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OFDM-Digital Filter Multiple Access IMDD PONs 
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Abstract: A novel transmission technique namely DFT-spread spectrally overlapped hybrid orthog-

onal OFDM-Digital filter multiple access (DFMA) PON based on intensity modulation and direct 

detection (IMDD) is proposed by employing the discrete Fourier transform (DFT)-spread technique 

in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simula-

tions are undertaken to identify optimum ONU transceiver parameters and explore their maximum 

achievable upstream transmission performances over the IMDD PON systems. It shows that the 

DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission 

performance to its maximum potential, whilst still maintaining all the salient features associated 

with previously reported PONs. Compared with the previously PON excluding DFT-spread, a sig-

nificant peak-to-average-power ratio (PAPR) reduction of over 2 dB is achieved, thus leading to a 1 

dB reduction in optimum signal clipping ratio (CR). As a direct consequence of the PAPR reduction, 

the proposed PON has excellent tolerance to reduced digital-to-analog converter/analog-to-digital 

converter (DAC/ADC) bit resolution and can therefore ensure the utilization of utilize a minimum 

DAC/ADC resolution of only 6 bits at the forward error correction (FEC) limit (1×10-3). In addition, 

the proposed PON can improve the upstream power budget by >1.4 dB and increase the aggregate 

upstream signal transmission rate by up to 10% without degrading nonlinearity tolerances. 

Keywords: Orthogonal frequency division multiplexing (OFDM); digital filter multiple access 

(DFMA); DFT-spread OFDM; intensity modulation and direct detection (IMDD); passive optical 

network (PON) 

 

1. Introduction 

To effectively cope with the current avalanche of mobile traffic, driven by the un-

precedented increase in users’ demands for ultra-wide bandwidth multimedia and cloud 

services which have become ubiquitous, fronthauls/backhauls of 5G CRANs capable of 

converging optical and wireless networks are needed, which require significant changes 

to network access networks  in order to support the ambitious system requirements [1,2]. 

Addressing such technical challenges requires multipronged efforts in different network 

domains across all layers not only to not only accommodate the explosive expansion in 

traffic demand, but also to efficiently support dynamic bandwidthtraffic  provisioning, 

improved cost-effectiveness, and power-efficiency [3]. The emergence of software-de-

fined networking (SDNs) with its extended network-controlled functionalities leverages 

the abstraction of different physical resources, and enhances the dynamic reconfigurabil-

ity, flexibility, scalability, and elasticity of the network [4]. To deliver aa SDN-based viable 

solution capable of satisfying the abovementioned requirements, a non-incremental solu-

tion should be implemented to realize the highly desirable cost-effective separately im-

plemented and independently operated legacy optical and wireless access networks in a 

converged manner. For cost-sensitive application scenarios such as optical access net-

works, metropolitan area networks (MAN), mobile fronthaul/backhaul networks, 
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intensity modulation and direct detection-based passive optical networks (IMDD PON) 

are is considered as a competitive technical solution due to its excellent cost-effectiveness 

and power efficiency [5]. 

To overcome the abovementioned technical challenges, a novel PON technique 

termed hybrid OFDM-DFMA PON utilizing spectrally overlapped digital orthogonal fil-

tering has recently been proposed and extensively investigated [6], where regardless of 

the ONU count matching filter (MF)-free single fast Fourier transform (FFT) operation and 

the relevant DSP processes are applied in a pipeline approach. In the proposed PON, 

transceiver-embedded software reconfigurable digital orthogonal filtering is utilized in 

each individual ONU, where for upstream transmission two spectrally overlapped digi-

tally filtered orthogonal ONU OFDM sub-band signals occupy the same sub-wavelength 

spectral region. In the OLT, for ONU sub-band signal demultiplexing and recovery, pro-

cedure similar to the earlier previously reported hybrid OFDM-DFMA PONs [7] is 

adopted, where regardless of the ONU count matching filter (MF)-free single fast Fourier 

transform (FFT) operation and the relevant DSP processes are applied in a pipeline ap-

proach. Numerical result shows that in terms of improving the upstream signal transmis-

sion capacity and enhancing the spectral efficiency, the proposed PON outperforms the 

results the previously earlier reported in [7] by a factor of approximately 2. Moreover, in 

the context of low OLT-DSP complexity, robustness against practical transceiver impair-

ments, enhanced flexibility, and backward compatibility with existing 4G networks, the 

proposed PON still maintained all the aforesaid salient unique features which have been 

known to be associated with the hybrid OFDM-DFMA PONs [6]. 

