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Abstract

Lung cancer occurs when cells belonging to the lung grow out of control, disturbing regular cells
and making it difficult for the body to function correctly. This type of cancer is the second most
common in men and women.

In terms of treatments, the evolution of personalized medicine changed the therapeutic strategy
from classical chemotherapy and radiotherapy to genetic modification targeted therapy. However,
a meticulous tumor characterization is a fundamental requirement for these types of treatment.

Firstly, chest radiographs and computed tomography disclose lung cancer and later the diag-
nosis is validated by extorting lung tissue in a biopsy to characterize the tumor. However, a biopsy
is associated with some issues including discomfort and pain for the patient and the probability of
surgical difficulties, suggesting the importance to explore non-invasive methods.

Gene mutation predictive machine learning or deep learning models based on medical images
obtain a vast amount of features from visual aspects to a model that can predict the mutated
gene, presenting the benefits of being non-invasive, fast and easy to use. Beforehand, image
features extracted from cancer nodules have been used to create predictive models for this problem.
However, results from the literature hint that features from lung structures external to the nodule
might be relevant to foretell the mutation status in lung cancer.

Multiple Instance Learning interprets the relationship between a label and the bag of instances
responsible for it. Only the bag label is known, and the goal is to train the model to be able to
classify new bags. This technique already proved to work well in the detection of diseases using
medical images as bags.

This study aims to examine how Multiple Instance Learning can be applied to identify the
presence of lung patterns in CT scans so that, in the future, these patterns help predict the mutated
gene in lung cancer in a non-invasive and understandable way.

The detected lung patterns in this study were Emphysema, Satellite Nodules In Primary Lesion
Lobe, Nodules In Contralateral Lung, Fibrosis and Ground Glass, being Fibrosis and Emphysema
the ones with more outstanding results, reaching an AUC of 0.89 and 0.72, respectively.

Keywords: Multiple Instance Learning, Feature Engineering, Lung Cancer, Lung Patterns Detec-
tion
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Resumo

Cancro do pulmão ocorre quando as células pertencentes ao pulmão se começam a desenvolver
sem controlo, perturbando as células saudáveis e tornando difícil para o corpo operar corretamente.
Este tipo de cancro é o segundo mais frequente tanto em homens como mulheres.

Em termos de tratamento, a evolução de medicina personalizada melhorarou a estratégia
terapêutica das tradicionais quimioterapia e radioterapia para terapia direcionada à modificação
genética. Contudo, o tumor e as suas imediações têm que ser meticulosamente caracterizadas para
estes tipos de tratamento.

Cancro do pulmão é primeiramente detetado em radiografias e tomografias computorizadas
do peito e, mais tarde, o diagnóstico é confirmado extraindo uma amostra de tecido do pulmão
numa biópsia para caracterizar o tumor. Contudo, a biópsia está associada a alguns problemas in-
cluindo desconforto e dor para o paciente, vários riscos clínicos e a possibilidade de complicações
cirúrgicas, aumentando a urgência de procurar métodos não invasivos.

Modelos de machine learning para prever mutações de genes baseados em imagens médicas
obtêm uma vasta quantia de características a partir de aspetos visuais para um modelo que con-
segue prever o gene mutado, apresentando os benefícios de ser não invasivo, rápido e fácil de usar.
Anteriormente, características da imagem extraídas de nódulos de cancro foram usadas para criar
modelos preditivos para este problema. Contudo, estudos recentes sugerem que características de
estruturas do pulmão externas ao nódulo poderão ser relevantes para prever o estado da mutação
no cancro do pulmão.

Multiple Instance Learning interpreta a relação entre uma etiqueta e um saco de instâncias por
ela responsáveis. Só a etiqueta dos sacos é conhecida e o objetivo é treinar o modelo de modo a ser
capaz de classificar novos sacos. Esta técnica já provou ser eficaz na deteção de doenças usando
imagens médicas.

Este estudo pretence examinar como Multiple Instance Learning pode ser aplicado na identifi-
cação da presença de padrões pulmonares em scans CT para que, no futuro, estes padrões possam
ajudar a prever o gene mutado no cancro do pulmão numa maneira não invasiva e compreensível.

Os padrões do pulmão detetados neste estudo foram Emphysema, Satellite Nodules In Pri-
mary Lesion Lobe, Nodules In Contralateral Lung, Fibrosis e Ground Glass, sendo que Fibrosis
e Emphysema foram as deteções com melhores resultados, atingindo um AUC de 0.89 e 0.72,
respetivamente.

Keywords: Multiple Instance Learning, Feature Engineering, Cancro do Pulmão, Deteção de
Padrões do Pulmão
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Chapter 1

Introduction

Lung cancer is the foremost determinant of cancer death amongst both men and women, killing a

vaster number of people than colon, breast, and prostate cancers combined. This kind of cancer

is the second most frequent in both men (losing to prostate cancer) and women (losing to breast

cancer). For smokers, the chance of developing lung cancer is considerably higher than for non-

smokers, however, if we consider both for an overall view, the risk of a man developing lung

cancer is approximately 1 in 15, while for a woman, the probability is around 1 in 17. This disease

is most common in older people, being 70 the average age of individuals when diagnosed [2].

Smoking is distinctly the foremost jeopardy agent for lung cancer, believed to cause approx-

imately 80% of this disease mortality. Other danger factors individuals can avoid include sec-

ondhand smoke, exposure to radon and asbestos, taking certain dietary supplements and drinking

water containing high levels of arsenic. Factors like previous radiation therapy to the lungs, air

pollution, personal or family history of lung cancer are the risk factors that, unfortunately, people

cannot avoid [2].

Non-Small-Cell Lung Carcinoma (NSCLC) serves roughly 80% to 85% of lung cancers. Its

histological subtypes are Adenocarcinoma, Squamous Cell Carcinoma, and Large Cell Carcinoma,

which start from various kinds of lung cells but are all filed under NSCLC due to their similarities

in treatment and diagnosis. Considering individuals diagnosed between 2008 and 2014, people

who have NSCLC present a 23% chance of 5-year-survival, which means that those who have

NSCLC cancer are about 23% as likely as those who do not have that cancer to live for at least

5 years after being diagnosed. Small-Cell Carcinoma (SCLC) accounts for around 10% to 15%

of all lung cancers and, considering people diagnosed between 2008 and 2014, individuals who

have that type of lung cancer present a 6% chance of 5-year-survival. Less than 5% of all lung

tumors are Lung Carcinoid Tumors [2]. Epidermal Growth Factor Receptor (EGFR) and Kristen

Rat Sarcoma Viral Oncogene Homolog (KRAS) are the most frequently mutated genes that spring

lung cancer of type Adenocarcinoma [45].
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2 Introduction

1.1 Motivation

Surgery, chemotherapy, radiotherapy and target therapies are the most prevalent treatments for

Lung Cancer [2]. The growth of the latter has changed the therapeutic approach from conven-

tional chemotherapy and radiotherapy to genetic modification targeted therapy [44]. The first

targeted medicines for the treatment of lung cancer targeted the EGFR and were Small-Molecule

Tyrosine Kinase Inhibitors (TKIs). In cases with mutated EGFR, treatments with targeted TKIs

are related to higher radiographic response rates than regular chemotherapy and a more prolonged

progression-free survival (PFS), which represents the length of time that a patient lives with the

disease but it does not get worse [2] [35]. Nevertheless, in the case of non-EGFR mutated lung can-

cer, if some TKIs are administered, the subject will undergo a shorter PFS in contrast to chemother-

apy [35].

Lung cancer is usually noticed on chest radiographs and computed tomography (CT) scans

and, subsequently, the diagnosis is verified by extracting units of lung tissue in a biopsy to charac-

terize the tumor. Nevertheless, a biopsy presents a lot of concerns. The main one is the hardship

and ache that causes to the patient. Second of all, the quantity of tissue obtained may not be suf-

ficient but the procedure cannot be repeated due to the likelihood of surgical complications. Since

the tumor develops simultaneously with the disease, the biopsy becomes obsolete. Additionally,

some tumors are hard or impracticable to reach. Finally, biopsies are prolonged and expensive.

These problems establish a need to look for non-invasive techniques to identify and examine the

tumor growth various times during the treatment [38].

Models based on medical images extract a large number of features from visual characteristics

and can directly predict the mutated gene. Image biomarkers present the perks of being non-

invasive, fast and easy to use, moreover medical images are accessible at a low price since they

are a part of the clinical protocol [7]. Predicting gene mutation status by CT image analysis can

help the experts to determine the best treatment for each patient, avoiding the biopsy [53].

A nodule is a cluster of tumoral cells and the Computer-Aided Diagnosis (CAD) models are

usually based on it. However, previous results from the project “Lung Cancer Screening - A non-

invasive methodology for early diagnosis” suggest that the most relevant information to predict

the mutation status in lung cancer might be the combination of features from the nodule and other

lung structures [45]. Semantic features from external structures to the nodule may give relevant

information to the machine learning models and it may improve the accuracy of diagnosis.

1.2 Objectives

The goal of this dissertation is to investigate how Multiple Instance Learning can be applied to

detect the presence of malicious lung patterns in CT scans. In future work, these detected lung

patterns will be used to create predictive models that will be capable of foretelling more precisely

EGFR and KRAS mutation status. Those models will have the advantage of being non-invasive

and being understandable by physicians since known lung patterns are employed.
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1.3 Contributions

The contributions of this dissertation include:

• A predictive model of Emphysema, Fibrosis, Ground Glass Component and Nodules pres-

ence using Multiple Instance Learning in lung CT scans;

• Elucidate how the decision of the Multiple Instance Learning bag generator influences the

pattern detection result;

• Clarify how the election of the sampling technique affects the pattern detection result.

1.4 Document Structure

This document is broken into seven chapters. This chapter explains the motivation, identifies

the objectives and lists the contributions of the project. The second chapter clarifies the medical

concepts required to understand the problem. The Multiple Instance Learning chapter aims to

explain this novel technique, as well as give some insights on how to perform its sampling on some

of its models. The Literature Review chapter analysis the current state of the art and identifies what

is missing. The Data Description and Preparation chapter describes the datasets used in the project,

exposes the lung patterns to be detected selection criteria, describes the processing of the CT scans

and explains the lung segmentation algorithm used. The sixth chapter describes the methodology

that was employed, its results and the respective discussion. Lastly, the seventh chapter gives an

overview of this dissertation conclusions.
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Chapter 2

Lung Cancer

Lung cancer is a type of cancer that ignites in the lungs when cells develop uncontrollably, dis-

turbing healthy cells and making it difficult for the body to function correctly. There are three

main histological types of lung cancer: Non-Small-Cell Lung Carcinoma (80% to 85%), Small-

Cell Carcinoma (10% and 15%) and Lung Carcinoid Tumors (less than 5%). NSCLC is the most

studied one since it is the most frequent and it is divided into three histological subtypes: Ade-

nocarcinoma, Squamous Cell Carcinoma, and Large Cell Carcinoma, being Adenocarcinoma the

most frequent [2].

2.1 Mutated Genes

The most commonly mutated genes in Adenocarcinoma are EGFR and KRAS [45]. The cell

surface receptor EGFR is responsible for cell growth and survival [24]. Its mutations promote

EGFR permanent activation, which contributes to uncontrolled cell division [47]. The worldwide

incidence of this mutation differs according to ethnicity, gender, and tobacco exposure [32]. KRAS

mutations are a distinct cause of tumor growth. Although this is highly related to smoking, it is

also detected in a substantial proportion of never-smokers [42].

The most frequent treatments for Lung Cancer are surgery, chemotherapy, and radiotherapy

and, more recently, target therapies that depend on the mutated gene [2]. The evolution of the latest

has improved the therapeutic strategy from traditional chemotherapy and radiotherapy to genetic

modification targeted therapy. By determining their mutation status, it is possible to provide a

targeted therapy for each patient. This separation can be called personalized medicine and permits

distinguishing suitable treatment among chemotherapy, surgery, radiation and targeted therapy

since lung cancer patients often exhibit diverging clinical results even with an identical tumor

stage [27].

5
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2.2 Biopsy

The universal practice to characterize the gene mutation is to obtain units of tumor tissue in a

biopsy [45]. However, this method comes with several issues:

• Invasive surgical extraction that causes discomfort, pain, and risk for the patient;

• Multiple clinical risks that are intrinsic in surgeries and the probability of surgical compli-

cations;

• Some tumors are difficult or impossible to access;

• The amount of tissue extracted may not be enough for all the required tests;

• The tumor evolves along with the disease making the biopsy outcome obsolete;

• Biopsies are time-consuming and have a high financial cost.

These raise an urgency to seek for non-invasive methods to identify and observe the tumor evolu-

tion multiple times during the treatment [38]. This need is emphasized in the growth of the liquid

biopsy approach to detect the mutated gene in cancer. Liquid biopsy is non-invasive since it em-

ploys blood samples to evaluate tumor genomics. Nonetheless, this procedure is not completely

developed, not being applied without the traditional biopsy yet [25].

2.3 Medical Imaging

Medical imaging is one of the main agents that have enlightened medical science and treatment,

being frequently employed in clinical method for oncologic diagnosis by computing the properties

of human tissue noninvasively [4]. It offers the perks of being fast, easy to use and available at

a low price [7]. Since imaging is already regularly repeated during treatment, it has the potential

to supervise therapy continuously and control the rise and growth of the disease or its response to

therapy [4].

CT is the strongest medical imaging approach for advanced discovery of tumors since it can

distinguish several tissues depending on their varying gray levels [8]. It is regularly used and it’s a

vital part of all phases of cancer supervision, including prediction, screening, biopsy guidance for

detection, treatment planning, treatment guidance, and treatment response evaluation [31].

