
1

A WOA-Based Optimization Approach for Task
Scheduling in Cloud Computing Systems

Xuan Chen, Long Cheng Member, IEEE, Cong Liu, Qingzhi Liu, Jinwei Liu Member, IEEE, Ying
Mao Member, IEEE, and John Murphy Senior Member, IEEE

Abstract—Task scheduling in cloud computing can directly
affect the resource usage and operational cost of a system. To
improve the efficiency of task executions in a cloud, various
metaheuristic algorithms, as well as their variations, have been
proposed to optimize the scheduling. In this work, for the
first time, we apply the latest metaheuristics WOA (the whale
optimization algorithm) for cloud task scheduling with a multi-
objective optimization model, aiming at improving the perfor-
mance of a cloud system with given computing resources. On that
basis, we propose an advanced approach called IWC (Improved
WOA for Cloud task scheduling) to further improve the optimal
solution search capability of the WOA-based method. We present
the detailed implementation of IWC and our simulation-based
experiments show that the proposed IWC has better convergence
speed and accuracy in searching for the optimal task scheduling
plans, compared to the current metaheuristic algorithms. More-
over, it can also achieve better performance on system resource
utilization, in the presence of both small and large-scale tasks.

Index Terms—Cloud computing; task scheduling; whale opti-
mization algorithm; metaheuristics; multi-objective optimization

I. INTRODUCTION

W Ith the ubiquitous growth of Internet access and big
data, cloud computing becomes more and more popu-

lar in today’s business world [1]. Compared to other distributed
computing techniques (e.g., cluster and grid computing), cloud
computing has provided an elastic and scalable way on de-
livering services to consumers. Namely, consumers do not
need to possess the underlying technology and they can make
use of computing resources and platforms in a pay-per-use
fashion [2], [3].

The basic mechanism of cloud computing is to dispatch
computing tasks to a resource pooling constituting of a

X. Chen is with Zhejiang Industry Polytechnic College, Zhejiang, China.
E-mail: cxuan762@gmail.com

L. Cheng is with the School of Computing, Dublin City University, Ireland.
E-mail: long.cheng@dcu.ie (Corresponding Author)

C. Liu is with the School of Computer Science and Technology, Shandong
University of Technology, China. E-mail: liucongchina@sdust.edu.cn

Q. Liu is with the Information Technology Group, Wageningen University,
Netherlands. E-mail: qingzhi.liu@wur.nl

J. Liu is with the Department of Computer and Information Sciences at
Florida A&M University, USA. E-mail: jinwei.liu@famu.edu

Y. Mao is with the Department of Computer and Information Science at
Fordham University in the New York City. E-mail: ymao41@fordham.edu

J. Murphy is with the School of Computer Science, University College
Dublin, Ireland. E-mail: j.murphy@ucd.ie

Part of this work was supported by the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 799066, the National Science Foundation of China
(61902222), and the Taishan Scholar Youth Program of Shandong Province
(tsqn201909109).

large number of heterogeneous virtualized servers or virtual
machines (VMs) [4], [5]. As cloud computing is a market-
oriented utility, to allow cloud providers and users to maximize
their profit and return on investment [6], advanced strategies
on resource scheduling, which can support software and user
applications, tasks and workflows, etc., are always required.
In fact, scheduling can directly affect the performance of a
system such as resource usage efficiency and operational cost,
and it has been seen as of paramount importance to cloud
computing [7].

As VMs can be dynamically provisioned, allocated and
managed [8], the scheduling problems in cloud computing
can be generally divided into two main layers: the first is the
scheduling of the tasks submitted by a user and mapping them
to a set of available VM resources; and the second is a VM and
host mapping which makes a VM in a suitable host to create or
migrate [9]. We focus on optimizing the former problem in this
work, because it directly affects the processing capability of
a cloud computing system, and an optimized task scheduling
will greatly improve the efficiency of the whole system such
as the time and price cost [10]. However, the complexity of
the optimization problem is NP-hard [11]. This means that
the problem solving time will be in exponential time, and an
algorithms will suffer from a dimensionality breakdown when
the size of the problem grows.

To slove complex optimization problems in an acceptable
time, using metaheuristics algorithms has received increasing
attention in recent years [12]. The reason is that they are
shown to be highly effective and can find approximately
optimal solutions in polynomial time rather than exponential
time, compared to conventional methods [3], [13]. In fact,
various metaheuristics as well as their variations have been
used to solve scheduling problems in many fields [14], [15],
[16], [17], [18], [19], [20], which also include the cloud
computing. As summarized by the latest survey [21], currently
metahuristics used in cloud task scheduling mainly include
the genetic algorithm (GA) [22] and swarm intelligence algo-
rithms, such as the ant colony optimization (ACO) [23] and the
particle swarm optimization (PSO) [24]. These optimization
algorithms are derived from the simulations of biological
population evolutions, and they can solve complex global
optimization problems through cooperation and competition
among individuals [25].

