53 research outputs found

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    4th International Conference, HAIS 2009, Salamanca, Spain, June 10-12, 2009. Proceedings

    Get PDF
    This volume constitutes the refereed proceedings of the 4th International Workshop on Hybrid Artificial Intelligence Systems, HAIS 2009, held in Salamanca, Spain, in June 2009. The 85 papers presented, were carefully reviewed and selected from 206 submissions. The topics covered are agents and multi agents systems, HAIS applications, cluster analysis, data mining and knowledge discovery, evolutionary computation, learning algorithms, real world HAIS applications and data uncertainty, hybrid artificial intelligence in bioinformatics, evolutionary multiobjective machine learning, hybrid reasoning and coordination methods on multi-agent systems, methods of classifiers fusion, knowledge extraction based on evolutionary learning, hybrid systems based on bioinspired algorithms and argumentation methods, hybrid evolutionry intelligence in financial engineering

    Analysis of the characteristics and applications of vehicle routing systems

    Get PDF
    El ruteo de vehículos, permite establecer una estrategia para realizar la distribución adecuada de las mercancías, en los diferentes puntos en los cuales lo desee una organización. Esto se logra, a través del diseño de rutas para una flota de vehículos determinada; ya sea homogénea o heterogénea. El estudio de este problema de ruteo, como ha sido considerado, se ha clasificado en diferentes sistemas, de acuerdo a las condiciones del entorno en el cual se desean aplicar. Sin embargo, no todas las tipologías son conocidas a cabalidad por las organizaciones o investigadores, debido a su reciente desarrollo o su poco nivel de aplicación. Es por ello, que en la presente investigación, se plantea realizar un análisis de las características y aplicaciones de los tipos de sistemas de ruteo de vehículos, a través de una revisión bibliográfica de trabajos previos, con el propósito de brindar información sólida y concisa a futuros investigadores. La metodología empleada, conlleva principalmente a una investigación de tipo cualitativa, en la cual se realizó una búsqueda sistemática en bases de datos del problema planteado de los últimos cinco años. A partir de esto, fue posible establecer que durante este período de tiempo, las publicaciones en este campo, presentaron un incremento de aproximadamente el doble, evidenciando el aumento en el interés por el tema objetivo.The vehicle routing allows to establish a strategy for the proper distribution of goods in different points at which you want an organization. This is achieved through the design of routes to a particular fleet vehicle; either homogeneous or heterogeneous. Studying this routing problem, as has been seen, has been classified into different systems, according to the environmental conditions in which is applied. However, not all types are known at all by the organizations or researchers, due to its recent development or some application level. That is why, in this research, we propose an analysis of the characteristics and applications of the types of systems vehicle routing through a literature review of previous works, in order to provide solid and concise information to future researchers. The methodology used primarily involves qualitative research type, in which a systematic search was performed in databases of the problem of the past five years. From this, it was possible to establish that during this period, the publications in this field, showed an increase of about twice, showing increased interest in the subject target

    Component-wise analysis of metaheuristic algorithms for novel fuzzy-meta classifier

    Get PDF
    Metaheuristic research has proposed promising results in science, business, and engineering problems. But, mostly high-level analysis is performed on metaheuristic performances. This leaves several critical questions unanswered due to black-box issue that does not reveal why certain metaheuristic algorithms performed better on some problems and not on others. To address the significant gap between theory and practice in metaheuristic research, this study proposed in-depth analysis approach using component-view of metaheuristic algorithms and diversity measurement for determining exploration and exploitation abilities. This research selected three commonly used swarm-based metaheuristic algorithms – Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Cuckoo Search (CS) – to perform component-wise analysis. As a result, the study able to address premature convergence problem in PSO, poor exploitation in ABC, and imbalanced exploration and exploitation issue in CS. The proposed improved PSO (iPSO), improved ABC (iABC), and improved CS (iCS) outperformed standard algorithms and variants from existing literature, as well as, Grey Wolf Optimization (GWO) and Animal Migration Optimization (AMO) on ten numerical optimization problems with varying modalities. The proposed iPSO, iABC, and iCS were then employed on proposed novel Fuzzy-Meta Classifier (FMC) which offered highly reduced model complexity and high accuracy as compared to Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed three-layer FMC produced efficient rules that generated nearly 100% accuracies on ten different classification datasets, with significantly reduced number of trainable parameters and number of nodes in the network architecture, as compared to ANFIS

    A study on the heterogeneous fleet of alternative fuel vehicles: Reducing CO2 emissions by means of biodiesel fuel

    Get PDF
    In the context of home healthcare services, patients may need to be visited multiple times by different healthcare specialists who may use a fleet of heterogeneous vehicles. In addition, some of these visits may need to be synchronized with each other for performing a treatment at the same time. We call this problem the Heterogeneous Fleet Vehicle Routing Problem with Synchronized visits (HF-VRPS). It consists of planning a set of routes for a set of light duty vehicles running on alternative fuels. We propose three population-based hybrid Artificial Bee Colony metaheuristic algorithms for the HF-VRPS. These algorithms are tested on newly generated instances and on a set of homogeneous VRPS instances from the literature. Besides producing quality solutions, our experimental results illustrate the trade-offs between important factors, such as CO2 emissions and driver wage. The computational results also demonstrate the advantages of adopting a heterogeneous fleet rather than a homogeneous one for the use in home healthcare services

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore