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ABSTRACT 

Metaheuristic research has proposed promising results in science, business, and 

engineering problems. But, mostly high-level analysis is performed on metaheuristic 

performances. This leaves several critical questions unanswered due to black-box 

issue that does not reveal why certain metaheuristic algorithms performed better on 

some problems and not on others. To address the significant gap between theory and 

practice in metaheuristic research, this study proposed in-depth analysis approach 

using component-view of metaheuristic algorithms and diversity measurement for 

determining exploration and exploitation abilities. This research selected three 

commonly used swarm-based metaheuristic algorithms – Particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC), and Cuckoo Search (CS) – to 

perform component-wise analysis. As a result, the study able to address premature 

convergence problem in PSO, poor exploitation in ABC, and imbalanced exploration 

and exploitation issue in CS. The proposed improved PSO (iPSO), improved ABC 

(iABC), and improved CS (iCS) outperformed standard algorithms and variants from 

existing literature, as well as, Grey Wolf Optimization (GWO) and Animal Migration 

Optimization (AMO) on ten numerical optimization problems with varying 

modalities. The proposed iPSO, iABC, and iCS were then employed on proposed 

novel Fuzzy-Meta Classifier (FMC) which offered highly reduced model complexity 

and high accuracy as compared to Adaptive Neuro-Fuzzy Inference System 

(ANFIS). The proposed three-layer FMC produced efficient rules that generated 

nearly 100% accuracies on ten different classification datasets, with significantly 

reduced number of trainable parameters and number of nodes in the network 

architecture, as compared to ANFIS. 
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ABSTRAK 

Penyelidikan metaheuristik yang terkini telah memberikan hasil kajian yang lebih 

baik dalam sains, perniagaan, dan masalah kejuruteraan. Namum, banyak analisis 

tahap tinggi telah dilakukan atas kebolehupayaan kaedah metaheuristik. Persoalan 

kritikal yang belum diselesaikan adalah masalah ‘kotak hitam’ yang tidak 

mendedahkan kebolehupayaan algoritma metaheuristik hanya menyelesaikan 

masalah tertentu dan tidak menyeluruh dalam semua penyelesaian. Bagi menangani 

jurang yang ketara antara teori dan amalan dalam penyelidikan metaheuristik, kajian 

ini mencadangkan pendekatan analisis mendalam menggunakan komponen algoritma 

metaheuristik dan pengukuran kepelbagaian untuk menentukan keupayaan 

penerokaan dan eksploitasi. Kajian ini memilih tiga algoritma metaheuristik iaitu 

Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), dan Cuckoo 

Cuckoo (CS) untuk melaksanakan analisis komponen yang lebih cekap. Hasil kajian 

yang dicadangkan telah membuktikan kemampuan menangani masalah penumpuan 

awal PSO, eksploitasi yang lemah ABC, dan isu penerokaan dan eksploitasi yang 

tidak seimbang CS. Dari kajian sorotan sedia ada, cadangan PSO yang lebih baik 

(iPSO), penambahbaikan ABC (iABC), dan peningkatan CS (iCS) termasuk Gray 

Wolf Optimization (GWO) dan Animal Migration Optimization (AMO) telah 

mengatasi kebolehupayaan algoritma dan variasi piawai berdasarkan masalah 

modaliti yang berbeza. Implementasi cadangan iPSO, iABC, dan iCS terhadap 

Fuzzy-Meta Classifier (FMC) yang baru dapat menawarkan penurunan kerumitan 

model dan meningkatkan ketepatan berbanding kaedah Adaptive Neuro-Fuzzy 

Inference System (ANFIS). Cadangan tiga lapisan FMC menghasilkan petua yang 

berkesan dengan ketepatan hampir 100% berdasarkan sepuluh kumpulan data 

klasifikasi yang terpilih, pengurangan ketara bilangan parameter yang terlatih dan 

bilangan nod dalam seni bina rangkaian berbanding kaedah ANFIS. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

Computation has been so pervasive in our daily routine that we sometimes do not 

even realize while using it. From a tiny electronic gadget in our hands to the super 

systems controlling space shuttles utilize computing so intelligently that we could 

hardly imagine in past. Today, computational intelligence (CI) keeps airplanes in the 

air, driver-less cars on the road, and even simply washing clothes. CI plays vital role 

in computational problem solving that involves large data and enormous computation 

to make efficient and intelligent decisions. The popular CI techniques include 

artificial neural network (ANN), fuzzy logic, and evolutionary algorithms, which 

adhere to the basic requirements of intelligence: comprehend, reason, learn, and 

make intelligent decision. Such intelligent techniques are aimed at solving ill-

defined, complex, nonlinear, and dynamic problems by choosing the best one from 

the large choice of available solutions to a given problem. Because, the size of 

solutions is large, these techniques couple with optimization methods, called 

metaheuristic algorithms, to choose the best solution (Zhang et al., 2015). 