The whale optimization algorithm (WOA) is one of the lat-
est metaheuristics [26] that is nature-inspired by the humpback
hunting method (i.e., bubble-net predation). Because of this
unique optimization mechanism, WOA can provide a good

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/288473320?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

global search capability, which makes it become popular in
various engineering problems. In this work, we will try to
explore the application of the WOA approach to a multi-
objective task scheduling optimization problem in cloud com-
puting. Specifically, we focus on optimizing the task execution
time, load and price cost of a cloud computing system for
given tasks, and these measures will be essential to ensure that
the entire configuration of the VMs is as optimal as possible.
In general, we first map our task scheduling scheme to the
whale foraging model, and thus we can get an approximately
optimal solution using the WOA algorithm. On that basis, we
propose an advanced approach called IWC (Improved WOA
for Cloud task scheduling), which aims to further improve the
optimal solution search capability of WOA. We provide the
detailed implementation of IWC and conduct a performance
evaluation using a large number of simulations with up to
10000 tasks. We summarize the contributions of this work as
follows:
• To improve the efficiency of task executions in a cloud

computing system, we introduce a multi-objective opti-
mization model for task scheduling and apply the WOA
approach to solve the problem.

• We propose a new approach called IWC for more efficient
task scheduling by incorporating advanced optimization
strategies to improve both the convergence speed and
accuracy of the WOA-based approach.

• We present the detailed design and implementation of
IWC and compare it with some existing metaheuris-
tics including ACO and PSO. Our experimental results
demonstrate that IWC can achieve better performance on
system resource utilization for both small and large-scale
tasks in cloud computing.

The rest of this paper is organized as follows. In Section II,
we report the related work. In Section III, we introduce our
task scheduling optimization model. We present the proposed
IWC approach and its implementation details in Section IV.
We carry out extensive evaluation of our approach in Section V
and conclude this paper in Section VI.

II. RELATED WORK

Task scheduling strategies which can efficiently allocate
resources to required tasks under constraints are still challeng-
ing current cloud computing techniqus. This is because the
requirements such as bandwidth, storage, resource expenses,
and response time may differ for each task, which makes
the optimization problem very complex, and the heterogeneity
and dynamicity of the cloud computing environment will also
further complicate the problem [4].

In order to efficiently use cloud resources, a lot of mathe-
matical task scheduling solutions have been proposed. For ex-
ample, Malawski et al. [27] modeled the relationship between
the deadline and cost on hybrid clouds as a mixed integer
nonlinear programming problem with an implementation in
AMPL (a mathematical programming language). To optimize
the makespan, the total average waiting time and the used hosts
on homogeneous cloud computing environments, Grandinetti
et al. [28] solved their optimization problem based on the ε-
constraint method. The approaches have been shown to be

efficient. However, their implementation could be complex.
The AMPL-based implementation requires to specify input
data sets and variables to define the search space, and the ε-
constraint method needs to choose suitable ε values. Compared
to these, we will apply heuristic techniques to our optimization
problem, which would make our approach simpler and easier
to implement and deploy in a cloud computing system.

A large number of heuristics have been devised for cloud
task scheduling in the past years. For instance, Su et al. [29]
employed a cost-efficient task-scheduling algorithm by means
of two heuristic strategies based on the idea of Pareto dom-
inance. Besides that, some typical heuristic techniques such
as clustering scheduling algorithm (e.g., DSC [30] and list
scheduling algorithm (e.g., DSL [31]), have also been used
in optimizating resource allocation in cloud. In contrast to
these schemes, we focus on using metahuristics for cloud
task scheduling, which is designed to find, generate, or select
a heuristic that may provide a sufficiently good solution,
especially with incomplete or imperfect information [32].

