80 research outputs found

    Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test

    Get PDF
    Field test is performed in diverse environments, in which temperature varies across a wide range. As temperature affects a circuit delay greatly, accurate temperature monitors are required. They should be placed at various locations on a chip including hot spots. This paper proposes a flexible ring-oscillator-based monitor that accurately measures voltage as well as temperature at the same time. The measurement accuracy was confirmed by circuit simulation for 180 nm, 90 nm and 45 nm technologies. An experiment using test chips with 180 nm technology shows its feasibility.2014 IEEE 23rd Asian Test Symposium (ATS), 16-19 Nov. 2014, Hangzhou, Chin

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Network on chip architecture for multi-agent systems in FPGA

    Get PDF
    A system of interacting agents is, by definition, very demanding in terms of computational resources. Although multi-agent systems have been used to solve complex problems in many areas, it is usually very difficult to perform large-scale simulations in their targeted serial computing platforms. Reconfigurable hardware, in particular Field Programmable Gate Arrays (FPGA) devices, have been successfully used in High Performance Computing applications due to their inherent flexibility, data parallelism and algorithm acceleration capabilities. Indeed, reconfigurable hardware seems to be the next logical step in the agency paradigm, but only a few attempts have been successful in implementing multi-agent systems in these platforms. This paper discusses the problem of inter-agent communications in Field Programmable Gate Arrays. It proposes a Network-on-Chip in a hierarchical star topology to enable agents’ transactions through message broadcasting using the Open Core Protocol, as an interface between hardware modules. A customizable router microarchitecture is described and a multi-agent system is created to simulate and analyse message exchanges in a generic heavy traffic load agent-based application. Experiments have shown a throughput of 1.6Gbps per port at 100 MHz without packet loss and seamless scalability characteristics

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Network on chip modelling using CDMA concept

    Get PDF
    The network on chip (NOC) is a widely discussed concept for handling the large on chip communication requirements of complex system on chip (SOC) design. The traditional bus based architecture does not communicate properly in very large SOCs. As a result the on chip communication uses the packet switching paradigm for routing information between the intellectual property (IP) blocks. The concept of code division multiple access (CDMA) is applied for on chip packet switch communication network. The technique of applying CDMA principle in NOC design is the point to be discussed in this project. A packet switched network on chip that applies the CDMA principle is realizable in a very common logic that is Register Transfer Logic (RTL) by using the VHDL coding technique. The globally asynchronous and locally synchronous (GALS) scheme is used for the realization of CDMA NOC by using both synchronous and asynchronous designing technology. Packet switched NOC is divided into two designing schemes which are named as CDMA NOC and POINT TO POINT NOC. The packet switch NOC which uses point to point design scheme, which is shown by the example of ring topology NOC, has a varying data transfer latency when the packets are transferred to different destination or to the same destination by different routes in the network. For the elimination of variation of data transfer logic CDMA NOC is used. The structure of the CDMA NOC is proposed and the process is coded and implemented by using ALTIUM software in this project. The model of CDMA NOC is described by the ALTIUM software. The comparative study of the characteristics of CDMA NOC and point to point NOC mainly ring topology are examined

    Modular Exponentiation on Reconfigurable Hardware

    Get PDF
    It is widely recognized that security issues will play a crucial role in the majority of future computer and communication systems. A central tool for achieving system security are cryptographic algorithms. For performance as well as for physical security reasons, it is often advantageous to realize cryptographic algorithms in hardware. In order to overcome the well-known drawback of reduced flexibility that is associated with traditional ASIC solutions, this contribution proposes arithmetic architectures which are optimized for modern field programmable gate arrays (FPGAs). The proposed architectures perform modular exponentiation with very long integers. This operation is at the heart of many practical public-key algorithms such as RSA and discrete logarithm schemes. We combine two versions of Montgomery modular multiplication algorithm with new systolic array designs which are well suited for FPGA realizations. The first one is based on a radix of two and is capable of processing a variable number of bits per array cell leading to a low cost design. The second design uses a radix of sixteen, resulting in a speed-up of a factor three at the cost of more used resources. The designs are flexible, allowing any choice of operand and modulus. Unlike previous approaches, we systematically implement and compare several versions of our new architecture for different bit lengths. We provide absolute area and timing measures for each architecture on Xilinx XC4000 series FPGAs. As a first practical result we show that it is possible to implement modular exponentiation at secure bit lengths on a single commercially available FPGA. Secondly we present faster processing times than previously reported. The Diffie-Hellman key exchange scheme with a modulus of 1024 bits and an exponent of 160 bits is computed in 1.9 ms. Our fastest design computes a 1024 bit RSA decryption in 3.1 ms when the Chinese remainder theorem is applied. These times are more than ten times faster than any reported software implementation. They also outperform most of the hardware-implementations presented in technical literature

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF
    corecore