
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

BANDWIDTH ENHANCEMENT TECHNIQUES
FOR CMOS TRANSIMPEDANCE AMPLIFIER

Ph.D. THESIS

Jawdat ABU TAHA

Department of Electronics and Communication Engineering

Electronics Engineering Programme

FEBRUARY 2016





ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

BANDWIDTH ENHANCEMENT TECHNIQUES
FOR CMOS TRANSIMPEDANCE AMPLIFIER

Ph.D. THESIS

Jawdat ABU TAHA
(504112206)

Department of Electronics and Communication Engineering

Electronics Engineering Programme

Thesis Advisor: Associate Prof. Dr. Metin YAZGI

FEBRUARY 2016
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BANDWIDTH ENHANCEMENT TECHNIQUES
FOR CMOS TRANSIMPEDANCE AMPLIFIER

SUMMARY

The accelerated development of integrated systems in the communication technology
and their application are among the significant technologies that have developed
the information era by empowering high-speed computation and communication
technique besides high-speed access to stored data. The continuous growth demand
for high-speed transport of information has rekindled optical communications, leading
to derived research on high-speed device and integrated circuit design. Among the
available medium to transfer the data, optical fibers have the best performance. Optical
fibers are very common these days to transport very high rate digital data. Such
high speed data rates can be transported over kilometers of optical fiber and without
significant loss. Normally loss is very low when the signal is transmitted using light
rather than electrical signal. These fibers also have the advantage of being low cost
in addition to improvement of performance. In state-of-the-art technology, fiber optic
devices and systems are evidently employed to realize very high data rates. Fiber optic
communication is a solution because high data rates can be transmitted through this
high capacity cable with high performance.

Traditionally, analog circuits used in optical communication systems are implemented
using Gallium Arsenide (GaAs) or Indium Phosphide (InP) technologies. These
processes are designed for high speed circuits, and have been traditionally the
only technologies able to produce the high bandwidth circuits required in optical
communication systems. However, due to the aggressive scaling of the CMOS process,
it is now becoming possible to design high performance analog circuits in CMOS. The
primary advantage of moving to a CMOS process is a dramatic reduction in cost due to
its widespread use in high volume digital circuits. Another advantage of using CMOS
is its ability to integrate digital and analog circuits onto the same substrate.

Transimpedance amplifier (TIAs) is the first building block in the optical
communication receiver that converts the small signal current to a corresponding
output voltage signal. The important requirements of a typical TIA are large
bandwidth, high transimpedance gain, low noise, low power consumption, and small
group delay variation.

Current developments in nanoscale technologies made it economically feasible to
design CMOS transimpedance amplifier (TIA) that satisfies the stringent performances
necessary for the front-end optical transceivers applications such as low power, low
cost and high integration which offers the most economical solution in the consumer
application market.

In designing of TIA, the two major factors that must be considered are the bandwidth
and the input sensitivity. The bandwidth of TIA is usually limited by the parasitic
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capacitance at the input stage, and it can be calculated by its RC time constant
contributed by photodiode capacitance, parasitic capacitance and input resistance of
the amplifier. The sensitivity is affected by the input current noise of the TIA.
Therefore it is challenge to choose the suitable circuit topology that provides an
optimal trade-off between bandwidth and input signal sensitivity for TIA.

This thesis is an attempt toward providing novel techniques to extend the bandwidth of
the transimpedance amplifier using CMOS technology. Different approaches used to
improve the bandwidth of CMOS TIAs are covered. Moreover, this research provides
the necessary background knowledge to fully understand the analysis and design of the
transimpedance amplifier (TIA).

Bridging the gap between system and circuit design is done by: Understanding the
bandwidth expansion by mathematical analysis. Introducing new circuit architectures
that can be realized. Demonstrating implementation of the proposed designs using
extensive simulations in CMOS technology.

It is shown in this thesis that, using a negative impedance NI circuit can be used for
bandwidth extension. In our application, the negative impedance is incorporated into
the output pole of TIA. The bandwidth can be improved by increasing the gain (A =
gmRout) and by maintaining the same time constant at the output pole. A better gain A
can be obtained if the output resistance Rout is increased. Increasing Rout can be done
by placing a negative resistance RIN in parallel with the output resistance Rout . In order
to maintain the same time constant at the output node, a negative capacitance can be
used. It have been reported that, the shunt feedback architecture is used to improve
the bandwidth of TIA. Increasing the gain A effectively decreases the input resistance
and hence increase the frequency of the input pole due to feedback. As a result, an
improvement of the bandwidth can be obtained. Using the proposed topology, a wide
band transimpedance amplifier with a bandwidth of 7 GHz and transimpedance gain
of 54.3 dBΩ is achieved. The total power consumption of the proposed TIA from the
1.8 V power supply is 29 mW . The TIA is designed in 0.18 µm CMOS technology.
The simulated input referred noise current spectral density is 5.9 pA/

√
Hz and the TIA

occupies 230µm×45µm of area.

Furthermore, a wide band TIA is designed using the matching technique. It is shown
that by simultaneously using of series input matching topology and T-output matching
network, the bandwidth of the TIA can be obviously improved. This methodology
is supported by a design example in a 0.18 µm CMOS technology. The post layout
simulation results show a bandwidth of 20 GHz with 50 f F photodiode capacitance, a
transimpedance gain of 52.6 dBΩ, 11 pA/

√
Hz input referred noise and group delay

less than 8.3 ps. The TIA dissipates 1.3 mW from a 1.8 V supply voltage.

In addition, a new design possessing to extend the bandwidth of the TIA is presented.
This TIA employs a parallel combination of two series resonate circuits with
different resonate frequencies on the conventional regulated common gate (RGC)
architecture. In the proposed TIA, a capacitance degeneration and series inductive
peaking technique are used for pole-zero elimination. The TIA is implemented in a
0.18 µm CMOS process, where a 100 f F photodiode is considered. The post layout
simulation results show a transimpedance gain of 53 dBΩ transimpedance gain along
with a 13 GHz bandwidth. The designed TIA consumes 11 mW from a 1.8 V supply,
and its group-delay variation is 5 ps with 24 pA/

√
Hz input referred noise.
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In the last phase of the work, a technique to enhance the bandwidth of the regulated
common gate (RCG) transimpedance amplifier is described. The technique is based
on using a cascode current mirror with resistive compensation technique and a ladder
matching network. In order to verify the operation and the performance of the proposed
technique, a CMOS design example is designed using the 0.18µm CMOS process
technology. The post layout simulation results show that, the proposed TIA achieved
a bandwidth of 8.4 GHz, a transimpedance gain of 51.3 dBΩ and input referred noise
current spectral density of 20 pA/

√
Hz. The average group-delay variation is 4 ps over

the bandwidth and the TIA consumes 17.8 mW from a 1.8 V supply.

To sum up, this thesis focuses on various design techniques of transimpedance
amplifier (TIA) that improves the bandwidth performance. We believe that, our
approaches and techniques exhibit a path which other future researchers can follow
and as well refer to as their researching domain and also could be used in their research
applications.
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CMOS TRANSFEREMPEDANS KUVVETLENDİRİCİNİN
BANTGENİŞLİĞİ BAŞARIMINI GELİŞTİRMEYE YÖNELİK TEKNİKLER

ÖZET

Bandwidth Enhancment techniques for CMOS Transimpedance amplifier

CMOS Transferempedans Kuvvetlendiricinin bandgenişliği başarımını geliştirmeye
yönelik teknikler haberleşme teknolojisinde ve uygulamalarında ortaya çıkan hızlı
gelişmeler ve uygulamalar verilere hızlı erişim avantajı yanında hızlı hesaplama ve
haberleşme tekniklerine imkan veren bir bilgi çağını ortaya çıkarmıştır. Sürekli artan
hızlı bilgi transferi ihtiyacı, hızlı elemanların ve tümdevrelerin tasarımına yönelik
araştırmalara liderlik eden optik haberleşme tekniğini doğurmuştur.

Veri iletimi için mevcut ortamlar arasında optik fiber yapıları en iyi başarımı
sunmaktadır. Günümüzde optik fiberler çok yoğun sayısal veri transferinde geniş
kullanım alanı bulmaktadır. Yoğun veri aktarımı kilometrelerce uzunlukta optik
fiberler üzerinde önemli bir kayıp olmaksızın yapılabilmektedir. Normal şartlarda,
işaret aktarımının ışık ile yapılması durumunda ortaya çıkan kayıp elektriksel yolla
yapılan aktarıma gore daha düşüktür. Optik fiberler genel başarımı iyileştirmenin
yanında düşük maliyet avantajını da sunmaktadır. En yüksek teknolojilerde, optik fiber
elemanları ve sistemleri çok yoğun veri aktarımı amacıyla kullanılmaktadır. Sonuç
olarak optik fiber teknolojisi düşük kayıpla çok yoğun veri aktarımını az maliyetle
sunabilen bir teknoloji olarak günümüzde çok önemli bir konuma sahiptir.

Genel olarak, optik haberleşme sistemlerinde kullanılan analog devreler Galyum
Arsenik (GaAs) veya İndiyum Fosfid (InP) teknolojileri ile üretilmektedir. Bu
prosesler yüksek hızlı devreler için oluşturulmakta olup optik haberleşme sistemlerinin
ihtiyaç duyduğu yüksek band genişliğine sahip devreleri üretmek için genellikle tek
alternatif olarak karşımıza çıkmaktadırlar. Bununla birlikte, CMOS proseslerinde
ortaya çıkan hızlı gelişmeler sayesinde daha yüksek başarımlara sahip analog devreleri
CMOS proses kullanarak tasarlama ve gerçekleştirme imkanları gittikçe artmaktadır.
CMOS prosesin tercih edilmesine sebep olan en önemli avantaj maliyetlerde ortaya
çıkan büyük düşüştür. CMOS proseslerin maliyetinin düşük olmasının sebebi, büyük
alan kullanımı gerektiren sayısal devre gerçekleştirmelerinde çok geniş bir kullanıma
sahip olmasıdır. CMOS prosesin diğer bir avantajı sayısal ve analog devrelerin aynı
taban üzerinde gerçekleştirilmesine imkan vermesidir.

Transferempedans kuvvetlendirici (TIA) optik haberleşme alıcılarındaki ilk blok olup
girişindeki akımı çıkışında gerilime dönüştürmektedir. Tipik bir TIA’nın önemli
başarım ihtiyaçları geniş bandgenişliği, yüksek transferempedans kazancı, düşük
gürültü, düşük güç tüketimi ve küçük grup geçikme değişim aralığıdır.

Nano teknolojilerdeki güncel gelişmeler, optik alıcıların giriş katı uygulamalarında
gerekli kolay bir şekilde elde edilemeyen başarımları sağlayabilen CMOS Transfer-
empedans Kuvvetlendiricinin (TIA) tasarımını ekonomik hale getirmiştir.
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TIA tasarımında dikkat edilmesi gereken iki önemli mesele bandgenişliği ve giriş
hassasiyetidir. TIA’nın bandgenişliği genellikle girişteki parasitic kapasite tarafından
sınırlanmaktadır. TIA’nın bandgenişliği fotodiyot kapasitesi, transistor giriş kapasitesi
ve transistor giriş direncinin belirlediği RC zaman sabiti ile bulunabilir. Giriş
hassasiyeti ise TIA’nın giriş gürültü akımından etkilenmektedir. Bundan dolayı
TIA’nın bandgenişliği ve giriş işareti hassasiyeti başarımlarını optimum bir şekilde
temin eden uygun devre topolojisinin belirlenmesi önemli bir meseledir.

Bu tez, CMOS teknolojisi kullanan Transferempedans Kuvvetlendiricinin band-
genişliği başarımını geliştirmeye yönelik yeni teknikler sunan bir çalışmadır. CMOS
TIA’nın bandgenişliği başarımını iyileştirmeye yönelik farklı yaklaşımlar tez içerisinde
gösterilmektedir.

Bundan başka, bu çalışma transferempedansı kuvvetlendiricinin analizini ve tasarımını
tam olarak anlamak için gerekli altyapı bilgisini de sunmaktadır. Bu tezde, sistemle
devre tasarımı arasındaki boşluğu doldurmak için şunlar yapılmıştır: - Band genişliği
başarımının arttırılmasının matematiksel analizlerle anlaşılması. - Gerçekleştirilebilir
yeni devre yapılarının tanıtılması. - Teklif edilen tasarımların CMOS teknolojisiyle
gerçekleştirilebilirliğinin kapsamlı ve detaylı simülasyonlar kullanılarak gösterilmesi.

Sunulan yeni devre yapılarının ilki olarak, negatif empedans devresinin bandgenişliği
artışı için kullanılabileceği bu tezde gösterilmiş olup bu teknik bu tezde TIA’nın
çıkış kutpu için uygulanmaktadır. Bandgenişliği, kazancı (gmRout) arttırarak ve
çıkışta aynı zaman sabiti korunarak arttırılabilir. Çıkış direnci arttırılarak kazanç
(A) yükseltilebilir. Çıkış direnci çıkışa uygulanacak bir negative direnç devresi
ile arttırılabilir. Çıkışta aynı zaman sabitini korumak için ise negatif kapasite
devresi kullanılabilir. Daha yüksek kazanç değeri (A) rezistif geribesleme sayesinde
giriş direncini azaltarak giriş kutbunun yükselmesini sağlamaktadır. Sonuç olarak,
bandgenişliği başarımında bir iyileştirme elde edilebilmektedir. Teklif edilen topoloji
ile 7GHz bandgenişliğine ve 54.3dB’lik kazanca sahip bir TIA tasarlanmıştır. Teklif
edilen TIA’nın 1.8V’luk besleme kaynağından çektiği toplam güç 29mW’tır. Teklif
edilen TIA’nın 0.18um CMOS proses ile post-serimi yapılmıştır. Benzetimle elde
edilmiş giriş gürültü akım yoğunluğu 5.9pA/ Hz olup kapladığı alan 230umX45um
olmuştur.

Tezde bir sonraki çalışmada eşleştirme tekniği kullanılarak geniş bantlı bşr TIA
tasarlanmıştır. Girişte seri empedans eşleştirme tekniği ve çıkışta T tipi eşleştirme
yapısı birlikte kullanılarak TIA’nın bandgenişliği başarımının iyi bir düzeyde
iyileştirilebileceği gösterilmiştir. Bu yaklaşım 0.18um CMOS teknolojisi ile yapılmış
bir tasarım örneği ile desteklenmiştir. Post serim sonuçları 50fF’lık bir fotodiyot
kapasitesi için 20GHz’lik bandgenişliği, 52.6dB’lik transferdirenci kazancı, 8.7pA/
Hz ‘lik giriş gürültü akımı ve 3pS’den daha az grup geçikmesi başarımılarını vermiştir.
Bu TIA uygulaması 1.8V’luk besleme kaynağından 1.3mW güç çekmiştir.

Tezin üçüncü aşamasında TIA band genişliği başarımını arttırmaya yönelik başka bir
yapı sunulmaktadır. Bu yapı, literatürde bilinen regule edilmiş ortak geçitli mimari ile
birlikte farklı rezonans frekanslarına sahip iki rezonans devresinin paralel kullanımını
içermektedir. Teklif edilen TIA devresinde, kapasite dejenarasyon ve seri endüktif
tepe teknikleri kutup-sıfır kompanzasyonu için kullanılmıştır. 100fF’lık fotodiyot
kapasitesine sahip bir TIA 0.18um CMOS prosesi ili tasarlanmıştır. Post-serim
sonuçları 13GHz’lik bandgenişliği, 53dB’lik transferdirenci kazancı, 24pA/ Hz ‘lik
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giriş gürültü akımı ve 5pS’den daha az grup geçikmesi başarımılarını vermiştir. Bu
TIA uygulaması 1.8V’luk besleme kaynağından 11mW güç çekmiştir.

Tezin dördüncü aşamasında, regule edilmiş ortak geçitli mimari kullanan TIA’nın
bandgenişliği başarımını arttırmaya yönelik bir teknik tanıtılmıştır. Bu teknik, resistif
kompanzasyon tekniğini ve merdiven eşleştirme yapısını bir kaskod akım kaynağı
ile birlikte kullanmaya dayanmaktadır. Bu yapının başarımını göstermek amacıyla,
0.18um CMOS prosesi ile bir tasarım yapılmıştır. Post-serim sonuçları 8.4GHz’lik
bandgenişliği, 51.3dB’lik transferdirenci kazancı, 20pA/ Hz ‘lik giriş gürültü akımı ve
4pS’den daha az grup geçikmesi başarımılarını vermiştir. Bu TIA uygulaması 1.8V’luk
besleme kaynağından 17.8mW güç çekmiştir.

Tezin son aşamasında, tezde sunulan teknikler ve yapıların kendi aralarında
karşılaştırılması verilmektedir. Karşılaştırma öncelikli olarak band genişliği,
transferempedansı kazancı, gürültü, güç tüketimi, grup geçikme değişim aralığı ve
kapladığı alan için yapılmaktadır. Bunlara ek olarak, sunulan yapıların kullandığı
tekniklerin avantajlı yanları ile birlikte (kararlılık üzerinde oluşabilecek negatif etkiler
gibi) dezavantajlı tarafları da tezin son aşamasında verilmektedir.

Tezin son aşamasında yapılan karşılaştırmalar, en iyi bant genişliği başarımının
eşleştirme tekniğini kullanan yapıdan elde edildiğini göstermektedir. Bununla birlikte
diğer yapıların da band genişliği başarımı üzerinde önemli iyileştirmeler yaptığı ortaya
konulmaktadır. Gürültü açısından ise en yüksek başarımın negatif empedans tekniğini
kullanan yapıda elde edildiği görülmektedir. Bu yapı aynı zamanda düşük alan
kullanımı imkanı da sunmaktadır. Tezde sunulan diğer iki yapı ise özellikle yüksek
değerli fotodiyot kapasiteleri için incelenmiş olup band genişliği başarımı üzerinde
önemli iyileştirmeler yaptıkları gösterilmektedir.

