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ABSTRACT In this paper, a triple-layer hybrid optical orthogonal frequency division multiplexing
(THO-OFDM) for intensity modulation with direct detection (IM/DD) systems with a high spectral effi-
ciency is proposed. We combine N -point asymmetrically clipped optical orthogonal frequency division
multiplexing (ACO-OFDM), N /2-point ACO-OFDM, and N /2-point pulse amplitude modulated discrete
multitoned (PAM-DMT) in a single frame for simultaneous transmission. The time- and frequency-domain
demodulation methods are introduced by fully exploiting the special structure of the proposed THO-OFDM.
Theoretical analysis show that, the proposed THO-OFDM can reach the spectral efficiency limit of the
conventional layered ACO-OFDM (LACO-OFDM). Simulation results demonstrate that, the time-domain
receiver offers improved bit error rate (BER) performance compared with the frequency-domain with∼40%
reduced computation complexity when using 512 subcarriers. Furthermore, we show a 3 dB improvement
in the peak-to-average power ratio (PAPR) compared with LACO-OFDM for the same three layers.

INDEX TERMS LACO-OFDM, PAM-DMT, spectral efficiency, computation complexity, PAPR.

I. INTRODUCTION
In the last decades, the increasing requirement for mobile
devices and access to high-speed networks has put additional
pressure on the radio-frequency (RF) spectrum usage [1], [2].
To address this problem, optical wireless communications
(OWC) including the light-emitting diodes (LEDs)-based vis-
ible light communications (VLC) has been investigated to
offer high-speed data links in certain key applications [2]–[5].
Due to its advantages of huge spectrum resource, lower
power consumption, higher transmission data rates Rb and
the immunity to RF electromagnetic interference, VLC is
seen as a promising complementary wireless technology to

The associate editor coordinating the review of this manuscript and
approving it for publication was Kezhi Wang.

the current RF in indoor (mostly), outdoor and underwater
applications [6]–[11].

However, the first major issue in VLC is the low mod-
ulation bandwidth Bmod of commercial LEDs (< 5 MHz),
which limits the transmission capacity [12], [13]. Advanced
equalization techniques and spectrum-efficient modulation
techniques were thereafter proposed to improve Bmod and
therefore Rb [14]–[17]. In addition, multi-carrier modula-
tion scheme of orthogonal frequency division multiplex-
ing (OFDM) has been investigated to increase Rb because
of their higher spectral efficiency ηse compared with the
classical most widely used on-off keying (OOK) [18].
Since the OFDM signal needs to be both real and posi-
tive in intensity modulation with direct detection (IM/DD)
optical communications, asymmetrically clipped optical
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OFDM (ACO-OFDM), DC-biased optical OFDM (DCO-
OFDM) and pulse amplitude modulated discrete multitone
(PAM-DMT) have been proposed [19], [20]. In DCO-OFDM,
high DC-bias level is required to ensure a unipolar posi-
tive OFDM signal at the cost of reduced power efficiency.
Although bothACO-OFDMand PAM-DMTdo not need high
DC-bias, ηse is still not fully exploited because of the lower
subcarrier utilization and the one-dimension PAM mapping,
respectively. Therefore, a hybrid QAM and PAM can be used
to improve ηse [21].
To further improve ηse of OFDM and DMT, sev-

eral spectrum-efficient schemes were proposed rece-
ntly [22]–[26]. In [22] and [23], a layered optical OFDM
technique was proposed for IM/DD optical systems using
anti-periodic OFDM signals for simultaneous transmission.
In [24], a layered ACO-OFDM (LACO-OFDM) scheme was
proposed by combining L-layer ACO-OFDM signals with
different effective subcarriers in the time domain (TD) to
improve ηse of conventional ACO-OFDM. A similar method
termed augmented spectral efficiency discrete multitone
(ASE-DMT) was proposed to improve ηse of conventional
PAM-DMT [25], [26]. Note that, although layered-OFDM
schemes can remove the spectral efficiency gap between
unipolar OFDM and DCO-OFDM, their efficiency limits
will require infinite layers to superimpose, which is not
possible in real applications. Moreover, the combination and
distortion cancellation of too many layers in the time or fre-
quency domain would lead to an increased system complexity
(i.e., hardware implementation).

