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Abstract

It is widely recognized that security issues will play a crucial role in the majority of future
computer and communication systems. A central tool for achieving system security are
cryptographic algorithms. For performance as well as for physical security reasons, it is
often advantageous to realize cryptographic algorithms in hardware. In order to overcome
the well-known drawback of reduced flexibility that is associated with traditional ASIC so-
lutions, this contribution proposes arithmetic architectures which are optimized for modern
field programmable gate arrays (FPGAs). The proposed architectures perform modular
exponentiation with very long integers. This operation is at the heart of many practi-
cal public-key algorithms such as RSA and discrete logarithm schemes. We combine two
versions of Montgomery modular multiplication algorithm with new systolic array designs
which are well suited for FPGA realizations. The first one is based on a radix of two and is
capable of processing a variable number of bits per array cell leading to a low cost design.
The second design uses a radix of sixteen, resulting in a speed–up of a factor three at the
cost of more used resources. The designs are flexible, allowing any choice of operand and
modulus.

Unlike previous approaches, we systematically implement and compare several versions
of our new architecture for different bit lengths. We provide absolute area and timing
measures for each architecture on Xilinx XC4000 series FPGAs. As a first practical result
we show that it is possible to implement modular exponentiation at secure bit lengths on
a single commercially available FPGA. Secondly we present faster processing times than
previously reported. The Diffie–Hellman key exchange scheme with a modulus of 1024
bits and an exponent of 160 bits is computed in 1.9 ms. Our fastest design computes a
1024 bit RSA decryption in 3.1 ms when the Chinese remainder theorem is applied. These
times are more than ten times faster than any reported software implementation. They also
outperform most of the hardware–implementations presented in technical literature.
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Chapter 1

Introduction

1.1 Motivation

It is widely recognized that security issues will play a crucial role in many future

computer and communication systems. A central tool for achieving system security

is cryptography. For performance as well as for physical security reasons it is often

required to realize cryptographic algorithms in hardware. Traditional ASIC solutions,

however, have the well-known drawback of reduced flexibility compared to software

solutions. Since modern security protocols are increasingly defined to be algorithm

independent, a high degree of flexibility with respect to the cryptographic algorithms

is desirable. A promising solution which combines high flexibility with the speed and

physical security of traditional hardware is the implementation of cryptographic algo-

rithms on reconfigurable devices such as FPGAs and EPLDs. In the case of public-key

schemes, algorithm independence can mean not only a change of the actual crypto-

graphic algorithm but also a change of parameters such as bit length, modulus, or

exponents. One application, dealt with in this report, includes arithmetic architec-

tures for modular exponentiation with very long integers which is at the heart of most

modern public-key schemes. Most notably, both RSA and discrete logarithm-based

1



CHAPTER 1. INTRODUCTION 2

(e.g., Diffie-Hellman key exchange or the Digital Signature Algorithm, DSA) schemes

require modular long number exponentiation.

The challenge at hand is to design arithmetic architectures for operands with up to

1024 bits on current FPGAs. The very long word lengths prohibit the application of

many proposed architectures as they would result in unrealistically large resource re-

quirements. In this thesis we derive two modular exponentiation architectures which

combine Montgomery’s modular reduction scheme and novel systolic array architec-

tures. The systolic array architecture requires considerably fewer logic resources than

many other systolic array architectures for modular arithmetic. This is crucial, as

one of our goals was to derive solutions that can fit into a single FPGA, a design

goal that has many cost and design advantages over multi–FPGA solutions. Another

important objective was to systematically implement various architecture options for

different bit lengths and compare performance and resource usage.

1.2 Thesis Goals

Based on the general considerations in the previous section we defined the following

goals for the thesis research:

1. Implementation of a 1024–bit modular exponentiation architecture in a single

commercially available FPGA device. 1024 bits is the recommended bit size

for RSA and discrete logarithm systems and thus highly relevant for practical

applications. The computation time of our architecture should be close to a

previously reported architecture that used 16 FPGAs [33].

2. It should be investigated which of the two proposed general architecture op-

tions, based on systolic arrays and a redundant representation, is best suited

for modular exponentiation architectures on FPGAs.
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3. To find an optimal resource usage and computation time trade–off for the FPGA

architectures that will be designed.

4. A resource efficient FPGA design should be developed which allows the imple-

mentation of a 1024 bit architecture at moderate costs.

5. It should be investigated weather the high–radix Montgomery modular mul-

tiplication algorithm proposed in [9] can be used for modular exponentiation

architectures on FPGAs.

6. Develop and implement a design that is considerably faster than any previously

reported FPGA architecture and reaches speeds similar to the fastest design

reported in technical literature [27].

1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2, we summarize some of the previous

work on modular exponentiation. Chapter 3 describes three families of algorithms in

public–key cryptography, and the modular arithmetic needed for their implementa-

tion. Chapter 4 describes algorithms for modular exponentiation and multiplication

and some simplifications and speed-ups for their hardware implementation. In Sec-

tion 5 we summarize some of the relevant features of the Xilinx XC4000 FPGA series.

Based on these features we derive some characteristics for our architectures. Chap-

ter 6 outlines our architecture for modular exponentiation, optimized for low resource

usage. Chapter 7 describes an architecture optimized for speed. Chapter 8 describes

our methodology and tools that were used for this research. Chapter 9 posts the tim-

ing and area results obtained. A comparison to other architectures and an outlook

conclude this thesis.



Chapter 2

Previous Work

In the following, we will summarize relevant previous work in the field of modular

multiplication. Most presented approaches are based on an algorithm proposed by

Peter Montgomery in 1985 [19], either in conjunction with a redundant number rep-

resentation or in a systolic array architecture. Solutions using other algorithms have

also been presented.

2.1 Montgomery Reduction and Redundant Rep-

resentation

Applying Montgomery’s algorithm, the cost of a modular exponentiation is reduced

to a series of additions of very long integers. To avoid the carry propagation in

multiplication/addition architectures several solutions have been proposed in the lit-

erature. They either use Montgomery’s algorithm, in combination with a redundant

radix number system [26, 33, 7, 9, 36] or a Residue Number System [2].

In [7] Montgomery’s modular multiplication algorithm is adapted for an efficient

hardware implementation. A gain in speed results from a faster clock, due to sim-

pler combinatorial logic. Compared to previous techniques based on Brickell’s Algo-

4



CHAPTER 2. PREVIOUS WORK 5

rithm [4], a speed-up factor of two is reported.

The Research Laboratory of Digital Equipment Corp. in Paris implemented mod-

ular exponentiation architectures on FPGAs [33, 26]. They utilized an array of 16

XILINX 3090 FPGAs. Compared to XILINX 4000 series in terms of flip–flops, this

is equivalent to a chip with 5100 configurable logic blocks (CLBs). In terms of logic

resources this is equivalent to a chip of 4000 CLBs. In their work they used sev-

eral speed-up methods [26] including the Chinese remainder theorem, asynchronous

carry completion adder, and a windowing exponentiation method. The implemen-

tation computes a 970bit RSA decryption at a rate of 185kb/s (5.2ms per 970 bit

decryption) and a 512 bit RSA decryption in excess of 300 kb/s (1.7ms per 512 bit

decryption). A drawback of this solution is that the binary representation of the

modulus is hardwired into the logic representation so that the architecture has to be

reconfigured with every new modulus.

The problem of using high radices in Montgomery’s modular multiplication al-

gorithm is the more complex determination of the quotient. This behavior made

a pipelined execution of the algorithm impossible. Reference [9] rewrites the algo-

rithm and avoids thereby any operation involved in the quotient determination. The

necessary pre–computation has to be done only once for a given modulus.

Reference [36] proposes a novel VLSI architecture for Montgomery’s modular mul-

tiplication algorithm. The critical path that determines the clock speed is pipelined.

This is done by interleaving each iteration of the algorithm. Compared to previous

propositions, an improvement of the time–area product of a factor two is reported.

Reference [2] describes a new approach using a Residue Number System (RNS).

The algorithm is implemented with n moduli in the RNS on n reasonably simple

processors. The resulting processing time is O(n).
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2.2 Montgomery Reduction and Systolic Arrays

There have been a number of proposals for systolic array architectures for modular

arithmetic. However, no implementations have been reported to our knowledge. In [8]

a VLSI solution is presented where a modular multiplication is calculated in (4m +

1) · 3m/2 clock cycles, where m is the number of bits of the modulus. That is

approximately four times more cycles than in a conventional solution. In terms of

resources, this design would be suitable for FPGA.

Similar two-dimensional systolic arrays are presented in [10, 35, 36]. For a radix

of two they all propose an m × m matrix of one bit processing elements. With this

configuration 2m modular multiplications are calculated at the same time and the

theoretical throughput is one modular multiplication per clock cycle. In terms of

resources, such a solution is not feasible in either VLSI or FPGA for the bit length

required in public-key algorithms. Even implementing only one row of processing

elements, (resulting in m times slower throughput) into presently available FPGAs is

difficult in terms of resources.

In reference [30] a linear systolic array was obtained by systematically mapping a

two-dimensional graph model onto a one-dimensional systolic array.

Reference [15] describes an architecture based on one row of processing elements

and a radix of two. Squarings and multiplications are computed in parallel. The

system requires n systolic processing elements for an n–bit modular exponentiation,

and the resulting execution time is 2n2 clock cycles.

2.3 Other Work

References [4, 25, 32, 31] describe different algorithms for modular multiplication

avoiding costly division. Reference [3] compares these algorithms. An overview of

previously presented architectures for VLSI implementations and their underlying
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algorithms for modular integer arithmetic is also provided in this contribution. Ref-

erence [5] summarizes the chips available in 1990 for performing RSA encryption.

In Reference [34] a generalization of [4] is presented and some conclusions are

drawn about the choice of the radix.

Reference [29] proposes a radix–4 hardware algorithm. A redundant number rep-

resentation is used and the propagation of carries in additions is therefore avoided.

A processing speed–up of about six times compared to previous work is reported.

More recently an approach [39] has been presented that utilizes pre-computed

complements of the modulus and is based on the iterative Horner’s rule. Compared

to Montgomery’s algorithms these approaches use the most significant bits of an inter-

mediate result to decide which multiples of the modulus to subtract. The drawback of

these solutions is that they either need a large amount of storage space or many clock

cycles to complete a modular multiplication. The authors attempted to overcome

the later problem by a higher clock frequency which is possible due to a simplified

modulo reduction operation.

2.4 Implementations

To our knowledge, the fastest reported software implementation of modular exponen-

tiation [37] computes RSA decryption with a 1024–bit modulus in 43 ms.

In Reference [23] a table with several VLSI hardware implementations for RSA is

published. The fastest chip computes RSA decryption with a 512–bit modulus in 8

ms. These chips are somewhat dated, though. More recently an ASIC implementa-

tion has been reported [16] that computes RSA decryption with a 1024–bit modulus

in 150 ms. However, the author claims in [27] that 1024–bit exponentiation architec-

tures with 10 ms computation time are available. This time corresponds to an RSA

computation time of 2.5 ms if the Chinese remainder theorem is used for speeding–
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up the computation. Only one FPGA implementation of RSA has been reported in

technical literature so far [33]. 970-bit RSA decryption is computed in 5.2 ms in this

approach. A detailed comparison of the modular exponentiation architectures that

we develop in this thesis with the previously reported implementations will be given

in Chapter 9.



Chapter 3

Preliminaries: Public–Key

Algorithms

In this chapter we review the three most popular families of public key algorithms.

Information on secure key length is given as well as speed-up methods proposed in

the literature. We will show that all algorithm families are based on modular long

number arithmetic.

3.1 RSA

RSA was proposed by Rivest, Shamir and Adleman [21] in 1978. The private key of a

user consists of two large primes p and q and an exponent D. The public key consists

of the modulus M = p × q, M =
∑m−1
i=0 mi2

i, mi ∈ {0, 1} and an exponent E such

that E = D−1 mod (p − 1)(q − 1), E =
∑n−1
i=0 ei2

i, ei ∈ {0, 1}. In the remainder of

this thesis we assume that E can be represented by n bits, and M can be represented

by m digits. To encrypt a message X the user computes:

Y = XE modM

9
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Decryption is done by calculating:

X = Y D modM

The identical operations are used for the RSA digital signature scheme. In order to

thwart currently known attacks, the modulus M and thus X and Y should have a

length of 768 – 1024 bits. Both encryption and decryption require algorithms for

computing a modular exponentiation.

For speeding up encryption the use of a short exponent E has been proposed [13].

Recommended by the International Telecommunications Union ITU is the the Fermat

prime F4 = 216+1. Using F4, the encryption is executed in only 17 operations. Other

short exponents proposed include E = 3 and E = 17.

Obviously the same trick can not be used for decryption, as the decryption expo-

nent D must be kept secret. But using the knowledge of the factors of M = q × p,

the Chinese Remainder Theorem [20] can be applied by the decrypting party. Two

m/2 size modular exponentiations and an additional recombination instead of one

m size modular exponentiation are computed in this case. Each modular exponen-

tiation of length m/2 takes 1/4 of the time required for an m – bit exponentiation

(see Chapter 4). If both exponentiations are performed serially, an over–all speed–up

factor of two is achieved. If they are performed in parallel, a speed–up factor of four

is achieved.

3.2 Algorithms Based on the Discrete Logarithm

Problem in Finite Fields

The best known public–key schemes based on the discrete logarithm problem in finite

fields are the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm

(DSA) and the ElGamal encryption scheme (see, e.g., [17]). As an example, we
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present below the Diffie-Hellman key exchange scheme, proposed in 1976 by W. Diffie

and M.E. Hellman [6].

The goal of this protocol is to establish a secret session key between to parties

over an insecure channel. The two parties, Alice and Bob, want to establish a secret

key without Oscar, the adversary, being able to compute this key. During the setup

phase Alice and Bob obtain the public parameters p and α. Parameter p is a large

prime and α a primitive element in Z∗p or a subgroup of Z
∗
p .

The algorithm proceeds as follows:

1a) Alice generates a random key: 1b) Bob generates a random key:

aA ∈ {2, 3, . . .p− 1} (private) aB ∈ {2, 3, . . .p− 1} (private)

2a) Alice computes her public key: 2b) Bob computes his public key:

βA = αaA mod p (public) βB = αaB mod p (public)

3a) Alice sends βA to Bob
βA−→
βB←− 3b) Bob send βB to Alice

4a) Alice computes: 4b) Bob computes:

Ks = β
aA
B = (αaB)aA = αaB·aA mod p Ks = (αaA)aB = αaA·aB mod p

After the final stage of the algorithm, Alice and Bob share a session keyKs. Oscar

cannot regenerate the session key from the public parameters α, βA, and βB because

the two random integers aA and aB, generated by Alice and Bob are private and were

never transmitted over the insecure channel.