Sonuç olarak, bu tezde transferempedans kuvvetlendiricinin bandgenişliği başarımını
iyileştiren farklı teknikler sunulmakta olup bu teknikler ayrıntılı ve karşılaştırmalı
olarak incelenmektedir. Tezde verilen sonuçlar sunulan yeni tekniklerin başarımlarının
yüksek olduğunu ve literature yeni ve güçlü alternatfiler sunulduğunu göstermektedir.
Tezde sunulan yaklaşımların ve tekniklerin gelecekte yapılacak benzer araştırmalara
hem yardımcı olacak hem de referans olacak nitelikte olduğu düşünülmektedir.
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1. INTRODUCTION

Integrated systems are among the significant technologies that have developed the

information era by empowering high-speed computation and communication technique

besides high-speed access to stored data. The continuous growth demand for

high-speed transport of information has rekindled optical communications, leading to

derived research on high-speed device and integrated circuit design [11].

Nowadays, improvement of faster communication channels is driven by propagation

of the Internet, high-speed microprocessors, and low-cost memory. Moreover, optical

fiber communication also has enormous attraction because of its advantages over

electrical communication, such as data transmission capacity, smaller and lighter

which reduces the cost of laying of the cable, low power consumption, more safety

, better security, less cross-talk, and lower electromagnetic interference (EMI) [12].

Optical communication systems have been used to transfer data in past decades and are

still dominant today due to the creation and development of wideband semiconductor

lasers, low-loss fibers, fast photodetectors, and other high quality optoelectronic

elements [13].

The main objective of an optical communication (OC) network is to transmit a huge

data over a long distance from a transmitter to a receiver by sending pulses of light

through an optical fiber. The simple OC system composes of three main blocks: a

transmitter, an optical fiber, and a receiver as shown in Figure1.1.

• The transmitter generates the optical signal by converting the electrical signal to

optical information as light pulses. The light-emitting diodes (LEDs) and laser

diodes are most commonly devices used as transmitter.

• The receiver converts the light pulses back to electrical current pulses. The

photodetector is the main device of the optical receiver.

• Optical fiber transports the optical data over the significant distance.
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Figure 1.1 : (a) Simple optical system, (b) addition of driver and amplifier [1].

Due to long or low quality optical fiber, the optical signal attenuates significantly,

as it transfers from one end to the other end and large a part of the optical power

disappears. Therefore, to obtain better performance of an OC, auxiliary building blocks

are used such as laser driver, transimpedance amplifier (TIA), multiplexer (MUX),

demultiplexer (DMUX) , phase locked loop [1].

A laser driver is used to provide large current to the laser and to amplify the laser

output. A transimpedance amplifier (TIA ) amplifies the electrical current with

sufficient bandwidth, converting it to a voltage for further signal processing in the

subsequent stages, with small noise as possible.

Generally, the TIA output signal is smaller than the logic level (approximately

500 mV p− p). So extra amplification is placed in the form of a limiting amplifier (LA).

After boosting the received signal to detectable logic levels, the noise is removed by a

decision circuit. The decision circuit is triggered by a clock and data recovery circuit

which creates a clock signal from the received data.

The complete optical communication system is shown in Figure1.2. The MUX is

used in the transmitter (TX) to convert low speed “parallel” channels to a high speed

serial data stream. Meanwhile, The DMUX is used in the receiver (RX) to regenerate

received serial data stream from original parallel channels. The phase locked loop

(PLL) creates a number of clock pulses to control the MUX.

At the receiver end limiting amplifier (LA) follows the TIA is used to amplify the

output voltage of the TIA to the logical level. In additional, over, a clean-up flip-flop is

placed between the LA and the DMUX to minimize the corruption of received signal
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Figure 1.2 : Basic Optical Communication System [1].

and circuit noise. The clock and data recovery” (CDR) is used to generate the clock

from the received signal. An automatic gain control (AGC) is employed to obtain

better performance of the TIA.

1.1 CMOS transimpedance amplifier (TIA)

Wideband amplifiers are one of the most important building blocks of any optical

communication system mainly, all amplifiers in the signal path, as the transimpedance

amplifier (TIA) which typically affects cost and determines the overall optical link

performance as speed, signal-to-noise ratio, and sensitivity [14, 15].

The main purpose of TIA is to amplify the small current received from the photodiode

and convert it to a voltage signal. There are important parameters in the design of

transimpedance amplifiers such as bandwidth, gain, noise, power, and supply voltage.

The TIA should have high bandwidth to avoid inter symbol interference (ISI). The

input current to the TIA is very small and therefore the gain should be high enough

to be able to produce an acceptable voltage level for the limiting amplifier. This

voltage is in the level of few mili-volts. Since the input current of TIA is very low,

in order to achieve high signal to noise ratio, the input referred noise of TIA must

be low. So that, the TIA is a wideband, high gain, and low noise amplifier with low

power consumption and low supply voltage [16, 17]. In conclusion, design of TIA

requires the trade-off a number of contradictory performance metrics including gain,

bandwidth, noise, and power consumption which is a big challenge for analog circuit

designers. In current to voltage amplifiers (TIAs), the figure of merit (FoM) is the
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tansimpedance bandwidth product (ZBW ). This means that the ZBW is traded off

against the bandwidth (BW ). Bandwidth is defined as the upper frequency for which

the transimpedance gain rolls off 3dB below its midband value. Bandwidth is usually

determined by the total capacitance contributed by the photodiode, the transimpedance

amplifier and other parasitic elements present at the optical front-end [18].

Equally important as a large output impedance for amplifier circuits is a small input

impedance. This is because a low input impedance reduces the loading-induced current

error [19]. Also, in applications such as data links over wire channels, a low input

impedance of the receivers is critical to increase the pole frequency at the input as the

channels often have a large capacitance. Reduction of the input-capacitance helps to

improve the bandwidth.

1.2 Literature summery of CMOS TIAs

Current developments in nanoscale technologies made it economically feasible to

design CMOS transimpedance amplifier (TIA) that satisfies the stringent performances

necessary for the front-end optical transceivers applications [20].

The bandwidth requirements of such transimpedance amplifiers continuously improve

following the drive for higher speed systems. While device scaling maintains to deliver

faster transistors with higher cut-off frequencies, it is still necessary to expand the

bandwidth of amplifiers using circuit techniques that allow us to do so for a given

process technology. For the CMOS TIA, the circuit bandwidth is basically limited

by the intrinsic capacitances of the transistors. Over the last few decades; several

bandwidth extension techniques have been developed to improve the bandwidth of

TIAs. The main design concept in these techniques is all related to how to reduce the

impact of the parasitic capacitances on the circuit.

Three approaches, namely current-mode signaling, inductive peaking, and distributed

amplification, are widely used to improve the bandwidth of circuits [21]. Current

mode circuits offer an improved bandwidth because it has low nodal impedances which

decreases time constants of the circuits. In addition the low voltage swing reduces the

time required to charge and discharge the nodes of the circuits [21, 22].
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The bandwidth or speed of a circuit is set by the time constant of the critical node of the

circuit. An effective way to minimize the effect of the large shunt capacitance of the

critical node is to break the large shunt capacitor into several smaller shunt capacitors

and separate them with inductors such that the large shunt capacitor is replaced with a

distributed LC network or a transmission line [21, 22].

Analui [23] has proposed a technique to isolate between different stages of an amplifier

by using a passive matching networks at the input and output, as well as between the

gain stages of the amplifier to enhance the bandwidth. The proposed passive network is

an inductor and it forms a ladder filter with the parasitic capacitances of devices. The

TIA achieves a 3-dB bandwidth of 9.2 GHz, transimpedance gain of 54dB Ω. This

circuit has been implemented in 0.18 µm BICMOS process using CMOS transistors.

The amount of PD capacitance has been considered 500 f F .

Chien and Chan [24, 25] proposed a bandwidth enhancement of TIA by a

capacitive-peaking design. This technique uses a gain peaking effect of the frequency

response by carefully controlling the capacitance CL loaded at the output node of a

preamplifier, thereby increasing the bandwidth. For many practical applications for

broadening the bandwidth value of Q ranges from 1/2 to 5/6, which corresponds

to the 0− 10% overshoot. Measurement shows that the maximally flat gain curve

(Butterworth response) is obtained at Q = 0.707. The amount of the required gain

peaking (Q) is determined by the capacitance CL.

Tanabe et al. and Yoon et al. [6,26,27] proposed another way to broaden the frequency

response is to degenerate the input transistors, so that their effective transconductance

Gm increases at the high frequency to compensate for the reduced gain beyond the

cutoff frequency. The capacitor Cs is to bypass the degeneration resistor Rs at high

frequencies, providing the peaking behavior that extends the bandwidth. Here the

input poles frequency is increased by a factor of (1+ gmRs) implying that the load

impedance seen be the preceding stage is reduced. This has an advantage over a direct

trade off of a gain-bandwidth product without degeneration.

The idea of inductive peaking is to use the capacitive load, which usually limits

bandwidth, to resonate with an inductor, thus increasing speed without additional

power dissipation or loss of gain.
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Shunt-peaking [5, 28, 29] can be realized by placing the inductor in series with the

load resistor of an amplifier. If the dominant pole of the amplifier is at the output, the

inductor adds a pole and a zero to the frequency response.

Shunt peaking has been used to design a 3.5 Gbps TIA in 0.5 µm CMOS in [5] shows

that the bandwidth of this type of circuit could be extended as much as 85%. For

a maximally at frequency response it was shown that a 72% increase in bandwidth

could be achieved. The advantage of shunt inductive peaking is that the Q value of

the on-chip inductor is not important since the series resistance of the inductor can be

incorporated by adjusting the value of the resistor RD. It is important to minimize the

size of the inductor to reduce the parasitic capacitance. A number of TIAs have been

designed using shunt inductive peaking [30–32].

Series inductive peaking has been used to design a 10 Gbps TIA in 0.18 µm CMOS

technology in [33]. For TIA with a multi-stage amplifier, the series inductors between

the stages increase the bandwidth of each individual stage. Each gain stage consists of

a CMOS inverter with resistive feedback. The series inductors absorb the parasitic

capacitance between the stages and increase the bandwidth. The series inductors

combine with the parasitic capacitances to create a 3rd order LC ladder filter structure.

A simulation was done to show that the five stage amplifier was able to produce

a bandwidth three times higher than the amplifier with no inductive peaking. The

TIA reported in [33] achieved a transimpedance gain of 61 dBΩ with a bandwidth of

7.2 GHz.

A combination of shunt and series peaking can be used to further extend the bandwidth

of a circuit. This principle has been demonstrated in [7]. The inductors create multiple

resonant structures that improve the bandwidth of the circuit.

Razavi proposed a novel TIA in this work that cascaded 5 differential pair gain stages

using shunt and series inductive peaking. The bandwidth of the amplifier with shunt

and series inductive peaking was approximately 3.5 times larger than the bandwidth

of the amplifier without inductive peaking. The final amplifier was able to achieve

a differential gain of 15 dBΩ and a bandwidth of 22 GHz using 0.18 µm CMOS

technology.
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Jin and HSu [8] have proposed PIP technique to reduce the effect of the parasitic

capacitances using the combination of a number of inductors. The configuration of

the inductors shapes a π and hence it is called a Pi-type inductor peaking (PIP). A

40 Gb/s TIA was implemented in 0.18 µm CMOS technology. Measurement results

shows a transimpedance gain of 51 dBΩ and 3-dB bandwidth up to 30.5 GHz.

Chalvatzis [34] has used the inductive feedback technique to extend the bandwidth

of CMOS TIA. Inverter based TIA and common source based TIA using inductive

feedback have been introduced. These circuits have been used as building blocks for

40 Gb/s system. These circuits have been presented in this work but the bandwidth

improvement is explained by resonance method. Meanwhile, the required inductor has

been selected based on trial.

Chan and Chen [35] reported an inductor-less CMOS TIA. The proposed technique

used a source-follower, regulated cascode and double active feedback schemes based

on the 0.18 µm CMOS technology. The project only compensates input capacitance

of the photodiode and input bonding pad but also avert the headroom effect. The TIA

was implemented using the supply voltage of 1.8 V to achieve a 7.7 GHz bandwidth

with an input capacitance of 300 f F and a transimpedance gain of 1.12 kΩ.

Lu et al. [36] offered a novel bandwidth enhancement method based on the

combination of capacitive degeneration, broad-band matching network, and the

regulated cascode (RGC) input stage which curves the TIA design into a fifth-order

low pass filter with Butterworth response. The TIA realizes a 3-dB bandwidth of about

8 GHz with 0.25 pF photodiode capacitance.

Ngo et al [37] reported a topology of TIA, using the combination of the shunt-feedback

configuration with the RGC input stage and broad-band matching network, in a

0.13 µm CMOS technology. The TIA provides a 3-dB bandwidth of 7.5 GHz and

transimpedance gain of 50 dBΩ for 300 f F photodiode capacitance.

A novel current-mode TIA was proposed by Lu et al [38]. The common source with

active feed backed as input stage. It was realized using Chartered Semiconductor

Manufacturing (CHRT) 0.18 µm-1.8 V RF CMOS technology. The proposed TIA is

able to achieve low input impedance similar to the regulated cascode (RGC) topology.

The TIA design also uses series inductive peaking and capacitive degeneration
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techniques to enhance the bandwidth and the gain. Results show, a 3-dB bandwidth

of about 7 GHz, transimpedance gain of 54.6 dBΩ for a photodiode capacitance of

0.3 pF .

Modification of RGC TIA to get improved frequency response and lower input referred

noise is proposed by Bashiri et al. [39]. Using feedback path creates two real poles as

two complex conjugate poles that can be used to expand the bandwidth. The proposed

TIA achieves bandwidth of 21.6 GHz and 46.7 dBΩ transimpedance gain for an input

capacitance of 200 f F using 65 nm CMOS technology.

Reverse triple resonance networks (RTRNs) is a novel bandwidth extension technique.

RTRNs is proposed by Liao and Liu [40]. The results show that the RTRN method

increases the bandwidth more than the shunt-series peaking technique, mainly when

the parasitic capacitance is dominated by the subsequent stage.

A push-pull or “inverter” amplifier with shunt resistive feedback technique is reported

by Kim and Buckwalter [41]. The proposed TIA provides a transimpedance gain of

55 dBΩ and group-delay variation of± 3.9ps over a 30 GHz. The power consumption

is 9 mW power and the supply is 1 V . The benefit of this technique is to reuse the

drain current and realize the intrinsic gain of both devices while decreasing the power

dissipation.

To obtain wideband operation, nested feedback TIA and an inserting post amplifier

with split series peaking are offered in [42]. The proposed TIA composes of three

cascaded transconductance with dual feedback. The TIA achieves transimpedance gain

of 92 dBΩ over 3-dB bandwidth of 35 GHz.

1.3 Research motivation

As demand for the use of optics in computing growths, integration of optoelectronic

devices, interface circuitry and other digital VLSI circuits is having more consideration

as a topology of realizing systems that can execute highly complex processing tasks.

The accelerated development in the communication technology and their application

present new design issues and challenges, such as the wide bandwidth, high gain, low

noise, low power consumption, low cost and small size. The driving force behind this

development is the wideband system. With recent developments in CMOS technology,
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CMOS Integrated Circuit (IC) design offers a possible solution for System-On-Chip

(SOC).

On the other side, CMOS technology have some advantages such as low power

consumption, high integration degree and low the fabrication cost but, it have not

performed well enough to continue in such a noisy environment without affecting other

important characteristics. This performance limitation is primarily due to the nature of

silicon CMOS devices that have limited gain, limited bandwidth, and large parasitic

capacitances as well. Moreover the low-voltage headroom is an obstacle to design

broadband TIA in CMOS technologies [6, 43, 44]. However, the complication of the

models requested to precisely describe the performance of CMOS nanoscale transistors

avoids the derivation of closed-form analytical expression that could be powerfully

used in the design optimization of even the simplest circuits. In the literature, the lack

of mathematical analysis of the bandwidth extension mechanism of TIA takes several

iterations and hand modification of the design before converging toward the desired

circuit.

Motivation of the thesis is to provide a mathematical framework to fill this empty

gap. In additional, since the technique has shown a prodigious possible to expand the

bandwidth of CMOS TIAs. The impetus exists to study the possibility to propose a

novel technique to improve the bandwidth of the CMOS TIAs. Moreover, explore the

validity of this technique by applying it to the design of a wideband TIA. The challenge

of TIA design is to implement it by meeting the bandwidth and transimpedance gain

at the same time.

In designing of TIA, the two major factors that must be considered are the bandwidth

and the input sensitivity. The bandwidth of TIA is usually limited by the parasitic

capacitance at the input stage, and it can be calculated by its RC time constant

contributed by photodiode capacitance, parasitic capacitance and input resistance of

the amplifier. The sensitivity is affected by the input current noise of the TIA.

Therefore it is challenge to choose the suitable circuit topology that provides an

optimal trade-off between bandwidth and input signal sensitivity for TIA.
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In this thesis, several aspects that affect the performance of TIA are investigated. The

work is focused on the design of TIA with high-gain, low noise, and low power TIA in

a 180 nm standard CMOS technology.

1.4 Objectives and contributions

The main target of the research is to cover different approaches used to improve

the bandwidth of CMOS TIAs. Also, to explore the possibilities for providing a

new technique to improve the bandwidth for CMOS TIAs. In addition to explain

mathematically the process of bandwidth extension. The objectives of this project

are summarized as follows:

• To explore the mechanism of bandwidth extension of CMOS TIAs.

• To explain mathematically the process of bandwidth extension technique for in

different topologies

• To investigate the possibilities for providing a novel topology to improve the

bandwidth of the TIA using CMOS technology.

Based on the objectives; contributions of the research are:

• Propose a novel circuit design techniques to achieve high-performance CMOS

integrated amplifiers for wireless/line communications at microwave frequencies.

• Develop a CMOS TIA that can satisfy performance, compatibility, and cost issues.