In fact, a trend of using metaheuristic algorithms is
emerging rapidly in cloud computing [12], [33]. Various
metaheuristic-based methods such as GA-based, ACO-based,
PSO-based task scheduling algorithms have been proposed.
Examples include but not limited to the following. Aziza et
al. [34] proposed a time-shared and a space-shared genetic
algorithm which are demonstrated to be able to outperform
competed scheduling methods in terms of makespan and
processing cost. Based on the ACO algorithm, Li et al. [35]
introduced a load balancing algorithm for task scheduling
in cloud computing. For PSO, Wang et al. [36] used an
improved PSO algorithm to develop an optimal VM placement
approach involving a tradeoff between energy consumption
and global QoS guarantee for data-intensive services. To
further improve the accuracy and efficiency of the above
described metaheuristics in cloud computing, some works have
tried to propose hybrid methods to leverage the strengths
of the existing ones. Chen et al. [37] proposed a PSO-
ACO method for task scheduling, showing it performs better
than a standalone algorithm on makespan. To minimize task
execution time, Liu et al. [38] presented a algorithm that makes
use of the global search capability of genetic algorithm, and
then converts the achieved results into the initial pheromone
of ACO for further optimization. Moreover, Tsai et al. [39]
proposed hyper-heuristic scheduling algorithm by integrating
the GA, ACO and PSO, etc. into a single framework to reduce
the makespan in cloud. Although all the approaches have
demonstrated their advantages, different from them, we focus
on exploring the application of the latest metaheuristics, the
whale optimization algorithm [26], for cloud task scheduling.
Moreover, we will try to use it on a multi-objective model to
improve the performance of underlying computing systems.

Multi-objective optimization (MOO) is the process of si-
multaneously optimizing two or more conflicting objectives
subject to a number of constraints [40]. In the context of
cloud computing, the multi-objective optimization mainly in-
cludes the completion time, the constraints of QoS, energy
consumption, economic cost, and the system performance [41].
Sheikhalishahi et al. [42] presented a scheduling system based

3

on treating multi-resource optimization as multi-capacity bin
packing. The solution is able to minimize the waiting time and
the slowdown metrics. Ramezani et al. [43] tried to minimize
task execution time, task transferring time, task execution cost
and increase the QoS, using a multi-objective particle swarm
optimization (MOPSO). Zuo et al. [41] introduced a model to
optimize the makespan and resource cost on the basis of the
ACO algorithm. In comparison, we will try to minimize the
task execution time, system load and price cost using WOA.

To date, a lot of efforts have also been put on the designs
of cloud scheduling systems. For example, Mao et al. [44]
proposed an advanced scheduling strategy which could effec-
tively shorten the time and maintain the stability of a system.
Liu et al. [45] proposed a dependency-aware and resource-
efficient scheduling which can achieve low response time and
high resource utilization. In contrast to these, we focus on
an algorithm design rather than system designs. On the other
aspect, our approach can be applied to all the above designs
to process tasks in cloud computing.

Generally, with the significant advantages on implementa-
tion, deployment as well as performance, metaheuristic algo-
rithms have been widely studied on the optimization of cloud
task scheduling in the past years. Although some research
works have used the techniques on MOO in cloud computing,
few of them focus on improving the performance of underlying
computing systems. Moreover, none of them have ever applied
the latest WOA on the MOO problem yet. In this work, we
will try to minimize the task execution time, system load
and price cost with a WOA-based method for cloud task
scheduling. Moreover, to further improve the optimal solution
search capability, we have also proposed several specified
optimization for the proposed approach. To the best of our
knowledge, this is the first work on applying WOA to multi-
objective task scheduling problem in cloud computing.

III. MULTI-OBJECTIVE TASK SCHEDULING MODEL

In cloud computing, task scheduling policy will directly
affect the efficiency of resource usage for underlying systems.
Therefore, the allocation of input tasks to computing resources
(e.g., VMs) becomes the key issue for cloud task scheduling.
The logical view of a typical task scheduling process in
a cloud computing system is illustrated in Fig. 1. There,
the submitted jobs by users will be decomposed into a set
of computing tasks first. We focus on the performance of
different scheduling approaches in this paper, therefore we
assume that all the tasks are logically independent of each
other. Based on this, the process of task scheduling in cloud
environment can be summarized as the following three steps.
Firstly, based on the detailed information of the input tasks
and the underlying available computing resources (e.g., VMs),
tasks and resources will be mapped in accordance with a
certain strategy. Then, following the mapping, the task sched-
uler at the schedule/control layer will generate an optimized
task execution plan to meet the assigned requirements (i.e.,
the optimization objectives). Finally, the optimized plan is
delivered to the underlying task processing layer (e.g., a cloud
computing system) for execution, and the output results will
be sent to the users.

