = [0 : 0.01 : 1];(4) LL: λ1 = [1 : 25 : 300] and λ2 = [1 : 25 : 300]; (5)

NaNOS: s1 = r1 = [0.1, 1, 3] and s2 = r2 = [10−3, 10−4, 10−5, 10−6].

We also compared NaNOS with GSEA [80, 81]. GSEA is a popular method for ex-

tracting relevant gene sets. For applying GSEA on our synthetic data sets, we treated each

pathway as a gene set, and selected all pathways with FDR < 25%. This is the same cri-

teria that GSEA uses for gene set selection. We also did not change the default settings in

the GSEA package. Once the gene sets were extracted, we assumed all the genes in these

sets to be relevant. Since GSEA can not perform prediction, and we do not know the true

relevant pathways in real data sets, we did not use it for real data analysis.

2.5.1 Simulation studies

We conducted the following three simulation experiments in order to compare all the

methods on synthetic data.

Experiment 1. We followed the approach proposed by [56] to conduct these experiments.

First we construct 200 tree-structured regulatory networks consisting of a transcription

factor (TF) and 10 other genes controlled and regulated by it. Out of these 200 pathways,

only 4 – including all of their genes – are assumed to have an effect on the response t.

1www-stat.stanford.edu/˜tibs/glmnet-matlab/
2www.public.asu.edu/˜jye02/Software/SLEP/

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www.public.asu.edu/~jye02/Software/SLEP/
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The expression levels of each TF (xTF ) and the corresponding regulated genes are sampled

from N (0, 1) and N (0.7xTF , 0.51) respectively. This sampling procedure establishes a

correlation of 0.7 between the TF and its regulated genes.
For the first data generation model, in a regression setting, the weight vector for each

pathway is given by ρ = [1, 1√
10
, · · · , 1√

10
]; the first component of ρ corresponds to the TF

and remaining components are the weight values for the 10 regulated genes. The outcome
t is then sampled as follows:

w = [5ρ,−5ρ, 3ρ,−3ρ,0>]> (2.28)

t = Xw + ε

where ε ∼ N (0, σ2
e).

For the second data generation model, the only difference from the first model is that
the regulated genes of the same TF can have both positive and negative influence on t [56].
Specifically, the weight vector for each pathway is now given by

ρ = [1,
−1√
10
,
−1√
10
,
−1√
10
,

1√
10
, · · · , 1√

10︸ ︷︷ ︸
7

]. (2.29)

For the classification case, the procedure for generating X and w remains the same.

Once these are generated, the outcome t is sampled from (2.2).

For both data generating models, we conducted 50 simulation, and in each experiment

we simulated 100 training and 100 test samples. To compare the prediction accuracy of

competing methods, we computed the prediction mean-squared error (PMSE) [56] for re-

gression, and the error rate for classification. We also computed sensitivity, specificity

and F1 score to examine the gene and pathway selection capability of all methods. F1

score is defined as the harmonic average of the sensitivity and specificity, and is given by

F1 = 2 (sensitivity × specificity)/(sensitivity + specificity). Therefore higher values of

the F1 score indicate more accurate selection results.

Figure 2.2 presents all the results, error bars indicate the standard errors. Apart from

the classification case in the second data model where NaNOS and group lasso achieve

comparable F1 scores, NaNOS outperforms alternative methods, both in terms of predic-
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Figure 2.2.: Prediction errors and F1 scores for gene selection in Experiment 1. ENet, S&S,
and GLasso stand for elastic net, the spike-and-slab model, and group lasso, respectively;
and Data 1 and 2 indicate the first and second data generation models. CER stands for
classification error rate.
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Figure 2.3.: F1 scores for pathway selection. “EXP” stands for “Experiment” and “D”
stands for “Data model”.

tion accuracy and selection results. We also performed a two-sample t-test, using 5 percent

significance level, to determine whether the improvements achieved by NaNOS were sig-

nificant or not. It was clear from the results that all improvements were significant. We also
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compare the pathways selection accuracy of group lasso and GSEA with our model. Figure

2.3 shows the pathways selection accuracy plots. As can be seen from the plots, NaNOS

significantly outperforms the other two methods. The improved performance of NaNOS

can be attributed to its modelling power. By applying sparse prior over each pathway,

NaNOS induces sparsity at the group level, and can explicitly select relevant pathways.

Other methods, for example the LL approach, do not have this leverage. Despite the fact

that LL uses the topological information, it does not generate sparsity at the group level. It

treats the whole network as one big global structure, and extracts important sub networks

from the global network. This approach is more suitable for discovering new pathway

structure, but less helpful for determining the relevance of already existing pathways to the

outcome.

Experiment 2. Under the settings of experiment 2, we do not assume all genes in relevant
pathways to be influential in the outcome. Secondly, we simulate expression levels of 100
transcription factors (TFs), each TF now regulates 21 genes to form a tree like network.
Expression levels are sampled in the same way as Experiment 1, except for some minor
change in ρ. The expression for ρ is given by

ρ = [1,
1√
21
, · · · , 1√

21︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
11

] (2.30)

for the first data generation model and

ρ = [1,
−1√
21
,
−1√
21
,
−1√
21
,

1√
21
, · · · , 1√

21︸ ︷︷ ︸
7

, 0, . . . , 0︸ ︷︷ ︸
11

] (2.31)

for the second data generation model.

The results for both classification and regression are shown in Figures 2.4 and 2.3.

Apart from the regression case in the first data generation model where NaNOS and LL

show comparable performance in terms of F1 score, in all other settings, NaNOS shows

superior performance compared to other methods, improvement is again tested at the 5

percent significance level.
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Figure 2.4.: Prediction errors and F1 scores for gene selection in Experiment 2.
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Figure 2.5.: Prediction errors and F1 scores for gene selection in Experiment 3.

Experiment 3. In this experiment, the only change in the data generating process is in

the expression of ρ. The change reflects a weaker influence of TF on its regulated genes.

As the Figures 2.3 and 2.5 demonstrate, NaNOS shows superior performance to alternative

methods.
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2.5.2 Application to gene expression data

In order to demonstrate the effectiveness of our model on real data, we analyze three

cancer related gene expression data sets: diffuse large B cell lymphoma (DLBCL) [82],

colorectal cancer (CRC) [83], and pancreatic ductal adenocarcinoma (PDAC) [84]. We

employed the probeset-to-gene mapping provided in cancer studies of these data sets. In

case we had expression levels of multiple probes corresponding to the same gene, we took

the average expression levels of these probes. We followed this approach for the CRC and

PDAC datasets in which multiple probes were mapped to the same genes. Information

about the pathways was collected from the KEGG pathway database (www.genome.jp/

kegg/pathway.html).

Diffuse large B cell lymphoma (DLBCL)[82]. We collected gene expression profiles of

240 DLBCL patients from [82]. KEGG dataset provided 752 genes and 46 pathways for

the gene expression data set. The data set also provides the survival time information about

all the patients. We used the logarithm of survival times of patients as the target variable.

Out of the total of 240 samples, half of them were randomly chosen for training, and

other half for testing. We performed this splitting 100 times and recorded the results of all

methods in each case. 2.6.a shows the average test results over 100 runs for all method.

Superior performance of NaNOS is quite evident from the figure. An obvious advantage

of NaNOS when compared to LL approach is that while NaNOS explicitly selects relevant

pathways, LL method extracts connected sub-networks. These sub-networks may or may

not correspond to biological pathways. It is highly likely that they may consist of portions

from multiple overlapping pathways. Based on the results generated by NaNOS, the top

two pathways in terms of the frequency of selection across all the runs, and having selection

posterior probabilities larger than 0.95 were (1) antigen processing and presentation path-

way, and (2) cell adhesion molecules (CAMs). Existing literature supports the relevance of

these pathways to the growth of Diffuse large B cell lymphoma [82, 85, 86, 87, 88, 89].

Colorectal cancer (CRC). The colorectal cancer dataset [83] contains gene expression

profiles from 22 normal patients and 25 cancer patients. 2455 genes from 22,283 probes

www.genome.jp/kegg/pathway.html
www.genome.jp/kegg/pathway.html
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were mapped into 67 KEGG pathways. The aim of this analysis was to predict the medical

condition of the tissues: whether a tissue is cancerous or not, and select pathways and genes

relevant to the cancerous phenotype.

We randomly selected 23 samples for training, and remaining 24 for testing. We per-

formed this splitting 50 times and recorded the results of all methods in each case. 2.6.b

shows the average test results over 50 runs for all method. Again, based on the 5 percent sig-

nificance level, NaNOS performs superior to other methods. The top three pathways that

were most consistently selected by NaNOS, with the selection posterior probabilities larger

than 0.95, were (1)cell cycle pathway,(2) the intestinal immune network for IgA produc-

tion, and (3) cytokine-cytokine receptor interaction pathway. All these pathways are well

recognized for CRC. NaNOS also selected relevant genes within these pathways. For cell

cycle pathway, the selected genes were: Bub1, Mad1, Mad2, BubR1, Bub3, CycD/CDK4,

CDK1, CDK2, CycE, MCM2, MCM5, TP53, c-Myc; for the second pathway, the corre-

sponding selected genes were: CXCR4. and CXCL12; and for the third one: CXCL13,

CXCL10, and IL10. All these genes and pathways are supported by published literature

[83, 90, 90, 91, 92, 93, 94, 95, 96, 97, 98].

Pancreatic ductal adenocarcinoma (PDAC). The data set contains gene expression pro-

files from 39 normal patients and 39 cancer patients. 2781 genes from 54677 probes were

mapped into 67 KEGG pathways. The aim of this analysis was to predict whether a tissue

has the pancreatic cancer or not, and select pathways and genes relevant to the pancreatic

cancer phenotype. We randomly divided the dataset into two equal parts, one for training

and the other for testing. We performed this splitting 50 time, and recorded the output

generated by all methods in each case. The average test results are shown in Figure 2.6.c.