• Obtain a simple design without significant complication with respect to the case of

a conventional TIA topology.

• In order to show the system performance of the proposed TIA configurations, for

each design, the simulation results has been shown and the details noise analysis

are discussed.

10



1.5 Organization of the thesis

In chapter 1, optical receivers and TIAs as one of the main parts of the optical receivers

are discussed. Then the literature survey on different methods for achieving high

bandwidth transimpedance amplifiers is given. As a result objective and contributions

of the thesis are detailed.

In chapter 2, the most important specifications of a TIA are discussed. Moreover,

the most common TIA topologies are investigated. Both open-loop topologies and

closed-loop topologies are studied and the trade-off between the important TIA

specifications are explained.

In chapter 3, existing techniques in the literature to extend the bandwidth of the TIAs

are detailed. Some insight about the background of these techniques is given. In

this chapter the focus is on techniques using spiral inductors to extend the bandwidth

of transimpedance amplifiers. The discussion of inductive feedback technique using

zero pole cancellation to extend the bandwidth of inverter based CMOS TIAs has been

done. The small signal analysis for the circuits are given. The techniques are discussed

analytically.

In chapter 4, the discussion of negative impedance technique to extend the bandwidth

of CMOS transimpedance amplifier for the case of small photodiode capacitance

(50 f F) is done. Simulation results and comparison with other previous works are

shown in this chapter.

In Chapter 5, bandwidth extension using matching technique is applied. Different

topologies can be used to implement the matching networks. Series input matching

topology and T-output matching network are explained.The methodology is supported

by a design example in a 0.18 µm CMOS technology.

In Chapter 6, a new transimpedance amplifier design possessing to improve the

bandwidth is discussed. This TIA employs a parallel combination of two series

resonate circuits with different resonate frequencies on the conventional regulated

common gate (RGC) architecture. In the proposed TIA, we employ the capacitance

degeneration and series inductive peaking for pole-zero elimination.
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In Chapter 7, a technique to enhance the bandwidth of the regulated common gate

(RCG) transimpedance amplifier is described. The technique is based on using a

cascode current mirror with resistive compensation technique and a ladder matching

network. To verify the feasibility of the proposed technique, a CMOS design example

is implemented using a 0.18 µm RF CMOS technology.

In Chapter 8, conclusions and directions for future work are discussed.

12



2. BACKGROUND THEORY OF THE TRANSIMPEDANCE AMPLIFIER

In optical communication system, after converting the optical signal to the electrical

domain by the photodiode, the TIA converts the small photodiode current into a

voltage. The TIA building block will be treated extensively in this chapter. The

TIA circuit is characterized by important specifications including transimpedance

gain, bandwidth, input capacitance, input referred noise current and the group delay.

Since the TIA is the critical block in an optical receiver, these parameters limit the

performance of whole receiver system. The most important specifications of a TIA

are discussed. In additional, the most common TIA topologies are investigated. Both

open-loop topologies and closed-loop topologies are studied and the trade-off between

the important TIA specifications are explained.

2.1 Important specifications

• Transimpedance gain ZT IA: it is the ratio between the output voltage of the

amplifier to the input current. It is determined as:

ZT IA =
vout

iin
dB.Ω (2.1)

The transimpedance gain can be expressed using magnitude and phase

representation by:

|ZT IA( f )|= |Z(T IA,DC)|e jφT IA( f ) (2.2)

where Z(T IA,DC) is the magnitude of DC gain and φT IA is the phase of the

transimpedance. The DC gain Z(T IA,DC) should be chosen properly .When Z(T IA,DC)

is small, the noise of the next stages will have a serious effect on the SNR of the

system. Also, when Z(T IA,DC) is too high, a distortion of the signal may occur due

to the nonlinearity [45, 46].

• Group delay τg( f ): it is the delay of the output voltage vout with respect to the

input current iin. It is calculated as:

τg( f ) =− 1
2π

(
d∠ZT IA( f )

d f

)
(2.3)
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Figure 2.1 : Input Referred Noise Current.

In order to avoid the distortions in the output signal , the variations of the group

delay have to be small.

• Bandwidth BW: Bandwidth is defined as the upper frequency where the gain

drops 3dB below its midband value. In general, Bandwidth is limited by the total

capacitance contributed by the photodiode and other parasitic elements existing at

the optical front-end [47]. The TIA should have wide bandwidth to avoid inter

symbol interference (ISI). The figure of merit (FoM) of the TIA the transimpedance

bandwidth product (ZBW). That means that the ZBW is traded off against the

bandwidth (BW).

• Input-Referred Noise Current: Generally, the input-referred noise current is

controls all other noise sources and determines the sensitivity of the receiver. As

shown in Figure 2.1, it is defined as, the noise current that could be added to the

equivalent noiseless TIA to produce an equal output noise voltage to that of the

original noisy circuit [48]. The input referred noise current is determined by:

|iin|2 =
|vin|2

|ZTIA|2
(2.4)

2.2 TIA topologies

2.2.1 Open loop topologies

2.2.1.1 Single resistor TIA

The basic goal of a TIA is to convert a current into a voltage that can be done by

a resistor. The simplest TIA configuration is shown in in Figure 2.2(a), where the

TIA is a simple resistor RL. Figure 2.2(b) shows the equivalent circuit with the

photodiode model. The photodiode is replace by an ideal current source ipd and a

14



Figure 2.2 : (a) Circuit diagram of a single resistor TIA b) A single resistor with
Photodiode Model.

parasitic capacitance Cpd . When the current ipd passes through the resistor RL, it is

converted to a voltage Vout .

The transimpedance of the single-resistor TIA is written as :

ZT IA =
RL

1+ j2π f RL(Cpd +CL)
(2.5)

where CL is the load capacitance of the TIA, which is typically significantly smaller

than Cpd .

The DC transimpedance gain |Z(T IA,DC)| and the bandwidth are given by:

|Z(T IA,DC)|= RL (2.6)

BWT IA =
1

2π f RL(Cpd +CL)
(2.7)

One problem with this single resistor TIA is that it has a fundamental trade-off between

Gain and bandwidth. To achieve wider bandwidth, the resistor RL must be reduced, that

reduces the transimpedance gain.

2.2.1.2 Common gate TIA

The main problem of the single resistor TIA is the limited bandwidth that caused

by the photodiode capacitance at the input node. The common-gate TIA improves

the trade-off between transimpedance gain and bandwidth. Figure 2.3 shows the

common-gate TIA. The photodiode current ipd is converted into a voltage by resistor

RD.

By ignoring the output impedance of the transistors , the transimpedance gain of the

common-gate TIA is given by (2.8):

ZT IA =
RD

(1+ j2π f Cin
Rin

)(1+ j2π f RDCl)
(2.8)
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Figure 2.3 : Common-gate TIA.

where Cin ≈ Cpd +Cgs,M1 is the total input parasitic capacitance and the input

impedance Rin is given by,

Rin =
1+gds1RD

gm1(gds1 +gds2)
≈ 1

gm1
(2.9)

If we assume , Cin/gm,M1 � RDCl , the dominant pole is located at the input node,

while the non-dominant pole is at the output node. Then transimpedance gain and the

bandwidth can be expressed as:

|Z(T IA,DC)|= RD (2.10)

BWT IA =
gm,M1

2πCin
(2.11)

2.2.2 Closed loop topologies

2.2.2.1 Regulated-cascode TIA

Feedback is used to improve the performance of the common gate TIA . The regulated

common gate (RCG) is shown Figure 2.4. Using a local feedback reduces the input

impedance which improves the bandwidth by increasing the location of the input pole

to higher frequencies .

The approximated expression of transimpedance is given as:

ZT IA =
−RD

(1+ j2π f Cin
1+|A3|)(1+ j2π f R1Cl)

(2.12)

where |A3| is the dc voltage gain of transistor M3 that given by:

|A3|= gm,M3R2 (2.13)
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Figure 2.4 : Regulated Common Gate TIA.

gm,M3 is the transconductance of transistor M3 and Cin is total input capacitance

which is determined by the photodiode capacitance and the parasitic capacitances of

transistors M1 and M3. The input capacitance Cin can be calculated as:

Cin =Cpd +Cgs,M3 +(1+ |A3|)(Cgs,M1 +Cgd,M3) (2.14)

If we assume that the dominant pole is placed at the input, the transimpedance gain

and the bandwidth can be expressed as:

|Z(T IA,DC)|= R1 (2.15)

BWT IA =
gm,M1(1+ |A3|)

2πCin
(2.16)

Compared with the common-gate TIA, the bandwidth is improved by a factor of (1+

|A3|) for the same transconductance of M1. Since RGC TIA has a feedback loop, the

stability of the amplifier should be guaranteed. For stability in this case , the loop gain

must be smaller than unity when the phase has shifted by 180◦. As seen in equation

(2.12), the transimpedance function has two poles, at the input and output. In reality

a third pole can be traced back to the gate of M1 that adds another 90◦ phase shift.

To keep the system stable, the third pole has to be in a frequency at least three times

higher than the frequency where the magnitude of the loop gain is lower than unity.

This provides a phase margin of 72◦, which does not produce any overshoot in the

time domain [45, 49].
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Figure 2.5 : A shunt-shunt feedback TIA.

2.2.2.2 Shunt-shunt feedback TIA

The shunt feedback TIA, which is basically a current-to-voltage converter with a

negative resistive feedback, is the most commonly used circuit topology in optical

fiber applications. This shunt feedback configuration provides a wide bandwidth by

reducing the input-impedance while keeping a large resistor value in the feedback loop

to enhance noise behavior [50, 51].

Figure 2.5 shows a schematic of a shunt- shunt feedback TIA where, RF is the feedback

resistor and A represents an ideal operational amplifier. The transimpedance of the

shunt-shunt feedback TIA is given as:

ZT IA =
ARF −Rout

(1+A+ j2π f (RFCpd +Rout(Cin +Cl))−4π2 f 2RFRoutCinCl
(2.17)

where Rout is the output resistance of amplifier with gain A and Cl is the load

capacitance . Assuming A� 1 and Rout � RF , then the transimpedance from (2.17)

can be approximated as:

ZT IA =
RF

(1+ j2π f f racRFCinA)(1+ j2π f Rout)
(2.18)

If we assume that the dominant pole is placed at the input, the transimpedance gain

and the bandwidth can be expressed as:

|Z(T IA,DC)|= RF (2.19)

BWT IA =
A

2πCinRF
(2.20)

To keep the system stable , the the non-dominant pole of (2.18) pole has to be in a

frequency at least three times higher then the frequency where the magnitude of the

loop gain is lower than unity [45,49]. By assuming the dominant pole is located at the
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input node due to the large value of photodiode capacitance, the non-dominant pole

fnd should satisfy the following condition:

fnd =
1

2πRoutCl
≥ 3∗ A

2πRFCin
(2.21)
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3. BANDWIDTH ENHANCEMENT TECHNIQUES FOR CMOS TIAs

The rapid down-scale of the feature size of MOS devices, the aggressive decrease in the

supply voltage, and the moderate reduction in the threshold voltage of recent CMOS

technologies have greatly exaggerated the performance of CMOS TIAs, represented by

wide bandwidth , high gain, and low noise amplifier with low power consumption and

low supply voltage [52]. Bandwidth is of a serious alarm in wideband communications,

like optical front-ends receiver and data communications. The bandwidth of a circuit

is controlled by the time constant of the critical node, i.e. the node that has the highest

time constant, of the circuit. [40].

The chapter covers different approaches used to improve the bandwidth of CMOS

TIAs. Also, it provides some important calculations, which are done by pencil and

paper. The chapter is organized as follows : Section 3.1 looks into Cherry Hooper

amplifier technique. Section 3.2 investigates the capacitve peaking method. Section

3.3 examines the degeneration inductive procedure. The inductive topologies are

examined is section 3.4. Section 3.5 focuses on the principles of the current mode

signaling technique . Section 3.6 looks into the realization of distributed amplifier

topology and the chapter is shortened in Section 3.7.

3.1 Cherry Hooper amplifier

The Cherry-Hooper topology was designed to sanction the gain and bandwidth of

an amplifier to be tuned independently of each other. Figure 3.1 shows the simplest

structure of Cherry Hooper topology. It is composed of a transconductance stage gm1

followed by transadmittance stage gm [53]. The first stage converts the input signal to

a current and the second stage with a shunt feedback resistor convert the current ix into

the output voltage.

ix = vingm1 (3.1)
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Figure 3.1 : The fundamental structure Cherry-Hooper topology [2].

Figure 3.2 : A modified Cherry-Hooper TIA with a common gate input stage [2].

vo

vin
= (gm2R f −1)

gm1Rl

1+gm2Rl

1

1+ sRlCl
1+gm2Rl

(3.2)

assume gm2Rl � 1

H(s)∼=
gm1R1

1+ sCl
gm2

(3.3)

gain = gm1Rl (3.4)

ω−3dB =
gm2

Cl
(3.5)

As shown in Equations (3.4 ) and (3.5), the gain and bandwidth of the amplifier

are approximately independent of each other. The gain is proportional to the

transconductance gm1 and the feedback resistor R f while the bandwidth only depends

on gm2 and the load capacitance CL. This designates that gain is no longer sacrificed to

increment bandwidth and visa-versa. The only to increment both gain and bandwidth

is to increase the supply voltage, which is not an option for a designated CMOS

technology.

The block diagram of the modified CH amplifier is shown in Figure 3.2. Replacing

gm1 with a common gate or regulated gate cascade input stage provides low input
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impedance. That helps avoid the parasitic capacitance from the photodiode. This

configuration leads to enhancement of the amplifier’s gain.

vx = vout
Rl

Rl +R2
(3.6)

vy =−
vout

gm(Rl +R2)
(3.7)

vy− vx = R f iin (3.8)

ZT =
vout

iin
= R f (

R1 +R2

R1 +1/gm
) (3.9)

assume 1/gm� R1

ZT = R f (1+
R2

R1
) (3.10)

The modified Cherry-Hooper TIA must be frozen as two poles system. The two high

impedance nodes are at Vy and Vout . The output pole is well-defined in Equation (3.11),

while the pole at Vy is determined by Equation (3.12). The quality factor, Q, and the

center frequency of the amplifier are given in Equations (3.13) and (3.14). When Q is

high the modified amplifier offers a wider bandwidth. with more peaking and ringing at

the output. For low Q value it will produce an over damped system. Having Q = 0.707

will deliver the maximally flat response while O = 1/
√

3 as designated in [54] will

provide the ideal compromise between peaking and bandwidth.

ωp1 =
−1

(R1 +R2)Cl
(3.11)

ωp2 =
−[1+gm(R1 +R2)]

R fCy
) (3.12)

Q =
R fCyCL(R1 +R2)(1+gmR1)

R fCy +[CL(R1 +R2)(1+gmR1)]
(3.13)

The center frequency ω is given by:

ω =

√
1+gmR1

R f (R1 +R2)ClCy
) (3.14)
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Figure 3.3 : Capacitive peaking [3].

3.2 Capacitive peaking

Capacitive Peaking technique uses a gain peaking effect of the frequency response by

carefully controlling the capacitance CL loaded at the output node of a preamplifier,

thereby increasing the bandwidth [55–57].

By reanalyzing the feedback preamplifier circuit with the total output capacitance CL

attached, as shown in Figure 3.3, the transfer function can be expressed in second order

form as follows:

ZT =
ZT 0ω2

0

s2 + ω0
Q s+ω2

0
(3.15)

Q =

√
ω1ω2

ω1 +ω2
(3.16)

ω0 =
√

ω1ω2 (3.17)

ω1 =
1

RINCT
(3.18)

ω2 =
1

RoutCL
(3.19)

In general, the value of Q ranges from 1/2 to 5/6, which corresponds to the 0−10%

overshoot, for many practical applications for broadening the bandwidth [5]. For

Butterworth response, the maximally flat gain curve is obtained at Q = 0.707. The

bandwidth of the preamplifier can be estimated by setting the magnitude of Equation

(3.15) 0.707 times its low frequency gain ZT 0. That is,∣∣∣∣∣ ZT 0ω2
0

−ω2
−3dB + j

√
2ω0ω−3dB +ω2

0

∣∣∣∣∣= 1√
2

ZT 0 (3.20)
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Figure 3.4 : Source degeneration [3, 4].

therefore, ω0 = ω3dB. Thus, once the amount of the required gain peaking (Q) is

determined, the capacitance CL could be easily estimated by Equation (3.16), (3.17)

and (3.18).

3.3 Source degeneration

Another way to broaden the frequency response is to degenerate the input transistors.

The effective transconductance Gm increases at the high frequency to compensate gain

reducing at the cutoff frequency [26, 27, 58].

The capacitor Cs is to bypass the degeneration resistor Rs at high frequencies, providing

the peaking behavior that extends the bandwidth. The RG represents the output

resistance of the preceding stage. Neglecting the body effect, the equivalent transfer

function is given by:

vout

vin
= Gm

RD

1+ sRDCL
(3.21)

=

(
gm(1+ sRsCs)

s2RGCGSRsCs + s(RGCGS +RsCs +RsCGS)+(1+gmRs)

)
RD

1+ sRDCL

If the zero at 1/RsCs cancels out the output pole 1/RDCL at the drain, then,

vout

vin
=

GmRD

s2RGCGSRsCs + s(RGCGS +RsCs +RsCGS)+(1+gmRs)
(3.22)

Assume that the low frequency pole ω1 is much close to the origin, it can be also shown

that,

ω1 =
1+gmRs

RGCGS +RsCs +RsCGS
≈ 1+gmRs

RsCs
(3.23)
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if RLCGS� Rs(Cs +CGS). Hence the input pole frequency is increased by a factor of

(1+ gmRs) implying that the load impedance seen by the preceding stage is reduced.

This has an advantage over a direct trade-off of a gain-bandwidth product without

degeneration.