TABLE I
MAIN NOTATIONS IN TASK SCHEDULING MODEL

Notation Meaning

N number of tasks to be processed
M number of VMs
aij decision variable to indicate whether the i-th

task is assigned to the j-th VM
En (Et) processing capability vector for VMs (tasks)
Sn (St) load capability vector for VMs (tasks)
Cn (Ct) resource bandwidth vector for VMs (tasks)
P price unit
wi weight of each cost function, i ∈ {1, 2, 3}

A. Task and Computing Resource Models

To describe the detailed optimization process of the sched-
uler, we use the following model under a cloud com-
puting setting. There are a set of M computing nodes
(VMs) {N1, N2, ..., Nm} and a set of N computing task
{T1, T2, ..., Tn} with N > M , and the final scheduling result
can be represented by a matrix A as following:

Anm =

a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm

where aij is a decision variable that aij = 1 means that the
i-th task is performed on the j-th VM , otherwise aij = 0,
and there is

∑M
j=1 aij = 1 for each i ∈ [1, N].

To characterize the general processing capability and re-
source consumption of a cloud computing system in a task
scheduling scenario, we represent each resource node using
three attributes. The first two are processing capability and
load capability, which can be indicated by the CPU computing
power and the memory size of a node respectively [41].
We employ the concept of resource bandwidth as the third
attribute, to abstract the general recourse that a node can
provide. The resource bandwidth of a node can be described
by a function of its first two attributes, i.e., the larger the CPU
power and memory size are, the larger the bandwidth will be.

In terms of the values of the three attributes, memory
resources can be represented using megabytes. For the quan-
tification of CPU resources, we specify the amount of CPU
resources with a point-based system [46], such as that setting
the full capacity of a single core with 100 points. Similarly,
each computing task can be characterized by three attributes
as well, i.e., the required CPU power, memory and resource
bandwidth. On all these basis, we can model the underlying
computing system as three vectors, i.e., the processing capabil-
ity vector En, the load capability vector Sn and the resource
bandwidth vector Cn. Similarly, three vectors are used for the
tasks, i.e., Et, St and Ct. For our presentation in the following,
we use the notations as listed in Table I.

4

submitted
jobs by users tasks

task scheduler

resource nodes

schedule/control layer

task processing layer

Fig. 1. A logical view of the task scheduling process in a cloud computing system.

B. Objective Functions

For a given set of tasks, it is expected that the underlying
computing system can process the tasks in a highly efficient
way, in terms of performance and resource consumption.
Namely, the CPU power and memory of the system can be
effectively used while the whole resource utilization cost can
be minimized. Similar to the models with constrains on CPU
and memory [47], the time cost function f1 and the load
cost function f2 in our objectives are represented by Eq. (1)
and Eq. (2), respetively. Moreover, the resource cost can be
represented by some metrics such as energy consumption
and economical cost [41]. Since they can be computed from
resource bandwidth (such as with a very complex function),
we just choose the price cost and use a price unit P in this
work. Then, the price cost function f3 can be represented by
Eq. (3), where Et,i means the Et value of the i-th task and
En,j is the En value of j-th VM. This representation is also
similarly applied to the symbols S and C.

f1 =

N∑
i=1

M∑
j=1

aij
Et,i
En,j

(1)

f2 =

N∑
i=1

M∑
j=1

aij
St,i
Sn,j

(2)

f3 =

N∑
i=1

M∑
j=1

aij
Et,i
En,j

× Ct,i
Cn,j

× P (3)

In f1, the time cost is calculated by summarizing the execu-
tion time of each task, which depends on the CPU power. We
use the whole execution time rather than the makespan here,
because we are more interested in task processing capability
from a system angle rather than a service angle, and we
assume that our system is highly efficient that a VM will be
put into sleep when its assigned tasks have been done. The
f2 is computed on the basis of the required memory over
the provided memory on each VM, the value of which is
commonly used in simulation software to represent the load
capability of a system, and a great value indicates a bad system
load performance [47]. For a computing system, the price cost
will not only depend on the task execution time, but also the
ratio of the resource utilization at each time point. Therefore,
in f3, we add such a factor Ct,i/Cn,j for each task on each
VM when we calculate the whole cost. Namely, the price cost

per time unit of a lightweight task (with a small value on
resource bandwidth) will be less than a heavyweight task.

Obviously, our target to minimize the values of the above
three functions is a MOO problem. The reason is that each of
the functions has a different objective that can be conflicting.
For example, we can speed up the processing of a task by
using a powerful CPU, but the price cost would be increased.
Also, for a case that a VM with a huge memory will be able
to load a large number of tasks, but the whole task execution
time could be long if its CPU computing power is low.