Prior researches have shown that EGFR mutations are highly related to female patients and in

Asian cultures [61]. However, deciding the type of treatment by clinical characteristics alone is

incompetent [48]. Foretelling gene mutation status by CT imaging can improve the determination

of the most suitable treatment for each subject, dodging biopsy [53]. Gene mutation predictive

models established on medical images extort a vast number of features from visual characteristics

to a model that can directly predict the mutated gene [7].
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2.4 Visual Features

Studies have shown that the classification of different features of the lung CTs may give an ad-

ditional understanding of the existence and development of tumors to predict prognosis, in other

words, valuable knowledge to personalize lung cancer treatment [48] [56].

The CT feature extraction method can lean on the investigation of quantitative features, qual-

itative features or both. Lung characteristics captured in CT images are described as qualitative

when using radiologist-defined semantic features and quantitative when using computer-derived

“radiomic” features [51] [56].

Semantic features are regarded as qualitative considering they are scored according to the

observations of experts. These characteristics can define a tumor’s traits, internal structure, and

external environment, being limited by what is noticeable by the eye [27] [56].

Some of the most common lung patterns are the presence of Emphysema, Fibrosis, Ground

Glass Component, and Nodules. Emphysema involves the injury of the alveoli, being larger air

sacs rather than multiple small ones. The quantity of oxygen that enters the bloodstream is reduced

due to the decrease in the surface area of the lungs. Pulmonary Fibrosis takes place when lung

tissue becomes damaged, scarred and thick, making it more challenging for the lungs to function

correctly [3]. Ground Glass Component is a confined space of blurred lung opacity [28]. Finally,

a Pulmonary Nodule is a round or oval regular shape enveloped in the lung parenchyma that has a

defined edge and high density [33] [54].The visual manifestations of these patterns are shown in

Figure 2.1.

Figure 2.1: Visual manifestations of the most common lung patterns on CT scans. From De-
peursinge et al. [17].
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Lung features can be used by CADs to detect the gene mutation status. CADs are methods

that support experts in the analysis of medical images, they can fuse components of artificial

intelligence, computer vision, radiology, and pathology.

2.5 Summary

NSCLC is the most prevalent histological type of lung cancer and therefore the most investigated.

The mutated gene dictates the treatment for lung cancer and biopsy is the current technique to

identify it, however, this approach causes pain and discomfort to the patient.

Medical imaging is used repeatedly during cancer diagnosis and treatment and it reveals lung

visual characteristics with no need for surgery. CT imaging is the most powerful type of medical

imaging since it can differentiate human tissues and disclose quantitative and qualitative lung

features.



Chapter 3

Multiple Instance Learning

The Multiple Instance Learning (MIL) strategy was described for the first time in 1997 by Diet-

terich et al. [18] and it was inspired by the Drug Activity Prediction problem. This problem aims

to classify a molecule as "active" or "inactive" based on its binding with a particular protein. Each

molecule can have many distinct shapes, being recognized as active if at least one of its forms is

active, and inactive if all of its configurations are inactive [19]. This concept is further explained

in Section 3.1, some methods to represent a MIL problem are shown in Section 3.2, a sampling

technique is detailed in Section 3.3 and some of its models are described in Section 3.4.

3.1 The Concept

Since in some cases it is more fitting to classify the group rather than the individual but the latter

can deliver more detailed information that the group as one cannot, MIL deciphers the relationship

between a label and the set of instances responsible for it [6]. A bag is composed of various

instances which are feature vectors. Solely the bag label is known, in other words, the instance

classification stays unknown [29] [60]. The premise is that the bag label is positive if at least one

of the instances in the bag is positive (the target concept), and negative if all the instances in the

bag are negative (background instances). The intent is to train the model to be able to classify new

bags that it has never seen before [19] [60]. This strategy can be regarded as a generalization of

the Traditional Supervised Learning if we consider each example a bag with only one instance [6].

Figure 3.1 displays an example of a bag labeling process.

9
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Figure 3.1: Illustration of a test bag classification employing the knowledge obtained by the train
bags. The orange and yellow instances are in positive bags but not in negative bags so they were
considered positive. Because the test bag contains at least one instance regarded as positive, this
bag was labeled positive.

There are two options to represent an image to give it as a training example to a Traditional

Supervised Learning model with the goal to detect the existence of an object that only appears in

a small area of the picture. The first option is to describe it as a unique feature vector instance as

shown in Figure 3.2 A, however, the uniformization would dilute the information present on the

relevant areas. On the other hand, the image can be split in multiple training examples classified

with the image label as exhibited in Figure 3.2 B, but this would inject wrong information in the

model since we would be saying some parts of the image have the said object when they do not.

Luckily, the MIL approach (Figure 3.2 C) can provide detailed information without misleading

the model, knowing that not every instance in a positive bag has the object but also knowing that

every instance contains relevant information to help solve the problem [29] [60].

The formal definition of MIL is as follows. If χ stands for the instance space and considering

a dataset {(X1,y1), ..,(Xi,yi), ..,(XN ,yN)} with N training bags, where a bag is represented by

Xi = {xi1, ..,xi j, ..,xin} ⊆ χ , its number of instances by ni, and its label by yi ∈ Y = {−1,+1}, the

purpose is to classify new bags employing a learner. xi j ∈ χ is an instance with d features and

it is represented by [xi j1, ..,xi jl, ..,xi jd ]. Xi is a positive bag, hence yi = +1, if there is an index

g ∈ {1, ..,ni} so that xig is a positive instance even though its value is unknown; otherwise Xi is a

negative bag with yi =−1 as its label.
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Figure 3.2: Illustration that presents the contrast in the learning of a model using Traditional
Learning and Multiple Instance Learning. Considering an image to detect the orange fruit and
that the features of each example are the mean RGB values, there are three options to represent
it. Options A and B are Traditional Supervised Learning, while option C is Multiple Instance
Learning. (A) One Example One Instance: Since a lot of detail was lost the model may not be
accurate classifying other examples. (B) Multiple Examples One Instance: The model learned
incorrectly that some examples have the desired object, which may decrease its future accuracy.
(C) One Example Multiple Instances: The model knows that the object is present in the set but
not in all of its instances, this increases the probability of better accuracy in the future.

3.2 Bags Generators

The Bag Generation step is fundamental in MIL and it can even be regarded as more relevant than

the choice of the model for the quality of the final results [58]. The bag generator chooses how to

split an image into regions, which are called instances, to constitute a bag [37] [55] [58]. It can

also be responsible for the feature extraction function that holds the decision of how to represent

the bag instances by a feature vector [55].
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There are two types of bags generators: Segmentation and Non-Segmentation as illustrated

with examples in Figure 3.3. The difference is that the Segmentation Bag Generators have in

consideration the image semantic components, like its objects, to generate the instance, where the

Non-Segmentation Bag Generators have a fixed strategy independent of the content of the image

in question [55].

Figure 3.3: Example of a Segmentation Bag Generator and a Non-Segmentation Bag Generator.
Segmentation Bag Generator: Uses the main colors of the image to segment its objects: the
oranges, the white plate, the green fabric and the black background. Other images would have a
different number of instances with distinct shapes. Non-Segmentation Bag Generator: Splits
the image into 5× 5 pixels. Other examples would have the same number of instances with the
same shape.

If a perfect tool to recognize objects was available, a Segmentation Bag Generator would select

the objects in the picture and the model would only have to calculate the union between the objects

in the positive bags that are not present in the negative bags. On the other hand, if a model able

to deal with billions of instances existed, a Non-Segmentation Bag Generator would only need

to generate every possible pixel combination, and the model would certainly have all the needed

information [37]. However, neither the perfect object recognition tool nor a model that can handle

so much data exists, therefore it is required to conceive different bags generators to find the one

that gets better results according to each problem.

Wei and Zhou [55] studied various bags generators and the Single Blob with no Neighbors

(SB) proposed by Maron and Ratan [37] was among the ones with better results, even though it

was one of the simpler ones. The methodology of this algorithm is illustrated in Figure 3.4. In

this Non-Segmentation Bag Generator, the images are first resized and then divided into various

not-overlapping sub-images, called blobs, with a 2×2 pixel size. Each instance matches a vector

of the RGB values of its pixels: [R1,G1,B1,R2,G2,B2,R3,G3,B3,R4,G4,B4] [37].

3.3 Sampling

In most machine learning problems, the classes are somehow unbalanced. This can bias the models

to pick the class with the most examples classifying it with high precision, but ignore the minority
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Figure 3.4: Representation of the Single Blob with No Neighbors Bag Generator [37] method-
ology. The original image is resized (in this example to 20× 20 pixels) and later split into 2× 2
pixels blobs. The features of the instance associated with each blob are the RBG values of its
pixels.

class, which often is the most important [40]. To deal with unbalanced data there are two tech-

niques: oversampling to increase the number of examples of the minority class and undersampling

to decrease the number of samples of the majority class.

In Traditional Supervised Learning, random examples of the majority class can be deleted

for undersampling. As an oversampling strategy, arbitrary instances of the minority class can be

replicated, however, this strategy can increase the ambiguity in the dataset and result in overfitting.

As an alternative solution to the duplication, Chawla et al. [13] developed the Synthetic Minority

Oversampling Technique (SMOTE). This strategy randomly selects one example of the minority

class, A, and one random k-nearest neighbor of that chosen example, B, creating new instances in

the line that connects the two elected examples, A and B [13]. However, the SMOTE technique

is hard to execute in MIL problems since it is intended to operate with individual examples and

not sets of instances. There are some oversampling implementations designed to work with MIL,

however, the majority does not consider if the instances are positives or negative and that can

diminish the quality of the used data [40].

Mera et al. [40] proposed an oversampling technique that acknowledges the concept of a pos-

itive bag having at least one positive instance. The suggested method tries to model the negative

instances in the negative bags with Kernel Density Estimation (KDE) to help find the most positive

instances in the positive bags as shown in Figure 3.5. To generate the positive instance of the new

bag, this algorithm picks the most positive instance in two random positive bags, x+1 j and x+2 j, and

calculates a new instance employing the expression x+1 j +(x+2 j− x+1 j)×α in which α is a random

value between 0 and 1. On the other hand, to create negative examples for the new set, different

negative samples are selected and each one is added to the most negative instance from an elected

bag. This addition is computed using the previous mathematical statement. The pseudocode of

this method is displayed in Algorithm 1.
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Figure 3.5: Representation of the KDE purpose in the selection of the most positive instance in a
bag. This method maps the negative bags to learn what makes an instance negative. When a bag
is given as an input, the system gives a score, ranking its instances from the most negative to the
least negative, in other words, it sets on top the most positive instance.

Algorithm 1 Pseudocode of the Mera et al. [40] algorithm to oversample bags. Adapted from [40].
P← average instances per bags
N← number of synthetic bags to be generated

for i = 1 to N do
Bi

new← Create a new empty bag with positive label

//Generate a new positive instance for Bi
new :

(B+
1 ,B

+
2 )← Select 2 positive bags from the training data set at random

x+1 j← Select the most positive instance in B+
1 using KDE

x+2 j← Select the most positive instance in B+
2 using KDE

xi1← x+1 j +(x+2 j− x+1 j)∗α , where α ∈ [0,1] at random
append(xi1,Bi

new)

//Generate a new negative instance for Bi
new :

x−1 j← Select the most negative instance in B+
1 using KDE

for j = 2 to P do
x−2 j← Get a negative instance from B+

2 at random
xi j← x−1 j +(x−2 j− x−1 j)∗α , where α ∈ [0,1] at random
append(xi j,Bi

new)
end for

end for
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3.4 Models

Three sorts of models can solve MIL problems: Instance-Based Classifiers, Bag-Based Classifiers,

and Hybrid Classifiers [19]. The first usually has in consideration the fundamental assumption that

one positive bag contains at least one positive instance and employs this premise along with the

bag label to classify its instances independently. After labeling the instances individually [12], it

is simple to classify the bag based on the underlying MIL assumption. The Bag-Based Classifiers

assume that the bags with the same label are similar and try to represent them with a single feature

vector to find those similarities [15]. These approaches label the bags without classifying their

instances first [12]. Lastly, Hybrid Techniques own traits from the other two varieties [19].

Figure 3.6: Classification example of an Instance-Based Classifier and a Bag Based-Classifier. In
this example, both models are based on an SVM and therefore use a hyperplane to split the positive
subjects from the negative ones. While the Instance-Based Classifier forms a hyperplane in order
to have at least one positive instance in the positively labeled bags, the Bag-Based Classifier tries
to design a hyperplane that splits the bags based on their instances average.

It was found two packages that implement some MIL models in Python (the chosen lan-

guage to develop this work): miGraphPy [60] and MISVM (Multiple-Instance Support Vector

Machines) [19]. Afterwards, a brief description of these packages implemented models are pre-

sented. MiGraph is implemented in the miGraphPy package and the rest of the models are imple-

mented in the MISVM package. After redesigning the MIL dataset in its own way, every listed

approach employs a traditional SVM model to solve the problem.
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3.4.1 Instance-Based Classifiers

Single-Instance Learning (SIL) A naive approach that models a MIL problem in a Traditional

Supervised Learning problem, giving the bag’s label to all of its examples. Every positive instance

will be accurately labeled, however, some negative instances will be incorrectly marked as positive

as shown in Figure 3.2 B [10] [19].

mi-SVM A technique that tries to find a hyperplane that has at least one instance from every

positive bag on one side and the remaining examples on the other side [5] [60].

