9 research outputs found

    Combining and Steganography of 3D Face Textures

    Get PDF
    One of the serious issues in communication between people is hiding information from others, and the best way for this, is deceiving them. Since nowadays face images are mostly used in three dimensional format, in this paper we are going to steganography 3D face images, detecting which by curious people will be impossible. As in detecting face only its texture is important, we separate texture from shape matrices, for eliminating half of the extra information, steganography is done only for face texture, and for reconstructing 3D face, we can use any other shape. Moreover, we will indicate that, by using two textures, how two 3D faces can be combined. For a complete description of the process, first, 2D faces are used as an input for building 3D faces, and then 3D textures are hidden within other images.Comment: 6 pages, 10 figures, 16 equations, 5 section

    A Review of 2D &3D Image Steganography Techniques

    Get PDF
    This examination displays an outline of different three-dimensional (3D) picture steganography methods from overview perspective. This paper exhibit scientific categorization of 3D picture steganography systems and distinguish the ongoing advances in this field. Steganalysis and assaults on 3D picture steganography calculations have likewise been examined. 3D picture steganography strategies in all the three spaces: geometrical, topological and portrayal areas have been contemplated and thought about among each other on different parameters, for example, inserting limit, reversibility and reaction towards assaults. A few difficulties which restrain the advancement of 3D steganography calculations have been recognized. This investigation finishes up with some valuable discoveries at last

    MỘT ĐỀ XUẤT SỬ DỤNG LƯỚI 3D KHÉP KÍN ĐỂ GIẤU TIN

    Get PDF
    This paper proposes a structure presentation of 3D mesh and closed mesh, which can apply for hidden messages. Based on shifting value coordinates of vertices, the technique allows information hidden on the triangular 3D mesh model. This above process is controled by rule secret key. The article also mentions a reverse to decode data from stego.Kỹ thuật giấu tin trong đối tượng lưới 3D được đưa ra trong [4], [5] là phương pháp giấu tin trên các đỉnh của một tập các tam giác Theo chuỗi bit khóa sinh ra trong quá trình giấu. Các phương pháp này, trong một số trường hợp, nếu gặp phải lưới hở thì không thực hiện được. Bài báo trình bày phương pháp xác định lưới 3D khép kín, từ đó đề xuất áp dụng các phương pháp giấu tin trong [4], [5] trên kiểu lưới kín đề xuất. Với kỹ thuật này, người nhận chỉ cần biết quy tắc của chuỗi khóa bí mật là có thể giải mã thông tin, sẽ làm tăng tính bảo mật cho các kỹ thuật giấu tin. Thực nghiệm với phương pháp MEP [4] trên các lưới 3D kín cho thấy kỹ thuật này đáp ứng được các yêu cầu giấu tin, có tính bảo mật cao và không cần gửi theo chuỗi bít khóa

    An Efficient and Distortion-controllable Information Hiding Algorithm for 3D Polygonal Models with Adaptation

    Get PDF
    We present an efficient information hiding algorithm for polygonal models. The decision to referencing neighbors for each embeddable vertex is based on a modified breadth first search, starting from the initial polygon determining by principal component analysis. The surface complexity is then estimated by the distance between the embedding vertex and the center of its referencing neighbors. Different amounts of secret messages are adaptively embedded according to the surface properties of each vertex. A constant threshold is employed to control the maximum embedding capacity for each vertex and decrease the model distortion simultaneously. The experimental results show the proposed algorithm is efficient and can provide higher robustness, higher embedding capacity, and lower model distortion than previous work, with acceptable estimation accuracy. The proposed technique is feasible in 3D adaptive information hiding

    Steganalysis of 3D objects using statistics of local feature sets

    Get PDF
    3D steganalysis aims to identify subtle invisible changes produced in graphical objects through digital watermarking or steganography. Sets of statistical representations of 3D features, extracted from both cover and stego 3D mesh objects, are used as inputs into machine learning classifiers in order to decide whether any information was hidden in the given graphical object. The features proposed in this paper include those representing the local object curvature, vertex normals, the local geometry representation in the spherical coordinate system. The effectiveness of these features is tested in various combinations with other features used for 3D steganalysis. The relevance of each feature for 3D steganalysis is assessed using the Pearson correlation coefficient. Six different 3D watermarking and steganographic methods are used for creating the stego-objects used in the evaluation study

    Steganalysis of meshes based on 3D wavelet multiresolution analysis

    Get PDF
    3D steganalysis aims to find the information hidden in 3D models and graphical objects. It is assumed that the information was hidden by 3D steganography or watermarking algorithms. A new set of 3D steganalysis features, derived by using multiresolution 3D wavelet analysis, is proposed in this research study. 3D wavelets relate a given mesh representation with its lower and higher graph resolutions by means of a set of Wavelet Coefficient Vectors (WCVs). The 3D steganalysis features are derived from transformations between a given mesh and its corresponding higher and lower resolutions. They correspond to geometric measures such as ratios and angles between various geometric measures. These features are shown to significantly increase the steganalysis accuracy when detecting watermarks which have been embedded by 3D wavelet-based watermarking algorithms. The proposed features, when used in combination with a previously proposed feature set, is shown to provide the best results in detecting the hidden information embedded by other information hiding algorithms

    A 3D Steganalytic Algorithm and Steganalysis-Resistant Watermarking

    Full text link

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work
    corecore