3.4 Inductive peaking

Inductive characteristics are most important in high-speed applications to enhance the

bandwidth. Oliver Heaviside’s begun used the inductive peaking in 1890s to extend

the bandwidth [59]. The idea of inductive peaking is to use the capacitive load, which

usually limits bandwidth, to resonate with an inductor, thus increasing speed without

additional power dissipation or loss of gain [5], [28] and [29]. Now we will discuss

various forms of inductive peaking circuits with explanation of peaking with poles and

zeros.

3.4.1 Shunt peaking

Shunt peaking is the common technique to expand bandwidth of wide band amplifiers.

It utilizes a resonant peaking at the output of the circuit. It extends the BW by

integrating an inductor to the output load. It introduces a resonant peaking at the

output as the amplitude commences to roll off at high frequencies. At high frequencies

capacitive reactance decreases so the inductor It increments the efficacious load

impedance [60]. Figure 3.5 shows the common source amplifier with shunt peaking

[5, 30].

The transfer function for the shunt-peaking circuit is given by:

vout

vin
=−gm

sL+R
s2LC+ sRC+1

=−gmR
ω0
Q

s2 + sω0
Q ω2

0
ω0Q (3.24)

where,

Q =
1
R

√
L
C

(3.25)

ω0 =
1√
LC

(3.26)

As seen Equation (3.24) can be assumed as a composition of two function that

low-pass function and a band-pass function. In this case, the zero is mainly control
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Figure 3.5 : Shunt Peaking [3, 5, 6].

Figure 3.6 : Shunt peaking circuit with three poles and two zeros.

the bandwidth improvement and the circuit provides more overshoot than other

second-order configurations. The maximally flat response is obtained when the value

of Q = 0.64, the bandwidth expands by 72%. [61]. By assuming the self capacitance

CL of the inductor, that adds one pole then the circuit has three poles and two- zero [5].

The input impedance is given by:

Z(ω) =
R+ jωL−ω2LCLR

jωRC(1−ω2LCL)−ω2L(C+CL)+1
(3.27)

= R
1−mn( ω

ω0
)2 + jm ω

ω0

1−m(1+n)( ω

ω0
)2 + j( ω

ω0
[1−mn( ω

ω0
)2])

where, mR2C , ω0 =
1

RC and CL = nC
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Figure 3.7 : Series Peaking Circuit.

3.4.2 Series peaking

Since the inductive peaking circuits are used mostly as drain load circuit [61]. To

simplify the analysis we can remove the transistor symbol and assume the input current

Ii flowing into the network which is written as :

Ii = ID + IL =Vi

(
jωC+

1
jωL+R

)
(3.28)

The output voltage is:

Vo = ILR =Vi

(
1

jωL+R

)
(3.29)

So that the transimpedance gain ZT is :

ZT =
Vo

Ii
=

R
−ω2LC+ jωRC+1

(3.30)

Assuming that Ii =
1V
R and L = mR2C , so that output voltage Vo can be written as:

Vo =
1

s2 + s
mRC + 1

mR2C2

(3.31)

We see that the denominator has two roots. For an efficient peaking the roots should be

complex conjugates. To calculate the cut-off frequency (−3dB frequency), we assume

that the output Vo drops to VODC√
2

;

|Vo(ω−3dB)|=
σ2

1 +ω2
1√

σ2
1 +(ω−3dB +ω1)2)(σ2

1 +(ω−3dB−ω1)2
=

1√
2

(3.32)

The bandwidth improvement factor η is determined by the ratio between the cut-off

frequency and the maximum non-peaking frequency ωh.

ηb =
ω−3dB

ωh
(3.33)
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Figure 3.8 : Series peaking circuit with three poles.

To calculate the input impedance of the circuit:

Zi =
1

jωC+1/( jωL+R)
=

jωL+R
1−2ωLC+ jωRC

(3.34)

The simplified expression of Zi is:

Zi = R
1+m( jω

ω0
)

1−m( jω
ω0
)2 + jω

ω0

(3.35)

where ω0 =
1

RC .

Since when device is connected to the output will have at least some capacitance.

Therefore the series peaking circuit becomes three independent reactive elements

(two capacitors and one inductor), so the circuit has three poles. To have maximum

bandwidth, the value of the input capacitor Ci must be smaller than the loading

capacitance C.

The input impedance is:

Zi =
R(1−ω2LC)

(1+ jωRCi)(1−ω2LC)+ jωCL)−ωCR
(3.36)

and the output voltage is:

Vo = Ii
R

(1+ jωR(Ci +C)−ω2LC)+ jω3LRCCi
(3.37)

By assuming,

L = mR2(C+Ci)n =
C

C+Ci
ω =

1
R(Ci +C)

(3.38)

thereby the transimpedance gain ZT is:

ZT =
1

1+ j( ω

ω0
)−mn( ω

ω0
)2− jmn(1−n) ω

ω0

(3.39)

Since the denominator is a 3rd -order polynomial we have three poles, one of them

should be real and the others two must be complex conjugated. For a series peaking
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Figure 3.9 : The shunt–series peaking circuit.

circuit the calculation of ω−3dB is relatively easy. The calculation becomes more

difficult, where more poles and sometimes even zeros are introduced. In such cases

it is better to use a computer to calculate response functions.

3.4.3 Shunt–series peaking circuit

Both the shunt and the series peaking can be combined to form a circuit, shown in

Figure 3.9. Here the bandwidth this topology is increased more than the other inductive

topologies [7].

The transimpedance is given by:

ZT (s) =
L1

L1L2CCi
(s+ R

L1
)

s4 + s3 R
L1
+ s2 L2C+L1Ci+L1C

L1L2CCi
+ sR(Ci+C)

L1L2CCi
+ 1

L1L2CCi

(3.40)

3.4.4 T-coil peaking technique

T − coil peaking network is shown in Figure 3.10. The circuit uses one transformer

which is bridged by the capacitance Cb [58].The relation R =
√

L
C must maintain

constant to obtain a constant input impedance Zi = R at any frequency [8].

The inductance L of the center tapped coil can be written as:

L = L1 +L2 +2LM (3.41)

Where L1 and L2 are self inductance and LM is mutual inductance which can be

determined by:

LM = k
√

L1L2 (3.42)

In symmetrical case,the values of L1 = L2 case can be determined by:

L1 = L2 =
L

2(1+ k)
(3.43)
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(a) (b)

(c)

Figure 3.10 : a) The basic T-coil circuit. b) an equivalent circuit, with no magnetic
coupling between the coils c) a simplified impedance circuit.

(a) (b)

Figure 3.11 : a) The basic T-coil circuit. b) an equivalent circuit, with no magnetic
coupling between the coils c) a simplified impedance circuit.

For the equivalent circuit of T-coil (Figure 3.11), the input voltage is obtained by:

Vi = IiZi (3.44)

The branches impedance are:

A =
1

sCb
,B = sLa,C = sLb,D =−sLM +

1
sC

,E = R (3.45)
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As the result of the hand calculation, we can write the equations of the loop as:Vi
0
0

=

(B+D) x−D −B
−B (C+D+E) −C
B −C −(A+B+C)

=

I1
I2
I3

 (3.46)

The simplified expression can be written as:

ACD+BDA+BEA+DVA−ECA−E2A−E2B−E2C = 0 (3.47)

Let La = Lb, so that we can rewrite equation as:

sK1 + s−1K2 = 0 (3.48)

where,

K1 =
L2

a
Cb
− LLM

Cb
−R2LK2 =

L
CCb
− R2

Cb
(3.49)

Assuming both K1 = K2 = 0, so that, we obtain:

L = R2CLM =
L
4
−R2Cb = R2(

C
4
−Cb) (3.50)

Finally we get the expression of the transimpedance that given by:

ZT =
Vo

Ii
=

1
sC

CA+EA+EB+EC
CA+CB+DA+DB+DC+EA+EB+EC

(3.51)

=
R

s2R2CCb + sRC/2+1

We see that the denominator has two complex conjugates roots, are given by:

s1,2 = σ1± jω1 =−
1

4RCb
±

√
1

4RCb

2
− 1

R2CCb
(3.52)

Comparing, the responses for the same kind of poles,the realization show that the -3dB

frequency of the T − coil is exactly twice as much as it is for the two-pole series

peaking circuit and the bandwidth improvement factor is 2.83 [62].

When an input capacitance Ci is connected to the input of the two-pole T − coil, the

circuit becomes has three poles as shown in Figure 3.12.

To simplify the analysis, we assume that the basic two-pole T − coil circuit has a

constant impedance R that unrelated to frequency. So we can determine the transfer

function of the circuit by adding the third pole s3 = 1/RCi to the two-pole network. So

the transimpedance can be written as:

ZT =
Vo

Ii
=

1
(s+ 1

RCi
)(s2R2CCb + sRC/2+1)

(3.53)
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Figure 3.12 : T-coil network with three poles.

For wideband applications, we must have two complex conjugate poles and one real

pole [63]. By adding another inductor between Ci and the T − coil, the bandwidth

can be enhanced by 2.75 times of the two pole T coil circuit. To do that, the coupling

factor k must be improved to be greater than 0.5 [64]. The transfer function of the L+T

network (Figure 3.13) can be determined by multiplication both the transfer functions

of a two-pole series peaking circuit and a two pole T −coil circuit as follows: The two

poles of T-coil section can be expressed as:

s1,2 = σ1± jω1 =−
1

4RCb
±

√
1

4RCb

2
− 1

R2CCb
(3.54)

and the two poles of section L are written as:

s3,4 = σ3± jω4 =−
1

2mRCi
±

√
1

(2mR2Ci)

2
− 1

mR2Ci
(3.55)

To obtain better improvement of the bandwidth of L + T configuration, the input

capacitance Ci must be smaller than C. The bandwidth improvement factor η can be

achieved 4.46. Figure 3.14 shows the bandwidth enhancement of different methods.

Curve (a) shows frequency response in the normalization case. Curve (b) represents

the gain peaking of the shunt peaking, curve (c) for the T − coil peaking normalized

frequency, and curve (d) shows the frequency response of the shunt- series peaking

[5, 7].

F(s) =

 1
mR2C2

i

s2 + s
mRCi

+ 1
mR2Ci

( R
R2CCb

s2 + s
RCb

+ 1
R2CCb

)
(3.56)

33



Figure 3.13 : T-coil network with three poles.

Figure 3.14 : The frequency response of the published inductive peaking
techniques [5, 7].

3.4.5 π-type inductor peaking (PIP)

Inductor Peaking (PIP) is an effective bandwidth extension technique. It improves the

bandwidth using several inductors to resonate with the intrinsic capacitance [8].

Figure 3.15 : Small-signal equivalent circuit of the PIP model [8].
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Figure 3.16 : The normalized frequency response of the inductor peaking (PIP) [9].

Without any inductors, the bandwidth ω0 is limited by the resistive and capacitive

loads. By connecting Ld2 in series with Rd2, the transient current into Rd2 is

delayed and more current is forced to pass to the capacitance load which results an

improvement the bandwidth. In addition, the bandwidth can be further enhanced

by adding Ls1 makes resonance with Cg at higher frequencies. Also adding another

inductor Ld1, Cd and Cg creates resonance at even higher frequencies to get better

enhanced bandwidth.

Figure 3.16 shows the normalized frequency response of the inductor peaking (PIP)

circuit .The bandwidth extension is shown by placing the three peaking inductors one

by one [9].

3.5 Current-mode signaling

When branch currents of the circuit are carriers of the information, the circuit is known

as current-mode circuit. The nodal impedance is low for current-mode circuits and high

for voltage mode networks. Current mode circuits offer an improved bandwidth due to

the following reasons:

• Low nodal impedances decreases time constants of the circuits.

• Low voltage swing reduces the time required to charge and discharge the nodes of

the circuits [65].
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Figure 3.17 : Distributed amplifiers [10].

In this case, the improvement of the speed is often moderate. At the same time,

decreasing the node impedance increases the node capacitance. Because each node

is assumed to be a first-order RC network that have time constant, τ = RnCn, where Rn

and Cn are the resistance and capacitance of the node.

3.6 Distributed amplification

The bandwidth or speed of a circuit is set by the time constant of the critical node of

the circuit. An effective way to minimize the effect of large shunt capacitance of the

critical node is to break the large shunt capacitor into several smaller shunt capacitors

and separate them with inductors such that the large shunt capacitor is replaced with a

distributed LC network or a transmission line [10, 66].

Shown in Figure 3.17, a common-source amplifier where an shunt peaking inductor is

employed at the drain of the transistor to offset the effect of the large output capacitance

C arising from the large width of the transistor. The equivalent of the original transistor

can be obtained by parallel connecting of N smaller transistors whose width is 1/N.

Inductors is used to separate the transistors and creates two transmission lines, one at

the drain and the other at the source. Resistors R1−4 are used for impedance matching.
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3.7 Chapter summary

Increasing the bandwidth is critical concern in broadband communications. Several

CMOS TIA technique has been covered. Three topologies, inductive peaking,

current-mode signaling and distributed amplification are the most used to enhance the

bandwidth of circuits.
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4. IMPROVE THE BANDWIDTH OF TRANSIMPEDANCE AMPLIFIER
USING NEGATIVE IMPEDANCE CIRCUIT

This chapter describes a compact Transimpedance amplifier (TIA). Based on the

principle of negative impedance NI circuit, the proposed TIA provides high gain and

wide bandwidth. The schematics and characteristics of negative impedance circuit

NI have been explained. The inductor behavior is synthesized by gyrator C circuit.

The TIA is implemented in 180nm RF MOS transistors in a HV CMOS technology

with 1.8 V supply voltage technology. It reaches −3dB bandwidth of 7 GHz and

transimpedance gain of 54.3 dBΩ in the presence of a 50 f F photodiode capacitance.

The simulated input referred noise current spectral density is 5.9 pA/
√

Hz. The power

consumption is 29 mW. The TIA occupies 230µm×45µm of area.

4.1 Introduction

In the receiver of optical communication system, the transimpedance amplifier (TIA)

is the first electrical building block that converts the induced photodiode current

(ipd) into a large voltage signal to be used in the digital processing unit. TIA is

required to have high gain and wide bandwidth at the same time with low power

dissipation. It is well known that, the main challenge to implement wideband TIA

lies in the large photodiode parasitic capacitance at the input node that deteriorate

the performance of the complete receiver system such as speed, sensitivity, and

signal-to-noise ratio. Hence, it is necessary for VLSI designers to improve original

circuit approach in order to reduce the input parasitic effects and to better enhance

the performance in bandwidth, gain, noise, and power consumption [67]. To obtain

high gain, cascode amplifier configuration is not appropriate in low power due to small

voltage swings. Moreover, a multistage amplifiers suffer from stability issue because

of the existence of multiple poles [68]. There are several works that have been reported

to improve the bandwidth of TIA. Inductive peaking has been extensively used to

improve the bandwidth and decrease parasitic capacitance effects [8, 69]. Moreover to

overcome this drawback, a bandwidth enhancement technique using parallel sections
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of series-peaked stages is described in [70]. However, an extreme size of the inductor

makes the chip large and costly. An inductorless regulated cascode (RGC) topology

reported in [67] decreases the input impedance of the TIA, therefore improving the

bandwidth. Another approach in [71] used several shunt feedback TIAs in parallel in

order to enhance the bandwidth. In that method, there is a strict trade-off between

the number of stages and step-response damping ratio. The effect of the photodiode

capacitance can be more professionally reduced from the bandwidth limitation by

using regulated cascode (RGC) in [72–74]. Furthermore, a negative capacitance circuit

can be used to decrease critical node capacitance to improve the bandwidth of the

amplifier. In this chapter, the design and simulation results of 7GHz transimpedance

amplifier is presented using 180nm CMOS technology. A negative impedance NI

configuration is used as compensation circuit to enhance the frequency response of

the T IA.

This chapter is organized as follows. Section 4.2 and Section 4.3 discuss the basic

principle of negative impedance NI circuit and illustrates a technique to improve

the bandwidth. An implementation of CMOS transimpedance amplifier as a design

example follows in section 4.4. The active inductor is discussed in Section 4.5. The

mathematical model for illustrating the noise of the proposed T IA is introduced in

section 4.6. The simulation results are shown in Section 4.7 and finally conclusions

are summarized in Section 5.7.

4.2 Principle of negative impedance circuit

Merits for using transimpedance amplifier T IA comprise its ability to provide a high

transimpedance gain with wide bandwidth. T IA can be designed as a single ended

voltage amplifier with a feedback resistor RF . Figure 4.1 demonstrates the block

diagram of the proposed transimpedance amplifier T IA. Since a photodiode operates as

current source, it can be replaced by a current source Iin in parallel with the photodiode

capacitance Cpd .

Using Miller effect, if we assume that Rout � RF and Rout(Cout +CF)� RFCin then, it

can be shown easily that the simplified expression of transimpedance gain ZT is given
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Figure 4.1 : Block diagram for the traditional resistive feedback TIA with NI circuit.

as:

ZT =
Vout

Iin
=≈ RF

(1+ sRFCin
A )(1+ sRoutCout)

(4.1)

where A is the amplifier gain , RF is the feedback resistor , Cin is the total input

capacitance that includes the photodiode’s capacitance Cpd , the input capacitance of the

amplifier Cg and feedback parasitic capacitance CF(1−A). The output capacitance of

Cout is sum of the amplifier output capacitance and the feedback parasitic capacitance

CF(1− 1/A). The transimpedance gain at low frequencies Zdc equals RF for high

value of A and small value of Rout . As shown in Equation (4.1), the transimpedance

gain function have two real poles p1 and p2 that are given as:

p1,in =
A

RFCin
(4.2)

p2,out =
1

RoutCout

Due to high capacitance of the photodiode capacitance Cpd , the total input capacitance

Cin is larger than the total output capacitance Cout . Besides, feedback resistor RF is

larger than the output resistance Rout . Hence, the dominant pole is suited on the input

node and the output pole can be located at a sufficiently higher frequency than the input

pole. From (4.2), the bandwidth can be improved by increasing the gain (A = gmRout)

and by maintaining the same time constant at the output pole. A better gain A can

be obtained if the output resistance Rout is increased. Increasing Rout can be done by

placing a negative resistance RIN in parallel with the output resistance Rout . In order to

maintain the same time constant at the output node, a negative capacitance can be used.