In this paper, we propose a novel spectrum-efficient
triple-layer hybrid optical OFDM (THO-OFDM), which
offers a trade-off between ηse and complexity compared
with DCO-OFDM. We show that, the proposed THO-OFDM
can reach ηse limit of LACO-OFDM using only 3-layer and
including N -point ACO-OFDM, N /2-point ACO-OFDM and
N /2-point PAM-DMT in a single TD frame. Analysis and
simulation results show that, the proposed THO-OFDM out-
performs conventional LACO-OFDM in terms of computa-
tion complexity and PAPR.

The remainder of this paper is organized as fol-
lows. In Section II, the conventional LACO-OFDM is
briefly described, while in Section III the proposed
THO-OFDMand its time/frequency-domain (FD) transceiver
are described in detail. Theoretical analysis of spectral
efficiency, computation complexity and BER performance
are given in Section IV. Simulation results and perfor-
mance comparisons of the proposed THO-OFDM are
presented in Section V. Finally, conclusions are drawn
in Section VI.

II. CONVENTIONAL LACO-OFDM SYSTEM
In classical ACO-OFDM, the input bits are converted
into complex symbols of quadrature amplitude modulation
(QAM). Following Hermitian symmetry, only the odd sub-
carriers are used prior to inverse fast Fourier transform
(IFFT). Therefore, for ACO-OFDM the input FD vector is

given by:

X= [0,X1, 0,X3, . . . ,XN/2−1, 0,X∗N/2−1, 0, . . . ,X
∗

3 , 0,X
∗

1 ],

(1)

where N is the number of subcarriers and ∗ denotes the con-
jugate symmetric operation. Following IFFT, the TD signal is
expressed as:

x (n) =
1
√
N

N−1∑
k=0

X (k) exp
(
j
2π
N
kn
)
, (2)

where n = 0, 1, · · · ,N − 1, and x (n) is a bipolar signal,
which satisfies the antisymmetric property given by:

x (n) = −x (n+ N/2) , n = 0, 1, . . . ,N/2− 1. (3)

The ACO-OFDM signal is obtained by a negative clip-
ping without losing any information. Based on this feature,
L-layer (L ≥ 2) LACO-OFDM is constructed by superposi-
tion of

[
N ,N/2, . . . ,N/2L−1

]
points ACO-OFDM signals in

the TD [24]. Following a redundant replication process, each
layer with the same ACO-OFDM signal length are combined
for simultaneous transmission. Thus, the LACO-OFDM in
the TD can be defined as:

xLACO =
L∑
l=1

⌊
x(l)ACO,n

⌋
c
, n = 0, 1, . . . ,N − 1. (4)

where L denotes the maximum number of layers in
LACO-OFDM,

⌊
x(l)ACO,n

⌋
c
denotes the repeated ACO-OFDM

signal in the l th layer after redundant replication process,
and b·cc denotes the negative clipping operation. At the Rx,
the transmitted bits are recovered in the FD as in [24].
Note that, the negative clipping distortion of ACO-OFDM
corresponding to the lower layer should be removed before
correctly demodulating the higher layer in order to deter-
mine the optimal bit error rate (BER) performance. However,
the optimal BER performance is achieved at the cost of fur-
ther increased system complexity, hardware implementation
and latency.

III. PROPOSED THO-OFDM SYSTEM
From Section II we can see that, the data capacity of
LACO-OFDM increases with the layer number but at the
cost of increased system complexity. Therefore, we pro-
pose a novel THO-OFDM scheme including double layers
ACO-OFDM and single layer PAM-DMT signals to reach the
ηse limit of LACO-OFDM with a much simpler transmitter
(Tx) structure as shown in Fig. 1.

A. TRANSMITTER
The detailed Tx structure of the proposed THO-OFDM is
shown in Fig. 2, where serial-to-parallel conversion, Hermi-
tian symmetry and cyclic prefix (CP) insertion are omitted.
The arbitrary binary bit sequence is first allocated to the
3-layer based on the modulation orders and IFFT points

in each layer. Here, we define X (1)
ACO, X

(2)
ACO and X (3)

PAM as
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FIGURE 1. Comparisons of the proposed THO-OFDM and LACO-OFDM.

FIGURE 2. Block diagram of the proposed THO-OFDM Tx.