It is important to mention that the PONs reported in [6] are OFDM-based. The 

OFDM’s multi-subcarrier modulation scheme is well-known to produce high PAPRs due 

to the coherent superposition of orthogonal subcarriers in the time domain [8]. Technically 

speaking, systems with large PAPRs not only require wide dynamic operating ranges for 

the transceiver-embedded electrical/optical devices, but also produce high quantization 

noise for a fixed number of quantization bits and may force the involved devices to oper-

ate in their non-linear regions, thus introducing nonlinear signal distortions. In addition, 

the a large PAPR may also cause serious nonlinear noise associated with standard single-

mode fiber (SSMF) nonlinearities [9]. Therefore, suppressing the PAPRs in the PONs re-

ported in [6] is of great importance. Several PAPR reduction techniques have been pro-

posed [10-13]. The most widely adopted and simplest approach is to straightforwardly 

clip the OFDM signals [10,11]. The approach achieves some certain levels of PAPR reduc-

tion, however the clipping still can causes significant signal distortions. Another solution 

is to use multiple signaling and probabilistic techniques such as pilot-assisted partial 

transmit sequences (PTS) and selected-mapping (SLM) [12,13]. However, due to these ap-

proaches requiring redundant information to be transported alongside with the actual 

data, they have an intrinsic drawback of reducing the useful data rate and increases the 

computational complexity. In contrast to the abovementioned PAPR reduction tech-

niques, DFT-spread OFDM is the ultimate technical solution, because it is free from par-

allel redundant information and has low complexity, since only deterministic DFT and 

IDFT operations are is required in the transceiver [14]. The DFT-spread OFDM technique 

has already been reported in SSMF IMDD links, including DFT-spread layered/enhanced 

asymmetrically clipped OFDM systems [15] and probabilistically shaped OFDM enabled 

IMDD systems [16]. In addition, the DFT-spread technique also processes high compati-

bility for both long distance [17] and short reach IMDD transmission systems [18] and 

shows superior performances in PAPR reduction. Recently, we have applied the DFT-

spread technique in the hybrid OFDM-DFMA PONs to further improve the system trans-

mission performance flexibility [19]. However, in theseis PONs, each individual sub-

wavelength spectral region just conveys either a single in-phase (I) or quadrature phase 

(Q) channel upstream double sideband (DSB) OFDM signal only, this gives rise to halving 

e spectral efficiency compared with the spectrally overlapped hybrid orthogonal OFDM-

DFMA PONs [6]. 
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By combining the benefits of the DFT-spread technique and the previously reported 

PON [6], in this paper, we propose DFT-spread spectrally overlapped hybrid orthogonal 

OFDM-DFMA IMDD PONs and by numerical simulations, analyze and optimize their 

performance characteristics. The simulation results show that when the DFT-spread tech-

nique is applied, greater than 2dB PAPR reductions are  is attained for a digitally filtered 

OFDM signal carrying QAM modulated data. More importantly, the proposed PON can 

achieved greater than 1-bit reduction in the minimum required DAC/ADC bit resolution, 

and larger than 1.4dB upstream power budget improvement. Furthermore, in comparison 

to the conventional hybrid OFDM-DFMA PON [6], the proposed PON can enhanced the 

aggregate upstream signal transmission rate by factor of up to 10% in a 25km SSMF IMDD 

PON transmission system. It is noteworthy that while the proposed PON still maintains 

all the unique advantages associated with the previously reported PONs [6], in the OLT, 

without utilizing digital MFs, the single FFT operation followed by summing and subtrac-

tion operation of the lower sideband (LSB) and upper sideband (USB) and the correspond-

ing DSP-enabled data recovery processes applied in a pipelined approach cannot only 

directly demultiplex and demodulate ONU sub-bands signal within the same sub-wave-

length spectral region, but also the same OLT-receiver can be used to demodulate legacy 

OFDM signals. 

The above salient features make the proposed PON a feasible solution for future 5G 

networks in terms of providing DSP-enabled multi-channel aggregation and deaggrega-

tion solutions for fronthaul networks [20] to effectively enhance the bandwidth efficiency 

in comparison with existing common public radio interface (CPRI)-based fronthuals [21]. 