Again, based on a 5 percent significance level, NaNOS shows significant improvement over

other competing methods.

The pathways and genes selected by NaNOS for the PDAC data set are mentioned

below:

The first selected pathway was the TGF-β signaling pathway. The associated related

genes were: IFNG, TNF-α, LTBP1, DCN, TGF-β, TGF-β R1, Smad 4,EMT, BMP2. The
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second identified pathway was extracellular matrix (ECM)-receptor interaction. In this

pathway, NaNOS selected ITGB1, ITGA2, ITGA3, ITGA5, ITGA6 ,COL1A1, COL1A2,

LAMC2 and LAMB3. The third chosen pathway was CAMs. In this pathway, the selected

molecules include CDH2, CDH3, and neural-related molecules (MAG). The relevance of

these pathways and molecules to PDAC can be confirmed from published literature [99,

100, 101, 102, 103, 104].

All the above discussed pathways and genes are shown in Figures 2.7 a b and c.
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Figure 2.6.: Predictive performance on three gene expression studies of cancer.

To demonstrate the robustness of our model to structural noise in pathway database, we

randomly removed 20%, 50%, 80% and 100% edges in each pathway and applied NaNOS

in each case. The average test error is reported in Figure 2.8. Consistent with our intuition,
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Figure 2.7.: Examples of part of identified pathways. (a): the antigen processing and
presentation pathway for DLBCL; (b): the cell cycle pathway for CRC; (c): the TGF-
β signaling pathway for PDAC. Red and black boxes indicate selected and not selected
genes, respectively.
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Figure 2.8.: The predictive performance of NaNOS when the pathway structures are in-
accurate. When more edges are randomly selected and removed from each pathway, the
performance of NaNOS degrades smoothly, but still better than the competing methods.

test error rate increases as more edges are removed from the network. The drop in per-

formance is due to the loss of topological information contained in the network structure.

However, despite this loss of information, NaNOS consistently outperforms all the other

alternative methods including elastic net, the second best method on this dataset. These

observations lead to the following conclusions: (1) NaNOS can enhance its modelling ca-

pability and predictive power by incorporating pathway topology information. (2) NaNOS

is robust to small changes in network topology.

In order to demonstrate the robustness of NaNOS to the choice of prior distributions

on pathway and gene selection probabilities uk and vkj , we examined the performance of

NaNOS over a wide range of prior choices. To cover the whole spectrum of prior choices

we specifically tested NaNOS on a highly sparse prior: Beta(1,10) (mean 0.09 and standard

deviation 0.083); highly dense prior: Beta(10,1) (mean 0.91 and standard deviation 0.083);

and an uninformative or weak prior: (e.g., Beta(0.5,0.5)). The average test error based on

the uninformative prior is 9.15±0.5 (Figure 2.6.c). If we replace this prior with the sparsity

favoring prior, the test error rate slightly jumps to 10.0± 0.4. Next, if we use a dense prior
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that favors dense estimation, then the average test error increases to 11.2 ± 0.5. In the

first case, the decline in performance is due to over sparsification of the results, and in the

second case, dense estimator tends to select all pathways and genes which is obviously

wrong. However, in both cases, NaNOS outperforms other methods as shown in 2.6.c The

above two cases correspond to the extremes of the spectrum of prior choices. If we use

an uninformative or weak sparse prior that lies somewhere in the middle of this spectrum,

NaNOS generates prediction error rates very close to that in 2.6.c. The above examination

leads to the conclusion that NaNOS is robust to the change in prior distributions.
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3 FAST LAPLACE APPROXIMATION FOR SPARSE BAYESIAN

SPIKE-AND-SLAB MODELS

3.1 Motivation

As an intersection of machine learning, statistics, and signal processing, sparse mod-

eling has numerous applications. For developing various sparse models, L1 regularization

has played a central role. L1-type methods not only enjoy provable properties relating to

the estimation optimality and oracle properties [10, 105], but also have the convenience

of using well-developed computational tools from convex optimization to obtain sparse

solutions. As a result, they have been widely used in many applications including fea-

ture selection, compress sensing[106], multi task learning [107], and time-varying network

reconstruction [108].

Despite the popularity of L1 regularization, [109] examined the performance of L1-type

methods and compared them with Bayesian spike-and-slab methods [63], which are rela-

tively under used in the machine learning community. [109] revealed the improved perfor-

mance of the spike-and-slab methods over the L1-type methods—in unsupervised settings.

This improvement probably stems from a selective shrinkage property of the spike-and-

slab prior [59]. Unlike the L1 penalization, (i.e., equivalently, the Laplace prior) which

shrinks all features—regardless of relevance or not—in the same way, the spike-and-slab

prior is a mixture of two components: one component regularizes relevant variables mildly

while the other one shrinks irrelevant variables aggressively (Section 2). Furthermore, the

spike-and-slab method has the advantage of uncertainty quantification in feature selection

which is not possible with L1 methods

In this chapter, we examine the performance of the Bayesian spike-and-slab models for

very high dimensional problems in the supervised learning setting. For very high dimen-

sional problems, existing Monte Carlo methods [59] converge slowly with tens of thou-
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sands of features in data; and the variational Bayes (VB) and expectation propagation (EP)

approaches [60, 60, 61] either need a fully factorized approximation to obtain a linear cost

but at the price of a reduced approximation quality, or have a quadratic cost, making them

impractical for large data. By contrast, the frequentist L1-type methods have fast solvers

developed over years, making them a practical tool. To address the computational issue

associated with the spike-and-slab model, we develop the Fast Laplace Approximation for

Spike-and-slab model. Our approach not only maintains the benefits of the Bayesian treat-

ment (e.g. uncertainty quantification) but also possesses the computational efficiency, and

oracle properties of the frequentist methods.

Specifically, we apply the Laplace approximation to the marginal posterior distribution

of each weight parameter. For the Laplace approximation we need to obtain the mode of

the posterior distribution. To this end, we exploit two efficient optimization methods, the

recently developed GIST method [64] and the popular limited-memory BFGS (L-BFGS)

[65]. First, we present a MAP estimation procedure based on L-BFGS [65] method, de-

noted by FLAS. Second, we present two approaches for joint MAP estimation of model

weights and selection probabilities based on GIST [64] method. The first joint optimization

approach employs an alternating optimization strategy, denoted by FLAS*, with conver-

gence guarantees for both regression and classification, and oracle properties for regression

model. In each iteration of the alternating optimization procedure, the model weights are

optimized through the GIST method. The second joint approach, denoted by FLAS**, per-

forms a direct optimization on the joint space of model weights and selection probabilities,

again using the GIST method. Then we propose an ensemble Nyström approach to calcu-

late the diagonal of the inverse Hessian over the mode to obtain the approximate posterior

marginals in O(knp) time, where n and p are the numbers of samples and features respec-

tively, and k << p. The theoretical analysis of the ensemble method is also provided.

With the posterior marginals of model weights, we use quadrature integration to estimate

the marginal posteriors of selection probabilities and indicator variables for all features,

which quantify the selection uncertainty. While a factorized joint posterior assumption is
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usually not true, VB and EP often adopt it for computational efficiency. By contrast, our

method is free of this assumption, but still enjoys a linear cost in p.

On simulated data, our methods perform feature selection better than or comparable to

the alternative approximate methods, with less running time, and provide higher prediction

accuracy than various sparse methods including VB, EP, automatic relevance determina-

tion, lasso, elastic net and a capped-L1 method (Section 3.5). On large real benchmark

datasets, our methods often achieve improved prediction accuracy compared to alternative

methods, but with a convergence time comparable to frequentist l1 methods. Finally, we

apply our approach to Region-Of-Interest (ROI) study on brain image data with tens of

thousands of features. We find interesting brain regions for face and Chinese character

recognition, many of which are supported by existing literature.

3.2 Spike-and-slab models

We first present sparse linear models with spike-and-slab priors. Suppose we have n

independent and identically distributed samples D = {(x1, t1), . . . , (xn, tn)}, where xi is

the p dimensional feature vector of the i-th sample, and ti is its response. We aim at predict-

ing the response vector t = [t1, . . . , tn]> based on the feature set X = [x1, . . . ,xn]> and

selecting a small number of features relevant to the prediction. For real-world applications,

we often have n� p.

For regression, the Gaussian data likelihood is used:

p(t|X,w, τ) =
∏n

i=1
N (ti|x>i w, τ−1) (3.1)

where w are regression weights, and τ is the precision parameter.

For classification, the logistic likelihood is used:

p(t|X,w) =
∏n

i=1
σ(x>i w)ti [1− σ(x>i w)]1−ti (3.2)

where ti ∈ {0, 1}, w are classifier weights, and σ(a) = 1/(1 + exp(−a)).
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A set of latent binary variables {zj} are introduced to indicate the feature selection:

zj = 1 means the j-th feature is selected; otherwise, it is not. Then a spike-and-slab prior

[59] over w is assigned:

p(w|z) =
∏p

j=1
N (wj|0, r0)(1−zj)N (wj|0, r1)zj , (3.3)

p(zj = 1|sj) = sj (1 ≤ j ≤ p) (3.4)

where r0 and r1 are the variances of the two Gaussian components and sj ∈ [0, 1] repre-

sents the selection probability for the j-feature. We set r1 � r0 so that if the j-th feature

is selected, the prior over wj has a large variance r1 (as a regular L2 penalty in the fre-

quentist framework) and, if not, the zero-mean prior has a very small variance r0, leading

to aggressive shrinkage of the irrelevant feature. We further assign a Beta prior over sj:

p(sj) = Beta(a0, b0). In the experiments, we set a0 = b0 = 1 such that this prior is an

uninformative uniform prior.

