
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1998

Semantics-driven dataflow diagram processing. Semantics-driven dataflow diagram processing.

Lizhong Zhou
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zhou, Lizhong, "Semantics-driven dataflow diagram processing." (1998). Electronic Theses and
Dissertations. 3425.
https://scholar.uwindsor.ca/etd/3425

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3425?utm_source=scholar.uwindsor.ca%2Fetd%2F3425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semantics-Driven Dataflow
Diagram Processing

by

Lizhong Zhou

A Thesis
Submitted to the Faculty o f Graduate Studies and Research

through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree

of Master o f Science at the
University o f Windsor

Windsor, Ontario, Canada
1998

© Lizhong Zhou

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
385 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothbque nationals
du Canada

Acquisitions et
sen/ices bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

four IN* VouirlUnnei

Our H i N o tn r lM n n a

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autonsation.

0-612-52496-5

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

Dr. Yung"H. Tsin, Chair, Computer Science

Dr. Indra A. Tjandra, Supervisor, Computer Science

Dr. Young Park, Department Reader, Computer Science

kj -kJ U j
Dr. Puma N. Kaloni, External Reader, Department o f Mathematics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
Dataflow diagram is a commonly used tool of structured analysis and design

techniques in specifications and design of a software system, and in analysis of

an existing system as well. While automatic generating dataflow diagrams saves

system designers from tedious drawing and help them develop a new system,

simulating dataflow diagrams provides system analysts with a dynamic graph and

help them understand an existing system. CASE tools for dataflow diagrams

play an important role in software engineering. Methodologies applied to the

tools are dominant issues extensively evaluated by tools designers. Executable

specifications with dataflow diagrams turn out an opportunity to execute graphic

dataflow diagrams for systems analysts to simulate the behavior of a system.

In this thesis, a syntax representation of dataflow diagram was developed,

and a formal specification for dataflow diagram was established. A parser of

this developed CASE tool translates the syntax representation of DFDs into their

semantic representation. An interpreter of this tool then analyzes the DFDs

semantic notations and builds a set of services of a system represented by

the DFDs. This CASE tool can be used to simulate system behavior, check

equivalence of two systems and detect deadlock. Based on its features, this tool

can be used in every phase through entire software life cycle.

Keywords: dataflow diagrams, software life cycle, software reuse, structured

analysis and design techniques, software specification documents and design

documents, formal specifications, grammar, CASE tools, CCS, Java.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To M y Parents and My Wife

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my sincere thanks and respect to my supervisor

Dr. Indra Tjandra. His guidance and enthusiasm made this thesis an enjoyable

experience for me. Many thanks to Dr. Young Park for his valuable advice and

comments. I would also like to thank Dr. Puma Kaloni for his consistent support.

I would like to extend my thanks to Dr. Subir Bandyopadhyay for his

wonderful suggestions and to Dr. Yung Tsin for chairing the defence committee.

My special thanks go to system administrator Walid Mnaymneh and secretary

Mary for their help.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A b s tra c t..iii

Acknowledgem ents...v

1 INTRODUCTION... 1

1.1 The Role of DFD in Software Life C y c le2

1.1.1 DFDs in Software D esig n ..2

1.1.2 DFDs in Software M ain tenance.............................. 3

1.1.3 DFDs in Software R e u s e ..5

1.1.4 DFDs in Reverse E ngineering................................. 7

1.2 The Role of DFD in the Object-Oriented P a rad ig m 9

1.3 Overview of the Approaches of DFD Processing....................10

1.4 The Problems with Previous DFD T o o ls13

1.5 The Organization of the T hesis ...15

2 DATA FLOW DIAGRAMS.. 16

2.1 O v e rv ie w ... 16

2.2 The Components of DFDs... 18

2.2.1 The P ro c e s s ... 19

2.2.2 The flow... 19

2.2.3 The S to re .. 21

2.2.4 The T erm in a to r... 22

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Constructing D F D s ..22

2.3.1 Leveling and B alancing ...25

2.3.2 R epartitioning..28

2.3.3 Evaluating and Improving D F D28

3 CASE TOOLS FOR D F D S ...30

3.1 The Role of CASE Tools in Software D evelopm ent 30

3.2 Important Features in CASE to o ls ... 32

3.2.1 Graphics S u p p o rt..32

3.2.2 Error-Checking F e a tu re s .. 32

3.2.3 Cross-Checking of Different M o d e ls33

3.2.4 Additional Software Engineering S u p p o rt.....................34

3.3 Current CASE Tools for D F D s .. 35

3.3.1 DFD Editor and P ro c esso r.. 35

3.3.2 Automatic Generation of Dataflow D iag ram s 44

3.3.3 Executable Dataflow D iag ram s....................................47

3.3.4 Executing Dataflow D iagram s.......................................50

3.4 Formal DFD Specifications in CASE Tools 52

4 SEMANTIC DESCRIPTION OF DFDS.. 55

4.1 Calculus of Communicating System ...55

4.1.1 Sequencing...56

4.1.2 C hoice... 57

4.1.3 Parallel Com position...57

4.2 Semantic Representation of D F D s ...58

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 A SEMANTIC-DRIVEN DFD PROCESSING SYSTEM 61

6 SYSTEM SPECIFICATION..63

6.1 General Description.. 63

6.1.1 The Purpose of DFDPRO.. 63

6.1.2 Product Functions ... 64

6.2 System M o d e l ...65

6.2.1 The Logical Structure of the S y s te m 65

6.2.2 Display Description... 66

6.2.3 The W orkspace...67

6.3 System S erv ices..68

6.3.1 Functional R equ irem en ts..68

6.3.2 Translation S e rv ic e s ...69

6.3.3 Simulation Services ...79

7 SYSTEM DESIGN ..86

7.1 High-Level Description...86

7.2 Design R efinem ent.. 88

7.2.1 Graphic User Interface..88

7.2.2 Syntax P rocesso r.. 89

7.2.3 Semantic P ro c e s s o r ...90

7.2.4 Service B u ild e r ... 90

7.2.5 Display Constructor... 91

7.2.6 Interpreter ... 92

7.2.7 S c a n n e r...92

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Simulation Sub-System ...92

7.3.1 Simulation Sub-System D e s ig n93

7.3.2 Assumption... 93

8 SYSTEM IMPLEMENTATION ..95

8.1 Class D esig n ..95

8.1.1 Class Dependence S tructure .. 95

8.1.2 Class Specification... 96

8.2 Concurrent Processes M a n ag e m en t.................................. 106

8.2.1 Concurrent Process Creation 106

8.2.2 C om m unication... 107

8.2.3 CWB Invocation... 108

8.2.4 Main Program Linking with C W B 108

8.3 Programming L a n g u a g e s ... 110

8.4 E nvironm ent.. 111

9 FURTHER WORK .. 112

9.1 Theory W o rk .. 112

9.2 Design W o rk .. 112

9.3 Implementation W ork .. 112

10 CONCLUSION.. 113

BIBLIOGRAPHY... 114

VITA A U CTO RIS.. 118

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 INTRODUCTION

Many design methodologies make use of graphical notation where software

objects and relationships are represented using different symbols on a diagram.

Rules exist governing how symbols should be used, how symbols should be

linked and, in some cases, how symbols should be physically positioned in a

diagram. One of most widely used methodologies which make extensive use o f

diagrammatic notations is the structured analysis and design technique (SADT).

SADT [6] deals with decomposing a system into modules. It uses dataflow

diagrams (DFDs), entity-relationship diagrams (ERDs) and state transition dia

grams (STDs), with the supplement of a data dictionary, to represent the static

and dynamic properties of a system [37]. These diagrammatic notations provide

not only techniques for system analyst but a structured approach to the devel

opment process. They are good for analyzing and structuring systems and are

relatively easily understood by the customers. They also have the advantage of

being well tried and understood and are used by the more conscientious devel

opers o f systems.

Among these three major diagrams, the dataflow diagram is the mostly

common used one. DFD is a good tool for modelling data flows irrespective of

physical and organizational boundaries and the medium of that flow. It provides a

mechanism for ensuring a consistent hierarchical structure and is a useful analysis

tool. Used sensibly it can provide an immediate and understandable model o f the

essential inputs, outputs and processes of the system. It is also a good design

model, permitting the production o f alternative information flows and providing

a focus on discussion about the location of the human-computer interface. The

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements modelled — flows, processes, stores and terminators also lead to their

physical equivalents.

As a user friendly and easy understanding graphical tool, dataflow diagram

has been used in every phase in software life cycle. It plays active role in

system design, system analysis, system maintenance, system reverse-engineering

and software reuse. Its functional modeling features not only let system analyst

to get good knowledge of a system behavior but also assist system designer to

make a better logical structure o f an object model.

1.1 The Role of DFD in Softw are Life Cycle

1.1.1 DFDs in Software Design

System analysis and specification are essential activities in any system de

velopment model. The languages used to describe specifications cover a broad

range: from informal to formal, from operational to descriptive, from graphical

to narrative. They usually include tables, diagrams, and other graphical notations

which can convey information in a concise, rigorous, and readable way.

Though formal specification is very rigorous, precise and complete, in the

real world, many companies are still reluctant or hesitant to use formal methods

for system specification. Formal specification is not user friendly and hard

to understand. It takes system designers a lot of time to transform formal

specification into design model accurately. On the other hand, industries use

narrative methods in system specification as less as possible to avoid ambiguity

in the later stage of software development. Without doubt, graphical notations

are commonly adopted by industries in software specification because they are

intuitive, readable and user friendly. Dataflow diagram is one o f the widely used

■>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graphical tools in this early stage of software life cycle. It describes software

requirements and provide an intuitive high-level picture o f software functions and

their decomposition into component parts.

Top-down approach is frequently used in the design stage of software life

cycle. The modularity principle is of paramount importance in the design of

software. The decomposition of a system into modules can be accomplished

in several ways and in several steps. One might first do a decomposition in

which the system is decomposed into higher-level module called subsystems.

Relations among the subsystems are then defined, and the intended behavior

of each subsystem is agreed upon by the designers. Next, each subsystems

analyzed separately, and the procedure is iterated until reaching the point where

the complexity of each component is sufficiently small that it can be implemented

readily by a single person.

Dataflow diagrams provide a top-down, partitioned, graph-theoretic model

for system design. Leveled DFDs present a good description of a system, its

subsystems and relationship among the subsystems. A system/subsystem function

decomposition has its corresponding components in module refinement and even

in object-oriented module design. Each layer of module decomposition can be

interpreted in corresponding level o f DFDs. Leveled DFDs make system designers

job easier and the design more readable and understandable as well.

1.1.2 DFDs in Software Maintenance

After a software is delivered, frequently required job is to modify the product

to correct faults, or to improve performance to adapt the product to a changed

environment. A delivered software may have some residual errors which could

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be present in any phase of software life-cycle such as requirements, specification,

design, implementation, integration even maintenance, or could be any other types

o f errors. This is so called corrective maintenance that accounts for 20 percent

o f maintenance cost [16].

Most of the maintenance cost, namely over 50 percent, is spent on the second

type of maintenance, perfective maintenance which involves changing the software

to improve some of its qualities. Here, changes are made due to the need to

modify the functions offered by the application, add new functions, improve the

performance o f the application, make it easier to use, etc. The request to carry out

perfective maintenance may come directly from the software engineer, in order

to improve the status of the product on the market, or they may come from the

customer, to meet some new requirements.

The third reason for changing an application is adaptive maintenance which

adjusts the application in order to react to changes in the environment in which the

application operates. Adaptive maintenance can be a new release of the hardware

or the operating system or a new database system. Thus this maintenance is not

requested by a client; instead, it is externally imposed on the client.

Based on the activities described above, software maintenance can be divided

into two categories: repairs and evolution, of which the second one claims most of

maintenance work. Both these maintenance processes require system’s maintainer

to have, if not complete, good knowledge about the software product. However,

the system’s maintainer are usually not its designers, so they must expend many

resources to examine and leam about the system. A well structured DFDs is very

helpful for system maintainer to better understand the behavior of the system.

They can modify existing functions or add new functions based on DFDs.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the worse condition which frequently happen, the only available documen

tation for a product that has to be maintained is the source code itself. In the

course o f developing software against a time deadline, the original specification

and design documents are frequently not updated, and are consequently almost

useless to the maintenance team. Other documentation such as the database man

ual or the operating manual may never have been written due to the priority

o f delivery time. Alternatively, continuing maintenance may have corrupted the

original structure so much that it is no longer discernible. If no design documen

tation is available at all, product maintainer can draw themselves a DFDs based

on system function test to acquire a whole picture of the system. Actually in

industry, the most possible available design documents are architecture graphs or

some flow charts similar to DFDs. It is not very difficult to create DFDs from

these resources.

1.1.3 DFDs in Software Reuse

Software reuse is akin to software evolution. In software evolution, a product

is modified for building a new version of the same product; in software reuse,

a product is ready to be used, perhaps with minor changes, for building another

product.

The candidates products for reuse can be all resources used and produced

during the development of software [29]. Most frequently reused types of products

are identified as:

1. data reuse, involving a standardization of data formats,

2. architectures reuse, which consists of standardizing a set of design and

programming conventions, dealing with the logical organization of software,

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. design reuse, for some common business applications and

4. program reuse, which deals with reusing executable code

Milis [19] has recommended a five-level hierarchy o f reusable software

development knowledge in which domain knowledge is represented explicitly:

1. environmental knowledge,

2. external knowledge,

3. functional architectures,

4. logical structures and

5. code fragments.

This classification corresponds somewhat to the software life cycle, where

the last three levels map to the products of system design, detailed design, and

coding. The first two (environmental and external) are typically used to derive a

particular system’s specifications from the user requirements.

The reuse of products of higher-level abstraction activities, such as architec

tures reuse or design reuse, gives greater leverage than code reuse. The higher-

level reuse requires higher-level knowledge. One of the big problems of reuse is to

acquire reusable assets. This activity involves various mixes o f new developments

and use of existing assets raw resources.

DFDs can be considered as the reuse of functional architectures, logical struc

tures as well as design documents. This kind o f reuse o f high-level abstraction

offers greater leverage. Reusing DFDs not only can help software error correc

tion, improvement and maintenance but also can assist across project/program

reference. A well designed and documented DFDs can either be pushed out from

original creator to end user or be pulled out by new user from its original design.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.4 DFDs in Reverse Engineering

Reverse engineering encompasses a wide range of tasks related to understand

ing and modifying software systems. One of the dominant tasks is identifying

the components o f an existing software system and the relationships among them.

Also important is creating high-level descriptions o f various aspects of existing

systems. The abstraction of a system could range from different phases of system

life cycle to individual modules in the system, or it could be the design recovery

o f a software system.

What reverse engineering has done is to build up, more or less, a basis for

maintenance, restructuring, reengineering and reuse o f software, since successful

executions of these processes rely on being able to recognize, comprehend, and

manipulate design o f a system. Even forward engineering, in the sense of system

life cycle, involves a kind of reverse engineering.