Increasing the gain A effectively decreases the input resistance and hence increase the
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frequency of the input pole. As a result, an improvement of the bandwidth can be

obtained.

As shown in Figure 4.1, a first-order amplifier with a negative impedance (NI) circuit

is created at the output node. Both the equivalent output resistance Rout and equivalent

output capacitance Cout are given as:

Rout =
RNICRout

RNIC−Rout
(4.3)

Cout =Cout−CNIC

Equation (4.3) shows that output capacitance Cout becomes smaller than Cout and the

output resistance Rout becomes greater than Rout . This leads to increase in the voltage

gain A = gmRout , which reduces the input resistance at the input node, while the time

constant at the output node remains approximately the same.

For stability, the pole must be in the left half-plane when choosing the value of RNI to

be larger than Rout and CNI <Cout . NI circuit could be realized by adding active circuit

to output node.

From the point of theory, this technique could be applied at the input node also.

When placing the negative impedance components at the input node, the input resistor

increases and the input capacitance decreases. The large photodiode capacitance still

limits the bandwidth because the value of the negative capacitance does not provide the

effective reduction of the input capacitance to expand the bandwidth. In order to show

the bandwidth improvement, a large value of negative capacitance is required which is

very complex to implement using active devices.

In order to simplify our discussion, the principle of the proposed TIA is explained using

Miller effect as mentioned above. However, to address the fundamental problem of the

TIA design, an alternative analysis can be used. Figure 4.2 shows the small signal

equivalent circuit at high frequencies using single MOS transistor amplifier stage. The

transimpedance gain is given as:

Vout

Iin
=

(sRFCin +1−gmRF)Rout

RFRoutx2s2 +(RF(1+gmRout)CF +RoutCout +(RF +Rout)Cin)s+1+gmRout
(4.4)
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Figure 4.2 : Small signal equivalent circuit of TIA.

where x = CFCout +CoutCin +CinCF . For dc case (s = 0), Equation (4.4) can be

simplified as:
Vout

Iin
=

(gmRF −1)
1+gmRout

Rout ≈−RF (4.5)

As shown in Equation (4.4), the circuit contains one zero and two poles. By ignoring

the effect of the zero, fz =
1−gmRF

2πRFCF
=
−gm

CF
, which is greater than f−3B [1], the

bandwidth can be approximately given as:

f−3db ≈
1

2π

1√
RF
A Cin(Cout +CF)Rout

(4.6)

where A = gmRout and gm is the transconductance of the amplifier. As seen in Equation

(4.6), in order to boost the bandwidth of the TIA, the gain A should be large during

the design process and the output capacitance should be small. The main goal of using

negative impedance (NI) circuit is increasing the gain A and decreasing the output

capacitance Cout as mentioned previously.

4.3 The negative impedance (NI) circuit

The negative impedance (NI) circuit for single-ended transceiver can be realized with

active devices as shown in Figure 4.3.(a). The circuit consists of NMOS transistor M1

and NMOS transistor M2 in diode configuration. The source of the diode is connected

in series resistance Rs and inductor Ls. The equivalent small signal model of the

negative impedance (NI) circuit is shown in Figure 4.3.(b). The input impedance Zin

is given as:

Zin ≈ Rs + sLs +
1

sCgs1
+

1
gm2 + sCgs2

+
gm1

sCgs1

(
Rs + sLs +

1
gm2 + sCgs2

)
(4.7)

where gm1 and gm2 are the transconductance of the transistors and Cgs1 and Cgs2 are the

gate-source capacitances. Better bandwidth improvement can be obtained by inserting
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Figure 4.3 : (a) Negative impedance (NI) circuit. (b) Small signal equivalent model
of the NI.

series inductor Ls between Cout and CNI . Because it resembles as a third order LC

ladder filter [33]. Equation (4.8), represents the real part of the input impedance.

Re{Zin} ≈ Rs +
gm1Ls

Cgs1
+

gm2

g2
m2 +ω2C2

gs2
−

gm1(Cgs2/Cgs1)

g2
m2 +ω2C2

gs2
(4.8)

As pointed out in (4.8), to obtain a negative resistance, the total value of Re{Zin}

should be negative. The value of the negative resistance is limited by the size of the

transistors, the series inductor Ls and the series resistor Rs . The imaginary part of the

input impedance of Im{Zin} can be expressed as:

Im{Zin} ≈ ωLs−
1

ωCgs1
− gm1Rs

ωCgs1
−

ωCgs2

g2
m2 +ω2C2

gs2
−

gm1gm2/(ωCgs1)

g2
m2 +ω2C2

gs2
(4.9)

Assuming that both transistors have identical transconductance (gm1 = gm2) ,

ω2LsCgs1 < 1 and ω2C2
gs < g2

m, then Im{Zin} can be simplified as:

Im{Zin} ≈ −
1

ωCgs1
(ωLsCgs1−gm1Rs)<

1
ωCgs1

(4.10)

Figure 4.4 and 4.5 show the plots of the real and the imaginary components of the

negative impedance NI circuit. From the simulation results, we see that the real part

represents a negative resistance that varies with the frequency. The NI circuit provides

an enough negative resistance at frequencies up to7 GHz. The imaginary component

acts as a negative capacitance.

Figure 4.6 illustrates the variation of the capacitance value over the frequency

capacitance value at the frequency of 7 GHz as −5 f F .
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Figure 4.4 : The real component of the input impedance of ZNI .

Figure 4.5 : The imaginary component of the input impedance of ZNI .

4.4 Configuration of the proposed TIA with negative impedance NI circuit

The simplified diagram of the proposed transimpedance amplifier (T IA) is shown in

Figure 4.7. It is a single-ended design including NMOS transistor Mx, feedback resistor

RF connecting the output to the input in order to decrease the dominant effect of the

input pole, and negative impedance (NI) circuit. The output of TIA is taken at the drain

of transistor Mx. In the proposed TIA, between the drain capacitance of Mx and the gate

capacitance of M1, a small series inductor L1 can improve the bandwidth further.
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Figure 4.6 : Variation of NI capacitance over the frequency.

Figure 4.7 : A proposed circuit digram of the T IA.

4.5 Active inductor (AI)

CMOS active inductors (AIs) have become a very popular research topic recently due

to several advantages over passive inductors. AIs can be realized with circuits that

occupy small chip area. Moreover AIs have a large and variable inductance and

high quality factor. On the other hand, AIs however have some major drawbacks

compared to spiral inductors such as poor noise performance, and small dynamic

range, nonlinear behavior, dc power dissipation, sensitivity to process, , voltage and

temperature variations. The bandwidth extension topologies commonly use on-chip

inductors to compensate the capacitance effects but their associated hardware cost is
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very high. As a result, decreasing the area of required inductors for a TIA design is

very important. Most AIs reported in [75–79] were based on the knowledge of gyrator

C topology. As we need to design a floating active inductors to implement the negative

admittance circuit (NI), the architecture of active inductors in [80, 81] could be used

to obtain several nH of inductance operating at a few GHz region as shown in Figure

4.8. The gyrator is implemented by connection of two differential transconductance

amplifiers back to back. The cross coupled NMOS transistors M7 and M8 provide a

negative resistance to reducing the total series resistance of the active inductor network

which provides a high quality factor Q of the active inductor. For simplicity, the circuit

can be separated into two identical half-circuit. Figure 4.9(a) displays the small-signal

equivalent circuit of half-circuit [82]. The input impedance can by simplified as:

Figure 4.8 : Circuit schematic of floating active inductor.

Zin ≈ 2
g2 + sC2

s2C1C2 + s(g1C2 + s(g1C2 +g2C1))+gm1gm2g1g2
(4.11)

where C1 and C2 are the total capacitance of the drain nodes, g1 and g2 are the total

conductance at the drain nodes [82].

Figure 4.9(b) shows the simplified model of the active inductor. The elements value L,

R, G, and C can be calculated thus:

L =
2C2

gm1gm2
,L =

2g2

gm1gm2
,G =

g1

2
,C =

C1

2
(4.12)
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Figure 4.9 : (a) equivalent small-signal of half-circuit of Floating active inductor (b)
Simplified model of active inductor.

Equation (4.12) shows that the desired inductance value can be obtained by decreasing

gm1 and gm2 or increasing C2.

4.6 Noise analysis of the proposed transimpedance amplifier

The proper characterization of noise of the T IA is important for the receiver due to the

small current of the photodiode. Replacing the passive inductors by active elements

produce some noise in the response of the proposed T IA. So, in order to operate at

high sensitivity, the noise level must be very small [83]. The main noise sources of the

TIA are the thermal noise of the resistor, the noise of MOS transistor and the flicker

that can be neglected because it is not dominant.

Figure 4.10 : (a) Noise model of MOS transistor, (b) Noise model of a resistor.

Both the transistor and resistor noise models are shown in Figure 4.10, where ¯v2
ng =

¯i2nd
g2

m
.

Both noises sources of the gate and the source can be modeled by shunt current

source with noise powers of ¯i2ng = 4kBT δ∆ f (ω2C2
gs/5gd0) and ¯i2nd = 4kBT γgd0∆ f ,

respectively, where T is the temperature (Kelvin) , γ is the bias dependent factor, kB

is the Boltzmann’s constant (Joule/Kelvin), Cgs is the gate-source capacitance, δ is the

gate noise factor and gd0 is the zero bias of transconductance of the transistor [84,85].
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From the T IA circuit in Figure 4.7, the equivalent input referred current noise of Mx is

given as:
¯i2ngx = 2qkBIGx +ω

2C2
gsx

¯v2
ngx (4.13)

where q is the electron charge, IGx is the gate induced current that can be neglected and

v2
ngx is given as:

¯v2
ngx =

¯i2ngx

g2
mx

=

¯i2RF + ¯i2nx +
¯i2ngL1 +

¯v2
ng− ¯v2

ngx
R + ¯i2nL1

g2
mx

(4.14)

where ¯i2nL1 is the equivalent input noise of active inductor L1. The simplified expression

of the equivalent input noise of active inductor L1 can be written as:

¯i2nL1 =
¯i2ng +

¯i2dn +
¯i2d p +2g2

mp
¯v2
gp +g2

mnZ2
gn2 ¯i2gn +2 ¯i2dn +2 ¯i2d p +2g2

mp
¯v2
gp (4.15)

=2 ¯i2gn(1+g2
mnZ2

gn)+2 ¯i2dn(1+g2
mnZ2

gn)+2 ¯i2d p(1+g2
mnZ2

gn)

+4g4
mn

¯v2
gnZ2

gn +2ḡ2
mp

¯v2
gp(1+g2

gmnZ2
gn)

Note that Z2
gn =

1
ω2C2

gn
[86], then the input noise of serial active inductor ¯i2nLs is derived

as:

¯i2nL1 = 8kBT ∆ f

(
1+

g2
mn

ω2C2
gsn

)(
δn

ω2C2
gsn

5gd0n
+ γngd0n + γpgd0p +δp

g2
mp

5gd0p

)
(4.16)

+8kBT ∆ f δp
g4

mn
5gd0pω2C2

gsn
.

then total input noise ¯i2in,total becomes:

¯i2in,total =
¯i2n f +

¯i2nL1 +

(
1

R2
f
+ω

2C2
in

)
¯v2
ngx (4.17)

where ¯i2n f is the thermal noise of diode resistance R f which is given by:

¯i2n f =
4kBT

R f
(4.18)

Substituting Equations (4.14), (4.15), (4.16) and (4.18) into Equation (4.17), the

simplified expression of total input noise ¯i2in,total can be written as:

¯i2in,total ≈
4kBT

R f
+

1
g2

mx

(
1

R2
f
+ω

2C2
in

)
(4.19){

4kBT
RF

+ kBT γgd0∆ f +4kBT δ∆ f
ω2C2

gs

5gd0
+8kBT ∆ f

(
1+

g2
mn

ω2C2
gsn

)
(

δn
ω2C2

gs

5gd0n
+ γngd0 + γpgd0p +δp

g2
mp

5gd0
f

ω2C2
gs

5gd0

)
+8kBT δp∆ f

g4
mn

5gd0ω2C2
gsn

}
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As seen in Equation (4.19), the total noise can be minimized by choosing RF and gmx

to be as large as possible. Improving gmx can be done by increasing bias current or

expanding the aspect ratio W/L of the transistor. High power consumption is induced

when bias current increases. Moreover, using a large transistor aspect ratio increases

the capacitance Cgs and Cgsn which generates more noise. As a result, we have to select

the proper ratio W/L and bias current to optimize the noise performance.

4.7 Simulation results

In order to evaluate the performance of the proposed T IA as shown in Figure 4.11,

the T IA was implemented using 180 nm RF MOS transistors in a HV CMOS process

technology. All post layout simulation results have been performed by using cadence

software tools.

Figure 4.11 : TIA realization.

Figure 4.12 shows the simulated transimpedance gain versus frequency for 50 f F

photodiode capacitance for the proposed TIA with and without the negative impedance

NI circuit. The proposed TIA with NI is described as having a transimpedance gain of

54.3 dBΩ and bandwidth of 7 GHz. The simulation results shows that the bandwidth

is improved by 6 GHz compared to the TIA without negative impedance NI circuit

and without scarifying the gain. As a result, the overall bandwidth of the TIA with

NI is extended 7 times more. Simulations resulted in considerable increase of gain
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bandwidth product (GBP) by a factor of 5. The T IA consumes 29 mW from 1.8 V

supply.

Figure 4.12 : Simulation results comparison of the frequency response of TIA with
and without NI.

Figure 4.13 shows the frequency response of the T IA for different photodiode

capacitances varying from 50 f F to 200 f F . For photodiode capacitance 200 f F , the

−3dB bandwidth is above 2.5 GHz and it is above 3.5 GHz with a value of photodiode

capacitance 100 f F .

Figure 4.13 : Frequency response of the proposed TIA for four different values of
Cpd .

Figure 4.14 illustrates the simulation of input noise current spectral density. Simulation

results shows an equivalent input noise current spectral density below 5.9 pA/
√

Hz
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within bandwidth of 7 GHz. Figure 4.15 shows the group-delay variation with

Figure 4.14 : Spectral density of the input noise current as function of frequency.

frequency. The TIA has a minimum group delay of 26 ps, increases to 30 ps within

the bandwidth of 7GHz. The output signal will suffer less from distortion when the

photodiode capacitance value is 50 f F . The comparison of the frequency response

Figure 4.15 : Measured group delay variation of TIA for different values of Cpd .

of both the schematic and extracted circuit of the TIA are shown in Figure 4.16. For

the same gain of 54.25 dB.Ω, the −3 dB bandwidth of the schematic circuit of T IA is

7 GHz and 6.5 GHz for the extracted layout circuit.

To study the impact of the process variations on the frequency response of the TIA,

a set of 100 samples has been chosen for Monte Carlo simulation [87]. As shown in

Figure 4.17, the frequency response has a small variation due to process variation and

mismatching.
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Figure 4.16 : The frequency response of the TIA (schematic and extracted).

Figure 4.17 : Monte Carlo simulation results for the frequency response for 100
samples.

Corner analysis is used to make the design more realistic by simulating the circuit in

different operational conductions, such as different temperatures and altered process

corners. Figure 4.18 shows the transient response of the TIA at different process

corners for 10µA(p−p). As a result, the merits of proposed TIA shows that the TIA

can work normally at different process corners with a small input current for wide

bandwidth. Figure 4.19 shows layout of the TIA. The occupied area of the layout is

230µm×43µm.

Table 4.1 shows a comparison of the proposed TIA performance with other works.

From Table 4.1, it can be seen that the noise of the proposed TIA is smaller than
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Figure 4.18 : Transient response of the TIA under different corners.

Figure 4.19 : Layout of the TIA.

Table 4.1 : Performance Comparison of Recent CMOS TIAs.

Cpd Gain BW Power Noise
Ref. ( f F) (dBΩ) (GHz) (mW ) (pA/

√
Hz) Area

This work a 50 54.3 7 29 5.9 230µm×45µm
[88] a 50 54.3 5.35 3.5 8.2 ——
[8] b 50 51 30.5 60.1 34.3 1.17mm×0.46mm

[89] b – 60 6.9 16.9 – 0.051mm2

[90] b – 50 7.5 4.1 – 42mm×0.17mm
[91] a – 51.7 8.5 14 – –
[92] a 200 64.8 4.5 3.5 13.7 97µm×53µm

a: Simulation results, b: Measurement results

the other TIA configurations, where the active inductors have been used. The power

consumption is comparatively higher than the other TIA circuits.

4.8 Conclusion

This paper presents a compact transimpedance amplifier T IA. The effects of using the

negative impedance NI circuit are demonstrated through a proposed transimpedance
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amplifier. The TIA is implemented in 180 nm RF MOS transistors in a HV CMOS

technology with 1.8 V supply voltage technology. Cadence tools is used in analyzing

the performance of the T IA. It is observed that the T IA provides -3dB bandwidth

at 7 GHz, transimpedance gain of 54.3 dB.Ω in the presence of a 50 fF photodiode

capacitance and input referred noise current spectral density of 5.9pA/
√

Hz . The

power consumption is 29 mW . The TIA occupies 230µm×45µm of area. Simulation

results show that the TIA is very proficient for applications in optical transceivers.
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5. IMPROVE THE BANDWIDTH OF TRANSIMPEDANCE AMPLIFIER
USING MATCHING TECHNIQUE

This chapter describes a matching technique to improve the bandwidth of multi-GHz

frequency ranges for the transimpedance amplifier. It is shown that by simultaneously

using of series input matching topology and T-output matching network, the bandwidth

of the TIA can be obviously improved. This methodology is supported by a design

example in a 0.18 µm CMOS technology. The post layout simulation results show a

-3dB bandwidth of 20 GHz with 50 f F photodiode capacitance, a transimpedance gain

of 52.6 dBΩ, 11 pA/
√

Hz input referred noise and group delay less than 8.3 ps. The

TIA dissipates 1.3 mW from a 1.8 V supply voltage.