MI-SVM Picks one instance called "witness" that works as a representative of every positive

bag. Firstly, it chooses the example that is the average of every instance in that bag and tries

to draw a hyperplane in that space. If there is a witness that is on the wrong side of the hy-

perplane, it is replaced by the instance from that bag that is placed the furthest from the hyper-

plane [5] [10] [19] [36].

Multiple Instance Classification Algorithm (MICA) Instead of picking a single witness, this

strategy selects a random convex set of instances to work as witnesses in a positive bag. This

group of instances does not necessarily have to be the furthest from the hyperplane [19] [36].

Multiple Instance Learning by Semi-Supervised SVM (MissSVM) Addresses the problem as

a Semi-Supervised Learning Problem, classifying the instances in the negative bags and leaving

unknown the labels of the positive bags instances. Subsequently, it applies a constraint that forces

the existence of a positive instance in a positive bag. The optimization problem is then solved with

the MI-SVM technique [19] [59] [60].

3.4.2 Bag-Based Classifiers

Normalized Set Kernel (NSK) Maps each bag to a feature vector, summing every instance in

that bag and normalizing the result [10] [19] [23].

Statistic Set Kernel (STK) Converts each bag to a feature vector, in which each feature holds

two variables: the maximum and the minimum value of that feature in every instance contained in

the bag [10] [23].

3.4.3 Hybrid Classifiers

miGraph This method processes each bag as a whole but regards the similarities between its

instances. Firstly, this approach creates a matrix for every bag that holds the distances among

every pair of instances. This distance represents how comparable the two are. Then, it builds a

graph that has an edge that connects two instances if their distance is less than a specific threshold.

In the end, the graphs are compared to examine the similarities amongst bags [29] [60].
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Sparse Multiple Instance Learning (sMIL) This technique uses a constraint to balance the

classification considering that a smaller positive bag holds more information that a bigger positive

bag [10] [19].

Sparse Transductive Multiple Instance Learning (stMIL) This method includes all the sMIL

constraints but forces the instances of the positive bags to be outside the decision boundary [10] [19].

Sparse Balanced Multiple Instance Learning (sbMIL) If the density of positive instance, n, is

known, the problem could be solved more efficiently. This parameter can be passed as an input to

the model or calculated using a part of the dataset. This approach finds a solution with sMIL and

the n instances of the positive bags that had the best score are classified as positive. This technique

already includes stMIL constraints [10] [19].

3.5 Summary

This chapter aimed to describe the methodology of Multiple Instance Learning. The importance

of the phase Bags Generation was explained, revealing in detail a Bag Generator in the litera-

ture. Furthermore, an algorithm that applies oversampling to MIL was exposed. Lastly, it was

listed some models belonging to the three types of classifiers in this framework: Instance-Based

Classifiers, Bag-Based Classifiers and Hybrid Classifiers.
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Chapter 4

Literature Review

For this work, two areas in the literature were studied: lung structures characterization and diseases

detection employing Multiple Instance Learning and predictive models for gene mutation status.

The most relevant studies of each of these areas are described in Section 4.1 and Section 4.2

respectively. Section 4.3 makes an overview of these two areas, connecting them.

4.1 Lung Structures Characterization and Diseases Detection em-
ploying Multiple Instance Learning

As of yet, ten studies were found that employ Multiple Instance Learning to detect pathologies

or characterize the lung in terms of image patterns. The studies were searched employing the

query ("Multiple Instance Learning") AND ("Lung") in the research databases IEEE Xplore 1 and

PubMed 2. The studies that were only focused on the lung cancer nodule were discarded, remain-

ing ten publications that detected Emphysema, Tuberculosis, COPD (Chronic Obstructive Pul-

monary Diseases), Pulmonary Embolism, or various lung patterns from 2007 to 2018. Table 4.1,

at the end of this section, presents an overview of each paper in this area.

Orting et al. [43] studied MIL to predict the presence of Emphysema at the scan level and at

the six lung regions level. Those regions were the Left Lower, Left Middle, Left Upper, Right

Lower, Right Middle, and Right Upper region. A CT scan represents a bag, and its instances are

100 small possibly overlapping patches selected randomly. These instances are characterized by

a feature vector of filter responses and by the indication of the region that includes it. A region

is taken as positive if an expert found any trace of Emphysema in it, while a scan is considered

positive if any of its lung regions is positive. Both scan level and region level detections had good

results, having the upper right region the best results with an AUC (Area Under the ROC Curve)

of 0.89. The best result at the scan level was an AUC of 0.82.

1https://ieeexplore.ieee.org/, last accessed on 02/06/20
2https://pubmed.ncbi.nlm.nih.gov/, last accessed on 02/06/20
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Ramos et al. [49] proposed a method that employed MIL to detect distinct CT patterns in

which labels were keywords extracted from the radiology report associated with the CT scan.

The considered keywords were: Ground Glass, Honeycombing, Crazy Paving and Hyperlucency,

Consolidation and Nodular Patterns. The features used to describe the patches were the mean

Hounsfield Unit value, and the model used was based on the Evolution Expectation Maximization

Diverse Density (EM-DD). The best result was related to detecting Honeycombing with an AUC

of 0.78 but the results for Ground Glass, Crazy Paving, and Hyperlucency did not appear much

worse.

Gang et al. [22] proposed a technique to annotate CT slices using MIL. Firstly, this method

segmented both lungs, representing each one an instance described by statistics features and Gabor

wavelet features. The pretended labels were Spot Density Increased, Plaque Increased in Density,

Cavity Empty, Nodular Masses, and were detected employing the Diverse Density MIL model

considering retrieval relevance feedback. Detecting Nodular Masses had the best precision of 0.7.

Melendez et al. [39] built a new MIL model intending to detect tuberculosis. This new model

was based on the famous miSVM and was designed to improve the estimation of positive instance

and decrease the cost of each iteration. The scan CXRs (Chest X-Rays) was considered the bag

and its instances were circular 32 pixels in a grid characterized by the intensity distribution of each

patch and its position. The usage of MIL surpassed the supervised methods and the new model

outdid miSVM, reaching an AUC of 0.91. Figure 4.1 compares the ground-truth of a scan and the

areas classified with tuberculosis by each model tested in this study.

Figure 4.1: Heatmaps representing the results of a tuberculosis detection model (second to fifth
columns). The oiginal scans are the first column which have the ground-truth outlined in red. On
the heat maps, warm colors indicate abnormality. From Melendez et al. [39].

Pino Peña et al. [46] implemented a methodology that detects Chronic Obstructive Pulmonary

Disease (COPD) and quantifies the Emphysema without annotations on the High Resolution Com-

puted Tomography (HRCT). The bags were each scan, the instances were patches randomly se-

lected from the lung area and were defined by the co-occurrence matrices features and Gaussian

derivatives features. The authors choose the miSVM and MILES models to train and test. This
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work achieved an AUC of 1 in the COPD classification that may be justified by the severe stage

of the dataset cases. As for the Emphysema identification, the chosen areas by the models were

moderately related to the manual annotations. The overview of this paper methodology is shown

in Figure 4.2

Figure 4.2: Methodology of a system that detects COPD and identifies Emphysema regions. This
system uses scans HRCT and extracts features based on density. The results provided by a MIL
model are validated with the manual annotations of experts and density based analysis. From Pino
Peña et al. [46].

In 2014, Cheplygina et al. [15] studied the presence of COPD considering the distribution in

the whole lung. Unlike the previous studies, this work regarded a single CT slice as a bag instead

of the entire scan. The 50 randomly selected instances inside the lung were described with the

response of 8 filters: Gaussian, gradient magnitude, Laplacian of Gaussian, first, second and third

eigenvalue of the Hessian, Gaussian curvature and eigen magnitude. The authors made distinct

experiments using the entire dataset or half of it, concluding that employing half of the data does

not worsen the results significantly. The best result was achieved by an SVM based on the average

of instances with an AUC of 0.742 that increased to 0.776 when using the full dataset. Four years

later, Cheplygina et al. [16] studied the classification of COPD using MIL once again, but this time

considering multiple datasets with heterogeneous distributions from different scanners, protocols,

and centers. Each scan was a bag that contained 50 randomly selected possible overlapping patches

that were characterized by Gaussian scale space features. This method assigned weights to the

training bags based on their similarities and employed the naive model SimpleMIL achieving an

AUC of 0.969.

Bi and Liang [9] developed a method to find areas with suspicion of Pulmonary Embolism in

Computed Tomography Angiography images considering geodesic distances between candidate

regions. This work aimed to identify at least one region in each positive example and not identify



22 Literature Review

Figure 4.3: Overview of a MIL methodology to detect COPD considering weights. Firstly the
features are extracted from the trainset scans and the instances are weighted. The model is trained,
establishing a hyperplane for the set. The new bag is placed in the trained model and the instances
are classified according to its weights and the previously fixed hyperplane. From Cheplygina
et al. [16].

every positive instance. This technique achieved a sensitivity of 81%.

Dundar et al. [20] proposed a Convex Hull representation for MIL, shown in Figure 4.4, to

detect Pulmonary Embolism (PE). This study considered positive the instances near the area an-

notated manually by experts. This work considered only positive bags since the goal was to detect

positive instances and not classify the bag. Four models were tested: Fisher’s Discriminant (FD),

CH-FD (the Convex Hull proposed in this work), EM-DD, and IDAPR. The used features consid-

ered the intensity distribution, the neighbors’ distribution, and the shape. The developed model

was the most efficient since it can delete the majority of MIL combinations and can find the opti-

mal global solution.

Figure 4.4: Convex Hull representation for Multiple Instance Learning. Circles - Positive classes;
Diamonds - Negative classes; Polyhedrons - Convex hulls for three positive bags; Starts - Points
to represent each bag. Grey line - SVM hyperplane; Pink line - Hyperplane by the proposed
algorithm. From Dundar et al. [20].
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Table 4.1: Overview of published studies regarding lung diseases detective models with Multiple Instance Learning.

Reference Objective # Exams Labels MIL Modelation Models Best Result
Orting et al. 2018
[43]

Use a multiple instance learning ap-
proach to predict both scan-level and
region-level emphsema presence.

1800 Emphysema Bag: The CT Scan
Instances: 600 possibly overlapping random vol-
umetric patches
Features: Filter responses: Gaussian blur, gradient
magnitude, eigenvalues of the Hessian, Laplacian
of Gaussian, Gaussian curvature and the Frobenius
norm of the Hessian

Not mentioned AUC = 0.82

Ramos et al.
2013 [49]

Use CT scans and keywords in the re-
spective radiology reports to learn pat-
terns.

1110 Hyperlucency (HL);
Ground Glass (GG);
Honeycombing (HC);
Crazy Paving (CP);
Consolidation (Cons.);
Nodular Pattern (Nod.).

Bag: The CT Scan
Instances: Seed points based on local maxima or
minima with a minimum distance of 5 voxels
Features: Mean Hounsfield Unit

EM-DD (AUC =)
HL - 0.71;
GG - 0.72;
HC - 0.78;
CP - 0.77;
Cons. - 0.52;
Nod. - 0.32.

Gang et al. 2013
[22]

Propose a method of medical image
semantic annotation based on multi-
instance learning.

240 Mottled shadows of high den-
sity;
Patchy shadows of high den-
sity;
Cavity and hole;
Nodular and masses.

Bag: One CT image
Instances: The left and right lung
Features: The gray and texture feature

EM-DD (Precision =)
Mottled shadows of high
density - 0.625;
Patchy shadows of high
density - 0.640;
Cavity and hole - 0.626;
Nodular and masses -
0.700.

Melendez et al.
2015 [39]

Apply MIL to a CAD system for tu-
berculosis detection and propose an
improved algorithm that overcomes
miSVM’s drawbacks related to positive
instance underestimation and costly
iteration.

2636 Tuberculosis Bag: The CXR Scan
Instances: Circular patches with a radius of 32
pixels on a grid with a spacing of 8 pixels
Features: Based on the first four moments of
the intensity distributions resulting after applying
a multiscale local jet of second order

k-NN;
SVM;
miSVM;
miSVM+PEDD;
si-miSVM+PEDD.

(AUC =)
Database 1:
SVM - 0.88;
Database 2:
si-miSVM+PEDD -
0.86;
Database 3:
si-miSVM+PEDD and
si-miSVM - 0.91.

Pino Peña et al.
2018 [46]

Build a classifiers that outputs a patient
label indicating overall COPD diagnosis
and local labels indicating the presence
of Emphysema.

88 Chronic Obstructive Pul-
monary Disease

Bag: The HRCT Scan
Instances: Randomly selected 3D patches from
inside the lungs
Features: Co-occurrence matrices and Gaussian
derivative features

miSVM;
MILES.

(AUC =)
miSVM - 1.0
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Reference Objective # Exams Labels MIL Modelation Models Best Result
Cheplygina et al.
2014 [15]

Investigate various MIL assumptions in
the context of COPD.

200 Chronic Obstructive Pul-
monary Disease

Bag: One CT image
Instances: 50 ROIs samppled at random locations
within the lungs
Features: Filter responses: Gaussian, gradient
magnitude, Laplacian of Gaussian, first, second
and third eigenvalue of the Hessian, Gaussian cur-
vature and eigen magnitude

Simple logistic;
Simple k-NN;
miSVM;
MILBoost;
Citation k-NN;
mean-inst SVM;
extremes SVM;
BoW SVM;
MILES;
meanmin SVM;
meanmin k-NN;
emd SVM;
emd k-NN.