Reverse engineering generally involves extracting design artifacts and building

or synthesizing abstractions in a certain formality. These formalities are usually

the methodologies used in software design. There are a couple of dozens of

identified techniques used in software design. Each design methodology has its

own notation (although these are often closely related) and its own set of rules

defining how designs should be expressed using that notation. Figure 1.1.4-1

shows the reverse engineering concept.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Requirements
(constraints,
objectives,
business rules)

Design Implementation

Forward Forward
engineering ^ ______ engineering

Reverse Reverse
engineering engineering

■ - - - — -

Design ^ __ ________ ___ Design
recovery recovery

Reengineering Reengineering
(renovation) (renovation)

Restructuring Restructuring S K S T ™ ’

Rgure 1.1.4-1 Relationship between terms. Reverse engineering and related processes are
transformations between or within abstraction levels, represented here in terms of life-cycle
phases

The term reverse engineering thus can be described as the process of analyzing

a subject system to identify the systems’s components and their interrelationships

and create representations of the system in another form or at higher level o f

abstraction."[l]

Many o f the models for high-level representation of traditional (sequential)

software systems in literature tend to describe the system in terms o f functional

blocks and their interactions. These models are well defined as dataflow diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is one of the most popular tools for the high-level representation of real

time system.

Some of tools used in reverse engineering are to extract design properties

of a system by reconstructing its dataflow diagrams either from executable code

or from software specification documents. Some just reuse existing dataflow

diagrams to help system analysts understand the behavior o f systems. DFDs have

been extensively used in software design and analysis for last one and half decades.

Many large legacy systems were designed by using structured analysis and design

technique with DFD-enhanced specifications. This is one reason that why some

of reverse engineering methodologies focus on reusing or reconstructing dataflow

diagrams. However, reverse engineering became popular both academically and

commercially just in early 1990s. Thus DFD reuse and reconstruction in reverse

engineering is still under development.

1.2 The Role of DFD in the Object-Oriented Paradigm

DFD is the most commonly used tool in functional modeling. A dataflow

diagram shows the functional relationships of the values computed by a system,

including input values, output values, and internal data stores. The processes in

the functional model correspond to operations in the object model. Often there is

a direct correspondence at each level of nesting. A top-level process corresponds

to an operation on a complex object, and lower-level processes correspond to

operations on more basic objects that are part of the complex object or that

implement it. Sometimes one process corresponds to several operations, and

sometimes one operation corresponds to several processes.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processes in the functional model show objects that are related by function.

One of the inputs to a process can be identified as the target object, with the

rest being parameters to the operation. The target object is a client of the

other objects (called suppliers) because it uses them in performing the operation.

The target knows about the suppliers, but the suppliers do not necessarily know

about the target. The target object class is dependent on the argument classes

for its operations. The client-supplier relationship establishes implementation

dependencies among classes; the clients are implemented in terms of, and are

therefore dependent on, the supplier classes.

Actors are explicit objects in the object model. Data flows to or from actors

represent operations on or by the objects. The dataflow values are the arguments or

results of the operations. Because actors are self-motivated objects, the functional

model is not sufficient to indicate when they act. The dynamic model for an actor

object specifies when it acts.

Data stores are also objects in the object model, or at least fragments of

objects, such as attributes. Each flow into a data store is an update operation.

Each flow out of a data store is a query operation, with no side effects on the

data store object. Data stores are passive objects that respond to queries and

updates, so the dynamic model of the data store is irrelevant to its behavior. The

dynamic model of the actors in a diagram is necessary to determine the order

o f operations [26].

1.3 Overview of the A pproaches of DFD Processing

Because o f its popularity, graphic view and intuitive meaning, dataflow

diagrams have been considered to be good candidates of CASE support for

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structured analysis and design since the mid 1980s. Those CASE tools either

already available in market or still in the stage of research could be classified,

in terms of their purposes, as editing tools, automatic generation tools, executing

tools and reconstructing tools.

Editing tools are quite different from general graphic editing tools in use.

General graphics tools use standard symbols — like rectangles, circles, lines and

arrows ect. — to do basic graphic editing operations such as drawing, dragging,

cutting, pasting moving and connecting. DFD editing tools only use DFD-

specific graphic symbols, but not general drawing ones. They are usually much

more intelligent than general tools. In addition to the basic drawing operations,

DFD tools can check DFD syntax, detect duplicates, perform object search,

automatically generate data flows, dynamically move or delete objects and related

components, integrate DFD and data dictionary etc. Some advanced editing tools

even can enforce diagramming rules, support concurrent DFD drawing, check

consistency across diagrams and systematically replace objects with the diagrams

at lower level in DFD hierarchical structure [28]. These DFD editing tools are

usually so expensive that most system analysts can hardly afford to use them.

Automatic generation tools are created to save system designers from tedious

and time-cost DFD drawing. All informations needed for drawing DFD are

written in a structure representation using some descriptive language and then

the representation is stored in a graphics database. The drawing subsystem access

the database to retrieve flow information and parse it to generate the dataflow

diagrams. By using automatic generation tools, a system designer/analyst can get

a DFD automatically without any manual drawing. What they have to do is just

using a descriptive language required by the automatic tool to write a structure

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representation and inputting it into the database. Such kind o f CASE tools are

only used academically and still under improvement [24].

Executing tools provide a dynamic mechanism to simulate the behavior

of a system semi-automatically. In such tools, a graphic dataflow diagram is

converted to an executable specification in some formality — called an executable

dataflow diagram — and then the executable DFD is read and interpreted by the

executing system to generate a graphical dataflow diagram which can be used

as a behavior simulation model for the target system. Various approaches are

applied to form the executable specifications such as Petri net, token passing, set

notation, pseudo-code description and flowmap [25] etc. All these approaches

try to catch the semantics of the dataflow diagrams and control concurrence and

dataflow sequences.

Reconstructing tools extract information from existing system documents and

generate dataflow diagrams to help both system analysts and users to understand

the system and to modify or update the system. Reconstructing DFD directly from

code is a method used in reverse engineering. Sophisticated code analysis and

transform analysis is involved in such reconstruction activities [33]. The other

way to reconstruct a DFD is based on existing system design documents. A set

of rules and definitions declared to transform design documents into graphical

dataflow diagrams through a parser [7],

All these four kinds of CASE tools have different objectives, but share a

common concept that a formal foundation should be created in order to draw

dataflow diagrams automatically through a CASE tool. Each tool applied a

specific methodology to set up a formal specification o f dataflow diagrams which is

either author defined or already existing, either mathematical or descriptive, either

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process-oriented or structured. These experiences and various efforts stemming

from the common idea indicate that a formal framework for DFD is likely to be

the right route for automatic generation of and semantically analysis of dataflow

diagrams.

Some of the CASE tools developed after late 1980s not only have the prop

erties o f first-generation CASE tools, which emphasizes remarkably sophisticated

graphic-workstation user interfaces, but also catch some characteristics of second-

generation CASE tools, which can provide methodology adaptation, documenta

tion layout and intelligent diagraming support. Along with booming of reverse

engineering and reengineering legacy system, more methodologies are proposed

to support reuse of dataflow diagrams [18].

1.4 The Problem s with Previous DFD Tools

DFD has been adapted to fit specific needs of different systems. Such

adaptation includes changed notation, added notation and varied interpretations

o f some symbols. Here comes out a common issue for all the three ways using

dataflow diagrams — “what kind of dataflow diagram is reconstructed ?”. The

second common issue for reconstructing dataflow diagrams is how to execute

reconstruction. Drawing hierarchical dataflow diagrams manually for a large-

scale system is extremely time-consuming and error prone if not impossible.

The solution for the first issue associated with the first two reconstruction

methods is obvious, but it is not trivial if we reconstruct a DFD based on

existing DFD with different notation or different interpretation of symbols. An

intuitive solution for the second issue is naturally attributed to computer aided

software engineering (CASE) [17]. CASE tools, especially DFD editing tools,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will definitely help drawing an eye-pleasing and standard DFD and save the

system analyst from doing a tedious job. Regarding the use o f CASE tools

in reverse engineering, comes out another issue — “how a tool can guarantee

that the reconstructed DFDs are logically correct and match the original design

?”. Actually a DFD specification gives user some flexibility to modify it to fit

particular needs of a specific system. The flexibility of DFD notation is one

reason that leads this tool to be so popular. But the flexibility comes at a price

— the lack of a formal basis o f DFD concepts and notation hinder its use as a

formal specification tool. The lack of formal framework is one reason that not a

lot automated aids have been developed to support its use.

CASE tools that support DFD reuse must meet the following requirements:

• The reconstructed DFD should be syntactically error free.

• The DFD in different levels o f hierarchy should keep consistency.

• Method rule checking should be embedded in the tool.

• The layout of DFDs should be aesthetically acceptable.

• The reconstructed DFD should be semantically equivalent to the original one.

Quite a few of CASE tools have been developed to support use or reuse of

dataflow diagrams. Each of them can meet some of the above requirements to

some extents, but not all of them.

The above described four major CASE tools for DFDs reuse all center on the

syntactic aspect of DFDs. Though some of advanced those tools can support good-

quality documentation, simple forms of consistency checking, bookkeeping even

methodology adaptation and intelligent diagraming, they still can not interpret

DFDs semantically.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Understanding the logical structure of DFDs is the key point to achieve

use/reuse of DFDs in higher-level abstraction. CASE tools supporting intelligent

use/reuse of DFDs rely on development of formal specifications for DFDs.

Formal specifications can describe dataflow diagrams either syntactically or both

syntactically and semantically. Formal specifications for DFD can not only help

generate precise and consistent diagrams but also give a meaningful interpretation

and help systems analysts understand the behavior of the described system. The

semantic specifications for DFD is also known as executable specifications that

allows the drawn dataflow diagrams to be executed to simulate the behavior of

the underlined system.

1.5 The Organization of the Thesis

The major remainder of this thesis paper is organized as nine sections. Sec

tion two gives a brief description of dataflow diagrams, its symbols, terminology,

notation and construction. Section three evaluates the CASE tools for constructing

dataflow diagrams in structured analysis and design, and investigates the various

methodologies used in different tools. Section four focus on semantic represen

tation of dataflow diagrams with introduction to CCS. Section five proposes a

semantic driven dataflow diagram processor. Section six develops the specifica

tion for the proposed system. Section seven analyzes the system design issues.

Section eight describes the implementation of a simulation sub-system. Section

nine is reserved for further work. The last section gives a brief conclusion.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 DATA FLOW DIAGRAMS

2.1 Overview

In software engineering, a system development is usually processed as a life

cycle model, especially for large-scale software design. The early phases of

a software production process deal with more abstraction aspect o f the system

which is generally represented by various specifications ranging from requirements

specification to design specification. A specification is a statement o f an agreement

between a producer of a system and a consumer of the system at any stage of the

life-cycle model of the system. It can be used for different purposes such as a

statement of user needs, a statement o f the requirements for the implementation,

or a reference point during product maintenance.

Software specification may take any form of representations which can be

formal or informal, and also can be operational or descriptive. While formal

specifications can be presented by an algebraic specification language or a logic

specification language such as Z notation, informal specifications are written in

a natural language or a language associated with some figures, tables, diagrams

and other notations to help understanding. Descriptive specifications try to state

the desired properties of the system in a purely declarative fashion like entity-

relationship diagrams. By contrast, operational specifications relate the intended

system by describing the desired behavior, usually by providing a model of the

system, i.e., an abstract device that in some way can simulate its behavior. A

dataflow diagram is a good example o f operational specification.

What can be used as specifications in software development must meet certain

requirements. The first quality required of specifications is that they should be

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clear, unambiguous, and understandable. The second is consistency and the third

is complete.

O f the various specifications used in software engineering, the most often

used, acceptable, easy understand ones are diagrams. There are three major

graphical modeling tools of structured analysis and design technique (SADT):

data flow diagram (DFD), entity-relationship diagrams (ERD) and state-transition

diagrams (STD). While STD highlights time-dependent behavior o f a system and

ERD presents a data model o f a system, DFD models the functions performed

by a system. Dataflow diagram is also known as some other terms like: Bubble

chart, Bubble diagram, Process model, Work flow diagram, function model.

The dataflow diagram is perhaps the most commonly used systems-modeling

tool, particularly for a systems in which the functions of the system are of para

mount importance and more complex than the data that the system manipulates.

DFDs were first used in the software engineering field as a notation for study

ing systems design issues. In turn, the notation had been borrowed from earlier

papers on graph theory, and it continues to be used as a convenient notation by

software engineers who are responsible for direct implementation o f the models

of user requirements.

Since DeMarco [6], who is one of the first those who describe DFDs in a

systematic, instructive way, and Gane and Sarson [12], who also use DFDs as

a major tool in describing system analysis and design, published their books:

Structured Analysis and System Specification and Structured Systems Analysis

respectively in 1979, DFDs had been extensively used as a graphic tool in system

analysis and design. Different notations and conventions were adopted to meet

special needs in specific system development. In 1989, Yourdon [37] summarized

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the experiences of ten-year use of DFD and proposed a set o f notations and rules

concerning DFDs which is usually called Yourdon dataflow diagrams.

Besides their characteristics of hierarchical structure and more complete nota

tions compared to other graphical tools o f structured analysis, Yourdon dataflow

diagrams have all the three major qualities required of specifications. It is also

one o f the most popular DFD conventions accepted in software industry. My

research in DFD will be based on Yourdon DFD model.

2.2 The Components of DFDs

A dataflow diagram consists of a number of graphical symbols, which are

circles, rectangles and lines. Circles, rectangles and two parallel lines are

connected by labelled, directed lines which represent data “flowing” through

the system, with each one using some or all o f its input data to produce its

output. There are four major components o f Yourdon dataflow diagrams, which

are process (transformation), dataflow, store and terminator as shown in Figure

2.2—1. There are also some minor components, which are control transfoi-mation,

control flow and event store. Since they are not in my interest, they are not

introduced [35].

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Discrete dataflow (b) Process
(or transformation)

(c) Terminator (d) Data store
(source or sink)

Figure 2.2-1 The symbols of Yourdon dataflow diagrams

2.2.1 The Process

The first component o f the DFD is known as a process. Common synonyms

are a bubble, a function, or a transformation. The process shows a part of the

system that transforms inputs into outputs. It shows how one or more inputs are

changed into outputs. The process is represented graphically as a circle, as shown

in Figure 2.2-1 (b).

2.2.2 The flow

A flow is represented graphically by an arrow into or out of a process; an

example of flow is shown in Figure2.2.2-1. The flow is used to describe the

movement of chunks, or packets of information from one part of the system

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to another part. Thus, the flows represent data in motion, whereas the stores

represent data at rest.

In order to obviate the use of the logic “AND” and “OR” or the operator *

and ©, Yourdon gives some rules of composite flows illustrated in Figure 2.2.2-1

and Figure 2.2.2-2. Consider Figure 2.2.2-1. The diagram (a) shows the flow

X going to two processes — A and B; diagram (b) shows X diverging into two

flows — z and y that go to A and B respectively; diagram (c) shows the flows

dl and d2 converging to one flow DD for T needs both dl and d2 to process;

diagram (d) shows the flows dl and d2 going to T separately for T needs only

one of them to process.

