14,163 research outputs found

    A Model for Configuration Management of Open Software Systems

    Full text link
    The article proposes a model for the configuration management of open systems. The model aims at validation of configurations against given specifications. An extension of decision graphs is proposed to express specifications. The proposed model can be used by software developers to validate their own configurations across different versions of the components, or to validate configurations that include components by third parties. The model can also be used by end-users to validate compatibility among different configurations of the same application. The proposed model is first discussed in some application scenarios and then formally defined. Moreover, a type discipline is given to formally define validation of a configuration against a system specificationComment: 13 page

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Redevelopment of an industrial case study using Event-B and Rodin

    No full text
    CDIS is a commercial air traffic information system that was developed using formal methods 15 years ago by Praxis, and it is still in operation today. This system is an example of an industrial scale system that has been developed using formal methods. In particular, the functional requirements of the system were specified using VVSL -- a variant of VDM. A subset of the original specification has been chosen to be reconstructed on the Rodin platform based on the new Event-B formalism. The goal of our reconstruction was to overcome three key difficulties of the original formalisation, namely the difficulty of comprehending the original specification, the lack of any mechanical proof of the consistency of the specification and the difficulty of dealing with distribution and atomicity refinement. In this paper we elucidate how a new formal notation and tool can help to overcome these difficulties

    Intelligent agent simulator in massive crowd

    Get PDF
    Crowd simulations have many benefits over real-life research such as in computer games, architecture and entertainment. One of the key elements in this study is to include elements of decision-making into the crowd. The aim of this simulator is to simulate the features of an intelligent agent to escape from crowded environments especially in one-way corridor, two-way corridor and four-way intersection. The addition of the graphical user interface enables intuitive and fast handling in all settings and features of the Intelligent Agent Simulator and allows convenient research in the field of intelligent behaviour in massive crowd. This paper describes the development of a simulator by using the Open Graphics Library (OpenGL), starting from the production of training data, the simulation process, until the simulation results. The Social Force Model (SFM) is used to generate the motion of agents and the Support Vector Machine (SVM) is used to predict the next step for intelligent agent

    Integrating object-oriented modeling techniques with formal specification techniques

    Get PDF
    The increasing complexity of software systems makes their development complicated and error prone. A widely used and generally accepted technique in software engineering is the combination of different models (or views) for the description of software systems. The primary benefit of this approach is to model only related aspects (Iike structure or behavior). Using different models cIarifies different important aspects of the system, but it has to be taken into consideration that these models are not independent and they are semantically overlapping.\nThe models constitute the fundamental base of information upon which the problem domain experts, the analysts and the software developers interact. Thus, it is of a fundamental importance that it clearly and accurately expresses the essence of the problem. On the other hand, the model construction activity is a critical part in the development process.\nSince models are the result of a complex and creative activity, they tend to contain errors, omissions and inconsistencies. Model verification is very important, since errors in this stage have an expensive impact on the following stages of the software development process.Eje: Teorí

    Integrating object-oriented modeling techniques with formal specification techniques

    Get PDF
    The increasing complexity of software systems makes their development complicated and error prone. A widely used and generally accepted technique in software engineering is the combination of different models (or views) for the description of software systems. The primary benefit of this approach is to model only related aspects (Iike structure or behavior). Using different models cIarifies different important aspects of the system, but it has to be taken into consideration that these models are not independent and they are semantically overlapping. The models constitute the fundamental base of information upon which the problem domain experts, the analysts and the software developers interact. Thus, it is of a fundamental importance that it clearly and accurately expresses the essence of the problem. On the other hand, the model construction activity is a critical part in the development process. Since models are the result of a complex and creative activity, they tend to contain errors, omissions and inconsistencies. Model verification is very important, since errors in this stage have an expensive impact on the following stages of the software development process.Eje: TeoríaRed de Universidades con Carreras en Informática (RedUNCI

    Semantics-driven dataflow diagram processing.

    Get PDF
    Dataflow diagram is a commonly used tool of structured analysis and design techniques in specifications and design of a software system, and in analysis of an existing system as well. While automatic generating dataflow diagram saves system designers from tedious drawing and help them develop a new system, simulating dataflow diagrams provides system analysts with a dynamic graph and help them understand an existing system. CASE tools for dataflow diagrams play an important role in software engineering. Methodologies applied to the tools are dominant issues extensively evaluated by tools designers. Executable specifications with dataflow diagrams turn out an opportunity to execute graphic dataflow diagrams for systems analysts to simulate the behavior of a system. In this thesis, a syntax representation of dataflow diagram was developed, and a formal specification for dataflow diagram was established. A parser of this developed CASE tool translates the syntax representation of DFDs into their semantic representation. An interpreter of this tool then analyzes the DFDs semantic notations and builds a set of services of a system represented by the DFDs. This CASE tool can be used to simulate system behavior, check equivalence of two systems and detect deadlock. Based on its features, this tool can be used in every phase through entire software life cycle. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1998 .Z46. Source: Masters Abstracts International, Volume: 39-02, page: 0535. Adviser: Indra A. Tjandra. Thesis (M.Sc.)--University of Windsor (Canada), 1998

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio
    corecore