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Abstract
Dataflow diagram is a commonly used tool of structured analysis and design 

techniques in specifications and design of a software system, and in analysis of 

an existing system as well. While automatic generating dataflow diagrams saves 

system designers from tedious drawing and help them develop a new system, 

simulating dataflow diagrams provides system analysts with a dynamic graph and 

help them understand an existing system. CASE tools for dataflow diagrams 

play an important role in software engineering. Methodologies applied to the 

tools are dominant issues extensively evaluated by tools designers. Executable 

specifications with dataflow diagrams turn out an opportunity to execute graphic 

dataflow diagrams for systems analysts to simulate the behavior of a system.

In this thesis, a syntax representation of dataflow diagram was developed, 

and a formal specification for dataflow diagram was established. A parser of 

this developed CASE tool translates the syntax representation of DFDs into their 

semantic representation. An interpreter of this tool then analyzes the DFDs 

semantic notations and builds a set of services of a system represented by 

the DFDs. This CASE tool can be used to simulate system behavior, check 

equivalence of two systems and detect deadlock. Based on its features, this tool 

can be used in every phase through entire software life cycle.

Keywords: dataflow diagrams, software life cycle, software reuse, structured 

analysis and design techniques, software specification documents and design 

documents, formal specifications, grammar, CASE tools, CCS, Java.
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1 INTRODUCTION

Many design methodologies make use of graphical notation where software 

objects and relationships are represented using different symbols on a diagram. 

Rules exist governing how symbols should be used, how symbols should be 

linked and, in some cases, how symbols should be physically positioned in a 

diagram. One of most widely used methodologies which make extensive use o f 

diagrammatic notations is the structured analysis and design technique (SADT).

SADT [6] deals with decomposing a system into modules. It uses dataflow 

diagrams (DFDs), entity-relationship diagrams (ERDs) and state transition dia

grams (STDs), with the supplement of a data dictionary, to represent the static 

and dynamic properties of a system [37]. These diagrammatic notations provide 

not only techniques for system analyst but a structured approach to the devel

opment process. They are good for analyzing and structuring systems and are 

relatively easily understood by the customers. They also have the advantage of 

being well tried and understood and are used by the more conscientious devel

opers o f systems.

Among these three major diagrams, the dataflow diagram is the mostly 

common used one. DFD is a good tool for modelling data flows irrespective of 

physical and organizational boundaries and the medium of that flow. It provides a 

mechanism for ensuring a consistent hierarchical structure and is a useful analysis 

tool. Used sensibly it can provide an immediate and understandable model o f the 

essential inputs, outputs and processes of the system. It is also a good design 

model, permitting the production o f alternative information flows and providing 

a focus on discussion about the location of the human-computer interface. The

t
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elements modelled —  flows, processes, stores and terminators also lead to their 

physical equivalents.

As a user friendly and easy understanding graphical tool, dataflow diagram 

has been used in every phase in software life cycle. It plays active role in 

system design, system analysis, system maintenance, system reverse-engineering 

and software reuse. Its functional modeling features not only let system analyst 

to get good knowledge of a system behavior but also assist system designer to 

make a better logical structure o f an object model.

1.1 The Role of DFD in Softw are Life Cycle

1.1.1 DFDs in Software Design

System analysis and specification are essential activities in any system de

velopment model. The languages used to describe specifications cover a broad 

range: from informal to formal, from operational to descriptive, from graphical 

to narrative. They usually include tables, diagrams, and other graphical notations 

which can convey information in a concise, rigorous, and readable way.

Though formal specification is very rigorous, precise and complete, in the 

real world, many companies are still reluctant or hesitant to use formal methods 

for system specification. Formal specification is not user friendly and hard 

to understand. It takes system designers a lot of time to transform formal 

specification into design model accurately. On the other hand, industries use 

narrative methods in system specification as less as possible to avoid ambiguity 

in the later stage of software development. Without doubt, graphical notations 

are commonly adopted by industries in software specification because they are 

intuitive, readable and user friendly. Dataflow diagram is one o f the widely used

■>
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graphical tools in this early stage of software life cycle. It describes software 

requirements and provide an intuitive high-level picture o f software functions and 

their decomposition into component parts.

Top-down approach is frequently used in the design stage of software life 

cycle. The modularity principle is of paramount importance in the design of 

software. The decomposition of a system into modules can be accomplished 

in several ways and in several steps. One might first do a decomposition in 

which the system is decomposed into higher-level module called subsystems. 

Relations among the subsystems are then defined, and the intended behavior 

of each subsystem is agreed upon by the designers. Next, each subsystems 

analyzed separately, and the procedure is iterated until reaching the point where 

the complexity of each component is sufficiently small that it can be implemented 

readily by a single person.

Dataflow diagrams provide a top-down, partitioned, graph-theoretic model 

for system design. Leveled DFDs present a good description of a system, its 

subsystems and relationship among the subsystems. A system/subsystem function 

decomposition has its corresponding components in module refinement and even 

in object-oriented module design. Each layer of module decomposition can be 

interpreted in corresponding level o f  DFDs. Leveled DFDs make system designers 

job easier and the design more readable and understandable as well.

1.1.2 DFDs in Software Maintenance

After a software is delivered, frequently required job is to modify the product 

to correct faults, or to improve performance to adapt the product to a changed 

environment. A delivered software may have some residual errors which could

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be present in any phase of software life-cycle such as requirements, specification, 

design, implementation, integration even maintenance, or could be any other types 

o f errors. This is so called corrective maintenance that accounts for 20 percent 

o f maintenance cost [16].

Most of the maintenance cost, namely over 50 percent, is spent on the second 

type of maintenance, perfective maintenance which involves changing the software 

to improve some of its qualities. Here, changes are made due to the need to 

modify the functions offered by the application, add new functions, improve the 

performance o f the application, make it easier to use, etc. The request to carry out 

perfective maintenance may come directly from the software engineer, in order 

to improve the status of the product on the market, or they may come from the 

customer, to meet some new requirements.

The third reason for changing an application is adaptive maintenance which 

adjusts the application in order to react to changes in the environment in which the 

application operates. Adaptive maintenance can be a new release of the hardware 

or the operating system or a new database system. Thus this maintenance is not 

requested by a client; instead, it is externally imposed on the client.

Based on the activities described above, software maintenance can be divided 

into two categories: repairs and evolution, of which the second one claims most of 

maintenance work. Both these maintenance processes require system’s maintainer 

to have, if  not complete, good knowledge about the software product. However, 

the system’s maintainer are usually not its designers, so they must expend many 

resources to examine and leam about the system. A well structured DFDs is very 

helpful for system maintainer to better understand the behavior of the system. 

They can modify existing functions or add new functions based on DFDs.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the worse condition which frequently happen, the only available documen

tation for a product that has to be maintained is the source code itself. In the 

course o f developing software against a time deadline, the original specification 

and design documents are frequently not updated, and are consequently almost 

useless to the maintenance team. Other documentation such as the database man

ual or the operating manual may never have been written due to the priority 

o f delivery time. Alternatively, continuing maintenance may have corrupted the 

original structure so much that it is no longer discernible. If no design documen

tation is available at all, product maintainer can draw themselves a DFDs based 

on system function test to acquire a whole picture of the system. Actually in 

industry, the most possible available design documents are architecture graphs or 

some flow charts similar to DFDs. It is not very difficult to create DFDs from 

these resources.

1.1.3 DFDs in Software Reuse

Software reuse is akin to software evolution. In software evolution, a product 

is modified for building a new version of the same product; in software reuse, 

a product is ready to be used, perhaps with minor changes, for building another 

product.

The candidates products for reuse can be all resources used and produced 

during the development of software [29]. Most frequently reused types of products 

are identified as:

1. data reuse, involving a standardization of data formats,

2. architectures reuse, which consists of standardizing a set of design and 

programming conventions, dealing with the logical organization of software,

5
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3. design reuse, for some common business applications and

4. program reuse, which deals with reusing executable code

Milis [19] has recommended a five-level hierarchy o f reusable software 

development knowledge in which domain knowledge is represented explicitly:

1. environmental knowledge,

2. external knowledge,

3. functional architectures,

4. logical structures and

5. code fragments.

This classification corresponds somewhat to the software life cycle, where 

the last three levels map to the products of system design, detailed design, and 

coding. The first two (environmental and external) are typically used to derive a 

particular system’s specifications from the user requirements.

The reuse of products of higher-level abstraction activities, such as architec

tures reuse or design reuse, gives greater leverage than code reuse. The higher- 

level reuse requires higher-level knowledge. One of the big problems of reuse is to 

acquire reusable assets. This activity involves various mixes o f new developments 

and use of existing assets raw resources.

DFDs can be considered as the reuse of functional architectures, logical struc

tures as well as design documents. This kind o f reuse o f high-level abstraction 

offers greater leverage. Reusing DFDs not only can help software error correc

tion, improvement and maintenance but also can assist across project/program 

reference. A well designed and documented DFDs can either be pushed out from 

original creator to end user or be pulled out by new user from its original design.

6
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1.1.4 DFDs in Reverse Engineering

Reverse engineering encompasses a wide range of tasks related to understand

ing and modifying software systems. One of the dominant tasks is identifying 

the components o f an existing software system and the relationships among them. 

Also important is creating high-level descriptions o f various aspects of existing 

systems. The abstraction of a system could range from different phases of system 

life cycle to individual modules in the system, or it could be the design recovery 

o f a software system.

What reverse engineering has done is to build up, more or less, a basis for 

maintenance, restructuring, reengineering and reuse o f software, since successful 

executions of these processes rely on being able to recognize, comprehend, and 

manipulate design o f a system. Even forward engineering, in the sense of system 

life cycle, involves a kind of reverse engineering.

Reverse engineering generally involves extracting design artifacts and building 

or synthesizing abstractions in a certain formality. These formalities are usually 

the methodologies used in software design. There are a couple of dozens of 

identified techniques used in software design. Each design methodology has its 

own notation (although these are often closely related) and its own set of rules 

defining how designs should be expressed using that notation. Figure 1.1.4-1 

shows the reverse engineering concept.

7
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Requirements 
(constraints, 
objectives, 
business rules)

Design Implementation

Forward Forward
engineering ^  ______ engineering

Reverse Reverse
engineering engineering

■   -  -  -    —  -

Design ^ __ ________ ___ Design
recovery recovery

Reengineering Reengineering
(renovation) (renovation)

Restructuring Restructuring S K S T ™ ’

Rgure 1.1.4-1 Relationship between terms. Reverse engineering and related processes are 
transformations between or within abstraction levels, represented here in terms of life-cycle 
phases

The term reverse engineering thus can be described as the process of analyzing 

a subject system to identify the systems’s components and their interrelationships 

and create representations of the system in another form or at higher level o f 

abstraction."[l]

Many o f the models for high-level representation of traditional (sequential) 

software systems in literature tend to describe the system in terms o f functional 

blocks and their interactions. These models are well defined as dataflow diagram
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which is one of the most popular tools for the high-level representation of real 

time system.

Some of tools used in reverse engineering are to extract design properties 

of a system by reconstructing its dataflow diagrams either from executable code 

or from software specification documents. Some just reuse existing dataflow 

diagrams to help system analysts understand the behavior o f systems. DFDs have 

been extensively used in software design and analysis for last one and half decades. 

Many large legacy systems were designed by using structured analysis and design 

technique with DFD-enhanced specifications. This is one reason that why some 

of reverse engineering methodologies focus on reusing or reconstructing dataflow 

diagrams. However, reverse engineering became popular both academically and 

commercially just in early 1990s. Thus DFD reuse and reconstruction in reverse 

engineering is still under development.

1.2 The Role of DFD in the Object-Oriented Paradigm

DFD is the most commonly used tool in functional modeling. A dataflow 

diagram shows the functional relationships of the values computed by a system, 

including input values, output values, and internal data stores. The processes in 

the functional model correspond to operations in the object model. Often there is 

a direct correspondence at each level of nesting. A top-level process corresponds 

to an operation on a complex object, and lower-level processes correspond to 

operations on more basic objects that are part of the complex object or that 

implement it. Sometimes one process corresponds to several operations, and 

sometimes one operation corresponds to several processes.

9
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Processes in the functional model show objects that are related by function. 

One of the inputs to a process can be identified as the target object, with the 

rest being parameters to the operation. The target object is a client of the 

other objects (called suppliers) because it uses them in performing the operation. 

The target knows about the suppliers, but the suppliers do not necessarily know 

about the target. The target object class is dependent on the argument classes 

for its operations. The client-supplier relationship establishes implementation 

dependencies among classes; the clients are implemented in terms of, and are 

therefore dependent on, the supplier classes.

Actors are explicit objects in the object model. Data flows to or from actors 

represent operations on or by the objects. The dataflow values are the arguments or 

results of the operations. Because actors are self-motivated objects, the functional 

model is not sufficient to indicate when they act. The dynamic model for an actor 

object specifies when it acts.

Data stores are also objects in the object model, or at least fragments of 

objects, such as attributes. Each flow into a data store is an update operation. 

Each flow out of a data store is a query operation, with no side effects on the 

data store object. Data stores are passive objects that respond to queries and 

updates, so the dynamic model of the data store is irrelevant to its behavior. The 

dynamic model of the actors in a diagram is necessary to determine the order 

o f operations [26].

1.3 Overview of the  A pproaches of DFD Processing

Because o f its popularity, graphic view and intuitive meaning, dataflow 

diagrams have been considered to be good candidates of CASE support for

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



structured analysis and design since the mid 1980s. Those CASE tools either 

already available in market or still in the stage of research could be classified, 

in terms of their purposes, as editing tools, automatic generation tools, executing 

tools and reconstructing tools.

Editing tools are quite different from general graphic editing tools in use. 