B

z

y b

(a) X is used by both A and B (b) z and y are components of X

dl

d2

DD
► T

d1

d2

(c) T needs both d1 and d2 to process (d) T needs only one of d1 or d2 to process

Figure 2.2.2-1 The rules for composite flows as input data

In Figure 2.2.2—2. the diagram (a) implies that p and q produced by D and

E respectively are pan of the composite dataflow R; diagram (b) shows two

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processes — D and E — both producing the dataflow R, but not at the same time:

under some conditions, D will produce R, under others E will produce R; diagram

(c) shows that the flow 0 0 produced by T2 is composed o f 01 and 02; diagram

(d) depicts that T2 alternatively produce 01 or 02, but not at the same time.

E d E

(a) p and q are components of R (b) D and E are mutually exclusive;
both produce R

01 r 01
" 00

(c) T2 produce both 01 and 02 (d) T2 produce 01 or 0 2 alternatively

Figure 2.2.2-2 The rules for composite flows as output data

2.2.3 The Store

The store is used to model a collection of data packets at rest. The notation for

a store is two parallel lines, as shown in Figure 2.2—1 (d). Store can be used as a

necessary time-delayed storage area between two processes that occur at different

times, as a convenient temporary repository o f data between two implementations

or as an independent storage from which data is extracted or into which data is

sent.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data can not flow directly from a store to a terminator, or from a terminator

to a store; in either case a process is needed to process the data. In most cases,

the flows will be labeled, but many systems analysts do not bother labeling the

flow if an entire instance of a packet flows into or out of the store.

Store is passive, data will not travel from the store along the flow unless

a process explicitly asks for them. While store is not changed when a packet

of information moves from the store along the flow, a flow to a store is often

described as a write, an update, or possibly a delete.

2.2.4 The Terminator

Terminator is graphically expressed as a rectangle as shown in Figure 2.2-1 (c).

Typically, a terminator is an outside agency or another system. It represents

external entities with which the system communicates. The flows connecting

the terminators to various processes or stores in a system represent the interface

between the system and the outside world. The terminator from which data flows

come out is a source of the system and the terminator to which data flow goes

in is a sink of the system.

2.3 Constructing DFDs

There are few hard-and-fast rules regarding the use of dataflow diagrams.

Most of systems analysts create dataflow diagrams by experiences and knowledge

o f structured design. However, some conventions are widely accepted through the

past two decades of DFDs development such naming, numbering, proper number

of processes in one diagram and etc. Figure 2.3—1 shows an example of a cooking

system represented by DFDs. Point A is a merging spot of four data flows: two

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of them — Diced carrots and Fried onions come from processes Prepare carrots

and Fry onions respectively; the other two — Water and Seasoning come from

source terminators Tap and Spice rack respectively. Process Cook ingredients

needs all four flows to start transformation.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vegetable Vegetables Wash
r a c k ------------------ * a n d

 sort veg
"V Clean onions

Tap

Prepare
Clean carrots onions

Prepare 3 Sliced onions
carrots

\

Water
Diced

carrots

Spice Seasoning \ Fried onions ^7
rack a * onions

Cook
ingredients 5

Carrot soup

▼

Tureen

Figure 2.3-1 A cooking system represented by DFD

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.1 Leveling and Balancing

The most often used method of creating DFDs is to construct DFDs of a

system in a series o f levels so that each level provides successively more detail

about a portion of the level above it. This strategy is also known as functional

decomposition or dataflow diagrams refinement. Theoretically, it is an application

o f the concept of hierarchy which is very old, but very simple abstract idea.

Functional decomposition begins at the boundary between the software system

and its environment. The top-level DFD is a so-called context diagram and

constitutes the root o f a hierarchy of functions required of the system. A

context diagram is a dataflow diagram which contains a single transformation

that represents the entire system and the major sources o f data and destinations

for data in the environment. (Indeed sources and sinks usually only appear in

the context diagram.) The function of main transformation of a context diagram

is then decomposed and the circle which represents it is refined into a diagram

whose transformations are further refined, and so on until a functional primitive

is constructed. Functional primitive is a transformation which cannot be refined

any further and can occurs at any level of abstraction. Repeated decomposition

and transformation refinement results in a hierarchy of dataflow diagrams. Such

a hierarchy is called a levelled set by DeMarco [6].

Figure 2.3.1-1 gives an example of levelled dataflow diagrams. On the top

of the DFDs is a context diagram within which the only process is labelled by

a noun rather than a verb describing a transformation. Usually, the name of the

process in the context diagram is the same as the name of the system such as

XYZ system in the figure.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

Source 1
B -

XYZ^n
— ► ŝystem . g jnk 1

Context diagram: XYZ system

A ► -
2

•V Y E

File 1

?y

Context level

Level 0

Diagram 0: XYZ system

B=_► p

D
J t.__
File 2

2.2

Diagram 2: Y

J> c
R 3.1

3.2

A '
Diagram 3:Z

S ; Level 1

Diagram 3.1: R Level 2
Diagram 2.2: Q Diagram 3.2: S

Figure 2.3..1-1: Functional decomposition of DFDs

The process of the context diagram is decomposed down to the next level o f

the DFDs which represents the highest-level view of the major functions within

the system, as well as the major interfaces between those functions. The level

immediately beneath the context diagram is usually numbered 0 and the diagram

at this level is also numbered as 0 such as Diagram 0: XYZ system in the figure.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All the transformations are numbered to be identified at this level and lower levels

such as, in the figure, transformation X is numbered as /, Y as 2 and Z as 3.

Process Y in Diagram 0 is further decomposed into a more detailed diagram

with the same number and name as Y has. This diagram is Diagram 2: Y in the

figure. All the bubbles in Diagram 2: Y are associated with the bubble 2 of upper-

level DFD and are numbered 2.1 and 2.2. At Level / , another diagram Diagram

3: Z is constructed by decomposing process Z in Diagram 0. The corresponding

bubbles associated with the bubble 3 of upper-level DFD are numbered 3.1 and

3.2. Then comes Level 2 consisting of Diagram 2.2: Q, Diagram 3.1: R and

Diagram 3.2: S which are functional primitives since no more decomposition

beyond this level.

The use o f the primitive concept does constitute a convenient stopping rule

for the work in analysis. Some processes are simple enough that it makes no

sense to require breaking them down to the same level o f detail as others that are

more complex. To determine whether a process is simple enough to be considered

as a primitive, two checkpoints are usually applied by experience. If a reasonable

process specification for a bubble cannot be written in about one page, then it

probably is too complex and should be partitioned into a lower level DFD. The

other idea is to write a reasonable pseudo-code for a process. If the pseudo-code

is more than 50 to 100 lines long, the process should be refined to a lower level.

While leveling a DFD, balancing it is as well important. The original

consideration behind the balance is that complexity between different diagrams at

any level o f a DFD shouldn’t have much discrepancy. In order to make a DFD

easily readable and understandable, each diagram shouldn’t have more than half

a dozen processes and related stores, flows, and terminators. That also means

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that a DFD which contains reasonable size o f symbols and characters should fit

comfortably onto a standard letter-size sheet o f paper.

2.3.2 Repartitioning

Although it is recommended in general that leveling be used to decompose

systems top-down, top-down is not always the best approach. In fact, the top-

down strategy does not work as well as the bottom-up strategy. Experience

with Structured Analysis (and other methods) has shown that most analysis is

actually conducted in a bottom-up fashion, with a top-down scheme being used

to organize those results [23].

Upward repartitioning is just decomposition in reverse — synthesis rather than

analysis. It involves developing a detailed model based on whatever information

has been acquired and examining the model to determine whether or not there are

any bubbles or processes which are related by virtue of the nature of the tasks

they perform. In the top-down approach one basically imposes one’s own view

of how the system ought to be structured. In the bottom-up approach, to a much

greater extent, the system is telling us just what it is structured like. During the

design of a system, both repartition upward and decomposition downward are

used to achieve a uniform level of detail.

2.3.3 Evaluating and Improving DFD

While a number o f rules and guidelines that help ensure the dataflow diagram

is consistent with the other system models — the entity-relationship diagram, the

state-transition diagram, the data dictionary, and the process specification, there

are some guidelines that help dataflow diagram itself consistent.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First o f all, infinite sinks and spontaneous generation bubbles of a system

must be avoided. Bubbles definitely have both input and output flows. The

bubble which has only input but no output or the bubble which has only output

but no input will result in logical error within the system. Secondly, unlabelled

flows and unlabelled processes in a system should be given names before they

connect other elements in the system. Because such unlabelled symbols may

cause several unrelated elementary data items to be arbitrarily packaged together

or cause dataflow diagram to be degraded to a disguised flowchart. Finally, read

only or write-only stores within a system are not allowed. A typical store should

have both inputs and outputs. The only exception to this guideline is the external

store, a store that serves as an interface between the system and some external

terminator.

In order for a DFD to be technically correct and acceptable to users, it should

have been drawn, redrawn, and redrawn again, often as many as ten times or more

before it is passed to a user [6]. This may seem like a lot of work, but it is well

worth the effort to develop an accurate, consistent, esthetically pleasing model

of the requirements o f a system. Consequently, demand for automated tools for

DFD arises as well as reuse of DFD which will be examined in the next section.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 CASE TOOLS FOR DFDS

3.1 The Role of CASE Tools in Software Development

Just as CAD/CAM technology has helped revolutionize various engineering

disciplines over the past 35 years, so CASE (computer-aided software engineering)

technology is helping revolutionize the software industry. At present, some

professional programmers and system analysts are equipped with some CASE

tools but many are not. Thousands of CASE tools, which support different

activities in the software process, are commercially available.

CASE tools are currently being used in all the phases of software engineering

process. CASE tools that help software developers during the earlier phases o f

the process, namely the requirements, specification, planning, and design phases,

are sometimes called upperCASE or front-end tools, whereas those that assist with

implementation, integration, and maintenance are termed lowerCASE or back-end

tools [27] Both front-end and back-end tools are recognized as activity-oriented

tools because they are base on process activities. Another classification scheme

based on the functionality of the tools rather than the activity which the tools

support is called function-oriented [22].

An important part of supporting the software life cycle is supporting the

methodologies that structure the process steps within the life cycle. A CASE

workbench supports the use of structured methodologies by automating the pro

duction of the documentation required by the methodology and guiding the user

in the correct use of the methodology. CASE technology that emphasizes the

early stages o f the life cycle comes from recognizing analysis and design as the

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

most critical life cycle phases. These CASE tools are known as systems analysis

and design workbenches [10].

Specification errors can be very expensive if they are not detected and cor

rected in the early phases o f the software development. Correcting a specification

error during the maintenance phase is a lot more expensive than if it had been

corrected during the analysis phase. The completeness and correctness of the

system specification affect the success of the entire software development effort.

The specification is the basis for project schedules and assignments, test plans,

user documentation, and program design. Poorly-understood system requirements

cause software failures.

Design errors often dominate software projects in terms o f their number and

their cost to correct, especially when not detected early. In large projects, design

errors often exceed coding errors and are more costly than coding errors to correct

as well. More care given to design means lower-cost, more reliable systems. A

system design is the blueprint for system implementation. If the blueprint does

not exist or if it is incorrect, the produced system is probably poorly organized,

poorly documented, and a nightmare to maintain.

Systems analysis and design workbenches first emerged about ten years ago.

These workbench tools are primarily concerned with the effective development of

the models of a system that is to be computerized, they help the systems analyst

construct graphical diagrams that enable the end user to understand what the

system will do for him. The workbenches also help the analyst and designer ensure

that the model is complete, accurate, and consistent, so the errors discovered

downstream in the programming phase will be only programming errors, and not

a reflection of ongoing misunderstanding between the end user and the systems

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analyst. And, finally, the workbenches may assist the programmer in translating

the model into a working program. In the future, we may expect the workbenches

to completely automate this process.

3.2 Im portant F eatures in CASE tools

The workbenches for systems analysts and designers have to provide the

following features to be o f significant use in the development of complex system:

• Graphics support for multiple types of models.

• Error-checking features to ensure model accuracy.

• Cross-checking of different models.

• Additional software engineering support.

3.2.1 Graphics Support

Structured analysis models rely on various forms of information: text, data

dictionaries, and graphical diagrams. Text and data dictionaries can be auto

mated using word-processing systems and conventional mainframe computers:

but graphics support is not as popular as text does. An analyst workbench

should allow the systems analyst to compose, revise, and store diagrams such

as dataflow diagrams, structure charts, flowcharts, entity-relationship diagrams

and state-transition diagrams.

3.2.2 Error-Checking Features

An analyst workbench must examine the model created by the systems analyst

or designer to ensure that it is complete and internally consistent. For example,

a dataflow diagram created by a CASE tool must complies with all the rules

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

described in Section 2 and the names assigned to each process must be unique.

The error-checking also should be extended to different levels o f modeling to

make sure that the input and output of a process match those o f corresponding

diagrams at both the lower and higher levels.

3.2.3 Cross-Checking of Different Models

The most important feature o f an analyst/designer workbench is its ability to

cross-checking the consistency o f several different types of models of a system.

This kind of checking can be classified into two aspects: cross-checking different

models in one phase of a project and cross-checking different models at different

phases o f project.

In the system-analysis phase o f a project, for example, the primary objective

is to determine what the user wants from the system, with little or no concern

to implementation of those requirements. For this purpose, DFDs can be used

to highlight the division of those requirements into separate functions and the

interface between the functions, a data dictionary is needed to maintain a definition

of all the data elements in the system and some form of textual description to

define the formal business policy. All these models must be consistent with one

another. If the DFD refers to a data element that is not in the data dictionary,

something is wrong; if the data dictionary defines data elements that do not appear

in DFD model, something is also wrong. It is not hard to imagine how tedious

and errorprone it is if this cross-checking is done manually.

Complementary to the consistency checking between models in one phase of

project, it is as well important to compare the models developed during different

phases. For instance, the models developed during the analysis phase should be

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compared with the models developed during the design phase. This comparison

should demonstrate a one-to-one correspondence between the two. Every require

ment described in the analysis model should be represented somewhere in the

design model, and every feature described in the design model should correspond

to a requirement described somewhere in the analysis model. The most common

problem, of course, is that a requirement in the analysis model gets dropped and

doesn’t show up anywhere in the design model. This is particularly common

when the systems analysis model is developed by one group of people, and the

design model is developed by a separated group.

3.2.4 Additional Software Engineering Support

Other supports can be classified as many aspects ranging from software

life cycle to structured methodology. They may include CASE tools support

networks for project-wide use, software engineering methodology, document

control, project management facilities, early checking for excessive complexity,

computer-assisted proof of correctness, automated testing and simulation and reuse

of software components on any phase of the software engineering process.

Many of the features described above exist in the analyst designer work

benches in the market today. Some of the features are implemented in a some

what primitive form, especially for the additional features, but the products are

being improved on almost a daily basis. The CASE tools for other features, such

as reuse of software components and reuse o f software documents, are still under

development.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 C urrent CASE Tools for DFDs

CASE tools for DFD have been developed for the past ten years. The achieve

ment is ranging from the design workbench for an automatic arrangement of

symbols in a DFD to computer-assisted reconstructing a DFD in a legacy system.