It should also be pointed out that the proposed PONs are completely different from the 

multi-band OFDM PON reported in [22], since the PONs proposed here have the follow-

ing unique features: 1) each sub-wavelength spectral region is shared by two independent 

orthogonal OFDM sub-band signals [6]; 2) no extra channel spacing is required between 

adjacent sub-wavelengths or sub-bands; 3) the side lobes of each OFDM sub-band are 

considerably reduced by the digital filtering process, this can minimize the inter channel 

interface (ICI) effect between sub-bands at adjacent sub-wavelengths. Furthermore, our 

results also indicate that for sub-wavelengths that do not suffer the strong channel fading 

effect, the ICI effects between different orthogonal OFDM sub-bands in these sub-wave-

lengths are negligible; 4) as a direct result of using the digital filtering process, each OFDM 

sub-band can adaptively and flexibly adjust its signal modulation parameters such as sub-

carrier count and channel bandwidth but without affecting  the  orthogonality between 

different sub-bands; 5) The digital filtering processing-induced ICI reductions greatly en-

hance the PON performance and its robustness against the channel frequency offset. In 

comparison with the up-conversion-based OFDM multi-band PONs, which require mul-

tiple tunable electrical local oscillators [20], the spectrally overlapped hybrid orthogonal 

OFDM-DFMA PONs utilize only digital filters to multiplex multiple OFDM sub-bands 

without requiring extra electrical/optical components compared to conventional trans-

ceivers in both the ONUs and the OLT.  

2. Principle of DFT-spread Spectrally Overlapped Hybrid Orthogonal OFDM-DFMA 

PONs 

A representative DFT-spread spectrally overlapped hybrid orthogonal OFDM-

DFMA IMDD PON architecture is depicted in Fig. 1, in which the more challenging mul-

tipoint-to-point upstream operation is considered only. The additional K-point DFT and 

IDFT block at each ONU and OLT combined with a subcarrier mapper and de-mapper 

module are shown highlighted in yellow. In each ONU, either in-phase (I) or quadrature-

phase (Q) M-ary quadrature amplitude modulation-encoded data symbols are grouped 

into blocks each containing K symbols. The K-point DFT operation is applied to spread 

the symbols into the frequency domain. Localized mapping is then utilized to map the 

symbols onto an N-point (N>2(K+1)) IFFT with N-subcarriers. As the first subcarrier is 

unused, the K signal-carrying subcarriers occupy the first N/2-1 subcarriers, as such after 
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zero padding the signal length is K≤N/2 -1. To produce a real-valued DFT-spread OFDM 

signal, an N-point IFFT operation is applied after enforcing the Hermitian symmetry. Fol-

lowing the cyclic prefix (CP) addition, each sub-band digitally encoded sample sequence 

is up-sampled by a factor M×. After that, the digital shaping filters after having fed the 

up-sampled sequence generated a digitally filtered sub-band signal, which are pass 

through the DAC and then fed into an optical intensity modulator (IM) to perform elec-

trical-to-optical (E-O) conversion. Similar to the treatment adopted in [7], the utilization 

of IM as the preferred light source in the numerical simulations is to completely eliminate 

the signal-signal beating interference (SSBI) effect [23]. It is noteworthy that, for practical 

implementation of the proposed PONs, different ONUs can use different wavelengths to 

transmit their OFDM sub-bands, provided that  and every two adjacent wavelengths 

have a minimum wavelength space of ~0.28nm in order to to mitigate the SSBI effects 

effectively [24]. 

After transmitting through an SSMF, in the OLT the corresponding receiver DSP 

functions are as follows; signal detection by a photo-detector (PD), signal digitization by 

an ADC, serial-to-parallel conversion, symbol timing alignment, CP removal, single L-

point FFT operation with L satisfying L=MN for generating complex-valued frequency 

domain subcarriers utilizing the received real-valued time domain symbols, lower side-

band (LSB) and upper sideband (USB) subcarriers identification, independent channel es-

timation and channel equalization of LSB and USB subcarriers based on the pilot subcar-

riers, and sideband processing to demultiplex the spectrally overlapped spectrum spread 

OFDM subcarriers. After the above DSP process, the resulting output sub-band subcarri-

ers data are passed through the subcarrier de-mapper. The output of the de-mapper is 

then subjected to the K-point IDFT and symbol demodulation to obtain data information 

corresponding to the transmitted I-phase and Q-phase ONUs sub-band input data. 