The computational complexity of the algorithm lies in steps 2 and 4, the com-

putation of a modular exponentiation. The index–calculus method is the currently

best known attack against discrete logarithm-based schemes. In order to thwart this

attack, the modulus p and thus α should have a length of 768–1024 bits, and even

longer bit lengths are recommended for highly sensitive applications. If α generates

a subgroup of order n, the exponents aA, aB can be restricted to 0 < aA,aB < n. In
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practice, a 160 bit exponent can be used with moduli up to 1024 bit.

3.3 Elliptic Curves

Elliptic Curve public–key cryptosystems were proposed independently in 1986/1987

by Victor Miller [18] and Neil Koblitz [14]. We restrict ourselves in the following to

curves over prime fields, as opposed to curves over extension fields such as GF (2m).

An elliptic curve is a set of all pairs (x,y), x, y ∈ Zp, that fulfill the equation:

y2 ≡ x3 + ax+ b mod p

To perform an addition of two points P1 = (x1,y1), P2 = (x2,y2), P3 = P1 + P2 =

(x3,y3) we need to compute the following equations:

x3 = λ2 − x1 − x2

y3 = λ · (x1 − x3)− y1

λ =




y2−y1
x2−x1

mod p, if P1 
= P2 (addition)
3x21+a

2y1
mod p, if P1 = P2 (doubling)

The complexity of this operation is two multiplications and one inversion (point–

addition) or three multiplications and one inversion (point–doubling), if we ignore

additions and subtractions. The inversion is very costly to implement. To optimize

the addition of two points by avoiding the inversion, the use of projective coordinates

has been proposed. A projective point (X,Y ,Z) in the projective plane can be iden-

tified with a point (x,y) in the affine plane. The homogeneous elliptic curve is a set

of all points (X,Y ,Z) that fulfill the equation:

ZY 2 ≡ X3 + aXZ2 + bZ3 mod p

The addition formulae are now [12]:
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addition: X3 = V A

Y3 = U(V 2X1Z2 −A)− V 3Y1Z2

Z3 = V 3Z1Z2

where U = Y2Z1 − Y1Z2, V = X2Z1 −X1Z2, A = U2Z1Z2 − V 2T , T = X2Z1 +X1Z2

doubling: X3 = 2SH

Y3 = W (4F −H)− 8E2

Z3 = 8S
3

where S = Y1Z1, W = 3X21 + aZ
2
1 , E = Y1S, F = X1E, H = W 2 − 8F

To perform an elliptic curve projective space addition we have to compute 15 multi-

plications, and 12 multiplications are needed for a doubling operation.

A method similar to Algorithm 4.1 combines additons and doublings to a general

point multiplication, e · P , that is, addition of the point P e–times to itself. Point

multiplication is the core operation in elliptic curve public key crypto–systems. If we

use a modulus and operands of lengthm+1 bits, m doublings and an average of m/2

additions have to be executed.

The currently best known attack against elliptic curve public key crypto–systems

uses the Silver–Pohlig–Hellmann algorithm [24] together with Pollard’s rho method.

In order to thwart this attack, the modulus p and thus X, Y , and Z should have

a length of at least 160 bits. We note that this operand bit length is considerably

shorter than in the case of RSA or DL schemes.



Chapter 4

Preliminaries: Modular

Exponentiation

In this chapter we review the square & multiply algorithm, which is the most popular

algorithm for modular exponentiation. Secondly we develop versions of Montgomery’s

modular multiplication algorithm, which are well suited for hardware implementa-

tions.

4.1 Square & Multiply Algorithm

The public–key schemes described in Chapter 3 are based on modular exponentiation

or repeated point addition. Both operations are in their most basic forms done by

the square and multiply algorithm [13].

Algorithm 4.1 compute Z = XE modM , where E =
∑n−1
i=0 ei2

i, ei ∈ {0, 1}

1. Z = X

2. FOR i = n− 2 down to 0 DO

3. Z = Z2 modM

4. IF ei = 1 THEN Z = Z ·X mod M

14
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5. END FOR

Algorithm 4.1 takes 2(n−1) operations in the worst case and 1.5(n−1) on average. To

compute a squaring and a multiplication in parallel we can use the following version

of the square & multiply algorithm [36]:

Algorithm 4.2 computes P = XE mod M , where E =
∑n−1
i=0 ei2

i, ei ∈ {0, 1}

1. P0 = 1, Z0 = X

2. FOR i = 0 to n− 1 DO

3. Zi+1 = Z2i modM

4. IF ei = 1 THEN Pi+1 = Pi · Zi modM

ELSE Pi+1 = Pi

5. END FOR

Algorithm 4.2 takes 2n operations in the worst case and 1.5n on average. A speed–

up can be achieved by applying the l – ary method [13] which is a generalization

of Algorithm 4.1. The l – ary method processes l exponent bits at the time. The

drawback here is that (2l − 2) multiples of X have to be precomputed and stored. A

reduction to 2l−1 pre–computations is possible. The resulting complexity is roughly

n/l multiplications and n squaring operations.

4.2 Montgomery Reduction

As shown in the previous section, modular exponentiation is reduced to a series of

modular multiplications and squaring steps. The algorithm for modular multiplica-

tion described below has been proposed by P. L. Montgomery in 1985 [19]. It is a

method for multiplying two integers modulo M , while avoiding division by M . The

idea is to transform the integers in m-residues and compute the multiplication with

these m-residues. Finally we transform back to the normal representation. This ap-

proach is only beneficial if we compute a series of multiplications in the transform

domain (e.g., modular exponentiation).
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To compute the Montgomery multiplication, we chose a radix R > M , with

gcd(M,R) = 1. Division by R has to be inexpensive, thus an optimal choice is

R = 2m if we assume that M =
∑m−1
i=0 mi2

i. The m-residue of x is xR modM .

We also compute M ′ = −M−1 mod R. Now we define a function MRED(T) that

computes TR−1 modM : This function computes the normal representation of T ,

given T is an m-residue.

Algorithm 4.3 MRED(T): computes a Montgomery reduction of T

T < RM , R = 2m, M =
∑m−1
i=0 mi2

i, gcd(M,R) = 1

1. U = TM ′ mod R

2. t = (T + UM)/R

3. IF t ≥M RETURN t−M

ELSE RETURN t

The result of MRED(T) is t = TR−1 mod M . For the proof of this equation,

see [19].

Now we consider a multiplication of two integers a and b in the transform domain,

where their respective representations are (aR modM) and (bR mod M). To acquire

the result (abR mod M) we feed their product into MRED(T):

MRED((aR modM) · (bR mod M)) = abR2R−1 = abR mod M

For a modular exponentiation we can repeat this step numerous times according to

Algorithm 4.1 or 4.2 to get the final result ZR mod M (Algorithm 4.1) or PnR mod M

(Algorithm 4.2). We finally feed one of these values into MRED(T) to get the result

Z modM or Pn modM .

The initial transform step still requires costly modular reductions. To avoid the

division involved, we can take the following approach. First we compute R2 mod M

using division. This step needs to be done only once for a given cryptosystem. To get

a and b in the transform domain we run MRED(a ·R2 modM) and MRED(b ·R2 mod
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M) to get aR mod M and bR modM . Obviously, any variable can be transformed

in this manner.

We now consider a hardware implementation of Algorithm 4.3: To compute step

2 we need an m × m–bit multiplication and a 2m–bit addition. The intermediate

result can have as many as 2m bits. Instead of computing U at once, we can compute

one digit of an r–radix representation at a time. We have to chose a radix r, such

that gcd(M, r) = 1 [28]. Division by r has to be inexpensive, thus an optimal choice

is r = 2k. All variables are now represented in a basis–r representation. Another

improvement is to include the multiplication A×B in the algorithm.

Algorithm 4.4 [7] Montgomery Modular Multiplication for computing A·B mod M ,

where M =
∑m−1
i=0 (2

k)imi, mi ∈ {0, 1 . . . 2k − 1};

B =
∑m−1
i=0 (2

k)ibi, bi ∈ {0, 1 . . . 2k − 1};

A =
∑m−1
i=0 (2

k)iai, ai ∈ {0, 1 . . . 2k − 1};

A,B < M ; M < R = 2km; M ′ = −M−1 mod 2k; gcd(2k,M) = 1

1. S0 = 0

2. FOR i = 0 to m− 1 DO

3. qi = (((Si + aiB) mod 2k)M ′) mod 2k

4. Si+1 = (Si + qiM + aiB)/2k

5. END FOR

6. IF Sm ≥M RETURN Sm −M

ELSE RETURN Sm

The output of Algorithm 4.4 is Sm = ABR−1 mod M . Considering a radix r = 2k,

we need at most two k× k– bit multiplications and a k–bit addition to compute step

3. For step 4 two k×m– bit multiplications and two m+ k–bit additions are needed.

The maximal bit length of S is reduced to m+k+2 bits, compared to the 2m bits of

Algorithm 4.3. In Section 4.3 we review further improvements of Algorithm 4.4 for

the case of r = 2. Section 4.4 treats the algorithm for larger radix.
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4.3 Montgomery Multiplication for Radix Two

Algorithm 4.5 is a simplification of Algorithm 4.4 for radix r = 2. For the radix

r = 2, the operations in step 3 of Algorithm 4.4 are done modulo 2. The modulus

M must be odd due to the condition gcd(M, 2k) = 1. It follows immediately that

M ≡ 1 mod 2. Hence M ′ ≡ −M−1 mod 2 also degenerates to M ′ = 1. Thus the

multiplication by M ′ mod 2 in step 3 can be omitted.

Algorithm 4.5 [7] Montgomery Modular Multiplication (Radix r = 2) for computing

A ·B modM , where M =
∑m−1
i=0 2

imi, mi ∈ {0, 1};

B =
∑m−1
i=0 2

ibi, bi ∈ {0, 1};

A =
∑m−1
i=0 2

iai, ai ∈ {0, 1};

A,B < M ; M < R = 2m; gcd(2,M) = 1

1. S0 = 0

2. FOR i = 0 to m− 1 DO

3. qi = (Si + aiB) mod 2

4. Si+1 = (Si + qiM + aiB)/2

5. END FOR

6. IF Sm ≥M RETURN Sm −M

ELSE RETURN Sm

The final comparison and subtraction in step 6 of Algorithm 4.5 would be costly

to implement, as an m bit comparision is very slow or expensive in terms of resource

usage . It would also make a pipelined execution of the algorithm impossible. It can

easily be verified that Si+1 < 2M always holds if A, B < M . Sm, however, can not

be reused as input A or B for the next modular multiplication. If we perform two

more executions of the for loop with am+1 = 0 and inputs A, B < 2M , the inequality

Sm+2 < 2M is satisfied. Now, Sm+2 can be used as input B for the next modular

multiplication. We just allow S to have two more bits for intermediate results.

To further reduce the complexity of Algorithm 4.5, B can be shifted up by one

position, i.e., multiplied by two [7]. This results in ai ·B mod 2 = 0 and the addition
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in step 3 is avoided. In the update of Si+1 we replace (Si + qiM + aiB)/2 by (Si +

qiM)/2 + aiB. The cost of this simplification is one more execution of the loop with

am+2 = 0. The algorithm below comprises the just mentioned optimizations.

Algorithm 4.6 [7] MONT R2(A,B): Montgomery Modular Multiplication (Radix

r = 2) for computing A ·B modM , where M =
∑m−1
i=0 2

imi, mi ∈ {0, 1};

B =
∑m
i=0 2

ibi, bi ∈ {0, 1};

A =
∑m+2
i=0 2

iai, ai ∈ {0, 1}, am+1 = 0, am+2 = 0;

A,B < 2M , M < R = 2m+2; gcd(2,M) = 1

1. S0 = 0

2. FOR i = 0 to m+ 2 DO

3. qi = Si mod 2

4. Si+1 = (Si + qi ·M)/2 + ai ·B

5. END FOR

The algorithm above calculates Sm+3 = (2−(m+2)AB) modM . To get the cor-

rect result we need an extra Montgomery modular multiplication by 22(m+2) modM .

However, if further multiplications are required as in exponentiation algorithms, it is

better to pre–multiply all inputs by the factor 22(m+2) modM . Thus every interme-

diate result carries a factor 2m+2. We just need to Montgomery multiply the result

by “1” to eliminate that factor.

The final Montgomery multiplication with “1” insures that our final result is

smaller than M . Consider Algorithm 4.6 with B < 2M and A = (0, . . . , 0, 1). We

will get S1 = a0 · B = B < 2M . As all remaining ai = 0, we get at most Si+1 =

(Si +M)/2 → M . If only one qi = 0 (i = 1, 2 . . .m + 2), then Si+1 = Si/2 < M

(probability: 1− 2−(m+2)).

The computational complexity of Algorithm 4.6 lies in the two additions of m

bit operands for computing Si+1. Recall that m ≈ 160 − 1024 is of great interest in

public–key algorithms. As the propagation of m carries is too slow and an equivalent
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carry look ahead logic requires to many resources, two different strategies have been

pursued in literature:

1. Redundant representation: The intermediate results are kept in redundant form.

Resolution into binary representation is only done at the very end and for feeding

the intermediate result back as ai in Algorithm 4.6.

2. Systolic Arrays: Typically m processing units calculate 1 bit per clock cycle.

The computed carries, qi and ai are “pumped” through the processing units.

As these signals have to be distributed only between adjacent processing units,

a faster clock speed and a resulting higher throughput should be possible. The

cost is a higher latency and possibly more resources.

4.4 High–Radix Montgomery Algorithm

The goal of this section is to improve Algorithm 4.4 to make it suitable for a hardware

implementation. At first we avoid the costly comparison and subtraction of step 6.

The output Sm has to be small enough to be fed back in the algorithm as A or B.

We change the conditions to 4M < 2km and A,B < 2M . This results in Sm < 2M

as needed for further processing. The penalty is two more executions of the loop (see

also Section 4.3 for k = 1).

In Section 4.3 the multiplication in the quotient qi determination of Algorithm 4.4

was avoided. This is also possible for higher radixes [9]. M has to be transformed

to M̃ = (M ′ mod 2k)M . This step must be performed only once for a given crypto–

system. The conditions for the algorithm are 4M̃ < 2km and A,B < 2M̃ now.