These systems analysis and design workbenches all focus on facilitating systems

analysts or designers to create, edit, check or reconstruct DFD automatically other

than manually. The following part of this section will describe the achievement

o f CASE DFD support so far.

3.3.1 DFD Editor and Processor

Since T. DeMarco’s Stmctured Analysis [6], as well as C. Gane and T.

Sarson’s book [12], was published in 1979, dataflow diagram have become the

most popular notational tool of structured systems. But manually drawing DFD is

tedious, error prone, terribly burdensome to do any checking, very time-consuming

and very expensive The layout algorithm for DFD described above only can

improve the view of an existing diagram according to aesthetics, lots of work

still have to be done manually by the systems designer. Editing tools supporting

dataflow methodologies are badly needed by systems analysts and designers.

The requirements o f an intelligent DFD tool are described as:

It should enforce consistent definition o f each element in the diagrams and

detect duplicates to maintain the integrity and consistency of the data dictionary.

It should have the intelligence to generate optimal routes for dataflows so that

the diagrams are eye-pleasing for the analysts to understand easily.

It must allow dynamic modification of diagrams by moving or deleting objects

and their related components with minimum effort from the analysts.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should encourage partitioning by allowing the child diagrams to be concur

rently edited with their parent diagrams in a user-friendly manner.

It should also support systematic replacement of any element [28].

The following editing tools are used in assisting software design and analysis.

They can help establish an interactive development environment and provide

graphic editors to support for several widely used analysis and design methods,

including structured systems analysis and structured design. Although these tools

were helpful during design process, they have not been widely accepted. There

are several reasons. First of all, many programmers are skeptical about disciplined

software-development methodologies and stick to the way they used to do [38].

Secondly, these tools are expensive compared to general graphic editing tools

[28]. Thirdly, many tool users prefer general graphic tools to specific ones [5].

However, the concepts of disciplined software development and strucntred design

are especially valuable to the design and analysis of large-scale system. Along

with the progress of the CASE tools, they will be more and more widely used

as design tools [17].

Macintosh Anatool Anatool has three major components: a dataflow-diagram

editor, a data dictionary, and standard specifications and utilities. The dataflow-

diagram editor automatically numbers each diagram in the hierarchy structure and

each process bubble in the diagram [36].

The first step in creating a dataflow diagram is to create level 0, the highest

level in the diagram hierarchy. The left side o f dataflow-diagram editor window

is a control palette o f nine drawing tools. The top box represents a terminator

(source or sink) outside the system’s scope, such as a user. The second represents

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a process that must be performed by the system. The bottom seven drawing

tools are for data stores, dataflows (one- and two-way), word processing, and

hand-scrolling, zooming out, and selecting components.

Process, external entities, and data stores are placed into a diagram by se

lecting components with a mouse, dragging them out o f the control palette, and

placing them at the desired location. Dataflows are placed in the window by select

ing the desired flow and clicking on the source and destination positions. Anatool

determines automatically which side of the source and destination components to

draw the dataflow from or to. It also determines how to draw the dataflow.

Process bubbles, dataflows, terminators, and data stores can be repositioned by

dragging them around the window. When an entity is moved, all flow connected

to it also move. Anatool has a sophisticated way to reroute the flow and redraw

the whole diagram. The number o f process bubbles per diagram is limited. This

means that the user of this tool has to decompose complicated processes to keep

each level manageable and readable. The size of process bubbles, data stores,

and terminators are fixed. Everyone of them must be labelled with no more than

30 characters. The labels assigned to data stores and dataflows are automatically

entered into the data dictionary, but the labels of processes and terminators are not.

Clicking on a process bubble will refine it into lower level of dataflow

diagram. When it creates a child diagram for an existing process, Anatool

automatically puts the external sources and data stores form the upper level into

the child’s diagram along with bridges which represent all the processes that

were connected to the partitioned process from the upper level. Establishing

connections between different levels is a nice feature and helps keep the diagram

consistent, but it is hard to remember all the informations in different levels since

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Anatool doesn’t allow multiple windows.

Macintosh MacBubbles MacBubbles Version 1.9.2 consists of two programs:

MacBubbles and the MacBubbles data dictionary [21]. The first is a graphics-

based editor for creating Yourdon/DeMarco-style dataflow diagram and mini

specifications, while the second is a dictionary-maintenance utility [39][6].

MacBubbles uses a MacDraw-style interface, with a palette of shape tools on

left side. The shape tools consists of both basic symbols of dataflow diagram and

extended control symbols. The way the MacBubbles creates a DFD is similar

to that the Anatool dose. One of the former’s advantages over the latter’s is

that MacBubbles supports very flexible flow lines that can arc and curve as

desired. Terminators, process bubbles can be enlarged or reduced. Data store

object can be rotated on the screen so that dataflows take a more direct path

to and from the data store. The resulting diagrams are more visually pleasing.

Like Anatool, MacBubbles constructs dataflow diagrams hierarchically but doesn’t

allow multiple windows

AUTO-DFD While it has all the features that both Anatool and MacBubbles

have, AUTO-DFD is much more “intelligent” than they are. AUTO-DFD can

integrate DFD and data dictionary, detect duplicates, enforce DFD diagramming

rules, perform object search, automatically generate dataflows, dynamically move

or delete objects and related components, support multi-windowing to edit dia

grams of different levels concurrently, check on the integrity of all entities of

the dataflow diagrams and on the balance of input and output flows between a

process and its child diagram, systematically replace objects with their child di

agrams, compress diagrams, find the optimal dataflow path between two entities

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a dataflow diagram, and provide on-line help [28]. It seems that AUTO-DFD

could meet all the requirements o f an intelligent DFD tool.

The design o f AUTO-DFD is object-oriented and aims to provide a completely

visual environment for analysts to model the information system by manipulating

icons on screen. The architecture of AUTO-DFD is shown in Figure 3.3.1-1. The

graphical interface for editing, as shown in Figure 3.3.1-2, is a typical editing

window for DFD in late 1980s and early 1990s [28]. Anatool and MacBubbles

all have the similar iconic interfaces.

A routing algorithm that relies on heuristics has been devised for AUTO-

DFD to find a visually acceptable dataflow path between two objects. To find a

qualified path, the algorithm considers routes with not more than three turning

points. In each case, it will give priority to routes with minimum crossings and

then shortest distance.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M°use_ Keycoard ^ D_ _ . Plotter

Input Output

Iconic interface

Create

Retrieve
1

DFD _̂____ Graphics
processor Modify edjtor

Routing
module

Checking
module

 7

Data
dictionary

Figure 3.3.1 -1 The architecture of AUTO-DFD

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Top menu

Create Retrieve Update Delete DD Quit

Multi-window

Directory
window

Display
window

Side
menu

Zoom

More

I noput >
DFD

Prev Next Message:
Dir Dir

Scroll
window

Figure 3.3.1-2 The graphic interface

FLEDGED FLEDGED belongs to the second-generation of CASE tools.

The first-generation CASE products have emphasized remarkably sophisticated

graphics-workstation user interfaces. They help users develop systems-analysis

diagrams and detailed specifications but not automatically, such tools like Anatool

and MacBubbles described above. The second-generation tools are characterized

by the following features:

• Support various analysis techniques the analysts want.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Produce hard-copy documentation automatically along with CASE tool.

• Automate the production of systems-analysis diagrams [5].

While AUTO-DFD has addressed the routing problem of automatic layout,

FLEDGED has touched the tool-tailoring problem. FLEDGED is a flexible editing

tool which allows users to define a graphical symbol to their taste for each type

o f dataflow-diagram element, to define their own set o f formation rules, to define

their own set of editing operators, and enforces formation rules automatically

during performing editing operators [15].

FLEDGED has a symbol library, which contains all the possible symbols of

various versions of dataflow diagrams, from which a user can choose one pair

of shape type and drawing style for each process type, terminator type, and store

type. The formation rules are formulated as logical rules, logical relations on

structural functions. Every time when a formation rule has been successfully

defined by a user, it is stored in a rule base and then automatically translated into

checking procedures. ERA (entity-relationship attribute) framework with a shell

of primitives called structural functions and structural operators is enclosed in

the tool to support the definition of formation rules and editing operators, and to

support the enforcement of formation rules during editing operations. Structural

operators are primitive operators that change the structural details of the intended

ERA system model. Editing operators are defined as procedural compositions

of structural operators. FLEDGED provides two ways to check a rule: explicit

invocation which is prompted by command check rule, and automatic enforcement

which is in effect with command enforce rule.

Method rule checking in DFD editing systems One of the important issue in

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

editing tools is to ensure that the edited diagrams are correct and comply with all

the DFD construction rules. How to keep consistency in DFD editing depends on

the design of DFD tools. Tools available for software design diagram editing can

be categorized in three principal ways, method-specific or configurable, syntax-

driven or permissive. and stand-alone or integrated [34].

The tools restricted to one or a group of methods are considered as method-

specific such as Anatool or MacBubbles, those that allow tool builders to specify

their own methods or local variations on existing methods are configurable such

as FLEDGED. These tools must contain some rule-checking mechanisms within

the editing system.

A syntax-driven approach maintains a correct diagram at all times, forcing

the user into a rigid interaction style. A permissive approach allows diagrams

to go through incomplete or inconsistent states, and there is a choice between

interactive and off-line checking.

Some tools allow the user to draw diagrams, store them and edit them, but

further manipulation of the stored diagram representation is left to the user. These

tools are considered as stand-alone. Integrated tools allow other types of tools,

such as code generators, to manipulate the output from the design editor.

For method-specific tools, automatic method rule checking should be incor

porated to support the production of designs expressed in method-specific dia

grammatic notations. For configurable tools, the method-rule checking could be

tailored to any notation using a method description language and a graphical tool

to define the vocabulary of the notation. Both syntactic and semantic rules are

expressed in the method description language and are checked, interactively, dur-

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing an editing session. Such a method-rule checking system is investigated by

Ray Welland [34].

The alternative strategy, adopted by M-J Chen, is a preventive approach to

structural analysis [4]. The approach associates structural checking with editing

operators so that editing operators that will introduce structural errors into DFDs

are inhibited. If this strategy is described as pre-checking before editing, then

Welland’s method is spontaneous checking. O f course not all of the structural

errors can be prevented, a decision on which structural errors can or should be

prevented must be made. The decision is based on consideration of two factors:

the characteristics of structural errors and the construction methods for DFDs.

M-J Chen classified a set of assumptions and restrictions based on a combination

of Yourdon’s, DeMarco's, Ward and Mellor’s convention of dataflow diagrams

and a set o f formation rules that follows these assumptions and restrictions. The

defined formation rules support system analysis methods which include functional

decomposition and editing operators, and support event partitioning as well. These

formation rules are described as logical languages that are used as assertions to

ensure consistent DFD editing.

3.3.2 Automatic Generation of Dataflow Diagrams

The third feature o f the second-generation tools is automatic production of

systems-analysis diagrams. AUTO-DFD and FLEDGED emphasized automatic

layout and tool flexibility in the second-generation-tool problems respectively, but

they are still diagram-editing tools. They can’t automatically generate dataflow

diagrams and users have to issue editing command to construct DFDs. Mondrian

is a system for automatic generation o f dataflow diagrams [24].

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The user o f the tool defines formally the logical structure and requirements

of an information system by using SPSL/SPSA (simple problem statement lan

guage/simple problem statement analyzer), store this description in a database.

Mondiran accesses the SPSA database to retrieve system flow information and

produces an adjacency list which describes the relationship between each object.

The placement and routing strategies, encapsulated in module Produce layout as

shown in Figure 3.3.2—I, is recorded by the adjacency list as it is determined.

The graphical information is stored in module Store data which can be accessed

by both Extract data and Draw DFD modules.

Mondrian

Extract Produce Store Draw
data layout data DFD

Placement Routing

Figure 3.3.2-1 High-level structure of Mondrian

A critical issue in automatic DFD generation is the layout methodology that

makes possible the automatic drawing of dataflow diagrams. Batini et al [] in

1986 presented a proposal of a layout algorithm.

The underlined layout algorithm receives as input an abstract graph, specifies

connectivity relations between the elements o f the diagram, and produces as output

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a corresponding diagram according to the aesthetics. The basic strategy is to build

incrementally the layout. First, a good topology is constructed with few crossings

between edges. Subsequently, the shape of the diagram is determined in terms

of angles appearing along edges. And finally, dimensions are given to the graph,

obtaining a grid skeleton for the diagram.

From an aesthetic point of view, an acceptable DFD used in real-life appli

cations has the following properties:

A l: minimization of crossings between connections.

A2: minimization of the global number of bends in connection lines.

A3: minimization of the global length of connections.

A4: minimization of the area of the smallest rectangle covering the diagram.

A5: placement on the external boundary of symbols representing interfaces.

Al and A5 refer to topology, A2 to shape, A3 and A4 to metric. These fact

implies a hierarchic layout representation, where these properties are successively

considered. The above aesthetics are generally not compatible. But a priority

order can be established to balance these characteristics by using a mathematical

model. This model defines three graphs: plane graph, orthogonal graph and grid

graph. These graphs are mathematically associated. If two grid graphs have

the same grid representation, they have also the same orthogonal representation.

If two orthogonal graphs have the same orthogonal representation, they have

also the same planar representation. As a consequence, the three representations

are hierarchically related, and each representation level is a refinement of the

previous one.

The layout algorithm for dataflow diagrams takes as input a DF-graph G =

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(V, E) and produces a planar representation P taking into account aesthetics Al

and AS. Then an orthogonal shape is given to the planar representation finding an

orthogonal representation H with the minimum number o f bends (aesthetics A2).

Finally, a grid representation Q with minimum connections length is embedded

into the orthogonal representation according to aesthetics A3 and A4. This last

step is also known as compaction.

A CASE tool using the layout algorithm for DFD can syntactically reconstruct

a DFD in terms of graph aesthetics. But the preliminary is that there must have

existed a dataflow diagram before it is reconstructed. This tool is nothing more

than an eye-pleasing improvement of existing dataflow diagram or just a better

arrangement of symbols in a dataflow diagram.

3.3.3 Executable Dataflow Diagrams

The CASE tools that we have discussed so far are all the DFD-editing

tools which can support good-quality documentation, simple forms of consistency

checking and bookkeeping either automatically or semi-automatically. It is DFD

users responsibility to implement the behavior of the system described by the

dataflow diagrams. Converting dataflow specification into executable code is

another field studied by system analysts and designers.

Webb and Ward invoked the research interest in executable dataflow diagrams

in 1986 [33]. A critical issue in executing dataflow diagrams is to solve concur

rency problems. Webb proposed the cycle of distinct time periods as a solution

based on Ward’s transformation schema [32]. The model for execution provides

both for functional execution of the logic associated with the individual transfor

mations o f the transformation schema and also for the "‘symbolic” execution of

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an overall schema [32]. The latter execution is via token-passing similar to the

approach described in Petri Net model [13].

Figure 3.3.3—1 shows an alternative model of executable dataflow diagrams

which features multiple processing units to achieve concurrency [7]. Each pro

cessing unit can handle a single instruction at a time and is fireable when all the

operand flows for that instruction are available. The resulting flows become in

puts to other instructions or machine outputs. During execution the dataflows are

consumed by the instruction and are not then available for use elsewhere, which

means that there is no concept of stored variable.

