1,626 research outputs found

    Park-and-Ride Facilities Design for Special Events Using Space-Time Network Models

    Get PDF
    abstract: Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to the event sites. In the meantime, special event workforce often needs to make balances among the limitations of construction budget, land use and targeted travel time budgets for visitors. As such, optimizing the park-and-ride locations and capacities is critical in this process of transportation management during planned special event. It is also known as park-and-ride facility design problem. This thesis formulates and solves the park-and-ride facility design problem for special events based on space-time network models. The general network design process with park-and-ride facilities location design is first elaborated and then mathematical programming formulation is established for special events. Meanwhile with the purpose of relax some certain hard constraints in this problem, a transformed network model which the hard park-and-ride constraints are pre-built into the new network is constructed and solved with the similar solution algorithm. In doing so, the number of hard constraints and level of complexity of the studied problem can be considerable reduced in some cases. Through two case studies, it is proven that the proposed formulation and solution algorithms can provide effective decision supports in selecting the locations and capabilities of park-and-ride facilities for special events.Dissertation/ThesisMasters Thesis Civil and Environmental Engineering 201

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)System dynamics and agent-based simulation modelling approaches have a potential as tools to evaluate the impact of policy related decision making in food value chains. The context is that a food value chain involves flows of multiple products, financial flows and decision making among the food value chain players. Each decision may be viewed from the level of independent actors, each with their own motivations and agenda, but responding to externalities and to the behaviours of other actors. The focus is to show how simulation modelling can be applied to problems such as fairness and power asymmetries in European food value chains by evaluating the outcome of interventions in terms of relevant operational indicators of interorganisational fairness (e.g., profit distribution, market power, bargaining power). The main concepts of system dynamics and agent-based modelling are introduced and the applicability of a hybrid of these methods to food value chains is justified. This approach is outlined as a research agenda, and it is demonstrated how cognitive maps can help in the initial conceptual model building when implemented for specific food value chains studied in the EU Horizon 2020 VALUMICS project. The French wheat to bread chain has many characteristics of food value chains in general and is applied as an example to formulate a model that can be extended to capture the functioning of European FVCs. This work is to be further progressed in a subsequent stream of research for the other food value chain case studies with different governance modes and market organisation, in particular, farmed salmon to fillet, dairy cows to milk and raw tomato to processed tomato.Peer reviewedFinal Published versio

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    Scenario analysis report with policy recommendations: An assessment of sustainability, resilience, efficiency and fairness and effective chain relationships in VALUMICS case studies : Deliverable 8.4

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/. The final version of this report is available at https://doi.org/10.5281/zenodo.6534011The functioning of food value chains entails a complex organisation from farm to fork which is characterised by various governance forms and externalities which have shaped the overall food system. VALUMICS food value chain case studies: wheat to bread, dairy cows to milk, beef cattle to steak, farmed salmon to fillets and tomato to processed tomato were selected to enable explorative and empirical analysis to better understand the functioning of the food system and, to identify the main challenges that need to be addressed to improve sustainability, integrity, resilience, and fairness of European food chains. The VALUMICS system analysis was executed through four operational phases starting with Groundwork & analysis including mapping specific attributes and impacts of food value chains and their externalities. This was followed by Case study baseline analysis, which provided input to the third phase on Modelling and exploration of future scenarios and finally Policy and synthesis of the overall work. This report is an overall synthesis of the VALUMICS results as follows: • Key findings from the VALUMICS project on the functioning of European food value chains and their impacts on more sustainable, resilient, fairer, and transparent food system are summarised through a compilation of 25 Research Findings and Policy Briefs. • By highlighting the major contributions from the research activities throughout the four phases of the VALUMICS project, this report delivers an assessment of various factors influencing sustainability, resilience, efficiency and fairness and effective chain relationships of different food value chains, and their determinants. • The synthesis of the outcome allows the identification of opportunities and challenges characterising the functioning of food supply chains, and thus, the prospects and potentials for strengthening the EU food sector

    Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Full text link
    corecore