5.1 Introduction

The continuous growth in the commercial wireless telecommunications market has

been driving to satisfy the demands of high speed, low cost and high integration of

radio-frequency (RF) broad-band receivers [93]. Recently, it is reported that, every

ten years, the speed of analog CMOS circuits increases by one order of magnitude.

Moreover, the integration and cost advantages of CMOS technologies encouraged

extensive work on developing the optical communication system [94].

One of the main challenges in the receiver system is the design of a wideband

transimpedance amplifier TIA. In CMOS technology, common source (CS) and

common gate (CG) are the most used transistor configurations in TIA topologies. CS

TIA has high gain and superior good noise performance. CG configuration provides

low power, less parasitic stable circuit, and less noise performance [92, 95, 96].

Furthermore, the inductive source degenerated technique is used to improve both the

gain and noise performance of TIA [97].

The input matching mechanism is conceivable for CG configuration so that, it

is extensively used in wideband TIA circuits [98, 99]. On the other hand, CS

configuration may be used in wideband TIAs using feedback network or matching

circuits.
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Cascode stage is generally used in CMOS RF circuits. It composes of a CS stage

followed by a CG stage. Cascode configuration provides high power gain, better

noise performance and low power consumption [100]. For low frequencies, the noise

sources of the upper transistor is degenerated by the output impedance of the lower

transistor. Therefore cascode stage configuration has better noise performance. In

high frequencies, the admittance parasitic of common node (drain-source) increases as

frequency increases. As a result, when the source impedance of upper transistor is low,

its drain noise performs in the output [95,101]. It is possible to improve the bandwidth

of cascode stage using feedback technique [102, 103] and matching networks [104].

In this chapter, a matching technique is applied to improve the bandwidth of the

transimpedance amplifier based on using cascode topology. The rest of this paper

is organized as follows: Section 5.2 demonstrates the proposed TIA design. The

matching technique to improve bandwidth is presented in Section 5.3 and Section 5.4.

The noise analysis is discussed in Section 5.5. To demonstrate the practicality of this

technique, the simulation results of a design example is followed in Section 5.6.

5.2 The proposed TIA design

Applying proper matching networks at the input and the output nodes are the strategic

phases in improving the bandwidth of the TIA. For cascode topology, the input

impedance is pure capacitive (in very low frequencies) so that a resistive part must

be added to the input impedance. That can be done by connecting a degenerating

inductance in the source of CS transistor. On the other hand, CG configuration offers

wideband matching possibility.

It has been explored that combination of CS configuration in the first stage and cascode

configuration in the second stage provides good noise performance of CS stage and

high gain of cascode stage [105, 106]. The noise is small because of capacitances

and parasitic admittances existence at the cascode node. So that, the best topology of

the proposed TIA design is cascading stages of CS cascode configuration as shown in

Figure 5.1. Both the input and output matching techniques will be explained in the

next sections.
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Figure 5.1 : Schematic of proposed TIA with matching networks.

5.3 Input matching analysis

There are different topologies which could be used to implement the input matching.

Probably the simplest matching network is using a series inductor at the gate of the

input transistor as shown in Figure 5.1. Figure 5.2 shows the small signal model of the

input matching circuit. Neglecting the effect of the feedback capacitance Cgd1 of the

input transistor M1 and the drain-source conductance go1, The input impedance Zing1

can be represented as the parallel of a resistance Rp with the capacitor Cgs. Thus, the

small signal model to calculate the input impedance Zin has to be redrawn as shown in

Figure 5.3.

Figure 5.2 : Small signal model of the input matching of Figure 5.1.

Figure 5.3 : Simplified small signal model to calculate of Zin.
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The input impedance Zin is given by:

Zin =
Rp

1+ω2R2
pC2

T
(5.1)

+ jω

(
Lg−R2

pCT (1−ω2LgCT )

1+ω2R2
pC2

T

)

where Ls is the degeneration inductor at the source of M1 and gm1 is the

transconductance of transistor M1. Both of Rp and CT are given by:

Rp =
1

ω2LsCgs1gm1
(5.2)

CT =Cgs1 +Cgb

In order to realize a conjugate matching of the transimpdance amplifier , the real part

of Re{Zin} must be equal the diode resistance RD and the imaginary competent of

Im{Zin} have to be complex conjugate of photodiode impedance Xs. That means :

RD =
Rp

1+ω2R2
pC2

T
, (5.3)

−ω

(
Lg−R2

pCT (1−ω2LgCT )

1+ω2R2
pC2

T

)
=

1
ωCpd

where Cpd is the photodiode capacitance .

From Equation (5.3), matching conductions can be satisfied by using the proper values

of the inductances Ls and Lg. Supposing that ω2R2
pC2

T � 1, then Ls can be given by:

Ls =
RD

ω

(
CT

Cgs1

)
,Lg =

1
Cpd

+ 1
Cgs1

ωRDg2
m1

(5.4)

where ω is cut- off frequency.

5.4 Output matching analysis

As shown in Figure 5.4, we choose the T configuration to implement the output

matching. In order to calculate the output impedance Zout , first of all, we have to

determine the admittance Yins2 at the source of M2. From the small signal circuit shown

in Figure 5.4(a), we have:

Yins2 = Ydb2−
(gm2 +go2)(Cgs2go2 +Cgd2Yss2)

Yss2Cgs2
(5.5)

+(gm2 +go2)
Cgd2

Cgs2
+( jωCgd2 +go2)
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where, Yss2 =Ys2+Ysb2+ jωCgs2+gm2+go2 , Ys2 is the load at the source of transistor

M2 that given by (Ys2 = Ysb2 +Yind1) , and Ysb2 is source-substrate admittance of M2 ,

Ydb2 is drain-substrate admittance of M2 and Yind1 is the input admittance to the drain

of M1.

Yind1 =Ydb1 +
jω(Cgs1go1 +Cgd1Yss1)

jωCgs1(− jωCgs1−gm1)+Yss1Ygg1
(5.6)

×
(
− jωCgd1 +gm1−

(gm1 +go1)Ygg1

jωCgs1

)
+( jωCgd1 +go1)(gm1 +go1)

Cgd1

Cgs1

where Yss1 = Ys1 +Ysb1 + jωCgs1 +gm1 +go1 and Ygg1 =
Yg1

1+RgYg1
+ jωCgd1 + jωCgs1.

Yg1 is the input admittance at the gate transistor M1, and Ys1 is the load at the source of

M1 which is given by : Ys1 = Ysb+ generation admittance at the source of M′1".

Figure 5.4 : (a) The small signal model to calculate Zout (b) The small signal
model to calculate Yind1′ at drain of M′1.

61



Assuming gm1 = gm2 = gm1, go1 = go2 = go, Cgs1 =Cgs2 =Cgs, gm� go, Cgd1 =

Cgd2 = Cgd and Cgs � Cgd , then simplified expression of output impedance Zout is

given as:

Zout =

[
ω2CgsL∗s (go +L∗sCgsgm)+gm

]
+ jωCgs

[ω2CgsL∗s (go +L∗sCgsgm)+gm]
2
+ω2C2

gs

(5.7)

To satisfy the complex conjugate matching conductions, the values of Rload and Ct are

given thus:

RLoad =
ω2CgsL∗s (go +L∗sCgsgm)+gm

[ω2CgsL∗s (go +L∗sCgsgm)+gm]
2
+ω2C2

gs

(5.8)

Ct =

[
ω2CgsL∗s (go +L∗sCgsgm)+gm

]2
+ω2C2

gs

ω2Cgs

As shown in (5.8), the value of Ct changes with frequency. In practical, simulation

results show that, by using the average capacitance value of Ct (0.4pf) over the range

of 1GHz to 20GHz, a flat gain and a wide bandwidth can be achieved.

5.5 Input noise analysis

To analysis the noise performance of the proposed TIA, the small signal noise model

shown in Figure 5.5, is used which includes the noise sources of the input matching

network, the active devices M1 , M2 and the gate resistance. The load noise is neglected

because it has no contribution in calculation the input noise.

Figure 5.5 : Small signal noise model of the TIA.

The current noise generated by transistor M1 is given by :

¯I2
n,M1 = (gm1 +go1)

[
¯I2

n,g1

(
1

Yig1Adg1
−Adg1Zss1

)
+ I2

n,d1(−Zcc +Ads1Zss1)

]
(5.9)
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where ¯I2
n,g1 is the gate noise of M1 and is given by [107]:

¯I2
n,g1 = 4kBT δgg, δ = 4/3 and gg =

ω2Cgs1

5gd0
(5.10)

where gg is the equivalent conductance at the gate , gd0 is the drain-source conductance

when Vds = 0 , and δ is bias dependent noise factor.

Yig1 is the admittance of gate node of M1 and is given by :

Yig1 =
(1+RgYinm)(1+RgYing1)

Yinm(1−RgYing1)+Ying1(1+RgYinm)
(5.11)

Yinm is the input admittance of the input matching circuit. Adg1 is the transfer function

between the drain and gate of M1. It is calculated as:

Adg1 =
(gm1 +go1)(gm1 + jωCgs1)−Yss1(gm1− jωCgd1)

Yss1Ydd1−go1(gm1 +go1)
(5.12)

where,

Yss1 = gm1 + jωCgs1 +go1 +Ys1 +Ysb1

Ydd1 = go1 + jωCgd1 +Yd1 +Ydb1

Yds1 is the transfer function between the drain and source of M1 . It is calculated as :

Ads1 =
ygg1(gm1 +go1)+ jωCgs1( jωCgd1−gm1)

jω(gm1−go1)+Ygg1Ydd1
(5.13)

where Ygg1 = jωCgs1 + jωCgd1 +
Yg1

1+RgYg1
Yg1 is the equivalent admittance of the input

matching circuit at the gate node of M1. Zss1 is the nodal impedance of the source of

M1 and is calculated as :

Zss1 =
1

Yins1 +
1

ωLs( j+1/QLs)

(5.14)

where Yins1 is the equivalent admittance at the source node of M1 and is given by:

Yins1 =
jωCgd1x+ jωCgs1Yddx+Ygggo1(gm1 +go1)+

Cgs1
Cgd1

go1YggYdd

jωCgd1( jωCgs1−gm1)−YddYgg +
Cgs1
Cgd1

go1 +Yss
(5.15)

where

Ygg =Yg1 + jωCgs1 + jωgo1

Yss =go1 + jωCgs1 +gm1 +Ysb1

Ydd =go1 + jωCgd1 +Yd1 +Ydb1
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Zcc is the equivalent admittance at cascode and is given by:

Zcc =
1

Yind1 +Yins2
(5.16)

both Yind1 and Yins2 are calculated by using equation (5.6) and equation (5.5).

The current noise generated by transistor M2 is given by :

¯I2
n,M2 = (gm1 +go1)

(
− ¯I2

n,g2 +
¯I2

n,g2

)
Zcc− ¯I2

n,d2 (5.17)

The noise outcome by gate resistor ¯I2
n,ORg is given by:

¯I2
n,ORg = (gm1 +go1)×

(
Zing1Adg1−Zgg1Agi1Agdi1

)
¯In,Rg (5.18)

where, Zing1 is the impedance at the gate of M1 . Adgi1 is the transfer function between

the drain and gate of M1 and Agi1 can be determine by Agi1 = 1−Ying1Rg .

The input matching network is modeled by two port noise model with two current

noise sources ¯I2
n,1 and ¯I2

n,2 , where,

I2
n,1 = 4kBT ∆ f

(
RLg

RLg +Rs + jωLg +
1

jωCpd

)
(5.19)

I2
n,2 = 0

Hence current noise generated by input matching network is given by :

¯I2
n,m = (gm1 +go1)

(
¯I2
n,1Zii1Ainm1Aig1Adg1

)
(5.20)

where Zii is the equivalent input impedance, Ainm is the transfer function of the input

matching circuit. Finally, the total input current noise is given by:

¯I2
n,total =

¯I2
n,M1 +

¯I2
n,M2 +

¯I2
n,ORg +

¯I2
n,m (5.21)

5.6 Design example and simulation results

To demonstrate the effectiveness of the matching methodology, a design example was

implemented using 0.18 µm HV CMOS process. Simulations are done with a single

supply (i.e.1.8V) and the presence of a 50 f F photodiode capacitance. As shown in in

Figure 5.6, the frequency response of the provides a transimpdance gain of 53.7 dBΩ

and bandwidth range of 1 KHz−15 GHz for schematic circuit and 20 GHz bandwidth
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Figure 5.6 : The frequency response for Cpd = 50 f F .

with 52.6 dBΩtransimpedance gain for the extracted TIA. The power consumption is

in the range of 1.3 mW .

Figure 5.7 shows the frequency response against the input capacitance Cpd . For the

photodiode capacitance of 100 f F , the gain is 55 dBΩ and bandwidth is 4.5 GHz

and it is above 3 GHz for Cpd = 200 f F with gain of 57 dBΩ. For large value of

photodiode capacitance 500 f F , the gain becomes 61 dBΩ and 400 MHz bandwidth.

Figure 5.7 : The frequency response for different values of Cpd .

The simulation of input noise current spectral density against the input capacitance Cpd

is depicted in Figure 5.8. It shows that the noise is maximum at low frequencies then

it decreases at high frequencies over the desired bandwidth. The average input noise

of the TIA is 11 pA/
√

Hz for input capacitance Cpd = 50 f F and 38 pA/
√

Hz when

Cpd = 500 f F .

The group-delay variation is a significant parameter of a TIA. Even with large enough

bandwidth, distortions of the output may take place if the phase linearity of the TIA
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Figure 5.8 : The input noise current spectral density against the photodiode
capacitance Cpd .

is insufficient. It can be observed in Figure 5.9, within the bandwidth of 20 GHz, the

TIA circuit has a group delay variation of less than 8.3 ps when Cpd = 50 f F .

Figure 5.9 : The group delay variation of the TIA.

To study the impact of the process variations on the frequency response of the TIA,

a set of 100 samples has been chosen for Monte Carlo simulation. As shown in

Figure 5.10, the frequency response has a small variation due to process variation and

mismatching.

Corner analysis is used to make the design more realistic by simulating the circuit in

different operational conductions, such as different temperatures and altered process

corners. Figure 5.11 shows the transient response of the TIA at different process

corners for 10µA(p−p). As a result, the merits of proposed TIA shows that the TIA

can work normally at different process corners with a small input current for wide

bandwidth.
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Figure 5.10 : Monte Carlo simulation results for the frequency response for 100
samples.

Figure 5.11 : Transient response of the TIA under different corners.

Figure 5.12 : Layout of the TIA.

Table 5.1 shows a comparison of the performance of proposed TIA with those recently

reported in the literature. The performance figures show that the proposed provide

wide bandwidth with smaller noise than the other TIA circuits. Furthermore while its

power dissipation is the lowest with relatively small area.
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Table 5.1 : Performance Comparison of Recent CMOS TIAs.

Cpd Gain BW Power Noise Group dealy
Ref. ( f F) (dBΩ) (GHz) (mW ) (pA/

√
Hz) (ps) Area

This worka 50 52.6 20 1.3 11 8.3 140µm×266µm
[92]b 200 64.8 4.5 3.5 13.7 — 97µm×53µm
[89]b — 60 6.9 16.9 — — 0.051mm2

[90]a — 50 7.5 4.1 — — 42mm×0.17mm
[91]a — 51.7 8.5 14 — —

[108]a 50 54.3 7 29 5.9 26 230µm×45µm
[88]a 50 54.3 5.35 3.48 8.2 — —
[8]b 50 51 30.5 60.1 34.3 — 1.17mm×0.46mm

a: Simulation results, b: Measurement results

5.7 Conclusion

This work demonstrates the performance of a transimpedance amplifier TIA using

matching networks technique with cascode configuration. The proposed TIA provides

wide bandwidth and low noise. The TIA is designed in a 0.18 µ m CMOS technology.

The post layout simulation results shows that the proposed TIA achieves a bandwidth

performance of 20 GHz, 52.6 dB.Ω transimpedance gain, 11 pA/
√

Hz input referred

noise and a group variation of less than 8.3 ps within the pass band. The power

dissipation is 1.3 mW from a 1.8 V supply voltage.
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6. IMPROVE THE BANDWIDTH OF TRANSIMPEDANCE AMPLIFIER BY
MODIFICATION THE INPUT CIRCUIT

We present a new transimpedance amplifier (TIA) design possessing an improved

bandwidth. This TIA employs a parallel combination of two series resonate circuits

with different resonate frequencies on the conventional regulated common gate (RGC)

architecture. In the proposed TIA, we employ the capacitance degeneration and series

inductive peaking for pole-zero elimination. We implemented the layout of proposed

TIA in a 0.18 µm CMOS process, where a 100 f F photodiode is considered. Our

post-simulation test results show that the TIA provides 53 dBΩ transimpedance gain

and 24 pA/
√

Hz input referred noise. The designed TIA consumes 11 mW from a

1.8 V supply, and its group-delay variation is 5 ps over 13 GHz3−dB bandwidth.

6.1 Introduction

Continuous growth in the wireless telecommunication has evolved to high level of

chip integration and focused research studies towards the field of high frequency

applications [109]. The accelerated CMOS technology is the only candidate that can

satisfy the demands for low-cost and high integration with reasonable speed for analog

applications in the Giga-Hertz range [110].

The transimpedance amplifier (TIA) is the critical block in the optical communication

system that converts the induced photodiode current into an amplified voltage signal to

be used in the digital processing unit. The bandwidth is considered as the highest

priority in TIA design. The challenge in TIA design lies in the large photodiode

parasitic capacitance Cpd , the input node that degrades the performances of the TIA.

Therefore, it is required to decrease the input parasitic effects and prior to focusing on

the compromise between the bandwidth and the noise [67].