3.3 Algorithm

Given high dimensional data, current inference methods such as Gibbs sampling or VB

can suffer from high computational cost. To overcome the computational bottleneck, we

use Laplace’s method to approximate the posteriors of each {wj} and apply the quadrature

integration [110] to estimate the selection probability sj and indicator variable zj .

3.3.1 Laplace approximation

To obtain the Laplace approximation, we need to compute the mode and the second-

order derivative of the log posterior distribution at the mode. We describe two approaches

for computing MAP estimation: marginalized MAP estimation ,and joint MAP estimation.

Details of the two approaches are described below.
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L-BFGS optimization of the marginalized model

For the FLAS method, we marginalize out both z and s. The negative log probability

of the marginalized model is then given by

F(w) = L(w)−
p∑
j=1

log
(1
2
N (wj |0, r1) +

1

2
N (wj |0, r0)

)
, (3.5)

where L(w) is the negative log likelihood for regression or classification. To minimize

the negative log probability, we use the L-BFGS method [65] because of its low compu-

tational and memory cost. As a quasi-Newton method, the L-BFGS method uses last M

function/gradient pairs to approximate the inverse Hessian matrix of the parameters w. Be-

cause M is set to be much smaller than p, often as small as 3-10, the computational cost is

linear in p.

To use L-BFGS, we need to compute the gradient over w:[dF
dw

]
j

=
[dL(w)

dw

]
j

+
r0 + r1g(wj)

r0r1(1 + g(wj))
wj (3.6)

where g(wj) =
√

r1
r0

exp(1
2
( 1
r1
− 1

r0
)w2

j ), and dL(w)
dw

= τX>(Xw − t), for regression and
dL(w)
dw

=
∑N

n=1

(
tn

1+exp(x>n w)
− 1−tn

1+exp(−x>n w)

)
xn, for classification.

Using the gradient in the L-BFGS method, we can compute the mode of wj efficiently.

Then we can approximate the posteriors of sj and zj as explained in Section 3.3.3.

Optimization of the joint model

For the joint MAP estimation approach we only marginalize out z and jointly optimize

over the weights w and the selection probability s. From a Bayesian perspective, we prefer

the FLAS approach because by marginalizing out s, it essentially takes all possible values

of s into account. However, the joint estimation approach can provide a more pronounced

selective shrinkage effect than the first approach. We first describe the alternating opti-

mization (AO) procedure(FLAS*) for joint MAP estimation. We use the (AO) approach

for both regression and classification, and employ GIST [64], which converges to a local
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optimum with a cost per iteration linear in n and p, for finding the minimizer of w dur-

ing the AO iterations. This alternating scheme is guaranteed to converge to a joint local

minimum. Additionally, the alternating optimization approach for regression leads to nice

oracle properties for the w estimator: estimation, sign, and selection consistency.

In joint optimization, we minimize the negative log joint probability:

min
w,s
F(w, s) = min

w
L(w)−min

s
R(w, s) (3.7)

where

R(w, s) =
∑p

j=1
Rj(wj, sj) (3.8)

Rj(wj, sj) = log
(
sjN (wj|0, r1) + (1− sj)N (wj|0, r0)

)
(3.9)

We perform alternating optimization by keeping one variable fixed, and optimize over

the other. We start the optimization procedure by randomly initializing w. Given w as

fixed, F(w, s) is a monotone function of each sj , hence it attains minimum either at sj = 1

or sj = 0. The update of sj is given by:

sj =

 1 if |wj| ≥ a

0 if |wj| < a
(3.10)

where a =

√(
2r0r1
r1−r0

)
log
√

r1
r0

. Given s, the optimization of w has a closed form solution

for regression that is a special case of generalized ridge regression [111]:

wopt = (τX>X + diag(d))−1τX>t (3.11)

where d is such that dj = ( 1
r1

)sj( 1
r0

)1−sj .

As can be seen from the above equations, the update of w requires the inversion of p by

p matrix which has a complexity of O(p3). This is prohibitively expensive at higher dimen-

sions. Therefore, instead of directly using the closed form solution, we employ GIST for

minimizing w. Since the function to be optimized is strictly convex, GIST is guaranteed to

converge to the unique minimum (closed form solution), but with cost per iteration linear in

n and p [64]. In case of classification, we do not have have a closed form update for w, but
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with the logistic loss function the optimization problem is still strictly convex, hence GIST

again converges to the unique minimum. Below we briefly describe the GIST updates:

GIST iteratively minimizes F(w, sl) with respect to w, where l is the index for the AO

iterations, using the following step [64]:

w(k+1) = argmin
w

L(w(k)) + 〈∇L(w(k)),w −w(k)〉

+
ρk

2
||w −w(k)||2 +R(w, sl). (3.12)

where w(k) is the value of w at step k, and ρ(k) is the stepsize at step k. Due to the form

of R(w, sl), the minimization problem can be further cast into p independent univariate

proximal operator problems [64]:

w
(k+1)
j = argmin

wj

1

2
(wj − u(k)j )2 +

1

ρ(k)
R(wj, s

l
j) (3.13)

where j = 1, . . . , p, and u(k)j = w
(k)
j −∇L(w

(k)
j )/ρ(k). To solve the univariate optimization

problem, we calculate the value ofwj for the following two cases. For the first case, sj = 1,

the function has its minimal at w(k+1)
j = b1, where b1 =

u
(k)
j

1+1/(r1ρ(k))
; for the second case,

sj = 0, the function has its minimal at w(k+1)
j = b0, where b0 =

u
(k)
j

1+1/(r0ρ(k))
.

Next we present the FLAS** approach by directly applying GIST on the joint space of

w and s. By directly exploring the joint space, this approach is expected to perform joint

MAP estimate efficiently. For FLAS**, GIST iteratively minimizes (3.7) with respect to w

and s using the following two steps [64]:

w(k+1) = argmin
w

L(w(k)) + 〈∇L(w(k)),w −w(k)〉

+
ρk

2
||w −w(k)||2 +R(w,Φ(w)) (3.14)

Φ(w) = argmin
s

R(w, s) (3.15)

s(k+1) = argmin
s

R(w(k+1), s) (3.16)
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As before, the minimization problem can be cast into p independent univariate proximal

operator problems [64]:

w
(k+1)
j = argmin

wj

1

2
(wj − u(k)j )2 +

1

ρ(k)
R(wj, φ(wj)) (3.17)

φ(wj) = argmin
sj

R(wj, sj) (3.18)

s
(k+1)
j = argmin

sj

Rj(w
(k+1)
j , sj) (3.19)

where j = 1, . . . , p, and u(k)j = w
(k)
j −∇L(w

(k)
j )/ρ(k).

We again calculate the value of wj for two cases: for the first case, sj = 1 and the

update of wj is given by:

wj =

 b1 if |b1| > a

sign(b1)a if |b1| ≤ a
(3.20)

where b1 =
u
(k)
j

1+1/(r1ρk)
.

For the second case, sj = 0 and the updates for wj are:

wj =

 b0 if |b0| < a

sign(b0)a if |b0| ≥ a
(3.21)

where b0 =
u
(k)
j

1+1/(r0ρk)
. Then, comparing the minimum values for these two cases and taking

the smaller one, we can easily obtain the new w
(k+1)
j and s(k+1)

j . Note that, when wj = a,

sj can be either 1 or 0, which gives the same function values.

Estimation, Selection and Sign consistency for regression: Similar to the estima-

tion consistency proof given in [69], and using the approach presented in [30] for ridge

regression, the above estimator can be shown to have an estimation consistency property:

the estimated weight vector approaches the true vector in the l2 norm sense as n → ∞.

Let us assume that w∗ is the true coefficient vector of the regression model. Define

S∗ = {j : w∗j 6= 0}, and Sopt = {j : woptj 6= 0}. Let S denote the space in which

S∗ lies. Selection consistency implies that S∗ = Sopt, and sign consistency requires

sign(w∗) = sign(wopt), where sign(a) = 1, 0,−1 for a > 0, a = 0, a < 0 respectively,
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sign operator is applied component wise. In addition to using the following assumption,

we will use some of the assumptions employed in the previous chapter:

Assumption 3 [69]. There exist finite constant c3 > 0 such that (w∗j )
2 < c3 for all

j = 1, , · · · p.

Assumption 4. For parameters r0, r1, assume that there exist finite positive constants

rlow and rup such that rlow ≤ r0, r1 ≤ rup.

Assumption 5. Let x1,x2, ...,xn be a sample from p dimensional Gaussian distribution

N (0, Ip) with mean 0 and unit covariance matrix. Then, for sufficiently large n with p

fixed, X>X → nIp. Let ζ = X>ε then there exist a finite positive constant ζ0 such that

|ζi| < ζ0 for all i = 1, ..., p.

Assumption 3 is needed to make sure that the true weight vector does not grow without

bound. This is required because in theorem 3.3.1 the true weight vector changes with

sample size.

Similar to assumption 2 in the previous chapter, assumption 4 only requires a compact

support for the parameters.

Assumption 5 is a strong assumption, but it can find its application, for example, in

compressed sensing where the user has control over the design of the data matrix X.

The form of the argument presented in the following theorem is exactly similar to the

one given in [69], but it applies to our case as it is.

Theorem 3.3.1 Given that 1, 2, 3, and 4 are satisfied and p ∝ nα with α > 0, then

P (||wopt −w∗||2 > ξn) ≤ c0 exp{− log(n1−αξn)} (3.22)

for some positive finite constant c0 and ξn. Assume that ξn ∝ n−α
∗

for some α∗ > 0. Then

if 0 < α∗ < α < 1/2, P (||wopt − w∗||2 > ξn) → 0 as n → ∞, and hence wopt has

estimation consistency..
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Proof.