Thus for the same bit length of M the loop has to be executed one more time. An

other penalty is a larger range of Sm. Algorithm 4.7 comprises the above mentioned

improvements.
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Algorithm 4.7 [9] Montgomery Modular Multiplication for computing A·B mod M ,

where M =
∑m−3
i=0 (2

k)imi, mi ∈ {0, 1 . . . 2k − 1};

M̃ = (M ′ mod 2k)M , M̃ =
∑m−2
i=0 (2

k)im̃i, m̃i ∈ {0, 1 . . . 2k − 1};

B =
∑m−1
i=0 (2

k)ibi, bi ∈ {0, 1 . . . 2k − 1};

A =
∑m−1
i=0 (2

k)iai, ai ∈ {0, 1 . . . 2k − 1};

A,B < 2M̃ ; 4M̃ < 2km; M ′ = −M−1 mod 2k

1. S0 = 0

2. FOR i = 0 to m− 1 DO

3. qi = (Si + aiB) mod 2k

4. Si+1 = (Si + qiM̃ + aiB)/2k

5. END FOR

The quotient qi determination complexity can further be reduced by replacing

B by B · 2k. Since aiB mod 2k ≡ 0, step 3 is reduced to qi = Si mod 2k. The

addition in step 3 is avoided at the cost of an additional iteration of the loop, to

compensate for the extra factor 2k in B. A Montgomery algorithm optimized for

hardware implementation is shown below:

Algorithm 4.8 [9] MONT RH(A,B):Montgomery Modular Multiplication for com-

puting A ·B mod M , where M =
∑m−3
i=0 (2

k)imi, mi ∈ {0, 1 . . . 2k − 1};

M̃ = (M ′ mod 2k)M , M̃ =
∑m−2
i=0 (2

k)im̃i, m̃i ∈ {0, 1 . . . 2k − 1};

B =
∑m−1
i=0 (2

k)ibi, bi ∈ {0, 1 . . . 2k − 1};

A =
∑m
i=0(2

k)iai, ai ∈ {0, 1 . . . 2k − 1}, am = 0;

A,B < 2M̃ ; 4M̃ < 2km; M ′ = −M−1 mod 2k

1. S0 = 0

2. FOR i = 0 to m DO

3. qi = (Si) mod 2k

4. Si+1 = (Si + qiM̃)/2k + aiB

5. END FOR

The result of Algorithm 4.8 is Sm+1 = ABR−1 modM where R = 2km modM .

We perform the same pre–computations as mentioned in Section 4.3: Pre–multiply
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all inputs by the factor 22km modM . Thus every intermediate result carries a factor

2km. We just need to Montgomery multiply the final result by 1 to eliminate that

factor.

The final Montgomery multiplication with 1 makes sure our final result is smaller

than M̃ . Consider Algorithm 4.8 with B < 2M̃ and A = (0, . . . , 0, 1). We will

obtain S1 = a0 · B = B < 2M̃ . As all remaining ai = 0, we get at most Si+1 =

(Si+(2k−1)M̃)/2k → M̃ . If only one qi 
= 2k−1, (i = 1, 2 . . .m), qi ∈ {0, 1 . . . 2k−1},

then Si+1 < M̃ . M̃ , however, can be 2k− 1 times larger than M and the same is true

for the result of a modular exponentiation Sm+1. The last quotient qm and the factor

M ′ mod 2k might determine the number of timesM has to be subtracted from Sm+1.

This behavior, however, has not been studied in this thesis. We assume that the final

comparison and eventual modular reduction step is performed outside of our design.

Algorithm 4.8 is used for the architecture described in Chapter 7. The designs we

implemented have moduli of 160, 256, 512, 768, and 1024 bits. The radix chosen was

r = 24 = 16. For the rest of this thesis we use the following convention for specifying

the complexity: M =
∑m−1
i=0 (2

k)imi ⇒ M̃ =
∑m
i=0(2

k)im̃i, B =
∑m+1
i=0 (2

k)ibi, A =
∑m+2
i=0 (2

k)iai, am+2 = 0. The loop in Algorithm 4.8 is executed m + 3 times and

the response is Sm+3 = ABR−1 modM , where R = 2k(m+2) modM . Thus the pre–

computation factor is 22k(m+2) modM .

The computational complexity of Algorithm 4.8 lies in the two additions of m+ k

bit operands for computing Si+1. Another costly operation is the computation of the

multiples of M and B in step 4.



Chapter 5

General Design Considerations

In this chapter we present some of the relevant features of the Xilinx XC4000 Series

FPGAs and introduce a metric for FPGA cost and performance evaluation. Based on

these features we derive some characteristics for our architectures. The pros and cons

of two different approaches to implement Montgomery’s algorithm are exhibited.

5.1 Xilinx XC4000 Series FPGAs

5.1.1 Configurable Logic Blocks

An FPGA device consists of three types of reconfigurable elements, the Configurable

Logic Blocks (CLBs), I/O blocks (IOBs) and routing resources [38].

Figure 5.1.1 shows the structure of a CLB. An XC4000 CLB is made up of three

look–up tables (LUT) F , G, and H, two flip-flops and programmable multiplexers.

Any boolean function of 5 inputs, any two functions of 4 inputs and some functions of

up to 9 inputs can be computed in one CLB. The multiplexers can route the outputs

of the look–up tables directly to the outputs or to the flip-flops. In the first case the

flip-flops can be utilized to store direct inputs. This is important for a design with a

large amount of registers. The same CLB can be used to store two bits and compute

two independent logic functions. Thus a considerable amount of resources can be

23
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programmed during
configuration

G
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EC
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H

Figure 5.1: XC4000 CLB Structure [38]

saved as will be shown in Sections 6.2 and 7.2.

5.1.2 Routing Topologies

Programmable routing resources connect the CLBs and IOBs into a network. The

structure of XC4000 FPGA devices is shown in Figure 5.2. A matrix of switch boxes

is placed over the CLB array. These switch boxes make it possible to connect any

two CLBs together.

Routing in the XILINX FPGA is accomplished through a hierarchal structure.
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Programmable Switch Matrices CLB

Figure 5.2: Xilinx FPGA structure [38]

Each row or column of routing lines between CLBs has a number of different types

of lines. These include single, double, quad, long, and global lines. Single lines

route signals between adjacent CLBs. Double lines stretch over two CLBs. For the

architectures described in Chapters 6 and 7, devices of the XC4000XL and XC4000XV

families were used. Table 5.1 shows their routing resources per CLB:

The numbers show that a large amount of connections are available for closely

located CLBs. On the other hand routing gets increasingly difficult for CLBs further

apart. In Section 5.2.1 we will discuss some consequences this issue causes for the

choice of our architectures. For a detailed description of the routing structure inside

the XILINX FPGA, refer to [38].
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Table 5.1: Routing per CLB in XC4000XL and XC4000XV devices [38]

Vertical Horizontal

Singles 8 8

Doubles 4 4

Quads 12 12

Longlines 10 6

Direct Connects 2 2

Globals 8 0

Carry Logic 1 0

5.1.3 Special Features of the XC4000 Family

The XC4000 devices contain dedicated, hard–wired carry logic to both accelerate and

condense arithmetic functions such as adders and counters [38]. An n bit ripple carry

adder is implemented in n/2 + 2 CLBs. The ripple carry outputs are routed between

CLBs on high speed dedicated paths. The maximum delay from the operand input

to the sum output of a N–bit adder is approximately:

tpd = 4.5 +N · 0.35 [ns]

For an n–bit counter, the minimum clock period is approximately:

tclk−clk = 9.5 +N · 0.35 [ns]

These values vary slightly for different devices and speed grades.

Another very useful feature of the XC4000 devices is the possibility to implement

RAM in CLBs. A single CLB can be programmed as a 16 × 2 bit or 32 × 1 bit

ROM/RAM or as a 16 × 1 bit Dual Port RAM. RAM with larger address width

requires considerably more resources. Table 5.2 shows the amount of CLBs used for

implementing 64× 2–bit, 128× 2–bit, and 256× 2–bit RAM and DP RAM blocks.
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Table 5.2: Amount of CLBs used for RAM and DP RAM blocks on XC4000 devices

64× 2–bits 128× 2–bits 256 × 2–bits

CLBs CLBs CLBs

RAM 6 12 24

DP RAM 16 32 64

5.1.4 Cost and Speed Evaluation

In previous work [36, 35, 7] related to modular arithmetic architectures, the gate

count model has been used for cost evaluation and the gate delay model for speed

evaluation. This is not appropriate for FPGAs. As the functional unit of an FPGA

is the CLB, we evaluate the cost (C) in number of CLBs. The operation time (T)

consists of logic delay in the CLBs and routing delay and is obtained from Xilinx’s

Timing Analyzer software. As a third parameter we use the time–area product (TA).

It is defined by time multiplied by cost.

5.2 Architectures Suitable for FPGAs

5.2.1 Systolic Array vs. Redundant Representation

As described in Section 4.3, there have been two principle approaches proposed to

compute Montgomery modular multiplication.

1. Avoid the carry propagation delays by keeping intermediate results in redundant

representation. Resolution into binary representation is only done at the very

end and for feeding the intermediate result back as ai in Algorithm 4.8.

2. Systolic Arrays: Processing units compute successive values for a single digit

position. The computed carries, qi and ai, are “pumped” through the processing

units.
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A solution following approach 1 has already been implemented in FPGAs [33]. A

matrix of 16 FPGAs has been used. The second approach using systolic arrays has

drawn considerable attention in the research community. However, no architectures

that specifically target FPGAs have been reported, nor are there reports of ASIC

implementations of such systolic architectures.

The question at hand is which solution is better suited for an FPGA implementa-

tion. To answer this we first take a closer look at the equation we have to implement

(Section 4.4):

qi = Si mod 2
k

Si+1 = (Si + qi · M̃)/2
k + ai ·B (5.1)

Equation (5.1) is executed iteratively to compute a modular multiplication. A

series of modular multiplications combine to a modular exponentiation according to

the square & multiply Algorithms 4.1 or 4.2. Additionally a pre–computation and

post–computation are necessary (Section 4.3 and 4.4).

An architecture comprising these computations has two major parts:

1. The arithmetic part computes Equation (5.1). The operands B, M̃ and Si must

be stored and multiples of M̃ and B have to be calculated. Furthermore two

additions have to be computed. To avoid a long carry chain, we can divide the

adder into units that typically compute one digit of Si+1 in Equation (5.1). If

the units compute one iteration of (5.1) at the same time, the result Si+1 must

be kept in redundant representation. A separate adder is needed to resolve the

redundancy of Si+1 for further processing. In a systolic array approach the units

compute an iteration of 5.1 successively. The overflow of a unit is fed as carry

to the next unit. In both approaches we have to globally feed qi and ai to all

units. The quotient qi is computed once per iteration in the least significant

unit. The result of the modular multiplication Sm+3 must be stored and reused
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as operand A for the successive squaring. Therefore all digits of Sm+3 need to

be distributed to all units of the design.

2. A control and storage part contains the finite state machine (FSM) that con-

trols the execution of the square & multiply algorithm and the pre– and post–

computations. We also need storage elements for the pre–computation factor,

the exponent and operand A. A is processed serially and has to be distributed

digit by digit globally over the arithmetic part.

Clearly, the arithmetic part will utilize most of the resources. Considerations concern-

ing its design will decide between an systolic array and a redundant representation

architecture. Some considerations concerning the control part are discussed in Sub-

section 5.2.2.

Two recent MS theses [22] and [11] in the same field found that a major problem

when implementing designs in FPGAs, is the availability of enough routing resources.

As discussed in Section 5.1.2, the problem worsens if there are many connections

between CLBs which are far apart. When considering an implementation of an ar-

chitecture with redundant representation there are some routing issues to deal with:

To compute Equation (5.1) with a radix r = 2k, qi and ai, each k bits wide and

some control signals have to be distributed globally over the arithmetic part. As

all redundant digits of Si+1 are computed concurrently, the signals have to arrive at

their destination at the same time. The resulting high fan–out causes also considerable

propagation delays. Another issue is feeding B and M̃ to the locations where they are

stored and processed. To avoid the full size bus that feeds these signals in parallel, we

need a systolic approach at least for the loading of B and M̃ . Lastly, the redundant

result Sm+1 of a modular multiplication has to be resolved and distributed as A for

further processing. As the low order bits of A are needed first, the resolution of

the most significant bits is not critical in terms of propagation delay. The routing,

however, is an issue as the full length result has to be stored and distributed all over
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the arithmetic part.

Routing in a systolic array architecture is much less critical:

In a systolic array architecture we have typically m units, each processing k bits.

The k signals qi and ai and the control signals are “pumped” through the units,

from register to register. k bits of Si+1 are computed per clock cycle. Only k bits

of the result Sm+1 of a modular multiplication are valid at the time. Thus with an

additional k bit register per unit we can “pump” the result back through the units.

We can further store the result in RAM, k bits at the time, for further processing.

So far no connections stretch over more than one unit. If reasonably small units are

designed routing is not problematic. B and M̃ can be loaded over k bit wide buses.

The load signal propagates through the units and activates the clock enable of one

unit per cycle. Thus only 2k signals have to be routed all over the design.

Summarizing the last two paragraphs, three major advantages of a systolic array

architecture were found.

routing resources Most connections are within one unit or are stretching to an

adjacent unit. The availability of enough routing resources is much less an issue

compared to an architecture where signals have to be distributed all over the

design.

propagation delay A higher clock frequency is possible due to less additional rout-

ing delays of long paths.

synchronous design A fully synchronous design is possible, as we do not need

an asynchronous carry completion adder as described in [33], to resolve the

redundant representation of the result S.

In contrast to these three advantage, we possibly need more resources to implement

a systolic array. A considerable amount of registers is needed for “pumping” the

operand A, the quotient Q, the control word and the result S consecutively through
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the units. CLBs used for implementing registers, however, can be reused for logic

functions as pointed out in Section 5.1.1.

5.2.2 State Machine and Storage Elements

We chose a synchronous methodology for all designs presented in this thesis. In the

synchronous approach, the clock period is determined by the longest combinatorial

delay between two registers.

One of the major goals of this work was to design a high–speed modular expo-

nentiation architecture. This can be done by reducing the amount of iterations in

Algorithm 4.8 by choosing a high radix. Secondly the propagation delay of Step 4 in

the same algorithm needs to be optimized. This step is typically computed in one

clock cycle and determines the minimum clock period.

The FSM and central storage elements have to be designed in such a way that

their minimum clock period is smaller than the combinatorial delay of the arithmetic

part. To speed–up the FSM as much as possible “one–hot encoding” was used. Each

state is represented with an individual bit, resulting in decreased logic complexity

associated with each state [1]. On the other hand more registers are needed. We

accept this minor disadvantage as the FSM uses only a small percentage of the whole

design.

In the central storage elements we need to store data serially. Such data includes

the pre–computation factor, the exponent, and intermediate results of the square &

multiply algorithm. The usage of RAM saves a large amount of resources compared

to registers. A 1024 bit exponent stored in a 16 × 64-bit RAM uses 32 CLBs, while

an equivalent register needs 512 CLBs. RAM with address width larger than 4 bit

require more resources and feature larger access delays, due to additional address

decoding. The RAM have to be designed in such a way that their access time does

not determine the minimal clock period of the design.



Chapter 6

Design 1: A Resource Efficient

Architecture

In this chapter we describe our first architecture. The goal was to design an area

efficent architecture using Algorithm 4.6. As target devices we use the Xilinx XC4000

family as described in Chapter 5. The results of the actual implementation of the

architecture will be described in Chapter 9.