Matching Fetch/Update
memory unit memorry unit

A j -

 ? _ ▼

Matching Sets of ____ Fetch/Update
unit \ dataflows unit

_ • •

Executable
instructions

Figure 3.3.3-1 An architecture of dataflow machine

Matching unit takes the output dataflows from the processing units and forms

them into matching sets, where a set comprises all the dataflows required by an

instruction and is represented by a set of process numbers. Fetch/Update unit

takes each set of dataflows and incorporates it into a copy of the consuming

48

Exported _ Processing
dataflows M _ unit_
 P i>—. Pn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instruction, which also contains information on the destinations of the instruction

output, to form packet. Each process in the pool of Processing unit is able to

execute one instruction, or packet, at a time. The method of allocating packets

to processors varies from system to system.

A dataflow diagram is a purely functional graphic specification and is an

abstract high level design of the system. It is difficult to generate procedural code

from the entirely non-procedural diagrams because the DFD itself provides no

information about the organization of procedures, the order of their execution,

or how the data is to be passed between them (the way the data is passed

depends on the implementation). Minor changes in high level specification may

require a complete redesign of the corresponding procedural program. Meeson has

developed a system that can translate a graphic dataflow diagram into executable

code [18].

In Meeson’s system, two essential tools for dataflow programming are a

graphics editor to create and modify dataflow diagrams, and a compiler to convert

diagrams into executable code. The compiler analyzes the connectivity o f a

dataflow diagram and constructs an abstract syntax tree for function definition

(a language used in the system). Unlike Webb's model which uses control

information to interpret the procedural behavior of a dataflow diagram, Meeson’

model adds a so-called translation “hints” to the dataflow diagrams to solve

ambiguities. These hints do not include procedural control information and are not

included in printed diagrams either, but are easily accessible through the editor.

For example, the hints of the system allow numbering input dataflows in the order

they should appear in corresponding function argument lists.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 Executing Dataflow Diagrams

While translating dataflow diagram into executable code can save program

mers a lot of implementation time, executing a dataflow diagram can help sys

tems users, analysts and designers to observe the dynamic behavior of the mod

eled system, understand the system well and consequently modify the design or

specifications to fit the requirements well. Based on the development of formal

specification of dataflow diagrams, CASE tools for executing dataflow diagrams

came out in late 1980s.

Reilly and Brackett’ paper on executing dataflow diagrams is among the early

jobs done in the area [25]. Their objectives are to determine the requirements

for SA support tools that will assist both users and analysts in verifying that a

model is semantically correct and consistent, and to investigate feasible design

approaches for developing SA support tools meeting the requirements.

The traditional execution of dataflow diagrams was done manually by both

system users and analysts with pencils marking the sequence numbers on the

processes (transformations) that were activated in response to the external events.

The manual execution, frequently called a “playthrough”, is often tedious and

error-prone for even the smallest model and infeasible for larger models.

In their paper, Reilly and Brackett defines the execution o f DFD as tracing the

processing that occurs within the system when external events occur. Automatic

execution begins with the analyst or user placing a token onto the SA model

diagram displayed on the workstation using a mouse or other pointing device. The

executable model then “consumes” the token and removes it form the diagram.

The “receiver” processes for that token are executed, and they automatically

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

produce new tokens on their output dataflows. This proceeds without further

input from the user or analyst, and is animated on the workstation SA diagram.

Reilly and Brackett described a visualization of executed dataflow diagrams

and discussed a few models used or possible to be used in execution system,

but didn’t presented them in details. This job was not done until Fuggetta et al

published a paper in 1993 [11]. They introduced an executable visual language

(VLP) for formal specifications and prototyping which integrated ER and DFD

diagrams in a semantically rigorous and clear way.

To represent synchronization and control conditions explicitly in dataflow

diagrams, they proposed a formal dataflow diagram model (FDFD) where data

exchanged between functions are represented systematically by boxes, thus elim

inating the need for the data sources, sinks and stores of the original DFD model.

A data transformer is enabled for activation if and only if all input boxes are full

and all blocking output boxes are empty.

The VLP language is based on the FDFD model where it deals with data

transformation; it also includes a formal notation for the definition of the types of

data contained in the boxes and o f the functions associated with bubbles of the

diagrams. Being formal, the notation is executable: it is actually a very-high-level

language suitable for rapid prototyping.

Data type is defined in a way similar to what is done in Pascal-like lan

guages, starting from elementary types (boolean, integer, and real numbers, char

acters etc.) and using the usual aggregate constructors, array and record. Func

tions are defined in a strongly-typed high-level language. Such functions are

external to one another, thus the header o f a function declaration will contain

a list of the function’s input and output parameters, according to the following

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern: function <function_pame> (input <input_parameterJisO\ output O u t

put_parameter_lisf>)\. Function will contain a declarative part where local vari

ables may be defined, and an executable part consisting of composition of the usual

instructions o f structured programming (assignment, conditional and branching in

structions, iterative instructions, function calls). No local function declaration is

allowed, and no recursion, either direct or indirect, is admitted.

A graphical user interface is provided in the executing system, which allows

user to enter specification in a very easy way. The editor allows the designer to

navigate across a refinement tree via “zoom in” and “zoom out” operations that

can be applied to different data transformers. Data type definitions are entered

through dialogue boxes that guide the designer in the definition process. A text

editor can be used to associate narrative comments with the objects of a VLP

diagram. The interpreter is activated via a menu option and performs consistency

checking and determines the set of terminal data transformers and then starts the

execution.

3.4 Formal DFD Specifications in CASE Tools

Quite a few CASE DFD support tools were developed to facilitate the use of

dataflow diagrams in systems specifications and design. However, the CASE tools

have not been used that often as they were expected to. One of important reasons

is that the lack of formal framework in dataflow diagrams resulted in CASE tools

not powerful enough to handle various needs o f DFD users [9]. Most of the tools

developed so far are just editing tools. Some tools can generate executable code,

but only a small portion of the implementation [14].

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tse and Pong proposed a formal foundation for DeMarco dataflow diagrams in

1989 [30]. They added a mathematical structure to dataflow diagrams. The model

they used is Petri nets [13]. Petri nets can be represented both graphically and

algebraically. The graphical representation closely resembles dataflow diagrams

and the algebraic representation provides a theoretical basis for the analysis of

a specification. Their specification language is called formal data flow diagrams

(FDFD). Two equivalent forms of FDFD are defined as graphic and symbolic

respectively. The graphic representation retains the user-friendly advantages of

he original dataflow diagrams and the symbolic one makes use of the algebraic

foundation of Petri nets. FDFD also has a formal syntax so that it can be processed

easily by a computer.

FDFD defines a 4-tuple G = (D, T, I, O) where

D is the set of dataflows,

T = {ii. t -2......... t„ |, where n > 1, is a finite set o f tasks,

D and T are disjoint.

I: T —► E and 0: T — E are functions which map tasks to dataflow expression,

I is called the input logic function and O the output logic function.

The notations of token and firing from Petri nets are also incorporated in

FDFD to model the behavior o f a systems dynamically. The presence of a token

means that input through a given dataflow is ready for task. Marking of a FDFD

is a function u: D — N from the set o f dataflows D of a FDFD to the set of

non-negative integers N. Given a FDFD G and a marking u, the ordered couple

M = (G, u) is called a marked FDFD. A marking v is said to be reachable from

another marking u if there exists a sequence of executions that changes u into v.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These dynamic elements provide the basis for analyzing the dynamic behavior of

the system. The analysis will help to detect problems which may not otherwise

be apparent in the static model, such as deadlocks or tasks that will never be

activated. Three types o f consistency analysis can be achieved through FDFD —

global consistency, structural consistency and behavioral consistency.

Another effort for developing formal specification of dataflow diagrams was

made by France in 1992 [8]. He described a method for associating a DFD with

a formal specification. The intention is to enhance the use of the DFD as a

formal specification tool that can be used to document application functionality

in a understandable manner. Meanwhile, this tool should be capable of producing

a formal specification that can be used to evaluate semantic properties of the

application.

The formal specification used by France is based on the algebraic specification

technique. A semantically extended DFD (ExtDFD) is defined as a control-

extended DFD (C-DFD) [32] associated with formal semantics. ExtDFD thus

have two aspects: syntactic and semantic. The syntactic aspect of an ExtDFD is

its graphic representation and the semantic aspect is a behavioral interpretation of

its C-DFD. The basic interpretation of C-DFD is classified as data domain, data

flows, data stores and data transforms.

In the model, a dataflow is interpreted as, either an asynchronous or syn

chronous data interface between its generator and receivers. A synchronous

dataflow requires its generator and receivers to cooperate for the data sending

and receiving, but asynchronous one doesn’t. A set of well-formed statements are

defined as axioms to interpret the state transition semantics. The dynamic behavior

of ExtDFD is described by activation and deactivation of data transforms.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 SEMANTIC DESCRIPTION OF DFDS

From what was described in last section, we can see that CASE tools for

DFDs are still in a preliminary stage with concentration on editing and graphical

representation. All these tools lack formal specifications though a few tried to give

DFDs a formal foundation. The basic requirement for a formal representation of

DFDs is that the underlined language must be capable o f describing concurrency

and functional model. A good candidate is so called Calculus of Communicating

System (CCS) [31] which draw wide attention in software engineering from

academic institution and from industry to some degree.

4.1 Calculus of Communicating System

CCS is a language that may describe the various ways in which cooperating

sequential processes can interact with each other. The examples of typical pre-

cesses are: receive, send, and retransmit processes in the X.25 link- level: arbiters

and mutual exclusion elements in asynchronous hardware design: boats, trucks,

cranes in a descrete-event harbor simulation; etc. Such simulation processes can

map directly into CCS processes, one for one [20].

Communication and concurrency are complementary notion, both essential in

understanding complex dynamic systems. On the one hand such a system has

diversity, being composed of several parts each acting concurrently with, and

independently of, other parts; on the other hand a complex system has unity

achieved through communication among its parts.

Underlying both these notions is the assumption that each of the several parts

of such a system has its own identity that persists through time. These parts are

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

termed as agents that are the basic objects in CCS. They may be constructed by

prefixing V, non-deterministic choice ‘+ \ parallel composition T and restriction

4.1.1 Sequencing

A simple agent has an inflow and an outflow associated with its two ports as

shown in Figure 4.1.1-1. CCS representation can be constructed as:

C — i n f low.C and C' = out f low.C

The notation stands for sequential ordering of actions. The above notation

can be rewritten in a recursive way like:

C = i n f low.out flow.C

By convention, output actions are given co-names in the way that two

communicating agents have consistent relation. For example, a system described

in Figure 4.1.1-2 can be represented as:

P = n.b.P and O = b.c.Q

Where b and b are exactly the same action. When the action b is fired by P,

Q takes in the same action b at the same time.

inflow \ outflow
 C -------

Figure 4.1.1 -1

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1.1-2

4.1.2 Choice

Choice notated as ‘+’ is used to represent non-determinictic alternatives.

Figure 4.1.2-1 shows an example. Agent C has two alternative inflows ‘a’ and

‘b \ One choice of the action sequence in CCS code is: R = a .c .R . The other

one is: R = b.c.R. Which action course agent R should take depends on the

competition between inflow ‘a’ and ‘b’ when agent R is ready for receiving input.

This kind of event can be represented in CCS by using notation *+’ as:

R = a .c .R + b.c.R

a

b

Figure 4.1.2-1

4.1.3 Parallel Composition

We use Figure 4.1.1-2 to describe the complementary actions ‘receive’ and

‘send’. Action ‘6’ is the complementary of action ‘6’. Now comes the question

how agent P or Q interacts with each other. CCS uses another constructor ‘

|’, called composition, to express the interaction between agents. Two agents,

which interact with each other, can be composed into one agent by using this

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function. Thus if P and Q are agents then P |Q is an agent which represents the

parallel composition of P and Q in such a way that each of P and Q may proceed

independently o f the other but may also communicate through the complementary

actions ‘6’ and ‘ft’.

A transition of the form E -> E’ indicates that agent E can perform the

action x and becomes E \ consider the composition (x . E) | (x . F '). If the agent

{x.E) performs the action x and becomes E and, simultaneously, the agent {x.F1)

performs x and becomes F \ the composition will become E |F \ This kind of

event is expressed by the r —transition {x.E) \ {x.F1) E \ F'. By using

parallel composition, Figure 4.1.1-2 can be represented as: E — {P \ 0) \ {6}

where \{b} stands for restriction which means that agent P and Q interact with

each other through action b.

4.2 Sem antic R epresentation of DFDs

Calculus o f Communicating Systems (CCS) is selected to represent the se

mantics of a DFD. Each node of a DFD is associated with an agent and each

arrow in a DFD is associated with communication between agents. Four of CCS

functions are used to construct the logical structure of a DFD. We use Figure

4.2—1 to describe how the semantics of DFDs can be expressed.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 DFDs ,-----
T1 T2

T3 T4

Figure 4.2-1

1. Sequence operator represented by “ . ” is interpreted as actions taking order.

One o f the action sequence for Process P shown in Figure 4.2—1 has the

semantics: P = a.d.P where action of “receiving d” represented by “d ” is the

complementary action of “sending d” represented by “d”. This complementary

notation is for synchronization purpose. This CCS code means that Process

P receives inflow a, process it and then sends outflow d.

2. O r operator represented by “ + ” is interpreted as options. Process P has the

semantics: P = a.(c + d) .P+ b.(c +J) P. Process P has two inflow choices

“a” or “b” and two outflow choices “c” and “d”. If inflow “a” succeeds in

competition against inflow “b”, the action sequence becomes either P = a.c.P

or P = a.d.P

3. Composition operator represented by “ 1 ” is interpreted as system interface.

The DFDs shown in Figure 4.2-1 has the semantics: DFDs = (T1 | T2 [T3

| T4)\{a, b, c, d}. This means that DFDs has a interface consisting of T l,

T l, T3 and T4 among which the internal actions are hiding from outside of

the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Restriction operator represented by “ \ | ” is interpreted as system internal

information hiding. In the above example (. . .)\{a, b, c, d}, data flows “a”,

“b’\ “c” and “d” are the system’s internal flow which cannot be observed

from outside of the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 A SEMANTIC-DRIVEN DFD PROCESSING SYSTEM

Since DFD is widely used in both software development and reverse engi

neering, it is o f research interest to develop a system which can understand a

dataflow diagram. Furthermore, a system which can interpret DFDs will dig up

a route to reuse software documents in high-level abstraction.

Understanding a diagram requires a number of steps. The system involves two

phases: Recognition and Understanding [2]. The main functions in the recognition

phase are scanning the printed document and generate a layout structure of DFDs.

Techniques for the recognition phase are fairly well understood although this is still

an active area o f research. My research interest is concentrated on understanding

phase. Figure 5-1 shows a scheme for such a understanding system

The understanding phase consists o f two independent subsystems. One of

them takes layout structure of DFDs as input and generate corresponding logical

structure. The other one then takes logical structure as input and accomplishes a

couple o f tasks which include: simulation and equivalence checking. Simulation

can simulate the underlying systems behavior by executing a graphic DFD.