General graphics tools use standard symbols —  like rectangles, circles, lines and 

arrows ect. — to do basic graphic editing operations such as drawing, dragging, 

cutting, pasting moving and connecting. DFD editing tools only use DFD- 

specific graphic symbols, but not general drawing ones. They are usually much 

more intelligent than general tools. In addition to the basic drawing operations, 

DFD tools can check DFD syntax, detect duplicates, perform object search, 

automatically generate data flows, dynamically move or delete objects and related 

components, integrate DFD and data dictionary etc. Some advanced editing tools 

even can enforce diagramming rules, support concurrent DFD drawing, check 

consistency across diagrams and systematically replace objects with the diagrams 

at lower level in DFD hierarchical structure [28]. These DFD editing tools are 

usually so expensive that most system analysts can hardly afford to use them.

Automatic generation tools are created to save system designers from tedious 

and time-cost DFD drawing. All informations needed for drawing DFD are 

written in a structure representation using some descriptive language and then 

the representation is stored in a graphics database. The drawing subsystem access 

the database to retrieve flow information and parse it to generate the dataflow 

diagrams. By using automatic generation tools, a system designer/analyst can get 

a DFD automatically without any manual drawing. What they have to do is just 

using a descriptive language required by the automatic tool to write a structure

11
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representation and inputting it into the database. Such kind o f CASE tools are 

only used academically and still under improvement [24].

Executing tools provide a dynamic mechanism to simulate the behavior 

of a system semi-automatically. In such tools, a graphic dataflow diagram is 

converted to an executable specification in some formality —  called an executable 

dataflow diagram —  and then the executable DFD is read and interpreted by the 

executing system to generate a graphical dataflow diagram which can be used 

as a behavior simulation model for the target system. Various approaches are 

applied to form the executable specifications such as Petri net, token passing, set 

notation, pseudo-code description and flowmap [25] etc. All these approaches 

try to catch the semantics of the dataflow diagrams and control concurrence and 

dataflow sequences.

Reconstructing tools extract information from existing system documents and 

generate dataflow diagrams to help both system analysts and users to understand 

the system and to modify or update the system. Reconstructing DFD directly from 

code is a method used in reverse engineering. Sophisticated code analysis and 

transform analysis is involved in such reconstruction activities [33]. The other 

way to reconstruct a DFD is based on existing system design documents. A set 

of rules and definitions declared to transform design documents into graphical 

dataflow diagrams through a parser [7],

All these four kinds of CASE tools have different objectives, but share a 

common concept that a formal foundation should be created in order to draw 

dataflow diagrams automatically through a CASE tool. Each tool applied a 

specific methodology to set up a formal specification o f dataflow diagrams which is 

either author defined or already existing, either mathematical or descriptive, either

12
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process-oriented or structured. These experiences and various efforts stemming 

from the common idea indicate that a formal framework for DFD is likely to be 

the right route for automatic generation of and semantically analysis of dataflow 

diagrams.

Some of the CASE tools developed after late 1980s not only have the prop

erties o f first-generation CASE tools, which emphasizes remarkably sophisticated 

graphic-workstation user interfaces, but also catch some characteristics of second- 

generation CASE tools, which can provide methodology adaptation, documenta

tion layout and intelligent diagraming support. Along with booming of reverse 

engineering and reengineering legacy system, more methodologies are proposed 

to support reuse of dataflow diagrams [18].

1.4 The Problem s with Previous DFD Tools

DFD has been adapted to fit specific needs of different systems. Such 

adaptation includes changed notation, added notation and varied interpretations 

o f some symbols. Here comes out a common issue for all the three ways using 

dataflow diagrams —  “what kind of dataflow diagram is reconstructed ?”. The 

second common issue for reconstructing dataflow diagrams is how to execute 

reconstruction. Drawing hierarchical dataflow diagrams manually for a large- 

scale system is extremely time-consuming and error prone if not impossible.

The solution for the first issue associated with the first two reconstruction 

methods is obvious, but it is not trivial if we reconstruct a DFD based on 

existing DFD with different notation or different interpretation of symbols. An 

intuitive solution for the second issue is naturally attributed to computer aided 

software engineering (CASE) [17]. CASE tools, especially DFD editing tools,
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will definitely help drawing an eye-pleasing and standard DFD and save the 

system analyst from doing a tedious job. Regarding the use o f CASE tools 

in reverse engineering, comes out another issue —  “how a tool can guarantee 

that the reconstructed DFDs are logically correct and match the original design 

?”. Actually a DFD specification gives user some flexibility to modify it to fit 

particular needs of a specific system. The flexibility of DFD notation is one 

reason that leads this tool to be so popular. But the flexibility comes at a price 

—  the lack of a formal basis o f DFD concepts and notation hinder its use as a 

formal specification tool. The lack of formal framework is one reason that not a 

lot automated aids have been developed to support its use.

CASE tools that support DFD reuse must meet the following requirements:

• The reconstructed DFD should be syntactically error free.

• The DFD in different levels o f  hierarchy should keep consistency.

• Method rule checking should be embedded in the tool.

• The layout of DFDs should be aesthetically acceptable.

• The reconstructed DFD should be semantically equivalent to the original one.

Quite a few of CASE tools have been developed to support use or reuse of 

dataflow diagrams. Each of them can meet some of the above requirements to 

some extents, but not all of them.

The above described four major CASE tools for DFDs reuse all center on the 

syntactic aspect of DFDs. Though some of advanced those tools can support good- 

quality documentation, simple forms of consistency checking, bookkeeping even 

methodology adaptation and intelligent diagraming, they still can not interpret 

DFDs semantically.

14
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Understanding the logical structure of DFDs is the key point to achieve 

use/reuse of DFDs in higher-level abstraction. CASE tools supporting intelligent 

use/reuse of DFDs rely on development of formal specifications for DFDs. 

Formal specifications can describe dataflow diagrams either syntactically or both 

syntactically and semantically. Formal specifications for DFD can not only help 

generate precise and consistent diagrams but also give a meaningful interpretation 

and help systems analysts understand the behavior of the described system. The 

semantic specifications for DFD is also known as executable specifications that 

allows the drawn dataflow diagrams to be executed to simulate the behavior of 

the underlined system.

1.5 The Organization of the  Thesis

The major remainder of this thesis paper is organized as nine sections. Sec

tion two gives a brief description of dataflow diagrams, its symbols, terminology, 

notation and construction. Section three evaluates the CASE tools for constructing 

dataflow diagrams in structured analysis and design, and investigates the various 

methodologies used in different tools. Section four focus on semantic represen

tation of dataflow diagrams with introduction to CCS. Section five proposes a 

semantic driven dataflow diagram processor. Section six develops the specifica

tion for the proposed system. Section seven analyzes the system design issues. 

Section eight describes the implementation of a simulation sub-system. Section 

nine is reserved for further work. The last section gives a brief conclusion.
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2 DATA FLOW DIAGRAMS

2.1 Overview

In software engineering, a system development is usually processed as a life

cycle model, especially for large-scale software design. The early phases of 

a software production process deal with more abstraction aspect o f the system 

which is generally represented by various specifications ranging from requirements 

specification to design specification. A specification is a statement o f an agreement 

between a producer of a system and a consumer of the system at any stage of the 

life-cycle model of the system. It can be used for different purposes such as a 

statement of user needs, a statement o f the requirements for the implementation, 

or a reference point during product maintenance.

Software specification may take any form of representations which can be 

formal or informal, and also can be operational or descriptive. While formal 

specifications can be presented by an algebraic specification language or a logic 

specification language such as Z notation, informal specifications are written in 

a natural language or a language associated with some figures, tables, diagrams 

and other notations to help understanding. Descriptive specifications try to state 

the desired properties of the system in a purely declarative fashion like entity- 

relationship diagrams. By contrast, operational specifications relate the intended 

system by describing the desired behavior, usually by providing a model of the 

system, i.e., an abstract device that in some way can simulate its behavior. A 

dataflow diagram is a good example o f operational specification.

What can be used as specifications in software development must meet certain 

requirements. The first quality required of specifications is that they should be
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clear, unambiguous, and understandable. The second is consistency and the third 

is complete.

O f the various specifications used in software engineering, the most often 

used, acceptable, easy understand ones are diagrams. There are three major 

graphical modeling tools of structured analysis and design technique (SADT): 

data flow diagram (DFD), entity-relationship diagrams (ERD) and state-transition 

diagrams (STD). While STD highlights time-dependent behavior o f a system and 

ERD presents a data model o f a system, DFD models the functions performed 

by a system. Dataflow diagram is also known as some other terms like: Bubble 

chart, Bubble diagram, Process model, Work flow diagram, function model.

The dataflow diagram is perhaps the most commonly used systems-modeling 

tool, particularly for a systems in which the functions of the system are of para

mount importance and more complex than the data that the system manipulates. 

DFDs were first used in the software engineering field as a notation for study

ing systems design issues. In turn, the notation had been borrowed from earlier 

papers on graph theory, and it continues to be used as a convenient notation by 

software engineers who are responsible for direct implementation o f the models 

of user requirements.

Since DeMarco [6], who is one of the first those who describe DFDs in a 

systematic, instructive way, and Gane and Sarson [12], who also use DFDs as 

a major tool in describing system analysis and design, published their books: 

Structured Analysis and System Specification and Structured Systems Analysis 

respectively in 1979, DFDs had been extensively used as a graphic tool in system 

analysis and design. Different notations and conventions were adopted to meet 

special needs in specific system development. In 1989, Yourdon [37] summarized
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the experiences of ten-year use of DFD and proposed a set o f notations and rules 

concerning DFDs which is usually called Yourdon dataflow diagrams.

Besides their characteristics of hierarchical structure and more complete nota

tions compared to other graphical tools o f structured analysis, Yourdon dataflow 

diagrams have all the three major qualities required of specifications. It is also 

one o f the most popular DFD conventions accepted in software industry. My 

research in DFD will be based on Yourdon DFD model.

2.2 The Components of DFDs

A dataflow diagram consists of a number of graphical symbols, which are 

circles, rectangles and lines. Circles, rectangles and two parallel lines are 

connected by labelled, directed lines which represent data “flowing” through 

the system, with each one using some or all o f its input data to produce its 

output. There are four major components o f Yourdon dataflow diagrams, which 

are process (transformation), dataflow, store and terminator as shown in Figure 

2.2—1. There are also some minor components, which are control transfoi-mation, 

control flow  and event store. Since they are not in my interest, they are not 

introduced [35].
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(a) Discrete dataflow (b) Process
(or transformation)

(c) Terminator (d) Data store
(source or sink)

Figure 2.2-1 The symbols of Yourdon dataflow diagrams

2.2.1 The Process

The first component o f the DFD is known as a process. Common synonyms 

are a bubble, a function, or a transformation. The process shows a part of the 

system that transforms inputs into outputs. It shows how one or more inputs are 

changed into outputs. The process is represented graphically as a circle, as shown 

in Figure 2.2-1 (b).

2.2.2 The flow

A flow is represented graphically by an arrow into or out of a process; an 

example of flow is shown in Figure2.2.2-1. The flow is used to describe the 

movement of chunks, or packets of information from one part of the system
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to another part. Thus, the flows represent data in motion, whereas the stores 

represent data at rest.

In order to obviate the use of the logic “AND” and “OR” or the operator * 

and ©, Yourdon gives some rules of composite flows illustrated in Figure 2.2.2-1 

and Figure 2.2.2-2. Consider Figure 2.2.2-1. The diagram (a) shows the flow 

X going to two processes —  A and B; diagram (b) shows X diverging into two 

flows —  z and y that go to A and B respectively; diagram (c) shows the flows 

dl and d2 converging to one flow DD for T needs both dl and d2 to process; 

diagram (d) shows the flows dl and d2 going to T separately for T needs only 

one of them to process.

B

z

y b

(a) X is used by both A and B (b) z and y are components of X

dl

d2

DD
► T

d1

d2

(c) T needs both d1 and d2 to process (d) T needs only one of d1 or d2 to process 

Figure 2.2.2-1 The rules for composite flows as input data

In Figure 2.2.2—2. the diagram (a) implies that p and q produced by D and 

E respectively are pan  of the composite dataflow R; diagram (b) shows two
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processes —  D and E —  both producing the dataflow R, but not at the same time: 

under some conditions, D will produce R, under others E will produce R; diagram

(c) shows that the flow 0 0  produced by T2 is composed o f 01 and 02; diagram

(d) depicts that T2 alternatively produce 01 or 02, but not at the same time.

E d E

(a) p and q are components of R (b) D and E are mutually exclusive;
both produce R

01 r  01
"  00

(c) T2 produce both 01 and 02  (d) T2 produce 01 or 0 2  alternatively

Figure 2.2.2-2 The rules for composite flows as output data

2.2.3 The Store

The store is used to model a collection of data packets at rest. The notation for 

a store is two parallel lines, as shown in Figure 2.2—1 (d). Store can be used as a 

necessary time-delayed storage area between two processes that occur at different 

times, as a convenient temporary repository o f data between two implementations 

or as an independent storage from which data is extracted or into which data is 

sent.
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Data can not flow directly from a store to a terminator, or from a terminator 

to a store; in either case a process is needed to process the data. In most cases, 

the flows will be labeled, but many systems analysts do not bother labeling the 

flow if an entire instance of a packet flows into or out of the store.

Store is passive, data will not travel from the store along the flow unless 

a process explicitly asks for them. While store is not changed when a packet 

of information moves from the store along the flow, a flow to a store is often 

described as a write, an update, or possibly a delete.

2.2.4 The Terminator

Terminator is graphically expressed as a rectangle as shown in Figure 2.2-1 (c). 

Typically, a terminator is an outside agency or another system. It represents 

external entities with which the system communicates. The flows connecting 

the terminators to various processes or stores in a system represent the interface 

between the system and the outside world. The terminator from which data flows 

come out is a source of the system and the terminator to which data flow goes 

in is a sink of the system.

2.3 Constructing DFDs

There are few hard-and-fast rules regarding the use of dataflow diagrams. 