6.1 Design Overview

A general radix 2 systolic array as proposed in [10, 35, 8] utilizes m times m pro-

cessing elements, where m is the number of bits of the modulus and each element

processes a single bit. 2m modular multiplications can be processed simultaneously,

featuring a throughput of one modular multiplication per clock cycle and a latency

of 2m cycles. As this approach would result in unrealistically large CLB counts for

the bit length required in modern public–key schemes, we implemented only one row

of processing elements. With this approach two modular multiplications can be pro-

cessed simultaneously and the performance reduces to a throughput of two modular

multiplications per 2m cycles. The latency remains 2m cycles.

32
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The second consideration was the choice of the radix r = 2k. Increasing k reduces

the amount of steps to be executed in Algorithm 4.8. Such an approach, however,

requires more resources: The main expense lies in the computation of the 2k multiples

of M and B in Algorithm 4.8. They can either be pre-computed and stored in RAM

or calculated by a multiplexer network as proposed in Reference [9]. Clearly, the CLB

count becomes smallest for r = 2, as no multiples of M or B have to be calculated

or pre–computed.

Using a radix r = 2, the following equation has to be implemented (Algorithm 4.6):

Si+1 = (Si + qi ·M)/2 + ai ·B, qi, ai ∈ {0, 1}

To further reduce the required number of CLBs we took the following measures:

1. A considerable amount of CLBs are used in the overhead of a processing element

(unit). At least ai, qi and two control bits have to be stored and decoded in each

unit. If only one bit is processed per unit, the overhead is required m times.

In order to save resources we implemented units that process u = 4,8,16 bits.

With this approach we need only m/u instead of m units, and a considerable

amount of overhead can be saved. For processing more than one bit per unit

large adders are needed. Thus we expect the processing time and resource

requirements to increase exponentially. The possibility to use the fast carry

ripple adder as described in Section 5.1.3, however, causes processing time and

CLB count to grow only proportionally.

2. Computing u bits per unit, the operands Si, B and M have all u bits in each

unit. The result Si+1 has a maximum of u+ 2 bits, u result bits and two carry

bits that are fed to the next unit. Instead of using two adders and computing

the two additions serially in each execution of the loop, we pre-compute B+M

and store the result in a register. The resulting carry is fed to the next unit.

Thus we need only one adder, that adds Si to 0, B, M or B +M . This adder
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is also used for computing B +M . With this approach the result Si+1 is only

u+ 1 bits wide and just one carry bit is fed to the next unit.

Similar to the approach in [15] we compute squarings and multiplications in par-

allel. As explained in Section 6.3, this measure fully utilizes every cycle.

Design 1 can be divided hierarchically into three levels.

Processing Element Computes u bits of a modular multiplication.

Modular Multiplication An array of processing elements computes a modular

multiplication.

Modular Exponentiation Combine modular multiplications to a modular expo-

nentiation according to Algorithm 4.2.

In the following we describe the system with a bottom–up approach.

6.2 Processing Elements

Figure 6.1 shows the implementation of a processing element.

In the processing elements we need the following registers:

• M-Reg (u bits): storage of the modulus

• B-Reg (u bits): storage of the B multiplier

• B+M-Reg (u bits): storage of the intermediate result B +M

• S-Reg (u+ 1 bits): storage of the intermediate result (inclusive carry)

• S-Reg-2 (u− 1 bits): storage of the intermediate result

• Control-Reg (3 bits): control of the multiplexers and clock enables
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Figure 6.1: Processing element (unit) of Design 1 that computes Si+1 = (Si + qi ·

M)/2 + ai ·B, qi, ai ∈ {0, 1}

• ai,qi (2 bits): multiplier A, quotient Q

• Result-Reg (u bits): storage of the result at the end of a multiplication

The registers need a total of (6u + 5)/2 CLBs, the adder u/2 + 2 CLBs, the

multiplexers 4 · u/2 CLBs, and the decoder 2 CLBs. The possibility of re–using

registers for combinatorial logic allows some savings of CLBs. MuxB and MuxRes

are implemented in the CLBs of B-Reg and Result-Reg, Mux1 and Mux2 partially in

M-Reg and B+M-Reg. The resulting costs are approximately 3u+ 4 CLBs per u–bit

processing unit. That is 3 to 4 CLBs per bit, depending on the unit size u.

Let’s compare this expense to the resources needed for a one bit unit implemen-
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tation (u = 1). We would need a total of seven bit register space (M , B, ai, qi,

control(2) and result) plus eventually a B + M register and a 4-bit input – 3 bit

output (2 carries, result) adder. Together with one or two CLBs for decoding the

control word and multiplexing, we would have a total of 6 or 7 CLBs per unit. With

such a large amount of CLBs we can implement a much faster architecture, as we will

see in Chapter 7.

Before a unit can compute a modular multiplication, the system parameters have

to be loaded. M is stored into M-Reg of the unit. At the beginning of a modular

multiplication, the operand B is loaded from either B-in or S-Reg, according to the

select line of multiplexer B-Mux. The next step is to compute M +B once and store

the result in the B+M-Reg. This operation needs two clock cycles, as the result is

clocked into S-Reg first. The select lines of Mux1 and Mux2 are controlled by ai or

the control word respectively.

In the following 2(m+ 2) cycles a modular multiplication is computed according

to Algorithm 4.6. Multiplexer Mux1 selects one of its inputs 0, M , B, B +M to be

fed in the adder according to the value of the binary variables ai and qi. Mux2 feeds

the u− 1 most significant bits of the previous result S-Reg2 plus the least significant

result bit of the next unit (division by two/shift right) into the second input of the

adder. The result is stored in S-Reg for one cycle. The least significant bit goes into

the unit to the right (division by two / shift right) and the carry to the unit to the

left. In this cycle a second modular multiplication is calculated in the adder, with

updated values of S-Reg2, ai and qi. The second multiplication uses the same operand

B but a different operand A.

At the end of a modular multiplication, Sm+3 is valid for one cycle at the output

of the adder. This value is both stored into Result-Reg, as fed via S-Reg into B-Reg.

The result of the second multiplication is fed into Result-Reg one cycle later.
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6.3 Modular Multiplication

Figure 6.2 shows how the processing elements are connected to an array for computing

an m–bit modular multiplication. To compute Si+1 = (Si + qi ·M)/2 + ai · B with

M =
∑m−1
i=0 2

i · mi, we need m/u + 1 units. Unit1 . . .Unit(m/u)−1 are designed as

described in Section 6.2. Unit0 has only u − 1 B inputs as B0 is added to a shifted

value Si + qiM . The result bit S-Reg0 is always zero according to the properties of

Montgomery’s algorithm. Unitm/u processes the most significant bit of B and the

temporary overflow of the intermediate result Si+1. There is no M input into this

unit.
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Figure 6.2: Systolic Array for modular multiplication

The inputs and outputs of the units are connected to each other in the following

way. The control word, qi and ai are pumped from right to left through the units.

The result is pumped from left to right. The carry-out signals are fed to the carry-in

inputs to the right. Output S 0 Out is always connected to input S 0 In of the unit

to the right. This represents the division by 2 of the equation.

At first the modulus M is fed into the units. To allow enough time for the signals

to propagate to all the units, M is valid for two clock cycles. We use two M-Buses,

the M-even-Bus connected to all even numbered units unit0, unit2 . . . unitm/u, and

the M-odd-Bus connected to all odd numbered units unit1, unit3 . . . unit(m/u)−1. This
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approach allows to feed u bits of M̃ to the units per clock cycle. Thus it takes m/u

cycles to load the full modulus M .

The operand B is loaded similarly. The signals are also valid for two clock cycles.

We also use two B-Buses, the B-even-Bus connected to all even numbered units

unit0, unit2 . . . unitm/u, and the B-odd-Bus connected to all odd numbered units unit1,

unit3 . . . unit(m/u)−1.

After the operand B is loaded, the computation of Algorithm 4.6 can begin.

Starting at the rightmost unit0, the control word, ai, and qi are fed into their registers.

The adder computes S-Reg-2 plus B, M , or B +M in one clock cycle according to

ai and qi. The least significant bit of the result is read back as qi+1 for the next

computation. The resulting carry bit, the control word, ai and qi are pumped into

the unit to the left, where the same computation takes place in the next clock cycle.

In such a systolic fashion the control word, ai, qi, and the carry bits are pumped from

right to left through the whole unit array. The division by two in Algorithm 4.6 leads

also to a shift–right operation. The least significant bit of a unit’s addition (S0) is

always fed back into the unit to the right. After a modular multiplication is completed,

the results are pumped from left to right through the units and consecutively stored

in RAM for further processing.

A single processing element computes u bits of Si+1 = (Si + qi ·M)/2 + ai ·B of

Algorithm 4.6. In clock cycle i, unit0 computes bits 0 . . . u − 1 of Si. In cycle i+ 1,

unit1 uses the resulting carry and computes bits u . . . 2u − 1 of Si. Unit0 uses the

right shifted (division by 2) bit u of Si (S0) to compute bits 0 . . . u−1 of Si+1 in clock

cycle i+ 2.

Clock cycle i + 1 is unproductive in unit0 while waiting for the result of unit1.

This inefficiency is avoided by computing squares and multiplications in parallel ac-

cording to Algorithm 4.2. Both pi+1 and zi+1 depend on zi. We therefore store the

intermediate result zi in the B–Registers and feed zi and pi into the ai input of the
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units for squaring and multiplication.

6.4 Modular Exponentiation

6.4.1 Data Flow

Figure 6.3 shows how the array of units is utilized for modular exponentiation. At

the heart of our design is a finite state machine (FSM) with 17 states. An idle

state, four states for loading the system parameters, and four times three states

for computing the modular exponentiation. The actual modular exponentiation is

executed in four main states, pre-computation1, pre-computation2, computation, and

post-computation. Each of these main states is subdivided in three sub–states, load-B,

B+M, and calculate-multiplication. The control word fed into control-in is encoded

according to the states. The FSM is clocked at half the clock rate. The same is true

for loading and reading the RAM and DP RAM elements. This measure makes sure

the maximal propagation time is in the units. Thus the minimal clock cycle time and

the resulting speed of a modular exponentiation relates to the effective computation

time in the units and not to the computation of overhead.

Before a modular exponentiation is computed, the system parameters have to be

loaded. The modulus M is read 2u bits at the time from I/O into M-Reg. Reading

starts from low order bits to high order bits. M is fed from M-Reg u bits at the

time alternatively to M-even-Bus and M-odd-Bus. The signals are valid two cycles

at a time. The exponent E is read 16 bits at the time from I/O and stored into

Exp-RAM. The first 16 bit wide word from I/O specifies the length of the exponent

in bits. Up to 64 following words contain the actual exponent. The pre–computation

factor 22(m+2) mod M is read from I/O 2u bits at the time. It is stored into Prec-RAM.

In state Pre-compute1 we read the X value from I/O, u bits per clock cycle, and

store it into DP RAM Z. At the same time the pre–computation factor 22(m+2) mod
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Figure 6.3: Design for a modular exponentiation

M is read from Prec RAM and fed u bits per clock cycle alternatively via the

B-even-Bus and B-odd-Bus to the B–registers of the units. In the next two clock

cycles, B +M is calculated in the units.

Now we begin calculating the pre–computation. The initial values of Algorithm 4.2

are P0 = 1 and Z0 = X. Both values have to be multiplied by 22(m+2) mod M . This

can be done in parallel as both multiplications use a common operand 22(m+2) modM ,

that is already stored in B. The time division multiplexing unit (TDM) reads X from

DP RAM Z and multiplexes X and 1, 0 . . . 0 on the ai–bus into the units.

After 2(m+3) clock cycles the low order bits of the result of MONT R2(22(m+2) mod

M , X)= X · 2m+2 modM appear at Result-Out and are stored in DP RAM Z. The

low order bits of the result of MONT R2(22(m+2) mod M , 1)= 2m+2 modM appear

at Result-Out one cycle later and are stored in DP RAM P. This process repeats for

2m cycles, until all digits of the two results are saved in DP RAM Z and DP RAM P.

The result X · 2m+2 modM is also stored in the B-registers of the units.

In state pre-compute2 the actual computation of Algorithm 4.2 begins. For both
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calculations of Z1 and P1 we use Z0 as an operand. This value is stored in the B-

registers. The second operand Z0 or P0 respectively, is read from DP RAM Z and

DP RAM P and “pumped” via TDM as ai into the units. After another 2(m + 3)

clock cycles the low order bits of the result of Z1 and P1 appear at Result-Out. Z1 is

stored in DP RAM Z. P1 is needed only if the first bit of the exponent e0 is equal to

“1”. Depending on e0, P1 is either stored in DP RAM P or discarded.

In state compute the loop of Algorithm 4.2 is executed n − 1 times. Zi in

DP RAM Z is updated after every cycle and “pumped” back as ai into the units.

Pi in DP RAM P is updated only if the relevant bit of the exponent ei is equal to

“1”. In this way always the last stored Pi is “pumped” back into the units.

After the processing of en−1, the FSM enters state post-compute. Pn = XE mod

M · 2m+2 mod M is stored in DP RAM P now. To eliminate the factor 2m+2 (Sec-

tion 4.3) from the result Pn, we compute a final Montgomery multiplicationMONT(Pn,

“1”). First the vector 0, 0, . . . 0, 1 is fed alternatively via the B-even-Bus and B-odd-Bus

into the B–registers of the units. Pn is “pumped” from DP RAM P as ai into the

units. After state post-compute is executed, u bits of the result Pn = XE modM are

valid at the I/O port. Every two clock cycles another u bits appear at I/O. State

pre-compute1 can be re–entered immediately now for the calculation of another X

value.

A full modular exponentiation is computed in 2(n+2)(m+4) clock cycles. That

is the delay it takes from inserting the first u bits of X into the device until the first

u result bits appear at the output. At that point, another X value can enter the

device. With a additional latency of m/u clock cycles the last u bits appear on the

output bus.
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6.4.2 Function Blocks

In this subsection we explain the function blocks in Figure 6.3: DP RAM P, DP RAM Z,

EXP RAM, and Prec RAM.

Figure 6.4 shows the design of DP RAM Z. An m/u × u bit DP RAM is at the

heart of this unit. It has separate write (A) and read (DPRA) address inputs. The
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Figure 6.4: DP RAM Z Unit

write-counter counting up to m/u computes the write address (A). The write-counter
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starts counting (clock-enable) in sub–states B-load when the first u bits of Zi appear

at data in. At the same time the enable signal of the DP RAM is active and data

is stored in DP RAM. Terminal-count resets count–enable and write–enable of DP

RAM when m/u is reached. The read-counter is enabled in the sub–states compute.

