561 research outputs found

    Spectrum-Efficient Triple-Layer Hybrid Optical OFDM for IM/DD-Based Optical Wireless Communications

    Get PDF
    In this paper, a triple-layer hybrid optical orthogonal frequency division multiplexing (THO-OFDM) for intensity modulation with direct detection (IM/DD) systems with a high spectral efficiency is proposed. We combine N-point asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM), N/2-point ACO-OFDM, and N/2-point pulse amplitude modulated discrete multitoned (PAM-DMT) in a single frame for simultaneous transmission. The time- and frequency-domain demodulation methods are introduced by fully exploiting the special structure of the proposed THO-OFDM. Theoretical analysis show that, the proposed THO-OFDM can reach the spectral efficiency limit of the conventional layered ACO-OFDM (LACO-OFDM). Simulation results demonstrate that, the time-domain receiver offers improved bit error rate (BER) performance compared with the frequency-domain with ∌40% reduced computation complexity when using 512 subcarriers. Furthermore, we show a 3 dB improvement in the peak-to-average power ratio (PAPR) compared with LACO-OFDM for the same three layers

    Hybrid clipping and companding techniques based peak to average power ratio reduction in orthogonal frequency division multiplexing based differential chaos shift keying system

    Get PDF
    In this paper, a hybrid approach using clipping and companding techniques is introduced to reduce the peak to average power ratio (PAPR) of orthogonal frequency division multiplexing based differential chaos shift keying (OFDM-DCSK), which is the major drawback of the OFDM-DCSK. The hybrid function is processed at the end of the transmitter before transmitting the signal. However, there is no need for an inverse function at the receiver, which decreases the system complexity. Several techniques have been proposed in the literature for decreasing the PAPR value. Clipping and companding are active methods in terms of reducing the PAPR. Finally, the PAPR reduction and bit error rate (BER) performances are evaluated. The simulation results show that this technique gives better performance as compared with the clipping and companding techniques

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    The Novel PAPR Reduction Schemes for O‐OFDM‐Based Visible Light Communications

    Get PDF
    In this chapter, we propose two novel peak-to-average power ratio (PAPR) reduction schemes for the asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) scheme used in the visible light communications (VLC) system. In the first scheme, we implement the Toeplitz matrix based Gaussian blur method to reduce the high PAPR of ACO-OFDM at the transmitter and use the orthogonal matching pursuit algorithm to recover the original ACO-OFDM frame at the receiver. Simulation results show that for the 256-subcarrier ACO-OFDM system a ~6 dB improvement in PAPR is achieved compared with the original ACO-OFDM in terms of the complementary cumulative distribution function (CCDF), while maintaining a competitive bit-error rate performance compared with the ideal ACO-OFDM lower bound. In the second scheme, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme to reduce the PAPR for ACO-OFDM. The bipolar O-OFDM signal without negative clipping is converted into a PWM format where the leading and trailing edges carry the frame synchronization and modulated information, respectively. The simulation and experimental results demonstrate that the proposed OFDM-PWM scheme offers a significant PAPR reduction compared to the ACO-OFDM with an improved bit error rate

    Improved Hybrid Blind PAPR Reduction Algorithm for OFDM Systems

    Get PDF
    The ever growing demand for high data rate communication services resulted into the development of long-term evolution (LTE) technology. LTE uses orthogonal frequency division multiplexing (OFDM) as a transmission technology in its PHY layer for down-link (DL) communications. OFDM is spectrally efficient multicarrier modulation technique ideal for high data transmissions over highly time and frequency varying channels. However, the transmitted signal in OFDM can have high peak values in the time domain due to inverse fast Fourier transform (IFFT) operation. This creates high peak-to-average power ratio (PAPR) when compared to single carrier systems. PAPR drives the power amplifiers to saturation degrading its efficiency by consuming more power. In this paper a hybrid blind PAPR reduction algorithm for OFDM systems is proposed, which is a combination of distortion technique (Clipping) and distortionless technique (DFT spreading). The DFT spreading is done prior to clipping reducing significantly the probability of having higher peaks in the composite signal prior to transmission. Simulation results show that the proposed algorithm outperforms unprocessed conventional OFDM transmission by 9 dB. Comparison with existing blind algorithms shows 7 dB improvement at error rate 10–3 and 3 dB improvement at error rate 10–1 when operating in flat fading and doubly dispersive channels, respectively.Keywords:    LTE Systems; OFDM; Peak to Average Power Ratio; DFT spreading; Signal to Noise Power Ratio

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    DFT-Spread Spectrally Overlapped Hybrid OFDM-Digital Filter Multiple Access IMDD PONs

    Get PDF
    A novel transmission technique—namely, a DFT-spread spectrally overlapped hybrid OFDM–digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)—is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs. Compared with previously reported PONs excluding DFT-spread, a significant peak-to-average power ratio (PAPR) reduction of over 2 dB is achieved, leading to a 1 dB reduction in the optimal signal clipping ratio (CR). As a direct consequence of the PAPR reduction, the proposed PON has excellent tolerance to reduced digital-to-analogue converter/analogue-to-digital converter (DAC/ADC) bit resolution, and can therefore ensure the utilization of a minimum DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1 × 10−3). In addition, the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances

    Ellipse-based DCO-OFDM for visible light communications

    No full text
    Ellipse-based DC-biased optical orthogonal frequency division multiplexing (E-DCO-OFDM) is proposed for visible light communications (VLC), which achieves a significant peak-to-average power ratio (PAPR) reduction, thus enhancing the overall performance when light-emitting diode (LED) nonlinearity is considered. In E-DCO-OFDM, the real-valued output of OFDM is modulated onto an ellipse, whereby only the imaginary part of the complex point on the ellipse is transmitted. Although the PAPR of E-DCO-OFDM decreases as the ratio of major radius to minor radius becomes larger, it may be more vulnerable to the effect of noise, leading to the performance loss. Therefore, the relationship between the system performance and the critical parameters in E-DCO-OFDM, such as the ratio between the major and minor radius of the ellipse, is investigated. Meanwhile, simulations demonstrate that E-DCO-OFDM adopting the optimal parameters achieves a considerable signal-to-noise ratio (SNR) gain over the conventional DCO-OFDM

    OFDM-PWM scheme for visible light communications

    Get PDF
    In this paper, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme for visible light communications. In this scheme, a bipolar O-OFDM signal is converted into a PWM format where the leading and trailing edges convey the frame synchronization and modulated information, respectively. The proposed scheme is insensitive to the non-linearity of the light emitting diode (LED) as LEDs are switched ‘on’ and ‘off’ between two points. Therefore, the tight requirement on the high peak-to-average-power-ratio (PAPR) in O-OFDM is no longer a major issue. The simulation and experimental results demonstrate that the proposed scheme offers an improved bit error rate performance compared to the traditional asymmetrically clipped O-OFDM (ACO-OFDM)
    • 

    corecore