333 research outputs found

    Wide dynamic range tranimpedance amplifier using peaking capacitance technique for high speed optical wireless communication system

    Get PDF
    In the high speed optical communication, the requirement of designing the new optical transceivers is quite challenging due to the bandwidth, noise and environmental conditions for designing the optical transceivers. The optical transceivers design is also challenging because of weak optical signal at the frond-end amplifier. In this paper, the optical transceivers via an optical preamplifier for optical wireless communication is designed. The designed system offers the improved performance in terms of bandwidth and gain compared to existing optical transceivers. It is defined that using the designed system, a high bandwidth of 2.114GHz at 29.72dB gain is achieved. The designed optical transceiver provides the bandwidth enhancement utilizing the peaking inductor and capacitor

    Fast synchronization 3R burst-mode receivers for passive optical networks

    Get PDF
    This paper gives a tutorial overview on high speed burst-mode receiver (BM-RX) requirements, specific for time division multiplexing passive optical networks, and design issues of such BM-RXs as well as their advanced design techniques. It focuses on how to design BM-RXs with short burst overhead for fast synchronization. We present design principles and circuit architectures of various types of burst-mode transimpedance amplifiers, burst-mode limiting amplifiers and burst-mode clock and data recovery circuits. The recent development of 10 Gb/s BM-RXs is highlighted also including dual-rate operation for coexistence with deployed PONs and on-chip auto reset generation to eliminate external timing-critical control signals provided by a PON medium access control. Finally sub-system integration and state-of-the-art system performance for 10 Gb/s PONs are reviewed

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    Broadband Receiver Electronic Circuits for Fiber-Optical Communication Systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improve their capacity. As the copper based network infrastructure is being replaced by fiber-optical interconnects, new industrial standards for higher datarates are required. Several research and industrial organizations are aiming towards 400 Gb Ethernet and beyond, which brings new challenges to the field of high-speed broadband electronic circuit design. Replacing OOK with higher M-ary modulation formats and using higher datarates increases network capacity but at the cost of power. With datacenters rapidly becoming significant energy consumers on the global scale, the energy efficiency of the optical interconnect transceivers takes a primary role in the development of novel systems. There are several additional challenges unique in the design of a broadband shortreach fiber-optical receiver system. The sensitivity of the receiver depends on the noise performance of the PD and the electronics. The overall system noise must be optimized for the specific application, modulation scheme, PD and VCSEL characteristics. The topology of the transimpedance amplifier affects the noise and frequency response of the PD, so the system must be optimized as a whole. Most state-of-the-art receivers are built on high-end semiconductor SiGe and InP technologies. However, there are still several design decisions to be made in order to get low noise, high energy efficiency and adequate bandwidth. In order to overcome the frequency limitations of the optoelectronic components, bandwidth enhancement and channel equalization techniques are used. In this work several different blocks of a receiver system are designed and characterized. A broadband, 50 GHz bandwidth CB-based TIA and a tunable gain equalizer are designed in a 130 nm SiGe BiCMOS process. An ultra-broadband traveling wave amplifier is presented, based on a 250 nm InP DHBT technology demonstrating a 207 GHz bandwidth. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback, based on a 130 nm InP DHBT technology are designed and compared