Let diag(d) = D

wopt −w∗ = −(τX>X + D)−1Dw∗+

τ(τX>X + D)−1X>ε

which implies

E(||wopt −w∗||22) ≤ 2||(τX>X + D)−1Dw∗||22+

2E(||τ(τX>X + D)−1X>ε||22)

≤ 2||(τX>X + D)−1||22||Dw∗||22+

2τ 2λ−2min(τX>X + D)E(ε>X>Xε)

≤ 2r−20 λ−2min(τX>X + D)||w∗||22+

2τ 2λ−2min(τX>X + D)E(ε>X>Xε)

≤ 2λ−2min(τX>X + D)

(r−2low||w
∗||22 + τTr(X>X))

≤ 2λ−2min(τX>X + D)

(r−2low||w
∗||22 + pλmax(X

>X)τ)

≤ 2r−2low||w∗||22 + 2τpnc2

(τnc1 + r−11 )2

≤ 2n−1r−2lowpc3 + 2τpc2
τ 2nc21

≤ 2n−1r−2lowpc3 + 2τmaxpc2
τ 2minnc

2
1

Now by using Markov inequality

P (||wopt −w∗||22 > ξn) ≤ 2n−1r−2lowpc3 + 2τmaxpc2
τ 2minnc

2
1ξn

≤ 2r−2lowpc3 + 2τmaxpc2
τ 2minnc

2
1ξn
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for n > 1. Let c4 =
2r−2

lowc3+2τmaxc2
τ2minc

2
1

, then with the assumption that p ∝ nα, the right hand

side becomes c4p(ξnn)−1 = c4c5n
α−1ξ−1n , where c5 is a positive constant. Then,

P (||wopt −w∗||2 > ξn) ≤ c0 exp{− log(n1−αξn)}

where c0 = c4c5. If ξn ∝ n−α
∗ , then n1−αξn = n1−(α+α∗). Then under condition 0 < α∗ <

α < 1/2, the term n1−(α+α∗) → ∞ as n → ∞. Therefore if 0 < α∗ < α < 1/2, the right

hand side will approach 0, which completes the proof.

Theorem 3.3.2 Under assumption 4 and 5, wopt → w∗ as n→∞ with p fixed.

Proof.

wopt = nτ(nτIp + D)−1w∗ + τ(nτIp + D)−1X>ε

As n → ∞, nτ(nτIn + D)−1 → Ip, and τ(nτIn + D)−1 → diag(0p). Therefore, since

|ζi| < ζ0 for all i = 1, ..., p, wopt → w∗ as n→∞.

The results of theorem 3.3.2 imply strong consistency, but since the shrinkage of coef-

ficients is not absolute, selection and sign consistency does not immediately follow from

the results of the theorem. Our estimator is selection and sign consistent only in the limit.

In order to enforce absolute shrinkage, we make use of another assumption:

Assumption 6. Assume that their exist a positive finite constantM such that |w∗i | ≥M ,

i ∈ S∗. Also assume a small positive constant δ such that 0 < δ < M

Let wc
opt = e ◦wopt, where ei = 1 if |wopti| ≥M − δ, and 0 otherwise.

Corollary 3.3.2.1 Under assumptions 4,5, and 6, wc
opt will be sign and selection consistent

as n→∞ with p fixed.

Proof.

Based on theorem 3.3.2, there exist a finite positive integer n0 such that for n > n0,

|wopti| ≥M − δ for i ∈ S∗, and |wopti| < M − δ for i /∈ S∗. This completes the proof.

Sparsity condition for the case p > n: [112] describes the geometrical properties

of the generalized ridge regression (GRR) estimator for the case p > n. In [112] it was
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shown that the GRR estimator is constrained to lie in a subspace of dimensions at most

n. Since the MAP estimator of our AO algorithm is a special case of GRR estimators,

the above mentioned property has direct implications for our approach. In order to have

accurate estimation, the true weight vector needs to be sparse, and it should not have more

than n non zero coefficients. For non sparse settings, there are no guarantees for accurate

estimation.

Convergence of Alternating Optimization: Since both the subproblems in the AO

iterations have a unique minimizer, the alternating optimization scheme for our joint model

satisfies the Existence and uniqueness (EU) assumption. Below we will describe the EU

assumption, and the theorem that states the convergence of AO algorithm to the joint local

minimum.

Existence and uniqueness (EU) assumption [113]: Let ψ1, ψ2 ⊆ Rp; and let Ψ =

ψ1×ψ2. Assume v = (w, s)>, w, s ∈ Rp. Let gw(w) = F(w, s0), and gs(s) = F(w0, s),

where w0 and s0 are some fixed values. If v ∈ Ψ, then gw(w) has a unique global mini-

mizer for w ∈ ψ1, and gs(s) has a unique global minimizer for s ∈ ψ2.

Theorem 3.3.3 [113]. Suppose the EU assumption is satisfied by F . Let v = (w, s)>,

and Ψ = ψ1 × ψ2, where ψ1 and ψ2 are compact subsets of Rp. Let {v(r+1) = T (v(r))}

denote the sequence of AO iterations begun at v(0) ∈ Ψ, and denote the fixed points of T

as Ω = {v ∈ Ψ : v = T (v)}. Then:

(i) If v∗ ∈ Ω, then v∗ = (w∗, s∗)> satisfies,

w∗ = argmin
w∈ψ1⊂Rp

gw(w)

s∗ = argmin
s∈ψ2⊂Rp

gs(s)

(ii) F(v(r+1)) ≤ F(v(r)), equality if and only if v(r) ∈ Ω;

(iii) either: (a) ∃v∗ ∈ Ω and r0 ∈ R so that v(r) = v∗ for all r ≥ r0; or (b) the limit of

every convergence subsequence of {v(r)} is in Ω.
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3.3.2 Marginal posterior of weights

Standard Laplace approximation requires to invert the Hessian matrix of the negative

log probability at the mode, via which we can obtain a joint approximate posterior. For

prediction and feature selection, however, we only need marginal posterior of each weight

wj , which only requires the diagonal entry of the inverse Hessian. Nevertheless, we still

have to invert the Hessian matrix, which has time complexity of O(p3) and is unacceptable

for large problems. To resolve this issue, we resort to Nyström method. Specifically, let us

denote the mode of the model weights by w̃ and consider the Hessian matrix in regression

case first,

H = τX>X + diag(v)

where vj = −d2 log(p(wj))

dw2
j

∣∣∣
wj=w̃j

, and p(wj) is the marginalized prior for wj (after marginal-

izing both sj and zj). Then the Nyström approach is used to approximate X>X: A subset

of columns of X are sampled to form a low-rank n×k matrix Xk = [fi1 , . . . , fik ], where fit

is the it-th column of X; and X>X ≈ X>Xk(X
>
k Xk)

†X>k X where (·)† is the generalized

inverse operation. The inverse of Hessian is then approximated by

H−1 ≈ H̃−1, H̃ = τX>Xk(X
>
k Xk)

†X>k X + diag(v).

Applying Woodbury matrix identity [114], we can readily reduce the complexity toO(nkp):

H̃−1 = diag(v)−1 − diag(v)−1X>Xk(τ
−1X>k Xk

+ X>k Xdiag(v)−1X>Xk)
−1X>k Xdiag(v)−1. (3.23)

Since we can choose k � p, the inversion cost will still be linear in p. We can then read

off the diagonal of H̃−1 to calculate the marginal posterior approximation of each wj: a

Gaussian with mean mj being the posterior mode w̃j and variance σ2
j equal to the j-th

entry of the diagonal of H̃−1.

For classification, the Hessian matrix has a slightly different form: H = X>diag(b)X+

diag(v), where bi = σ(x>i w̃)(1 − σ(x>i w̃)). We can first multiply diag(
√

b) into X, i.e.,

X̃ = Xdiag(
√

b) and obtain H = X̃>X̃ + diag(v). Then we follow the same procedure

as in the regression case to calculate the Laplace approximation for each wj .
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Using Nyström approach to estimate the diagonal of inverse Hessian will inevitably

bring some approximation error. To improve accuracy, a simple ensemble approach is

proposed. Specifically, we first sample d disjoint sets of columns of X, each set is of the

same size k. For each set r, we can calculate an approximate inverse Hessian H̃−1r . The

estimation of the j-th diagonal entry of inverse Hessian is then obtained by

H−1(j, j) ≈ 1

d

d∑
r=1

H̃−1r (j, j). (3.24)

Using Taylor expansion and error bounds of Nyström approximations[115], we can prove

that the proposed ensemble approach can have a smaller estimation error bound. First we

present the theoretical results for ensemble Nyström method presented in [115] which will

be used in our theoretical analysis for our ensemble approach.

Theorem 3.3.4 [115, 116]. Let Z1, · · · , Zm be a sequence of random variables sampled

uniformly without replacement from a fixed set of m + u elements Z, and let φ : Zm → R

be a symmetric function such that for all i ∈ [1,m] and for all z1, · · · , zm ∈ Z and

z
′
1, · · · , z

′
m ∈ Z, |φ(z1, · · · , zm) − φ(z1, · · · , zi−1, z

′
i, zi+1 · · · , zm)| ≤ c. Then for all

ε > 0, the following inequality holds:

Pr[φ− E[φ] ≥ ε] ≤ exp[
−2ε2

α(m,u)c2
] (3.25)

where α(m,u) = mu
m+u−1/2

1
1−1/(2max{m,u})

Theorem 3.3.5 [115]. Let H̃ denote the rank-q Nystrom approximation of Hessian H

based on k columns sampled uniformly at random without replacement from H , and Hq

the best rank-q approximation of H. Then, with probability at least 1 − δ , the following

inequality holds for any sample of size k:

||H− H̃||F ≤ ||H−Hk||F + [
64q

k
]
1
4nHmax

[
1 +

√
n− k
n− 1/2

1

β(k, n)
log

1

δ

dH
max/H

1
2
max

] 1
2

(3.26)

= D0
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where q ≤ k, β(k, n) = 1 − 1
2max{k,n−k} , Hmax is the maximum diagonal entry of H, and

dH
max = maxij

√
Hii + Hjj − 2Hij .

