

37

Abstract— Modeling of a system is an
essential process in software development
lifecycle (SDLC). It will produce a system
artifact called a system model. In object–
oriented based software development, a system
model can be developed by using Unified
Modeling Language (UML). UML is a
modeling language for specifying, constructing,
and documenting the artifacts of systems. It
consists of 13 diagrams that can be used to
describe the different views of a system. Each
diagram has its own syntax and semantics. The
syntax or abstract syntax is the notations for
each element of the diagrams, whereas the
semantics is the meaning of the notations. The
huge complexity of UML specification that
content multi diagrams and notations, and lack
of formal semantics decrease the quality of
system models produced. It will lead to wrong
interpretations and inconsistency between
models. Therefore, a precise meaning of UML
diagrams is very important in order to have a
common understanding of their meaning.
Formalization of the semantics of UML
specification is important in order to provide
the consistency of the system models. This
paper provides an overview of the semantics
rules of UML specification and suggests an
approach to formalize these semantics rules.

 Keywords: UML semantics, formalization, consistency and rules

I. INTRODUCTION

Process of software development is iterative and
incremental. It makes up the life cycle of a system. Each
cycle will produce a number of different artifacts. One of
them is model.

Noraini Ibrahim is doing PhD at Universiti Tun Hussein Onn Malaysia

(UTHM), Parit Raja, 86400 Batu Pahat, Johor (e-
mail:noraini@uthm.edu.my)

Assoc. Prof. Dr. Rosziati Ibrahim is a lecturer at Universiti Tun Hussein
Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor. She is now
with the Department of Software Engineering, Faculty of Information
Technology and Multimedia (e-mail:rosziati@uthm.edu.my)

A model is an abstract representation of a system,
constructed to understand the system prior to building or
modifying it. Most of the modeling techniques involve
graphical languages. One example of modeling techniques is
Unified Modeling Language (UML).

A system model can provide structure for problem solving;
experiment to explore multiple solutions and abstractions to
manage complexity [12]. Models make it easier to express
complex ideas, for example, an architect builds a model to
communicate ideas more easily to clients. Models reduce
complexity by separating those aspects that are unimportant
from those that are important. The models should have
traceability links or in other words they must be consistent.

UML is a diagramming language. For each elements or
constructs have its own notation or abstract syntax and
semantics. Abstract syntax is rules by which language
elements (for example, words) are assembled into
expressions (for example, clauses). While semantics is rules
by which syntactic expressions are assigned meanings. This
is where ambiguity comes out.

The huge complexity of UML that contents multi diagram
notation and lack of formal semantics decrease the quality of
system models produced. Precise meaning of UML
diagrams is very important in order to have a common
understanding of their meaning.

The rest of this paper is organized as follows: the review of
UML is in Section 2, Section 3 review on UML Semantics.
Section 4 discusses related work and Section 5 concludes
the paper.

II. REVIEW OF UML

Unified Modeling Language (UML) is a language for
specifying, constructing, visualizing, and documenting the
software system and its components. UML is an object
modeling and specification language used in software
engineering. UML includes a set of graphical notation
techniques to create abstract models of specific systems.

Currently, UML specifies 13 UML diagrams. They are
divided by two categories: Structure and Behavior Diagram.
Structure diagram consists of class diagram, composite
structure diagram, component diagram, deployment
diagram, object diagram and package diagram. While
behavior diagram consists of activity diagram, sequence
diagram, communication diagram, interaction overview

Semantic Rules of UML Specification

Noraini Ibrahim and Rosziati Ibrahim

 Proceedings of MUCEET2009
Malaysian Technical Universities Conference on Engineering and Technology

 June 20-22, 2009, MS Garden,Kuantan, Pahang, Malaysia

 MUCEET2009

38

diagram, timing diagram, use case diagram and state
machine diagram.

A system model does not need to have the whole collection
of UML diagrams. The most popular UML diagrams used in
industry are use case diagram, sequence diagram, class
diagram and statechart diagram.

A use-case diagram is a graph of actors, a set of use cases,
communication (participation) associations between the
actors and the use cases, and generalization among the use
cases. Each use case shows flow of events through the
system, whereas an actor is a user playing a role with
respect to the system [15]. An example of use case diagram
is shown in figure 1.

Figure 1: Use Case Diagram.

Based on figure 1, there are 3 actors, which are Band
Manager, Record Manager and Billboard Reporting
Service. Actor Band Manager has association
(communicate) with use cases named View Sales
Statistics For My Band’s CDs and View
Billboard 200 Report. While actor Record Manager
interact with View Billboard 200 Report and View
Sales Statistics For Specific CD. Whereas, actor
Billboard Reporting Service associate with
Retrieve Lastest Billboard 200 Report.

In a normal practice, after we draw a use case diagram, for
each use case we detail out with sequence diagrams. A
sequence diagram shows how objects communicate with
each other in terms of a sequence of messages. It also
indicates the lifespan of objects relative to those messages
[15]. Figure 2 shows the example of sequence diagram.

Figure 2: Sequence Diagram.