    Bandwidth Extension for Transimpedance Amplifiers

    Get PDF

    Bandwidth Enhancement Techniques For Cmos Transimpedance Amplifier

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2016CMOS Transferempedans Kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik teknikler haberles¸me teknolojisinde ve uygulamalarında ortaya çıkan hızlı gelis¸meler ve uygulamalar verilere hızlı eris¸im avantajı yanında hızlı hesaplama ve haberles¸me tekniklerine imkan veren bir bilgi çag˘ ını ortaya çıkarmıs¸tır. Sürekli artan hızlı bilgi transferi ihtiyacı, hızlı elemanların ve tümdevrelerin tasarımına yönelik aras¸tırmalara liderlik eden optik haberles¸me teknig˘ ini dog˘ urmus¸tur. Veri iletimi için mevcut ortamlar arasında optik fiber yapıları en iyi bas¸arımı sunmaktadır. Günümüzde optik fiberler çok yog˘ un sayısal veri transferinde genis¸ kullanım alanı bulmaktadır. Yog˘ un veri aktarımı kilometrelerce uzunlukta optik fiberler üzerinde önemli bir kayıp olmaksızın yapılabilmektedir. Normal s¸artlarda, is¸aret aktarımının ıs¸ık ile yapılması durumunda ortaya çıkan kayıp elektriksel yolla yapılan aktarıma gore daha düs¸üktür. Optik fiberler genel bas¸arımı iyiles¸tirmenin yanında düs¸ük maliyet avantajını da sunmaktadır. En yüksek teknolojilerde, optik fiber elemanları ve sistemleri çok yog˘ un veri aktarımı amacıyla kullanılmaktadır. Sonuç olarak optik fiber teknolojisi düs¸ük kayıpla çok yog˘ un veri aktarımını az maliyetle sunabilen bir teknoloji olarak günümüzde çok önemli bir konuma sahiptir. Genel olarak, optik haberles¸me sistemlerinde kullanılan analog devreler Galyum Arsenik (GaAs) veya Indiyum Fosfid (InP) teknolojileri ile üretilmektedir. Bu prosesler yüksek hızlı devreler için olus¸turulmakta olup optik haberles¸me sistemlerinin ihtiyaç duydug˘ u yüksek band genis¸lig˘ ine sahip devreleri üretmek için genellikle tek alternatif olarak kars¸ımıza çıkmaktadırlar. Bununla birlikte, CMOS proseslerinde ortaya çıkan hızlı gelis¸meler sayesinde daha yüksek bas¸arımlara sahip analog devreleri CMOS proses kullanarak tasarlama ve gerçekles¸tirme imkanları gittikçe artmaktadır. CMOS prosesin tercih edilmesine sebep olan en önemli avantaj maliyetlerde ortaya çıkan büyük düs¸üs¸tür. CMOS proseslerin maliyetinin düs¸ük olmasının sebebi, büyük alan kullanımı gerektiren sayısal devre gerçekles¸tirmelerinde çok genis¸ bir kullanıma sahip olmasıdır. CMOS prosesin dig˘ er bir avantajı sayısal ve analog devrelerin aynı taban üzerinde gerçekles¸tirilmesine imkan vermesidir. Transferempedans kuvvetlendirici (TIA) optik haberles¸me alıcılarındaki ilk blok olup giris¸indeki akımı çıkıs¸ında gerilime dönüs¸türmektedir. Tipik bir TIA’nın önemli bas¸arım ihtiyaçları genis¸ bandgenis¸lig˘ i, yüksek transferempedans kazancı, düs¸ük gürültü, düs¸ük güç tüketimi ve küçük grup geçikme deg˘ is¸im aralıg˘ ıdır. Nano teknolojilerdeki güncel gelis¸meler, optik alıcıların giris¸ katı uygulamalarında gerekli kolay bir s¸ekilde elde edilemeyen bas¸arımları sag˘ layabilen CMOS Transfer- empedans Kuvvetlendiricinin (TIA) tasarımını ekonomik hale getirmis¸tir. TIA tasarımında dikkat edilmesi gereken iki önemli mesele bandgenis¸lig˘ i ve giris¸ hassasiyetidir. TIA’nın bandgenis¸lig˘ i genellikle giris¸teki parasitic kapasite tarafından sınırlanmaktadır. TIA’nın bandgenis¸lig˘ i fotodiyot kapasitesi, transistor giris¸ kapasitesi ve transistor giris¸ direncinin belirledig˘ i RC zaman sabiti ile bulunabilir. Giris¸ hassasiyeti ise TIA’nın giris¸ gürültü akımından etkilenmektedir. Bundan dolayı TIA’nın bandgenis¸lig˘ i ve giris¸ is¸areti hassasiyeti bas¸arımlarını optimum bir s¸ekilde temin eden uygun devre topolojisinin belirlenmesi önemli