(AUC =)
mean-inst SVM - 0.776

Cheplygina et al.
2018 [16]

Investigate classification of COPD in a
multicenter dataset from different cen-
ters, different scanners, with heteroge-
nous subject distributions

803 Chronic Obstructive Pul-
monary Disease

Bag: The CT Scan
Instances: 50 possibly overlapping volumtric
ROIs of size 41*41*41 voxels extracted at random
locations inside the lung mask.
Features: Gaussian scale space features and com-
pute eight filters: smoothed image, gradient mag-
nitude, Laplacian of Gaussian, three eigenvalues of
the Hessian, Gaussian curvature and eigen magni-
tude

SimpleMIL AUC = 0.969

Bi and Liang
2007 [9]

Propose a novel classification approach
for automatically detecting pulmonary
embolism from CTA images.

177 Pulmonary Embolism Bag: Cluster of voxels
Instances: Cluster of voxels
Features: Voxel intensity distributions within
the candidate, distributions in neighborhood of the
candidate the 3D shape of the candidate and enclos-
ing structures

Spatial MIL;
SVM.

Sensitivity = 81%

Dundar et al.
2008 [20]

Propose a framework for learning a Con-
vex Hull representation of multiple in-
stances that is significantly faster than
existing MIL algorithms.

72 Pulmonary Embolism Bag: A set of instances
Instances: Candidates that are spatially close to
the radiologist marked ground-truth
Features: Voxel intensity distributions within
the candidate, distributions in neighborhood of the
candidate the 3D shape of the candidate and enclos-
ing structures

Fisher’s Discriminnat;
CH-FD;
EM-DD;
IDAPR.

(AUC =)
CH-FD - 0.86
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4.2 Predictive Models for Gene Mutation Status

This area can be divided into two subareas: predictive models for gene mutation status based on

nodule features, presented in Subsection 4.2.1, and predictive models for gene mutation status

based on both nodule features and lung features, explored in Subsection 4.2.2. In total, twenty

studies were found after employing the query ("Gene Mutation Status") AND ("Prediction") AND

("Lung Cancer") in the research databases IEEE Xplore 3 and PubMed 4 and excluding the ones

that were not based on CT scans. These studies include semantic, radiomic, and deep learning

features, which were the input of statistical, machine learning, or deep learning models. All of

these studies are from 2017 to 2019 which shows how novel the investigation of this area is.

4.2.1 Based on Nodule Features

Thus far it was found six studies that would take into account features related to the nodule.

Table 4.2 divides the articles per feature extraction and classification method, while Table 4.3, at

the end of this subsection, gives an overview of each paper.

Table 4.2: Published studies regarding predictive models for gene mutation status based on nodule
features organized by feature extraction and techniques used.

Classification Methods
Statistical Machine Learning Deep Learning

Feature Extraction
Semantic [61] [14] - -

Radiomic - [30]
[34] [53] [57]

Automatic Feature Learning - -

Zou et al. [61] studied the EGFR mutation status of stage I/II lung adenocarcinoma in tumors

with lesions <3 cm to know the correlation between EGFR mutation status, clinical features, and

CT characteristics. To identify independent risk factors, it was used multiple logistic regression

analyses. Zou et al. concluded that EGFR mutation appeared more frequently in women, never-

smokers, and patients with a carcinoembryonic antigen level <2.6 ng/ml. However, papillary

predominant adenocarcinomas, intermediate/low pathologic grade tumors, tumors in the upper

lobe, and showing ground-glass opacity (GGO) or mixed GGO also had some level of correlation

with EGFR. When it comes to independent risk factors, the multivariable analyses chose GGO,

acinar or papillary predominant adenocarcinoma, and non-smoker.

Cheng et al.[14] examined the correlation between CT morphological features and the pres-

ence of EGFR mutations in NSCLC. The features obtained from the CT were ground-glass opac-

ity (GGO) content, tumor size, cavitation, air-bronchogram, lobulation, and spiculation. Weighted

mean difference (WMD) or inverse variance (IV) in the form of odds ratio (OR) was used to de-

termine the association between the CT features and EGFR mutation. This study concluded that

this gene mutation tended to exist in tumors with part-solid GGO as opposed to nonsolid GGO.

3https://ieeexplore.ieee.org/, last accessed on 02/06/20
4https://pubmed.ncbi.nlm.nih.gov/, last accessed on 02/06/20

https://ieeexplore.ieee.org/
https://pubmed.ncbi.nlm.nih.gov/
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Yet, features such as tumor size, cavitation, air-bronchogram, lobulation and spiculation weren’t

independently associated with EGFR mutations.

Koyasu et al. [30] aimed to develop two types of classifiers: one for predicting lung cancer

histological subtype (adenocarcinoma vs. squamous cell carcinoma), and the second for predict-

ing EGFR mutation status in adenocarcinoma (mutant vs. wild-type). It was used two machine

learning algorithms: Random forest (RF) and XGBoost (XGB), a particular implementation of

Gradient Tree Boosting. An overview of the model is presented in Figure 4.5.

Figure 4.5: Model that uses radiomic features as predict lung cancer histological subtype and to
predict EGFR mutation status. From Koyasu et al. [30].

In Koyasu et al. study, XGB performed better than RF in both classification problems, having

the AUC of 0.843 and 0.659 for histological subtype classification and EGFR classification re-

spectively. Concerning the classification of EGFR mutation status using multiple types of imaging

features, for RF, Bayesian optimization selected GLCM of CT and the histogram of PET and, for

XGB, Bayesian optimization adopted Metabolic indices in PET, the histogram of PET, and GLCM

of PET as the optimal combination of imaging features.

Li et al. [34] intended to investigate the capacity to detect EGFR mutations on CT images with

lung adenocarcinoma applying radiomics and multi-level residual convolutionary neural networks.

The study analyzed the predictive ability of both models in the same sample and investigated the

feasibility of their combination as seen in Figure 4.6. The model that takes into account radiomics,

CNNs and clinical information showed the highest AUC value of 0.834. The one regarding only

CNNs was better than the radiomics model and did not express significant lack comparing with the

model that considers radiomic, CNNs and clinical features or the model that considers radiomic

and CNNs. The inclusion of clinical features did not increase the AUC of any of the other models.

Wang et al. [53] introduces an end-to-end deep learning pipeline to predict EGFR mutation

status in lung adenocarcinoma using CT. This method only demands the manually selected tumor

region in a CT image without precise tumor boundary segmentation or human-defined features.

The deep learning model performance achieved an AUC of 0.85 in the primary cohort and 0.81 in

the independent validation cohort, demonstrating notable variations in EGFR-mutant and EGFR-

wild type tumors, and it was able to find suspicious areas inside tumors. Even though it only
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Figure 4.6: Framework with different combinations of a radiomic model, CNNs and clinical
information to detect EGFR mutations on CT images. From Li et al. [34].

studied adenocarcinoma, the model shows good predictive value in other histological types with

an AUC of 0.77.

Zhao et al. [57] produced a deep learning model based on 3D convolutional neural networks

(CNNs) to automatically predict EGFR-mutant pulmonary adenocarcinoma in CT images. This

method integrated modern advancements in deep supervised learning, such as dense connection

and mixup training to decrease the chances of overfitting. This method was compatible with

approximate locations of the nodules. An overview of the model is presented in Figure 4.7.

Figure 4.7: Overview of a deep learning model based on 3D convolutional neural networks to
automatically predict EGFR mutation using CT images. From Zhao et al. [57].
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The model predicted EGFR mutation status with AUCs of 0.758 and 0.750 for the holdout test

set and public test set, respectively. It was found strong correlations between features extracted by

deep learning and radiomics features. However, some deep learning features were not associated

with any radiomic features, suggesting additional information obtained by the 3D DenseNets.
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Table 4.3: Overview of published studies regarding predictive models for gene mutation status based on nodule features.

Reference Objectives Methods Results #Patients Relevant Features
Zou et al. 2017 [61] Identify the relationship between

EGFR mutation status, clinical fea-
tures, and CT characteristics

Multivariable Analy-
ses

AUC = 0.737 171 Clinical: gender, smoking history,
carcinoembryonic antigen level,
pathologic grade
Nodule: lobe, ground glass compo-
nent

Cheng et al. 2017
[14]

Investigate the relationship between
CT features and EGFR mutations

Weighted Mean Dif-
ference, Inverse Vari-
ance

OR = 0.49 1097 Nodule: ground glass component

Koyasu et al. 2019
[30]

Develop radiomics approach for
classifying histological subtypes
and EGFR mutation status

XGBoost and Ran-
dom Forest

AUC = 0.843
AUC = 0.659

138 Radiomic: GLCM of CT, the his-
togram of PET Metabolic indices in
PET, GLCM of PET

Li et al. 2018 [34] Analyze the ability to detect EGFR
mutations on chest CT images

Random Forest and
CNNs

AUC = 0.834 1010 Not mentioned

Wang et al. 2019 [53] Develop an end-to-end pipeline that
requires only the manually selected
tumour region in a CT image

CNNs AUC = 0.85 844 Not mentioned

Zhao et al. 2019 [57] Predict EGFR mutation in CT im-
ages

3D DenseNets AUCs = 0.758 879 Not mentioned



30 Literature Review

4.2.2 Based on Nodule Features and Lung Structures and Diseases

Thus far it was found four studies that would take into account at least one feature related to

structures or disease external to the nodule. Table 4.4 divides the articles per feature extraction

and classification method, while Table 4.5, at the end of this subsection, gives an overview of each

paper.

Table 4.4: Published studies regarding predictive models for gene mutation status based on nodule
features and lung structures and diseases organized by feature extraction and techniques used.

Classification Methods
Statistical Machine Learning

Feature Extraction
Semantic

[11]
[51]

[45]
[24]

Radiomic - -

Cao et al. [11] aimed to dissect the disparities in CT features between subjects who have EGFR

mutations and those who have wild-type EGFR and develop a prediction tool based on principal

component analysis. Accompanying with gender, smoking history, and GGO, adenocarcinomas

with EGFR mutation were significantly associated with emphysema, TDR, and the diameter in the

mediastinal window. The sensitivity and specificity for predicting exon 19 deletion mutation were

59.09 and 76.79%, respectively and the prediction score is calculated by:

0.305gender+0.254smokinghistory+0.198MaxDmediastinal +T DR0.254

+0.280GGO+0.095emphysema
(4.1)

The sensitivity for predicting exon 21 missense mutation was 72.34, the specificity was 78.57%,

and the prediction score can be determined by:

0.354gender+0.291smokinghistory+0.410MaxDmediastinal

+0.408MinDmediastinal
(4.2)

Rizzo et al. [51] aimed to confirm the beforehand produced models for the prediction of EGFR

and KRAS mutations with univariate analysis to study the connections of the studied features.

This study proved a connection between EGFR mutation and internal air bronchogram, pleural

retraction, emphysema, and lack of smoking with an AUC of 0.82 and an association between

KRAS mutation and round shape, emphysema, and smoking with an AUC of 0.60. However,

even though several features were related to each of the gene mutations, the AUC for the models

considering only smoking was identical to that of the complete model for both genes.

Pinheiro et al. [45] aims to examine and discuss the connections between imaging phenotypes

and lung cancer-related mutation status. For that, this study conducted high-dimensional data

visualization and developed classifiers using gradient tree boosting, which help analyze the out-

comes for EGFR and KRAS according to diverse combinations of input features. Radiomic and

semantic features were regarded as the main types of input features. The semantic were divided
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into features that only describe the nodule, features that only describe structures external to the

nodule and a hybrid between the previous two. The main conclusion of this study was that the

separation of classes between mutated and wild type EGFR gene status is better when using hy-

brid semantic features, obtaining the best classification result with AUC of 0.746. This implies

that the best way to address this problem is by mixing nodule-related features with features from

other lung structures. Unfortunately, for KRAS there is no visible separation between classes with

any type of input features.

Gevaert et al. [24] studied whether EGFR and KRAS mutation status are predictable employing

semantic imaging data annotated by thoracic radiologists, developing the following decision tree

for the aforementioned prediction.

Figure 4.8: Decision tree to predict EGFR and KRAS mutation status using only semantic anno-
tations. From Gevaert et al.[24].

This decision tree employed four features: emphysema, airway abnormality, the percentage of

ground glass component and the type of tumor margin as show in Figure 4.8. The wild type status

for EGFR is predicted by the appearance of either of the first two variables while the presence of

any ground glass component indicates EGFR mutations. The AUC for predicting EGFR mutation

status was 0.89, not improving when merging clinical data with the semantic image features. Like

previous studies, KRAS mutation status was not connected with semantic image features. This

study emphasizes the relevance of the lesion’s appearance and its environment.
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Table 4.5: Overview of published studies regarding predictive models for gene mutation status based on nodule features and lung structures and diseases.

Reference Objectives Methods Results #Patients Relevant Features
Cao et al. 2018 [11] Identify CT features that correlate

with EGFR mutation status
Principal Component
Analysis

Sensitivity = 72.34
Specificity = 78.57%

156 Clinical: gender, smoking history
Radiomic: diameter in the medi-
astinal window, tumor shadow dis-
appearance rate
Nodule: ground glass component
Structures and Diseases: emphy-
sema

Rizzo et al. 2019 [51] Validate associations between radi-
ological features and clinical fea-
tures with EGFR/KRAS alterations.

Univariate Analysis AUC = 0.82 122 Clinical: smoking history
Nodule: pleural retraction, shape,
internal air bronchogram
Structures and Diseases: emphy-
sema

Pinheiro et al. 2019
[45]

Analyse the results for EGFR and
KRAS biological markers according
to different combinations of input
features

Gradient Tree Boost-
ing

AUC = 0.746 211 Clinical: smoking history, gender
Nodule: periphery, attenuation, air
bronchogram, shape
Structures and Diseases: emphy-
sema, lung parencyma features

Gevaert et al. 2017
[24]

Investigated whether EGFR and
KRAS mutation status can be pre-
dicted using imaging data.