N -point QAM,N /2-point QAM andN /2-point PAM symbols
corresponding to the 1st, 2nd and 3rd layers, respectively.
X (1)
ACO is defined in (1), and X (2)

ACO and X (3)
PAM are given by:

X (2)ACO = [0,X1, 0,X3, . . . ,XN/4−1, 0,

X∗N/4−1, 0, . . . ,X
∗

3 , 0,X
∗

1 ], (5)

X (3)
PAM = j[0, 0,P2, 0,P4, . . . ,PN/4−2, 0,

0, 0,−PN/4−2, 0, . . . ,−P4, 0,−P2, 0], (6)

where j =
√
−1 and Pk (k = 2, 4, . . . ,N/4 − 2) is the

PAM symbols. Although the effective ACO-OFDM samples
in the 2nd layer are half of the 1st layer in THO-OFDM,
the length of effective PAM-DMT samples in the 3rd layer is
the same as ACO-OFDM in the 2nd layer. By doing this, ηse of
THO-OFDM is increased significantly compared with con-
ventional LACO-OFDM. Note that, in THO-OFDM Hermi-
tian symmetry is still required to ensure the anti-symmetric
property for the first two layers of ACO-OFDM and the
periodic property for the 3rd layer of PAM-DMT.
Following the IFFT operation at each layer, we will have

the bipolar TD signals of x(1)ACO, x
(2)
ACO and x(3)PAM. Negative

clipping is applied to these signals to ensure all positive and
real signals prior to applying the 2-time repeat operation
to the 2nd and 3rd layers to compensating for the length
difference. The constructed unipolar signals with the same

length are defined as
⌊
x(1)ACO,n

⌋
c
,
⌊
x(2)ACO,n

⌋
c
and

⌊
x(3)PAM,n

⌋
c
,

where n = 0, 1, · · · ,N − 1. Therefore, the TD signals
in different layers have the different anti-symmetric and a
periodic property, which can be concluded as below (7)–(9),
as shown at the bottom of the next page.

Finally, the combined triple-layer unipolar signal is given
as:

xTHO =
⌊
x(1)ACO,n

⌋
c
+

⌊
x(2)ACO,n

⌋
c
+

⌊
x(3)PAM,n

⌋
c
. (10)

B. RECEIVER
In this part, we make full use of the special structure of
THO-OFDM to represent the two different layered
demodulation methods in the TD and FD, respectively.
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FIGURE 3. Block diagram of the proposed TD-based Rx for THO-OFDM.

The block diagram of the TD-based Rx for THO-OFDM is
shown in Fig. 3. The received optical signal is first converted
into an electrical signal using an optical Rx (ORx) prior to
removing the CP. The noise due to optical and electrical parts
as well as the ambient lights is modeled as an additive white
Gaussian noise (AWGN) [27]–[31]. Thus, the received THO-
OFDM signal is given as:

r (1,2,3)THO = RxTHO ⊗ h(n)+ wn, (11)

where R is the photodiode responsivity, n = 0, 1, 2, . . . ,
N−1, h (n) is the channel impulse response (CIR),wn denotes
the discrete samples of AWGN and⊗ represents convolution
operation [32]. To simplify the derivation processes, wn is
omitted in the following equations.

As for the TD-based Rx, following removal of the CP the
signal r (1,2,3)THO is split into two, which are given as:

r (1,2,3)THO,left =

⌊̃
x(1)ACO,n

⌋
c
+

⌊̃
x(2)ACO,n

⌋
c
+

⌊̃
x(3)PAM,n

⌋
c
, (12)

r (1,2,3)THO,right =

⌊̃
x(1)ACO,n+N/2

⌋
c
+

⌊̃
x(2)ACO,n+N/2

⌋
c

+

⌊̃
x(3)PAM,n+N/2

⌋
c
, (13)

where n = 0, 1, · · · ,N/2−1. According to (7)-(9), estimated
ACO-OFDM in the 1st layer is given by:

x̃(1)ACO,left = r (1,2,3)THO,left − r
(1,2,3)
THO,right

=

⌊̃
x(1)ACO,n

⌋
c
−

⌊̃
x(1)ACO,n+N/2

⌋
c
, (14)

where x̃(1)ACO,left represents the left half part of the esti-

mated 1st layer bipolar signal x(1)ACO. The N -point x(1)ACO is
reconstructed by employing the anti-symmetric property of
x(1)ACO =