bir meseledir. Bu tez, CMOS teknolojisi kullanan Transferempedans Kuvvetlendiricinin band- genis¸lig˘ i bas¸arımını gelis¸tirmeye yönelik yeni teknikler sunan bir çalıs¸madır. CMOS TIA’nın bandgenis¸lig˘ i bas¸arımını iyiles¸tirmeye yönelik farklı yaklas¸ımlar tez içerisinde gösterilmektedir. Bundan bas¸ka, bu çalıs¸ma transferempedansı kuvvetlendiricinin analizini ve tasarımını tam olarak anlamak için gerekli altyapı bilgisini de sunmaktadır. Bu tezde, sistemle devre tasarımı arasındaki bos¸lug˘ u doldurmak için s¸unlar yapılmıs¸tır: - Band genis¸lig˘ i bas¸arımının arttırılmasının matematiksel analizlerle anlas¸ılması. - Gerçekles¸tirilebilir yeni devre yapılarının tanıtılması. - Teklif edilen tasarımların CMOS teknolojisiyle gerçekles¸tirilebilirlig˘ inin kapsamlı ve detaylı simülasyonlar kullanılarak gösterilmesi. Sunulan yeni devre yapılarının ilki olarak, negatif empedans devresinin bandgenis¸lig˘ i artıs¸ı için kullanılabileceg˘ i bu tezde gösterilmis¸ olup bu teknik bu tezde TIA’nın çıkıs¸ kutpu için uygulanmaktadır. Bandgenis¸lig˘ i, kazancı (gmRout) arttırarak ve çıkıs¸ta aynı zaman sabiti korunarak arttırılabilir. Çıkıs¸ direnci arttırılarak kazanç (A) yükseltilebilir. Çıkıs¸ direnci çıkıs¸a uygulanacak bir negative direnç devresi ile arttırılabilir. Çıkıs¸ta aynı zaman sabitini korumak için ise negatif kapasite devresi kullanılabilir. Daha yüksek kazanç deg˘ eri (A) rezistif geribesleme sayesinde giris¸ direncini azaltarak giris¸ kutbunun yükselmesini sag˘ lamaktadır. Sonuç olarak, bandgenis¸lig˘ i bas¸arımında bir iyiles¸tirme elde edilebilmektedir. Teklif edilen topoloji ile 7GHz bandgenis¸lig˘ ine ve 54.3dB’lik kazanca sahip bir TIA tasarlanmıs¸tır. Teklif edilen TIA’nın 1.8V’luk besleme kaynag˘ ından çektig˘ i toplam güç 29mW’tır. Teklif edilen TIA’nın 0.18um CMOS proses ile post-serimi yapılmıs¸tır. Benzetimle elde edilmis¸ giris¸ gürültü akım yog˘ unlug˘ u 5.9pA/ Hz olup kapladıg˘ ı alan 230umX45um olmus¸tur. Tezde bir sonraki çalıs¸mada es¸les¸tirme teknig˘ i kullanılarak genis¸ bantlı bs¸r TIA tasarlanmıs¸tır. Giris¸te seri empedans es¸les¸tirme teknig˘ i ve çıkıs¸ta T tipi es¸les¸tirme yapısı birlikte kullanılarak TIA’nın bandgenis¸lig˘ i bas¸arımının iyi bir düzeyde iyiles¸tirilebileceg˘ i gösterilmis¸tir. Bu yaklas¸ım 0.18um CMOS teknolojisi ile yapılmıs¸ bir tasarım örneg˘ i ile desteklenmis¸tir. Post serim sonuçları 50fF’lık bir fotodiyot kapasitesi için 20GHz’lik bandgenis¸lig˘ i, 52.6dB’lik transferdirenci kazancı, 8.7pA/ Hz ‘lik giris¸ gürültü akımı ve 3pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 1.3mW güç çekmis¸tir. Tezin üçüncü as¸amasında TIA band genis¸lig˘ i bas¸arımını arttırmaya yönelik bas¸ka bir yapı sunulmaktadır. Bu yapı, literatürde bilinen regule edilmis¸ ortak geçitli mimari ile birlikte farklı rezonans frekanslarına sahip iki rezonans devresinin paralel kullanımını içermektedir. Teklif edilen TIA devresinde, kapasite dejenarasyon ve seri endüktif tepe teknikleri kutup-sıfır kompanzasyonu için kullanılmıs¸tır. 100fF’lık fotodiyot kapasitesine sahip bir TIA 0.18um CMOS prosesi ili tasarlanmıs¸tır. Post-serim sonuçları 13GHz’lik bandgenis¸lig˘ i, 53dB’lik transferdirenci kazancı, 24pA/ Hz ‘lik xxvi giris¸ gürültü akımı ve 5pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 11mW güç çekmis¸tir. Tezin dördüncü as¸amasında, regule edilmis¸ ortak geçitli mimari kullanan TIA’nın bandgenis¸lig˘ i bas¸arımını arttırmaya yönelik bir teknik tanıtılmıs¸tır. Bu teknik, resistif kompanzasyon teknig˘ ini ve merdiven es¸les¸tirme yapısını bir kaskod akım kaynag˘ ı ile birlikte kullanmaya dayanmaktadır. Bu yapının bas¸arımını göstermek amacıyla, 0.18um CMOS