 

Figure 1. (a) DFT-spread hybrid orthogonal OFDM-DFMA PON (b) Example of digital filter alloca-

tion and digital filter frequency response, all digital filters are produced using a Hilbert-pair ap-

proach. SC: subcarrier, DFT: discrete Fourier transform, M↑: up-sampling factor, DAC/ADC: digital-

to-analogue/analogue-to-digital converter. IM: intensity modulator. OC: optical coupler, SSMF: 

standard single-mode fiber, VOA: variable optical attenuator, PD: photodetector. S/P: serial-to-par-

allel conversion, Equalz: equalization, ONU: optical network unit, OLT: optical line terminal, DSP: 

digital signal processing, SW: sub-wavelength, CH: channel. 

3. Upstream Optimum ONU Operating Conditions 
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In performing the numerical simulations over a 25 km SSMF, an IMDD PON theo-

retical model developed and verified in [6] is adopted, where the procedure detailed in 

[25] is used to simulate the Ooptical OFDM signal generation, nonlinear transmission, and 

direct detection. 

3.1. Simulation Models and Key Parameters 

In this paper, 2-ONUs are considered, each producing an optical sub-band signal 

sharing the same sub-wavelength with the other ONU. To conduct the simulations, 

MATLAB tools are is  used for signal generation and detection, while the VPI Transmis-

sionMaker is used for optical fiber transmission. To implement the shaping filter in each 

individual ONU, the Hilbert-pair approach [26,27] is adopted to construct the digital or-

thogonal filters consisting of two spectrally overlapped I-phase and Q-phase orthogonal 

ONU sub-band signals. To support 2 independent ONUs, the up-sampling factor is set at 

M=2 [26]. Since the DAC/ADC operates at 12.5 GS/s and the 2-ONUs occupy the same 

spectral region, the signal bandwidth for each ONU is equal to the Nyquist frequency, 

fs/M, and the central frequency of the orthogonal digital filter-pair is fs/2M, where fs is the 

DAC/ADC sampling speed. For the case M=2 case, Fig. 2(a) and (b) illustrate the spectral 

locations of digitally filtered sub-band signals (I-phase and Q-phase) and their spectra. To 

generate a real value OFDM signal necessary for intensity modulation, a 32-point IFFT 

size is considered, in which 15 subcarriers in the positive frequency bins convey real data, 

one subcarrier  contains no power, and the remaining 16 subcarriers in the negative fre-

quency bins are the complex conjugate of data bearing subcarriers. To reduce the power 

leakage caused by crosstalk between spectrally overlapped digital orthogonal sub-bands 

and maximize the upstream signal transmission capacity, 14 data-bearing subcarriers out 

of 15 are employed to deliver the allow for acceptable upstream performance for each sub-

band. The DFT block size K is thus set to be 14. It is however expected that all of the 15 

subcarriers can be supported if channel interference mitigation techniques are applied 

[28,29]. In this demonstration all the subcarriers are encoded with a 64-QAM signal mod-

ulation format, however any modulation formats are applicable.  

Table 1: SYSTEM PARAMETERS 

 

1 Corresponding to 10 Gb/s non-return-to-zero data at a BER of 1.0×10-9 

 

Detailed explorations of the impact of quantization and clipping noise on the up-

stream transmission performance of the digitally filtered spectrum spread OFDM signals 

are undertaken in Section 3.3, in which an optimum 7-bits resolution and optimum clip-

ping ratios of 11 dB and 12 dB are identified for the cases of including and excluding the 

DFT-spread respectively. These identified optimum parameters are adopted throughout 

Parameter Value Parameter Value 

IFFT/ FFT Size 32/64 Clipping Ratio- Including 

/Excluding DFT-spread 

11 dB / 

12 dB 

Number of Used Data 

Subcarriers Per ONU 

14 Digital Filter Length/ Ex-

cess of the Bandwidth 
64/0 

Modulation Format 64-QAM PIN Detector Quantum 

Efficiency 

0.8 A/W 

Cyclic Prefix 25% PIN Detector Sensitivity -19 dBm 

Channel Bitrate 13.12 Gb/s PIN Detector Bandwidth Ideal 

Optical Launch Power 0 dBm Fiber Dispersion 17 ps/nm/km 

DAC/ADC Sample Rate 12.5 GS/s Fiber Dispersion Slope 0.08 ps/nm2/km 

Number of Bits 7-bits Fiber Loss 0.2 dB/km 

Up-sampling Factor M=2 Fiber Kerr Coefficient 2.6×10-20 m2/W 

FEC Limit 1 1×10-3 Transmission Distance 25 km 
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this paper. Unless otherwise stated, all other system parameters are summarized in Table 

1. 