Equivalence checking can compare two data flow diagrams to determine whether

they are semantically equivalent or not.

6i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFD System for Understanding DFDs

Scanning

Feature Extraction

Syntax Analysis

Layout Structure

0 : ()
()

Semantic Processing

Semantic Analysis

Logical Structure

bi P1 a.b.’c.PI
► bi P2 d.e.’f.P2

Simulation

Equivalence Checking

Deadlock Checking

Figure 5-1

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 SYSTEM SPECIFICATION

6.1 General Description

The underlined system to be developed is a dataflow diagram processor

which can semantically understand a DFD and provide the user with some useful

services. The system is called DFDPRO. The purposes of developing a system

like DFDPRO are to assist system analysts in understanding the behavior of a

system and its subsystem, to assist system maintainer in adapting existing system

to fit new platform, to assist system developers in designing brand new systems.

6.1.1 The Purpose of DFDPRO

DFDPRO is a semantics-driven dataflow diagram processor that allows the

user to observe the behavior of a dataflow diagram through a simulation process

and analyses a dataflow diagram through comparison, deadlock detection and

state space checking. It can process DFDs which has hierarchical structure. It

can decompose a DFD into several sub DFDs. Its resource requirements are kept

at minimum and the commands are kept as simple as possible. DFDPRO provides

the user with a graphic based simple but full-featured interface and is developed

with some goals in mind in two areas:

Fast Operation: DFDPRO is designed to operate quickly, especially in these

operations:

• Initial loading a file for translation and simulation.

• Moving through the window.

• Quick access each function.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Easy Use: DFDPRO is simple and user friendly

• All functions are displayed on the top o f the screen.

• All sub-functions are organized in pull-down menu.

• Every function is easily understood .

• On-line help is provided.

6.1.2 Product Functions

DFDPRO offers the following functions:

File Operations: DFDPRO allows the user to open an existing document

that is on the disk, save the current document that is in the main window,

create a new document, cut a file that is on the disk, print document and

exit the system.

Editing Operations: Editing functions allow the user to delete a portion of

an opened file, copy and paste or cut and paste the contents of the current

file, and undo the previous operations.

Translating Operations: Translating operations allow the user to choose the

data file from a file list and convert the file into a CWB code file. CWB

stands for Edinburgh Concurrency Workbench. It is an automated tool which

caters for manipulation and analysis of concurrent systems. CWB grammar is

based on CCS (Calculus of Communicating System) which is used to describe

the semantics of DFDs. The detailed description o f CCS can be found in

Appendix D and CWB in Appendix E.

Simulating Operations: Simulation operations allow the user to do simulation

on a dataflow diagram, to check observational equivalence between two data

flow diagrams based on the underlying formal semantics, to detect whether a

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deadlock will occur or not and to find the minimal state space of a dataflow

diagram.

Help Function: Help function gives on screen a brief explanation of all

functions and shows the user how to use these functions.

6.2 System Model

6.2.1 The Logical Structure of the System

The system consists of two independent subsystems which communicate

with users through a common graphical user interface (GUI). One of them is

a DFD translator which takes layout structure of DFDs as input and generate

corresponding logical structure. The other one is a simulator which then takes

logical structure as input and accomplishes a few tasks such as simulation,

equivalence checking and deadlock detection. The logical structure of the system

is shown in Figure 7.2-1 [3].

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Command

Display

GUI ^ Layout
\ s t ru c tu re

Translatorr

Syntax checking
a

Semantic analysis

Semantic processing

Logical
structure

Simmulator

Simulation

Equivelence checking'

Deadlock detection'

Figure 6.2.1-1: The Logical Structure of the System

The Compiler consists of two major components: a recursive descend parser

which checks both syntactic and structural correctness o f the tuple representations

in layout structure and a tmnslator which converts a DFD in layout structure

format into the logical structure format in CWB code.

6.2.2 Display Description

The main window of DFDPRO is shown in Figure 7.3—1. The menu bar

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is at the top o f the window. It displays all the functions that the user can use.

Each button on the menu bar handles a set of operations in the corresponding task

domain and has a hierarchical menu structure. DFDPRO provides scroll bar (left,

right, up and down) when the document or the graph in screen is larger than

the window area. The main window can display either a graph if the command

issued by the user is Simulating, Equivalence, Deadlock and Minimal Space or a

document if the command is not these in Simulation submenu.

File Edit__ Translation S im ulation__Heip

< ►

Figure 6.2.2-1: Graphical User Interface

6.2.3 The Workspace

The major work space is the graphic user interface — the main window shown

in Figure 6.2.2—I. DFDPRO allows at most two separate workspaces. The second

6 "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workspace other than main window has the format subwindow. But DFDPRO

allows multiple list-box windows, dialog windows or message windows. Each

window can be moved around screen and resized.

6.3 System Services

The design of file handling service and editing service is trivial. My main

concern is to develop a grammar for DFD syntax checking and a language to

describe the semantics of DFD. The grammar I developed is a LL(1) grammar. It

represents DFDs with hierarchical structure. The language I used to describe the

semantics o f DFDs is based on Calculus of Communicating Systems (CCS). There

are two reasons to choose CCS. First of all, CCS is a formal semantic description

for a concurrent system which is a super set of DFDs model. Secondly, there is

a tool called Edinburgh Concurrency Workbench available in schoenfinkel, which

is based on CCS and can do a lot analysis of a concurrent system.

6.3.1 Functional Requirements

The basic functions DFDPRO performs are organized in a hierarchical struc

ture to make the user easier to access each function. Figure 6.3.1-1 shows the

logical structure of the system functions.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3.1-1: The Logical Structure of the System Functions

6.3.2 Translation Services

Translation Command Translation command invokes the translator which takes

DFD tuple representation as input and translates it into CWB code as output.

The Input of Translator The DFD tuple representation in layout structure is

the input of the translator. It represents the syntax of a DFD and must satisfy

the following requirements.

Basic Assumptions

• The character sequence o f input must syntactically satisfy the LL(l)

grammar.

• Every entity and every flow must have a unique identifier.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The input should be read from a file with extension .dfd on disk.

LL(1) Grammar

a. DFDs :: = Identifier (Diagram) DFDs’

b. DFDs’ :: = , Identifier (Diagram) DFDs’ | e.

c. Diagram :: = (Tuple) Tuple’

d. Tuple’ :: = , (Tuple) Tuple’ | e

e. Tuple :: = Type Identifier Relation

f. Relation :: = (List) Relation’ | Relation’ | e

g- Relation’ :: = EXTERNALS (Flow) | EXTERNAL.

h. List :: - (Identifier, Flow) List’

i. List’ :: = , (Identifier, Flow) List’ | e

j- Type :: = SOURCE.TERMINATOR

k. | SINKJTERMINATOR

I. | PROCESS

m. | DATA_STORE

n. | AUXILIARY_SPLIT

0. | AUXILIARY_MERGE

P- Identifier :: = (A | B | . . . | Z) (A | B | . . . | Z | a

2 | ... | 9)*

q- Flow :: = (a | b | ... | z)+ Flow’

r. Flow’ :: = , (a | b | ... | z)+ Flow’ | e

DFD Layout Structure consists o f three levels: diagram tuple, node tuple

and successor tuple. The DFD name, the name o f node and the name o f

successor must start with upper-case letter. There must and only have space

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between diagram tuples. Node tuples start with “(Type” and must be separated

by comma. Successor tuples start with “(Identifier” or “EXTERNAL_I” or

“EXTERNALjO” and must be separated by comma.

• Representing a diagram of a DFD and containing information about the

diagram, each diagram tuple has the following structure:

DFD Name ((nodel), (node2), . . .)

• Representing a node of the diagram and containing information about a

node, each node tuple has the following structure. If there are external

flows to or from the node, the format “(successor)” could become “EX-

TERNALJ (flow, flow, . . .)” or “EXTERNAL_0 (flow, flow, . . .)”.

Type Name of node ((successor 1), (successor2), . . .))

• Representing a successor of the node and containing information about

the successor, each successor tuple has the following structure:

Name of successor, the label of the data flowing into it

An Example of the Layout Structure of DFDs: For reader to well under

stand the content of the document, I raise an example of hierarchical DFDs as

a standard model to describe the services and functions DFDPRO provides.

The DFDs shown in Figure 6.3.2—1 has three levels and four diagrams. By

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFD10

P012

level 2

d *
DFD201 DFD202

Figure 6.3.2-1 An example of hierarchical DFDs

using the above LL(1) grammar, the tuple representation o f levelled DFDs

shown in Figure 6.3.2-1 can be given bellow:

a. Level 0

DFDO((SOURCE_TERMINATOR T1 ((PO, a))),

(SOURCE_TERMINATOR T2 ((PO, b))),

(PROCESS PO ((T3, c), (T4, d))).

(SINK_TERMINATOR T3),

(SINK.TERMINATOR T4))

b. Level 1

DFDIO((PROCESS P01 ((P02, q)) EXTERNAL.! (a, b)),

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(PROCESS P02 EXTERNALjO (c, d)))

c. Level 2

DFD201 ((PROCESS POll ((P012, p)), EXTERNAL.! (a, b)),

(PROCESS P012 EXTERNALjO (q))

DFD202((PROCESS P021 ((P022, r), (P023, s)), EXTERNAL_I (q)),

(PROCESS P022 ((P024, v))),

(PROCESS P023 ((P024, u))),

(PROCESS P024 EXTERNAL_0 (c, d)))

The Output of Translator

The CWB code o f DFD in logical structure is the output o f the translator. It

represents the semantics of a DFD and must satisfy the following requirements.

Basic Requirements

• The character sequence of output must satisfy the CWB syntax.

• Every entity and every flow must have a unique identifier.

• The output should be written to a file with the same file name as the input

file but different extension which is .cwb.

DFD Logical Structure

• Representing the semantics o f the nodes, the composition node in the

logical structure has the following format:

(Agent I | Agent2 . . .) \ Restrictions

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Among the format, agent has the equation defined recursively as agent

expression which consists of sequence of actions the agent takes or as

option of agent expressions:

Agent = a.’b. . . . Agent or

Agent = a.’b. . . . Agent + c.d . . . Agent’ + . . .

• The Restrictions consists of sequence of internal actions between Agentl,

Agent2 . . . and has the format { f, g, h, . . . }.

An Example of the Logical Structure of DFDs shown in Figure 6.3.2-1 is

given bellow. It is expressed in CWB code based on CCS notations. The

complementary actions are represented as “ ’action “ instead of action.

a. Level 0

DFDO = (T1 | T2 | T3 | T4)\{a, b, c, d}

T1 = input.’a.Tl

T2 = input.’b.T2

T3 = c.’output.T3

T4 = d.’output.T4

PO = a.(’c + ’d).P0 + b.(,c + ’d).P0

b. Level 1

PO = (POI | P02)\{q}

POi = a.’q.POl + b.’q.POl

P02 = q.’c.P02 + q.’d.P02

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c. Level 2

POI = (POll | P012)\{p}

POI I = a.’p.POl1 + b.’p.POll

P012 = p.’q.P012

P02 = (P021 i P022 | P023 | P024)\{r, s, u, v}

P021 = q.’r.P021 + q.’s.P021

P022 = r.’v.P022

P023 = s.’u.P023

P024 = u.(’c + ’d).P024 + v.(’c. + ’d).P024

Translator

The translator is a component of the system responsible for

1. Reading file with extension .dfd from disk,

2. Parsing the tuple representation of DFD in layout structure,

3. Building a parsing tree for each dataflow diagram with each node containing

information about the node,

4. Checking the syntax o f the tuple representation in terms of the LL(1) grammar,

5. Giving error message if syntax error is detected and terminating the translation

process,

6. Converting the tuple representations into CWB code in DFD logical structure

in terms of translation rules,

7. Writing the output file with extension .cwb on disk.

Translation Rules

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFD logical structure is generated by traversing the DFD parsing tree. The

translator generates CWB code for each node traversed. The parsing tree is

traversed level by level. For each node being traversed, the translator generates

code based on the type o f the node.

1. If the node is a process, actions corresponding to receiving and sending data

must initially be captured. The convention adopted is that one or more inputs

of process suffice to compute the outputs. If a process requires all of its

in-flows to compute the outputs, an auxiliary node should be used. The agent

expression representing a process is defined recursively and uses the or and

sequence functions. Node (PROCESS PO I ((P02, q)), EXTERNAL.! (a, b))

in DFD 10 presented in the example of layout structure is therefore translated

into POI = a.b.’q.POl presented in the example o f logical structure.

2. If the node is a data store, actions representing inputs can be performed

independently o f the actions representing outputs, since a data store does not

perform calculations to derive outputs from inputs.

3. If the node is a source terminator, the only task of this node is to send data

to other processes. For synchronization purpose, a special action input is

introduced. It precedes the action of source’s sending the data from to other

processes. Node (SOURCE.TERMINATOR T1 ((PO, a))) in DFDO presented

in the example o f layout structure is therefore translated into TI = input.’a.Tl

presented in the example of logical structure.

4. If the node is a sink terminator, the only task o f this node is to receive data

from other processes. For synchronization purpose, a special action output is

introduced. It takes place after the action o f sink’s receiving the data from

other processes. Node (SINK_TERMINATOR T3) in DFDO presented in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the example of layout structure is therefore translated into T3 = c.’output.T3

presented in the example o f logical structure.

5. If the node is an auxiliary node, what must be taken into account is all the

possible permutations of the input sequences to the auxiliary merge and the

output sequences from the auxiliary split. Figure 8.2.6—1 shows an example

o f auxiliary nodes.

1. AS is a split auxiliary node which, if i is not an external flow nor a flow

from a source terminator, could be expressed in DFD tuple representation

as:

(AUXILIARY_SPLIT AS ((PI, a)), ((P2, b)))

and can be translated into logical structure as:

AS = i.’a.’b.AS + i.’b.’a.AS

2. AM is a merge auxiliary node which, if j and k are not external flows

nor flows from source terminators, could be expressed in DFD tuple

representation as:

(AUXILIARY_MERGE AM ((P3, c)))

and can be translated into logical structure as:

AM = j.k.’c.AM t k.j.’c.AM

a ?1

AS AM C ► P3
r ’

b" *. .
?2 ^

-igure 6.3.2-2: Auxilrary Nodes

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. The communications between the agents in a specific level of DFDs are

represented by agent composition and data flow restriction. Node

DFDO((SOURCE_TERMINATOR Tl ((PO, a))),

(SOURCE_TERMINATOR T2 ((PO, b))),

(PROCESS PO ((T3, c), (T4, d))),

(SINK_TERMINATOR T3),

(SINK_TERMINATOR T4))

in DFDO presented in the example o f layout structure is therefore translated

into DFDO = (Tl J T2 | T3 | T4)\{a, b, c, d} presented in the example of

logical structure.

7. If the node has a refined sub DFD, the data flowing into the node is interpreted

as special source terminator — external input in the sub DFD, and the data

flowing out o f the node is interpreted as special sink terminator — external

output in the sub DFD. But both external flows in the sub DFD keep the same

identifiers as they have in the higher level DFD.