Most of systems analysts create dataflow diagrams by experiences and knowledge 

o f structured design. However, some conventions are widely accepted through the 

past two decades of DFDs development such naming, numbering, proper number 

of processes in one diagram and etc. Figure 2.3—1 shows an example of a cooking 

system represented by DFDs. Point A is a merging spot of four data flows: two
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of them —  Diced carrots and Fried onions come from processes Prepare carrots 

and Fry onions respectively; the other two —  Water and Seasoning come from 

source terminators Tap and Spice rack respectively. Process Cook ingredients 

needs all four flows to start transformation.
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Vegetable Vegetables Wash
r a c k ------------------ *  a n d

  sort veg
"V Clean onions

Tap

Prepare
Clean carrots onions

Prepare 3 Sliced onions 
carrots

\

Water
Diced

carrots

Spice Seasoning \  Fried onions ^7  
rack a * onions

Cook 
ingredients 5

Carrot soup

▼

Tureen

Figure 2.3-1 A cooking system represented by DFD
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2.3.1 Leveling and Balancing

The most often used method of creating DFDs is to construct DFDs of a 

system in a series o f levels so that each level provides successively more detail 

about a portion of the level above it. This strategy is also known as functional 

decomposition or dataflow diagrams refinement. Theoretically, it is an application 

o f the concept of hierarchy which is very old, but very simple abstract idea.

Functional decomposition begins at the boundary between the software system 

and its environment. The top-level DFD is a so-called context diagram and 

constitutes the root o f  a hierarchy of functions required of the system. A 

context diagram is a dataflow diagram which contains a single transformation 

that represents the entire system and the major sources o f  data and destinations 

for data in the environment. (Indeed sources and sinks usually only appear in 

the context diagram.) The function of main transformation of a context diagram 

is then decomposed and the circle which represents it is refined into a diagram 

whose transformations are further refined, and so on until a functional primitive 

is constructed. Functional primitive is a transformation which cannot be refined 

any further and can occurs at any level of abstraction. Repeated decomposition 

and transformation refinement results in a hierarchy of dataflow diagrams. Such 

a hierarchy is called a levelled set by DeMarco [6].

Figure 2.3.1-1 gives an example of levelled dataflow diagrams. On the top 

of the DFDs is a context diagram within which the only process is labelled by 

a noun rather than a verb describing a transformation. Usually, the name of the 

process in the context diagram is the same as the name of the system such as 

XYZ system in the figure.
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i

Source 1 
B -

XYZ^n
— ► ŝystem . g jnk 1

Context diagram: XYZ system

A ► - 
2

•V Y E

File 1

?y

Context level

Level 0

Diagram 0: XYZ system

B=_► p 

D
J t.__
File 2

2.2

Diagram 2: Y

J> c
R 3.1

3.2 

A '
Diagram 3:Z

S ; Level 1

Diagram 3.1: R Level 2
Diagram 2.2: Q Diagram 3.2: S

Figure 2.3..1-1: Functional decomposition of DFDs

The process of the context diagram is decomposed down to the next level o f 

the DFDs which represents the highest-level view of the major functions within 

the system, as well as the major interfaces between those functions. The level 

immediately beneath the context diagram is usually numbered 0 and the diagram 

at this level is also numbered as 0 such as Diagram 0: XYZ system in the figure.
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All the transformations are numbered to be identified at this level and lower levels 

such as, in the figure, transformation X  is numbered as /, Y as 2 and Z as 3.

Process Y in Diagram 0 is further decomposed into a more detailed diagram 

with the same number and name as Y has. This diagram is Diagram 2: Y in the 

figure. All the bubbles in Diagram 2: Y are associated with the bubble 2 of upper- 

level DFD and are numbered 2.1 and 2.2. At Level / , another diagram Diagram 

3: Z  is constructed by decomposing process Z in Diagram 0. The corresponding 

bubbles associated with the bubble 3 of upper-level DFD are numbered 3.1 and 

3.2. Then comes Level 2 consisting of Diagram 2.2: Q, Diagram 3.1: R and 

Diagram 3.2: S  which are functional primitives since no more decomposition 

beyond this level.

The use o f the primitive concept does constitute a convenient stopping rule 

for the work in analysis. Some processes are simple enough that it makes no 

sense to require breaking them down to the same level o f detail as others that are 

more complex. To determine whether a process is simple enough to be considered 

as a primitive, two checkpoints are usually applied by experience. If a reasonable 

process specification for a bubble cannot be written in about one page, then it 

probably is too complex and should be partitioned into a lower level DFD. The 

other idea is to write a reasonable pseudo-code for a process. If the pseudo-code 

is more than 50 to 100 lines long, the process should be refined to a lower level.

While leveling a DFD, balancing it is as well important. The original 

consideration behind the balance is that complexity between different diagrams at 

any level o f a DFD shouldn’t have much discrepancy. In order to make a DFD 

easily readable and understandable, each diagram shouldn’t have more than half 

a dozen processes and related stores, flows, and terminators. That also means
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that a DFD which contains reasonable size o f symbols and characters should fit 

comfortably onto a standard letter-size sheet o f paper.

2.3.2 Repartitioning

Although it is recommended in general that leveling be used to decompose 

systems top-down, top-down is not always the best approach. In fact, the top- 

down strategy does not work as well as the bottom-up strategy. Experience 

with Structured Analysis (and other methods) has shown that most analysis is 

actually conducted in a bottom-up fashion, with a top-down scheme being used 

to organize those results [23].

Upward repartitioning is just decomposition in reverse —  synthesis rather than 

analysis. It involves developing a detailed model based on whatever information 

has been acquired and examining the model to determine whether or not there are 

any bubbles or processes which are related by virtue of the nature of the tasks 

they perform. In the top-down approach one basically imposes one’s own view 

of how the system ought to be structured. In the bottom-up approach, to a much 

greater extent, the system is telling us just what it is structured like. During the 

design of a system, both repartition upward and decomposition downward are 

used to achieve a uniform level of detail.

2.3.3 Evaluating and Improving DFD

While a number o f rules and guidelines that help ensure the dataflow diagram 

is consistent with the other system models —  the entity-relationship diagram, the 

state-transition diagram, the data dictionary, and the process specification, there 

are some guidelines that help dataflow diagram itself consistent.
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First o f all, infinite sinks and spontaneous generation bubbles of a system 

must be avoided. Bubbles definitely have both input and output flows. The 

bubble which has only input but no output or the bubble which has only output 

but no input will result in logical error within the system. Secondly, unlabelled 

flows and unlabelled processes in a system should be given names before they 

connect other elements in the system. Because such unlabelled symbols may 

cause several unrelated elementary data items to be arbitrarily packaged together 

or cause dataflow diagram to be degraded to a disguised flowchart. Finally, read

only or write-only stores within a system are not allowed. A typical store should 

have both inputs and outputs. The only exception to this guideline is the external 

store, a store that serves as an interface between the system and some external 

terminator.

In order for a DFD to be technically correct and acceptable to users, it should 

have been drawn, redrawn, and redrawn again, often as many as ten times or more 

before it is passed to a user [6]. This may seem like a lot of work, but it is well 

worth the effort to develop an accurate, consistent, esthetically pleasing model 

of the requirements o f a system. Consequently, demand for automated tools for 

DFD arises as well as reuse of DFD which will be examined in the next section.
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3 CASE TOOLS FOR DFDS

3.1 The Role of CASE Tools in Software Development

Just as CAD/CAM technology has helped revolutionize various engineering 

disciplines over the past 35 years, so CASE (computer-aided software engineering) 

technology is helping revolutionize the software industry. At present, some 

professional programmers and system analysts are equipped with some CASE 

tools but many are not. Thousands of CASE tools, which support different 

activities in the software process, are commercially available.

CASE tools are currently being used in all the phases of software engineering 

process. CASE tools that help software developers during the earlier phases o f 

the process, namely the requirements, specification, planning, and design phases, 

are sometimes called upperCASE or front-end tools, whereas those that assist with 

implementation, integration, and maintenance are termed lowerCASE or back-end 

tools [27] Both front-end and back-end tools are recognized as activity-oriented 

tools because they are base on process activities. Another classification scheme 

based on the functionality of the tools rather than the activity which the tools 

support is called function-oriented [22].

An important part of supporting the software life cycle is supporting the 

methodologies that structure the process steps within the life cycle. A CASE 

workbench supports the use of structured methodologies by automating the pro

duction of the documentation required by the methodology and guiding the user 

in the correct use of the methodology. CASE technology that emphasizes the 

early stages o f the life cycle comes from recognizing analysis and design as the
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most critical life cycle phases. These CASE tools are known as systems analysis 

and design workbenches [10].

Specification errors can be very expensive if they are not detected and cor

rected in the early phases o f the software development. Correcting a specification 

error during the maintenance phase is a lot more expensive than if it had been 

corrected during the analysis phase. The completeness and correctness of the 

system specification affect the success of the entire software development effort. 

The specification is the basis for project schedules and assignments, test plans, 

user documentation, and program design. Poorly-understood system requirements 

cause software failures.

Design errors often dominate software projects in terms o f their number and 

their cost to correct, especially when not detected early. In large projects, design 

errors often exceed coding errors and are more costly than coding errors to correct 

as well. More care given to design means lower-cost, more reliable systems. A 

system design is the blueprint for system implementation. If the blueprint does 

not exist or if it is incorrect, the produced system is probably poorly organized, 

poorly documented, and a nightmare to maintain.

Systems analysis and design workbenches first emerged about ten years ago. 

These workbench tools are primarily concerned with the effective development of 

the models of a system that is to be computerized, they help the systems analyst 

construct graphical diagrams that enable the end user to understand what the 

system will do for him. The workbenches also help the analyst and designer ensure 

that the model is complete, accurate, and consistent, so the errors discovered 

downstream in the programming phase will be only programming errors, and not 

a reflection of ongoing misunderstanding between the end user and the systems
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analyst. And, finally, the workbenches may assist the programmer in translating 

the model into a working program. In the future, we may expect the workbenches 

to completely automate this process.

3.2 Im portant F eatures in CASE tools

The workbenches for systems analysts and designers have to provide the 

following features to be o f significant use in the development of complex system:

• Graphics support for multiple types of models.

• Error-checking features to ensure model accuracy.

• Cross-checking of different models.

• Additional software engineering support.

3.2.1 Graphics Support

Structured analysis models rely on various forms of information: text, data 

dictionaries, and graphical diagrams. Text and data dictionaries can be auto

mated using word-processing systems and conventional mainframe computers: 

but graphics support is not as popular as text does. An analyst workbench 

should allow the systems analyst to compose, revise, and store diagrams such 

as dataflow diagrams, structure charts, flowcharts, entity-relationship diagrams 

and state-transition diagrams.

3.2.2 Error-Checking Features

An analyst workbench must examine the model created by the systems analyst 

or designer to ensure that it is complete and internally consistent. For example, 

a dataflow diagram created by a CASE tool must complies with all the rules
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described in Section 2 and the names assigned to each process must be unique. 

The error-checking also should be extended to different levels o f modeling to 

make sure that the input and output of a process match those o f corresponding 

diagrams at both the lower and higher levels.

3.2.3 Cross-Checking of Different Models

The most important feature o f  an analyst/designer workbench is its ability to 

cross-checking the consistency o f  several different types of models of a system. 

This kind of checking can be classified into two aspects: cross-checking different 

models in one phase of a project and cross-checking different models at different 

phases o f project.

In the system-analysis phase o f a project, for example, the primary objective 

is to determine what the user wants from the system, with little or no concern 

to implementation of those requirements. For this purpose, DFDs can be used 

to highlight the division of those requirements into separate functions and the 

interface between the functions, a data dictionary is needed to maintain a definition 

of all the data elements in the system and some form of textual description to 

define the formal business policy. All these models must be consistent with one 

another. If the DFD refers to a data element that is not in the data dictionary, 

something is wrong; if the data dictionary defines data elements that do not appear 

in DFD model, something is also wrong. It is not hard to imagine how tedious 

and errorprone it is if this cross-checking is done manually.

Complementary to the consistency checking between models in one phase of 

project, it is as well important to compare the models developed during different 

phases. For instance, the models developed during the analysis phase should be
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compared with the models developed during the design phase. This comparison 

should demonstrate a one-to-one correspondence between the two. Every require

ment described in the analysis model should be represented somewhere in the 

design model, and every feature described in the design model should correspond 

to a requirement described somewhere in the analysis model. The most common 

problem, of course, is that a requirement in the analysis model gets dropped and 

doesn’t show up anywhere in the design model. This is particularly common 

when the systems analysis model is developed by one group of people, and the 

design model is developed by a separated group.

3.2.4 Additional Software Engineering Support

Other supports can be classified as many aspects ranging from software 

life cycle to structured methodology. They may include CASE tools support 

networks for project-wide use, software engineering methodology, document 

control, project management facilities, early checking for excessive complexity, 

computer-assisted proof of correctness, automated testing and simulation and reuse 

of software components on any phase of the software engineering process.

Many of the features described above exist in the analyst designer work

benches in the market today. Some of the features are implemented in a some

what primitive form, especially for the additional features, but the products are 

being improved on almost a daily basis. The CASE tools for other features, such 

as reuse of software components and reuse o f software documents, are still under 

development.
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3.3 C urrent CASE Tools for DFDs

CASE tools for DFD have been developed for the past ten years. The achieve

ment is ranging from the design workbench for an automatic arrangement of 

symbols in a DFD to computer-assisted reconstructing a DFD in a legacy system. 

These systems analysis and design workbenches all focus on facilitating systems 

analysts or designers to create, edit, check or reconstruct DFD automatically other 

than manually. The following part of this section will describe the achievement 

o f CASE DFD support so far.

3.3.1 DFD Editor and Processor

Since T. DeMarco’s Stmctured Analysis [6], as well as C. Gane and T. 

Sarson’s book [12], was published in 1979, dataflow diagram have become the 

most popular notational tool of structured systems. But manually drawing DFD is 

tedious, error prone, terribly burdensome to do any checking, very time-consuming 

and very expensive The layout algorithm for DFD described above only can 

improve the view of an existing diagram according to aesthetics, lots of work 

still have to be done manually by the systems designer. Editing tools supporting 

dataflow methodologies are badly needed by systems analysts and designers.