In the OLT, an ideal positive-intrinsic-negative (PIN) photodetector for direct detec-

tion of the optical signal is employed, with a receiver sensitivity of -19 dBm and quantum 

efficiency of 0.8 A/W. Both shot noise and thermal noise are considered, which are simu-

lated using procedures similar to those presented in [30]. In addition, the OLT-based re-

ceiver consists of a variable optical attenuator (VOA) to adjust the received optical power 

(ROP) level and the ADC incorporates an ideal antialiasing electrical filter with a 6.25 GHz 

bandwidth to remove out-of-band receiver noise before signal sampling. 

By taken into account the transceiver parameters listed in Table 1 and the adopted 

signal modulation formats, the upstream signal transmission rate per ONU is ∼13.12 Gb/s, 

and the aggregate upstream PON transmission rate is ∼26.25 Gb/s. It is noteworthy that 

due to the high attenuation of the the filter near the DC component, only 14 subcarriers (2 

to 15) are activated enabled in each ONU as the first subcarrier contains no power. 

3.2. PAPR Performance of DFT-spread Hybrid Orthogonal OFDM-DFMA PON 

Having chosen the simulation parameters, identified the optimum conditions, and 

understood the operating principle of the proposed DFT-spread spectrally overlapped 

hybrid orthogonal OFDM-DFMA IMDD PON, in this section, we numerically explore the 

PAPR reduction efficiency of the proposed PON consisting of 2 ONUs. Fig. 2 (a) and (b) 

show the spectral locations of two digitally filtered sub-band signals (I-phase and Q-

phase) and their spectra. In addition, the comparative complementary cumulative distri-

bution function (CCDF) of the PAPR including and excluding DFT-spread are presented 

in Fig. 2 (c) and (d) for various digital filter lengths ranging from 16 to 256, and signal 

modulation format varying from 16-QAM to 256-QAM are presented in Fig. 2 (c) and (d). 

For the sake of simplicity, only the ONU-2 referred to as channel-2 CCDF curve is plotted 

for both cases as ONU-1 referred here as channel-1 curves are similar to channel-2. 

 

 

Figure 2. (a) Spectral location of orthogonally digitally filtered sub-band signals (I-phase and Q-

phase) and (b) their spectra. CCDFs of PAPR for (c) varying digital filter lengths and fixed 64-
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QAM modulation format and (d) varying modulation formats and fixed digital filter length of 

L=64. 

It can be seen from Fig. 2 that compared to the case without DFT-spread, the case 

with DFT-spread can reduce the PAPR ratio by as large as or greater than >2 dB at the 

CCDF value of 1×10-3 when the optimum clipping ratio of 11 dB is adopted. The results 

are similar to our previous work and observed in WDM-PONs as well [19,31]. It is also 

very interesting to note in Fig. 2(c) and Fig. 2(d) that the proposed PON upstream trans-

missions have very similar PAPR performances for varying both digital filter lengths up 

to 256 and signal modulation formats to 256-QAM. This indicates that the DFT-spread 

induced PAPR-reductions are independent of the digital filter length and signal modula-

tion. Moreover, the obtained results also suggest that under the same transmit power con-

straint, the DFT-spread case with a low PAPR can achieve a higher optical signal-to-noise 

ratio (OSNR), . This being this is one of the factors leading to the increased upstream chan-

nel rate presented in section 4.2. This statement is confirmed in Fig. 6. Nevertheless, it is 

worth noting that the performance of the PONs reported in [6] are largely limited by dig-

ital filter-induced signal distortions. As such, in this paper and as listed in Table 1, to 

highlight the unique features of the DFT-spread technique, a digital filter length of 64, as 

listed in Table 1, is utilized to minimize the digital filter impairments. 

From the above discussion, it is easy to understand that the proposed PON induced 

PAPR reduction gives rise to an excellent improvement in system performance robustness 

to the quantization noise induced by the limited DACs/ADCs bit resolutions. In addition, 

it also relaxes the constraints on linear dynamic operating ranges of the transceiver-em-

bedded optical/electrical devices, reduces the optical nonlinearity impairments, and so 

allows the reduction in the DSP complexity and overall cost of the transceivers. 

3.3. Optimum Clipping Ratio and DAC/ADC Resolution Bits 

In order to numerically explore the feasibility of utilizing the proposed technique to 

improve the upstream transmission performance of the PON, in this section numerical 

simulations are first undertaken to identify the optimum operating condition for achiev-

ing the best possible performance. Fig. 3 presents the simulated bit error rate (BER) con-

tours as a function of quantization bits and clipping ratio (CR) for an optical back-to-back 

(B2B) configuration. In obtaining these figures, the ROP at the OLT is fixed at -7 dBm. 