[
x̃(1)ACO,left,−x̃

(1)
ACO,left

]
. Following N -point FFT

operation, the transmitted bits for the 1st layer is obtained by
demodulation of QAM using the odd subcarriers in the FD.
As the superimposed N -point signal in the 2nd and

3rd layers in the TD contains half the repeated signal, the

⌊
x(1)ACO,n

⌋
c
=

⌊
−x(1)ACO,n+N/2

⌋
c
, n = 0, 1, . . . ,N/2− 1, (7)

⌊
x(2)ACO,n

⌋
c
=

⌊
x(2)ACO,n+N/2

⌋
c
, n = 0, 1, . . . ,N/2− 1⌊

x(2)ACO,n

⌋
c
=

⌊
−x(2)ACO,n+N/4

⌋
c
, n = 0, 1, . . . ,N/4− 1,

(8)



⌊
x(3)PAM,n

⌋
c
=

⌊
x(3)PAM,n+N/2

⌋
c
, n = 0, 1, . . . ,N/2− 1⌊

x(3)PAM,n

⌋
c
=

⌊
x(3)PAM,n+N/4

⌋
c
, n = 0, 1, . . . ,N/4− 1⌊

x(3)PAM,n

⌋
c
=

⌊
−x(3)PAM,N/4−n

⌋
c
, n = 1, 2, . . . ,N/8− 1⌊

x(3)PAM,0

⌋
c
=

⌊
x(3)PAM,N/8

⌋
c
= 0⌊

x(3)PAM, N/4

⌋
c
=

⌊
x(3)PAM,3N/8

⌋
c
= 0.

(9)
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N /2-point effective signal can be utilized to realize the sub-
optimal demodulation with reduced complexity. Note, the
clipping signal of x̃(1)ACO,left is removed from r (1,2,3)THO,left to obtain
the N /2-point superimposed signal of the 2nd and 3rd layers,
which can be expressed as:

r (2,3)THO = r (1,2,3)THO,left −

⌊̃
x(1)ACO,left

⌋
c
. (15)

Since clipping interference due to the 2nd and 3rd layers
only effect the even subcarriers of r (2,3)THO , the ACO-OFDM
signal of the 2nd layer is first recovered by means of the
N /2-point FFT operation. Prior to recovering PAM-DMT in
the 3rd layer, the clipping interference from ACO-OFDM of
the 2nd layer needs to be removed either in the frequency or
time domain [30], [33]. Here, we have adopted the latter,
which is simpler to implement and effective in reducing
the clipping noise. First, r (2,3)THO is split into left and right
N /4-point as r (2,3)THO,left, r

(2,3)
THO,right, respectively. The left half

part of the 2nd layer bipolar ACO-OFDM signal is esti-
mated as:

x̃(2)ACO,left = r (2,3)THO,left − r
(2,3)
THO,right =

⌊̃
x(2)ACO,n

⌋
c
+

⌊̃
x(3)PAM,n

⌋
−

⌊̃
x(2)ACO,n+N/4

⌋
c
−

⌊̃
x(3)PAM,n+N/4

⌋
c

=

⌊̃
x(2)ACO,n

⌋
c
−

⌊̃
x(2)ACO,n+N/4

⌋
c
, (16)

where n = 0, 1, . . . ,N/4 − 1. Thus, the left half part of
PAM-DMT in the 3rd layer can be estimated as:⌊̃
x(3)PAM,n

⌋
c
= r (2,3)THO,left −

⌊̃
x(2)ACO,left

⌋
c

=

⌊̃
x(2)ACO,n

⌋
c
+

⌊̃
x(3)PAM,n

⌋
c
−

⌊̃
x(2)ACO,left

⌋
c
, (17)

According to (9), pairwise clipping can be utilized to
reduce the noise by almost half and estimate the error for⌊
x̃(3)PAM,n

⌋
c
for further improvement of the BER performance

of PAM-DMT [28], [34], which is expressed by:⌊̃
x(3)PAM,left

⌋
c
=

⌊̃
x(3)PAM,n

⌋
c
I
{⌊̃
x(3)PAM,N/4−1−n

⌋
c
≤

⌊̃
x(3)PAM,n

⌋
c

}
,

(18)

where n = 0, 1, . . . ,N/8 − 1 and I (A) is an indicator
function with I (A) = 1 if event A is true and I (A) = 0 other-
wise. In addition,

⌊
x̃(3)PAM,0

⌋
c
,
⌊
x̃(3)PAM,N/8

⌋
c
,
⌊
x̃(3)PAM,N/4

⌋
c
and⌊

x̃(3)PAM,3N/8

⌋
c
are also set to zero according to (9).