The requirements o f an intelligent DFD tool are described as:

It should enforce consistent definition o f each element in the diagrams and 

detect duplicates to maintain the integrity and consistency of the data dictionary.

It should have the intelligence to generate optimal routes for dataflows so that 

the diagrams are eye-pleasing for the analysts to understand easily.

It must allow dynamic modification of diagrams by moving or deleting objects 

and their related components with minimum effort from the analysts.
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It should encourage partitioning by allowing the child diagrams to be concur

rently edited with their parent diagrams in a user-friendly manner.

It should also support systematic replacement of any element [28].

The following editing tools are used in assisting software design and analysis. 

They can help establish an interactive development environment and provide 

graphic editors to support for several widely used analysis and design methods, 

including structured systems analysis and structured design. Although these tools 

were helpful during design process, they have not been widely accepted. There 

are several reasons. First of all, many programmers are skeptical about disciplined 

software-development methodologies and stick to the way they used to do [38]. 

Secondly, these tools are expensive compared to general graphic editing tools 

[28]. Thirdly, many tool users prefer general graphic tools to specific ones [5]. 

However, the concepts of disciplined software development and strucntred design 

are especially valuable to the design and analysis of large-scale system. Along 

with the progress of the CASE tools, they will be more and more widely used 

as design tools [17].

Macintosh Anatool Anatool has three major components: a dataflow-diagram 

editor, a data dictionary, and standard specifications and utilities. The dataflow- 

diagram editor automatically numbers each diagram in the hierarchy structure and 

each process bubble in the diagram [36].

The first step in creating a dataflow diagram is to create level 0, the highest 

level in the diagram hierarchy. The left side o f dataflow-diagram editor window 

is a control palette o f nine drawing tools. The top box represents a terminator 

(source or sink) outside the system’s scope, such as a user. The second represents
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a process that must be performed by the system. The bottom seven drawing 

tools are for data stores, dataflows (one- and two-way), word processing, and 

hand-scrolling, zooming out, and selecting components.

Process, external entities, and data stores are placed into a diagram by se

lecting components with a mouse, dragging them out o f the control palette, and 

placing them at the desired location. Dataflows are placed in the window by select

ing the desired flow and clicking on the source and destination positions. Anatool 

determines automatically which side of the source and destination components to 

draw the dataflow from or to. It also determines how to draw the dataflow.

Process bubbles, dataflows, terminators, and data stores can be repositioned by 

dragging them around the window. When an entity is moved, all flow connected 

to it also move. Anatool has a sophisticated way to reroute the flow and redraw 

the whole diagram. The number o f process bubbles per diagram is limited. This 

means that the user of this tool has to decompose complicated processes to keep 

each level manageable and readable. The size of process bubbles, data stores, 

and terminators are fixed. Everyone of them must be labelled with no more than 

30 characters. The labels assigned to data stores and dataflows are automatically 

entered into the data dictionary, but the labels of processes and terminators are not.

Clicking on a process bubble will refine it into lower level of dataflow 

diagram. When it creates a child diagram for an existing process, Anatool 

automatically puts the external sources and data stores form the upper level into 

the child’s diagram along with bridges which represent all the processes that 

were connected to the partitioned process from the upper level. Establishing 

connections between different levels is a nice feature and helps keep the diagram 

consistent, but it is hard to remember all the informations in different levels since
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Anatool doesn’t allow multiple windows.

Macintosh MacBubbles MacBubbles Version 1.9.2 consists of two programs: 

MacBubbles and the MacBubbles data dictionary [21]. The first is a graphics- 

based editor for creating Yourdon/DeMarco-style dataflow diagram and mini

specifications, while the second is a dictionary-maintenance utility [39][6].

MacBubbles uses a MacDraw-style interface, with a palette of shape tools on 

left side. The shape tools consists of both basic symbols of dataflow diagram and 

extended control symbols. The way the MacBubbles creates a DFD is similar 

to that the Anatool dose. One of the former’s advantages over the latter’s is 

that MacBubbles supports very flexible flow lines that can arc and curve as 

desired. Terminators, process bubbles can be enlarged or reduced. Data store 

object can be rotated on the screen so that dataflows take a more direct path 

to and from the data store. The resulting diagrams are more visually pleasing. 

Like Anatool, MacBubbles constructs dataflow diagrams hierarchically but doesn’t 

allow multiple windows

AUTO-DFD While it has all the features that both Anatool and MacBubbles 

have, AUTO-DFD is much more “intelligent” than they are. AUTO-DFD can 

integrate DFD and data dictionary, detect duplicates, enforce DFD diagramming 

rules, perform object search, automatically generate dataflows, dynamically move 

or delete objects and related components, support multi-windowing to edit dia

grams of different levels concurrently, check on the integrity of all entities of 

the dataflow diagrams and on the balance of input and output flows between a 

process and its child diagram, systematically replace objects with their child di

agrams, compress diagrams, find the optimal dataflow path between two entities
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of a dataflow diagram, and provide on-line help [28]. It seems that AUTO-DFD 

could meet all the requirements o f an intelligent DFD tool.

The design o f AUTO-DFD is object-oriented and aims to provide a completely 

visual environment for analysts to model the information system by manipulating 

icons on screen. The architecture of AUTO-DFD is shown in Figure 3.3.1-1. The 

graphical interface for editing, as shown in Figure 3.3.1-2, is a typical editing 

window for DFD in late 1980s and early 1990s [28]. Anatool and MacBubbles 

all have the similar iconic interfaces.

A routing algorithm that relies on heuristics has been devised for AUTO- 

DFD to find a visually acceptable dataflow path between two objects. To find a 

qualified path, the algorithm considers routes with not more than three turning 

points. In each case, it will give priority to routes with minimum crossings and 

then shortest distance.
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Figure 3.3.1-2 The graphic interface

FLEDGED FLEDGED belongs to the second-generation of CASE tools. 

The first-generation CASE products have emphasized remarkably sophisticated 

graphics-workstation user interfaces. They help users develop systems-analysis 

diagrams and detailed specifications but not automatically, such tools like Anatool 

and MacBubbles described above. The second-generation tools are characterized 

by the following features:

• Support various analysis techniques the analysts want.
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• Produce hard-copy documentation automatically along with CASE tool.

• Automate the production of systems-analysis diagrams [5].

While AUTO-DFD has addressed the routing problem of automatic layout, 

FLEDGED has touched the tool-tailoring problem. FLEDGED is a flexible editing 

tool which allows users to define a graphical symbol to their taste for each type 

o f dataflow-diagram element, to define their own set o f formation rules, to define 

their own set of editing operators, and enforces formation rules automatically 

during performing editing operators [15].

FLEDGED has a symbol library, which contains all the possible symbols of 

various versions of dataflow diagrams, from which a user can choose one pair 

of shape type and drawing style for each process type, terminator type, and store 

type. The formation rules are formulated as logical rules, logical relations on 

structural functions. Every time when a formation rule has been successfully 

defined by a user, it is stored in a rule base and then automatically translated into 

checking procedures. ERA (entity-relationship attribute) framework with a shell 

of primitives called structural functions and structural operators is enclosed in 

the tool to support the definition of formation rules and editing operators, and to 

support the enforcement of formation rules during editing operations. Structural 

operators are primitive operators that change the structural details of the intended 

ERA system model. Editing operators are defined as procedural compositions 

of structural operators. FLEDGED provides two ways to check a rule: explicit 

invocation which is prompted by command check rule, and automatic enforcement 

which is in effect with command enforce rule.

Method rule checking in DFD editing systems One of the important issue in

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



editing tools is to ensure that the edited diagrams are correct and comply with all 

the DFD construction rules. How to keep consistency in DFD editing depends on 

the design of DFD tools. Tools available for software design diagram editing can 

be categorized in three principal ways, method-specific or configurable, syntax- 

driven or permissive. and stand-alone or integrated [34].

The tools restricted to one or a group of methods are considered as method- 

specific such as Anatool or MacBubbles, those that allow tool builders to specify 

their own methods or local variations on existing methods are configurable such 

as FLEDGED. These tools must contain some rule-checking mechanisms within 

the editing system.

A syntax-driven approach maintains a correct diagram at all times, forcing 

the user into a rigid interaction style. A permissive approach allows diagrams 

to go through incomplete or inconsistent states, and there is a choice between 

interactive and off-line checking.

Some tools allow the user to draw diagrams, store them and edit them, but 

further manipulation of the stored diagram representation is left to the user. These 

tools are considered as stand-alone. Integrated tools allow other types of tools, 

such as code generators, to manipulate the output from the design editor.

For method-specific tools, automatic method rule checking should be incor

porated to support the production of designs expressed in method-specific dia

grammatic notations. For configurable tools, the method-rule checking could be 

tailored to any notation using a method description language and a graphical tool 

to define the vocabulary of the notation. Both syntactic and semantic rules are 

expressed in the method description language and are checked, interactively, dur-
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ing an editing session. Such a method-rule checking system is investigated by 

Ray Welland [34].

The alternative strategy, adopted by M-J Chen, is a preventive approach to 

structural analysis [4]. The approach associates structural checking with editing 

operators so that editing operators that will introduce structural errors into DFDs 

are inhibited. If this strategy is described as pre-checking before editing, then 

Welland’s method is spontaneous checking. O f course not all of the structural 

errors can be prevented, a decision on which structural errors can or should be 

prevented must be made. The decision is based on consideration of two factors: 

the characteristics of structural errors and the construction methods for DFDs. 

M-J Chen classified a set of assumptions and restrictions based on a combination 

of Yourdon’s, DeMarco's, Ward and Mellor’s convention of dataflow diagrams 

and a set o f formation rules that follows these assumptions and restrictions. The 

defined formation rules support system analysis methods which include functional 

decomposition and editing operators, and support event partitioning as well. These 

formation rules are described as logical languages that are used as assertions to 

ensure consistent DFD editing.

3.3.2 Automatic Generation of Dataflow Diagrams

The third feature o f the second-generation tools is automatic production of 

systems-analysis diagrams. AUTO-DFD and FLEDGED emphasized automatic 

layout and tool flexibility in the second-generation-tool problems respectively, but 

they are still diagram-editing tools. They can’t automatically generate dataflow 

diagrams and users have to issue editing command to construct DFDs. Mondrian 

is a system for automatic generation o f dataflow diagrams [24].
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The user o f  the tool defines formally the logical structure and requirements 

of an information system by using SPSL/SPSA (simple problem statement lan

guage/simple problem statement analyzer), store this description in a database. 

Mondiran accesses the SPSA database to retrieve system flow information and 

produces an adjacency list which describes the relationship between each object. 

The placement and routing strategies, encapsulated in module Produce layout as 

shown in Figure 3.3.2—I, is recorded by the adjacency list as it is determined. 

The graphical information is stored in module Store data which can be accessed 

by both Extract data and Draw DFD modules.

Mondrian

Extract Produce Store Draw
data layout data DFD

Placement Routing

Figure 3.3.2-1 High-level structure of Mondrian

A critical issue in automatic DFD generation is the layout methodology that 

makes possible the automatic drawing of dataflow diagrams. Batini et al [] in 

1986 presented a proposal of a layout algorithm.

The underlined layout algorithm receives as input an abstract graph, specifies 

connectivity relations between the elements o f the diagram, and produces as output
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a corresponding diagram according to the aesthetics. The basic strategy is to build 

incrementally the layout. First, a good topology is constructed with few crossings 

between edges. Subsequently, the shape of the diagram is determined in terms 

of angles appearing along edges. And finally, dimensions are given to the graph, 

obtaining a grid skeleton for the diagram.

From an aesthetic point of view, an acceptable DFD used in real-life appli

cations has the following properties:

A l: minimization of crossings between connections.

A2: minimization of the global number of bends in connection lines.

A3: minimization of the global length of connections.

A4: minimization of the area of the smallest rectangle covering the diagram.

A5: placement on the external boundary of symbols representing interfaces.

Al and A5 refer to topology, A2 to shape, A3 and A4 to metric. These fact 

implies a hierarchic layout representation, where these properties are successively 

considered. The above aesthetics are generally not compatible. But a priority 

order can be established to balance these characteristics by using a mathematical 

model. This model defines three graphs: plane graph, orthogonal graph and grid 

graph. These graphs are mathematically associated. If two grid graphs have 

the same grid representation, they have also the same orthogonal representation. 

If two orthogonal graphs have the same orthogonal representation, they have 

also the same planar representation. As a consequence, the three representations 

are hierarchically related, and each representation level is a refinement of the 

previous one.

The layout algorithm for dataflow diagrams takes as input a DF-graph G =
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(V, E) and produces a planar representation P taking into account aesthetics Al 

and AS. Then an orthogonal shape is given to the planar representation finding an 

orthogonal representation H with the minimum number o f bends (aesthetics A2). 

Finally, a grid representation Q with minimum connections length is embedded 

into the orthogonal representation according to aesthetics A3 and A4. This last 

step is also known as compaction.

A CASE tool using the layout algorithm for DFD can syntactically reconstruct 

a DFD in terms of graph aesthetics. But the preliminary is that there must have 

existed a dataflow diagram before it is reconstructed. This tool is nothing more 

than an eye-pleasing improvement of existing dataflow diagram or just a better 

arrangement of symbols in a dataflow diagram.

3.3.3 Executable Dataflow Diagrams

The CASE tools that we have discussed so far are all the DFD-editing 

tools which can support good-quality documentation, simple forms of consistency 

checking and bookkeeping either automatically or semi-automatically. It is DFD 

users responsibility to implement the behavior of the system described by the 

dataflow diagrams. Converting dataflow specification into executable code is 

another field studied by system analysts and designers.