Since the 2-ONUs are independent and have the same signal characteristics, without loss 

of generality only channel-2 is plotted in Fig.3.. 

  

Figure 3. BER contour versus quantization bit resolution and clipping ratio for (a) excluding the 

DFT-spread (b) including the DFT-spread. 

It can be seen in Fig. 3 that when the a CR is low, the overall channel BER performance 

is high because the signal waveform is significantly clipped. In these figures, for a fixed 
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bit resolution within the a dynamic range from 7 to 8 bits, for maintaininged BERs below 

the FEC limit (1×10-3), the the CR should be ≥11 dB for the DFT-spread case. On the other 

hand, for the case without DFT-spread over the same dynamic region, the CR should be 

≥12dB, which shows an increase in CR by 1dB. From the same figures it can also be ob-

served that the case excluding DFT-spread has a CR dynamic range of 12dB≤CR≤14dB, 

while the case including DFT-spread achieves a CR dynamic range of 11dB≤CR≤14dB. 

Outside these regions, values, the BER increases with increasing CR because of the rise in 

the quantization noise effect and decreasing the CR causes the creation of in-band/out-

band noise due to clipping distortions. The result thus indicates that the proposed PON 

can reduce the DAC/ADC bit resolution by 1 bit, i.e., form 7 bits to 6 bits, and reduce the 

CR by ≥1 dB for to achievinge BERs at the FEC limit. This behavior clearly demonstrates 

that the proposed PON with the application of the DFT-spread technique allows the trans-

ceiver to adopt low CRs, without greatly compromising the BER performances. Based on 

the above analysis, these the identified optimum CR values and DAC/ADC resolution of 

7-bits are chosen to enable the ONUs to operate at their optimum conditions. The obtained 

results for the optimum parameters are presented in Table 1. 

4. Upstream DFT-spread Hybrid Orthogonal OFDM-DFAM PON Performance 

Utilizing the optimum ONU operating conditions identified in Section 3 and the 

transceiver parameters listed in Table 1, in this section the investigations of the upstream 

transmission performance of a spectrally overlapped hybrid orthogonal OFDM-DFMA 

PON incorporating the DFT- spread technique are undertaken in terms of upstream per-

formance tolerance to limited DAC/ADC quantization bits, BER performance, maximum 

aggregate upstream signal transmission rate, and impact of digital filter impairments. To 

highlight the advantages associated with the proposed technique, the upstream transmis-

sion performances of the hybrid OFDM-DFMA PON utilizing spectrally overlapped dig-

ital orthogonal filtering are also computed, which are treated as benchmarks. 

4.1. Performance Tolerance to Limited DAC/ADC Quantization Bits 

In this subsection, simulations are carried out to demonstrate the performance toler-

ance of the proposed technique to limited DAC/ADC quantization bits and to determine 

the minimum number of required DAC/ADC quantization bits to achieve BERs at or be-

low the FEC limit. The DAC/ADC quantization bits vary from 4 to 8 and the ROP is fixed 

at -7dBm. The results are presented in Fig. 4 for the 25 km SSMF IMDD PON. 

Fig. 4 reveals that, while adopting the optimum CRs of 11 dB or 12 dB as determined 

in section in 3.3, the case including DFT-spread can reach BERs at the FEC limit when the 

DAC/ADC resolution is as low as 6 bits. On the other hand, for the case excluding DFT-

spread, the minimum number of the required quantization bits for achieving the similar 

performance extends from 6 bits DAC/ADC resolution to 7 bits. The numerical result con-

firms that the application of DFT-spread in the proposed PON can improve the upstream 

performance tolerance against to quantization noise induced by the limited quantization 

bits. Most importantly, from a practical PON operation point of view, such improvement 

is highly desirable for PON designs as lower DAC/ADC hardware achieves both lower 

cost and low power consumption. 
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From the above discussion, it is easy to understand that the proposed DFT-spread 

spectrally overlapped hybrid orthogonal OFDM-DFAM PON confirms the practicability 

of utilizing the DFT-spread technique in the PONs reported in [6], and that the proposed 

PON has the ability to reduce the minimum required DAC/ADC bit resolution and so 

consequently minimize the transceiver DSP complexity, thus making the proposed PON 

a promising solution for implementation in a cost-sensitive future 5G and beyond net-

works. 