Theorem 3.3.6 [115]. Let S be a sample of dk columns drawn uniformly at random with-

out replacement from Hessian H, decomposed into d subsamples of size k, S1, · · · , Sd. For

r ∈ [1, d], let H̃r denote the rank-q Nystrom approximation of Hessian H based on the

sample Sr, and let Hq denote the best rank-q approximation of H. Then, with probability

at least 1− δ , the following inequality holds for any sample S of size dk and for any µ in

the simplex ∆ and H̃ens =
∑d

r=1 µrH̃r:

||H− H̃ens||F ≤ ||H−Hq||F + [
64q

k
]
1
4nHmax

[
1 + µmaxp

1
2√

n− dk
n− 1/2

1

β(dk, n)
log

1

δ
dH
max/H

1
2
max

] 1
2

(3.27)

= D1

where β(k, n) = 1− 1
2max{dk,n−dk} and µmax = maxdr=1µr

Next we present results for our own ensemble approach.

Theorem 3.3.7 Define Ω = {A ∈ Rp×p|A � 0, λmin(A) ≥ c, λmax(A) < ∞}. Assume

Hessian H and rank-q Nystrom approximation of H based on k samples, H̃, both belong

to Ω. Consider a function f(A) = e>j A−1ej,A ∈ Ω. Then, ‖∇f(A)‖F ≤ L, (1− η)H +

ηH̃ ∈ Ω ∀ η ∈ [0, 1], and with probability at least 1− δ,

|H−1(j, j)− H̃−1(j, j)| ≤ L ·D0 (3.28)

where c is a small positive constant, and L = p/c2. ej is a standard basis vector with 1 in

j-th coordinate and 0’s elsewhere, and D0 is the Nyström error bound based on Frobenius

norm in theorem 3.3.5 [115].

Proof.

The derivative of f(A) can be calculated by

∇f(A) = −A−1eje
>
j A−1.
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Now since A � 0 and consequently A−1 � 0, ‖A‖F =
√∑p

i=1 λ
2
i and ‖A−1‖F =√∑p

i=1
1
λ2i

. Since λmax(A) < ∞ and λmax(A−1) < ∞, ‖A‖F < ∞ and ‖A−1‖F < ∞

=⇒ ‖∇f(A)‖F < ∞. Now ‖∇f(A)‖F ≤ ‖A−1‖2F =
∑p

i=1
1
λ2i
≤ p(1/λ2min(A)) ≤

p/c2 = L.

Since f(A) = e>j A−1ej for A ∈ Ω, we can write H−1(j, j) = f(H). Now, let us

consider |H−1(j, j)−H̃−1(j, j)| = |f(H̃)−f(H)|. We define ∆ = H̃−H. Then f(H̃) =

f(H+∆). Now for any 0 ≤ η ≤ 1, we have (H+η∆) = ((1−η)H+ηH̃) � 0, and since,

based on Weyl’s inequality, λmax((1− η)H + ηH̃) ≤ (1− η)λmax(H) + ηλmax(H̃) <∞,

and λmin((1 − η)H + ηH̃) ≥ (1 − η)λmin(H) + ηλmax(H̃) ≥ (1 − η)c + ηc = c,

H + η∆ ∈ Ω. This implies that ‖∇f(H + η∆)‖F ≤ L for any 0 ≤ η ≤ 1. Since
df(H+η∆)

dη
= tr(∇f(H + η∆)> ·∆), it is defined and bounded for all η ∈ [0, 1], hence it

is continuous with respect to η. Therefore, by mean value theorem, there exist a number

t ∈ [0, 1] such that:

f(H + ∆) = f(H) + tr(∇f(H + t∆)> ·∆).

Thus by cauchy schwarz inequality,

|f(H + ∆)− f(H)| ≤ ‖∇f(H + t∆)‖F · ‖∆‖F ≤ L · ‖∆‖F .

Note that ‖∆‖F is the Nyström approximation error for X>X and therefore we can readily

apply the Nyström error bound D0 [115].

Theorem 3.3.8 Define set S to be a collection of dk columns of Hessian H sampled uni-

formly at random without replacement, and partitioned into d subsets of size k, S1, · · · , Sd.

Assume Hessian H and d rank-q Nystrom approximations of H, {H̃1, . . . , H̃d} where H̃r

denotes the rank-q Nystrom approximation of Hessian H based on the subset Sr, all belong

to Ω, then with probability at least 1− δ,

|H−1(j, j)− 1

d

d∑
r=1

H̃−1r (j, j)| ≤ L ·D1 (3.29)

where D1 is the error bound for ensemble Nyström based on Frobenius norm in theorem

3.3.6 [115].
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If we use uniform weighting for ensemble Nystrom, D1 < D0 [115] and hence the ensem-

ble approach for diagonal entry estimation of H−1 has a smaller error bound.

Proof.

First, we have

|H−1(j, j)− 1

d

∑
r

H̃−1r (j, j)| =1

d
|
∑
r

f(H)− f(H̃r)|

≤ 1

d

∑
r

|f(H)− f(H̃r)|.

Following (3.29), we have

|H−1(j, j)− 1

d

∑
r

H̃−1r (j, j)| ≤ L · 1

d

d∑
r=1

‖∆r‖F

where ∆r = H̃r−H. From the proof of Theorem 3 in [115], we can see that the error bound

for ensemble Nyström is obtained by calculating the bound for
√

1
d

∑d
r=1 ‖∆r‖2F (note that

the error for our ensemble approach is upper bounded by 1
d

∑d
r=1 ‖∆r‖F ). Therefore, using

Jensen’s inequality, we can directly apply the resulting error bound D1 to obtain

|H−1(j, j)− 1

d

∑
r

H̃−1r (j, j)| ≤ L ·D1.

Proposition 1 Assume that λmax(X>X) <∞, and ∀j c ≤ vj <∞. Then both Hessian H

and any approximate Hessian H̃ based on Nyström method belong to Ω, and hence satisfy

theorems 3.3.7 and 3.3.8.

Proof.

Since τX>X � 0 and diag(v) � 0, H = τX>X + diag(v) � 0. Now by Weyl’s

inequality, λmax(τX>X+ diag(v)) ≤ λmax(τX
>X) +λmax(diag(v)) <∞; λmin(τX>X

+ diag(v)) ≥ λmin(τX>X) + λmin(diag(v)) ≥ c, λmin(τX>X) ≥ 0. Therefore, H ∈ Ω.

Using theorem 3.5 in [117] we can conclude that τX>Xk(X
>
k Xk)

†X>k X � 0, therefore

H̃ � 0. Based on theorem 3.8 in [117] λmax(τX>Xk(X
>
k Xk)

†X>k X) ≤ λmax(τX
>X) <

∞, and λmin(τX>Xk(X
>
k Xk)

†X>k X) ≥ 0. Therefore, combined with Weyl’s inequality,

λmax(H̃) <∞, and λmin(H̃) ≥ c. Therefore, H̃ ∈ Ω.

For the joint model, we approximate the marginalized distribution based on its mode,

i.e., p(w, t,X) ≈ p(w, ŝ, t,X) where ŝ is the mode of s, and vj = 1/r1 or vj = 1/r0.
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If the value of r1 is such that c ≤ 1/r1, Hessian H and any approximate Hessian H̃ will

satisfy theorems 3.3.7 and 3.3.8 for the joint model.

To empirically demonstrate the effectiveness of the ensemble method, we estimate the

diagonal of the inverse of synthetically generated symmetric positive definite matrices de-

fined as [118]:

aij =

 1
|i−j|2 if i 6= j

1 +
√
i if i = j

(3.30)

Figs 3.1 a and b show the RMSE plots for p = 1000, and p = 2000 respectively. The results

clearly demonstrate that ,if k remains fixed, the increase in the number of ensembles, d,

decreases the error value.
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Figure 3.1.: Root mean square error of the diagonal of the inverse matrix.

3.3.3 Posteriors moments of sj and zj

Given the approximate marginal posterior of wj , we can estimate marginal posterior

moments of sj—the probability of selecting the j-th feature. Specifically, we first invert

the conditional relationship between sj and wj based on Bayes rule,

p(sj|wj) =
sjN (wj|0, r1) + (1− sj)N (wj|0, r0)

1
2
N (wj|0, r1) + 1

2
N (wj|0, r0)

. (3.31)

Then the marginal posterior of sj can be computed by

p(sj|t,X) =

∫
p(sj|wj)N (wj|mj, σ

2
j )dwj (3.32)
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where N (wj|mj, σ
2
j ) is the estimated posterior marginal of wj . Then, the posterior mean

and variance of sj are calculated by

E[sj] =

∫
2N1(wj) +N0(wj)

3(N1(wj) +N0(wj))
q(wj)dwj (3.33)

Var[sj] =

∫
3N1(wj) +N0(wj)

6(N1(wj) +N0(wj))
q(wj)dwj − E2[sj] (3.34)

whereNg(wj) (for g = 0, 1) and q(wj) are the shorthand forN (wj|0, rg) andN (wj|mj, σ
2
j )

respectively.

A similar procedure can be used to calculate the posterior moments of zj—the selection

indicator of j-th feature; the poster mean and variance of zj are given by

E[zj] =

∫
N1(wj)

N1(wj) +N0(wj)
q(wj)dwj (3.35)

Var[zj] =

∫
N1(wj)

N1(wj) +N0(wj)
q(wj)dwj − E2[zj]. (3.36)

The integrations to calculate the means and variances of sj and zj do not have a closed-

form solution. So we apply Gauss-Hermite quadrature method [110] to obtain an esti-

mation. Since the integration is one dimensional and smooth, the quadrature method is

computationally efficient and accurate: With only 5 quadrature nodes (or function evalu-

ations), we can estimate E(sj), E(zj), Var(sj), and Var(zj) with high accuracy (e.g. the

numerical difference from the true integration is often on the order of 10−4).