There have been two commonly used topologies in designing wideband CMOS TIAs:

the common gate (CG) amplifier and the shunt feedback amplifier [48]. Several

bandwidth enhancement efforts have been reported in published literature which were
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based on isolation of the input capacitance of the photodiode to minimize its effect on

the bandwidth calculation. Inductive peaking is one of the commonly used techniques

to improve the bandwidth and decrease parasitic capacitance effects [111]. Placing

an inductor in a strategic location of the amplifier circuit provides a resonance with

parasitic capacitances, which expands the bandwidth of the TIA [5,28,29]. Capacitive

peaking has been used for bandwidth extension by using a capacitor to control the pole

locations of a feedback amplifier [56,112]. Multiple shunt parallel feedback is another

approach for enhancing the bandwidth [71]. The effect of the photodiode capacitance

can be more professionally reduced from the bandwidth limitation by using regulated

cascode (RGC) [67]. In this chapter, we have propose a new TIA design with

improved bandwidth. The proposed TIA is based on modification of the input part

of the conventional RGC TIA architecture by using parallel arrangement of two series

resonate circuits with different resonate frequencies. Capacitance degeneration and

series inductive peaking networks are used for pole-zero elimination to improve the

bandwidth.

The paper is organized as follows: in Section 6.2, we present an overview of the

traditional RCG input stage and we introduce the concept of modified RCG input

stage and the analysis of the architecture of parallel arrangement of two series resonate

circuits with different resonate frequencies. We present the capacitance degeneration

architecture and proposed TIA design in Section 6.3 and Section 6.4, respectively. We

present the noise analysis in Section 6.5, demonstrative simulation results in Section

6.6, and the conclusions in Section 6.7.

6.2 Regulated common gate (RCG) input stage

6.2.1 Conventional RCG input stage

Among all the building blocks in an optical communication system, the TIA is the one

of the most critical blocks in receiver design. It is a well-known fact that RGC input

configuration can attain better isolation within the large photodiode capacitance Cpd by

local feedback topology. Figure 6.1 shows the schematic diagram of the conventional

RGC with a PD, which converts the incoming optical signal to a small signal current

Ipd . The common-source (CS) amplifier consists of M1 and RD operates as a local
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feedback technique and regulates the CG. As a result of the small-signal analysis, the

input resistance of the RGC circuit is given by [113, 114].

Zi,RCG =
1

gm2(1+gm1RD)
, (6.1)

where gm1 and gm2 are the transconductance of M1 and M2 respectively. It is

clearly seen that the input resistance decreased because the transconductance Gm is

(1+gm1RD) times larger than that of CG amplifier input stage, where (1+gm1RD) is

the DC gain of the local feedback. Therefore, RGC stage acts as a buffer between the

PD and the TIA stage and decreases the effect of the photodiode capacitance Cpd [114].

Figure 6.1 : Regulated common gate (RCG) TIA.

6.2.2 Modified RCG input stage

In the design of ultra-wideband TIAs, the wideband input stage plays very critical

role. The design methodology of the narrow-band TIA is our first focus followed by

demonstration of how to extend its input bandwidth.

Figure 6.2 : The input part of a narrow band RCG TIA.

Figure 6.2 shows the input part of a typical narrow band TIA topology. The RGC

TIA topology improves the bandwidth limitation due to the input pole that consists of
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the gate-source capacitance Cgs and the input resistance Zi . Nevertheless, the large

parasitic capacitance of photodiode Cpd still reduces both the bandwidth and the noise

performance of the TIA. The series inductive peaking technique is used to overcome

this problem. The inductor L is placed between Cgs and of Cpd , which creates an

inductive π network [114]. The expression used to analyze the performance of the

current transfer function is derived from the small-signal mode circuit shown in Figure

6.2(b).

Ii

Ipd
=

1
s3RCpdCgs + s2RLCgs + sR(Cpd +Cgs)+1

(6.2)

=
1(

s
ω0

)3
k
m(1− k)

(
s

ω0

)2
1−k

m + s
ω0

+1

where R = (1/gm)//RS , k =
Cgs

Cpd+Cgs
, m =

R2(Cpd+Cgs)
L and the cutoff frequencyω0 =

1
(Cpd+Cgs)R

. Inductive-peaking technique provides significant bandwidth extension ratio

(BWER) by selecting different values for variables k and m [115]. To improve the

input-bandwidth, we use a parallel combination of two series resonate circuits with

different resonate frequencies, as shown in Figure 6.3. The input impedance is given

by,

Zi = Z1 \\Z2 (6.3)

where

Z j =
R j

1+ω2
j C

2
gs jR

2
j
+ j

(
ω3

j L jC2
gs jR

2
j −ω jL jCgs jR2

j +ω jL j

1+ω2
j C

2
gs jR

2
j

)
(6.4)

Cgs j, L j and R j are the gate –source capacitance , serial inductor and equivalent input

resistance of transistor M j, respectively ( j = 1,2).

In equation (6.4), one should note that, if the reactive elements are accurately selected,

then the input impedance become purely resistive. Moreover when the gate of M(1−1)

and M(1−2) have the same bias voltages, M(1−1) and M(1−2) have identical cutoff

frequency ω0. As a result the circuit can realize a wide bandwidth.

6.3 The capacitance degeneration

Modification of RGC input stage can be augmented through the possibility of

achieving a broadband frequency response through the increment of the effective

transconductance Gm of the circuit at high frequencies [36,48]. To emphasize more on

72



Figure 6.3 : The input part of RCG TIA with two input branches.

the above stated point, we can compensate the dominant pole of the overall circuit with

a zero, which can be reached through capacitive degeneration configuration [114].

Figure 6.4 : Configuration of capacitive degeneration.

For the capacitive degeneration topology shown in Figure 6.4, the transconductance

equivalency is calculated as [116]:

Av =
gmRD

1+gmRs

1+ sRsCs

1+ s RsCs
1+gmRs

(6.5)

which introduces a zero (z1) at (RsCs)
−1 and a pole at (1+gmRs)/(RsCs. The dominant

pole can be compensated by the zero. As a result the bandwidth is limited by the second

lowest pole of the circuit.
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Figure 6.5 : The proposed configuration of capacitive degeneration.

The proposed capacitive degeneration topology shown in Figure 6.5 is employed to

provide capacitive and resistive degeneration. Therefore extra gain and bandwidth

enhancement can be achieved at the same time. The transconductance equivalency of

half of the circuit in Figure 6.5 is expressed as:

Gm =
gm(1+ sRC)

1+gmR/2+ sRsCs
(6.6)

Note that in (6.6), the transconductance introduces a zero (z1) at (RsCs)
−1 and brings

an additional polep2 at (1+gmR/2)/RsCs. The dominant pole p1 = 1/(RDCL) appears

at the drain node. If RsCs = RDCL, then the zero z1 cancels the pole p1 , therefore the

bandwidth is extended to the second pole of the circuit p2 = (1+ gmR/2)/(RsCs). In

pole-zero elimination technique, if the zero is moved to a lower frequency (C large),

the frequency response displays a source peaking so that the capacitor should be small

to avoid the gain peaking. This is an important advantage of the intended circuit stems

from the variation of the amplifier’s input impedance and thus the proceeding stage

load is seen.

6.4 The proposed TIA

We present the proposed wideband TIA based on RCG in Figure 6.6. The modification

of the input network of RCG TIA provides better enhancement of bandwidth and

decreases the input-referred noise current. A 100 f F photodiode capacitor is used at

the input of the TIA. The gain stage is composed of two common source amplifiers

with capacitance degeneration technique.
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Figure 6.6 : Schematic of proposed RCG TIA.

Refereeing to Miller theorem [117], the shunt impedance Z = (R\\(1/sC)) connected

between the drain nodes of M3 and M4 can be separated into a couple of grounded

impedances. If A is the voltage gain between the two terminals of Z in Figure 6.5, then

the equivalent split impedances are −(A− 1)Z and [(1−1/A)Z] . These impedances

produce zeros with Rs3 and Rs4 to make perfect cancellation of the poles at the drain

of M3 and M4. Therefore, the bandwidth is further improved [114].

The source follower consisting of M5 and Rs5 as a buffer is used to evade affecting the

frequency response of the TIA due to input parasitic capacitances of the succeeding

stage in the receiver system namely, the Limiting amplifier (LA).

6.5 Noise analysis

In the proposed TIA of Figure 6.6, we consider the thermal noise generated by the

active devices M1−1, M1−2 and M2 and thermal noises of resistors RB,Rs1, Rs2 and RD.

The flicker noise(1/ f ) is ignored because it is not dominant in MOS transistor. The

noise contribution of RD is neglected due to the parasitic capacitance in parallel with

RD which makes its noise impact non dominant. The noise analysis is performed based

on the noise model shown in Figure 6.7.

The thermal noise in MOS transistor is modeled by a noise current source between the

drain and source terminals with spectral noise of [118],

¯i2nd = 4qkBT γgm, (6.7)

where kB is the Boltzmann’s constant (J/◦K), T is the absolute temperature (◦K) and

γ is the complex function of transistor parameters and bias conduction. The equivalent
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Figure 6.7 : Modified RCG TIA with noise sources.

input noise current spectral density can be given as:

¯i2n,in =
¯i2n,Rx2 [(1−ω

2L1Cpd)
2 +(1−ω

2L2Cpd)
2] (6.8)

+ω
2Cpd(

¯i2n,M1−1 +
¯i2n,M1−2 +

¯i2n,M2),

where ¯i2n,R is the thermal noise of the resistors given by:

¯i2n,R ≈ 4kBT
[

1
Rs1

+
1

Rs2
+

(γgm2 +1/RB)

(gm2 +1/RB)2 ×
(

1
R2

s1
+

1
R2

s2

)]
(6.9)

and

x = 1−ω
2 L1 +L2

1+gm2RB

(
Cgd2 +

Cgs2

1+gm2RB

)
(6.10)

¯i2n,M1− j =
4kBT

(
γgm1− j +1/RD

)
g2

m1− j
( j = 1,2)

¯i2n,M2 =
4kBT (γgm2 +1/RB)

(gm2 +1/RB)2

For half circuit of the capacitive degeneration stage, the input noise current spectral

density ( ¯i2n,HCDEG) is given by:

¯i2n,HCDEG =
4kBT ω2C2

D j,eq

1+ω2R2
s j,eqC2

s j,eq

([
γgd0, j +

1
RD j

][
1+gm j +Rs j,eq

gmi

])
+Rs j,eq2

(6.11)

where CD j,eq and CD j,eq are the equivalent parasitic capacitance at drain and source

nodes respectively, Rs j,eq is the equivalent resistance at source node and gd0, j is the

zero-bias drain conductance. Because the main deliberation is given to the modified

RCG input stage and the capacitive degeneration stage, the contribution noise of the

76



buffer is ignored, As shown in (6.8), the resistors noise is the main noise at low

frequencies and the impact noise of M1 and M2 becomes dominant at high frequencies.

Note that the input noise current reduces appreciably at high frequencies using L1 and

L2 at the input of the TIA. Furthermore the minimum noise can be realized by boosting

the transconductance gm2.

6.6 Simulation results

We performed simulation analysis of the proposed TIA circuit using 0.18 µm CMOS

technology with a 1.8 V single supply and a 100 f F photodiode capacitance. Figure

6.8 shows the layout of the proposed TIA with 147 µm× 230 µm of area cost. The

frequency responses of the conventional RCG and the proposed TIAs are presented in

Figure 6.9. The RCG TIA provides a bandwidth of 3.5 GHz, whereas the bandwidth of

proposed TIA extends up to 13 GHz. Transimpedance gains of the conventional RCG

and proposed TIAs are 47.7 dB.Ω and 53.2 dB.Ω, respectively. While the total power

consumption of the conventional RCG TIA is 5 mW , the proposed TIA consumes only

11 mW .

Figure 6.8 : The layout of the proposed TIA.

Figure 6.10 shows the simulation results of input noise current spectral densities of the

RCG and the proposed TIA. As shown, the proposed TIA has less input referred noise

current than the RGC configuration. It shows an average input noise current spectral

density below 24 pA/
√

Hz within the bandwidth.

Figure 6.11 shows the group-delay variation with frequency. As shown, the proposed

TIA provides smaller group-delay variation than the RGC configuration. The TIA has
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Figure 6.9 : Frequency response results of the TIA.

Figure 6.10 : Spectral density of the input noise current.

a minimum group delay of 4 ps, increases to 14 ps within the bandwidth of 13 GHz.

This small variation means that output signal will not suffer from distortion as RGC

TIA.

The transient response of the TIA is shown in Figure 6.12 at different process corners.

The width of the input current pulse is 10 ps with a rise and fall time of 1 ps and the

peak-to-peak current is 50 µA. The simulation result shows that, at different process

corners, the output swing variations is very small. This depicts that the transient

response of the TIA is fast enough even for small input current.
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Figure 6.11 : The group delay variation of TIA.

Figure 6.12 : Transient response of the TIA at different process corners.

6.7 Conclusion

The proposed TIA design improves the performance of the RGC TIA. Use of

parallel combination of two series resonate circuits with different resonate frequencies

improves the bandwidth and minimizes the equivalent input noise current density of

RCG TIA. The capacitance degeneration and series inductive peaking networks are

used for pole-zero elimination. The proposed design is implemented in a 0.18 µm

CMOS process in the presence of a 100 f F photodiode capacitance. It is observed that

the TIA achieves a -3dB bandwidth at 13 GHz and transimpedance gain of 53.2 dBΩ
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Table 6.1 : Performance summary and comparison with the other works using
0.18µm CMOS technology.

Cpd Gain BW Power Noise
Ref. ( f F) (dBΩ) (GHz) (mW ) (pA/

√
Hz)

This worka 100 53.2 13 11 24
[119]b 150 59 8.6 18 25
[36]b 250 53 8 13.5 18
[38]b 300 54 7 18.6 18
[64]a 150 62.3 9 108 –
[8]b 50 51 30.5 60.1 55.7

[108]a 50 54.3 7 29 5.9
a: Simulation results, b: Measurement results

The input referred noise current spectral density is 24 pA/
√

Hz and the average

group-delay variation is 5 ps over the bandwidth and the TIA consumes11 mW from a

1.8 V supply. Simulation results show that the TIA displays a broadband flat response,

provides an ultra-low noise performance, and hence it is proficient for applications in

optical transceivers.
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7. IMPROVING THE BANDWIDTH PERFORMANCE BY USING A
CASCODE CURRENT MIRROR WITH RESISTIVE COMPENSATION
TECHNIQUE AND A LADDER MATCHING NETWORK

In this work, a technique to enhance the bandwidth of the regulated common gate

(RCG) transimpedance amplifier is described. The technique is based on using a

cascode current mirror with resistive compensation technique and a ladder matching

network. To verify the feasibility of the proposed technique, a CMOS design example

is implemented using a 0.18µm RF CMOS technology. The simulation results show

that, the propose TIA achieved a bandwidth of 8.4 GHz, a transimpedance gain of

51.3 dBΩ and input referred noise current spectral density of 20 pA/
√

Hz . The

average group-delay variation is 4 ps over the−3dB bandwidth and the TIA consumes

17.8 mW from a 1.8 V supply.

7.1 Introduction

One of the most critical building blocks for the optical communication system

is transimpedance amplifier (TIA). It is widely used as the front-end of optical

communication receivers. In the design of a TIA , the important parameters are wide

bandwidth, high transimpedance gain, low noise, low power consumption, and small

group delay variation [120].

Since CMOS becomes the most economical technology for designing such large-scale

integrated systems, numerous research efforts have been devoted to implement TIAs

using CMOS technology. Until now, CMOS TIAs tends to be dominated by two

different topologies: the common gate (CG) amplifier and the shunt feedback amplifier.

Many different architectures have been reported to improve the bandwidth of CMOS

TIA. The concept of these techniques is how to isolate the large input capacitance of

the photodiode from bandwidth calculation. In this manner, regular cascade (RCG)

configuration [33], CG feed forward topology with negative feedback [111] and

inductive peaking technique [121] are the important methods.
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Matching circuit becomes an essential concern in the design of high-speed electronic

circuits to offer an initial solution of broadband matching issues. In this technique,

the effect of parasitic element can be controlled over the bandwidth. By introducing

a matching network between the TIA amplifier and photodiode (PD), the equivalent

input noise current density can be reduced for a certain bandwidth [122]. A cascode

current mirror is one of the effective and simple current mirrors. It delivers low input

impedance and high output impedance [109]. The bandwidth of cascode current

mirror has been improved by Gupta et al. in [123] by using resistive compensation

method. In this work, a broadband TIA is described. A cascode current mirror with

resistive compensation technique and a ladder matching network are used to improve

the bandwidth of the conventional regulated common gate (RCG) TIA using 0.18µm

CMOS technology.

The remainder of the paper organized as follows: In section 7.2, a TIA based on

RCG circuit with ladder- matching network is investigated. Section 7.3 introduces

architecture of the cascode current mirror using resistive compensation technique.

In Section 7.4, the proposed TIA is presented; in Section 7.5, the noise analysis is

discussed. Section 7.6 demonstrates the simulation results and finally, the conclusion

is summarized in Section 7.7.

7.2 Regulated common gate (RCG) TIA with ladder matching network

The basic configuration of RCG-TIA shown in Figure 7.1 has been extensively studied

in [67, 124, 125].

Figure 7.1 : Regulated common gate (RCG) TIA.
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The RCG input impedance TIA has already been derived as [31],

Zi,RGC =
1

1/Rs +(1+A0)
[
gm1 +(Cgs1 +Cgd2)

]
+ sCgs2

(7.1)

where A0 = gm2RB is the DC gain of CS amplifier, Cgs2 and Cgd2 are the gate-source and

gate-drain parasitic capacitances of M2 respectively. Generally, the two poles affecting

the bandwidth of RCG TIA are the input pole ωi,RGC and the output pole ωo,RGC = 1
RDCo

where Co is the output capacitance. The dominant pole that limits the bandwidth of

RCG TIA ωi,RGC is given by:

ωi,RGC =
1+(1+A0)gm1Rs

Rs
[
(1+A0)(Cgs1 +Cgd2)+Cpd +Cgs2

] (7.2)

where Cpd is the photodiode capacitance .