4.2. Upstream Transmission Performance 

Fig. 5 is the overall channel BER as a function of the received optical power where 

the total optical launch power into the SSMF transmission system is fixed at 0 dBm. In 

computing Fig. 5, a resolution of 7 bits as shown in Fig. 4 are used for the ADC/DAC. All 

other parameters are specified in Table 1. 

It can be seen in Fig. 5 that for the case of including/excluding DFT-spread, the cal-

culated channel 1 (CH1) and channel 2 (CH2) BER performances are identical across the 

entire received optical power range and these two channels also have very similar signal 

bit rates. Most importantly, for the same signal bit rates, the case with DFT-spread can 

achieve an upstream power budget improvement of greater than 1.4dB compared to the 

case without DFT-spread. Such performance improvement is mainly because of the DFT-

spread-induced PAPR reduction, resulting in a considerable decrease in quantization 

noise, thus giving rise to an increase in the effective OSNRs. 

 

Figure 5. BER versus received optical power after 25 km SSMF IMDD PON transmission system 

when 7 bits resolution is considered. 
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system when 7 bits resolution is considered. 

4.3. Impacts of Digital Filter Parameters on Maximum Aggregated Upstream Transmission 

Rates 

For the proposed PON simultaneously supporting two ONUs, the aggregated up-

stream signal transmission capacities versus excess of bandwidth parameter, α, are shown 

in Fig. 6. In obtaining Fig. 6, the digital filter length is listed in Table 1 is adopted. In ad-

dition, adaptive bit-loading is applied to all subcarriers involved in each ONU for all the 

cases of including and excluding DFT-spreading. To implement adaptive bit-loading, the 

highest possible signal modulation formats within the range from DBPSK to 256-QAM is 

adaptively selected according to the channel spectral characteristics to ensure that , which, 

considering that the BER across all subcarriers for each sub-band can reach the FEC limit 

of 1×10-3. For each ONU sub-band, the achievable signal bit rate is 𝑅𝑏 =

𝑓𝑠 ∑ 𝑛𝑘𝑏
𝑁𝑠
𝑘=1 2(𝑁𝑠 + 1)(1 + 𝐶𝑝).𝑀⁄ , where nkb is the number of binary bits conveyed by the 

kth subcarrier within one OFDM symbol period, Ns denotes the number of data-bearing 

subcarriers, and Cp indicates the overhead parameter associated with the cyclic prefix and 

training sequences. The excess of bandwidth α, is set to vary in the range 0≤α≤1. The ROPs 

are fixed at -6 dBm for both cases. 

It can be seen in Fig. 6 that for both considered cases, the aggregate upstream signal 

transmission rate peaks at an α factor value of 0.2 and then reduces steadily as α increases 

above 0.2. Most importantly, for the case including DFT-spread, the maximum aggregate 

upstream signal transmission rate increases by up to 10% for α=0.2, compared to the case 

without DFT-spread. This performance enhancement is due to the overall improvement 

in SNRs across the subcarriers, thus allowing higher modulation formats to be used. To 

understand the physical mechanisms causing an optimum α value of 0.2, the impact of α 

on the digital filter responses should be observed. For low α values <0.2, the finite filter 

length-induced filter magnitude response ripples can impact on performance. For the case 

of α=0, the I-phase filter (channel 1) has a perfectly flat response as the up-sampling factor 

M=2 is considered [26], while the Q-phase filter (channel 2), has significant frequency re-

sponse ripples as shown in Fig. 7(a) and (b) respectively [26]. The length of the filter 

mainly impacting the sharpness of the filter edge for the case of the Q-phase filter. On the 

other hand, as shown in Fig. 7(c) and (d), as α starts to increase there is a boost in the 

magnitude response of the I-phase filter and an attenuation in the magnitude response of 

the Q-phase filter, in addition the increasing distortion of the filter responses causes strong 

unwanted cross-channel induced interference due to loss of orthogonality. Note, that this 

filter response distortion occurs due to aliasing effects as the employed sub-wavelength 

occupies the whole Nyquist band. The increasing α value also reduces the unwanted fre-

quency response ripples in the Q-phase filter. These effects combine to give an overall 
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increase in subcarrier SNR as α increases from 0 to 0.2, beyond which there is an overall 

reduction in subcarrier SNR. 