prosesi ile bir tasarım yapılmıs¸tır. Post-serim sonuçları 8.4GHz’lik bandgenis¸lig˘ i, 51.3dB’lik transferdirenci kazancı, 20pA/ Hz ‘lik giris¸ gürültü akımı ve 4pS’den daha az grup geçikmesi bas¸arımılarını vermis¸tir. Bu TIA uygulaması 1.8V’luk besleme kaynag˘ ından 17.8mW güç çekmis¸tir. Tezin son as¸amasında, tezde sunulan teknikler ve yapıların kendi aralarında kars¸ılas¸tırılması verilmektedir. Kars¸ılas¸tırma öncelikli olarak band genis¸lig˘ i, transferempedansı kazancı, gürültü, güç tüketimi, grup geçikme deg˘ is¸im aralıg˘ ı ve kapladıg˘ ı alan için yapılmaktadır. Bunlara ek olarak, sunulan yapıların kullandıg˘ ı tekniklerin avantajlı yanları ile birlikte (kararlılık üzerinde olus¸abilecek negatif etkiler gibi) dezavantajlı tarafları da tezin son as¸amasında verilmektedir. Tezin son as¸amasında yapılan kars¸ılas¸tırmalar, en iyi bant genis¸lig˘ i bas¸arımının es¸les¸tirme teknig˘ ini kullanan yapıdan elde edildig˘ ini göstermektedir. Bununla birlikte dig˘ er yapıların da band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıg˘ ı ortaya konulmaktadır. Gürültü açısından ise en yüksek bas¸arımın negatif empedans teknig˘ ini kullanan yapıda elde edildig˘ i görülmektedir. Bu yapı aynı zamanda düs¸ük alan kullanımı imkanı da sunmaktadır. Tezde sunulan dig˘ er iki yapı ise özellikle yüksek deg˘ erli fotodiyot kapasiteleri için incelenmis¸ olup band genis¸lig˘ i bas¸arımı üzerinde önemli iyiles¸tirmeler yaptıkları gösterilmektedir. Sonuç olarak, bu tezde transferempedans kuvvetlendiricinin bandgenis¸lig˘ i bas¸arımını iyiles¸tiren farklı teknikler sunulmakta olup bu teknikler ayrıntılı ve kars¸ılas¸tırmalı olarak incelenmektedir. Tezde verilen sonuçlar sunulan yeni tekniklerin bas¸arımlarının yüksek oldug˘ unu ve literature yeni ve güçlü alternatfiler sunuldug˘ unu göstermektedir. Tezde sunulan yaklas¸ımların ve tekniklerin gelecekte yapılacak benzer aras¸tırmalara hem yardımcı olacak hem de referans olacak nitelikte oldug˘ u düs¸ünülmektedir.The accelerated development of integrated systems in the communication technology and their application are among the significant technologies that have developed the information era by empowering high-speed computation and communication technique besides high-speed access to stored data. The continuous growth demand for high-speed transport of information has rekindled optical communications, leading to derived research on high-speed device and integrated circuit design. Among the available medium to transfer the data, optical fibers have the best performance. Optical fibers are very common these days to transport very high rate digital data. Such high speed data rates can be transported over kilometers of optical fiber and without significant loss. Normally loss is very low when the signal is transmitted using light rather than electrical signal. These fibers also have the advantage of being low cost in addition to improvement of performance. In state-of-the-art technology, fiber optic devices and systems are evidently employed to realize very high data rates. Fiber optic communication is a solution because high data rates can be transmitted through this high capacity cable with high performance. Traditionally, analog circuits used in optical communication systems are implemented using Gallium Arsenide (GaAs) or Indium Phosphide (InP) technologies. These processes are designed for high speed circuits, and have been traditionally the only technologies able to produce the high bandwidth circuits required in optical communication systems. However, due to the aggressive scaling of the CMOS process, it is now becoming possible to design high performance analog