When read-counter reaches its upper limit m+2, terminal-count triggers the FSM to

transit into sub-state B-load. The log2(m/u) most significant bits of the read-counter

value (q out) address DPRA of the DP RAM. Every u cycles another value stored in

the DP RAM is read. This value is loaded into the shift register when the log2(u)

least significant bits of q out reach zero. The next u cycles u bits appear bit by bit at

the serial output of the shift register. The last value of zi is stored in a u–bit register.

This measure allows us to select an m/u×u–bit DP RAM instead of an 2m/u×u–bit

DP RAM (m = 2x, x = 8, 9, 10).

DP RAM P works almost the same way. It has an additional input ei, that acti-

vates the write-enable signal of the DP RAM in the case of ei = 1.

Figure 6.5 shows the design of Exp RAM. For the simulation results please refer

to Figure C.9 in the appendix. In the first cycle of the load-exponent state, the first

word is read from I/O and stored into the 10–bit register. Its value specifies the

length of the exponent in bits. In the next cycles the exponent is read 16–bit at a

time and stored in RAM. The storage address is computed by a 6–bit write counter.

At the beginning of each compute state the 10–bit read counter is enabled. Its 6

most significant bits compute the memory address. Thus every 16th activation, a

new value is read from RAM. This value is stored in the 16–bit shift–register at the

same time (when the 4 least significant bits of read counter are equal to zero). When

read counter reaches the value specified in the 10–bit register, the terminate signal

triggers the FSM to enter state post-compute.

Figure 6.6 shows the design of Prec RAM. In state load–pre–factor the pre-

computation factor is read 2u bits at the time from I/O and stored in RAM. A
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Figure 6.5: Exp RAM Unit

counter that counts up to m/2u addresses the RAM. When all m/2u values are

read, the terminal-count signal triggers the FSM to leave state load–pre–factor. In

state pre–compute1 the pre–computation factor is read from RAM and fed to the

B–registers of the units. The counter is incremented each clock cycle and 2u bits are

loaded in the 2u–bit register. From there u bits are fed on B-even-bus each positive

edge of the clock. On the negative clock edge, u bits are fed on the B-odd-bus via the

u–bit register.
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Chapter 7

Design 2: A Speed Efficient

Architecture

In this chapter we describe our second architecture. The goal was to design a speed

efficient architecture using Algorithm 4.8 with a larger radix. As target devices we

use the Xilinx XC4000 family as described in Chapter 5. The results of the actual

implementation of the architecture will be described in Chapter 9.

7.1 Design Overview

Design 1, described in Chapter 6, was optimized in terms of resource usage. In order

to speed–up the design two approaches can be taken. We can either try to reduce

the cycle time, or the number of cycles per modular multiplication. Reduction of the

cycle time can be achieved by computing one instead of u bits per unit. Compared

to a design with 4 bit units, the resulting speed–up of approximately 20% (without

three ripple carry delays) comes at the expense of additional 30% resources. Thus

the time–area product becomes worse. Section 4.4 describes how the number of steps

per modular multiplication can be reduced. Using a radix r = 2k, k > 1, reduces

the number of steps in Algorithm 4.6 by a factor k. The following computation of

46
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Algorithm 4.8 has to be executed m+ 3 times (i = 0 to m+ 2):

qi = Si mod 2
k

Si+1 = (Si + qi · M̃)/2
k + ai ·B

where B =
∑m+1
i=0 (2

k)i · bi;

A =
∑m+2
i=0 (2

k)i · ai, am+2 = 0;

M̃ =
∑m
i=0(2

k)i · m̃i;

M =
∑m−1
i=0 (2

k)i ·mi;

Please note that qi and ai are digits with k bits. One of the major problems when im-

plementing this equation is computing multiples of B and M̃ . Reference [9] proposes

a multiplexer network. This approach is not suitable for a systolic array implemen-

tation into FPGA because of the following reasons:

1. For a radix of 22 the multiplexer could be implemented in one CLB per bit

length, but already a radix of 24 uses more than four CLBs per bit. This would

result in unrealistically large CLB counts for secure bit length.

2. In a systolic array we typically compute k bits per processing element. With

a multiplexer solution the internal bit length becomes 2k resulting in twice as

much costs for adders and registers.

To avoid the doubling of the internal bit length of a unit the following approach

which is optimized for the CLB architectures at hand can be taken.

1. Pre-compute the multiples of B and M̃ at the beginning of the execution of

Montgomery’s algorithm and store the results for further use.

2. Let the carries of this pre–computations propagate to the units to the left.

If a unit processes k bits, the stored multiples will also have k bits and the internal

bit length will not exceed k + 2 bits (addition of 3 operands). The cost is additional
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2k clock cycles for calculating the 2k multiples of B. For small k values, this expense

is negligible compared to the total amount of 2(m+3) cycles for the whole algorithm.

As the value of M̃ is changed infrequently, we can compute its multiples externally

and store these values into the units. This approach saves some additional CLBs.

As storage elements we can either use registers or RAM elements. For k larger

than 2, registers are not suitable as they utilize one CLB per 2 stored bits. RAM

elements are very efficient up to an address width of 4 bits. Their implementation

requires only one CLB per two bits data width (2 CLBs for a 16 × 4 bit RAM).

The resource requirements grow rapidly, though, for larger address width. A 64 × 6

bit implementation (k = 6) utilizes 18 CLBs, a 256 × 8 bit implementation (k = 8)

utilizes 96 CLBs (see Table 5.2). Both would result in unrealistically large CLB counts

for secure bit length. Additionally the 26 or even 28 clock cycles for computing the

multiples of B are not negligible any more. To achieve an optimal time–area product

we implemented therefore an architecture with a radix r = 24. We compute 4 bits

per processing element. The multiples of M̃ are computed externally once and stored

in the units. Similar to Design 1, we use square and multiply Algorithm 4.2 and

compute squares and multiplications in parallel.

Design 2 can be divided hierarchically into three levels.

Processing Element Computes 4 bits of a modular multiplication.

Modular Multiplication An array of processing elements computes a modular

multiplication.

Modular Exponentiation Combines modular multiplications to a modular expo-

nentiation according to Algorithm 4.2.

In the following we describe the system with a bottom–up approach.
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7.2 Processing Elements

Figure 7.1 shows the implementation of a processing element.

Si+1 = (Si + qi · M̃)/2
k + ai ·B
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The following elements are needed:

• B-Reg (4 bits): storage of the B multiplier

• B-Adder-Reg (5 bits): storage of multiples of B

• S-Reg (4 bits): storage of the intermediate result Si (Algorithm 4.8)

• Control-Reg (3 bits): control of the multiplexers and clock enables

• ai-Reg (4 bits): multiplier A

• qi-Reg (4 bits): quotient Q

• Result-Reg (4 bits): storage of the result at the end of a multiplication

• B-Adder (4 bits): Adds B to the previously computed multiple of B

• B+M̃ -Adder (4 bits): Adds a multiple of M̃ to a multiple of B

• S+B+M̃ -Adder (5 bits): Adds the intermediate result Si to B + M̃

• B-RAM (16x4 bits): Stores 16 multiples of B

• M̃-RAM (16x4 bits): Stores 16 multiples of M̃

For a timing model of the processing element shown in Figure 7.1 please refer to

Figure C.2 in the appendix.

The registers need a total of 14 CLBs, the adders 13 CLBs and the RAM blocks 4

CLBs. The possibility of re–using registers for combinatorial logic allows some savings

of CLBs. Thus a processing element utilizes a total of 24 CLBs, which is equal to 6

CLBs per processed bit.

Before a unit can compute a modular multiplication, the system parameters have

to be loaded. The relevant bits of the multiples of M̃ are loaded into M̃-RAM starting

from M̃ , 2 · M̃ to 15 · M̃ . Each multiple of M̃ is valid on the input M̃-in for 2 clock
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cycles. The write enable signal for M̃ -RAM is decoded from Control-In. The address

input qi is incremented every two cycles.

At the beginning of a modular multiplication, the operand B is loaded from either

B-in or S-Reg, according to the select line of multiplexer B-Mux. This value is stored

in B-RAM while address input ai is equal to one. The write enable signal for B-RAM

is decoded from control-in. After each clock cycle, B is added to the accumulated B

multiple and stored in B-RAM, while ai is incremented by one. The resulting carry

propagates to the adjacent unit. The pre–computation and storage of the multiples of

B takes 16 clock cycles. For a simulation of this behavior please refer to Figure C.1.

When computing the modular multiplication, the relevant multiples of B and

M̃ are addressed by ai and qi. Both values are added up and added to S-in (Si in

Algorithm 4.8). The result of these additions will not exceed 47 (3·15+(carry-in = 2)).

Thus carry-out ∈ {0, 1, 2}. This behavior saves us another full adder. The incoming

carry-in is decoded in the carry-decode unit and the resulting signals carry 0 (carry-in

= 2) and carry 1 (carry-in = 1 or 2) can be fed in the carry-in inputs of the two

adders. A simulation of a modular multiplication can be found in Figure C.2 in the

appendix.

At the end of a modular multiplication the result Sm+3 appears in S-Reg. This

value is stored via Mux-Res into Result-Reg and via B-Mux into B-Reg for further

processing (see Figure C.3 in the appendix).

7.3 Modular Multiplication

Figure 7.2 shows how the processing elements are connected to an array for computing

a full size modular multiplication. To compute Si+1 = (Si + qi · M̃)/16 + ai ·B with

operand B =
∑m+1
i=0 16

i · bi, we need m + 3 units. Units 1 . . .m + 1 are designed as

described in Section 7.2. Unit0 does not have a B input as B is not shifted by 4

bits (division by 16) in above mentioned equation. The four result bits S-Reg3...0 are
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Figure 7.2: Systolic array for modular multiplication

always equal to zero according to the properties of Montgomery’s algorithm. Unitm+2

on the other hand does not have an M input. It processes the most significant bit of

B and the temporarily occurring overflow of Si+1.

The inputs and outputs of the units are connected to each other in the following

way. The control word, qi and ai are pumped from right to left through the units.

The result is pumped from left to right. The carry-out signals are fed to the carry-in

inputs to the right. Output S out is always connected to input S in of the unit to the

right. This represents the division by 16 of the computation.

At first the multiples of the modulus M̃ are fed into the units. To allow enough

time for the signals to propagate to all the units, the modulus M̃ is valid for two

clock cycles. We use two M̃ -buses, the M̃ -even-bus connected to all even numbered

units unit0, unit2 . . . unitm+2, and the M̃-odd-bus connected to all odd numbered units

unit1, unit3 . . . unitm+1. This approach allows to feed 4 bits of M̃ to the units per

clock cycle. It takes m+2 cycles to feed one multiple of M̃ into all the units, a total

of 15 · (m+ 2) cycles to load all multiples of M̃ . As this step is executed only when

the modulus is changed, the long load time can be accepted.

The operand B is loaded similarly. The signals are also valid for two clock cy-

cles. We also use two B-buses, the B-even-bus connected to all even numbered units
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unit2, unit4 . . . unitm+2, and the B-odd-bus connected to all odd numbered units unit1,

unit3 . . . unitm+1. In cycle 1 the control word with state load-B is fed into control-in

of unit0 and is valid for two cycles. In cycle 2, the control word propagates to unit1.

In cycle 2 and 3, bits b0 . . . b3 are fed on the B-odd-bus and stored in unit1. In cycle

3 and 4, bits b4 . . . b7 are fed on the B-even-bus and stored in unit2. Also in cycle

3 the control word with state multiple-B is fed into control-in of unit0 and is valid

for 16 cycles. Unit1 computes the multiples of B in cycles 4 to 20, unit2 in cycles 5

to 21. In cycle 19, Unit0 starts to compute a squaring according to Algorithm 4.8.

Therefore bits a0 . . . a3 of the operand A are fed in ai-in, and the control word with

state calculate-multiplication in control-in. In cycle 20, unit1 uses the resulting carries

and computes bits 0 . . . 3 of S1. These bits are fed back either in S-in, as well as in

qi-in of unit0. Unit0 is ready to compute the second loop of the squaring S2 in cycle

21.

Clock cycle 20 is unproductive in unit0 while waiting for the result S-out of unit1.

This inefficiency is avoided by computing squares and multiplications in parallel ac-

cording to Algorithm 4.2. Both pi+1 and zi+1 depend on zi. We therefore store the

intermediate result zi in the B–Registers and feed zi and pi into the ai input of the

units for squaring and multiplication.

In cycle 20+2(m+2) bits 0 . . . 3 of Sm+3 are available at result-out of unit1. Thus

the first modular multiplication takes 2m+22 cycles from feeding b0 . . . b3 on the bus

until the result is available. Further squaring operations take 2m+ 20 cycles. While

the last loop of the modular multiplication is computed, the result of the squaring is

stored in B-Reg in only one cycle. Thus the two cycles for loading B from the bus

are not needed.

For the simulation of the systolic array please refer to Figures C.4, C.5 and C.6

in the appendix.
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7.4 Modular Exponentiation

7.4.1 Data Flow

Figure 7.3 shows how the array of units is utilized for modular exponentiation. For

simulation results please refer to Figures C.7, C.8 and C.9 in the appendix.
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Figure 7.3: Design for a modular exponentiation

At the heart of our design is a finite state machine (FSM) with 17 states. An

idle state, four states for loading the system parameters, and four times three states

for computing the modular exponentiation. The actual modular exponentiation is

executed in four main states, pre-computation1, pre-computation2, computation, and

post-computation. Each of these main states is subdivided in three sub–states, load-B,

multiple-B, and calculate-multiplication. The control word fed into control-in is en-

coded according to the states. The FSM is clocked at half the clock rate. The same
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is true for loading and reading the RAM and DP RAM elements. This measure

makes sure the maximal propagation time is in the units. Thus the minimal clock

cycle time and the resulting speed of a modular exponentiation relates to the effective

computation time and not to the computation of overhead.

Before a modular exponentiation is computed, the system parameters have to be

loaded. Multiples of the modulus M̃ have to be computed externally and are read

eight bit at a time from I/O in M̃-Reg. Reading starts from low order bits to high

order bits, and from M̃ to 15 · M̃ . From M̃ -Reg the multiples of M̃ are fed 4 bits at

the time alternatively to M̃-even-bus and M̃ -odd-bus. The address for the M̃-RAM

of the units is generated by the q-counter and fed via q-Mux into qi-In. After loading

a full multiple of M̃ , q-counter is incremented. The exponent E is read 16 bits at

the time from I/O and stored into exp-RAM. The first 16 bit wide word from I/O

specifies the length of the exponent in bits. Up to 64 following words contain the

actual exponent. The pre–computation factor 28(m+2) mod M is read from I/O eight

bits at the time. It is stored into prec-RAM.

In state pre-compute1 we read the X value from I/O, 4 bits per clock cycle, and

store it intoDP RAM Z. At the same time the pre-computation factor 28(m+2) mod M

is read from prec-RAM and fed 4 bits per clock cycle alternatively via the B-even-bus

and B-odd-bus to the B–registers of the units. In the next 16 clock cycles, the multi-

ples of B = 28(m+2) mod M are calculated.

