8,253 research outputs found

    A Genetic Algorithm for Cost-Aware Business Processes Execution in the Cloud

    Get PDF
    International audienceWith the generalization of the Cloud, software providers can distribute their software as a service without investing in large infrastructure. However, without an effective resource allocation method, their operation cost can grow quickly, hindering the profitability of the service. This is the case for BPM as a Service providers that want to handle hundreds of customers with a given quality of service. Since there are variations in the needed load and in the number of users of the service , the allocation and scheduling methods must be able to adjust the cloud resource quantity and size, and the distribution of customers on these resources. In this paper, we present a cost optimization model and an heuristic based on genetic algorithms to adjust resource allocation to the needs of a set of customers with varying BPM task throughput. Ex-perimentations using realistic customer loads and cloud resources capacities show the gain of these methods compared to previous approaches. Results show that, in our case, using our algorithm on split groups of customers can provide better results

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE
    • 

    corecore