circuits in CMOS. The primary advantage of moving to a CMOS process is a dramatic reduction in cost due to its widespread use in high volume digital circuits. Another advantage of using CMOS is its ability to integrate digital and analog circuits onto the same substrate. Transimpedance amplifier (TIAs) is the first building block in the optical communication receiver that converts the small signal current to a corresponding output voltage signal. The important requirements of a typical TIA are large bandwidth, high transimpedance gain, low noise, low power consumption, and small group delay variation. Current developments in nanoscale technologies made it economically feasible to design CMOS transimpedance amplifier (TIA) that satisfies the stringent performances necessary for the front-end optical transceivers applications such as low power, low cost and high integration which offers the most economical solution in the consumer application market. In designing of TIA, the two major factors that must be considered are the bandwidth and the input sensitivity. The bandwidth of TIA is usually limited by the parasitic capacitance at the input stage, and it can be calculated by its RC time constant contributed by photodiode capacitance, parasitic capacitance and input resistance of the amplifier. The sensitivity is affected by the input current noise of the TIA. Therefore it is challenge to choose the suitable circuit topology that provides an optimal trade-off between bandwidth and input signal sensitivity for TIA. This thesis is an attempt toward providing novel techniques to extend the bandwidth of the transimpedance amplifier using CMOS technology. Different approaches used to improve the bandwidth of CMOS TIAs are covered. Moreover, this research provides the necessary background knowledge to fully understand the analysis and design of the transimpedance amplifier (TIA). Bridging the gap between system and circuit design is done by: Understanding the bandwidth expansion by mathematical analysis. Introducing new circuit architectures that can be realized. Demonstrating implementation of the proposed designs using extensive simulations in CMOS technology. It is shown in this thesis that, using a negative impedance NI circuit can be used for bandwidth extension. In our application, the negative impedance is incorporated into the output pole of TIA. The bandwidth can be improved by increasing the gain (A = gmRout ) and by maintaining the same time constant at the output pole. A better gain A can be obtained if the output resistance Rout is increased. Increasing Rout can be done by placing a negative resistance RIN in parallel with the output resistance Rout . In order to maintain the same time constant at the output node, a negative capacitance can be used. It have been reported that, the shunt feedback architecture is used to improve the bandwidth of TIA. Increasing the gain A effectively decreases the input resistance and hence increase the frequency of the input pole due to feedback. As a result, an improvement of the bandwidth can be obtained. Using the proposed topology, a wide band transimpedance amplifier with a bandwidth of 7 GH z and transimpedance gain of 54.3 dBΩ is achieved. The total power consumption of the proposed TIA from the 1.8 V power supply is 29 mW . The TIA is designed in 0.18 µ m CMOS technology. The simulated input referred noise current spectral density is 5.9 pA/√H z and the TIA occupies 230µ m × 45µ m of area. Furthermore, a wide band TIA is designed using the matching technique. It is shown that by simultaneously using of series input matching topology and T-output matching