Assuming 1/gm1� Rs, then

ωi,RGC =
gm1

Cgs1 +Cpd

(
Cgd2
Cpd

+
1+Cgs2/Cpd

1+A0

) (7.3)

In order to obtain a flat frequency response and minimum input referred noise current

spectral density, the width of M1 should be small [67]. To achieve high gain CS

amplifier, the size of M2 must be chosen large. As a result the parasitic capacitances

of M2 will increase. It can be noticed from (7.3), these parasitic capacitances add

limitation to RCG bandwidth.

Matching networks had been very widely used for broadband analog circuit design

to reduce the effects of parasitic capacitances [33, 115, 126]. In this technique, the

effect of parasitic element can be controlled over the bandwidth. Using a ladder

matching network at input of RCG TIA configuration provides better improvement

of bandwidth and reduces its input-referred noise current. In order to nullify the

photodiode capacitance impact at the input of the RCG TIA configuration, it is not only

crucial to have very low input impedance, but also this impedance must be resistive at

the chosen bandwidth.

Figure 7.2 shows RCG TIA configuration with ladder matching network at the input.

To simplify the analysis of the frequency behavior, the effect of Cgs1 is neglected. The

CS amplifier is modeled by a first order amplifier with input impedance of Cgs2, zero

output impedance and transfer function of

A(s) =
−A0

1+ s/ω0
(7.4)
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Figure 7.2 : RCG TIA configuration with ladder network.

where ω0 is the -3dB cutoff frequency of the CS amplifier. The input impedance can

be written as:

Zi(s) =
1

1−A(s)
(sL2 +

1
gm1 + sCgs1

)//
1

Ci,CS
(7.5)

Ci,CS =Cgs2 +(1+A0)Cgd2

where Ci,CS is the total input parasitic capacitance of the CS amplifier.

Figure 7.3 : Simplified model of RCG with ladder network.

Figure 7.3 shows the equivalent model of the circuit in Figure 7.2, where ZT (s) is given

by:

ZT (s) =
RD

1+ sRDCo
(7.6)

According to [127] Z1 and Z2 are expressed by:

Z1(s) =
sL2

1+A0

(
1+

s
ω0

)
(7.7)

Z2(s) =
1

gm1(1+A0)

(
1+

s
ω0

)
(7.8)
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Referring to the analysis in [57], in order to reach a wideband TIA with Butterworth

response, the impedances of Z1 and Z2 must be inductive and resistive respectively.

So the bandwidth of M2 amplifier ω0 must be large. The cascode current mirror with

resistive compensation technique is used to improve the bandwidth of M2.

7.3 Cascode current mirror with resistive compensation technique

Figure 7.4 shows the cascade current mirror. In this circuit, a compensating resistance

R is placed between the gates of main pair transistors M1 and M2 to boost the

bandwidth. Figure 7.5 shows the small signal equivalent circuit model of cascade

current mirror with resistor where, Cgsi and gmi are the gate to source capacitance and

transconductance of transistor, respectively (where i = 1 to 4).

Figure 7.4 : Cascode current mirror with resistive compensation.

Figure 7.5 : Simplified model of compensated cascode current mirror.

By assuming gm1 = gm2 = gm3 = gm4 = gm and Cgs1 = Cgs3 = Cgs4 = Cgs , then the

simplified expression of the current gain Ai(s) is given as:

Ai(s) =
io
iin

=
gm

Cgs

 s+1/CgsR

s2 + s( 2
CgsR

+ gm
Cgs

)+ 2gm
C2

gsR

 (7.9)
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It is evident from (7.9) that, the current gain has one zero (z1) and two poles (p1, p2)

where,

z1 =−
1

CgsR
, p1 =−

gm

Cgs
, p2 =−

2
CgsR

(7.10)

A maximum bandwidth is obtained when R = 1/gm because one pole-zero is canceled

and the current gain function becomes low pass function with one pole. Hence, the

bandwidth of the system is calculated by:

ω0 =
2gm

Cgs
(7.11)

It is observed that in compensated current mirror, the transconductance (gm) becomes

double which will improve the bandwidth also. The resistor R essentially delays the

response but also generates a zero which eliminates this problem.

7.4 The proposed TIA

Figure 7.6 demonstrates the proposed wideband RCG TIA. The ladder matching

network at input of RCG TIA offers better improvement of bandwidth and reduces

the input-referred noise current. The source follower consisting of M4 and Rs4 as a

buffer is used to evade affecting the frequency response of the RCG stage duo to input

parasitic capacitances of the next stage in the receiver system.

Figure 7.6 : Schematic of proposed RCG TIA.
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7.5 Noise analysis

A TIA is usually the first block of the receiver of optical communication system and it

requests to have adequate gain while introducing minimum input noise level should be

low enough to confirm that the receiver operates at high sensitivity for a low bit-error-

rate [83]. Since the flicker noise is not dominant in MOS transistor so that it can be

ignored. The main noise sources of the TIA shown in Figure 7.1 are the thermal noise

of the resistors ¯i2n,R and the noise of MOS transistors ¯i2n,M1 and ¯i2n,M2. The total input

referred noise of TIA circuit can be calculated by:

¯i2n,in ≈
¯i2n,M1 +

¯i2n,M2 +
¯i2n,R (7.12)

where,

¯i2n,M1 = ω
2C2

gs1
4kBT (γgm1 +1/RD)

g2
m1

(7.13)

¯i2n,M2 = ω
2(C2

gs2 +C2
pd)

2 4kBT (γgm2 +1/RB)

(gm2 +1/RB)2

¯i2n,R = 4kBT
[

1
RD

+
1
Rs

+
(γgm2 +1/RB)

R2
s (gm2 +1/RB)2

]
where kB is the Boltzmann’s constant (Joule/◦ Kelvin), T is the absolute temperature

(Kelvin) and γ is the complex function of basic transistor parameters and bias

conduction . As shown in (7.13), the resistor noise is the foremost noise at low

frequencies and the noise form M1 and M2 becomes dominant at high frequencies.

In order to reduce the total noise, gm1 and gm2 should be as large as possible and the

parasitic capacitances Cgs1 and Cgs2 must be as small as possible. Isolation of parasitic

capacitances using the matching network decreases the noise contribution form M1 and

M2. Using ladder matching circuit at the input of TIA reduces the input referred noise

current to be [127]:

¯i2n,M1 = ω
2C2

pd
4kBT (γgm1 +1/RD)

g2
m1

¯i2n,M2 = ω
2C2

pd
4kBT (γgm2 +1/RB)

g2
m21/RB

¯i2n,R = (1−ω
2L1Cpd)

2
[

1−ω
2 L2

1+gm2RB

(
Cgd2 +

Cgs2

1+gm2RB

)]2

4kBT
[

1
RD

+
1
Rs

+
(γgm2 +1/RB)

R2
s (gm2 +1/RB)2

]
(7.14)
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It can be observed from (7.14) that, the input noise current reduces significantly at

high frequencies using ladder matching circuit at the input of the TIA. Moreover the

minimum noise can be achieved by increasing the transconductance gm2. Therefore,

by replacing the compensated current mirror instead of M2, the input referred noise

will decrease.

7.6 Simulation results

The TIA is implemented using 0.18 µm MOS process technology. Simulations are

done using cadence tools with a single supply (i.e.VDD = 1.8 V ) where a 300 f F

photodiode capacitance is considered. Figure 7.7 shows the layout of proposed TIA.

The area of the TIA is 275µm×235µm.

Figure 7.7 : Layout of TIA.

Figure 7.8 demonstrates the frequency response results of three different cases. By

introducing ladder matching and the compensated cascode current mirror one by one,

the gradually improved bandwidth can be observed. Our post-simulation test results

show that, the proposed TIA is characterized as having a transimpedance gain of

52 dBΩ and bandwidth of 9.6 GHz. After layout extraction with RC parasitic, the

gain becomes 51.3 dB.Ω and 8.4 GHz bandwidth. The total power consumption of the

TIA is 17.8 mW .

Figure 7.9 illustrates the simulation of input noise current spectral density of the RCG

and the proposed. As shown, the proposed TIA has less input referred noise current
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Figure 7.8 : The frequency response results of the TIA.

than the RGC configuration. The simulation result shows an equivalent input noise

current spectral density below 20p A/
√

Hz within the bandwidth.

Figure 7.10 shows the group-delay variation with frequency. The TIA has a minimum

group delay of −6ps, increases to 13 ps within the bandwidth of 8.4 GHz.

Figure 7.9 : Spectral density of the input noise current as a function of frequency.

Figure 7.10 : The group delay variation of TIA.
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To study the impact of the process variations on the frequency response of the TIA,

a set of 100 samples has been chosen for Monte Carlo simulation. As shown in

Figure 7.11, the frequency response has a small variation due to process variation and

mismatching. To make the design more realistic, corner analysis is used to simulate the

circuit in different operational conductions, such as different temperatures and altered

process corners.

Figure 7.11 : Monte Carlo simulation results for frequency response for 100 samples.

Figure 7.12 shows the transient response of the TIA at different process corners for

10 µAp−p input current pulse. The simulation results show that, the proposed TIA can

operate normally at various process corners for wide bandwidth. Table 7.1 shows a

Figure 7.12 : Transient response of the TIA under different corners.

comparison of the performance of proposed TIA with those recently reported in the

literature. The performance figures show that the bandwidth of the proposed TIA for

a high photodiode capacitance is higher than the other TIA circuits while its power

dissipation is the lowest.

90



Table 7.1 : Performance Comparison of Recent CMOS TIAs.

Ref. Cpd Gain BW Power Noise
( f F) (dBΩ) (GHz) (mW ) (pA/

√
Hz)

This worka 300 51.3 8.4 17.8 20
[128]b 200 58.7 2.6 47 13
[129]a 300 56.7 5.0 27.3 21
[33]b 250 61.0 7.2 70.2 8.2
[130]a 200 59.8 2.9 25.4 13.1
[36]b 250 53 8.0 135 18
[38]b 300 54 7.0 18.6 18

a: Simulation results, b: Measurement results

7.7 Conclusion

The proposed TIA design offers a good technique to improve the input noise and

bandwidth performances of the conventional RCG TIA. The technique is based using

cascode current mirror with resistive compensation technique and a ladder matching

network. The TIA is implemented in TSMC 180 nm CMOS technology with 1.8 V

supply voltage. It is observed that the TIA provides -3 dB bandwidth of 8.4GHz,

transimpedance gain of 51.3 dBΩ in the presence of a 300 f F photodiode capacitance

and input referred noise current spectral density of 20 pA/
√

Hz. TIA consumes

17.8 mW . Simulation results show that the TIA displays a broadband flat response and

an ultra-low noise performance with lower power in comparison with other techniques.

Therefore, it is very proficient for applications in optical transceivers.
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8. CONCLUSIONS AND RECOMMENDATIONS

All over this thesis, the most significant results and main conclusions have been

encapsulate in the final section of each chapter. In this final chapter, the most

remarkable contributions will be presented to provide a general synopsis of the whole

work. First, the main objectives presented in the first chapter will be considered,

confirming their achievement and leading to the conformable conclusions. Finally,

further works will be pointed out.

The major need for today’s optical communication devices is to operate at wider

band such as to support high speed Internet, multimedia communication and similarly

many more broadband services. Due to integration and cost advantages of CMOS

technologies, CMOS has encouraged extensive work on developing the optical

communication system.

This thesis has covered in-depth the design of the first building block in the optical

receiver system: the transimpedance amplifier (TIA). The goal of TIA consists of

converting the small photodiode current into a voltage as efficiently as possible. This

research provides the necessary background knowledge to fully understand the analysis

and design of the transimpedance amplifier (TIA). Due to which many studies and

researches are being done throughout the globe, the two most serious limitations of the

TIA design are its transimpedance gain and bandwidth.

Bridging the gap between system and circuit design is done by:

• Understanding the bandwidth expansion by mathematical analysis.

• Introducing new circuit architectures that can be realized.

• Demonstrating implementation of the proposed designs using extensive simulations

in CMOS technology.
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In this thesis, in order to fulfill the transimpedance amplifier requirements, various

bandwidth enhancement techniques been proposed to improve the bandwidth of

CMOS TIAs in this study as shown in Table 8.1. Figure 8.1 shows the performances

comparison of TIA bandwidth enhancement techniques.

(a) Bandwidth (b) Power

(c) Noise (d) Area

Figure 8.1 : Performances comparison of TIA bandwidth enhancement techniques.

First, we provided the principle of the negative impedance circuit. We developed a

theory that analytically related to the bandwidth extension. We proposed a new TIA

topology based on employing a negative impedance circuit. We demonstrated the

proposed TIA in 0.18 µm CMOS technology that was successfully simulated up to

7 GHz and provides up to 54.3 dBΩ transimpedance amplifier.

One major advantage of negative impedance technique is its priority in presence

of large photodiode capacitance because the bandwidth directly depends on the

gain A of the amplifier. Furthermore, this technique uses only active devices and

resistors which makes the TIA does not depend on Q-value and parasitic effect of

on-chip components, unlike the inductive-peaking and capacitive-peaking techniques.

Moreover, the size of the chip using this topology is smaller than that of the chips

using passive devices. The major disadvantage of negative impedance technique is its
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higher power dissipation.

Second, we proposed a wide band transimpedance amplifier using the matching

technique. It is shown that by simultaneously using of series input matching topology

and T-output matching network, the bandwidth of the TIA can be obviously improved.

We demonstrated a CMOS 0.18 µm CMOS TIA that operates up to bandwidth of

20 GHz with a transimpedance gain of 52.6 dBΩ. The matching technique gives us

several advantages. First we can avoid large photodiode parasitic capacitance. Second,

it is good for noise performance. Third it has low power consumption. The drawback

of this approach is the trade-off between the bandwidth and complexity. Another

disadvantage of using passive inductors is that makes the chip area occupied large size.

Third, we introduced a novel architecture to extend the bandwidth of the TIA. This

TIA employs a parallel combination of two series resonate circuits with different

resonate frequencies on the conventional regulated common gate (RGC) architecture.

This methodology is supported by a design example in a 0.18 µm CMOS process .

The proposed TIA is founded to have a 53 dBΩ transimpedance gain over 13 GHz

bandwidth and less noise than RCG topology. The main advantage of this topology

is that photodiode capacitance is decoupled from the TIA input by the common

base stage. Hence the bandwidth can be optimized because it is independent of the

photodiode capacitance. Furthermore, it has an additional significant noise source,

what is the main obstacle of this technique. Also the power consumption will be

higher because more devices are used in the modification input stage.

Finally, we developed a novel TIA architecture that enables to achieve a bandwidth of

8.4 GHz . The technique is based on using a cascode current mirror with resistive

compensation technique and a ladder matching network. The simulation results show

that, the propose TIA achieved a bandwidth of 8.4 GHz, a transimpedance gain of

51.3 dBΩ and input referred noise current spectral density of 20 pA/
√

Hz . The

average group-delay variation is 4 ps over the −3dB bandwidth and the TIA consumes

17.8 mW from a 1.8 V supply. The primary benefits of this technique are its simple

design, that can be designed independently of the main TIA to reduce input impedance.
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Also, the resistive compensation technique boots the bandwidth of current mirrors

without changing the DC characteristics of the original circuits. There are also two

major drawbacks associated with this technique. When the load capacitance is large,

a large gm is required which costly in terms of power consumption. Moreover, the

passive resistance has a large tolerance and it varies with process and temperature

which does not track transconductance of the MOS transistor because. This will add

extra noise source, power consumption and increase the chip area.

8.1 Future works

Overall, this thesis provides insight and proposes useful techniques to improve the

bandwidth of the transimpedance amplifier. It presents exhaustive understanding of

the methodology to enhance the bandwidth bandwidth of the transimpedance amplifier

and highlights on basic concepts which have been usually ignored in the literature. An

accurate and deep understanding of these mechanisms offers many opportunities to

extend this research to new areas and further on transimpedance amplifiers.

• Commonly, the impact of bandwidth enhancement techniques on the other

parameters has been unheeded in the literature. Further research can begin to

consider the effect of the bandwidth extension techniques on other parameters

focusing on phase, group delay, etc with these types of TIAs.

• The next step would be moving on the need for a more comprehensive of the

noise analysis to investigate way to further minimize the noise while improving

the bandwidth. In the proposed topologies, it was shown that once the noise source

and procedure was understood, necessary techniques could be taken to reduce the

source of the noise which is in itself a huge topic.

Moreover the noise generated by a huge number of transistor could affect the

sensitivity of the receiver . This problem can be solved by isolate the core of

the transimpedance amplifier. So that, more research on isolation technique are

mandatory.

Furthermore, the noise analysis can also be done that includes a model for the bond

wire. It has been reported that, the bond wire has a serious impact on the TIA
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bandwidth and noise performance. It should be possible obtain better performance

by optimizing the TIA performance with the bond wire.

• As previously mentioned the usage of negative impedance circuit at the output

node of the TIA allows to improve the bandwidth of the TIA. Using the negative

impedance circuit can be more generalized in many RF building blocks whose

frequency response or bandwidth is determined by one or two dominant poles .

More research is needed to investigate alternate structures for the design of negative

resistance circuits with high efficiency in the gain and the bandwidth

• Despite the fact that inductors are believed to be area inefficient, inductors do not

presuppose high quality factors. Therefore, a new technique inspired to implement

the inductor in an area-efficient fashion. The active inductors is used to reduce the

chip area of the TIA circuits . However, active inductors have several drawbacks

including: high power consumption and high noise, this work focuses on reducing

the large chip area required to fabricate spiral inductor by using active devices and

reducing the cost. More research is needed to investigate alternate structures of the

active inductor to reduce the power consumption.
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