Concurrency Workbench

The Concurrency Workbench (CWB) is a tool that supports the automatic

verification o f finite-state processes. In particular, CWB allows for various

equivalence, preorder and model checking using a variety of different precess

semantics. For instance, the processes to be analyzed by CWB can be expressed

in CCS notations. The CCS notation used as the input of CWB machine has

a little modification in the way that the complementary action is expressed as “

’action ” instead of overbar expression “action in CCS. Such a variety has no

significant meaning more than convenience.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since its powerful features in analysis of concurrent systems, CWB can be

used to manipulate and analyze DFDs. Through CWB tool, we can use the

formal description of DFDs to reason about the equivalence of two DFDs with

quite different layout structure and to simulate the behavior of DFDs. As a

matter of fact, CWB is a ported component of DFDPRO. We will identify CWB

component in system design section.

6.3.3 Simulation Services

Simulation command invokes the simulator which takes CWB code in DFD

logical structure as input and then simulates the behavior of the DFD, checks

whether two DFDs are observational equivalent, detects whether deadlock can

occur and where it occurs, and figures out the minimal state space o f the DFD.

Simulation Command

This command will load in a .cwb file from disk and show a graphic dataflow

diagram in the main window. Then the user can interactively perform simulation

operation by using mouse.

State of Dataflow Diagram is represented by the states of its components.

Each component has three states: not active, ready, active which are repre

sented by red color, yellow color and blue color respectively. The user cannot

click a component which has red or blue color. If it is clicked, a Beep will

sound and an error message will appear.

a. Source Terminator

• Not active means that it has not got its input yet and can not send

out data.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Ready means that it got its input and ready to send out data

• Active means that it is sending out data.

b. Sink Terminator

• Not active means that it can not receive data.

• Ready means that it is ready to receive data

• Active means that it is receiving data and issuing output.

c. Process

• Not active means that it can not process data.

• Ready means that it is receiving data and ready to process it

• Active means that it is processing data and sending out data.

d. Data Store

• Not active means that it is closed.

• Ready means that it is open.

• Active means that the process connecting it is sending it data or

retrieving data from it.

e. Data Flow

• Not active means that there is no data flow.

• Ready means that data flow is available at pons.

• Active means that data flow is going through.

Transition Between States for the same component follows the repeated

sequence: read -^active —*• not active —> ready. Transition between states for

different components satisfies the following rules:

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial States

• All source terminators are ready.

• All other components are not active.

States Between Adjacent Components

• Any two adjacent components must have different states if they all

were activated.

• Along the direction a data flow arrow points, the state sequence of

any three adjacent components must follow: active —* ready —► not

active -*• active, if they all were activated.

States of Auxiliary Nodes

• For auxiliary merge, the merged flow is not ready until all the in

flows are active.

• For auxiliary split, all the split flows are ready simultaneously right

after the in flow is active.

States of Components with More Than One Flows

• For a component with more than one in flows, it is ready if any of

the in flows is active.

• For a component with more than one out flows, any of these flows

is ready if it is active

Refinement of Dataflow Diagram is done by double clicking a process if its

decomposed dataflow diagram is available. If the user double clicks such a

process, appears another window with the decomposed diagram which shows

initial states.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An Example of States Transition is shown in Figure 6.3.3—I where R

(Red) represents state not active, Y (Yellow) represents state ready, B (Blue)

represents state active, and a, b represent data flows. Reader can verify

the above rules by following the sequence of transitions horizontally along

the data flow arrow and vertically along the different states for the same

component.

An Example of Auxiliary States is shown in Figure 6.3.3—2 where i, j, k

represent in-flows and a, b, c represent out-flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inirial State

B R R

a is active

P is active

B Y R

B Y

b and T1 are active

B R B

a and T2 are active H a

B Y R B

Figure 6.3.3-1: An Example of States Transition

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3.3-2: An Example of Auxiliary States

Equivalence Command

This command checks two DFDs represented by .cwb files on the disk and

compares them in terms o f the definition of strong bisimulation. If the two

compared DFDs are not observational equivalent, the difference will be displayed

on screen. Strong Bisimulation can be found in Appendix D.

Deadlock Command

DFDPRO can detect deadlock part of a dataflow diagram using this command.

If there is a deadlock, the sequence of actions that cause the deadlock will be

displayed on screen. The deadlock model used in this command is described as

follows.

Deadlock Definition: A set ofprocesses is deadlocked i f each process in the

set is waiting for an event that only another process in the set can cause.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conditions for Deadlock

• M utual Exclusion: Each resource is either currently assigned to exactly

one precess or is available.

• Hold and W ait: Process currently holding resources granted earlier can

request new resources.

• No Preem ption: Resources previously granted cannot be forcibly taken

away from a process. They must be explicitly released be the process

holding them.

• C ircular W ait: There must be a circular chain of two or more process,

each o f which is waiting for a resource held by other member in the chain.

Minimal State Space Command

This command is used to find the minimum number o f the state space of a

given dataflow diagram. If this command is executed, the system will generate a

new agent representing another dataflow diagram that possesses the smallest state

space but is observational equivalent to the original dataflow diagram.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 SYSTEM DESIGN

7.1 High-Level D escription

Figure 6.2.1-1 in section System Specification illustrates the logical structure

o f the defined DFDPRO processor. It takes quite a few steps for the system to get

DFD information from diagrams drawn in papers and accomplish the services that

it is supposed to provide. A very high-level flow chart of the system is designed

as what is shown in Figure 7.1—1.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFD

V" Service
Builder Interpreter

T

Scanner GUI

Display |
Constructor

i -------

bi P1 a.b.’c.PI
bi P2 d.e.’f.P2 Logical

Structure

 ▼_____
Syntax

Processor
0 : ()

()

Layout Structure

Semantic
Processor

Rgure 7.1-1

The graphic user interface scans in a DFD, displays the restructured diagram

and provides a set of DFD analysis services. Scanner looks at printed document

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and yields a digital representation o f the DFD that is passed to Syntax Processor.

Syntax Processor interpreted the digital information and generates DFD Layout

Structure. Display Builder gets the layout structure, it restructures the diagram

and generates display information, while Semantic Processor takes in the layout

structure and produces DFD Logical Structure. Interpreter then processes the

logical structure and provides a set o f analysis services for the system represented

by the DFD.

7.2 Design Refinement

As illustrated in Figure 7.1—1, the entire system consists of seven components.

They are: Scanner, Syntax Processor, Display Constructor, Semantic Processor,

Interpreter, Service Builder, and a graphic user interface.

7.2.1 Graphic User Interface

GUI serves as a system manager, which launches all kinds of services

including DFD analysis service, edit service, help service etc. It is can be

decomposed into six interfaces shown in Figure 7.2.1-1.

S3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scanner
Interface

GUI Decomposition

Edit
Interface

Help
Center

Display
Interface

DFD Analysis
Interface

Console
\ Interface

Figure 7.2.1-1

7.2.2 Syntax Processor

Syntax Processor takes in the digital representation of a DFD, extracts DFD

features, analyzes the data, and generates DFD layout structure. Its components

are shown in Figure 7.2.2—I

Line Extraction

Arrow Extraction

, Box Extraction

Circle Extraction

Text Extraction

Syntax Processor

Syntax
Analysis

^ Layout Structure
Generator

Figure 7.2.2-1

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2.3 Semantic Processor

Semantic Processor takes DFD layout structure as input, checks the syntax,

decomposes it into levelled DFD representation, analyzes the semantics, interprets

it, and generates DFD logical structure. The decomposition of the semantic

processor is shown in Figure 7.2.3—I

Sem antic P rocesso r

Level ' Node
Separator \ Constructor

Logical Structure Semantic „ ___ Semantic
Generator Analysis Processing

Figure 7.2.3-1

7.2.4 Service Builder

Service Builder matches the DFD display layout, traces transition between

states, provides a set of DFD analysis services includes simulation, equivalence

checking, and deadlock detection etc. The breakdown o f the service builder is

shown in Figure 7.2.4—1.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Service Builder

" NEquivalence \ Deadlock
Checking Sl™ latl0n Detection

A State Tracer N>

Display Layout^
Matcher

Figure 7.2.4-1

7.2.5 Display Constructor

Display Constructor no more than an automatic graphic drawing tool. Based

on DFD layout structure, it extracts every entity, designs display layout, optimizes

the display structure, and draws diagrams. Its components are shown in Figure

7.2.5—1

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Display Constructor

Entity N> ^ Display L ayout ____^ Layout
' V Extraction ^ Design Optimizer

▼, . . . ^
. ^ (

Flow Drawer
^ . - :

Text Writer
Alignment ^ - ^ r n = r— ^
 , Process Drawer N

Terminator Drawer
x \

Figure 7.2.5-1

7.2.6 Interpreter

Interpreter will interprets the DFD logical structure and provides semantic

meaning for variety of system analysis services. Such an interpreter can be

directly used by importing CWB tool.

7.2.7 Scanner

Quite a few choices of diagram scanner are available in the market. This is

can be done also by direct importation.

7.3 Simulation Sub-System

From what illustrated above, we can see that the entire system design and

implementation needs substantial amount of time. The complexity o f the entire

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system exceeds the scope o f a master thesis. However, a subset o f the system can

be implemented to demonstrate the underlined theoretical basis, which describes

the semantic representation of DFDs.

7.3.1 Simulation Sub-System Design

The logical structure o f such the simulation sub-system is shown in Figure

7.3—1. GUI is the system administration manager that can open a text based

DFD logical structure, retrieves DFD display layout, displays the DFD in the

GUI window, invokes Interpreter to precess the semantic representation of DFD,

and provides behavior analysis for the DFDs.

Sim ulation Sub-System

DFD Logical
V Structure GUI

Display
Layout

Interpreter • + -
Service
Builder

Display
Constructor

Figure 7.3.1-1

7.3.2 Assumption

The above simulation sub-system design is based on the following assump

tions:

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The DFD layout structure is already processed by some of the components of

Display Constructor such as components Entity Extraction, Display Layout

Design, Layout Optimizer as shown in Figure 7.2.5—1.

2. An optimized DFD display layout is ready for Display Constructor to draw

boxes, lines, circles, arrows, and to write text in the GUI window.

3. The DFD logical structure is ready for interpreter to process.

4. Concurrency Workbench is directly used as the interpreter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 SYSTEM IMPLEMENTATION

The implementation mainly involves graphic user interface and simulator. An

user interacts with the GUI to invoke the simulator for the simulation of a system

behavior through its DFDs description.

8.1 C lass Design

The demo system class design is originated from object-oriented strategy by

following top-down approach. In terms of Demo System Design shown in Figure

7.3.1—l, eleven classes and a connection component are developed. CWB is

imported as the interpreter.

8.1.1 Class Dependence Structure

According to their functionality, the classes can be divided into three levels.

The first level is the program driver and a graphic user interface. The second one

is the services the demo system provides. The third one is function classes that

support the services. Figure 8.1.1—1 shows the class dependence structure.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Main

MainWindow

Pipe FyFile CWBSimulation Utility CWBDialog

Connection
Component EvaluateFile Agent EvaluateState OrawState

CWB

Figure 8.1.1-1

8.1.2 Class Specification

Class specification gives a brief description about the class and lists only

major attributes and methods. The convention used in describing the classes is

as following:

1. Attribute is described by name and type. The format is “+name: type”.

“+” or **-” sign stands for public or private.

2. Operation is described by name, parameter, and return type. The format

is “+name (parameter list): return type” . or sign stands for

public o r private.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Main is the program driver that will start the graphic user interface.

Operation

I. +main (String)

MainWindow is the graphic user interface that allows a user to interact with

the system through mouse click. It includes a menu bar with four menus: File,

CWB, Font, Background. Font and Background menu provide window property

configuration service. File menu provides load file and quit system service. CWB

menu provides a subset o f CWB services that include: simulation, equivalence

checking, difference checking, system size, states, minimum space.

Attribute

1. —myFiles: MyFiles

2. —cwbDialog: CWBDialog

3. -cwbSim: CWB Simulation

4. -utility: Utility

5. -font: Font

6. —fontName: String

7. -fontStyle: int

8. -fontSize: int

9. -foreground: Color

10. -background: Color

11. +exchange: Pipe

12. +cwbResponse: String

13. +invokeCWB: boolean

14. +loadFile: boolean

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15. +buffer: byte Array

16. +bufferSize: int

Constructor

1. +MainWindow ()

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +paint (Graphics)

4. -fileAction (Event)

5. -cwbAction (Event)

MyFiles loads into the main window the DFD files that are written in CWB

notation and DFD layout structure.

Constructor

1. +MyFiles (Frame, int)

Pipe is the port to connect imported CWB tool.

Operation

1. +setPipe 0

2. +read (): String

3. +write (String)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CWBSimulation is the simulation interface that allows a user to simulate the

system behavior represented by DFD through mouse click. It contains normal

window property setting options and methods to display simulation diagram in

the simulation window dynamically.

Attribute

1. -m ain Window: Main Window

2. -evaluateFile: EvaluateFile

3. - evaluatestate: EvaluateState

4. -drawState: DrawState

5. -agent: Agent

6. -utility: Utility

7. -idle: String

8. —ready: String

9. -active: String

10. -Source: String

11. —Sink: String

12. —Process: String

13. -fileContent: String

14. -numberOfAgent: int

15. -systemState: charArray

16. —cwbResponse: String

17. -transition: charArray

18. -numOfTransition: int

19. -agentlndex: int

20. -button: Button

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21. -font: Font

22. —fontName: String

23. -fontStyle: int

24. -fontSize: int

25. -foreground: Color

26. -background: Color

Constructor

1. +CWBSimulation (Frame)

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +mouseDown (Event, int, int): boolean

4. +paint (Graphics)

5. -paintAndRetum (): boolean

6. -setTransitions (int)

7. -setClicks ()

8. -setStates ()

9. -traceBack (int)

10. -traceForword (int, int)

CWBDialog is a dialog box served as an interface to CWB. It allows a user to

issue CWB command to perform CWB operations through a input command text

field. The CWB response will be displayed in the box window.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute

1. -mainWindow: MainWindow

2. —utility: Utility

3. -button: Button

4. -textField: TextField

5. -font: Font

6. -fontName: String

7. -fontStyle: int

8. —fontSize: int

9. —foreground: Color

10. —background: Color

Constructor

1. +CWBDialog (Frame)

Operation

1. +action (Event, Object): boolean

2. +handleEvent (Event): boolean

3. +paint (Graphics)

Utility is the window display utility class served as an interface to manipulate

window display properties such as foreground, background, font, font color, font

style, font size, text fields, buttons.

Operation

1. +fileMenu (Menu, MenuBar)

2. +fontMenu (Menu, MenuBar)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. +backgroundMenu (Menu, MenuBar)

4. +cwbMenu (Menu, MenuBar)

5. +customPrint (String, Graphics)

6. +fontNameAction (Event, String): String

7. +fontSizeAction (Event, int): int

8. +fontStyleAction (Event, int): int

9. +foregroundAction (Event, Color): Color

10. +backgroundAction (Event, Color): Color

Agent is the class that store the information about agent such as name, type

(source, sink, process), state (idle, ready, active), and position in the display

window; about flows such as input flows, output flows, flow state (idle, ready,

active), position; and about label position.