network, the bandwidth of the TIA can be obviously improved. This methodology is supported by a design example in a 0.18 µ m CMOS technology. The post layout simulation results show a bandwidth of 20 GH z with 50 f F photodiode capacitance, a transimpedance gain of 52.6 dBΩ, 11 pA/√H z input referred noise and group delay less than 8.3 ps. The TIA dissipates 1.3 mW from a 1.8 V supply voltage. In addition, a new design possessing to extend the bandwidth of the TIA is presented. This TIA employs a parallel combination of two series resonate circuits with different resonate frequencies on the conventional regulated common gate (RGC) architecture. In the proposed TIA, a capacitance degeneration and series inductive peaking technique are used for pole-zero elimination. The TIA is implemented in a 0.18 µ m CMOS process, where a 100 f F photodiode is considered. The post layout simulation results show a transimpedance gain of 53 dBΩ transimpedance gain along with a 13 GH z bandwidth. The designed TIA consumes 11 mW from a 1.8 V supply, and its group-delay variation is 5 ps with 24 pA/√H z input referred noise. xxii In the last phase of the work, a technique to enhance the bandwidth of the regulated common gate (RCG) transimpedance amplifier is described. The technique is based on using a cascode current mirror with resistive compensation technique and a ladder matching network. In order to verify the operation and the performance of the proposed technique, a CMOS design example is designed using the 0.18µ m CMOS process technology. The post layout simulation results show that, the proposed TIA achieved a bandwidth of 8.4 GH z, a transimpedance gain of 51.3 dBΩ and input referred noise current spectral density of 20 pA/√H z. The average group-delay variation is 4 ps over the bandwidth and the TIA consumes 17.8 mW from a 1.8 V supply. To sum up, this thesis focuses on various design techniques of transimpedance amplifier (TIA) that improves the bandwidth performance. We believe that, our approaches and techniques exhibit a path which other future researchers can follow and as well refer to as their researching domain and also could be used in their research applications.DoktoraPh

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    Research and design of high-speed advanced analogue front-ends for fibre-optic transmission systems

    Get PDF
    In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers

    Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors

    Full text link
    We report an optical link on silicon using micrometer-scale ring-resonator enhanced silicon modulators and waveguide-integrated germanium photodetectors. We show 3 Gbps operation of the link with 0.5 V modulator voltage swing and 1.0 V detector bias. The total energy consumption for such a link is estimated to be ~120 fJ/bit. Such compact and low power monolithic link is an essential step towards large-scale on-chip optical interconnects for future microprocessors

    28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser

    Get PDF
    We demonstrate direct modulation of a heterogeneously integrated C-band DFB laser on SOI at 28 Gb/s with a 2 dB extinction ratio. This is the highest direct modulation bitrate so far reported for a membrane laser coupled to an SOI waveguide. The laser operates single mode with 6 mW output power at 100 mA bias current. The 3 dB modulation bandwidth is 15 GHz. Transmission experiments using a 2 km non zero dispersion shifted single mode fiber were performed at 28 Gb/s bitrate using a 2(7)-1 NRZ-PRBS pattern resulting in a 1 dB power penalty. (C) 2015 Optical Society of Americ
    corecore