Decision Tree AUC = 0.89 186 Nodule: ground glass component,
tumor margin
Structures and Diseases: emphy-
sema, airway abnormality
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4.3 Discussion

The best result for each lung characterization label studied in the literature (excluding the studies

that do not reveal the AUC result) is presented in Figure 4.9. The label with the best results is

Chronic Obstructive Pulmonary Disease. This may happen because this label covers multiple

pathologies, which not only has more data available than the more specific diseases but also does

not require the model to learn the patterns in so much detail since it does not need to differentiate

pathologies. It also should be kept in mind that some of these works with exceptionally good

results do not provide the datasets used, so the study cannot be reproduced and verified.

Figure 4.9: The best result for each lung characterization label studied in the literature. Only the
studies that revealed the AUC were considered in this chart.

From the studies in Section 4.2 and the chart in Figure 4.10 it can be inferred that the most fre-

quent and relevant features to predict EGFR are smoking history, gender, presence of emphysema,

ground glass component and air bronchogram. The hardship to accurately predict KRAS mutation

status can also be deduced from the literature.

A big part of the studies use radiomic and automatically learned features in their models.

Those features cannot be interpreted by experts and therefore the results of the model cannot be

confirmed by the human eye.

The study of the features external to the nodule is not well developed both its detection and its

utilization in predicting gene mutation status. However, some studies mention the possibility of

increasing the predicting results if these types of features are taking into account.

Considering the Figure 4.9 and Figure 4.10, one can conclude that the lung labels that are

being detected with MIL are not the features used to predict EGFR. In the future, one should study

the association between these two methodologies trying to detect with MIL the features proven

relevant for the EGFR prediction or studying the influence of the labels that are being detected

with MIL in predicting the gene.

Lastly, the systems presented in the literature whether are features detection models or muta-

tion status prediction models, there is not an example that merges both.
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Figure 4.10: Most frequent and relevant features in the literature and the correspondent number
of papers.

In conclusion, it is missing an end-to-end pipeline understandable by experts and that takes

into consideration features of the whole lung to make the process more automatically and make

the specialists’ jobs easier.

4.4 Summary

The literature can be divided into lung structures characterization using Multiple Instance Learning

and diseases detection plus predictive models for gene mutation. The latter can be based on nodule

features or based on both nodule features and lung structures and diseases. Thus far, it wasn’t

found any study on a predictive model for gene mutations based solely on lung structures and

diseases since this type of feature is not very well studied.

None of the studies is an end-to-end solution that from CT images can detect features both

internal and external to the nodule which are seen by the human eye and considering those features

predicts the gene mutation status.



Chapter 5

Data Description and Preparation

Interpreting the content of the used datasets and finding the areas they may differ is essential to

understand the quality of the data that will be, posteriorly, given to the algorithm. This examination

is performed in Section 5.1 by describing each one of the three datasets used in this work.

Due to the unbalance of some annotations of the distinct datasets, those had to be omitted

from this experience. The exclusion criteria and the dismissed annotations are revealed in Subsec-

tion 5.2.1.

Even amongst the same database, the CT spacing and units can fluctuate depending on the

equipment performing the CT exam. Hence, it is crucial to pre-process every scan in order to

normalize the information and to be better understood by the used model. The pre-processing

of the scans is disclosed in Subsection 5.2.2. Another core part before the development of the

detection models is to obtain the lung segmentation as explained in Subsection 5.2.3.

5.1 Data Description

Three databases were employed in this project: one public, one from a formal collaboration with

Portuguese CHSJ (Lung Cancer Screening - A non-invasive methodology for early diagnosis,

which is a current FCT funded project), and one private. The first two datasets were not used in

totality since some cases did not have semantic annotations related from experts. An overview of

the three datasets is presented in Table 5.1 and subsequently described.

5.1.1 S. João Hospital Database

For this project, a collaboration was made with the S. João Hospital in Porto. This database has

141 samples, containing CT scans, patients’ clinical information, and features related to the nodule

and its external surroundings annotated by radiologists from late 2019 to early 2020.

35
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Table 5.1: Overview of the datasets considered for the project

Hospital de S. João
Database

Radiogenomic Dataset
of Non-Small Cell Lung
Cancer

ILDS Database

Short Name
S. João DB NSCLC Radiogenomics ILD DB

#Total CT Scans 141 211 128

#Suitable CT Scans 30 190 128

Nodule Segmentation X X -

Lung Segmentation - - X

Semantic Annotations X X X

Despite the availability of 141 CT scans, only 30 were selected since the remaining did not

possess any semantic annotations yet. These 27 patients were composed of 18 males and 9 fe-

males, all with lung cancer and ages between 52 and 87 years old. Among them, 3 were smokers,

6 were former smokers, 3 never smoked, and the remaining 16 subjects had an unknown smoking

history.

This dataset held annotations of three distinct radiologists for every case, hence the mode

between the three was adopted.

5.1.2 Radiogenomic Dataset of Non-Small Cell Lung Cancer

Radiogenomic Dataset of Non-Small Cell Lung Cancer [7] holds knowledge about 211 patients

collected from 2008 and 2012 at Stanford University School of Medicine and Palo Alto Veterans

Affairs Healthcare System. This information consists of CT images, experts’ annotations and

segmentation maps of the nodule in the correspondent CT images. Data about the mutated genes

and patient clinical history are also present.

Only 190 lung cancer patients from this database were considered since solely these owned

lung annotations. This subset consisted of 67 females and 123 males with ages between 24 and

87, of which 30 were current smokers, 117 were former smokers and 43 never smoked at all.

5.1.3 ILD Database

At last, ILDS Database [17] is focused on interstitial lung diseases (ILDs) and related lung tissue

patterns. It consists of 128 University Hospitals of Geneva subjects that were diagnosed with at

least one of the thirteen most common ILDs. As the previously mentioned datasets, it comprises

CT images, radiological annotations about lung tissue patterns and clinical information. Besides,

this is the only dataset that contains lung segmentation masks.

This dataset held only patients who were not diagnosed with lung cancer, among them 45

women and 79 men with ages between 11 and 93 years old. From all the subjects, 28 were
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current smokers, 25 were former smokers and 44 never smoked, the remaining 27 had an unknown

smoking history.

5.2 Data Preparation

5.2.1 Selection of Lung Characteristics to Detect

Due to the small number of suitable cases in the São João Database and the fact that its annotations

were based on the NSCLC-Radiogenomics [7] leading to a significant quantity of similarities, the

two were merged and named SJ-NSCLC Database. The ILDS Database was considered in separate

since the criteria used to annotate the exams may not be equivalent to the other two datasets.

A criteria based on class distribution was adopted to choose which lung annotations would be

detected in each database. Table 5.2 reveals the lung annotation from each database, its class dis-

tribution, and whether they fulfilled the criteria or not. To dodge overfitting linked to the class with

a higher number of cases, the health conditions that had a ratio of the class with most examples to

the class with fewer examples higher than 0.25 were selected.

The SJ-NSCLC database presented six annotations related to the lung and, after applying

the aforementioned criteria, three remained: Nodules In Contralateral Lung, Satellite Nodules

In Primary Lesion Lobe, and Emphysema. The IDLS Database [17] proved to be significantly

unbalanced since from ten lung annotations only two met the guidelines: Fibrosis and Ground

Glass.

Table 5.2: Selection of lung annotations for each dataset based on the union of two criteria.
Criteria - The ratio of the class with most examples to the class with fewer examples must be
higher than 0.25.

Dataset Lung Annotatioin #Present #Absent Ratio Selected

SJ-NSCLC

Nodules In Contralateral Lung 54 164 0.33 X
Nodules In Non-Lesion Lobe Same Lung 39 178 0.22 -
Satellite Nodules In Primary Lesion Lobe 58 159 0.36 X
Emphysema 113 106 0.94 X
Fibrosis 25 194 0.13 -
Bronchiectasis 18 113 0.16 -

ILDS

Fibrosis 39 69 0.57 X
Ground Glass 37 71 0.52 X
Consolidation 14 94 0.15 -
Reticulation 10 98 0.10 -
Emphysema 5 103 0.05 -
Bronchiectasis 8 100 0.08 -
Bronchial wall thickening 1 107 0.01 -
Cysts 3 105 0.03 -
Micronodules 16 92 0.17 -
Macronodules 7 101 0.07 -
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5.2.2 CT Images Pre-Processing

The CT scans use Hounsfield Units (HU) to represent the information. The Hounsfield Scale is

a quantitative scale to describe radiodensity, which considers that, under standard conditions of

temperature and pressure, the water’s radiodensity is marked as 0 HU and the air’s radiodensity is

-1000 HU [26].

Occasionally, the original content of the CT comes in other units and it is required to convert

these to HU using the Rescale Slope and the Resclape Intercept fields present in the metadata

associated with the scan. These two metadata fields are defined by the hardware manufacturer [50].

The conversion is achieved by performing Equation 5.1.

HUValue = PixelValue×RescaleSlope+RescaleIntercept (5.1)

As previously said, the air’s radiodensity is -1000 HU, therefore, the CT values below that

threshold are meaningless. The values above 400 HU describe the bone, which makes them irrele-

vant to this lung problem. Hence, to conclude the processing associated with the HU units, all the

CT values below -1000 HU were set to -1000 HU and the values above 400 HU were fixed to 400

HU [26].

Two other relevant CT metadata fields are Slice Thickness and Slice Spacing, both in mil-

limeters. Slice Thickness is the distance through the CT slice and Slice Spacing holds the space

between each x coordinates and each y coordinates in the slice, as illustrated in Figure 5.1. These

fields can alternate due to differences in hardware, so it is vital to normalize them and rescale

the image accordingly. Slice Thickness and Slice Spacing of every scan were set to 1 and [1;1]

respectively. The algorithm 2 describes how this normalization was completed.

Figure 5.1: Illustration that represents the concepts of Slice Spacing and Slice Thickness in a CT
slice.
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Algorithm 2 Normalizing Spacing and Rescaling CT Image

spacing← append(slice_spacing,slice_thickness)

new_spacing← append(new_slice_spacing,new_slice_thickness)

resize_ f actor← spacing/new_spacing

new_shape← round(image.shape× resize_ f actor)
real_resize_ f actor← new_shape/image.shape

image_array← rescale(image_array,real_resize_ f actor)

new_spacing← spacing/real_resize_ f actor

5.2.3 Lung Segmentation

Because the problem in hand is detecting lung pathologies, having the lung segmentation mask

was fundamental. ILD Database dataset already held the lung segmentation masks drawn by

experts, however, the lung masks of the remaining three had to be segmented by an adaptation of

the Moreira Aresta [41] algorithm. Its pseudocode is presented in Algorithm 3 and the adjustments

made are subsequently explained.

Algorithm 3 Pseudocode of the Moreira Aresta [41] algorithm to segment the lung

candidates← scan <−300

candidates← removeSmallCandidates(candidates)
candidates← removeMarginCandidates(candidates)

lungSegmentation← candidates.merge()
lungSegmentation← lungSegmentation.MorphologicalCloseness()
lungSegmentation← lungSegmentation.MorphologicalDilation()

When the histogram of a CT’s HU values is plotted, like in Figure 5.2, two peaks are clearly

observed. The most prominent peak corresponds to the lung parenchyma volume and the second

one matches the fat and muscle around the lung.

The most reliable lung segmentation threshold is the HU value that coincides with the mean

of these two peaks [21]. Though oftentimes that middle point is around -300 HU as applied in the

original algorithm, that may not be true for every dataset or even every scan in the same dataset.

Using a dynamic threshold dependent on the histogram peaks made the algorithm more robust as

shown in Figure 5.3.
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Figure 5.2: Relevant peaks identification on a CT scan HU values histogram. The fittest lung
segmentation threshold is the midpoint between the higher peak, which represents the lung
parenchyma, and the second higher peak, which represents fat and muscle. Adapted from Farag
et al. [21].

Figure 5.3: Results of a lung segmentation using a fixed threshold of -300 HU (left) and a dynamic
threshold based on the peaks of the CT scan HU values histogram (right).

Depending on the scan, the threshold may cover regions that are not linked to the lung as

exposed in the right segmentation of Figure 5.3. To mend this, the y coordinate of the lung candi-

date’s centroid was taken into consideration. If the y coordinate of the candidate volume’s centroid

was above 39% or below 68% of the scan y width, that volume would be discarded. In Figure 5.4,

the candidates and the final result using this amend are exposed. These values were empirically

discovered using the datasets utilized in this work. In the future, a solution should be found to fix

the problem without depending on the datasets.
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Figure 5.4: Discarded and kept analyzed volumes as well as the final result of a lung segmentation
considering the y coordinate of the candidate volumes’ centroid. Because the y coordinate of the
Candidate 1’s centroid laid between 68% and 100% of the y width, that candidate was discarded.

The last modification was the addition of the possibility to consider a given nodule segmenta-

tion. Sometimes the nodules are too close to the margin and the algorithm does not recognize it as

part of the lung. The adapted version of the algorithm will merge the provided nodule mask to the

lung segmentation. In Figure 5.5 the impact of this enhancement is displayed.

Figure 5.5: Nodule segmentation mask (first) and results of a lung segmentation not considering
the nodule mask (second) and considering the nodule segmentation mask (third).

This lung segmentation algorithm has two main limitations. The first one is the use of a

threshold as the algorithm basis since this will work poorly on scans from patients with severe

state of lung diseases similar to the examples shown in Figure 2.1. The other limitation is the

use of the location of the centroid empirically inferred from the datasets used since it will not be

adaptable to other datasets.