Next,
⌊
x̃(3)PAM

⌋
c
can be reconstructed based on the periodic

property. Finally, the transmitted bits for PAM-DMT in the
3rd layer can be demodulated from the imaginary parts of even
subcarriers following the N /2-point FFT operation.
As for the FD-based Rx, the subcarriers distribution for

the signal and clipping distortion are shown in Fig. 4. The
block diagram of the FD-based Rx for THO-OFDM is shown
in Fig. 5. As shown in Fig. 4, there is no overlapping of
clipping distortion with the data-carrying odd subcarriers for
the Layer 1 with the index K1 = [1, 3, . . . ,N −1]. Therefore,

FIGURE 4. Block diagram of subcarriers mapping for the FD-based
THO-OFDM.

the data can be estimated directly from K1 using the standard
demodulation of ACO-OFDM. For the Layer 1, following
demodulation, the distortion level is estimated using the clip-
ping noise regeneration process as in [24], [30]. Given that
the data-carrying subcarriers of Layer 2 with the index K2 =

[2, 6, . . . ,N − 2] is only affected by the clipping distortion
of Layer 1, the Layer 2 can be demodulated by substituting
the corresponding distortion components of the Layer 1.
Unlike the FD structure of LACO-OFDM, for the Layer 3 of
THO-OFDM the index of data-carrying subcarriers is K3 =

[4, 8, . . . ,N − 4]. The clipping distortion of PAM-DMT falls
on the real part of corresponding even subcarriers in Layer 3,
while the imaginary part of corresponding even subcarriers is
independent of the PAM-DMT induced distortion. Therefore,
the subcarriers of PAM can be extracted by substituting the
corresponding distortion components of Layers 1 and 2.

IV. THEORY ANALYSIS OF THE THO-OFDM SYSTEM
A. SPECTRAL EFFICIENCY
The spectral efficiency of the proposed THO-OFDM is deter-
mined by the constellation combinations of N -point QAM,
N /2-point QAM and N /2-point PAM symbols. The spectral
efficiency for the standard ACO-OFDM and PAM-DMT are
given as [26], [35]:

ηACO =
N log2MACO

4(N + NCP)
(bit/s/Hz), (19)

ηPAM =
(N − 2) log2MPAM

2 (N + NCP)
(bit/s/Hz), (20)

where MACO and MPAM denote the constellation size of
QAM and PAM symbols, respectively. Since only the even
subcarriers of PAM-DMT are used to carry data information
in the proposed scheme, the total spectral efficiency of the
proposed THO-OFDM is given by:

ηTHO

=
1

N + NCP

(
2∑
l=1

N log2M
(l)
ACO

2l+1
+

(N − 2) log2M
(3)
PAM

8

)

=

N
4 log2M

(1)
ACO +

N
8 log2M

(2)
ACO +

N−2
8 log2MPAM

N + NCP
(bit/s/Hz) , (21)
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FIGURE 5. Block diagram of the proposed FD-based Rx for THO-OFDM.

where M (l)
ACO(l = 1, 2) and MPAM are the constellation

size of QAM and PAM symbols, respectively. For compar-
isons, the spectral efficiency of L-layer LACO-OFDM is
given by:

ηLACO =
1

N + NCP

L∑
l=1

N
2l+1

log2M
(l)
ACO (bit/s/Hz) . (22)

Based on (21)-(22), it can be concluded that ηLACO ≈
ηTHO for L→∞, ignoring the effect of NCP and for the
same constellation size for LACO-OFDM and the proposed
THO-OFDM. Therefore, THO-OFDM could theoretically
achieve the spectral efficiency limit of LACO-OFDM with
only three layers and the same constellation size.