In CI techniques, neuro-fuzzy systems have earned more success as compared 

to neural networks and support vector machines etc., mostly because of accuracy in 

data approximation and ability to deal with uncertainty (Arshad et al., 2013). Among 

other neuro-fuzzy systems is adaptive neuro-fuzzy inference system (ANFIS) (Jang, 

1993) which has shown significant generalization capability than other neural 

networks and statistical methods in variety of applications (Bardestani et al., 2017; 

Faustino et al., 2014; Zamani et al., 2015). However, the applications with large 

input size halt ANFIS implementation due to curse of dimensionality. To address 
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this, ANFIS is incorporated with other techniques such as clustering methods (Cai, 

2017), support vector machine (Azadeh et al., 2013) to generate smaller number of 

rules; on the other hand, ANFIS architecture has also been modified to produce 

accurate results with less computational cost (Peymanfar et al., 2007). Nonetheless, 

the model complexity still downturns wider applicability of the system. This leads to 

motivation for developing simple and as efficient classifier based on motivation from 

fuzzy logic and neural network. This research is aimed at proposing a novel 

classification model that utilizes effective data interpretability of fuzzy logic, 

learning capability of neural networks, and efficient optimization ability of the 

modern metaheuristic algorithms. Since the proposed classification model is simple 

and efficient, hence it offers opportunities to solve classification problems with large 

input-size. 

The motivation and background of this research is briefed in Section 1.1, 

followed by Section 1.2 which defines the problem statement. The aims and 

objectives of the study are presented in Section 1.3 and 1.4, respectively. Section 1.5 

determines the scope of the research, while significance is highlighted by Section 

1.6. The schedule of this research work is presented in Section 1.7, whereas Section 

1.8 provides the outline of the dissertation. 

1.1 Research background 

It is no exaggeration that optimization is everywhere, be it engineering design, stock 

market, scheduling, or transportation. Various exact and conventional methods have 

been used to solve optimization problems, but metaheuristics have earned more 

popularity; due to efficiency in searching optimal solutions with affordable 

computational cost (Yang, 2010b). There is established research by metaheuristic 

community with literature providing outstanding results on wide variety of 

applications, as compared to traditional statistical and gradient-based optimization 

methods (Cheng & Prayogo, 2014; Ervural et al., 2017; Manjarres et al., 2013; 

Zhang et al., 2015). This has overwhelmingly motivated researchers to modify 

existing metaheuristic algorithms or invent the new methods by inspirations from 

nature, as well as, man-made processes. Generally, all the metaheuristic algorithms 

follow same basic principles: stochastic in nature using randomness in search moves, 
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no gradient information required, problem specific tuning of parameters, and traverse 

search environment in iterations (Cheng & Prayogo, 2014). That said, Sörensen 

(2015) argues that the exorbitance in metaheuristic research is often attributed to 

trivial comprehension of theoretical foundations and practical evidence. Supporting 

the argument, Yang (2012b) contends that the research in metaheuristics is heuristic 

and ad-hock. Currently, there exists significant gap between theory and practice, as 

some of the important questions on metaheuristic performances are yet to be 

answered.  This is detrimental to the development of the field of metaheuristics as 

there have appeared many “not so important contributions” or even futile metaphore-

based methods that are often forgotten quickly (Sorensen et al., 2017). 

Despite successful implementations and superiority reported in literature, 

there are few general issues that need to be addressed in order to utilize 

metaheuristics to full potential (Boussaïd et al., 2013). This raises immense need of 

critical and comparative analysis of metaheuristic performance over certain 

optimization problems. It should be primarily based on theoretical and operational 

approaches behind mechanisms adopted for search of optimal solutions in large 

search space (Blum & Roli, 2003). However, it is noteworthy that the field of 

metaheuristics is still to reach maturity as compared to physics, chemistry, and 

mathematics; more attention needs to be drawn towards in-depth understanding of 

metaheuristic algorithms by analysing the issues and try to answer the core question 

“why certain metaheuristic algorithms perform better on certain problems and not 

on others?” (Fister Jr et al., 2013; Sörensen, 2015; Sorensen et al., 2017). This is 

often supported with “no-free-lunch” theorem (Yang, 2012c), although Yang (2012b) 

nonetheless asserts that inner working of metaheuristic algorithms is still a “black-

box”. Mere high-level analyses of end results may help determine “what” happened, 

but the important questions of “how” and “why” raised by Sorensen et al. (2017), 

Yang (2012b), and He et al. (2017) require more in-depth analyses to narrow the gap 

between theory and practice. According to Sörensen (2015), component-based view 

of metaheuristic algorithms will lead to focus on specific issues related to algorithm 

performances. 