5.3 Summary

Three datasets were studied to be employed in this work. All three present a different number

of patients and were built in different locations, however, all have semantic annotations and CT

images. Nonetheless, not all annotations were kept due to their unbalance. Pre-process the CT

scans was fundamental to the task at hand, as well as the lung segmentation mask extraction.
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Chapter 6

Lung Structures Characterization and
Diseases Detection

After preprocessing the CTs, it is indispensable to generate bags that contain instances with fea-

tures based on these exams to give as the input for the MIL models. Two types of bags generators

were designed, Radiomic Bag Generator and Hounsfield Units Bag Generator, each one includ-

ing some variations with different complexity levels. Due to some classes’ unbalance, the Mera

et al.[40] sampling technique for multiple instance bags was tested. A random search to find the

best combination of the models’ parameters was implemented to get the best possible results pro-

duced by that same model. Lastly, to make sure the results were accurate and to avoid overfitting,

the technique k-fold cross-validation was adopted. This methodology is detailed in Section 6.1.

The results of the experiment are shown in Section 6.2 and subsequently discussed in Section 6.3.

6.1 Methodology

To adapt the dataset images to a MIL problem, it was determined that a bag would represent one

CT scan, distinct sections of the scan would be the bags’ instances, and image features of those

sub-regions would be the instances’ features. However, there were almost infinite possibilities to

divide the image into regions and represent the image features. Two bag generators were imple-

mented, Radiomic Bag Generator and Hounsfield Units Bag Generator, and differed mainly on

the complexity of the instances’ shape and the features’ nature.

The first bag generator was denominated Radiomic Bag Generator since the instances’ fea-

tures are the radiomic features of that region. Radiomic features aim to extract from a medi-

cal image a significant amount of quantitive features to infer clinical or pathological informa-

tion about the patient. These features can be categorized into three classes: Histogram features

(First-order statistics), Morphological features (Shape-based features), and Texture-based features

43
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(Higher-order statistics).These radiomic features used in this work were extracted using the pack-

age PyRadiomics [52] and are fully listed in Appendix A. The literature established Radiomics

can be employed in several lung problems to achieve high-grade results.

The instances were the intersection of the areas created by dividing the lung segmentation

bounding box in n× n× n (n being the number of parts in each axis) and the lung segmentation

itself. Two variants of this bag generator were employed differing on the number of parts each axis

of the lung segmentation bounding box was divided: Radiomics-5 (Figure 6.1) and Radiomics-10

(Figure 6.2) .

Figure 6.1: Axial, coronal, and sagittal views of a CT bag and the instances produced by the
Radiomics-5 Bag Generator. The elected instances are filled with an orange translucent opacity
and have a solid stroke, while the rejected ones have a dashed stroke.

Figure 6.2: Axial, coronal, and sagittal views of a CT bag and the instances produced by the
Radiomics-10 Bag Generator. The elected instances are filled with an orange translucent opacity
and have a solid stroke, while the rejected ones have a dashed stroke.

The second bag generator was an adaptation of Single Blob with no Neighbors proposed by

Maron and Ratan [37] and explained in Section 3.2. The first adaptation was using 3D instances

and bags instead of 2D as the original SB. It was determined each scan would have 10×10×10

instances composed of 2×2×2 points, hence the image and the lung segmentation were resized to

20×20×20 points. The second adjustment was, instead of using the value of red, blue, and green

as the instance’s features as in the original bag generator, it was used the HU of each instance’s

point since the RGB values are not available in a CT.
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After creating the instances and respective features, three ways of creating bags were employed

differing on the content of the corresponding instances. HU-all bags (Figure 6.3) were constituted

by all the instances in the scan, HU-some bags (Figure 6.4) were composed by the instances that

had at least a part that was lung and, finally, HU-only bags (Figure 6.5) were exclusively made of

instances that were entirely lung. Note that, since the representations of Figure 6.3, Figure 6.4,

and Figure 6.5 are in 2D, only four points can be seen in each instance, however in reality they are

composed of eight points considering the CT scans are 3D.

Figure 6.3: Axial, coronal, and sagittal views of a CT bag and the instances produced by the
HU-all Bag Generator. All instances were selected.

Figure 6.4: Axial, coronal, and sagittal views of a CT bag and the instances produced by HU-some
Bag Generator. The instances that had at least a part that was lung were selected.

Figure 6.5: Axial, coronal, and sagittal views of a CT bag and the instances produced by the
HU-only Bag Generator. Only instances that were entirely lung were selected.
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To study the impact of the data unbalance in a MIL problem, experiments employing under-

sampling, the Mera et al. [40] oversampling algorithm for MIL explained in Section 3.3, or no

sampling at all were conducted. Both sampling techniques were used so the ratio between the

positive classes and negative classes on the train sets would be 1:1.

Making sure the experiment’s results were the most accurate and not a consequence of an

overfitted model was crucial, so a 5-Fold Stratified Cross-Validation was employed. For each fold,

the best parameters concerning each model were sought using a Random Search Strategy with

20 iterations and the maximization of the AUC as the objective function. This Hyperparameter

Tuning strategy was developed from scratch based on [1] as the used model were not compatible

with the packages that held an Hyperparameter Tuning implementation. From the eleven distinct

models described in Section 3.4, NSK was adopted for the experiments since bag-based classifiers

are much more efficient than instance-based classifiers,and this classifier was proved one of the

best in the literature [19]. Table 6.1 presents the values consider for the Hyperparamenter Tuning

of the model. Figure 6.6 illustrates how the 5-Fold Cross-Validation, Sampling, Hyperparameter

Tuning, and the adopted model interact with each other.

Table 6.1: List of values used for the Random Search in Hyperparameter Tuning in NSK Model

Parameter Values

gamma 1, 0.1, 0.01, 0.001, 0.0001

C 0.1, 1, 10, 100, 1000

scale C True, False

p True, False

kernel linear, quadratic, polynomial, rbf
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Figure 6.6: An illustration that shows how the 5-Fold Cross-Validation, Sampling, Hyperparam-
eter Tuning, and the adopted model interact with each other. For each fold, the full dataset is
split into a train set and a test set in a way that the later is different for every fold. Afterward, a
Sampling technique is applied to the train set and the result is put through a 20 iteration Hyperpa-
rameter Tuning process. Each iteration is composed of a new 5-fold Cross-Validation. The model
uses the train set and the parameters chosen by the Hyperparameter Tuning to label the test set,
giving the results for the concerned fold.

6.2 Results

Considering the 5 labels to detect (Emphysema, Satellite Nodules In Primary Lesion Lobe, Nod-

ules In Contralateral Lung, Fibrosis and Ground Glass), the 5 bag generators designed (Radiomics-

5, Radiomics-10, HU-all, HU-some and HU-only ), and the 3 sampling procedures (none, oversam-

pling and undersampling), 75 experiments were done in total. The full list of these experiments’

results is presented in Appendix B. The 75 experiments are studied with distinct points of view in

this section. Firstly, an overall analysis is made in Subsection 6.2.1, followed by a label analysis

in Subsection 6.2.2, a sampling per label analysis in Subsection 6.2.3, a bag generator analysis in

Subsection 6.2.4, and, finally, a sampling analysis in Subsection 6.2.5.

6.2.1 Overall Results Analysis

Table 6.2 exhibits the AUC of each experiment in a heatmap form, where the cold colors stand

for the best results, and the warm colors are used for the worst outcomes. These results are in a
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range from 0.40 to 0.89, the smaller AUC corresponding to the detection of Satellite Nodules In

Primary Lesion Lobe using the bag generator Radiomics-5 with oversampling, and the best AUC

matching the detection of Fibrosis with the bag generator Radiomics-10 and with no sampling

at all. With the colors help, it can be immediately concluded that Fibrosis owns the best results

among labels, followed by Emphysema, and the Radiomics bags generators hold better AUCs than

the Hounsfield bag generators. As for the sampling, no conclusions can be taken directly from this

heatmap.

Table 6.2: Heatmap with the AUCs of the 75 experiments. Cold colors stand for the best results,
and the warm colors are used for the worst outcomes.

Table 6.3 presents the top 10 experiments with the best AUCs, which confirm the conclusions

taken from the heatmap in Table 6.2. That is, the patterns with the best detection results are Fibro-

sis and Emphysema with the Radiomic bag generators. As for sampling, for the same label and

the same bag generator, the use of no sampling surpasses oversampling, which outdoes undersam-

pling. The best 10 AUCs are in a range from 0.89 to 0.69, and the corresponding accuracy has a

range from 0.64 to 0.83.
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Table 6.3: Top 10 experiments with the best AUCs.

Label Bag Generator Sampling AUC Accuracy Precison Recall F1-Score Time(s)

Fibrosis R-10 None 0.89 0.83 0.82 0.82 0.82 3584

Fibrosis R-10 Over 0.88 0.81 0.80 0.80 0.79 3183

Fibrosis R-5 None 0.85 0.77 0.76 0.76 0.75 149

Fibrosis R-5 Over 0.83 0.76 0.75 0.75 0.74 194

Fibrosis R-5 Under 0.82 0.73 0.73 0.75 0.72 91

Fibrosis R-10 Under 0.78 0.72 0.70 0.70 0.69 2441

Emphysema R-5 Over 0.72 0.66 0.66 0.66 0.65 493

Emphysema R-5 Under 0.72 0.64 0.65 0.64 0.64 424

Emphysema R-10 None 0.71 0.69 0.69 0.69 0.68 20313

Emphysema R-10 Under 0.69 0.69 0.70 0.69 0.69 17208

Table 6.4 shows the best results for each label considering AUC. Once more Fibrosis and

Emphysema confirmed to be by far the labels with best results. The other three patterns have AUC

higher than 0.5, indicating that the model can assist the detections. The non-use of sampling is

more common than oversampling or undersampling. Curiously, the bag generator HU-only could

exceed the Radiomics bag generators in the detection of Satellite Nodules In Primary Lesion Lobe

and Ground Glass.

Table 6.4: Experiments of each label with the best AUC.

Label Bag Generator Sampling Accuracy AUC Precison Recall F1-Score Time(s)

Fibrosis R-10 None 0.83 0.89 0.82 0.83 0.82 3584

Emphysema R-5 Over 0.66 0.72 0.66 0.66 0.65 493

Satellite Nodules In Primary Lesion Lobe HU-only None 0.62 0.61 0.56 0.57 0.55 947

Ground Glass HU-only None 0.64 0.59 0.60 0.60 0.59 348

Nodules In Contralateral Lung R-5 Under 0.55 0.59 0.55 0.56 0.51 120

6.2.2 Label Results Analysis

Table 6.5 shows the average results for each label, and Figure 6.7 reveals the plot comparing the

three central metrics, AUC, Accuracy, and F1-Score. From these two resources, we can see that

Fibrosis and Emphysema had great average results in every metric. On another hand, the F1-

score of the other three labels was below 0.5, which may indicate that few combinations of bag

generators and sampling techniques work as good as the experiments in Table 6.4 for the detection

of these labels detection.

Table 6.5: Average results for each label.

Label Average of AUC Average of Accuracy Average of Precison Average of Recall Average of F1-Score Average of Time(s)

Fibrosis 0.72 0.70 0.68 0.68 0.67 2856

Ground Glass 0.50 0.56 0.50 0.51 0.50 3042

Emphysema 0.63 0.61 0.61 0.61 0.60 10199

Nodules In Contralateral Lung 0.50 0.59 0.50 0.50 0.47 6878

Satellite Nodules In Primary Lesion Lobe 0.53 0.59 0.52 0.53 0.49 12460
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Figure 6.7: Plot comparing the average AUC, Accuracy, and F1-Score for each label.

Figure 6.8 employs the information of Table 6.5 and Table 6.6 to compare the number of

training examples per fold in each class (solid lines) and the respective F1-Score (dashed lines),

being the positive class represented by the blue lines and the negative class represented by the

red lines. At first sight, it can be observed that when the number of training examples converges,

which happens with Emphysema, the F1-Scores also converge. It can be due to the fact that, when

there is a balance between classes, the model learns better to distinguish between each one. As

expected, in the other labels the class with better F1-Score is the class with more training examples,

the negative class.

Table 6.6: Average F1-Scores of each class and respective number of training examples per folder
for each label.

Label Average of F1-Score [positive] Average of F1-Score [negative] Average of #Training [positive] Average of #Training [negative]

Fibrosis 0.59 0.75 39 47

Ground Glass 0.34 0.65 39 48

Emphysema 0.60 0.60 88.3 86.7

Nodules In Contralateral Lung 0.24 0.69 72.3 101.7

Satellite Nodules In Primary Lesion Lobe 0.30 0.69 73 100
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Figure 6.8: Plot that compares the number of training examples per fold in each class and the
respective F1-Score. Blue lines - Positive class; Red lines - Negative class; Solid lines - Number
of training examples; Dashed Lines - F1-Scores.
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6.2.3 Sampling per Label Results Analysis

Table 6.7 shows the average results for each sampling technique per label and Figure 6.9 displays

the corresponding plot comparing the AUC, Accuracy, and F1-Score. Considering the same label,

the AUC does not vary much. In other words, the sampling technique does not significantly influ-

ence the final result. Looking at the two nodules labels (Satellite Nodules In Primary Lesion Lobe

and Nodules In Contralateral Lung), the Accuracy increases when using oversampling, however,

the other metrics do not. This shows how looking only at Accuracy can be misleading.

Table 6.7: Average results for each sampling technique per label.