B. COMPUTATION COMPLEXITY
The computation complexity in this work is defined
as the number of complex multiplications in FFT/IFFT.
In ACO-OFDM, the computation complexity of an N -point
complex- and real-valued IFFT/FFT operations, respectively
are defined asO

(
N log2 N

)
andO

(
N/2 log2 N

)
accordingly.

Given that, in PAM-DMT the data is in the imaginary parts,
the computation complexity of N -point IFFT/FFT operation
is O

(
N/2 log2 N

)
[26]. For comparisons, the computation

complexities of the TD and FD-based Rxs for THO-OFDM
and conventional LACO-OFDM [24] are both given in the
following.

At the Tx, THO-OFDM requires one N -point and
N /2-point complex-valued IFFT and IFFT operations for
x(1)ACO and for x(2)ACO and x(3)PAM, respectively. Therefore, the
computation complexity of THO-OFDM can be expressed
as:

O (THO)Tx = O
(
N log2 N

)
+ O

(
N/2 log2 (N/2)

)
+O

(
N/4 log2 (N/2)

)
= O

(
N
(
log2 N + 3/4 log2 (N/2)

))
. (23)

Similarly, the computation complexity of L-layer conven-
tional LACO-OFDM at the Tx can be given by (24):

O (LACO)Tx

= O

(
L∑
l=1

(
N/2l−1

)
log2

(
N/2l−1

))
= O

(
2N

(
1− 2−L

)
log2 N − 2N

(
1− 21−L

)
+(L − 1)N/2L−1

)
= O

(
N log2 N + 3N/4 log2 (N/2)− N

+ N/4 log2 (N/2)+ 21−LN
(
L + 1− log2 N

))
= O(THO)Tx + F (N ,L) . (24)

Note, F (N ,L) = (N/4) log2 (N/2) − N + 21−LN(
L + 1− log2N

)
, which satisfies F (N ,L) > 0 if L ≥ 4,

N > 32 and F (N ,L) < 0 if 2 ≤ L < 4.
At the Rx, the computation complexity of the proposed the

TD and the FD based Rx of THO-OFDM are respectively
given by (25) and (26):

O (THO)Rx-TD = O
(
N/2 log2 N + N/4 log2 (N/2)

+N/4 log2 (N/2)
)

= O
(
N/2

(
log2 N + log2 (N/2)

))
= O

(
N
(
log2 N − 1/2

))
. (25)

O (THO)Rx-FD = O
(
N/2 log2 N + N log2 N+ N/2 log2 N

+N/2 log2(N/2)+ N/4 log2 (N/2)
)

= O
(
N
(
2 log2 N + 3/4 log2(N/2)

))
. (26)

Whereas, the computation complexity of the L-layer con-
ventional LACO-OFDM at the Rx is given by (27):

O (LACO)Rx

= O

(
N log2 (N )+ 2

L−1∑
l=1

(
N/2l−1

)
log2

(
N/2l−1

))
> O(THO)Rx-TD. (27)
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TABLE 1. Spectral efficiency (SE) and computation complexity (CC)
comparisons.

The total computation complexity of the proposed
THO-OFDM and the conventional LACO-OFDM are given
by (28):

O (THO)TD = O (THO)Tx + O (THO)Rx-TD
O (THO)FD = O (THO)Tx + O (THO)Rx-FD
O (LACO) = O (LACO)Tx + O (LACO)Rx .

(28)

Based on (25)-(26), we can conclude that the computation
complexity of the TD-based Rx is lower compared with the
FD-basedRx in THO-OFDM. In order tomeasure the compu-
tation complexity, herewe define the computation complexity
reduction ratio (CCRR) as in (29):

CCRR1 = 1−
O (THO)TD
O (LACO)

CCRR2 = 1−
O (THO)FD
O (LACO)

. (29)

For N = 512 and the maximum number of layer
(i.e., Lmax = 8) we have CCRR1≈ 59% and CCRR2 ≈ 32%,
which shows reduced computation complexity for the pro-
posed THO-OFDM with TD and FD-based Rxs com-
pared with the conventional LACO-OFDM Rx as in [24].
Finally, ηse and computation complexity of the proposed
THO-OFDM and conventional LACO-OFDM for range of
layers are summarized in Table 1. Note, the effect of NCP is
not considered, N and MACO = MPAM are set to 512 and 4,
respectively.