In metaheuristics, algorithms based on swarm intelligence are gaining more 

success as compared to other population-based counterparts (Cheng et al., 2016; 

Yang, 2012a). Thanks to landmark particle swarm optimization (PSO) (Eberhart & 

Kennedy, 1995) and ant colony optimization (ACO) (Corne et al., 1999) which 
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derived the addition of adequately increasing number of swarm-based metaheuristic 

algorithms – not necessarily are all efficient methods hence not achieved generous 

acceptance in metaheuristic community. This research considers top three swarm-

based metaheuristic algorithms for in-depth analyses based on component-view and 

exploration and exploitation measurements using population diversity. 

Data mining is an important research area in soft computing. In data mining 

and model approximation, several techniques have been developed which employ 

machine learning approaches to adapt according to the problem under consideration; 

for example, support vector machine, neural networks, and fuzzy neural networks. 

Apart from fuzzy neural networks, other models are subjected to inability of 

explaining the decision. Therefore, scientific models based on these techniques are 

rather incomprehensible and non-transparent (black-box) (Hussain & Salleh, 2015). 

Many real-life problems; such as credit risk evaluation and medical diagnosis require 

evaluators (e.g. financial regulator or auditors, and physicians) to comprehend and 

reason the decision. Hence, transparency is crucial in such matters. A fuzzy neural 

network such as adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993) 

generates rules that can explain the decision made by the system. ANFIS is highly 

adaptive and accurate among other fuzzy inference systems (Taylan & Karagözoğlu, 

2009), hence applied in wide variety of disciplines including science, engineering, 

business, and education, etc. (Kar et al., 2014). However, because of high model 

complexity and computational cost, the applications of ANFIS are often limited to 

problems with lesser inputs. Even small increase in the number of inputs, makes 

ANFIS architecture complex due to exponential rise in rules and trainable 

parameters; resulting in curse of dimensionality (Younes et al., 2015). Many 

modifications have been proposed by researchers which include incorporating 

metaheuristic algorithms to replace gradient based learning (Karaboga & Kaya, 

2013; Nhu et al., 2013; Pousinho et al., 2012; Rini et al., 2013; Younes et al., 2015), 

model structure modifications (Faustino et al., 2014; Peymanfar et al., 2007), and 

rule-base minimization (Eftekhari & Katebi, 2008; Panella, 2012), etc.  

Mostly in literature, researchers have embedded feature selection techniques 

to reduce input-size or clustering algorithms to reduce rule-base. This makes ANFIS 

applications more complex. The current study proposes a novel classification 

algorithm to address both the issues of model complexity and computational cost. 

The proposed classifier utilizes data interpretability of fuzzy logic, rule generation 
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capability of inference system, and optimization efficiency of metaheuristic 

algorithms. The core benefit of the proposed classifier lies in optimizing its 

parameters through metaheuristic algorithms, as these algorithms have proved 

efficiency in solving optimization problems. 

Based on the research motivation discussed earlier, the subsequent section 

presents the statement of the problem pertaining to current research. 

1.2 Problem statement 

Today’s complex real-life problems are often solved by techniques coupled with 

metaheuristic algorithms, to find the best from large number of available solutions 

(Yang, 2010b). Generally, the success of metaheuristic algorithms over exact 

methods is attributed to effective search mechanisms adopted from natural or man-

made processes. In these approaches are swarm behaviours found in natural 

organisms demonstrating highly intelligent social interactions, to best survive in a 

given environment. Swarm-based metaheuristic algorithms have earned more success 

as compared to other population-based counterparts (Cheng et al., 2016). However, 

there remain significantly important unanswered questions that develop gap between 

theory and practice. Metaheuristic research is generally found with high-level 

analyses of end results – unable to address “black-box” issue of the algorithm 

performances (Fister Jr. et al., 2013). The in-depth analysis of individual 

metaheuristic components will lead to address problems in weak components, to 

effectively modify for performance improvement (He et al., 2017; Sörensen, 2015).  

Among the most successful swarm-based metaheuristic algorithms are 

Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Cuckoo 

Search (CS). Despite success, each of these algorithms maintains certain 

shortcomings. PSO suffers from premature convergence due to lack of diversity, 

ABC has poor exploitation ability because of extraordinary randomness in scout 

bees, and CS bears imbalanced exploration and exploitation caused by inconsistent 

swarm behaviour. This research performed in-depth analysis on PSO, ABC, and CS 

using component-wise approach to address the aforementioned issues. The proposed 

component-wise approach helped answer the crucial performance related questions 

pertaining to “why” and “how” instead of just “what” happened. The analyses are 
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