The over all time complexity of our algorithms is O(dknp), d, k << p, including

estimating the posterior mean and variance of w, s, and z. The linear cost makes our

algorithm scalable for high dimensional data.

3.4 Related work

[69] proposed a MAP estimation of spike-and-slab models with delta spikes. They

approximate the delta spike by a continuous bound via an elegant majorization and mini-

mization (MM) algorithm. They also provide consistency results for their MAP estimate.

We, on the other hand, assume continuous spikes to make use of efficient continuous op-

timization strategies. Secondly, while they only focus on the MAP estimate, we provide



59

a full Bayesian inference strategy, and also show oracle properties for our MAP estimate.

Another closely related work is proposed by [62]. There are few differences between our

approach and their method. First, while they employ a rescaled spike-and-slab model with

a bimodal continuous prior on the variances of regression weights, we do not perform-

ing any rescaling, and use a two point discrete prior for the variances. Secondly, they

present estimation and selection consistency results for the posterior mean of the regres-

sion weights in a Gibbs sampling framework, whereas we provide consistency results for

the MAP estimate in a Laplace approximation settings. Gibbs sampling framework is not

suitable for high dimensional settings, because the sampler will be very slow to converge.

Our approach, on the other hand, utilizes highly efficient optimization strategies, and hence

is scalable to high dimensions.

EP and VB approximations have been developed to conduct Bayesian inference on the

spike-and-slab model. In [61], EP was applied to learn the spike-and-slab model for multi-

task learning, where the weights w were factorized over multiple tasks. For one task, the

computational complexity is O(n2p) when n < p (or O(np2) when n > p). Further, [60]

imposed a fully factorized approximate posterior of w in EP and achieved a cost of O(np)

with n < p in the classification context. Similarly, a cost ofO(np2) orO(n2p) was spent for

the VB approximation with fully factorized posterior assumption [107, 119]. In addition,

to estimate the hyperparameters, such as selection probabilities, [107] used variational EM

to obtain the point estimate, while [119] used importance sampling.

Unlike previous methods, we neither assume the joint posterior p(w, z, s|X,y) to have

a factorized form such as
∏

j q(wj, zj, sj), nor try to find such an approximate posterior

close to the true posterior (in terms of KL divergence). Instead, we start from Laplace ap-

proximation and calculate the approximate posterior marginal of each wj separately. Then

we use these marginal posteriors to quantity the selection uncertainty, including selection

probabilities and indicators. In this way, our method not only enjoys a linear cost in p,

but also avoids the strong factorization assumptions which could hurt the inference qual-

ity [119].
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However, similar to the existing approximate approaches including VB, EP and MM,

our method is not able to recover the multimodal nature of the true posterior of spike-

and-slab models. Our Laplace based method, may trap in a local mode and result in poor

approximations like VB and MM. EP can alleviate this problem by summarizing the in-

formation from all the modes, but it still returns a unimodal approximation. Moreover, EP

has issues in convergence guarantees; due to its fixed point iteration nature, the algorithm

can diverge; some heuristic tricks such as damping can be used to avoid divergence [120],

but without assurance. In summary, the posterior multimodality for spike-and-slab models

remains an open problem for efficient approximate inference algorithm design.

3.5 Experiments
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Figure 3.2.: Simulation results, including the prediction accuracy, the F1 score of feature
selection, and the root mean squared error for the posterior mean estimation of {sj} and
{zj}. Results are averaged over 50 runs.
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Table 3.1.: The training time (seconds) on simulated data (p = 1000). Results generated by
our best method are highlighted in red. In case an alternative method generates best result,
it is highlighted in blue.

(a) Regression

method 60 80 100 120
capped L1 0.0054± 0.0049 0.0705 ±0.0015 0.0103± 0.0002 0.0108±0.0003

lasso 0.0312± 0.0100 0.0313± 0.0028 0.0321 ± 0.0043 0.0329±0.0044
elastic net 0.0360 ± 0.0204 0.0346 ± 0.0045 0.0352 ± 0.0047 0.0349±0.0038

ARD 0.03 ±0.042 0.17 ±0.017 0.20±0.0093 0.67 ±0.0088
VB 2.4161± 0.0702 2.3999 ± 0.0795 2.4794 ± 0.0773 2.4404±0.0470
VB* 2.7544± 0.0413 3.0118 ±0.0241 2.6012 ±0.0324 2.7795±0.0564
EP 0.9345 ± 0.0341 1.0478 ±0.0195 1.1160 ± 0.0058 1.1468±0.0078

EP* 0.505± 0.0102 0.681 ±0.0119 1.047 ± 0.0086 1.936±0.0091
MM 2.5230 ±0.1036 1.1047±0.1209 0.4314 ±0.1551 0.5282±0.0864

FLAS** 0.0664 ±0.0055 0.0642 ±0.0041 0.0704 ±0.0045 0.0855± 0.006
FLAS* 0.1419 ± 0.0107 0.1321 ±0.0091 0.1718 ±0.0139 0.1923±0.0084
FLAS 0.0140± 0.0015 0.0154 ± 0.0003 0.0216 ±0.0007 1.4526±0.0438

(b) Classification

method 60 80 100 120
capped L1 0.0180±0.017 0.0499±0.0001 0.0427±0.0004 0.0559±0.0005

lasso 0.1033 ± 0.0185 0.1289 ±0.0157 0.1555 ± 0.0316 0.1821 ±0.0277
elastic net 0.08690 ± 0.0268 0.1009 ± 0.0095 0.1163 ± 0.0182 0.1356 ±0.0195

ARD 0.06 ±0.011 0.07± 0.023 0.15± 0.032 0.45±0.0091
VB 10.3312± 0.1850 11.2570 ± 0.1144 12.3317± 0.1364 13.3366±0.1470
VB* 0.0812± 0.087 0.1570 ±0.017 2.8915 ±0.01102 3.0194±0.0221
EP 1.1165± 0.0303 1.1695 ± 0.0257 1.2400 ± 0.0132 1.3090±0.0076

EP-L 0.0132± 0.0085 0.0581± 0.0081 0.0598± 0.0092 0.1631±0.0045
FLAS** 0.0344± 0.02 0.0736 ± 0.02 0.0794± 0.03 0.1929 ±0.06
FLAS* 0.0696± 0.0026 0.0832± 0.0046 0.1047±0.0052 0.1594±0.0077
FLAS 0.0097 ± 0.0002 0.0111 ± 0.0003 0.0139 ± 0.0002 0.0152±0.0005
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3.5.1 Simulation

First we examine our method in a simulation study. The study aims to evaluate our

algorithm in three aspects: (i) the predictive performance when p � n, (ii) the capability

to select relevant features and (iii) the accuracy of the estimated posteriors of sj and zj .

Data Generation. The feature dimension p is set to 1000. We assume 20 out of the 1000

features are relevant to the response. The irrelevant features are generated independently

from the standard Gaussian distribution. The relevant features are generated from a multi-

variate Gaussian distribution with a block diagonal covariance matrix. The covariance

matrix consists of two 10 by 10 sub-covariance matrices on the main diagonal. In each

sub-covariance matrix, the diagonal elements are set to 1 and the off-diagonal elements

are set to 0.81. Therefore, the 20 features are generated from two different groups. The

weights w are set as

w = [0, . . . , 0︸ ︷︷ ︸
980

,v,v/
√

10,−v,−v/
√

10] (3.37)

where v = [5, 5, 5, 5, 5]. Given the sampled X, for regression the response vector t is

generated by t = Xw + ε, where each εi is sampled independently from the standard

Gaussian. For classification, we generate each response by ti = −1 · δ(x>i w < 0) +

1 · δ(x>i w > 0), where δ(x) = 1 if x = 1 and 0 otherwise. We fix the number of test

samples to 200 and vary the number of training samples n from {60, 80, 100, 120}. For

each n, we randomly generate 50 datasets and report the average results. To evaluate the

accuracy of posterior inference, we run another simulation with similar sampling procedure

but the feature dimension p is set to 100. The reason we choose a relatively small number of

features is that we need to evaluate the accuracy of posterior inference results via comparing

with Gibbs sampling, which converges slowly for high dimensional problems.

Competing methods. We compare our approach with alternative approximate infer-

ence algorithms for the spike-and-slab model, including VB, EP, and MM [69] that only

provides MAP estimation. We implement two versions of EP algorithms, where for re-

gression, one is based on continuous spikes proposed by [61](EP) and the other is based

on delta spikes (EP∗); for classification, one is used by [121] and is similar to [61] (and



63

thus we also denote it by EP); the other has a better time complexity [60], and we denote

it by EP-L. Both EP and EP∗ have the cost O(np2), while EP-L uses fully factorized pos-

terior assumption for model weights to obtain a linear cost O(np). For VB, we use two

versions: [122](VB) having cubic cost O(p3) but without a factorized posterior assumption

over model weights, and [107](VB∗) using a fully factorized posterior assumption with re-

duced cost O(np2). For all these methods, including Gibbs sampling, we apply the same

model in Section 2 where the selection probabilities {sj} are not integrated out. Because

VB and EP only provide point estimates of the selection probabilities {sj}, we modify

them to obtain their posteriors using an approach similar to [123]. We also test other pop-

ular sparse learning methods, including ARD, lasso, elastic net, and capped L1. We use

the Glmnet1 software package for lasso and elastic net (the package performs the tuning

of hyper parameters through cross validation), and the Gist2 software package for capped

L1. For these software packages, we use the default settings (e.g. initial value settings and

maximum iteration number). For our methods we use the solution of L2 regularization as

initialization. The variances for spike-and-slab components, i.e., r0 and r1 are chosen from

cross validation. The grids used are r0 = [10−6, 10−5, 10−4, 10−3] and r1 = [1 : 1 : 5]. We

use the same cross validation grid for competing methods. In the step of using Nyström

approach to calculate Laplace approximation, we sample 5 columns for each Nyström ap-

proximation and repeat 5 times for ensemble estimation of the inverse Hessian diagonal.