Webb and Ward invoked the research interest in executable dataflow diagrams 

in 1986 [33]. A critical issue in executing dataflow diagrams is to solve concur

rency problems. Webb proposed the cycle of distinct time periods as a solution 

based on Ward’s transformation schema [32]. The model for execution provides 

both for functional execution of the logic associated with the individual transfor

mations o f the transformation schema and also for the "‘symbolic” execution of
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an overall schema [32]. The latter execution is via token-passing similar to the 

approach described in Petri Net model [13].

Figure 3.3.3—1 shows an alternative model of executable dataflow diagrams 

which features multiple processing units to achieve concurrency [7]. Each pro

cessing unit can handle a single instruction at a time and is fireable when all the 

operand flows for that instruction are available. The resulting flows become in

puts to other instructions or machine outputs. During execution the dataflows are 

consumed by the instruction and are not then available for use elsewhere, which 

means that there is no concept of stored variable.

Matching Fetch/Update
memory unit memorry unit

A  j  -

 ?   _     ▼

Matching  Sets of ____ Fetch/Update
unit \ dataflows unit

_ • •

Executable 
instructions

Figure 3.3.3-1 An architecture of dataflow machine

Matching unit takes the output dataflows from the processing units and forms 

them into matching sets, where a set comprises all the dataflows required by an 

instruction and is represented by a set of process numbers. Fetch/Update unit 

takes each set of dataflows and incorporates it into a copy of the consuming
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instruction, which also contains information on the destinations of the instruction 

output, to form packet. Each process in the pool of Processing unit is able to 

execute one instruction, or packet, at a time. The method of allocating packets 

to processors varies from system to system.

A dataflow diagram is a purely functional graphic specification and is an 

abstract high level design of the system. It is difficult to generate procedural code 

from the entirely non-procedural diagrams because the DFD itself provides no 

information about the organization of procedures, the order of their execution, 

or how the data is to be passed between them (the way the data is passed 

depends on the implementation). Minor changes in high level specification may 

require a complete redesign of the corresponding procedural program. Meeson has 

developed a system that can translate a graphic dataflow diagram into executable 

code [18].

In Meeson’s system, two essential tools for dataflow programming are a 

graphics editor to create and modify dataflow diagrams, and a compiler to convert 

diagrams into executable code. The compiler analyzes the connectivity o f a 

dataflow diagram and constructs an abstract syntax tree for function definition 

(a language used in the system). Unlike Webb's model which uses control 

information to interpret the procedural behavior of a dataflow diagram, Meeson’ 

model adds a so-called translation “hints” to the dataflow diagrams to solve 

ambiguities. These hints do not include procedural control information and are not 

included in printed diagrams either, but are easily accessible through the editor. 

For example, the hints of the system allow numbering input dataflows in the order 

they should appear in corresponding function argument lists.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.4 Executing Dataflow Diagrams

While translating dataflow diagram into executable code can save program

mers a lot of implementation time, executing a dataflow diagram can help sys

tems users, analysts and designers to observe the dynamic behavior of the mod

eled system, understand the system well and consequently modify the design or 

specifications to fit the requirements well. Based on the development of formal 

specification of dataflow diagrams, CASE tools for executing dataflow diagrams 

came out in late 1980s.

Reilly and Brackett’ paper on executing dataflow diagrams is among the early 

jobs done in the area [25]. Their objectives are to determine the requirements 

for SA support tools that will assist both users and analysts in verifying that a 

model is semantically correct and consistent, and to investigate feasible design 

approaches for developing SA support tools meeting the requirements.

The traditional execution of dataflow diagrams was done manually by both 

system users and analysts with pencils marking the sequence numbers on the 

processes (transformations) that were activated in response to the external events. 

The manual execution, frequently called a “playthrough”, is often tedious and 

error-prone for even the smallest model and infeasible for larger models.

In their paper, Reilly and Brackett defines the execution o f DFD as tracing the 

processing that occurs within the system when external events occur. Automatic 

execution begins with the analyst or user placing a token onto the SA model 

diagram displayed on the workstation using a mouse or other pointing device. The 

executable model then “consumes” the token and removes it form the diagram. 

The “receiver” processes for that token are executed, and they automatically
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produce new tokens on their output dataflows. This proceeds without further 

input from the user or analyst, and is animated on the workstation SA diagram.

Reilly and Brackett described a visualization of executed dataflow diagrams 

and discussed a few models used or possible to be used in execution system, 

but didn’t presented them in details. This job was not done until Fuggetta et al 

published a paper in 1993 [11]. They introduced an executable visual language 

(VLP) for formal specifications and prototyping which integrated ER and DFD 

diagrams in a semantically rigorous and clear way.

To represent synchronization and control conditions explicitly in dataflow 

diagrams, they proposed a formal dataflow diagram model (FDFD) where data 

exchanged between functions are represented systematically by boxes, thus elim

inating the need for the data sources, sinks and stores of the original DFD model. 

A data transformer is enabled for activation if and only if all input boxes are full 

and all blocking output boxes are empty.

The VLP language is based on the FDFD model where it deals with data 

transformation; it also includes a formal notation for the definition of the types of 

data contained in the boxes and o f  the functions associated with bubbles of the 

diagrams. Being formal, the notation is executable: it is actually a very-high-level 

language suitable for rapid prototyping.

Data type is defined in a way similar to what is done in Pascal-like lan

guages, starting from elementary types (boolean, integer, and real numbers, char

acters etc.) and using the usual aggregate constructors, array and record. Func

tions are defined in a strongly-typed high-level language. Such functions are 

external to one another, thus the header o f a function declaration will contain 

a list of the function’s input and output parameters, according to the following
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pattern: function <function_pame> (input <input_parameterJisO\ output O u t

put_parameter_lisf>)\. Function will contain a declarative part where local vari

ables may be defined, and an executable part consisting of composition of the usual 

instructions o f structured programming (assignment, conditional and branching in

structions, iterative instructions, function calls). No local function declaration is 

allowed, and no recursion, either direct or indirect, is admitted.

A graphical user interface is provided in the executing system, which allows 

user to enter specification in a very easy way. The editor allows the designer to 

navigate across a refinement tree via “zoom in” and “zoom out” operations that 

can be applied to different data transformers. Data type definitions are entered 

through dialogue boxes that guide the designer in the definition process. A text 

editor can be used to associate narrative comments with the objects of a VLP 

diagram. The interpreter is activated via a menu option and performs consistency 

checking and determines the set of terminal data transformers and then starts the 

execution.

3.4 Formal DFD Specifications in CASE Tools

Quite a few CASE DFD support tools were developed to facilitate the use of 

dataflow diagrams in systems specifications and design. However, the CASE tools 

have not been used that often as they were expected to. One of important reasons 

is that the lack of formal framework in dataflow diagrams resulted in CASE tools 

not powerful enough to handle various needs o f  DFD users [9]. Most of the tools 

developed so far are just editing tools. Some tools can generate executable code, 

but only a small portion of the implementation [14].
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Tse and Pong proposed a formal foundation for DeMarco dataflow diagrams in 

1989 [30]. They added a mathematical structure to dataflow diagrams. The model 

they used is Petri nets [13]. Petri nets can be represented both graphically and 

algebraically. The graphical representation closely resembles dataflow diagrams 

and the algebraic representation provides a theoretical basis for the analysis of 

a specification. Their specification language is called formal data flow diagrams 

(FDFD). Two equivalent forms of FDFD are defined as graphic and symbolic 

respectively. The graphic representation retains the user-friendly advantages of 

he original dataflow diagrams and the symbolic one makes use of the algebraic 

foundation of Petri nets. FDFD also has a formal syntax so that it can be processed 

easily by a computer.

FDFD defines a 4-tuple G = (D, T, I, O) where

D is the set of dataflows,

T = {ii. t -2......... t„ |,  where n > 1, is a finite set o f  tasks,

D and T are disjoint.

I: T —► E and 0: T — E are functions which map tasks to dataflow expression, 

I is called the input logic function and O the output logic function.

The notations of token and firing from Petri nets are also incorporated in 

FDFD to model the behavior o f a systems dynamically. The presence of a token 

means that input through a given dataflow is ready for task. Marking of a FDFD 

is a function u: D — N from the set o f  dataflows D of a FDFD to the set of 

non-negative integers N. Given a FDFD G and a marking u, the ordered couple 

M = (G, u) is called a marked FDFD. A marking v is said to be reachable from 

another marking u if there exists a sequence of executions that changes u into v.
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These dynamic elements provide the basis for analyzing the dynamic behavior of 

the system. The analysis will help to detect problems which may not otherwise 

be apparent in the static model, such as deadlocks or tasks that will never be 

activated. Three types o f consistency analysis can be achieved through FDFD —  

global consistency, structural consistency and behavioral consistency.

Another effort for developing formal specification of dataflow diagrams was 

made by France in 1992 [8]. He described a method for associating a DFD with 

a formal specification. The intention is to enhance the use of the DFD as a 

formal specification tool that can be used to document application functionality 

in a understandable manner. Meanwhile, this tool should be capable of producing 

a formal specification that can be used to evaluate semantic properties of the 

application.

The formal specification used by France is based on the algebraic specification 

technique. A semantically extended DFD (ExtDFD) is defined as a control- 

extended DFD (C-DFD) [32] associated with formal semantics. ExtDFD thus 

have two aspects: syntactic and semantic. The syntactic aspect of an ExtDFD is 

its graphic representation and the semantic aspect is a behavioral interpretation of 

its C-DFD. The basic interpretation of C-DFD is classified as data domain, data 

flows, data stores and data transforms.

In the model, a dataflow is interpreted as, either an asynchronous or syn

chronous data interface between its generator and receivers. A synchronous 

dataflow requires its generator and receivers to cooperate for the data sending 

and receiving, but asynchronous one doesn’t. A set of well-formed statements are 

defined as axioms to interpret the state transition semantics. The dynamic behavior 

of ExtDFD is described by activation and deactivation of data transforms.
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4 SEMANTIC DESCRIPTION OF DFDS

From what was described in last section, we can see that CASE tools for 

DFDs are still in a preliminary stage with concentration on editing and graphical 

representation. All these tools lack formal specifications though a few tried to give 

DFDs a formal foundation. The basic requirement for a formal representation of 

DFDs is that the underlined language must be capable o f describing concurrency 

and functional model. A good candidate is so called Calculus of Communicating 

System (CCS) [31] which draw wide attention in software engineering from 

academic institution and from industry to some degree.

4.1 Calculus of Communicating System

CCS is a language that may describe the various ways in which cooperating 

sequential processes can interact with each other. The examples of typical pre- 

cesses are: receive, send, and retransmit processes in the X.25 link- level: arbiters 

and mutual exclusion elements in asynchronous hardware design: boats, trucks, 

cranes in a descrete-event harbor simulation; etc. Such simulation processes can 

map directly into CCS processes, one for one [20].

Communication and concurrency are complementary notion, both essential in 

understanding complex dynamic systems. On the one hand such a system has 

diversity, being composed of several parts each acting concurrently with, and 

independently of, other parts; on the other hand a complex system has unity 

achieved through communication among its parts.

Underlying both these notions is the assumption that each of the several parts 

of such a system has its own identity that persists through time. These parts are
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termed as agents that are the basic objects in CCS. They may be constructed by 

prefixing V, non-deterministic choice ‘+ \  parallel composition T  and restriction

4.1.1 Sequencing

A simple agent has an inflow and an outflow associated with its two ports as 

shown in Figure 4.1.1-1. CCS representation can be constructed as:

C — i n f  low.C  and C' =  out f  low.C

The notation stands for sequential ordering of actions. The above notation 

can be rewritten in a recursive way like:

C  =  i n f  low.out flow.C

By convention, output actions are given co-names in the way that two 

communicating agents have consistent relation. For example, a system described 

in Figure 4.1.1-2 can be represented as:

P  =  n.b.P and O =  b.c.Q

Where b and b are exactly the same action. When the action b is fired by P, 

Q takes in the same action b at the same time.

inflow \  outflow
  C -------

Figure 4.1.1 -1
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Figure 4.1.1-2

4.1.2 Choice

Choice notated as ‘+’ is used to represent non-determinictic alternatives. 

Figure 4.1.2-1 shows an example. Agent C has two alternative inflows ‘a’ and 

‘b \  One choice of the action sequence in CCS code is: R  =  a .c .R .  The other 

one is: R  =  b.c.R. Which action course agent R should take depends on the 

competition between inflow ‘a’ and ‘b’ when agent R is ready for receiving input. 

This kind of event can be represented in CCS by using notation *+’ as:

R  =  a .c .R  +  b.c.R

a

b

Figure 4.1.2-1

4.1.3 Parallel Composition

We use Figure 4.1.1-2 to describe the complementary actions ‘receive’ and 

‘send’. Action ‘6’ is the complementary of action ‘6’. Now comes the question 

how agent P or Q interacts with each other. CCS uses another constructor ‘ 

|’, called composition, to express the interaction between agents. Two agents, 

which interact with each other, can be composed into one agent by using this
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function. Thus if  P and Q are agents then P |Q is an agent which represents the 

parallel composition of P and Q in such a way that each of P and Q may proceed 

independently o f the other but may also communicate through the complementary 

actions ‘6’ and ‘ft’.

A transition of the form E -> E’ indicates that agent E can perform the 

action x and becomes E \ consider the composition (x . E ) | (x . F '). If the agent 

{x.E)  performs the action x and becomes E and, simultaneously, the agent {x.F1) 

performs x  and becomes F \ the composition will become E |F \ This kind of 

event is expressed by the r —transition {x.E) \ {x.F1) E  \ F'. By using 

parallel composition, Figure 4.1.1-2 can be represented as: E  — {P \ 0) \  {6} 

where \{b} stands for restriction which means that agent P and Q interact with 

each other through action b.