Now we begin calculating the pre–computation. The initial values of Algorithm 4.2

are P0 = 1 and Z0 = X. Both values have to be multiplied by the pre–computation

factor. This can be done in parallel as both multiplications use a common operand

28(m+2) modM , that is already stored in B. The time division multiplexing unit

(TDM) reads X from DP RAM Z and multiplexes X and 1, 0 . . . 0 on the ai–bus

into the units. After 2(m + 2) clock cycles the low order bits of the result of

MONT HR(28(m+2) modM , X)= X · 24(m+2) mod M appear at result-out and are
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stored in DP RAM Z. The low order bits of the result of MONT HR(28(m+2) modM ,

1)= 24(m+2) modM appear at result-out one cycle later and are stored in DP RAM P.

This process repeats for 2(m+ 2) cycles, until all digits of the two results are saved

in DP RAM Z and P. The result X · 24(m+2) modM is also being stored in the B-

registers of the units. For the simulation of this behavior please refer to Figure C.7

in the appendix.

In state pre-compute2 the actual computation of Algorithm 4.2 begins. For both

calculations of Z1 and P1 we use Z0 as an operand. This value is stored in the B-

registers. The second operand Z0 or P0 respectively, is read from DP RAM Z and

P and “pumped” via TDM as ai into the units (Figure C.8 in the appendix). After

another 2(m + 2) clock cycles the low order bits of the result of Z1 and P1 appear

at result-out. Z1 is stored in DP RAM Z. P1 is needed only if the first bit of the

exponent e0 is equal to “1”. Depending on e0, P1 is either stored in DP RAM P or

discarded.

In state compute the loop of Algorithm 4.2 is executed n − 1 times. Zi in

DP RAM Z is updated after every cycle and “pumped” back as ai into the units.

Pi is updated only if the relevant bit of the exponent ei is equal to “1”. In this way

always the last stored Pi is “pumped” back into the units.

After the processing of en−1, the FSM enters state post-compute. Pn = XE ·

24(m+2) modM is stored in DP RAM P now. To eliminate the factor 24(m+2) from

the result Pn, we compute a final Montgomery multiplication MONT HR(Pn, “1”).

First the vector 0, 0, . . . 0, 1 is fed alternatively via the B-even-bus and B-odd-bus into

the B–registers of the units. Pn is “pumped” from DP RAM P as ai into the units.

After state post-compute is executed the result XE modM is ready at the I/O port. 4

bits appear every two clock cycles. State pre-compute1 can be re–entered immediately

now for the calculation of another X value.

A full modular exponentiation is computed in (n+2)(2m+20) clock cycles. That
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is the delay it takes from inserting the first 4 bits of X into the device, until the first

4 result bits appear at the output. At that point, another X value can enter the

device. With an additional latency of m+2 clock cycles the last 4 bits appear on the

output bus.

7.4.2 Function Blocks

In this subsection we explain the function blocks in Figure 6.3: DP RAM P and

DP RAM Z. The modules EXP RAM and Prec RAM are explained in Section 6.4.2.

Figure 7.4 shows the design of DP RAM Z. Anm×4 bit DP RAM is at the heart

of this unit. It has separate write (A) and read (DPRA) address inputs. Two counters
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that count up to m+ 2 compute these addresses. The write-counter starts counting
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(clock- enable) in sub–states B-load when the first digit of Zi appears at data in. At

the same time the enable signal of the DP RAM is active and data is stored in DP

RAM. When m + 2 is reached, the terminal-count signal of the write-counter resets

the two enable signals. The read-counter is enabled in sub–states compute. The data

of DP RAM is addressed by q out of the read-counter and appears immediately at

DPO. When read-counter reaches m+ 2, terminal-count triggers the FSM to transit

into sub-state B-load. The last two values of zi are stored in a 4–bit register each.

This measure allows us to choose a 100% utilized m× 4–bit DP RAM instead of an

only 50% utilized 2m× 4–bit DP RAM.

DP RAM P works almost the same way. It has an additional input ei, that acti-

vates the write-enable signal of the DP RAM in the case of ei = “1′′.



Chapter 8

Methodology

In our implementation we adopted the following design approach that resulted in fast

verification of gate level netlists as well as back annotated designs:

1. Design entry

2. Logic verification

3. Synthesis

4. Place and Route

5. Timing Verification

The entire design, with the exception of vendor specific soft macros, was entered in

VHDL format. Once the design was developed in VHDL, boolean logic and ma-

jor timing errors were verified by simulating the gate level description with Synop-

sys VHDL analyzer (vhdlan) and VHDL debugger (vhdldbx) version 1998.08. The

next step involved the synthesis of the VHDL code with Synopsys Design Compiler

(fpga analyzer) version 1998.08. The output of this step was an optimized netlist

describing the gate level design in XILINX format. The most time consuming step

was the compilation of the synthesized design with the place and route tools available

59
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from Xilinx. This process was accomplished with the XILINX Design Manager tools

version M1.5.19. The final step of the design flow was to verify the design once again

but this time with the physical net, CLB, and pad delays introduced when the design

was placed into a specific device. This was accomplished with the same test benches

and simulation models that were used during the logic verification stage. Synopsys

(vhdldbx) was used once again to verify back-annotated designs. The timing results

from Chapter 9 were all computed by the Xilinx timing analyzer and verified by the

Synopsis vhdl debugger. They were not verified with an actual chip.

8.1 Xilinx Synopsys Interface

Figure 8.1 presents a flow chart diagram of the design flow with Xilinx-Synopsys-

Interface (XSI) tools. The XSI tools provide for a transition between results obtained

from Synopsys synthesis and the Xilinx place and route tools. The XSI module

includes all libraries necessary for Synopsys fpga analyzer to interpret gates into

logical blocks so that synthesis can be performed at this level. The design ware

libraries provided by Xilinx are automatically instantiated when possible. Synthesis

results include report files on area and timing utilization, design netlist and constraints

that are used in the place and route process, and Synopsys design files that describe

the entire system.

8.2 Simulation and Verification

Verification of the design is done at two points. First, it is applied to the initial VHDL

design. This verifies only the logic without delays. The input to this verification

process is a test bench written in VHDL and the actual VHDL design. The results

are compared to test vectores generated by Maples.

The post place and route verification uses the same test bench. The VHDL input
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Figure 8.1: Design flow

model to this stage is different. Here the VHDL model is obtained from the XILINX

place and route tools. This VHDLmodel includes a separate file defining all net, CLB,

and port delays associated with the placed design. Once again, verification process

involves testing all vectors against test vectors generated by Maples. A sample test

bench can be found in Appendix A.

8.3 Synthesis

To synthesize our designs, script files were developed that could be launched from

within the fpga analyzer. These scripts would elaborate, compile, optimize the

design, and prepare report summaries. The output of the synthesis tools is a design

netlist and constraints file. A sample script file is provided in Appendix B.
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8.4 Place and Route

The input to the place and route tools is a design netlist and constraints file generated

by Synopsys, as well as a possible user constraints file. The user constraints have

higher priority over the Synopsys constraints and may include additional constraints

relaxing the clock period or implementing pin assignment. The output of this process

is a bit-stream file that can be used to directly program the device and the back-

annotated design that can be simulated for timing verification (Figure 8.1).



Chapter 9

Results

9.1 Design 1

We implemented Design 1 for various bit lengths and unit widths. Table 9.1 shows

our results in terms of used CLBs (C), clock cycle time (T) and the time–area product

(TA).

Table 9.1: Design 1: CLB usage, minimal clock cycle time, and time–area product of

modular exponentiation architectures on Xilinx FPGAs

160 bit 256 bit 512 bit

C T TA C T TA C T TA

u [CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs]

4 951 17.3 16.4 1307 17.5 22.8 2555 17.7 45.2

8 820 19.6 16.0 1122 19.8 22.2 2094 19.1 39.9

16 790 21.1 16.6 1110 21.7 24.0 2001 21.8 43.6

768 bit 1024 bit

C T TA C T TA

u [CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs]

4 3745 19.1 71.5 4865 19.2 93.4

8 3132 19.4 60.7 4224 23.4 98.8

16 2946 21.6 63.6 3786 23.7 89.7

63
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The majority of CLBs is used in the units. In Section 6.2 we derived an approx-

imation of 3u + 4 CLBs per unit which proves to be correct for large designs. The

overhead consists mainly of RAM, dual port RAM, shift registers, counters and the

state machine. Counters and their decoding for addressing RAM and dual port RAM

are more costly for larger designs. On the other hand, we used the same state machine

for all designs in Table 9.1.

The clock cycle time T in Table 9.1 is the propagation delay from B-Reg through

mux1 and the carries of the adder to the registered carry, plus the setup time of the

flip-flop. We compare this delay to the optimal cycle time calculated by the Xilinx

timing analyzer; for a 4–bit unit the delay with optimal routing is 10.5 ns (256 and

512 bit designs) and 12.7 ns (768 and 1024 bit designs); for an 8–bit unit 11.2 ns and

13.7 ns and for a 16–bit unit 12.8 ns and 15.5 ns. The larger designs were implemented

in larger FPGA devices featuring different delay specifications. Otherwise we expect

the same cycle times for designs with the same unit size. The additional routing delay

is between 50% and 80% above the optimal propagation delay. For designs up to 768

and 1024 (u = 4) bits it remains approximately constant; it deteriorates for 1024 bit

designs with unit sizes u = 8 and u = 16. The same can be said about the place and

route time: we experienced run–times of a couple of hours on a AMD–K6–2/300 MHz

PC for designs up to 768 and 1024 (u = 4) bits, up to a week for the 1024 (u = 8

and u = 16) bit designs. Different design methods, such as hard–macros for a single

unit, would probably improve routing delay and place and route time.

The time–area product shows that designs with 8–bit units are generally most

efficient.

Table 9.2 shows our results for a full length modular exponentiation. The purpose

of this table is to compare our design to previous propositions. None of the popular

public key schemes as described in Chapter 3 requires computing a modular exponen-

tiation with equal size exponent and modulus. A full modular exponentiation with
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Table 9.2: Design 1: CLB usage and execution time for a full modular exponentiation

512 bit 768 bit 1024 bit

u C T C T C T

CLBs [ms] CLBs [ms] CLBs [ms]

4 2555 9.38 3745 22.71 4865 40.50

8 2094 10.13 3123 23.06 4224 49.36

16 2001 11.56 2946 25.68 3786 49.99

an n bit exponent and an m bit modulus is computed in 2(n+2)(m+4) clock cycles.

9.2 Design 2

Table 9.3 shows our results of Design 2 in terms of used CLBs (C), clock cycle time

(T) and the time–area product (TA).

Table 9.3: Design 2: CLB usage, minimal clock cycle time, and time–area product of

modular exponentiation architectures on Xilinx FPGAs

160 bit 256 bit 512 bit

C T TA C T TA C T TA

CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs]

1219 20.8 25.4 1818 21.3 38.7 3413 20.7 70.6

768 bit 1024 bit

C T TA C T TA

CLBs] [ns] [CLB·µs] [CLBs] [ns] [CLB·µs]

5071 20.1 101.9 6633 21.9 145.2

The time–area products of Table 9.3 are between 50% and 70% larger compared

to those of Table 9.1. Design 2, however, is far more efficent than Design 1, as we

gain a speed–up of approximately a factor 4 by computing a modular exponentiation

with 4 times fewer cycles.
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The majority of CLBs is expended in the units, that is 6 CLBs per bit of the

modulus. The overhead consists mainly of RAM, DP RAM, counters, registers, and

the state machine. Between 300 CLBs for the 160–bit design and 500 CLBs for the

1024–bit design are used for overhead.

The clock cycle time T in Table 9.3 is the access delay qi → D out of the M̃ -RAM

or ai→ D out of the B-RAM plus the delay through the two adders to the registered

carry in S Reg, plus the setup time of the flip-flop (see Figure 7.1). We compare

this delay to the optimal cycle time calculated by the Xilinx timing analyzer; for

the smaller designs (160–512 bits) the delay with optimal routing is 14.7 ns, for the

larger designs 15.7 ns. The larger designs were implemented in larger FPGA devices

featuring different delay specifications. Otherwise we expected the same cycle times

for all designs as the difference between designs lies in the amount of units. The

additional routing delay is about 30% above the optimal propagation delay. This is

considerably better than the additional routing delay of Design 1. The structure with

a RAM block and two adders in series seems to be less of a routing problem than the

register–multiplexer–adder structure in Design 1.

Table 9.4: Design2: CLB usage and execution time for a full modular exponentiation

512 bit 768 bit 1024 bit

design C T C T C T

CLBs [ms] CLBs [ms] CLBs [ms]

2 3413 2.93 5071 6.25 6633 11.95

1 2555 9.38 3745 22.71 4865 40.50

Table 9.4 shows our results for a full length modular exponentiation. A full mod-

ular exponentiation with an n bit exponent and an m digit modulus is computed in

2 ·(n+2)(m+10) clock cycles. For an easy comparison we included the fastest Design

1 in Table 9.4. A speed–up of approximately a factor 3.5 is gained using Design 2.
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9.3 Application to RSA

Table 9.5 shows our results from the tables above, applied to RSA. The encryption

time is calculated for the F4 exponent, requiring 2 ·19(m+4) clock cycles for Design 1

and 2 ·19(m+10) clock cycles if Design 2 is used. Please note thatM =
∑m−1
i=0 (2

k)imi

for k = 1 in Design 1 and k = 4 in Design 2.

Table 9.5: Application to RSA: Encryption

512 bit 1024 bit

design u C T C T

CLBs [ms] CLBs [ms]

1 4 2555 0.35 4865 0.75

8 2094 0.37 4224 0.91

16 2001 0.43 3786 0.93

2 3413 0.11 6633 0.22

For decryption we apply the Chinese remainder theorem. We either decryptm bits

with an m/2 bit architecture serially, or with two m/2 bit architectures in parallel.

The first approach uses only half as many resources, the later is twice as fast.

Table 9.6: Application to RSA: Decryption

512 bit 512 bit 1024 bit 1024 bit

2 · 256 serial 2 · 256 parallel 2 · 512 serial 2 · 512 parallel

design u C T C T C T C T

CLBs [ms] CLBs [ms] CLBs [ms] CLBs [ms]

1 4 1307 4.69 2614 2.37 2555 18.78 5110 10.18

8 1122 5.31 2244 2.56 2094 20.26 4188 12.41

16 1110 5.82 2220 2.92 2001 23.12 4002 12.52

2 1818 1.62 3636 0.79 3413 5.87 6826 3.10
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9.4 Application to Algorithms Based on the Dis-

crete Logarithm Problem

Table 9.7 applies our results to encryption and decryption for algorithms based on

the descrete logarithm problem. As the exponent is only 160 bits long, computation

is about six times faster than for a full 1024 bit modular exponentiation.