Based on figure 2, aServlet object sends a message
labeled as generateCDSalesReport to the
ReportGenerator class instance named gen. It means that
the ReportGenerator object implements this message
handler. On the generateCDSalesReport message label
containing cdId in parentheses, which means that
aServlet is passing a variable named cdId with the
message. When gen instance receives a
generateCDSalesReport message, it then makes
subsequent calls to the CDSalesReport class, and an actual
instance of a CDSalesReport called aCDReport gets
returned. The gen instance then makes calls to the returned
aCDReport instance, passing it parameters on each message
call. At the end of the sequence, the gen instance returns
aCDReport to its caller aServlet.

From sequence diagrams, all the classes are gathered in
class diagram. Class diagram is a collection of static
modeling elements, such as classes and their relationships
[15]. In figure 3, the inheritance relationship and two
association relationships can be seen. The CDSalesReport
class inherits from the Report class. A CDSalesReport is
associated with one CD, but the CD class doesn't know
anything about the CDSalesReport class. The CD and the
Band classes both know about each other, and both classes
can be associated to one or more of each other.

Figure 3: Class Diagram.

A state machine diagram on the other hand is used to show
life for all objects belong to one class. When building state
machine diagram, all behavior of all possible objects of a
class must be considered. A single state machine diagram is
developed for a class [16]. The example of statechart
diagram is shown in figure 4.

39

Figure 4: Statechart Diagram.

The notation set of the statechart diagram has five basic
elements: the initial starting point, which is drawn using a
solid circle; a transition between states, which is drawn
using a line with an open arrowhead; a state, which is drawn
using a rectangle with rounded corners; a decision point,
which is drawn as an open circle; and one or more
termination points, which are drawn using a circle with a
solid circle inside it [14]. To draw a statechart diagram,
begin with a starting point and a transition line pointing to
the initial state of the class.

Based on figure 4, a loan processing begins in the Loan
Application state. After pre-approval process is done,
the transition will go either to Loan Pre-approved state
or the Loan Rejected state. The decision is noted by the
empty circle in the transition line. If the loan approved,
the transition will go to Loan Closing state before going
through the Loan in Maintenance state. The above
examples of CD Sales are adapted from tutorial at the
website [14].

III. REVIEW OF UML SEMANTICS

The current UML specification consists of two interrelated
parts. They are UML Semantics and UML Notation. UML
Semantics specifies the abstract syntax and semantics of
UML object modeling concepts, since UML Notation is a
graphic notation for the visual representation of the UML
semantics. The abstract syntax for the UML Semantics is
expressed using a small subset of the UML Notation. In
addition, the UML Notation describes the mapping of the
graphic notation to the underlying semantics. The two parts
complement each other without duplicating functionality
[17].

UML Semantics is divided into three layers; structural,
behavioral and higher-level formalisms of UML: activities,
state machines and interactions. Behavioral layer is caused
by actions of structural entities from structural level.
Communication between structural entities is called inter-
object behavior base, whereas, the intra-object behavior
base, addresses behavior occurring within structural entities.
Action sub layer itself defines the semantics of individual
actions.

Much effort has been given to gather UML semantics for
various UML diagrams. Currently, the information relating
to semantics is scattered throughout the standard document
[13].

Semantics are categorized into three dimensions: internal,
vertical and horizontal dimension [1], [2]. Internal deals
with relationships between sub-models that coexist. For
instance, an analysis model consists of an analysis class
diagram, interaction diagram and collaboration diagrams.
All the artifacts with a single model are related and must be
compatible with each other. The vertical dimension
considers relationship between models belonging to same
iteration in different activities for example a design model
realizing an analysis model. Whereas horizontal dimension
considers relationships between artifacts belonging to the
same activity in different iterations, for example a use case
is extended by another use case.

IV. RELATED WORKS

There is an important number of works that giving a precise
description of core concepts of UML and providing rules for
analyzing their properties (for instance [3], [4], [5] and [6]).
These works improve the precision of UML semantics
without dealing with relationships between models.
Researchers (for example [1], [7] and [8]) focus on
relationship between models. While Egyed [9] is focusing to
abstraction view.

Some researchers (such as [3], [4] and [6]) had gone through
the semantics of statechart diagrams, while the semantics of
class diagram can be found in [1], [5], [7] and [9]. Semantic
of Sequence Diagram and Use Case Diagram can be seen in
[2], [7] and [8].

UML is not a formal language. Many motivations are given
to justify the importance of formalization. Formalization
can bring clarity, consistency, correctness and enhancement
to models [4]. Various ways are used by researchers to
increase the precision of UML semantics.

Operational semantics is one of the ways to formalize some
of the diagrams in UML Specification. In computer science,
operational semantics is a way to give meaning to programs
in a mathematically rigorous way [18]. It consists of a set of
rules specifying how the state of an actual or hypothetical
computer changes while executing a program. Each rule
specifies certain preconditions on the contents of some
components and their new contents after the application of
the rule [19].