4.2 Sem antic R epresentation of DFDs

Calculus o f Communicating Systems (CCS) is selected to represent the se

mantics of a DFD. Each node of a DFD is associated with an agent and each 

arrow in a DFD is associated with communication between agents. Four of CCS 

functions are used to construct the logical structure of a DFD. We use Figure 

4.2—1 to describe how the semantics of DFDs can be expressed.
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  DFDs ,-----
T1 T2

T3 T4

Figure 4.2-1

1. Sequence operator represented by “ . ” is interpreted as actions taking order. 

One o f the action sequence for Process P shown in Figure 4.2—1 has the 

semantics: P = a.d.P where action of “receiving d” represented by “d ” is the 

complementary action of “sending d” represented by “d”. This complementary 

notation is for synchronization purpose. This CCS code means that Process 

P receives inflow a, process it and then sends outflow d.

2. O r  operator represented by “ + ” is interpreted as options. Process P has the 

semantics: P = a.(c + d) .P+ b.(c +J )  P.  Process P has two inflow choices 

“a” or “b” and two outflow choices “c” and “d”. If inflow “a” succeeds in 

competition against inflow “b”, the action sequence becomes either P = a.c.P  

or P = a.d.P

3. Composition operator represented by “ 1 ” is interpreted as system interface. 

The DFDs shown in Figure 4.2-1 has the semantics: DFDs = (T1 | T2 [ T3 

| T4)\{a, b, c, d}. This means that DFDs has a interface consisting of T l, 

T l, T3 and T4 among which the internal actions are hiding from outside of 

the system.
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4. Restriction operator represented by “ \ | ” is interpreted as system internal

information hiding. In the above example ( . . .  )\{a, b, c, d}, data flows “a”, 

“b’\  “c” and “d” are the system’s internal flow which cannot be observed 

from outside of the system.
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5 A SEMANTIC-DRIVEN DFD PROCESSING SYSTEM

Since DFD is widely used in both software development and reverse engi

neering, it is o f research interest to develop a system which can understand a 

dataflow diagram. Furthermore, a system which can interpret DFDs will dig up 

a route to reuse software documents in high-level abstraction.

Understanding a diagram requires a number of steps. The system involves two 

phases: Recognition and Understanding [2]. The main functions in the recognition 

phase are scanning the printed document and generate a layout structure of DFDs. 

Techniques for the recognition phase are fairly well understood although this is still 

an active area o f research. My research interest is concentrated on understanding 

phase. Figure 5-1 shows a scheme for such a understanding system

The understanding phase consists o f two independent subsystems. One of 

them takes layout structure of DFDs as input and generate corresponding logical 

structure. The other one then takes logical structure as input and accomplishes a 

couple o f tasks which include: simulation and equivalence checking. Simulation 

can simulate the underlying systems behavior by executing a graphic DFD. 

Equivalence checking can compare two data flow diagrams to determine whether 

they are semantically equivalent or not.

6i
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DFD System for Understanding DFDs

Scanning

Feature Extraction 

Syntax Analysis

Layout Structure

0 : ( )
(  )

Semantic Processing

Semantic Analysis

Logical Structure

bi P1 a.b.’c.PI 
► bi P2 d.e.’f.P2

Simulation 

Equivalence Checking

Deadlock Checking

Figure 5-1
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6 SYSTEM SPECIFICATION

6.1 General Description

The underlined system to be developed is a dataflow diagram processor 

which can semantically understand a DFD and provide the user with some useful 

services. The system is called DFDPRO. The purposes of developing a system 

like DFDPRO are to assist system analysts in understanding the behavior of a 

system and its subsystem, to assist system maintainer in adapting existing system 

to fit new platform, to assist system developers in designing brand new systems.

6.1.1 The Purpose of DFDPRO

DFDPRO is a semantics-driven dataflow diagram processor that allows the 

user to observe the behavior of a dataflow diagram through a simulation process 

and analyses a dataflow diagram through comparison, deadlock detection and 

state space checking. It can process DFDs which has hierarchical structure. It 

can decompose a DFD into several sub DFDs. Its resource requirements are kept 

at minimum and the commands are kept as simple as possible. DFDPRO provides 

the user with a graphic based simple but full-featured interface and is developed 

with some goals in mind in two areas:

Fast Operation: DFDPRO is designed to operate quickly, especially in these

operations:

• Initial loading a file for translation and simulation.

• Moving through the window.

• Quick access each function.
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Easy Use: DFDPRO is simple and user friendly

• All functions are displayed on the top o f the screen.

• All sub-functions are organized in pull-down menu.

• Every function is easily understood .

• On-line help is provided.

6.1.2 Product Functions

DFDPRO offers the following functions:

File Operations: DFDPRO allows the user to open an existing document 

that is on the disk, save the current document that is in the main window, 

create a new document, cut a file that is on the disk, print document and 

exit the system.

Editing Operations: Editing functions allow the user to delete a portion of 

an opened file, copy and paste or cut and paste the contents of the current 

file, and undo the previous operations.

Translating Operations: Translating operations allow the user to choose the 

data file from a file list and convert the file into a CWB code file. CWB 

stands for Edinburgh Concurrency Workbench. It is an automated tool which 

caters for manipulation and analysis of concurrent systems. CWB grammar is 

based on CCS (Calculus of Communicating System) which is used to describe 

the semantics of DFDs. The detailed description o f  CCS can be found in 

Appendix D and CWB in Appendix E.

Simulating Operations: Simulation operations allow the user to do simulation 

on a dataflow diagram, to check observational equivalence between two data 

flow diagrams based on the underlying formal semantics, to detect whether a
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deadlock will occur or not and to find the minimal state space of a dataflow 

diagram.

Help Function: Help function gives on screen a brief explanation of all 

functions and shows the user how to use these functions.

6.2 System  Model

6.2.1 The Logical Structure of the System

The system consists of two independent subsystems which communicate 

with users through a common graphical user interface (GUI). One of them is 

a DFD translator which takes layout structure of DFDs as input and generate 

corresponding logical structure. The other one is a simulator which then takes 

logical structure as input and accomplishes a few tasks such as simulation, 

equivalence checking and deadlock detection. The logical structure of the system 

is shown in Figure 7.2-1 [3].
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Command

Display

GUI ^  Layout 
\ s t ru c tu re

Translatorr

Syntax checking
a

Semantic analysis 

Semantic processing

Logical
structure

Simmulator

Simulation

Equivelence checking'

Deadlock detection'

Figure 6.2.1-1: The Logical Structure of the System

The Compiler consists of two major components: a recursive descend parser 

which checks both syntactic and structural correctness o f  the tuple representations 

in layout structure and a tmnslator which converts a DFD in layout structure 

format into the logical structure format in CWB code.

6.2.2 Display Description

The main window of DFDPRO is shown in Figure 7.3—1. The menu bar
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is at the top o f the window. It displays all the functions that the user can use. 

Each button on the menu bar handles a set of operations in the corresponding task 

domain and has a hierarchical menu structure. DFDPRO provides scroll bar (left, 

right, up and down) when the document or the graph in screen is larger than 

the window area. The main window can display either a graph if the command 

issued by the user is Simulating, Equivalence, Deadlock and Minimal Space or a 

document if the command is not these in Simulation submenu.

File Edit__ Translation S im ulation__Heip

< ►

Figure 6.2.2-1: Graphical User Interface

6.2.3 The Workspace

The major work space is the graphic user interface —  the main window shown 

in Figure 6.2.2—I. DFDPRO allows at most two separate workspaces. The second

6 "
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workspace other than main window has the format subwindow. But DFDPRO 

allows multiple list-box windows, dialog windows or message windows. Each 

window can be moved around screen and resized.

6.3 System  Services

The design of file handling service and editing service is trivial. My main 

concern is to develop a grammar for DFD syntax checking and a language to 

describe the semantics of DFD. The grammar I developed is a LL(1) grammar. It 

represents DFDs with hierarchical structure. The language I used to describe the 

semantics o f DFDs is based on Calculus of Communicating Systems (CCS). There 

are two reasons to choose CCS. First of all, CCS is a formal semantic description 

for a concurrent system which is a super set of DFDs model. Secondly, there is 

a tool called Edinburgh Concurrency Workbench available in schoenfinkel, which 

is based on CCS and can do a lot analysis of a concurrent system.

6.3.1 Functional Requirements

The basic functions DFDPRO performs are organized in a hierarchical struc

ture to make the user easier to access each function. Figure 6.3.1-1 shows the 

logical structure of the system functions.
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Figure 6.3.1-1: The Logical Structure of the System Functions

6.3.2 Translation Services

Translation Command Translation command invokes the translator which takes 

DFD tuple representation as input and translates it into CWB code as output.

The Input of Translator The DFD tuple representation in layout structure is 

the input of the translator. It represents the syntax of a DFD and must satisfy 

the following requirements.

Basic Assumptions

• The character sequence o f input must syntactically satisfy the LL(l) 

grammar.

• Every entity and every flow must have a unique identifier.
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• The input should be read from a file with extension .dfd on disk. 

LL(1) Grammar

a. DFDs :: = Identifier (Diagram) DFDs’

b. DFDs’ :: = , Identifier (Diagram) DFDs’ | e.

c. Diagram :: = (Tuple) Tuple’

d. Tuple’ :: = , (Tuple) Tuple’ | e

e. Tuple :: = Type Identifier Relation

f. Relation :: = (List) Relation’ | Relation’ | e

g- Relation’ :: = EXTERNALS (Flow) | EXTERNAL.

h. List :: -  (Identifier, Flow) List’

i. List’ :: = , (Identifier, Flow) List’ | e

j- Type :: = SOURCE.TERMINATOR

k. | SINKJTERMINATOR

I. | PROCESS

m. | DATA_STORE

n. | AUXILIARY_SPLIT

0. | AUXILIARY_MERGE

P- Identifier :: = (A | B | . . .  | Z) (A | B | . . .  | Z | a

2 | ... | 9)*

q- Flow :: = (a | b | ... | z)+ Flow’

r. Flow’ :: = , (a | b | ... | z)+ Flow’ | e

DFD Layout Structure consists o f three levels: diagram tuple, node tuple 

and successor tuple. The DFD name, the name o f node and the name o f 

successor must start with upper-case letter. There must and only have space
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between diagram tuples. Node tuples start with “(Type” and must be separated 

by comma. Successor tuples start with “(Identifier” or “EXTERNAL_I” or 

“EXTERNALjO” and must be separated by comma.

• Representing a diagram of a DFD and containing information about the 

diagram, each diagram tuple has the following structure:

DFD Name ((nodel), (node2), . .  . )

• Representing a node of the diagram and containing information about a 

node, each node tuple has the following structure. If there are external 

flows to or from the node, the format “(successor)” could become “EX- 

TERNALJ ( flow, flow, . . .  )” or “EXTERNAL_0 ( flow, flow, . . .  )”.

Type Name of node ((successor 1), (successor2), . . .  ))

• Representing a successor of the node and containing information about 

the successor, each successor tuple has the following structure:

Name of successor, the label of the data flowing into it

An Example of the Layout Structure of DFDs: For reader to well under

stand the content of the document, I raise an example of hierarchical DFDs as 

a standard model to describe the services and functions DFDPRO provides. 

The DFDs shown in Figure 6.3.2—1 has three levels and four diagrams. By
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DFD10

P012

level 2

d *
DFD201 DFD202

Figure 6.3.2-1 An example of hierarchical DFDs

using the above LL(1) grammar, the tuple representation o f levelled DFDs 

shown in Figure 6.3.2-1 can be given bellow:

a. Level 0

DFDO((SOURCE_TERMINATOR T1 ((PO, a))), 

(SOURCE_TERMINATOR T2 ((PO, b))),

(PROCESS PO ((T3, c), (T4, d))).

(SINK_TERMINATOR T3),

(SINK.TERMINATOR T4))

b. Level 1

DFDIO((PROCESS P01 ((P02, q)) EXTERNAL.! (a, b)),
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(PROCESS P02 EXTERNALjO (c, d)))

c. Level 2

DFD201 ((PROCESS POll ((P012, p)), EXTERNAL.! (a, b)), 

(PROCESS P012 EXTERNALjO (q)) 

DFD202((PROCESS P021 ((P022, r), (P023, s)), EXTERNAL_I (q)), 

(PROCESS P022 ((P024, v))),

(PROCESS P023 ((P024, u))),

(PROCESS P024 EXTERNAL_0 (c, d)))

The Output of Translator

The CWB code o f DFD in logical structure is the output o f the translator. It 

represents the semantics of a DFD and must satisfy the following requirements.

Basic Requirements

• The character sequence of output must satisfy the CWB syntax.

• Every entity and every flow must have a unique identifier.

• The output should be written to a file with the same file name as the input 

file but different extension which is .cwb.

DFD Logical Structure

• Representing the semantics o f the nodes, the composition node in the 

logical structure has the following format:

(Agent I | Agent2 . . .  ) \ Restrictions
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• Among the format, agent has the equation defined recursively as agent 

expression which consists of sequence of actions the agent takes or as 

option of agent expressions:

Agent = a.’b. . . .  Agent or

Agent = a.’b. . . .  Agent + c.d . .  . Agent’ + . . .

• The Restrictions consists of sequence of internal actions between Agentl, 

Agent2 . . .  and has the format { f, g, h, . . .  }.

An Example of the Logical Structure of DFDs shown in Figure 6.3.2-1 is

given bellow. It is expressed in CWB code based on CCS notations. The

complementary actions are represented as “ ’action “ instead of action.

a. Level 0

DFDO = (T1 | T2 | T3 | T4)\{a, b, c, d}

T1 = input.’a.Tl

T2 = input.’b.T2

T3 = c.’output.T3

T4 = d.’output.T4

PO = a.(’c + ’d).P0 + b.(,c + ’d).P0

b. Level 1

PO = (POI | P02)\{q}

POi = a.’q.POl + b.’q.POl 

P02 = q.’c.P02 + q.’d.P02
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c. Level 2

POI = (POll | P012)\{p}

POI I = a.’p.POl1 + b.’p.POll 

P012 = p.’q.P012

P02 = (P021 i P022 | P023 | P024)\{r, s, u, v}

P021 = q.’r.P021 + q.’s.P021 

P022 = r.’v.P022 

P023 = s.’u.P023

P024 = u.(’c + ’d).P024 + v.(’c. + ’d).P024

Translator

The translator is a component of the system responsible for

1. Reading file with extension .dfd from disk,

2. Parsing the tuple representation of DFD in layout structure,

3. Building a parsing tree for each dataflow diagram with each node containing 

information about the node,

4. Checking the syntax o f the tuple representation in terms of the LL( 1) grammar,

5. Giving error message if syntax error is detected and terminating the translation 

process,

6. Converting the tuple representations into CWB code in DFD logical structure 

in terms of translation rules,

7. Writing the output file with extension .cwb on disk.

Translation Rules
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DFD logical structure is generated by traversing the DFD parsing tree. The 

translator generates CWB code for each node traversed. The parsing tree is 

traversed level by level. For each node being traversed, the translator generates 

code based on the type o f  the node.