Attribute

1. +name: String

2. +type: String

3. +agentState: String

4. +agent!con: intArray

5. +agentLabel: intArray

6. +inflow: charArray

7. +outflow: charArray

8. +inflowState: charArray

9. +outflowState: charArray

10. +outflowIcon: intArray

11. +outLabel: intArray

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12. + arrow: intArray

Constructor

1. +Aent (int, int, String)

Operation

1. +getOutLabel (int): String

EvaluateFile is the system input file evaluation interface with all finds of file

operations in it. It evaluates DFD display layout structures. It sets the coordinators

of processes, sources, sinks, lines, arrows, text in agent object. It decides how

many inflows and outflows associated an agent. It also initial agent states, flow

states, and system states.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. -Source: String

5. —Sink: String

6. -Process: String

Operation

1. +getNumberOfAgent (String): int

2. +createAgents (String, Agent, charArray, int)

3. +initialAgents (String, Agent, int)

4. +setIcons (String, Agent)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. -createAgent (String, Agent, int)

6. -getNumOfFlow (intArray, String)

7. -createSystemState (String, charArray)

8. -initAgent (String, Agent, int)

9. —setAgents (String, Agent, int)

10. -initAgentState (String, Agent, int)

11. -initFlowState (Agent, int)

12. -insertFlows (String, Agent, int)

13. -insertlnflows (Agent, int, String)

14. -insetOutFlow (Agent, int, String)

15. -setlcon (String, Agent)

16. -setOutflowIcon (Agent, StringTokenizer, int, int)

EvaluateState is the interface to update current and previous system states

in terms of CWB response. It gets the number of possible transitions, updates

transition array, finds out the agent and flow that were clicked in simulation

window.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. -Source: String

5. -Sink: String

6. —Process: String

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation

1. +setSystemStates (String, String)

2. +clickAgent (Agent, int, int, int): int

3. +clickFlow (Agent, int, intArray, int, int): boolean

4. +getTransitions (String, charArray, int)

5. -insetTransition (StringTokenizer, charArray,int)

DrawState is the interface to draw diagram in simulation window according

to agent states.

Attribute

1. -idle: String

2. -ready: String

3. -active: String

4. —Source: String

5. -Sink: String

6. —Process: String

Operation

1. +setState (Graphics, Agent, int)

2. -setTerminator (Agent. Graphics)

3. -setProcess (Agent, Graphics)

4. -setFlow (Agent, Graphics)

5. -drawTerminator (Agent, Color, Graphics)

6. -drawProcess (Agent, Color, Graphics)

7. -drawFlow (intArray, Color, Graphics

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. -drawArrow (intArray, Color, Graphics

9. -printAgentLabel (Agent, Color, Graphics)

10. -printFlowLabel (Agent, Color, Graphics)

8.2 C oncurrent P ro cesses M anagement

Since the interpreter to be used in demo system is imported from CWB, it

has to be seamlessly integrated into the main program. Consider a port is built

with the main program, a different application can be plugged in it such that the

main program may interact with the plug-in application as though the application

run stand-alone. The basic concept for such kind of integration comes from

different process running independently but with the mechanics to communicate

each other. This concurrent process creation, communication establishment, plug

in application involves quite a few steps.

8.2.1 Concurrent Process Creation

In order to run imported CWB, a concurrent process must be created as CWB

bearer. This is can be done by using unix system call fork as shown in Figure

8.2.1-1. The Parent process and the child process are running concurrently but

independently o f each other.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C oncurrent P ro c e ss Creation

Parent
Process

fork Child
^ Process

Figure 8.2.1 -1

8.2.2 Communication

The two way real-time communication is then established through unix system

call pipe and dup as shown in Figure 8.2.2—1. Two pipes are set up, one for read

and one for write. Now the two processes are capable of talking each other in

simplex mode.

Two Way Communication

pipe write

Parent fromChild v * * Child

Process toChild v- ► Process

dup read

Figure 8.2.2-1

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2.3 CWB Invocation

When the concurrent process environment is set up, CWB is invoked by unix

system call execlp and the two pipes are opened by system call fdopen as shown

in Figure 8.2.3—I

CWB Invocation execlp
' ' ' v

fdopen write

Parent * --------- fromCWET*--------- CWB

Process ---------► toCWB ► Process

fdopen read

Figure 8.2.3-1

8.2.4 Main Program Linking with CWB

The last step is to link the main program with the CWB process after all

the above preparations are done. Since the program handle the CWB process is

written in C while the main program is written in Java. There must be a port in

main program to allow CWB application plugged in. This can be done through

the advanced Java technique called native method.

There are three native methods included in the Java port class Pipe that is

served a an interface to other application implemented in different language. They

are setPipe method, read method and write method. They are abstract method de

clared in Pipe class. The implementation of these native methods is accomplished

by C code. The setPipe method is implemented in C as setPipe function that

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

establishes the concurrent process environment, invokes CWB application, and

opens two way communications. The write method is implemented in C as write

function that issues CWB command, converts Java string into C string, and writes

it into toCWB pipe. The read method is implemented in C as read function that

retrieves CWB response from fromCWB pipe, converts C string into Java string,

and returns response to main program.

Java native method builder is used to create the middleware that match Java

methods with corresponding C functions. C compiler library option is used to

generate a shared library to be accessed by both Java methods and corresponding

C functions. Figure 8.2.4—1 shows the described linking approach.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Java Main Program Linking With CWB

Java Interface C Interface

Java class P ipe ' javah

native m ethods; ---------------------------
---------------------- Java Native Method

setPipe Builder
read ' ;
write java -stubs

Java Compiler

 t _ _ _ _ _ _ _ _ _

Byte Code

Pipe.class

Figure

 * Pipelmplement.c
Pipe.h c functions

 setPipe
Pipe.c read
________ write

C Library
Builder

 ?_____
' N

C Executable '
*. Share Library

libcwb.so

8.3 Programm ing Languages

Java and C are the two programming languages to be used for implementation.

There are a number of reasons to choose Java.

1. Java is a pure objected-oriented language. Since object modelling tech

nique is used in design stage, implementation in object-oriented language

is more natural and compatible with design model. It will be easier to

transform design model into implementation model.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Java is an advanced modem language. Its specifications included the

latest programming technique. It has a lot handy and powerful features

such as graphic interface builder, string manipulation that save program

mer substantial time.

3. Run time security checking, automatic garbage collection, and reference

passing mechanism reduce program crash possibility and make the lan

guage more reliable.

4. The most import advantage of Java is expressed by its logan “write once,

run anywhere”. A platform independent, reusable software has long been

the goal of programming language. Java archives this goal to great extent.

It represents the future of programming language.

5. Another prominent feature of Java is its applet. Applet allows remote

execution. As internet is exploring, Java becomes hottest technique in

internet application development.

6. Java has a built in feature to allow plug in applications written in different

language. This native method is perhaps played a key role in my

implementation model.

8.4 Environm ent

The requirement for current implementation model is pretty sim

ple. It only requires Unix system VI above with JDK1.0, and CWB

installed. 55K. source files are currently reside in schoenfinkel under

/home/ucc/disk004/tzhow'thesis/implemt/java/interfacel. The byte-code and

shared library of about the same size are also installed in the directory. By typing

java Main under this path, we can run the demo system with a nice interface.

i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 FURTHER WORK

There could be a lot o f further work to do on this research topic. From what

I consider needs substantial effort, the further work can be divided into three

portion: theoretical portion, design portion and implementation portion.

9.1 Theory Work

The two key theory issues: DFD layout structure and DFD logical structure

are pretty much done. Another important issue less concerning theory but more

design is to establish a foundation for representing levelled dataflow diagrams.

9.2 Design Work

In section 7, we omitted the interpretation of levelled DFDs at both high

level phase and refined phase since we did not discuss how to handle the levelled

DFDs in DFD representation portion. This could result in adding a couple of

more components in design and in restructuring the design diagram.

9.3 implementation Work

Even through some of components could be imported into the system directly

from commercial products, these products may need to be customized to fit the

system requirement. Other components not implemented in simulation sub-system

of course need substantial effort such as display layout construction.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 CONCLUSION

Formal specification provides a valuable approach to develope a powerful

CASE tool which can semantically understand a system modelled by DFDs. This

tool can be used to simulate a system behavior, check equivalence of two systems

and detect possible deadlock. These features grant the tool usefulness in every

phase through entire software life cycle. The architecture of the tool is based

on a platform independent foundation, which makes it capable of doing system

analysis both for new system design and legacy system migration at high level.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] T. J. Biggerstaff. Design recovery for maintenance and reuse. Computer,
pages 36-48, July 1989.

[2] G. Butler, P. Grogono, R. Shinghal, and I. Tjandra. Retrieving information
from data flow diagrams. In Proceedings o f Second Working Conference on
Reverse Engineering, pages 22—31, Toronto, Ont., July 1995.

[3] G. Butler, P. Grogono, and I. Tjandra. Analyzing the logical structure of data
flow diagrams in software documents. Document Analysis and Recognition,
pages 54—58, 1995.

[4] M-J Chen and C-G Chung. Preventive structural analysis of dataflow
diagrams. Information and Software Technology, 34(2): 117—130, Feb. 1992.

[5] Ming-Jie Chen and Chyan-Goei Chung. On the design of FLEDGED
— a flexible editing tool for data flow diagrams. In Proceedings o f
3rd International Conference on Software Engineering and Knowledge
Engineering, pages 285-290, Skokie, IL, June 1991.

[6] Tom DeMarco. Structured Analysis and System Specification. Prentice-Hall,
Inc, Englewood Cliffs, New Jersey, 1979.

[7] Thomas W. G. Docker and Graham Tate. Executable data flow diagrams. In
D. Barnes and P. Brown, editors, Proceedings o f the BCS/IEE Conference
‘Software Engineering 86 ’, pages 352-370, London, UK. 1986. Peter
Peregrinus Ltd.

[8] R. B. France. Semantically extended data flow diagrams: A formal speci
fication tool. IEEE Transactions on Software Engineering, 18(4):329-346,
April 1992.

[9] M. D. Fraser, K. Kumar, and V. Vaishnavi. Informal and formal requirements
specification languages: Bridging the gap. IEEE Transactions on Software
Engineering, 17(5):454—465, May 1991.

[10] A. Fuggetta. A classification of CASE technology. Computer, pages 25-38,
Dec. 1993.

[11] A. Fuggetta, C Ghezzi, D. Mandrioli, and A. Morzenti. Executable spec
ifications with data-flow diagrams. Software — Practice and Experience,
23(6):629-653, June 1993.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques.
Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1979.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals o f Software
Engineering. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1991.

[14] S. Hekmatpour and M. Woodman. Formal specification of graphical notations
and graphical software tools. In Proceedings o f 1st European Software
Engineering Conference, pages 297—305, Stradbourg, France, Sept. 1987.

[15] Charles F. Martin. Second-generation CASE tools: A challenge to vendors.
IEEE Software, pages 46-49, March, 1988.

[16] James Martin and Carma Mcclure. Software Maintenance: The Problem and
Its solution. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1983.

[17] C. Mcclure. CASE Is Software Automation. Prentice-Hall, Inc, Englewood
Cliffs, New Jersey, 1989.

[18] Jr. R. N. R Meeson, M. B. Dillencourt, and A. M. Rogerson. Executable data
flow diagrams. In CASE 87 — First International Workshop in Computer-
Aided Software Engineering, pages 445-454, Cambridge, MA, 1987.

[19] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, 21 (6):528—561, June
1995.

[20] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc, Engle
wood Cliffs, New Jersey, 1989.

[21] H. S. Modell. More CASE on the Mac: Turbo CASE and MacBubbles. IEEE
Software, pages 133—135, Jan. 1990.

[22] P. Newcomb and P. Martens. Reengineering procedural into data flow
programs. In Proceedings o f Second Working Conference on Reverse
Engineering, pages 32—38, Toronto, Ont., July 1995.

[23] Laurence Peters. Advanced Structured Analysis and Design. Prentice-Hall,
Inc, Englewood Cliffs, New Jersey, 1987.

[24] L. B. Protsko, P. G. Sorenson, and J. P. Tremblay. Mondrian: System
for automatic generation of dataflow diagrams. Information and Software
Technology, 31 (9):456—471, Nov. 1989.

[25] E. L. Reilly and J. W. Brackett. An experimental system for executing real
time structured analysis models. In Proceedings o f 12th Structured Methods
Conference, pages 301—313, Chicago, IL, 1987.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Inc, Englewood Cliffs, New
Jersey, 1991.

[27] S. R. Schach. Software Engineering. Aksen Associates Incorporated Publish
ers, Boston, MA, 1993.

[28] L. P. Tan, T. S. Chua, and P. T. Lee. AUTO-DFD: An intelligent data flow
processor. The Computer Journal, 32(3):194-101, 1990.

[29] J. R. Tirso and H. Gregorius. Information reuse parallels software reuse. IBM
Systems Journal, 32(4):615-620, 1993.

[30] T. H. Tse and L. Pong. Towards a formal foundation for DeMarco data flow
diagrams. The Computer Journal, 32(10:1-12, 1989.

[31] David Walker. Introduction to a calculus of communicating systems. Labora
tory fo r Foundations o f Computer Science, Department o f Computer Science,
University* o f Edinburgh, Feb. 1987.

[32] P. T. Ward. The transformation schema: An extension of the data flow
diagram to represent control and timing. IEEE Transactions on Software
Engineering, SE-12(2): 198-210, Feb. 1986.

[33] Mike Webb and Paul Ward. Executable data flow diagrams: An experimental
implementation. In Structured Development Forum, pages 1-21, Seattle, WA,
1986.

[34] R. Welland, S. Beer, and I. Sommerville. Method rule checking in a generic
design editing system. Software Engineering Journal, pages 105-115, March,
1990.

[35] M. Woodman. Yourdon dataflow diagrams: A tool for disciplined require
ments analysis. Information and Software Technology, 30:515—533, Nov.
1988.

[36] S. Yang. Two CASE tools for the macintosh. IEEE Software, pages 120—
123, Jan. 1989.

[37] E. Yourdon. Modem Structured Analysis. Prentice-Hall, Inc, Englewood
Cliffs, New Jersey, 1989.

[38] E. Yourdon. What ever happened to structured analysis. Datamation, pages
133-138, June 1986.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[39] L. L. Yourdon, E. Constantine. Structured Design: Fundamentals o f a
Discipline o f Computer Program and Systems Design. Prentice-Hall, Inc,
Englewood Cliffs, New Jersey, 1979.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Lizhong Zhou was bom in 1954 inBeijing, China. He graduated fromBeijing

Normal University with B. Sc in Electrical Engineering in 1982. From there he

went on to theBeijing Institute of Technologies where he obtained a M. Eng.

in Industrial Engineering in 1989. He was back to school as a candidate for the

Master’s degree in Computer Science at the University of Windsor in 1995 and

graduate with M. Sc. in 1998. He is currently working in telecommunication

industry as a software engineer.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Semantics-driven dataflow diagram processing.
	Recommended Citation

	tmp.1618931963.pdf.8RQfn