Results. Figures 3.2 a and e show the predictive performance of all the methods for

regression and classification. Our methods consistently outperform the alternative methods

apart from ARD whose performance becomes better than FLAS** beyond n = 100 for

regression case. Figures 3.2 b and f report the feature selection accuracy based on the F1

score, i.e., the harmonic average of the sensitivity and the specificity of the selected feature

set. To compute the F1 score, we select features when the posterior mean of the selection

indicators, E(zj), is over 0.5 for Bayesian spike-and-slab models, or when model weights

|wj| > 0.001 for other methods. As we can see, our methods achieve higher F1 scores for

classification and comparable F1 score than the best alternatives in regression.
1www-stat.stanford.edu/˜tibs/glmnet-matlab
2www.public.asu.edu/˜jye02/Software/GIST/

www-stat.stanford.edu/~tibs/glmnet-matlab
www.public.asu.edu/~jye02/Software/GIST/
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To examine the quality of the estimated uncertainty for feature selection, we calculate

the posterior mean of each selection probability sj as well as the selection indicator zj , and

compare them with the ground truth obtained by Gibbs sampling with 100, 000 samples.

We calculate the root mean square error to evaluate the difference from the ground truth

and report the results in Figure 3.2 c, d, g, and h. It is quite evident from the plots, that our

methods consistently obtain better uncertainty estimation than competing methods, except

in the classification case in which they are slightly worse than EP and EP-L in recover-

ing the posteriors of the selection indicators. This confirms the inference quality of our

algorithms.

Finally, the running time of all the algorithms is reported in Table 3.1 a and b. It turns

out that for both regression and classification, our methods converge faster than EP and

VB, and are comparable to L1 type methods. Therefore, our methods not only achieve

superior Bayesian inference quality, but are computationally as efficient as the frequentist

approaches.

Table 3.2.: Regression training data sets sizes

datasets GSE5680 10k corpus House-census tied Yearprediction dlbcl
n 120 3308 22784 750 463715 240
p 31041 150358 138 999 90 752

Table 3.3.: Classification training data sets sizes

datasets classic hitech k1b reviews sports ng3sim ohscal la12
n 709 230 234 406 858 299 1116 627
p 41681 10080 21819 18483 14870 15810 11465 31472
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Table 3.4.: Root mean square error on regression datasets (the first 6 rows) and classifica-
tion error rates (%) on large binary classification datasets (the last 8 rows). The results are
averaged over 10 runs. Results generated by our best method are highlighted in red. In case
an alternative method generates best result, it is highlighted in blue.

dataset lasso elast net capped L1 ARD EP-L FLAS** FLAS* FLAS
gse5680 0.107± 0.003 0.107± 0.003 0.107± 0.003 0.136± 0.005 0.72± 0.001 0.122± 0.002 0.111± 0.002 0.089± 0.002

10k corpus 0.382± 0.002 0.382± 0.002 0.382± 0.002 0.382± 0.002 0.385± 0.003 0.383± 0.003 0.383± 0.003 0.372± 0.003

tied 0.656± 0.013 0.627± 0.014 0.656± 0.013 0.532± 0.017 1.11± 0.2 0.719± 0.012 0.632± 0.017 0.656± 0.013

House 1.576± 0.011 1.578± 0.017 1.587± 0.012 0.435±0.0006 0.430± 0.0002 0.561± 0.015 0.441± 9.5e-4 0.425±0.002

Year 0.296± 0.009 0.293± 0.007 0.307± 0.004 0.306± 0.006 0.32± 0.002 0.248± 0.0005 0.232± 5.04e-4 0.234± 0.0001

dlbcl 1.76± 0.026 1.75± 0.027 1.75± 0.028 2.38± 0.063 1.61± 0.050 1.60± 0.047 1.56± 0.043 1.60± 0.047

classic 6.69± 0.002 5.94± 0.002 4.14± 0.002 18.2± 0.002 8.94± 0.002 5.76± 0.002 4.2± 0.002 4.20± 0.001

hitech 23.2± 0.005 21.4± 0.004 21.3± 0.003 28.5± 0.019 25.2± 0.001 19.4± 0.003 19.9± 0.002 19.9± 0.003

k1b 5.44± 0.005 4.91± 0.004 4.42± 0.004 23.0± 0.013 7.94± 0.004 5.03± 0.005 4.73± 0.005 4.74± 0.005

reviews 7.68± 0.003 6.47± 0.002 6.09± 0.001 35.4± 0.05 8.28± 0.002 5.93± 0.002 5.55± 0.001 5.54± 0.001

sports 3.72± 0.001 3.15± 0.0008 3.25± 0.0009 24.1± 0.032 10.9± 0.008 2.78±0.001 2.77±0.0006 2.77±0.007

ng3sim 19.3± 0.005 16.2± 0.003 15.4± 0.003 21.3± 0.006 14.5± 0.002 13.7± 0.003 13.7± 0.002 13.6± 0.002

ohscal 13.8± 0.001 13.7± 0.001 13.8± 0.001 37.3± 0.02 13.7±0.002 11.9± 0.001 13.05±0.001 13.1± 0.001

la12 13.6± 0.002 12.5± 0.002 12.2± 0.002 30.1± 0.025 13.2± 0.002 11.1± 0.002 11.04± 0.001 11.1± 0.001

Table 3.5.: Root mean square error on regression datasets (the first 3 rows) and classifi-
cation error rates (%) on binary classification datasets (the last 4 rows) after dimension
reduction. The results are averaged over 10 runs. FLAS is applied to reduce the data di-
mensions before the test. Results generated by our best method are highlighted in red. In
case an alternative method generates best result, it is highlighted in blue.

dataset EP VB FLAS** FLAS* FLAS
gse5680 0.191 ± 0.008 0.238 ± 0.009 0.195±0.008 0.101±0.002 0.197±0.008

10k corpus 0.382 ± 0.002 0.382 ± 0.002 0.381 ± 0.002 0.381 ± 0.002 0.381± 0.002

tied 0.5787± 0.013 0.7983 ± 0.011 0.5868 ± 0.013 0.6571 ± 0.013 0.5877±0.013

hitech 24.31 ± 0.046 22.48 ± 0.006 19.64 ± 0.004 20.07 ± 0.004 19.38 ± 0.004

k1b 9.37 ± 0.003 9.34 ± 0.002 5.4 ± 0.006 4.82 ± 0.005 5.91 ± 0.006

reviews 10.2 ± 0.0004 10.1 ± 0.004 6.39 ± 0.002 5.55 ± 0.002 6.16 ± 0.002

ng3sim 21.3 ± 0.006 24.37 ± 0.007 14.2 ± 0.004 14.07 ± 0.002 14.65 ± 0.005
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3.5.2 Large real benchmark data

We then examine all the algorithms on 14 published large real datasets, including 8

classification datasets3 and 6 regression datasets: Diffuse large B cell lymphoma (DLBCL)

[82], GSE5680 [124], Yearprediction4(Year), House-census5(House), 10K corpus [125]

and TIED6. Among the 14 datasets, the feature numbers are often at tens of thousands,

while the sample sizes are often at hundreds or thousands. Detailed information about

these datasets is provided in tables 3.2 and 3.3.

We compare our algorithms with lasso, elastic net, capped L1, ARD and EP-L. Note

that we implement lasso and elastic net based on GIST, because the Glmnet software used

in simulation is no longer feasible. For the intractable EP and VB methods—the ones with

computational cost O(p3) or O(np2), we first reduce the dimensionality of the datasets, by

running FLAS and pruning all features with posterior mean selection probability less than

0.5, and then perform the comparison. We randomly split each dataset into two parts—

10% samples for training and the rest for test—for 10 times and run all the methods on

each partition. In each run, we use 10-fold cross validation on the training data to tune

the free parameters. Table 3.4 lists the average prediction accuracy and standard errors

on the original datasets. As we can see, in all datasets, except for Tied in regression, and

classic and k1b in classification, our algorithms obtain smaller root mean square errors

or classification error rates. Table 3.5 shows the prediction accuracy on the datasets with

reduced dimensionality; that is for the comparison with intractable EP and VB algorithms.

It turns out that our methods perform better than or comparable to the intractable EP and

VB methods; however, our methods have the scalability advantage in high dimensional

problems. We also examine the average training time of all the methods and it turns out

that our approach spends comparable time to the best l1 type method, and less time than EP

and ARD approaches. Table 3.6 shows all the training convergence times. All algorithms

were initialized using l2 regularization based solution.

3www.shi-zhong.com/software/docdata.zip
4archive.ics.uci.edu/ml/datasets.html
5www.cs.toronto.edu/˜delve/data/census-house/desc.html
6www.causality.inf.ethz.ch/repository.php

www.shi-zhong.com/software/docdata.zip
archive.ics.uci.edu/ml/datasets.html
www.cs.toronto.edu/~delve/data/census-house/desc.html
www.causality.inf.ethz.ch/repository.php
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3.5.3 Application on region-of-interest analysis for brain image data

Finally, we apply our algorithm to carry out Region-of-Interest (ROI) analysis on a brain

image data. The data is collected through an fMRI scan of 28 subjects that were exposed to

three types of stimuli: human face, Chinese character, and common object. Every subject

was stimulated by 24 objects, 8 for each stimuli type. To each stimulus, a subject was

exposed 9 times. The whole brain area was divided into 31285 voxels and the activities of

31285 voxels at each time were recorded. Therefore the datasets, for each stimulus, are of

size 28 by 31285× 9, which are very high dimensional. The voxels can be further divided

into disjoint groups, named ROIs. An ROI defines a specific region of the brain. In this

data, we have 116 ROIs defined in a template, which describes the coordinates of voxels

and their mappings to each ROI.