1. If the node is a process, actions corresponding to receiving and sending data 

must initially be captured. The convention adopted is that one or more inputs 

of process suffice to compute the outputs. If a process requires all of its 

in-flows to compute the outputs, an auxiliary node should be used. The agent 

expression representing a process is defined recursively and uses the or and 

sequence functions. Node (PROCESS PO I (( P02, q)), EXTERNAL.! (a, b)) 

in DFD 10 presented in the example of layout structure is therefore translated 

into POI = a.b.’q.POl presented in the example o f logical structure.

2. If the node is a data store, actions representing inputs can be performed 

independently o f the actions representing outputs, since a data store does not 

perform calculations to derive outputs from inputs.

3. If the node is a source terminator, the only task of this node is to send data 

to other processes. For synchronization purpose, a special action input is 

introduced. It precedes the action of source’s sending the data from to other 

processes. Node (SOURCE.TERMINATOR T1 ((PO, a))) in DFDO presented 

in the example o f layout structure is therefore translated into TI = input.’a.Tl 

presented in the example of logical structure.

4. If the node is a sink terminator, the only task o f this node is to receive data 

from other processes. For synchronization purpose, a special action output is 

introduced. It takes place after the action o f sink’s receiving the data from 

other processes. Node (SINK_TERMINATOR T3) in DFDO presented in
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the example of layout structure is therefore translated into T3 = c.’output.T3 

presented in the example o f logical structure.

5. If the node is an auxiliary node, what must be taken into account is all the 

possible permutations of the input sequences to the auxiliary merge and the 

output sequences from the auxiliary split. Figure 8.2.6—1 shows an example 

o f auxiliary nodes.

1. AS is a split auxiliary node which, if i is not an external flow nor a flow 

from a source terminator, could be expressed in DFD tuple representation 

as:

(AUXILIARY_SPLIT AS ((PI, a)), ((P2, b))) 

and can be translated into logical structure as:

AS = i.’a.’b.AS + i.’b.’a.AS

2. AM is a merge auxiliary node which, if j and k are not external flows 

nor flows from source terminators, could be expressed in DFD tuple 

representation as:

(AUXILIARY_MERGE AM ((P3, c))) 

and can be translated into logical structure as:

AM = j.k.’c.AM t  k.j.’c.AM

a ?1

AS AM C ► P3
r ’

b" *. .
?2 ^

-igure 6.3.2-2: Auxilrary Nodes
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6. The communications between the agents in a specific level of DFDs are 

represented by agent composition and data flow restriction. Node

DFDO((SOURCE_TERMINATOR Tl ((PO, a))), 

(SOURCE_TERMINATOR T2 ((PO, b))),

(PROCESS PO ((T3, c), (T4, d))),

(SINK_TERMINATOR T3),

(SINK_TERMINATOR T4))

in DFDO presented in the example o f layout structure is therefore translated 

into DFDO = (Tl J T2 | T3 | T4)\{a, b, c, d} presented in the example of 

logical structure.

7. If the node has a refined sub DFD, the data flowing into the node is interpreted 

as special source terminator —  external input in the sub DFD, and the data 

flowing out o f the node is interpreted as special sink terminator —  external 

output in the sub DFD. But both external flows in the sub DFD keep the same 

identifiers as they have in the higher level DFD.

Concurrency Workbench

The Concurrency Workbench (CWB) is a tool that supports the automatic 

verification o f finite-state processes. In particular, CWB allows for various 

equivalence, preorder and model checking using a variety of different precess 

semantics. For instance, the processes to be analyzed by CWB can be expressed 

in CCS notations. The CCS notation used as the input of CWB machine has 

a little modification in the way that the complementary action is expressed as “ 

’action ” instead of overbar expression “action in CCS. Such a variety has no 

significant meaning more than convenience.
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Since its powerful features in analysis of concurrent systems, CWB can be 

used to manipulate and analyze DFDs. Through CWB tool, we can use the 

formal description of DFDs to reason about the equivalence of two DFDs with 

quite different layout structure and to simulate the behavior of DFDs. As a 

matter of fact, CWB is a ported component of DFDPRO. We will identify CWB 

component in system design section.

6.3.3 Simulation Services

Simulation command invokes the simulator which takes CWB code in DFD 

logical structure as input and then simulates the behavior of the DFD, checks 

whether two DFDs are observational equivalent, detects whether deadlock can 

occur and where it occurs, and figures out the minimal state space o f the DFD.

Simulation Command

This command will load in a .cwb file from disk and show a graphic dataflow 

diagram in the main window. Then the user can interactively perform simulation 

operation by using mouse.

State of Dataflow Diagram is represented by the states of its components. 

Each component has three states: not active, ready, active which are repre

sented by red color, yellow color and blue color respectively. The user cannot 

click a component which has red or blue color. If it is clicked, a Beep will 

sound and an error message will appear.

a. Source Terminator

• Not active means that it has not got its input yet and can not send 

out data.
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• Ready means that it got its input and ready to send out data

• Active means that it is sending out data.

b. Sink Terminator

• Not active means that it can not receive data.

• Ready means that it is ready to receive data

• Active means that it is receiving data and issuing output.

c. Process

• Not active means that it can not process data.

• Ready means that it is receiving data and ready to process it

• Active means that it is processing data and sending out data.

d. Data Store

• Not active means that it is closed.

• Ready means that it is open.

• Active means that the process connecting it is sending it data or

retrieving data from it.

e. Data Flow

• Not active means that there is no data flow.

• Ready means that data flow is available at pons.

• Active means that data flow is going through.

Transition Between States for the same component follows the repeated 

sequence: read -^active —*• not active —> ready. Transition between states for 

different components satisfies the following rules:
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Initial States

• All source terminators are ready.

• All other components are not active.

States Between Adjacent Components

• Any two adjacent components must have different states if  they all 

were activated.

• Along the direction a data flow arrow points, the state sequence of 

any three adjacent components must follow: active —* ready —► not 

active -*• active, if they all were activated.

States of Auxiliary Nodes

• For auxiliary merge, the merged flow is not ready until all the in 

flows are active.

• For auxiliary split, all the split flows are ready simultaneously right 

after the in flow is active.

States of Components with More Than One Flows

• For a component with more than one in flows, it is ready if any of 

the in flows is active.

• For a component with more than one out flows, any of these flows 

is ready if it is active

Refinement of Dataflow Diagram is done by double clicking a process if its 

decomposed dataflow diagram is available. If the user double clicks such a 

process, appears another window with the decomposed diagram which shows 

initial states.
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An Example of States Transition is shown in Figure 6.3.3—I where R 

(Red) represents state not active, Y (Yellow) represents state ready, B (Blue) 

represents state active, and a, b represent data flows. Reader can verify 

the above rules by following the sequence of transitions horizontally along 

the data flow arrow and vertically along the different states for the same 

component.

An Example of Auxiliary States is shown in Figure 6.3.3—2 where i, j, k 

represent in-flows and a, b, c represent out-flows.
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Inirial State

B R R

a is active

P is active

B Y R

B Y

b and T1 are active

B R B

a and T2 are active H a
-------------------

B Y R B

Figure 6.3.3-1: An Example of States Transition
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Figure 6.3.3-2: An Example of Auxiliary States

Equivalence Command

This command checks two DFDs represented by .cwb files on the disk and 

compares them in terms o f the definition of strong bisimulation. If the two 

compared DFDs are not observational equivalent, the difference will be displayed 

on screen. Strong Bisimulation can be found in Appendix D.

Deadlock Command

DFDPRO can detect deadlock part of a dataflow diagram using this command. 

If there is a deadlock, the sequence of actions that cause the deadlock will be 

displayed on screen. The deadlock model used in this command is described as 

follows.

Deadlock Definition: A set ofprocesses is deadlocked i f  each process in the 

set is waiting for an event that only another process in the set can cause.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conditions for Deadlock

• M utual Exclusion: Each resource is either currently assigned to exactly 

one precess or is available.

• Hold and W ait: Process currently holding resources granted earlier can 

request new resources.

• No Preem ption: Resources previously granted cannot be forcibly taken 

away from a process. They must be explicitly released be the process 

holding them.

• C ircular W ait: There must be a circular chain of two or more process, 

each o f which is waiting for a resource held by other member in the chain.

Minimal State Space Command

This command is used to find the minimum number o f the state space of a 

given dataflow diagram. If this command is executed, the system will generate a 

new agent representing another dataflow diagram that possesses the smallest state 

space but is observational equivalent to the original dataflow diagram.
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7 SYSTEM DESIGN

7.1 High-Level D escription

Figure 6.2.1-1 in section System Specification illustrates the logical structure 

o f the defined DFDPRO processor. It takes quite a few steps for the system to get 

DFD information from diagrams drawn in papers and accomplish the services that 

it is supposed to provide. A very high-level flow chart of the system is designed 

as what is shown in Figure 7.1—1.
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Constructor
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bi P2 d.e.’f.P2 Logical

Structure

 ▼_____
Syntax

Processor
0 : (  )

(  )

Layout Structure

Semantic
Processor

Rgure 7.1-1

The graphic user interface scans in a DFD, displays the restructured diagram 

and provides a set of DFD analysis services. Scanner looks at printed document
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and yields a digital representation o f the DFD that is passed to Syntax Processor. 

Syntax Processor interpreted the digital information and generates DFD Layout 

Structure. Display Builder gets the layout structure, it restructures the diagram 

and generates display information, while Semantic Processor takes in the layout 

structure and produces DFD Logical Structure. Interpreter then processes the 

logical structure and provides a set o f analysis services for the system represented 

by the DFD.

7.2 Design Refinement

As illustrated in Figure 7.1—1, the entire system consists of seven components. 

They are: Scanner, Syntax Processor, Display Constructor, Semantic Processor, 

Interpreter, Service Builder, and a graphic user interface.

7.2.1 Graphic User Interface

GUI serves as a system manager, which launches all kinds of services 

including DFD analysis service, edit service, help service etc. It is can be 

decomposed into six interfaces shown in Figure 7.2.1-1.

S3
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Scanner
Interface

GUI Decomposition

Edit 
Interface

Help
Center

Display
Interface

DFD Analysis 
Interface

Console 
\ Interface

Figure 7.2.1-1

7.2.2 Syntax Processor

Syntax Processor takes in the digital representation of a DFD, extracts DFD 

features, analyzes the data, and generates DFD layout structure. Its components 

are shown in Figure 7.2.2—I

Line Extraction

Arrow Extraction 

, Box Extraction

Circle Extraction

Text Extraction

Syntax Processor

Syntax
Analysis

^  Layout Structure 
Generator

Figure 7.2.2-1
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7.2.3 Semantic Processor

Semantic Processor takes DFD layout structure as input, checks the syntax, 

decomposes it into levelled DFD representation, analyzes the semantics, interprets 

it, and generates DFD logical structure. The decomposition of the semantic 

processor is shown in Figure 7.2.3—I

Sem antic P rocesso r

Level '  Node
Separator \  Constructor

Logical Structure Semantic „ ___ Semantic
Generator Analysis Processing

Figure 7.2.3-1

7.2.4 Service Builder

Service Builder matches the DFD display layout, traces transition between 

states, provides a set of DFD analysis services includes simulation, equivalence 

checking, and deadlock detection etc. The breakdown o f the service builder is 

shown in Figure 7.2.4—1.
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Service Builder

" NEquivalence \ Deadlock
Checking Sl™ latl0n Detection

A State Tracer N>

Display Layout^ 
Matcher

Figure 7.2.4-1

7.2.5 Display Constructor

Display Constructor no more than an automatic graphic drawing tool. Based 

on DFD layout structure, it extracts every entity, designs display layout, optimizes 

the display structure, and draws diagrams. Its components are shown in Figure 

7.2.5—1
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Display Constructor
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▼,  . . .  ^
. ^  (

Flow Drawer
^      .   - :

Text Writer
Alignment ^ - ^ r n = r— ^
  , Process Drawer N

Terminator Drawer
x \

Figure 7.2.5-1

7.2.6 Interpreter

Interpreter will interprets the DFD logical structure and provides semantic 

meaning for variety of system analysis services. Such an interpreter can be 

directly used by importing CWB tool.

7.2.7 Scanner

Quite a few choices of diagram scanner are available in the market. This is 

can be done also by direct importation.

7.3 Simulation Sub-System

From what illustrated above, we can see that the entire system design and 

implementation needs substantial amount of time. The complexity o f  the entire
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system exceeds the scope o f a master thesis. However, a subset o f  the system can 

be implemented to demonstrate the underlined theoretical basis, which describes 

the semantic representation of DFDs.

7.3.1 Simulation Sub-System Design

The logical structure o f such the simulation sub-system is shown in Figure 

7.3—1. GUI is the system administration manager that can open a text based 

DFD logical structure, retrieves DFD display layout, displays the DFD in the 

GUI window, invokes Interpreter to precess the semantic representation of DFD, 

and provides behavior analysis for the DFDs.

Sim ulation Sub-System

DFD Logical 
V Structure GUI

Display
Layout

Interpreter • + -
Service
Builder

Display
Constructor

Figure 7.3.1-1

7.3.2 Assumption

The above simulation sub-system design is based on the following assump

tions:
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1. The DFD layout structure is already processed by some of the components of 

Display Constructor such as components Entity Extraction, Display Layout 

Design, Layout Optimizer as shown in Figure 7.2.5—1.