Label Sampling Average of AUC Average of Accuracy Average of Recall Average of Precison Average of F1-Score Average of Time(s)

Emphysema None 0.63 0.60 0.60 0.60 0.60 10991

Emphysema Over 0.64 0.61 0.61 0.61 0.60 8703

Emphysema Under 0.63 0.61 0.61 0.61 0.60 10901

Fibrosis None 0.74 0.71 0.70 0.69 0.69 3458

Fibrosis Over 0.74 0.73 0.71 0.72 0.71 3132

Fibrosis Under 0.68 0.64 0.64 0.64 0.62 1978

Ground Glass None 0.50 0.56 0.51 0.49 0.49 3507

Ground Glass Over 0.49 0.58 0.51 0.50 0.50 3757

Ground Glass Under 0.52 0.53 0.52 0.52 0.50 1860

Nodules In Contralateral Lung None 0.51 0.61 0.50 0.47 0.46 8033

Nodules In Contralateral Lung Over 0.49 0.65 0.50 0.51 0.48 9704

Nodules In Contralateral Lung Under 0.51 0.50 0.51 0.51 0.46 2895

Satellite Nodules In Primary Lesion Lobe None 0.54 0.60 0.53 0.52 0.51 23853

Satellite Nodules In Primary Lesion Lobe Over 0.52 0.64 0.52 0.51 0.50 10802

Satellite Nodules In Primary Lesion Lobe Under 0.53 0.51 0.53 0.52 0.48 2724
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Figure 6.9: Plot comparing the average AUC, Accuracy, and F1-Score for each sampling tech-
nique per label.

The plot in Figure 6.10 uses the information from Table 6.7 and Table 6.8 to compare the

training examples per fold of each sampling technique per label with the time the model took

to train and test. As expected, a clear correlation can be seen in almost all labels. However,

the time the model took to perform Satellite Nodules In Primary Lesion Lobe detections with no

sampling technique is unusual given its number of training examples. A possible justification is the

occurrence of a performance problem in the machine when it executed the respective experiments.
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Table 6.8: Number of positive, negative and total training examples per fold for each sampling
technique per label.

Label Sampling Average of #Training [positive] Average of #Training [negative] Average of #Training
Emphysema None 90 85 175
Emphysema Over 90 90 180
Emphysema Under 85 85 170
Fibrosis None 31 55 86
Fibrosis Over 55 55 110
Fibrosis Under 31 31 62
Ground Glass None 30 57 87
Ground Glass Over 57 57 114
Ground Glass Under 30 30 60
Nodules In Contralateral Lung None 43 131 174
Nodules In Contralateral Lung Over 131 131 262
Nodules In Contralateral Lung Under 43 43 86
Satellite Nodules In Primary Lesion Lobe None 46 127 173
Satellite Nodules In Primary Lesion Lobe Over 127 127 254
Satellite Nodules In Primary Lesion Lobe Under 46 46 92
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Figure 6.10: Plot comparing the total number of training examples per fold and the amount of
time for each sampling technique per label.

6.2.4 Bag Generator Results Analysis

Table 6.2.4 shows the average results for each bag generator and Figure 6.11 compares the corre-

sponding AUC, Accuracy, and F1-Score. The Radiomics bag generators appear to have a better

performance as stated before.

Table 6.9: Average results for each bag generator.

Bag Generator Average of AUC Average of Accuracy Average of Precison Average of Recall Average of F1-Score Average of Time(s)

HU-all 0.54 0.54 0.53 0.54 0.51 18323

HU-only 0.56 0.61 0.55 0.56 0.54 671

HU-some 0.56 0.61 0.54 0.55 0.53 4841

R-10 0.63 0.64 0.60 0.60 0.58 11183

R-5 0.59 0.64 0.58 0.59 0.57 415
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Figure 6.11: Plot comparing the average AUC, Accuracy, and F1-Score for each bag generator.

The plot in Figure 6.12 employs the information from Table and Table 6.10 to compare the

average number of bags, instances, and features generated by each bag generator and the average

time the model takes to finish the experiments. A correlation can be seen between the sum between

instances and features, and the amount of time. Since the average of bags is the same in every bag

generator conclusions cannot be made on how this variable influences the performance.

Table 6.10: Average number of bags, instances and features.

Bag Generator Average of #Bags Average of #Instances Average of #Features
HU-all 174 1000 8
HU-only 174 170.54 8
HU-some 174 462.29 8
R-10 174 597.81 107
R-5 174 109.54 107
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Figure 6.12: Plot comparing the average number of instances, features and bags with the amount
of time for each bag generator.

6.2.5 Sampling Results Analysis

Table 6.11 shows the average results for each sampling technique, and Figure 6.13 compares the

respective AUC, Accuracy, and F1-Score. The outcomes of each technique are not very different.
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Table 6.11: Average results for each sampling technique.

Sampling Average of AUC Average of Accuracy Average of Precison Average of Recall Average of F1-Score Average of Time(s)

None 0.58 0.62 0.55 0.57 0.55 9968

Over 0.58 0.64 0.57 0.57 0.56 7220

Under 0.58 0.56 0.56 0.56 0.53 4072
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Figure 6.13: Plot comparing the average AUC, Accuracy, and F1-Score for each sampling tech-
nique.

The plots in Figure 6.14 use the information from Table 6.11 and Table 6.12 to compare

the average number of positive and negative training examples per fold with the respective F1-

Scores. When no sampling technique is employed, since the negative class is the one with more

training examples, the F1-Score of this class is, as expected, higher. However, unlike the F1-

Scores convergence that occurs in plot of Figure 6.9, these F1-scores stayed different even when

the number of training examples was the same, in other words, when employing undersampling

or oversampling. This may indicate that the bags generated in the oversampling are not similar to

the real ones and the bags removed from the undersampling were essential for the detection.

Table 6.12: Average number of training examples per fold of each class and the respective F1-
Scores.

Sampling Average of #Training [negative] Average of #Training [positive] Average of F1-Score [negative] Average of F1-Score [positive]

None 91 48 0.69 0.41

Over 92 92 0.72 0.40

Under 47 47 0.62 0.45
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Figure 6.14: Plots comparing the number of training examples per fold in each class and the
respective F1-Scores.

6.3 Discussion

The following list summarizes the main conclusions that can be drawn with this work’s results and

a respective examination.

• The patterns with the best detection results are Fibrosis and Emphysema, reaching
an AUC of 0.89 and 0.72, respectively - This can be justified by the fact that the Fibrosis

cases in the used dataset were in a severe stage. Moreover, the Emphysema is more of a

spread out through the lungs than a localized disease unliked the other three lung patterns

detected [16];

• Radiomics-10 is the bag generator with better results - Even though it extracts the same

radiomic features as the Radiomics-5 bag generator, it also contains more and smaller in-

stances, so more detailed information is given to the model. This comes with a performance

expense since a problem generated by Radiomics-10 takes much more time to solve than a

problem represented by Radiomics-5;

• Radiomics bags generators have better results than the Hounsfield Bag Generators -

The Radiomic bag generators extract many more image features than the Hounsfield Bag

Generators that only look at the HU values of the instances;

• The sampling technique does not significantly influence the final result - If the results

are not that different, no sampling technique should be used since no fake bags are created,

as in oversampling, and no possible important ones are removed, as done in undersampling,

being the problem more authentic.

6.4 Summary

Five bag generators were designed to create a MIL representation to detect some lung patters in

CT scans. To validate the results a pipeline with three phases was created: 5-fold cross-validation,
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sampling, and hyperparameter tuning. The MIL model employed for the detection was NSK. The

experiments with better results were the detection of Fibrosis and Emphysema, reaching an AUC

of 0.89 and 0.72, respectively.



Chapter 7

Conclusions

Due to the high mortality caused by lung cancer and its late diagnosis, it is necessary to classify

the gene mutation status to give the patient the best treatment possible. To avoid the pain caused

by biopsy, the used method at the moment, it is necessary to develop non-invasive methods.

In spite of existing a lot of models in the literature that predict the status mutation, most of

them only use the cancer nodule features. Some studies show that if some features external to the

nodule are taken into consideration, the results of the models may improve. This studied resulted

in the detection of multiple lung patterns to be later employed in gene mutation prediction.

Thus far this work was the first to use Multiple Instance Learning to detect Fibrosis in CT

scans, reaching an outstanding AUC of 0.89. Considering the Emphysema detection, this study’s

result (AUC=0.72) is slightly below the literature (AUC=0.82), however, the existing study does

not mention the MIL model used and, therefore, the results cannot be verified. Even though

the results achieved for the other three lung patterns (Satellite Nodules In Primary Lesion Lobe

(AUC=0.61), Nodules In Contralateral Lung (AUC=0.59) and Ground Glass (AUC=0.59) were not

as exceptional, they hint that the detection of these visual patterns is possible and can be further

studied. Five MIL bag generators were designed, among which Radiomics-5 and Radiomics-10

stand out. These should be applied to other MIL problems to verify if the good results still uphold.

As this study showed promising results, multiple research lines related to it can be conducted

in the future, being some listed hereafter.

• Detect the remaining lung patterns of the used datasets - The detected lung patterns were

selected based on a class balance criteria, which does not guarantee they would have better

results than the remaining ones;

• Implement more variations of the Radiomics bag generators - The Radiomics-10 bag

generator proved to be better than the Radiomcis-5, which may indicate the detail quantity

is important. In the future, a Radiomics-15 or Radiomics-20 could be implemented and

tested to see if they could reach even better results. However, they would come with a high

time cost associated;
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• Use a predetermined number of random instances instead of the whole set - The subset

of instances may be able to represent the whole CT scan. This is regularly used in the

literature to decrease the amount of time the model needs to train and test;

• Experiment with some bag generators of the literature - This work employed bag gen-

erators designed especially for it. It should be tested if the literature bag generators can

achieve better results for this particular problem than the ones designed;

• Merge datasets - Even though the datasets may have been annotated with different criteria,

it would be interesting to see how the framework behaves training and testing with more

than one dataset in each experiment;

• Employ bigger datasets - This would not only enhance the learning of the model but could

also give the possibility to detect other lung patterns;

• Explore different MIL models - NSK was elected since it was proven to be one of the most

efficient and with better results in the literature. However, given the problem, other models

can have even higher results. Moreover, this would allow us to have a better understanding

of how the model selection determine the outcomes;

• Detect the lung cancer mutated gene - Even though this work intended to detect semantic

lung patterns that are understandable by experts for later predicting the mutated gene, it

could be interesting to try to predict the mutated gene directly from the CT scans using this

study’s methodology.



Appendix A

List of Radiomic Features

First Order Statistics:

1. Energy

2. Total Energy

3. Entropy

4. Minimum

5. 10th percentile

6. 90th percentile

7. Maximum

8. Mean

9. Median

10. Interquartile Range

11. Range

12. Mean Absolute Deviation (MAD)

13. Robust Mean Absolute Deviation

(rMAD)

14. Root Mean Squared (RMS)

15. Standard Deviation

16. Skewness

17. Kurtosis

18. Variance

19. Uniformity

Shape-based (3D):

1. Mesh Volume

2. Voxel Volume

3. Surface Area

4. Surface Area to Volume ratio

5. Sphericity

6. Compactness 1

7. Compactness 2

8. Spherical Disproportion

9. Maximum 3D diameter

10. Maximum 2D diameter (Slice)

11. Maximum 2D diameter (Column)

12. Maximum 2D diameter (Row)

13. Major Axis Length

14. Minor Axis Length

15. Least Axis Length

16. Elongation
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17. Flatness

Gray Level Cooccurence Matrix:

1. Autocorrelation

2. Joint Average

3. Cluster Prominence

4. Cluster Shade

5. Cluster Tendency

6. Contrast

7. Correlation

8. Difference Average

9. Difference Entropy

10. Difference Variance

11. Joint Energy

12. Joint Entropy

13. Informational Measure of Correlation

(IMC) 1

14. Informational Measure of Correlation

(IMC) 2

15. Inverse Difference Moment (IDM)

16. Maximal Correlation Coefficient (MCC)

17. Inverse Difference Moment Normalized

(IDMN)

18. Inverse Difference (ID)

19. Inverse Difference Normalized (IDN)

20. Inverse Variance

21. Maximum Probability

22. Sum Average

23. Sum Entropy

24. Sum of Squares

Gray Level Run Length Matrix:

1. Short Run Emphasis (SRE)

2. Long Run Emphasis (LRE)

3. Gray Level Non-Uniformity (GLN)

4. Gray Level Non-Uniformity Normalized

(GLNN)

5. Run Length Non-Uniformity (RLN)

6. Run Length Non-Uniformity Normalized

(RLNN)

7. Run Percentage (RP)

8. Gray Level Variance (GLV)

9. Run Variance (RV)

10. Run Entropy (RE)

11. Low Gray Level Run Emphasis (LGLRE)

12. High Gray Level Run Emphasis

(HGLRE)

13. Short Run Low Gray Level Emphasis

(SRLGLE)

14. Short Run High Gray Level Emphasis

(SRHGLE)

15. Long Run Low Gray Level Emphasis

(LRLGLE)

16. Long Run High Gray Level Emphasis

(LRHGLE)

Gray Level Size Zone Matrix:

1. Small Area Emphasis (SAE)

2. Large Area Emphasis (LAE)
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3. Gray Level Non-Uniformity (GLN)

4. Gray Level Non-Uniformity Normalized

(GLNN)

5. Size-Zone Non-Uniformity (SZN)

6. Size-Zone Non-Uniformity Normalized

(SZNN)

7. Zone Percentage (ZP)

8. Gray Level Variance (GLV)

9. Zone Variance (ZV)

10. Zone Entropy (ZE)

11. Low Gray Level Zone Emphasis

(LGLZE)

12. High Gray Level Zone Emphasis

(HGLZE)

13. Small Area Low Gray Level Emphasis

(SALGLE)

14. Small Area High Gray Level Emphasis

(SAHGLE)

15. Large Area Low Gray Level Emphasis

(LALGLE)

16. Large Area High Gray Level Emphasis

(LAHGLE)

Gray Level Dependence Matrix:

1. Small Dependence Emphasis (SDE)

2. Large Dependence Emphasis (LDE)

3. Gray Level Non-Uniformity (GLN)

4. Dependence Non-Uniformity (DN)

5. Dependence Non-Uniformity Normal-

ized (DNN)

6. Gray Level Variance (GLV)

7. Dependence Variance (DV)

8. Dependence Entropy (DE)

9. Low Gray Level Emphasis (LGLE)

10. High Gray Level Emphasis (HGLE)

11. Small Dependence Low Gray Level Em-

phasis (SDLGLE)

12. Small Dependence High Gray Level Em-

phasis (SDHGLE)

13. Large Dependence Low Gray Level Em-

phasis (LDLGLE)

14. Large Dependence High Gray Level Em-

phasis (LDHGLE)

Neighbouring Gray Tone Difference Ma-
trix:

1. Coarseness

2. Contrast

3. Cusyness

4. Complexity

5. Strength
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Appendix B

List of Results

Table B.1: List of the 75 experiments’ results.