Table 9.7: CLB usage and execution time for algorithms based on the DL–problem

512 bit 768 bit 1024 bit

design u C T C T C T

CLBs [ms] CLBs [ms] CLBs [ms]

1 4 2555 2.97 3745 4.77 4865 6.39

8 2094 3.19 3123 4.85 4224 7.79

16 2001 3.64 2946 5.4 3786 7.89

2 3413 0.93 5071 1.31 6633 1.89

9.5 Application to Elliptic Curves

Section 3.3 states that an elliptic curve projective space addition can be performed in

15 operations, and 12 operations are needed for a doubling. As operations we count

multiplications only. Additions, subtractions and shift operations are neglected.

With both our designs we can compute two multiplications in parallel, under the

condition that the same operand B is used in both multiplications. For example

B(C +D) can be computed in parallel. The operation for adding and doubling are

listed in Tables 9.8 and 9.9. As many steps as possible are computed in parallel,

including the pre– and post–computations. In an addition 16 operations are executed

in series, 8 can be done in parrallel.

For a point doubling we need 14 operations in series and 8 can be done in parallel.

In a general point multiplication a series of addings and doublings are executed. Thus
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Table 9.8: Operations for a point addition

Common Multiplication 1 Multiplication 2 Type of

Operand Operand Result Operand Result Operation

22k(m+2) X1 X ′1 X2 X ′2 pre-computation

22k(m+2) Y1 Y ′1 Y2 Y ′2 pre-computation

22k(m+2) Z1 Z ′1 Z2 Z ′2 pre-computation

Z ′1 Y ′2 Z ′1Y
′
2 X ′2 Z1X

′
2

Z ′2 Y ′1 Z ′2Y
′
1 X ′1 Z2X

′
1

Z ′2 Z ′1 Z ′2Z
′
1

V ′ V ′ (V 2)′

(V 2)′ T ′ (V 2)′T ′ V ′ (V 3)′

(V 2)′ Z2X
′
1 (V 2)′Z2X ′1

(V 3)′ Z ′2Z
′
1 Z ′3 Z ′2Y

′
1 (V 3)′Z ′2Y

′
1

U ′ U ′ (U2)′

(U2)′ Z ′2Z
′
1 A′

(V 2)′Z2X ′1 − A U ′ Y ′3

V ′ A′ X ′3

1 X ′3 X3 Y ′3 Y3 post-computation

1 Z ′3 Z3 post-computation

the pre-computations have to be done only once before the first operation, and the

post-computations after the last operation. The total amount of clock cycles for a

normal addition is therefore 11 · 2(m + 4) if Design 1 is used, and 11 · 2(m + 10)

cycles with Design 2. A doubling without pre– and post–computations is executed in

8 · 2(m+ 4) cycles (Design 1), or 8 · 2(m+ 10) cycles (Design 2). We assume that all

values are stored externally. The subtractions, additions and shift operations could

be done internally with almost no additonal resource requirements. As we process

only u bit (Design 1) or 4 bit (Design 2) at a time, addition or subtraction could be

done serially. In the doubling operation we have multiplications by eight. Thus the
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Table 9.9: Operations for a Doubling

Common Multiplication 1 Multiplication 2 Type of

Operand Operand Result Operand Result Operation

22k(m+2) X1 X ′1 X2 X ′2 pre-computation

22k(m+2) Y1 Y ′1 Y2 Y ′2 pre-computation

22k(m+2) Z1 Z ′1 Z2 Z ′2 pre-computation

22k(m+2) a a′ Pre-computation

Z ′1 Y ′1 S ′ Z ′1 (Z21)
′

S ′ S ′ (S2)′ Y ′1 E′

X ′1 X ′1 (X21 )
′ E′ F ′

(Z21)
′ a′ W ′

W ′ W ′ (W 2)′

E′ E′ (E2)′

4F ′ −H W ′ Y ′3

S ′ (S2)′ (S3)′ 2H ′ X ′3

1 X ′3 X3 Y ′3 Y3 post-computation

1 Z ′3 Z3 post-computation

operands are getting larger than specified in Chapter 4 (A,B > 2M). Therefor an

at least 4 bit larger architecture has to be chosen. The resulting additional resource

requirements and clock cycles however can be neglected.

Table 9.10 shows the total execution time for the basic operations in elliptic curve

cryptosystems. Table 9.11 shows the average time needed for a general point mul-

tiplication in an elliptic curve cryptosystems. The modulus and the operands are

160 bits long. Thus 160 doublings and an average of 80 additions are computed. It

should be noted that advanced point multiplication algorithms (see, e.g., [37]) can

reduce the number of point additions considerably at the cost of additional memory

for pre–computed points.
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Table 9.10: Application to Elliptic Curves: Execution time for point addition and

doubling (160 bits)

Addition Doubling

design u T T

[µs] [µs]

1 4 62 39

8 71 45

16 76 48

2 23 15

Table 9.11: Application to Elliptic Curves: Execution time for a general point mul-

tiplication (160 bits)

design u T [ms]

1 4 11.3

8 12.8

16 13.8

2 4.2
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Comparison and Outlook

We compare our fastest RSA 512/1024 bit designs of Table 9.6 to the fastest soft-

and hardware solutions we found in the literature [33, 26, 37]. Our 0.8 ms decryption

time is about 11 times faster than the 512 bit software implementation (9.1 ms) on

a 150MHz Alpha [26]. The fastest 1024 bit software implementation [37] of 43.3 ms

running on a PPro–200 based PC is about 14 times slower than our best result (3.1

ms).

Most reported hardware implementations of modular arithmetic are somewhat

dated, making a fair comparison difficult. It is nevertheless interesting to look at

previously reported performances. The fastest reported FPGA design [33] (1.7 ms

for a 512 bit modulus and 5.2 ms for a 970 bit modulus) is a factor 2.1/1.8 slower

than ours (2.8 ms for a 970 bit modulus). It is possible, however, that their solution

upgraded to currently available FPGA technology, would reach similar speeds. A

drawback of the solution in [33] is, however, that the binary representation of the

modulus is hardwired into the logic representation so that the architecture has to

be reconfigured with every new modulus. The user of such an implementation needs

to own the full development tools for synthesis, placing and routing of FPGAs, if

RSA with different moduli should be executed. Our design stores the modulus, the

exponent and the pre–computation factor in registers and RAM. A second advantage

72



CHAPTER 10. COMPARISON AND OUTLOOK 73

of our design is that it is implemented into one device instead of a matrix of 16

devices. Using currently available FPGA technology the design [33] would probably

also fit in a single device.

The fastest ASIC solution was presented in [16]. A 1024–bit modular exponentia-

tion with a 1024–bit exponent is performed in an average of 10 ms (50% bits equal to

“1”) without applying the Chinese remainder theorem. Our Design 2 processes the

same computation in 11.9 ms, where average and worst case computation times are

the same.

To improve our design in terms of speed the following conclusions can be drawn.

1. Choice of radix r = 2k: We believe that the radix r = 24 = 16 chosen for

Design 2 is the optimal choice for optimizing the time–area product in a Xilinx

XC4000 FPGA implementation. Smaller radixes are simpler to implement at

the drawback of more clock cycles. Larger radixes result in very large resource

requirements for the computation of the 2k − 1 multiples of the operand B.

2. To fully utilize each clock cycle we compute squaring operations and multipli-

cations in parallel. Fully utilize is not quite correct, though, as we have to

compute only an average of n/2 multiplications. We could speed-up our design

by a factor 1.33 on average if we use Algorithm 4.1 and compute two modular

exponentiations in parallel. The worst case timing improvement is zero how-

ever. The drawback of this approach is that two operands B and their multiples

have to be stored. The units would need two 32× 4 bit RAM blocks instead of

two 16 × 4 bit RAM blocks and two additional registers. Thus the additional

resource requirement is one CLB per computed bit of the modulus.

3. Exponent: In Section 4.1 the l–ary method was discussed. This method is

particularly useful if we choose an approach as discussed in the last paragraph.

For l = 2 we have to store only two additional values X2 and X3. The worst
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case execution time is improved by a factor 2, the average time by a factor 1.5.

4. Implementation of our designs in devices from other FPGA vendors. We might

be able to run the designs at faster clock frequencies using different devices.

An architecture as proposed in (2) and (3) would barely fit into the largest avail-

able device of the Xilinx XC4000 family. The combined resulting speed-up is a factor

two compared to the tables in Chapter 9.



Appendix A

Test Bench Sample

-- VHDL Architecture TB_example_hr.vhd

-- Tests the functionality of the monXb_r4.vhd designs (X=160,256,512,768,1024).

-- Test_vectors: M = ’1...1’, 2M = ’2...2’, 3M = ’3...3’ ... 15M = ’F...F’

-- E = 1101101010101010101 (MSB-LSB)

-- Pre-computation factor = ’1’,’2’,’2’,’3’,’3’... (digit_0, digit_1 ...)

-- X = ’2’,’3’,’4’ ... (digit_0, digit_1 ...)

--

--Created:

-- by - Thomas Blum

-- at - 02/03/99

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

use IEEE.std_logic_textio.all;

use work.array_types.all;

entity E is

GENERIC(

width : positive := w_idth; -- unit width

slices : positive := s_lices; -- number of units

length : positive := l_ength -- length of modulus

);

end E;

ARCHITECTURE A OF E IS

-- Architecture declarations
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CONSTANT clk_prd_f : time := 20 ns;

CONSTANT clk_prd_s : time := 40 ns;

CONSTANT del_prd : time := 5 ns;

SIGNAL modulus_in : std_logic_vector(7 DOWNTO 0);

SIGNAL ttn : std_logic_vector(7 DOWNTO 0);

SIGNAL data_in : std_logic_vector(3 DOWNTO 0);

SIGNAL CLOCK_F : std_logic;

SIGNAL CLOCK_S : std_logic;

SIGNAL reset : std_logic;

SIGNAL exponent_in : std_logic_vector(15 DOWNTO 0);

SIGNAL encrypt_in : std_logic;

SIGNAL load_mod_in : std_logic;

SIGNAL load_exp_in : std_logic;

SIGNAL load_ttn_in : std_logic;

SIGNAL result_out : std_logic_vector(3 DOWNTO 0);

SIGNAL zero_out : std_logic_vector(3 DOWNTO 0);

--internal clock signal

SIGNAL iclk_f : std_logic;

SIGNAL iclk_s : std_logic;

--clock procedure

PROCEDURE wait_clock(CONSTANT clk_ticks:integer) IS

VARIABLE i : integer := 0;

BEGIN

FOR i IN 1 TO clk_ticks*2 LOOP

WAIT UNTIL iclk_s’EVENT;

END LOOP;

END wait_clock;

PROCEDURE wait_clock_f(CONSTANT clk_ticks:integer) IS

VARIABLE i : integer := 0;

BEGIN

FOR i IN 1 TO clk_ticks LOOP

WAIT UNTIL iclk_s’EVENT;

END LOOP;

END wait_clock_f;

--test component declaration

component mon160b_r4

PORT(

modulus_in : IN std_logic_vector(7 DOWNTO 0);

ttn : IN std_logic_vector(7 DOWNTO 0);

data_in : IN std_logic_vector(3 DOWNTO 0);
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CLOCK_F : IN std_logic;

CLOCK_S : IN std_logic;

reset : IN std_logic;

exponent_in : IN std_logic_vector(15 DOWNTO 0);

encrypt_in : IN std_logic;

load_mod_in : IN std_logic;

load_exp_in : IN std_logic;

load_ttn_in : IN std_logic;

result_out : OUT std_logic_vector(3 DOWNTO 0);

zero_out : OUT std_logic_vector(3 DOWNTO 0)

);

END COMPONENT;

BEGIN

--test component instantiation

UUT: mon160b_r4

PORT MAP(

modulus_in => modulus_in,

ttn => ttn,

data_in => data_in,

CLOCK_F => CLOCK_F,

CLOCK_S => CLOCK_S,

reset => reset,

exponent_in => exponent_in,

encrypt_in => encrypt_in,

load_mod_in => load_mod_in,

load_exp_in => load_exp_in,

load_ttn_in => load_ttn_in,

result_out => result_out,

zero_out => zero_out);

--testbench procedure

flow_process: PROCESS

-- Process declarations

variable i : integer := 0;

BEGIN

--***************************************************

-- initialize signals and reset: ’0’ -> ’1’ -> ’0’

--***************************************************
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reset <= ’0’;

data_in <= "0000";

ttn <= "00000000";

exponent_in <= "0000000000000000";

load_mod_in <= ’0’;

load_exp_in <= ’0’;

load_ttn_in <= ’0’;

encrypt_in <= ’0’;

modulus_in <= "00000000";

load_mod_in <= ’0’;

wait_clock_f(1);

wait for del_prd;

reset <= ’1’;

wait_clock_f(1);

wait for del_prd;

reset <= ’0’;

wait_clock_f(1);

wait for del_prd;

--***************************************************

-- load modulus: This is painful but has to be done

-- only once for a given system

--***************************************************

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "00010001"; -- 1M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "00100010"; -- 2M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "00110011"; -- 3M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;
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load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "01000100"; -- 4M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "01010101"; -- 5M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "01100110"; -- 6M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "01110111"; -- 7M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "10001000"; -- 8M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "10011001"; -- 9M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;
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wait_clock(1);

wait for del_prd;

modulus_in <= "10101010"; -- 10M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "10111011"; -- 11M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "11001100"; -- 12M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "11011101"; -- 13M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "11101110"; -- 14M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

load_mod_in <= ’1’;

wait_clock(1);

wait for del_prd;

modulus_in <= "11111111"; -- 15M (units 0 ... m)

load_mod_in <= ’0’;

wait_clock(length/(2*width));

wait for del_prd;

wait_clock(1);

wait for del_prd;

modulus_in <= "00000000"; --end load modulus

wait_clock(1);
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wait for del_prd;

--***************************************************

-- load exponent

--***************************************************

load_exp_in <= ’1’; --prepare load exponent: load_input->hi

wait_clock(1);

wait for del_prd;

exponent_in <= "0000000000010011"; --counter_value / nuber of bits in exponent

wait_clock(1);

wait for del_prd;

exponent_in <= "1101010101010101"; --16 bit exponent

wait_clock(1);

wait for del_prd;

exponent_in <= "0000000000000110"; --16 bit exponent

load_exp_in <= ’0’; --load_input->low

wait_clock(1);

wait for del_prd;

exponent_in <= "0000000000000000"; --16 bit exponent

wait_clock(1);

wait for del_prd;