2. An optimized DFD display layout is ready for Display Constructor to draw 

boxes, lines, circles, arrows, and to write text in the GUI window.

3. The DFD logical structure is ready for interpreter to process.

4. Concurrency Workbench is directly used as the interpreter.
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8 SYSTEM IMPLEMENTATION

The implementation mainly involves graphic user interface and simulator. An 

user interacts with the GUI to invoke the simulator for the simulation of a system 

behavior through its DFDs description.

8.1 C lass Design

The demo system class design is originated from object-oriented strategy by 

following top-down approach. In terms of Demo System Design shown in Figure

7.3.1—l, eleven classes and a connection component are developed. CWB is 

imported as the interpreter.

8.1.1 Class Dependence Structure

According to their functionality, the classes can be divided into three levels. 

The first level is the program driver and a graphic user interface. The second one 

is the services the demo system provides. The third one is function classes that 

support the services. Figure 8.1.1—1 shows the class dependence structure.
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Main

MainWindow

Pipe FyFile CWBSimulation Utility CWBDialog

Connection
Component EvaluateFile Agent EvaluateState OrawState

CWB

Figure 8.1.1-1

8.1.2 Class Specification

Class specification gives a brief description about the class and lists only 

major attributes and methods. The convention used in describing the classes is 

as following:

1. Attribute is described by name and type. The format is “+name: type”. 

“+” or **-” sign stands for public or private.

2. Operation is described by name, parameter, and return type. The format 

is “+name (parameter list): return type” . or sign stands for 

public o r private.
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Main is the program driver that will start the graphic user interface.

Operation

I. +main (String)

MainWindow is the graphic user interface that allows a user to interact with 

the system through mouse click. It includes a menu bar with four menus: File, 

CWB, Font, Background. Font and Background menu provide window property 

configuration service. File menu provides load file and quit system service. CWB 

menu provides a subset o f  CWB services that include: simulation, equivalence 

checking, difference checking, system size, states, minimum space.

Attribute

1. —myFiles: MyFiles

2. —cwbDialog: CWBDialog

3. -cwbSim: CWB Simulation

4. -utility: Utility

5. -font: Font

6. —fontName: String

7. -fontStyle: int

8. -fontSize: int

9. -foreground: Color

10. -background: Color

11. +exchange: Pipe

12. +cwbResponse: String

13. +invokeCWB: boolean

14. +loadFile: boolean
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15. +buffer: byte Array

16. +bufferSize: int

Constructor 

1. +MainWindow ()

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +paint (Graphics)

4. -fileAction (Event)

5. -cwbAction (Event)

MyFiles loads into the main window the DFD files that are written in CWB 

notation and DFD layout structure.

Constructor

1. +MyFiles (Frame, int)

Pipe is the port to connect imported CWB tool.

Operation

1. +setPipe 0

2. +read (): String

3. +write (String)
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CWBSimulation is the simulation interface that allows a user to simulate the 

system behavior represented by DFD through mouse click. It contains normal 

window property setting options and methods to display simulation diagram in 

the simulation window dynamically.

Attribute

1. -m ain Window: Main Window

2. -evaluateFile: EvaluateFile

3. -  evaluatestate: EvaluateState

4. -drawState: DrawState

5. -agent: Agent

6. -utility: Utility

7. -idle: String

8. —ready: String

9. -active: String

10. -Source: String

11. —Sink: String

12. —Process: String

13. -fileContent: String

14. -numberOfAgent: int

15. -systemState: charArray

16. —cwbResponse: String

17. -transition: charArray

18. -numOfTransition: int

19. -agentlndex: int

20. -button: Button
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21. -font: Font

22. —fontName: String

23. -fontStyle: int

24. -fontSize: int

25. -foreground: Color

26. -background: Color

Constructor

1. +CWBSimulation (Frame)

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +mouseDown (Event, int, int): boolean

4. +paint (Graphics)

5. -paintAndRetum (): boolean

6. -setTransitions (int)

7. -setClicks ()

8. -setStates ()

9. -traceBack (int)

10. -traceForword (int, int)

CWBDialog is a dialog box served as an interface to CWB. It allows a user to 

issue CWB command to perform CWB operations through a input command text 

field. The CWB response will be displayed in the box window.
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Attribute

1. -mainWindow: MainWindow

2. —utility: Utility

3. -button: Button

4. -textField: TextField

5. -font: Font

6. -fontName: String

7. -fontStyle: int

8. —fontSize: int

9. —foreground: Color

10. —background: Color

Constructor

1. +CWBDialog (Frame)

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +paint (Graphics)

Utility is the window display utility class served as an interface to manipulate 

window display properties such as foreground, background, font, font color, font 

style, font size, text fields, buttons.

Operation

1. +fileMenu (Menu, MenuBar)

2. +fontMenu (Menu, MenuBar)
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3. +backgroundMenu (Menu, MenuBar)

4. +cwbMenu (Menu, MenuBar)

5. +customPrint (String, Graphics)

6. +fontNameAction (Event, String): String

7. +fontSizeAction (Event, int): int

8. +fontStyleAction (Event, int): int

9. +foregroundAction (Event, Color): Color

10. +backgroundAction (Event, Color): Color

Agent is the class that store the information about agent such as name, type 

(source, sink, process), state (idle, ready, active), and position in the display 

window; about flows such as input flows, output flows, flow state (idle, ready, 

active), position; and about label position.

Attribute

1. +name: String

2. +type: String

3. +agentState: String

4. +agent!con: intArray

5. +agentLabel: intArray

6. +inflow: charArray

7. +outflow: charArray

8. +inflowState: charArray

9. +outflowState: charArray

10. +outflowIcon: intArray

11. +outLabel: intArray
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12. + arrow: intArray 

Constructor

1. +Aent (int, int, String)

Operation

1. +getOutLabel (int): String

EvaluateFile is the system input file evaluation interface with all finds of file 

operations in it. It evaluates DFD display layout structures. It sets the coordinators 

of processes, sources, sinks, lines, arrows, text in agent object. It decides how 

many inflows and outflows associated an agent. It also initial agent states, flow 

states, and system states.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. -Source: String

5. —Sink: String

6. -Process: String

Operation

1. +getNumberOfAgent (String): int

2. +createAgents (String, Agent, charArray, int)

3. +initialAgents (String, Agent, int)

4. +setIcons (String, Agent)
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5. -createAgent (String, Agent, int)

6. -getNumOfFlow (intArray, String)

7. -createSystemState (String, charArray)

8. -initAgent (String, Agent, int)

9. —setAgents (String, Agent, int)

10. -initAgentState (String, Agent, int)

11. -initFlowState (Agent, int)

12. -insertFlows (String, Agent, int)

13. -insertlnflows (Agent, int, String)

14. -insetOutFlow (Agent, int, String)

15. -setlcon (String, Agent)

16. -setOutflowIcon (Agent, StringTokenizer, int, int)

EvaluateState is the interface to update current and previous system states

in terms of CWB response. It gets the number of possible transitions, updates

transition array, finds out the agent and flow that were clicked in simulation 

window.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. -Source: String

5. -Sink: String

6. —Process: String
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Operation

1. +setSystemStates (String, String)

2. +clickAgent (Agent, int, int, int): int

3. +clickFlow (Agent, int, intArray, int, int): boolean

4. +getTransitions (String, charArray, int)

5. -insetTransition (StringTokenizer, charArray,int)

DrawState is the interface to draw diagram in simulation window according 

to agent states.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. —Source: String

5. -Sink: String

6. —Process: String

Operation

1. +setState (Graphics, Agent, int)

2. -setTerminator (Agent. Graphics)

3. -setProcess (Agent, Graphics)

4. -setFlow  (Agent, Graphics)

5. -drawTerminator (Agent, Color, Graphics)

6. -drawProcess (Agent, Color, Graphics)

7. -drawFlow (intArray, Color, Graphics
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8. -drawArrow (intArray, Color, Graphics

9. -printAgentLabel (Agent, Color, Graphics)

10. -printFlowLabel (Agent, Color, Graphics)

8.2 C oncurrent P ro cesses  M anagement

Since the interpreter to be used in demo system is imported from CWB, it 

has to be seamlessly integrated into the main program. Consider a port is built 

with the main program, a different application can be plugged in it such that the 

main program may interact with the plug-in application as though the application 

run stand-alone. The basic concept for such kind of integration comes from 

different process running independently but with the mechanics to communicate 

each other. This concurrent process creation, communication establishment, plug

in application involves quite a few steps.

8.2.1 Concurrent Process Creation

In order to run imported CWB, a concurrent process must be created as CWB 

bearer. This is can be done by using unix system call fork  as shown in Figure

8.2.1-1. The Parent process and the child process are running concurrently but 

independently o f each other.
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C oncurrent P ro c e ss  Creation

Parent
Process

fork Child
^  Process

Figure 8.2.1 -1

8.2.2 Communication

The two way real-time communication is then established through unix system 

call pipe and dup as shown in Figure 8.2.2—1. Two pipes are set up, one for read 

and one for write. Now the two processes are capable of talking each other in 

simplex mode.

Two Way Communication

pipe write

Parent fromChild v * * Child

Process toChild v-  ► Process

dup read

Figure 8.2.2-1
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8.2.3 CWB Invocation

When the concurrent process environment is set up, CWB is invoked by unix 

system call execlp and the two pipes are opened by system call fdopen as shown 

in Figure 8.2.3—I

CWB Invocation execlp
' ' ' v

fdopen write

Parent * ---------  fromCWET*---------  CWB

Process ---------► toCWB   ► Process

fdopen read

Figure 8.2.3-1

8.2.4 Main Program Linking with CWB

The last step is to link the main program with the CWB process after all 

the above preparations are done. Since the program handle the CWB process is 

written in C while the main program is written in Java. There must be a port in 

main program to allow CWB application plugged in. This can be done through 

the advanced Java technique called native method.

There are three native methods included in the Java port class Pipe that is 

served a an interface to other application implemented in different language. They 

are setPipe method, read method and write method. They are abstract method de

clared in Pipe class. The implementation of these native methods is accomplished 

by C code. The setPipe method is implemented in C as setPipe function that
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establishes the concurrent process environment, invokes CWB application, and 

opens two way communications. The write method is implemented in C as write 

function that issues CWB command, converts Java string into C string, and writes 

it into toCWB pipe. The read method is implemented in C as read function that 

retrieves CWB response from fromCWB pipe, converts C string into Java string, 

and returns response to main program.

Java native method builder is used to create the middleware that match Java 

methods with corresponding C functions. C compiler library option is used to 

generate a shared library to be accessed by both Java methods and corresponding 

C functions. Figure 8.2.4—1 shows the described linking approach.
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Java Main Program  Linking With CWB

Java Interface C Interface

Java class P ipe ' javah

native m ethods; ---------------------------
----------------------  Java Native Method

setPipe Builder
read ' ;
write java -stubs

Java Compiler

 t _ _ _ _ _ _ _ _ _

Byte Code

Pipe.class

Figure

 * Pipelmplement.c
Pipe.h c functions

  setPipe
Pipe.c read
________ write

C Library 
Builder

 ?_____
' N

C Executable ' 
*. Share Library

libcwb.so

8.3 Programm ing Languages

Java and C are the two programming languages to be used for implementation.

There are a number of reasons to choose Java.

1. Java is a pure objected-oriented language. Since object modelling tech

nique is used in design stage, implementation in object-oriented language 

is more natural and compatible with design model. It will be easier to 

transform design model into implementation model.
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2. Java is an advanced modem language. Its specifications included the 

latest programming technique. It has a lot handy and powerful features 

such as graphic interface builder, string manipulation that save program

mer substantial time.

3. Run time security checking, automatic garbage collection, and reference 

passing mechanism reduce program crash possibility and make the lan

guage more reliable.

4. The most import advantage of Java is expressed by its logan “write once, 

run anywhere”. A platform independent, reusable software has long been 

the goal of programming language. Java archives this goal to great extent. 

It represents the future of programming language.

5. Another prominent feature of Java is its applet. Applet allows remote 

execution. As internet is exploring, Java becomes hottest technique in 

internet application development.

6. Java has a built in feature to allow plug in applications written in different 

language. This native method is perhaps played a key role in my 

implementation model.

8.4 Environm ent

The requirement for current implementation model is pretty sim

ple. It only requires Unix system VI above with JDK1.0, and CWB 

installed. 55K. source files are currently reside in schoenfinkel under 

/home/ucc/disk004/tzhow'thesis/implemt/java/interfacel. The byte-code and 

shared library of about the same size are also installed in the directory. By typing 

java Main under this path, we can run the demo system with a nice interface.

i l l
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9 FURTHER WORK

There could be a lot o f further work to do on this research topic. From what 

I consider needs substantial effort, the further work can be divided into three 

portion: theoretical portion, design portion and implementation portion.

9.1 Theory Work

The two key theory issues: DFD layout structure and DFD logical structure 

are pretty much done. Another important issue less concerning theory but more 

design is to establish a foundation for representing levelled dataflow diagrams.

9.2 Design Work

In section 7, we omitted the interpretation of levelled DFDs at both high 

level phase and refined phase since we did not discuss how to handle the levelled 

DFDs in DFD representation portion. This could result in adding a couple of 

more components in design and in restructuring the design diagram.

9.3 implementation Work

Even through some of components could be imported into the system directly 

from commercial products, these products may need to be customized to fit the 

system requirement. Other components not implemented in simulation sub-system 

of course need substantial effort such as display layout construction.
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10 CONCLUSION

Formal specification provides a valuable approach to develope a powerful 

CASE tool which can semantically understand a system modelled by DFDs. This 

tool can be used to simulate a system behavior, check equivalence of two systems 

and detect possible deadlock. These features grant the tool usefulness in every 

phase through entire software life cycle. The architecture of the tool is based 

on a platform independent foundation, which makes it capable of doing system 

analysis both for new system design and legacy system migration at high level.
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