C. BER PERFORMANCE
The bit error probability for ACO-OFDM with MACO-ary
square QAM and PAM-DMT withMPAM-ary PAM are given

by [23], [36], [37]:

Pb,QAM≈
4
(√

MACO−1
)

√
MACO log2MACO

Q

(√
3 log2MACO

MACO − 1
Eb
N0

)
,

(30)

Pb,PAM≈
2 (MPAM − 1)

MPAM log2MPAM
Q

(√
6 log2MPAM

M2
PAM − 1

Eb
N0

)
, (31)

where Eb is the bit energy,N0 is the noise spectral density and
Q (·) is the tail probability of the standard normal distribution
given by Q (ξ) = 1

√
2π

∫
∞

ξ
exp

(
−
µ2

2

)
du.

Based on (30)-(31), the average Pb for 3-layer
THO-OFDM including N -point ACO-OFDM with
M (1)

ACO-ary square QAM,N /2-point ACO-OFDMwithM (2)
ACO-

ary square QAM and N /2-point PAM-DMT with MPAM-
ary PAM is given by (32), as shown at the bottom of this
page. Here, Pb,l(l = 1, 2, 3) denotes the BER of the l th

layer of THO-OFDM. Since the BER performance ofM2-ary
square QAM is the same as M -ary PAM based on the above
formulations, then we haveM (1)

ACO = M (2)
ACO =

√
MPAM = M

for a fair comparison for LACO-OFDM with the same ηse.
In order to ensure that different layers have similar BER

performance at a given signal to noise ratio (SNR), the
energy/bit for different layers should be kept the same. The
theoretical analysis show that, the inter-layer BERs approxi-
matively satisfy Pb,1 = Pb,2 = Pb,3 in the FD demodulation
provided M (1)

ACO = M (2)
ACO =

√
MPAM = M . In the TD

demodulation, see Fig. 3, however, the subtracting process
following signal splitting will discard half of the noise com-
ponent, which is totally different from the FD demodulation
adopted in THO-OFDM or LACO-OFDM. Therefore, the
single layer BER performance will degrade with the number
of layers decreasing. Note that, BERs varies in the inter-layer,
which can be exploited to improve the final BER, as was
demonstrated in the TD iterative-based Rx of the HACO-
OFDM and LACO-OFDM [28], [34].

V. NUMERICAL RESULTS
In this section, we outline the comprehensive BER, ηse,
computation complexity and CCDF analysis obtained using
Monte-Carlo simulations in the MATLAB R2016a. To sim-
plify simulations, we consider the AWGN channel and the
maximum number of subcarriers N of 512. Fig. 6 shows the
BER as a function of SNR for the proposed THO-OFDMwith
TD/FD demodulation and conventional LACO-OFDM for 4-,
16-, and 64-QAM, 2-, 4-, and 8-PAM, and a range of ηse.

Since PAM only uses a one-dimension mapping to carry
data bits compared with the two-dimension QAM constella-
tions, the modulation orders in Fig. 6 should satisfyMACO =√
MPAM for a fair comparison. From Fig. 6, we can see that,

Pb,THO =
N
4 log2M

(1)
ACOPb,1 +

N
8 log2M

(2)
ACOPb,2 +

(N
8 − 1

)
log2MPAMPb,3

N
4 log2M

(1)
ACO +

N
8 log2M

(2)
ACO +

(N
8 − 1

)
log2MPAM

, (32)
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FIGURE 6. BER performance against SNR for the proposed THO-OFDM
with TD and FD demodulation and conventional LACO-OFDM for
different ηse(bit/s/Hz).

the proposed THO-OFDM with two demodulation methods
can achieve the same ηse as LACO-OFDM with 3-layer.
More specifically, ηse of 0.875 bit/s/Hz, 1.75 bit/s/Hz and
2.625 bit/s/Hz provided MACO =

√
MPAM, where MACO =

4, 16, 64. Moreover, at a BER of 10−4 THO-OFDMwith TD
demodulation offer the SNR gains of 0.6, 0.8, and 1.0 dB
compared with FD demodulation for MACO = 4, 16 and 64,
which marginally better than LACO-OFDM with
FD demodulation.