We use spike-and-slab models to determine ROIs that are relevant to face recogni-

tion and Chinese character recognition. Specifically, we use voxels as features to predict

whether the subject is doing face recognition or looking at common objects. This is a

binary classification problem, so we can use spike-and-slab models and apply our infer-

ence algorithm to select the related voxels. Then based on the selected voxels, we can

determine the related ROIs: we calculate the L2 norm of the weight vector of voxels in

a ROI, which is named by relevance weight, to evaluate the relatedness of the ROI to the

task; ROIs with biggest relevance weights are considered to be most relevant. Similarly,

we construct another binary classification problem to determine related ROIs for Chinese

character recognition.

Fig 3.3 shows the top 8 ROIs selected by our algorithm FLAS as the most discrimi-

nant regions in the brain to differentiate between human face stimuli vs. base (common

objects) or Chinese character stimuli vs. base (common objects). Several research studies

have shown highly similar activated regions between human face stimuli and Chinese char-

acter stimuli due to the similar properties of these two tasks, such as omni-presentation,

expertise from childhood and upright orientation [126, 127]. Consistently, some common

activated regions are selected in both stimuli by our model. Specifically, we select middle
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temporal gyrus, fusiform and frontal region as the most relevant areas in both human face

and Chinese character stimuli. These results are supported by several references. For mid-

dle temporal gyrus, it shows a connection with both face recognition and word meaning

accessing [128]. The lesion in the middle temporal gyrus might cause alexia and agraphia

for Kanji characters [129]. For fusiform, Liu et al.[126, 127] conducted a similar fMRI

research stimulated by both human face and Chinese character. They showed that both

face and Chinese character stimuli activated bilateral fusiform with great similarity, espe-

cially in the right hemisphere, which was consistent with our selection of both fusiform-R

and fusiform-L as the most relevant, and fusiform-R showing a stronger relevance than

fusiform-L, on average, in both cases. For the frontal region, Liu et al. demonstrated that

it was highly activated in both human face and Chinese character stimuli [127]. Also, Tan

et al. [130] studied the activated brain regions by the precise and vague meaning of Chi-

nese characters. Their fMRI results showed that the left frontal regions were much more

strongly activated than the right frontal regions [130]. Both Liu and Tan’s results suggested

the frontal regions to be related to human face recognition and Chinese character access-

ing. In addition to the common regions, our results also identify specialized regions for

either human face recognition or Chinese characters stimuli. For instance, the occipital

region is selected in human face stimuli. An important region called occipital face area

(OFA) is located in the occipital region. OFA is mainly in charge of representing face parts

and coordinates with fusiform face area (FFA) to perceive human faces [131]. In contrast,

precuneus-R and precentral-L are selected as discriminant regions only in Chinese charac-

ter stimuli, which is consistent with the findings of [130].

In addition, we compare the prediction accuracy of FLAS with capped L1 in the two

classification problems.The average error rates and the standard error for a 5-fold cross

validation are {FLAS: 0.1900±0.0153, cappedL1 :0.1959±0.0158}, and {FLAS: 0.2113±

0.0204, capped L1 :0.3832 ± 0.011} respectively. Improved performance is evident from

the results.
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Figure 3.3.: Relevance weights of the top eight ROIs in nine time frames.
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4 SUMMARY

Spike-and-slab priors have been very useful in sparse Bayesian learning due to their selec-

tive shrinkage effect. However, classical formulation of spike-and-slab priors does not ex-

plicitly take into account the correlation structure information between variables provided

by various domains. Additionally, Bayesian inference of classical spike-and-slab models

is computationally challenging due to intractable posterior distribution. Consequently, ap-

proximate inference techniques have to be employed at the cost of reduced quality of the

posterior. In this dissertation we have proposed a general formulation of the spike-and-

slab priors that incorporates domain based correlation structure information, and presented

a principled framework for efficiently performing joint group and feature selection from

a set of highly correlated variables. The dissertation also presents a Bayesian inference

strategy for classical spike-and-slab models that assumes minimal structural constraints on

the joint posterior, but still enjoys time complexity linear in the number of variables. The

conclusion and future work are summarized as follows:

• In chapter 2 we proposed a new sparse Bayesian approach, called NaNOS, for joint

network and node selection. NaNOS is a sparse hybrid Bayesian model that inte-

grates conditional and generative components in a principled Bayesian framework

[66]. The conditional component includes the generalized spike-and slab prior that

induces network level sparsity via the selective shrinkage effect, and imposes struc-

tural constraints on each network through the use of graph Laplacian matrices. For

the generative component, we use the classical spike and slab prior to choose relevant

nodes in selected networks. This hybrid approach allows our model to combine the

selective shrinkage of the classical spike-and-slab prior with the network constraint

regularization effect, and hence gives our model the capability to not only select rel-
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evant networks, but also induces structured sparsity, guided by domain knowledge,

within selected networks.

– In the current model, an edge between two nodes in a network represents some

association or correlation between variables. We can extend this idea to directed

networks where an edge not only represents a relation between the two nodes,

but also carries information about the direction of influence. For example, in

genomic data applications, transcription factors are the regulatory genes that

have a direct influence on some other set of genes, but not the other way round.

Capturing the relation between transcription factor and its set of regulated genes

through an undirected graph will not be accurate. In order to accomplish this

task, we can construct a Laplacian matrix for directed graphs by using the ap-

proach given in [132], and incorporate it into our modelling framework.

• In chapter 3 we proposed a new scalable sparse Bayesian inference procedure for the

spike-and-slab model. Our approach achieves linear time complexity without impos-

ing factorization constraints on the joint posterior. From a frequentist perspective,

our approach has nice asymptotic consistency properties for linear regression. Our

alternating optimization strategy for the joint MAP estimation also possesses conver-

gence guarantees. Additionally, it provides uncertainty quantification as a Bayesian

method. To some extent, we can view it as a hybrid of frequentist and Bayesian

treatment, enjoying the benefits of both worlds. Our empirical results suggest that

the nonconvex spike and slab model can yield improved selection and predictive ac-

curacy over the classical convex l1-type methods, and show better or comparable

performance with respect to alternative approximate Bayesian inference methods.

– One possible future direction is to extend the model to perform selection at the

group level.

– Secondly, we can further enhance the computational complexity of our joint

optimization approaches by parallelizing the closed form updates of the GIST

algorithm.
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– FLAS method addresses the computational bottleneck, but since it employs the

classical spike-and-slab prior, it does not incorporate domain based information

about the correlation structure between variables into the learning process. An-

other possible direction for future work is to integrate NaNOS approach with

the FLAS framework. A combination of these two approaches will lead to a

very efficient technique for spare Bayesian learning.
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[11] Stéphane G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

[12] Yagyensh Chandra Pati, Ramin Rezaiifar, and P. S. Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with applications to wavelet
decomposition. In The 27th Asilomar Conference on Signals, Systems and Comput-
ers, pages 40–44. IEEE, 1993.



75

[13] David L. Donoho and Jain M. Johnstone. Ideal spatial adaptation by wavelet shrink-
age. Biometrika, 81(3):425–455, 1994.

[14] Shane F. Cotter, J. Adler, R. Durga Rao, and Kenneth Kreutz-Delgado. Forward
sequential algorithms for best basis selection. In IEE Proceedings on Vision, Image
and Signal Processing, volume 146, pages 235–244. IEE, 1999.

[15] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decom-
position by basis pursuit. SIAM review, 43(1):129–159, 2001.

[16] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[17] Emmanuel. J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, 2006.

[18] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[19] Jon F. Claerbout and Francis Muir. Robust modeling with erratic data. Geophysics,
38(5):826–844, 1973.

[20] Howard L. Taylor, Stephen C. Banks, and John F. McCoy. Deconvolution with the
l1 norm. Geophysics, 44(1):39–52, 1979.

[21] Bruno A. Olshausen et al. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[22] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis
set: A strategy employed by v1? Vision Research, 37(23):3311–3325, 1997.

[23] Michael S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience,
5(4):356–363, 2002.

[24] Michael Elad and Michal Aharon. Image denoising via sparse and redundant rep-
resentations over learned dictionaries. IEEE Transactions on Image Processing,
15(12):3736–3745, 2006.

[25] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman.
Non-local sparse models for image restoration. In IEEE 12th International Confer-
ence on Computer Vision, pages 2272–2279. IEEE, 2009.

[26] Laurent El Ghaoui, Guan-Cheng Li, Viet-An Duong, Vu Pham, Ashok N. Srivastava,
and Kanishka Bhaduri. Sparse machine learning methods for understanding large
text corpora. In Conference on Intelligent Data Understanding, pages 159–173,
2011.



76

[27] Yash Deshpande and Andrea Montanari. Sparse pca via covariance thresholding. In
Advances in Neural Information Processing Systems, pages 334–342, 2014.

[28] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Jour-
nal of the Royal Statistical Society, Series B, 67:301–320, 2005.

[29] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101(476):1418–1429, 2006.

[30] Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number
of parameters. Annals of Statistics, 37(4):1733, 2009.

[31] Jim E. Griffin and Philip J. Brown. Hierarchical sparsity priors for regression mod-
els. arXiv preprint arXiv:1307.5231, 2013.

[32] Jim E. Griffin and Philip J. Brown et al. Some priors for sparse regression modelling.
Bayesian Analysis, 8(3):691–702, 2013.

[33] Jason Palmer, Kenneth Kreutz-Delgado, Bhaskar D. Rao, and David P. Wipf. Varia-
tional EM algorithms for non-gaussian latent variable models. In Advances in Neural
Information Processing Systems, pages 1059–1066, 2005.
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