Dataset Bag Generator Label Sampling AUC Accuracy Precison Recall F1-Score F1-Score [positive] F1-Score [negative] Time(s) #Training [positive] #Training [negative] #Instances #Features

NSCLC_SJ R-5 Emphysema None 0.66 0.64 0.65 0.64 0.64 0.63 0.65 600 90 85 113.20 107

NSCLC_SJ R-5 Emphysema Under 0.72 0.64 0.65 0.64 0.64 0.62 0.65 424 85 85 113.20 107

NSCLC_SJ R-5 Emphysema Over 0.72 0.66 0.66 0.66 0.65 0.63 0.68 493 90 90 113.20 107

NSCLC_SJ R-5 Satellite Nodules In Primary Lesion Lobe None 0.44 0.55 0.48 0.48 0.46 0.67 0.24 610 46 127 113.20 107

NSCLC_SJ R-5 Satellite Nodules In Primary Lesion Lobe Under 0.48 0.50 0.49 0.49 0.45 0.61 0.30 96 46 46 113.20 107

NSCLC_SJ R-5 Satellite Nodules In Primary Lesion Lobe Over 0.40 0.64 0.46 0.48 0.47 0.76 0.17 1233 127 127 113.20 107

NSCLC_SJ R-5 Nodules In Contralateral Lung None 0.43 0.66 0.48 0.51 0.49 0.78 0.20 469 43 131 113.20 107

NSCLC_SJ R-5 Nodules In Contralateral Lung Under 0.59 0.55 0.55 0.56 0.51 0.64 0.38 120 43 43 113.20 107

NSCLC_SJ R-5 Nodules In Contralateral Lung Over 0.46 0.71 0.46 0.48 0.46 0.82 0.09 1217 131 131 113.20 107

NSCLC_SJ R-10 Emphysema None 0.70 0.68 0.69 0.69 0.68 0.69 0.68 20313 90 85 646.03 107

NSCLC_SJ R-10 Emphysema Under 0.69 0.69 0.69 0.69 0.69 0.66 0.71 17208 85 85 646.03 107

NSCLC_SJ R-10 Emphysema Over 0.68 0.65 0.65 0.65 0.65 0.63 0.66 13249 90 90 646.03 107

NSCLC_SJ R-10 Satellite Nodules In Primary Lesion Lobe None 0.57 0.63 0.51 0.52 0.51 0.75 0.28 14450 46 127 646.03 107

NSCLC_SJ R-10 Satellite Nodules In Primary Lesion Lobe Under 0.55 0.53 0.53 0.54 0.49 0.63 0.36 4331 46 46 646.03 107

NSCLC_SJ R-10 Satellite Nodules In Primary Lesion Lobe Over 0.51 0.72 0.53 0.54 0.53 0.82 0.23 28501 127 127 646.03 107

NSCLC_SJ R-10 Nodules In Contralateral Lung None 0.55 0.54 0.51 0.51 0.48 0.65 0.31 19272 43 131 646.03 107

NSCLC_SJ R-10 Nodules In Contralateral Lung Under 0.53 0.45 0.51 0.51 0.43 0.53 0.33 4608 43 43 646.03 107

NSCLC_SJ R-10 Nodules In Contralateral Lung Over 0.56 0.74 0.69 0.58 0.57 0.83 0.31 23515 131 131 646.03 107

NSCLC_SJ HU-all Emphysema None 0.60 0.57 0.57 0.57 0.57 0.57 0.57 25538 90 85 1000.00 8

NSCLC_SJ HU-all Emphysema Under 0.59 0.57 0.57 0.57 0.57 0.56 0.58 28434 85 85 1000.00 8

NSCLC_SJ HU-all Emphysema Over 0.62 0.57 0.57 0.57 0.57 0.57 0.56 19954 90 90 1000.00 8

NSCLC_SJ HU-all Satellite Nodules In Primary Lesion Lobe None 0.56 0.52 0.54 0.56 0.49 0.61 0.37 96731 46 127 1000.00 8

NSCLC_SJ HU-all Satellite Nodules In Primary Lesion Lobe Under 0.55 0.52 0.54 0.55 0.49 0.61 0.37 7214 46 46 1000.00 8

NSCLC_SJ HU-all Satellite Nodules In Primary Lesion Lobe Over 0.57 0.53 0.56 0.57 0.49 0.61 0.37 13528 127 127 1000.00 8

NSCLC_SJ HU-all Nodules In Contralateral Lung None 0.45 0.44 0.47 0.45 0.41 0.54 0.28 11478 43 131 1000.00 8

NSCLC_SJ HU-all Nodules In Contralateral Lung Under 0.45 0.44 0.46 0.45 0.41 0.54 0.28 7653 43 43 1000.00 8
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Dataset Bag Generator Label Sampling AUC Accuracy Precison Recall F1-Score F1-Score [positive] F1-Score [negative] Time(s) #Training [positive] #Training [negative] #Instances #Features

NSCLC_SJ HU-all Nodules In Contralateral Lung Over 0.46 0.45 0.47 0.45 0.41 0.54 0.28 14732 131 131 1000.00 8

NSCLC_SJ HU-some Emphysema None 0.58 0.56 0.56 0.56 0.55 0.56 0.54 7547 90 85 462.31 8

NSCLC_SJ HU-some Emphysema Under 0.56 0.56 0.56 0.56 0.56 0.57 0.55 7586 85 85 462.31 8

NSCLC_SJ HU-some Emphysema Over 0.58 0.58 0.58 0.58 0.57 0.57 0.58 8989 90 90 462.31 8

NSCLC_SJ HU-some Satellite Nodules In Primary Lesion Lobe None 0.50 0.68 0.50 0.53 0.51 0.79 0.24 6525 46 127 462.31 8

NSCLC_SJ HU-some Satellite Nodules In Primary Lesion Lobe Under 0.49 0.48 0.50 0.50 0.45 0.57 0.32 1726 46 46 462.31 8

NSCLC_SJ HU-some Satellite Nodules In Primary Lesion Lobe Over 0.55 0.66 0.50 0.50 0.49 0.78 0.20 9380 127 127 462.31 8

NSCLC_SJ HU-some Nodules In Contralateral Lung None 0.56 0.67 0.48 0.51 0.49 0.79 0.20 7913 43 131 462.31 8

NSCLC_SJ HU-some Nodules In Contralateral Lung Under 0.56 0.56 0.56 0.58 0.52 0.65 0.38 1837 43 43 462.31 8

NSCLC_SJ HU-some Nodules In Contralateral Lung Over 0.50 0.70 0.46 0.50 0.47 0.82 0.12 7244 131 131 462.31 8

NSCLC_SJ HU-only Emphysema None 0.59 0.55 0.55 0.55 0.55 0.53 0.56 957 90 85 171.74 8

NSCLC_SJ HU-only Emphysema Under 0.59 0.57 0.57 0.57 0.57 0.56 0.57 855 85 85 171.74 8

NSCLC_SJ HU-only Emphysema Over 0.60 0.58 0.58 0.58 0.58 0.57 0.58 831 90 90 171.74 8

NSCLC_SJ HU-only Satellite Nodules In Primary Lesion Lobe None 0.61 0.62 0.56 0.57 0.55 0.73 0.37 947 46 127 171.74 8

NSCLC_SJ HU-only Satellite Nodules In Primary Lesion Lobe Under 0.58 0.52 0.55 0.56 0.49 0.60 0.39 251 46 46 171.74 8

NSCLC_SJ HU-only Satellite Nodules In Primary Lesion Lobe Over 0.55 0.66 0.50 0.52 0.51 0.78 0.24 1370 127 127 171.74 8

NSCLC_SJ HU-only Nodules In Contralateral Lung None 0.53 0.75 0.40 0.49 0.44 0.85 0.03 1034 43 131 171.74 8

NSCLC_SJ HU-only Nodules In Contralateral Lung Under 0.45 0.50 0.47 0.47 0.44 0.62 0.26 259 43 43 171.74 8

NSCLC_SJ HU-only Nodules In Contralateral Lung Over 0.46 0.66 0.48 0.49 0.48 0.78 0.19 1814 131 131 171.74 8

ILDS R-5 Fibrosis None 0.85 0.77 0.76 0.76 0.75 0.82 0.69 149 31 55 104.06 107

ILDS R-5 Fibrosis Under 0.83 0.73 0.74 0.75 0.72 0.77 0.68 91 31 31 104.06 107

ILDS R-5 Fibrosis Over 0.84 0.76 0.75 0.75 0.74 0.81 0.68 194 55 55 104.06 107

ILDS R-5 Ground Glass None 0.45 0.62 0.51 0.53 0.52 0.73 0.30 150 30 57 104.06 107

ILDS R-5 Ground Glass Under 0.54 0.51 0.55 0.55 0.51 0.54 0.47 107 30 30 104.06 107

ILDS R-5 Ground Glass Over 0.46 0.59 0.50 0.50 0.49 0.71 0.27 273 57 57 104.06 107

ILDS R-10 Fibrosis None 0.89 0.83 0.82 0.83 0.82 0.87 0.77 3584 31 55 525.48 107

ILDS R-10 Fibrosis Under 0.78 0.72 0.70 0.70 0.69 0.77 0.61 2441 31 31 525.48 107

ILDS R-10 Fibrosis Over 0.88 0.81 0.80 0.81 0.79 0.84 0.75 3183 55 55 525.48 107

ILDS R-10 Ground Glass None 0.51 0.48 0.43 0.43 0.43 0.58 0.27 5938 30 57 525.48 107

ILDS R-10 Ground Glass Under 0.53 0.54 0.48 0.51 0.47 0.62 0.33 3022 30 30 525.48 107

ILDS R-10 Ground Glass Over 0.51 0.56 0.48 0.49 0.48 0.68 0.28 4129 57 57 525.48 107

ILDS HU-all Fibrosis None 0.64 0.64 0.62 0.63 0.61 0.71 0.50 10610 31 55 1000.00 8

ILDS HU-all Fibrosis Under 0.56 0.59 0.57 0.58 0.56 0.65 0.47 5839 31 31 1000.00 8

ILDS HU-all Fibrosis Over 0.65 0.66 0.64 0.64 0.63 0.73 0.54 9357 55 55 1000.00 8

ILDS HU-all Ground Glass None 0.48 0.59 0.49 0.54 0.51 0.69 0.32 8845 30 57 1000.00 8

ILDS HU-all Ground Glass Under 0.43 0.45 0.45 0.45 0.43 0.51 0.35 4472 30 30 1000.00 8

ILDS HU-all Ground Glass Over 0.47 0.59 0.48 0.51 0.49 0.70 0.27 10455 57 57 1000.00 8

ILDS HU-some Fibrosis None 0.69 0.67 0.65 0.66 0.65 0.73 0.58 2645 31 55 462.27 8

ILDS HU-some Fibrosis Under 0.68 0.59 0.59 0.59 0.57 0.64 0.50 1371 31 31 462.27 8

ILDS HU-some Fibrosis Over 0.69 0.73 0.70 0.69 0.69 0.79 0.59 2576 55 55 462.27 8

ILDS HU-some Ground Glass None 0.47 0.49 0.40 0.43 0.41 0.60 0.22 2256 30 57 462.27 8

ILDS HU-some Ground Glass Under 0.55 0.59 0.56 0.56 0.56 0.67 0.45 1514 30 30 462.27 8

ILDS HU-some Ground Glass Over 0.48 0.57 0.52 0.50 0.50 0.67 0.33 3511 57 57 462.27 8

ILDS HU-only Fibrosis None 0.65 0.64 0.62 0.61 0.60 0.72 0.49 300 31 55 168.75 8

ILDS HU-only Fibrosis Under 0.53 0.60 0.58 0.58 0.57 0.67 0.48 149 31 31 168.75 8

ILDS HU-only Fibrosis Over 0.66 0.71 0.71 0.67 0.67 0.79 0.55 351 55 55 168.75 8

ILDS HU-only Ground Glass None 0.59 0.64 0.60 0.60 0.59 0.73 0.45 348 30 57 168.75 8

ILDS HU-only Ground Glass Under 0.56 0.55 0.53 0.53 0.52 0.62 0.42 183 30 30 168.75 8

ILDS HU-only Ground Glass Over 0.52 0.58 0.53 0.54 0.53 0.68 0.38 419 57 57 168.75 8
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