To better illustrate the inter-layer BERs comparison of
THO-OFDMwith two demodulation methods, the BER plots
for 1-3 layers in THO-OFDM with two demodulation meth-
ods for 4-QAM, 4QAM and 2PAM are depicted in Fig. 7.
Note, the BER plots are obtained for layer-by-layer from low
to high. As shown in Fig. 7, the inter-layer BERs plots for FD
demodulation approximately approach at a given SNR value
while the inter-layer BERs of TD demodulation turn better
with the layer number increases. This is consistent with the
theoretical analysis for the BER given in Section IV.

The detailed comparisons of ηse and computation com-
plexity for the proposed THO-OFDM with two demod-
ulation methods and the conventional LACO-OFDM are
drawn in Fig. 8 for MACO = MPAM = 4. Obviously, the
proposed THO-OFDM with TD or FD achieve the spec-
tral efficiency limit of LACO-OFDM with the computation
complexity reduced significantly, which is also consistent
with the previous analysis. E.g., for L = 3, we can further
verify the advantages of the proposed THO-OFDM in terms
of ηse of 0.124 bit/s/Hz and CCRR1 ≈ 53% in TD and
CCRR2 ≈ 22% in FD compared with the conventional
LACO-OFDM. Meanwhile, ∼40% computation complexity
reduction is achieved in TD demodulation compared with
FD demodulation for THO-OFDM.

As the transfer characteristic of the commercial LEDs is
nonlinear, the PAPR becomes another key factor to evaluate

FIGURE 7. Inter-layer BER as function of SNR for the proposed THO-OFDM
with the TD and FD demodulation for 4QAM, 4QAM and 2PAM.

FIGURE 8. Comparisons of ηse and computation complexity of the
proposed THO-OFDM with TD, FD and LACO-OFDM.

the performance of the optical OFDM [29], [38]–[40]. The
PAPR of discrete optical OFDM signal can be generally
defined as the ratio of the maximum power to the average
power, which is given by:

PAPR = 10 log10
max |x (n)|2

E
[
|x (n)|2

] (dB), (33)

where E [.] denotes the statistical expectation. The comple-
mentary cumulative distribution function (CCDF) is further
employed to illustrate the PAPR performance comparisons
between the proposed THO-OFDM and the conventional
LACO-OFDM. It denotes the probability that, PAPR of an
optical OFDM signal exceeds a certain threshold PAPR0 as
given by:

CCDF = Pr (PAPR > PAPR0) . (34)

Fig. 9 shows the CCDF against the threshold PAPR0 for
the proposed THO-OFDM and LACO-OFDM for a range
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FIGURE 9. PAPR analysis for the proposed THO-OFDM and conventional
LACO-OFDM with different layers under MACO = MPAM = 4.

of layers. It is shown that, at the CCDF of 10−4, the PAPR
requirements are > 19, > 18, ∼ 17.5, ∼ 17 and ∼ 16 dB
for LACO-OFDM for L = 2, 3, 4, 5 and 6, respectively
compared with 15 dB for the proposed THO-OFDM. It is
worth noting that, for L ≥ 6 there is a tendency that, the PAPR
requirement for the proposed THO-OFDM is still lower than
LACO-OFDM. For LACO-OFDM with more layers, fewer
zeros would be found in the TD signal, due to the superpo-
sition of more layers. Meanwhile, the average power of the
signal increases faster than the peak power as more layers
are utilized [29]. Therefore, the LACO-OFDM signal with
more layers tends to exhibit lower PAPR, which can also
be verified from Fig. 9. However, at the CCDF of 10−4,
the proposed scheme offers lower PAPR0 by about 3 dB
compared with LACO-OFDM for the same number of layers
and the modulation format.

VI. CONCLUSION
In this paper, a spectrum-efficient triple-layer hybrid optical
orthogonal frequency division multiplexing was presented
and studied. We showed that, the proposed THO-OFDM
reached the spectral efficiency limit of the classical
LACO-OFDM with only three layers. In addition, theoreti-
cal analysis results demonstrated that, THO-OFDM with the
TD-based Rx did attain reduced computation complexity by
40% compared with the conventional successive interference
cancellation (SIC) demodulation scheme employed in the fre-
quency domain with amarginally improved BER. In addition,
CCDF simulation results demonstrated that, a 3 dB PAPR
improvement for THO-OFDM compared with the classical
LACO-OFDM for the same number of layers, thus demon-
strating its potential applications in IM/DD based optical
wireless communications.
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