 

Figure 7. Magnitude response for excess of bandwidth of α=0 for (a) I-phase filter with digital filter 

length L=16, 32, 64 and 128 (b) Q-phase filter with digital filter length L=16, 32, 64 and 128. Magni-

tude response for filter length, L=64 (c) I-phase filter with excess of bandwidth (α) ranging from 0 

to 1 (d) Q-phase filter with excess of bandwidth (α) ranging from 0 to 1. (e) Comparison of SNR 

distribution across all the subcarriers using excess of bandwidth of α=0 and optimum value of α=0.2 

for both I-phase (CH1), and Q-phase (CH2). 

To observe the effect of α on subcarrier SNRs, with the simultaneous presence of both 

channels, the SNR performances for all subcarriers for the 25 km SSMF transmission are 

plotted in Fig. 7(e) utilizing the optimum α parameter value of 0.2 and zero excess of 

bandwidth (α=0) for performance comparisons. In obtaining this figure, the ROP is fixed 

at -6 dBm. Fig. 7(e) shows that the SNRs are similar for CH1 when α=0 and α=0.2, however, 

there is an obvious improved SNR for subcarrier index 12-14 of CH2 when α=0.2. It also 

shows that the SNR curve for CH1 is almost constant with respect to the subcarrier index 

for the optimum α value. In comparison with the Q-phase channel for both cases, the high 

SNR observed for the I-phase channel is mainly because of the boost in the magnitude 

response, as shown in Fig. 7(c). The obtained results indicate that there is an optimum α 

factor value which minimizes digital filter impairments and subsequently maximizes the 

upstream transmission rate of both channels. 

5. Conclusions 
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The novel DFT-spread spectrally overlapped hybrid orthogonal OFDM-DFMA PON 

is proposed and numerically simulated for a 25 km IMDD SSMF transmission system. To 

the best of our knowledge, it is the first work example of applying the DFT-spread tech-

nique in the hybrid OFDM-DFMA PONs utilizing spectrally overlapped digital orthogo-

nal filtering, in order to simultaneously reduce PAPRs, optimize CRs, and reduce the min-

imum required DAC/ADC quantization bits whilst maintaining the upstream transmis-

sion performances and increasing the transceiver complexity. The simulation results have 

shown that, compared to the previously reported PONs, the proposed PON can reduce 

the PAPR by greater than 2 dB and the optimum CR is reduced by 1dB. Such a PAPR 

reduction is independent of the adopted digital filter characteristics, signal modulation 

formats and ONU sub-band signal spectral location. As a direct result of the PAPR reduc-

tion, the proposed PON can reduce the minimum required DAC/ADC resolution bits by 

more than 1-bit whilst achieving BERs below the FEC limit. In addition, the proposed 

PON can improve the upstream power budget by greater than 1.4 dB and increase the 

aggregate upstream signal transmission rate by up to 10%. 

It is well known that the For achieving high bandwidth transmissions, high speeds 

of  DACs and ADCs play an important role in limiting the are requiredmaximum achiev-

able signal transmission capacity for DSP-based signal transmission techniques. However, 

high-speed DACs and ADCs can be very expensive. To achieve a specific signal transmis-

sion capacity, the proposed technique has the potential of allowing low-speed 

DACs/ADCs to be utilized to produce/receive targeted baseband signals, which can then 

be up-converted to the targeted sub-bands by low-cost electrical components. This could 

significantly reduce the overall ONU transceiver cost. In addition,  in the proposed tech-

nique. However, in practical implementations, to greatly reduce the overall network ex-

penditures, the ONUs occupying low radio frequency spectral regions may use low-speed 

DACs/ADCs to produce/receive their targeted sub-bands. The low-speed DACs/ADCs 

may also be applicable in the ONUs occupying high radio frequency spectral regions with 

the help of extra low-cost electrical components such as up-converters. Furthermore, the 

proposed technique-induced  with great capability of reducing PAPR reductions salso 

considerably  will relax the requirements of using expensive electrical/optical devices 

with large linear operation regions and high-resolution DACs/ADCs. As a direct result, , 

thus the proposed technique may offer presenting a a valuable solution capable of to re-

ducing e the overall network installation cost for implementation in cost-sensitive appli-

cation scenarios. expenditures. 

The experimental demonstrations of point-to-point and multipoint-to-point spec-

trally overlapped hybrid orthogonal OFDM-DFMA PON transmissions with/without 

DFT-spreading are currently being undertaken in our research laboratory and corre-

sponding results will be reported elsewhere in due course. 
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