--***************************************************

-- load ttn

--***************************************************

load_ttn_in <= ’1’;

wait_clock(1);

wait for del_prd;

ttn <= "00100001"; -- ls-digits of precomputation factor: ’1’, ’1’

wait_clock(1);

wait for del_prd;

for i in 1 to (length/(2*width)) loop

ttn <= ttn + "00010001"; -- add ’1’, ’1’ to next digit

wait_clock(1);

wait for del_prd;

end loop;

load_ttn_in <= ’0’;

wait_clock(1);

wait for del_prd;

ttn <= "00000000";

wait_clock(1);

wait for del_prd;
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--***************************************************

-- start encryption

--***************************************************

encrypt_in <= ’1’;

wait_clock(2);

wait for del_prd;

data_in <= "0010"; -- ls-digit of X = ’2’

wait_clock(1);

wait for del_prd;

for i in 0 to (length/(width)) loop

data_in <= data_in + "0001"; - add ’1’ to next digit of X

wait_clock(1);

wait for del_prd;

end loop;

data_in <= "0000";

wait_clock(100000);

END PROCESS flow_process;

clock_gen_f : PROCESS

BEGIN

iclk_f <= ’1’;

WAIT FOR clk_prd_f/2;

iclk_f <= ’0’;

WAIT FOR clk_prd_f/2;

END PROCESS clock_gen_f;

CLOCK_f <= iclk_f;

clock_gen_s : PROCESS

BEGIN

iclk_s <= ’1’;

WAIT FOR clk_prd_s/2;

iclk_s <= ’0’;

WAIT FOR clk_prd_s/2;

END PROCESS clock_gen_s;

CLOCK_S <= iclk_s;

END A;

--architecture configuration

configuration CFG_TB_mont_BEHAVIORAL of E is

for A

end for;

end CFG_TB_mont_BEHAVIORAL;
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Synosys Script

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler targeting an XC4000XL device */

/* Set the name of the design"s top-level */

TOP = mon160b_r4

F1 = package_r4

F2 = module_pack

F3 = unit4b_r4ram

F4 = f_unit4b_r4ram

F5 = e_unit4b_r4ram

F6 = exp_ram_64x16s

F7 = mu_block_ram_40x4dp

F8 = sq_block_ram_40x4dp

F9 = state_mach

F10 = ttn_ram_20x8s

/* Set the name of the design"s LOGIBLOX */

F11 = reg_2b

F12 = reg_3b

F13 = reg_4b

F14 = reg_5b

F15 = reg_6b

F16 = reg_8b

F17 = reg_10b

F18 = reg_16b

F19 = shift16bit

F20 = clk_div_a

F21 = count_4b_15m

F22 = count_5b_20m

F23 = count_6b_u

F24 = count_6b_42m

F25 = count_10b_u
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F26 = ram4x4

F27 = ram5x4

F28 = ram32x8s

F29 = ram64x16s

F30 = ram64x4dp

designer = "Thomas Blum"

company = "WPI Crypto Group"

part = "4085XLBG432-09"

/* Read the LOGIBLOX. */

read -format edif "WORK/" + F11 + ".edn"

read -format edif "WORK/" + F12 + ".edn"

read -format edif "WORK/" + F13 + ".edn"

read -format edif "WORK/" + F14 + ".edn"

read -format edif "WORK/" + F15 + ".edn"

read -format edif "WORK/" + F16 + ".edn"

read -format edif "WORK/" + F17 + ".edn"

read -format edif "WORK/" + F18 + ".edn"

read -format edif "WORK/" + F19 + ".edn"

read -format edif "WORK/" + F20 + ".edn"

read -format edif "WORK/" + F21 + ".edn"

read -format edif "WORK/" + F22 + ".edn"

read -format edif "WORK/" + F23 + ".edn"

read -format edif "WORK/" + F24 + ".edn"

read -format edif "WORK/" + F25 + ".edn"

read -format edif "WORK/" + F26 + ".edn"

read -format edif "WORK/" + F27 + ".edn"

read -format edif "WORK/" + F28 + ".edn"

read -format edif "WORK/" + F29 + ".edn"

read -format edif "WORK/" + F30 + ".edn"

/* Analyze and Elaborate the design file. */

analyze -format vhdl "sim_rtl/" + F1 + ".vhd"

analyze -format vhdl "sim_rtl/" + F2 + ".vhd"

analyze -format vhdl "sim_rtl/" + F3 + ".vhd"

analyze -format vhdl "sim_rtl/" + F4 + ".vhd"

analyze -format vhdl "sim_rtl/" + F5 + ".vhd"

analyze -format vhdl "sim_rtl/" + F6 + ".vhd"

analyze -format vhdl "sim_rtl/" + F7 + ".vhd"

analyze -format vhdl "sim_rtl/" + F8 + ".vhd"

analyze -format vhdl "sim_rtl/" + F9 + ".vhd"

analyze -format vhdl "sim_rtl/" + F10 + ".vhd"

analyze -format vhdl "sim_rtl/" + TOP + ".vhd"

elaborate TOP
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/*Set the current design to unit4b_r4ram level. */

current_design F3

/* Don’t touch the logiblox*/

set_dont_touch ("b_ram_inst")

set_dont_touch ("m_ram_inst")

set_dont_touch ("a_i_reg")

set_dont_touch ("q_i_reg")

set_dont_touch ("res_reg_inst")

set_dont_touch ("control_reg")

set_dont_touch ("b_in_reg")

set_dont_touch ("b_mult_reg")

set_dont_touch ("result_reg")

/*Set the current design to the f_unit4b_r4ram level. */

current_design F4

/* Don’t touch the logiblox*/

set_dont_touch ("m_ram_inst")

set_dont_touch ("a_i_reg")

set_dont_touch ("q_i_reg")

set_dont_touch ("res_reg_inst")

set_dont_touch ("control_reg")

set_dont_touch ("result_reg")

/*Set the current design to the e_unit4b_r4ram level. */

current_design F5

/* Don’t touch the logiblox*/

set_dont_touch ("b_ram_inst")

set_dont_touch ("res_reg_inst")

set_dont_touch ("res_reg_2_inst")

set_dont_touch ("control_reg")

set_dont_touch ("b_in_reg")

set_dont_touch ("b_mult_reg")

set_dont_touch ("result_reg")

/*Set the current design to the exp_ram_64x16s level. */

current_design F6

/* Don’t touch the logiblox*/
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set_dont_touch ("ram_inst")

set_dont_touch ("cnt_ram_wr")

set_dont_touch ("cnt_ram_rd")

set_dont_touch ("count_val_reg")

set_dont_touch ("shift_reg")

/*Set the current design to the mu_block_ram_40x4dp level. */

current_design F7

/* Don’t touch the logiblox*/

set_dont_touch ("dp_ram_y")

set_dont_touch ("count_wrt")

set_dont_touch ("count_rd")

set_dont_touch ("data_in_reg_f")

set_dont_touch ("data_in_reg_s")

set_dont_touch ("data_r")

/*Set the current design to the sq_block_ram_40x4dp level. */

current_design F8

/* Don’t touch the logiblox*/

set_dont_touch ("dp_ram_y")

set_dont_touch ("count_wrt")

set_dont_touch ("count_rd")

set_dont_touch ("data_in_reg")

set_dont_touch ("data_r")

/*Set the current design to the state_mach level. */

current_design F9

/* Don’t touch the logiblox*/

set_dont_touch ("cnt_a")

/*Set the current design to the ttn_ram_20x8s level. */

current_design F10

/* Don’t touch the logiblox*/

set_dont_touch ("ram_inst")

set_dont_touch ("cnt_ram")

set_dont_touch ("output_reg_even")

set_dont_touch ("output_reg_odd")
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/*Set the current design to the top level. */

current_design TOP

/* Don’t touch the logiblox*/

set_dont_touch ("mod_even")

set_dont_touch ("mod_odd")

set_dont_touch ("ttn_reg")

set_dont_touch ("reg_exp")

set_dont_touch ("clk_divider")

remove_constraint -all

/* Uniquify the design and reset the schematic */

uniquify

create_schematic -size infinite -gen_database

/* include timming and area constraints */

remove_constraint -all

remove_clock -all

create_clock -period 20 -waveform {0 10} CLOCK_F

create_clock -period 40 -waveform {20 40} CLOCK_S

group_path -critical_range 10000 -default

set_input_delay 0 -clock CLOCK_F { all_inputs()}

set_output_delay 0 -clock CLOCK_F { all_outputs()}

set_input_delay 0 -clock CLOCK_S { all_inputs()}

set_output_delay 0 -clock CLOCK_S { all_outputs()}

set_operating_conditions WCCOM

/* Indicate which ports are pads. */

set_port_is_pad "*"

set_pad_type -no_clock all_inputs()

set_pad_type -clock CLOCK_F

set_pad_type -clock CLOCK_S

set_pad_type -slewrate LOW all_outputs()

insert_pads

/* link */

link

/* Synthesize the design.*/
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compile -boundary_optimization -map_effort high

/* Write the design report files. */

report_fpga > "reports/" + TOP + ".fpga"

report_timing > "reports/" + TOP + ".timing"

report_constraint -verbose > "reports/" + TOP + ".cnst"

/* Write out an intermediate DB file to save state */

write -format db -hierarchy -output "db/" + TOP + "_compiled.db"

/* Replace CLBs and IOBs primitives (XC4000E/EX/XL only) */

replace_fpga

/* Set the part type for the output netlist. */

set_attribute TOP "part" -type string part

/* Write out the intermediate DB file to save state*/

write -format db -hierarchy -output "db/" + TOP + ".db"

/* Write out the timing constraints */

ungroup -all -flatten

write_script > "dc/" + TOP + ".dc"

/* Save design in XNF format as <design>.sxnf */

write -format xnf -hierarchy -output "sxnf/" + TOP + ".sxnf"

/* XILINX primitive to convert Synopsys design constraints to Xilinx format*/

sh /usr/local/xilinx/bin/sol/dc2ncf "dc/" + TOP + ".dc"



Appendix C

Simulation Results

In this chapter the simulation results are shown of Design 2, with a modulus of 160

bits. For a more detailed description of the data flow, please refer to Sections 7.2, 7.3,

and 7.4.

C.1 Processing Elements

The following sequence of three figures shows the pre place-and-route simulation

results for processing element 3. Figure C.1 shows the loading of the pre–computation

factor into B and the calculation of its multiples. Figure C.2 shows the first cycles

of the two modular multiplications. In Figure C.3 finally, the last cycles of these

operations are shown, the storing of the first multiplication result in B-reg, and the

calculation of the multiples of B.

The signals shown in the simulation sequence are as follows:

Figure: C.1

CLOCK F ⇒ Fast clock signal, system clock.

CLOCK S ⇒ Slow clock signal(CLOCK F/2).

control ⇒ Current state encoded.

b in ⇒ Operand B.

control in ⇒ control input for unit3.
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b ⇒ Input B registered.

a i ⇒ Operand A.

write ram b ⇒ Write enable signal for B-RAM.

b m reg ⇒ Data input of B-RAM (b p multregistered).

b p mult ⇒ Temporarily result of B-multiplication.

c b in ⇒ Carry input B-multiplication.

c b out ⇒ Carry output B-multiplication.

Figure: C.2

carry in ⇒ Carry input from unit to the right.

q in ⇒ Quotient Q.

res in ⇒ Result S of an iteration from unit to the left.

modulus ⇒ Multiple of M according to qi (1M = 1).

a t b ⇒ Multiple of B according to ai (1B = 2).

mod p b ⇒ modulus plus a t b plus carry 0.

mod p b p s ⇒ mod p b plus res in plus carry 1.

carry out ⇒ Bits 4 and 5 of the result mod p b p s registered.

res out ⇒ Bits 3 to 0 of the result mod p b p s registered.

res reg ⇒ Bits 5 to 0 of the result mod p b p s registered.

Figure: C.3

result in ⇒ Result of a modular multiplication from unit to the left.

result out ⇒ Result of a modular multiplication mod p b p s or result in

to unit to the right .

load b ⇒ Write enable signal for B-reg.

b ⇒ Result of squaring stored in B-reg.
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C.2 Systolic Array

The following sequence of three figures shows the pre place-and-route simulation

results for the systolic array. Figure C.4 shows the loading of the pre–computation

factor into B, the calculation of its multiples, and the first cycles of the two modular

multiplications. Figure C.5 shows the last cycles of these operations in units 0,1

and 2, the storing of the first multiplication result in B-reg, and calculation of the

multiples of B. In Figure C.6 finally, the end of the modular multiplications in the

units 41,42 and 43 is shown.

The signals shown in the simulation sequence are as follows:

Figure: C.4

CLOCK F ⇒ Fast clock signal, system clock.

CLOCK S ⇒ Slow clock signal(CLOCK F/2).

b even ⇒ bus B to even numbered units.

b odd ⇒ bus B to odd numbered units.

control in ⇒ Inputs control of units 0 to 2 and 42,43.

a in ⇒ Inputs operand A of units 0 to 2 and 42,43.

res out ⇒ Result of unit1 (reused as qi in next iteration).

q in ⇒ Inputs quotient Q of units 0 to 2 and 42,43.

Figures: C.5 and C.6

result out ⇒ Modular multiplication results of units 0 to 3 and 41,42,43

pumped trough the systolic array.
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Figure C.4: Systolic Array: Beginning of the pre-computation
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Figure C.5: Systolic Array: End of the pre-computation in units 0,1,2
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Figure C.6: Systolic Array: End of the pre-computation in units 41,42,43
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C.3 Modular Exponentiation

The following sequence of three figures shows the pre place-and-route simulation re-

sults of the modular exponentiation. Figures C.7 and C.8 show the pre-computation.

In Figures C.9 an overview of a 19-bit modular exponentiation is given.

The signals shown in the simulation sequence are as follows:

Figure: C.7

CLOCK F ⇒ Fast clock signal, system clock.

CLOCK S ⇒ Slow clock signal(CLOCK F/2).

data in ⇒ X value to encrypt/decrypt from input.

b even ⇒ bus B to even numbered units.

b odd ⇒ bus B to odd numbered units.

control in ⇒ Control word to systolic array.

a i ⇒ Operand A(= X) to to systolic array.

q i ⇒ Quotient Q to systolic array.

y out ⇒ Data output of DP RAM Z.

Figure: C.8

result out ⇒ Result from systolic array.

y out ⇒ Data output of DP RAM Z.

y out ⇒ Data output of DP RAM P.

max count sq ⇒ Terminal count signal from DP RAM Z.

Figure: C.9

data in ⇒ Data input of Exp RAM:

1.value: number of bits ei of exponent (19).

2.value: first word of exponent (e15 . . . e0).
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3.value: second word of exponent (e18 . . . e16).

exponent ⇒ Bit ei of exponent.

finish ⇒ Terminal signal in Exp RAM (see Figure 6.5).

sig pre c1 ⇒ Signal for state pre-computation1.

sig pre c2 ⇒ Signal for state pre-computation2.

sig calc ⇒ Signal for state computation.

sig post ⇒ Signal for state post-computation.

sig load ⇒ Signal for sub–state load.
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