For example, Pons et. al. [2] use operational semantics to
formalize the vertical relationship between use case diagram
and collaboration diagrams and horizontal relationship of
use cases. While Latella et. al. [3], using operational
semantics to formalize statechart diagram. They have
suggested three rules; the progress rules, the composition
rule and the stuttering tools. Whereas, Lund et. al. [8] were
suggesting rules for potential and mandatory choices in
sequence diagram using operation semantics. It has been
proved to be sound and complete with respect to a
denotational semantics of UML [8]. But it is scoped only to
sequence diagram. The statechart properties like the history
mechanism, exit and entry actions has been formalized using
operational semantics by Beeck [10].

The other way to formalize the semantics is denotation
approach. This approach has three parts; a precise definition

40

of the syntactic domain, development of suitable semantic
domain and definition of the semantic mapping.
Unfortunately, Cengarle et. al. [5] said this approach was
discontinued. Although, they are using this approach to
formalize the semantics of UML class diagram.

Peng [4] was using algebraic specification to describe
semantics of statechart. He comes out with static class
translation rules, dynamic class translation rules and
composite system translation rules. Whereas Zhang et. al.
[6] were using graph transformation to specify behavioral
semantic of statecharts.

V. CONCLUSION AND FUTURE WORKS

Even though, research on formalization of UML semantics
had gone through for many years, there still need precise
definitions of UML semantics. Current research more focus
to partial semantics such as intra diagram consistency for
statechart (such as [1] and [7]) and for sequence diagram
(such as [2] and [8]). Not much effort focus on gathering
complete semantics properties for the most frequent use of
UML diagrams (use case, sequence, class and statechart
diagram) and their traceability links. Therefore, we propose
a formalization of UML semantics for these diagrams using
operational semantics.

REFERENCES

[1] L. C. Briand, Y. Labiche and T. Yue, “Automated traceability

analysis for UML model refinement,” Journal Information and
Software Technology, vol. 51, issue 2, pp. 512-517, February 2009.

[2] C. Pons, R. Giandini, G. Baum, J. L. Garbi, P.
Mercado, “Specification and Checking Dependency Relations
between UML Models,” in UML and the Unified Process. Hershey:
IGI Publishing, 2003, pp 237-253.

[3] D. Latella, I.Majzik and M. Massink, “Towards A Formal Operational
Semantics of UML Statechart Diagrams,” in Proceedings of the IFIP
TC6/ WG6.1, Third International Conference on Formal Methods for
Open Object-Based Distributed System (FMOODS), 1999, pp. 465.

[4] L. Peng, “Formalization of UML Using Algebraic Specifications,”
M.S. thesis, Ecole des Mines de Nantes, 2001.

[5] M. V. Cengarle, H. Gronniger, and B. Rumpe, “System Model
Semantics of Class Diagrams,” Technische Universitat Braunschweig,
2008.

[6] J. Kong, K. Zhang, J. Dong and D. Xu, “Specifying behavioural
semantics of UML diagrams through graph transformations,” Journal
Information and Software Technology, vol. 82, issue 2, pp. 292-306,
February 2009.

[7] Franck Xia, Gautam S. Kane, “Defining the Semantics of UML Class
and Sequence Diagrams for Ensuring the Consistency and
Executability of OO Software Specification,” in 1st International
Workshop on Automated Technology for Verification and Analysis
Proceedings, 2003.

[8] M. S. Lund, K. Stolen, “A fully general operational semantics for
UML sequence diagrams with potential and mandatory choice,”
Department of Informatics, University of Oslo, 2007.

[9] A. Egyed, “Semantic abstraction rules for class diagram,” in
Proceedings of the 15th IEEE International Conference on Automated
Software Engineering (ASE), Grenoble, France, 2000, pp. 301-304.

[10] M. v. d. Beeck, “A Structured Operational Semantics for UML-
Statecharts,” Journal Software and Systems Modeling, vol. 1, issue 2,
pp. 130-141, December 2002.

[11] R. Eshuis, “Reconciling statechart semantics,” Science of Computer
Programming, vol 74, pp. 65-99, 2009.

[12] Adapted from the slide of Chris Kobryn, Co-Chair UML Revision
TaskForce

[13] B. V. Selic, “On the Semantic Foundations of Standard UML 2.0,” in
Formal Methods for the Design of Real-Time Systems, vol. 3185/
2004, Springer Berlin, 2004, pp. 181-199.

[14] D. Bell, “UML basics: An introduction to the Unified Modeling
Language,” IBM, Retrieved April 6, 2009 from
http://www.ibm.com/developerworks/rational/library/769.html#fig5

[15] A. Bahrami, Object Oriented Systems Development, Singapore: Mc-
Graw Hill, 1999.

[16] M. J. Chonoles and J. A. Schardt, UML 2 for Dummies, New York:
Wiley Publishing, 2003.

[17] UML Semantics, Object Management Group, 1997.
[18] Wikipedia The Free Encyclopedia, Retrieved April 6, 2009 from

http://en.wikipedia.org/wiki/Operational_semantics
[19] G. R. Semiotics, Dictionary.com, Retrieved April 6, 2009 from

http://dictionary.reference.com/browse/operational%20semantics