C. Optimization Model

To solve our MOO problem, we first normalize the ma-
trices using the min–max normalization approach, and then
represent the above three objective functions as F1, F2 and
F3 respectively, which are shown in below. The reason for
this normalization is the values in En, Sn and Cn (also Et,
St and Ct) are in different scales, and the searching path for
an optimal solution in this condition will be skewed, i.e., large
values in a fi will dominate the optimization process and the
small ones would be totally ignored.

F1 =
1

N

N∑
i=1

M∑
j=1

aij
Et,i/En,j

max
∀i,j
{Et,i/En,j}

(4)

F2 =
1

N

N∑
i=1

M∑
j=1

aij
St,ij/Sn,j

max
∀i,j
{St,i/Sn,j}

(5)

F3 =
1

N

N∑
i=1

M∑
j=1

aij
(PEt,iCt,i) / (En,jCn,j)

max
∀i,j
{(PEt,iCt,i) / (En,jCn,j)}

(6)

Different cloud computing systems (or computing resource
providers) could have different requirements on the perfor-
mance of task executions. Therefore, similar to some recent
works [34], [41], we employ some weight values (i.e., wi) for
the above three functions to make our target function tunable,
which leads the final optimization objective function as:

Fopt = min {w1F1 + w2F2 + w3F3} (7)

The value of the weight wi (i ∈ {1, 2, 3}) in Eq. 7 can be
adjusted based on the requirements in practice. For example,
in the scenarios such as the ones with a lightweight workload,

5

we could be more interested in reducing the price cost of a
computing system rather than the time and load cost. Then,
we can set w1 = 0.25, w2 = 0.25 and w3 = 0.5. In
this condition, from a scheduling point of view, it is highly
possible that a large number of input tasks will be allocated
on economical VMs rather than the VMs with powerful CPU
and large memory, since the improvement of time cost could
be very limited for the latter case.

From the perspective of an optimization algorithm, to mini-
mize the value of (w1F1+w2F2+w3F3), the larger the value
wi is, the higher the priority of the algorithm on reducing
the value of Fi will be. Specifically, when w1 is much larger
than w2 and w3, to reduce the value of F1, it is more likely
that all the tasks will be assigned to the VMs with more
powerful CPUs. Similarly, if w2 or w3 is obviously larger,
an optimization algorithm would assign the input tasks to the
VMs with larger memory or resource bandwidth respectively.
This kind of configuration could speed up the convergence of
the searching process of an optimization algorithm, especially
at its beginning phase, since the algorithm has the knowledge
on priority for task assignment already. For an extreme case
such as the setting with w1 = 1, w2 = 0 and w3 = 0, the
searching process on an optimal solution will be much simpler
than other settings, since the scheduling problem is simplified
to a single objective optimization problem. In this paper, for a
general case, we just simply set w1 = w2 = w3 = 1

3 . With this
configuration, our optimization on the task scheduling problem
in a cloud computing system can be represented as the Eq. (8)
below:

Fopt = min {1
3
(F1 + F2 + F3)} (8)

IV. THE PROPOSED APPROACH - IWC

In this section, we introduce how to apply the WOA
algorithm to solve the optimization problem. Then, we propose
the IWC with two optimization strategies to strengthen the
searching capability of the WOA-based method.

A. The Whale Optimization Algorithm

In the WOA algorithm, a humpback whale in the search
space is a candidate solution in the optimization problem, also
called search agent, and the WOA utilizes a set of search
agents to determine the possible or approximately global
optimal solution. The searching process for a given problem
begins with a set of random solutions, and the candidate
solution is updated by the optimization rules until the end
condition is met. The WOA algorithm can be divided into
three main stages: encircling preying, bubble-net attack and
search for prey. There mathematical representations are given
as below.

1) Encircling Preying: In the initial stage, humpback
whales do not know the optimal location in the search space
when the prey is surrounded. In WOA, the current best solution
is considered as the target prey and the whale closest to
the prey is considered as the best search agent. Then, other
individual whales may approach the target prey and gradually

update their locations. This behavior is represented in the two
functions below.

~D = |C × ~X∗(t)− ~X(t)| (9)

and
~X(t+ 1) = ~X∗(t)−A× ~D (10)

Here, ~D indicates the distance vector from the search agent
to the target prey, t is the current iteration number, ~X∗ is the
local optimal solution and ~X is the position vector. ~C and ~A
are the coefficient vectors and their calculations are defined
as:

C = 2× r (11)

and
A = 2a× r − a (12)

where r is a random number between 0 and 1, and a represents
a linear decremented value from 2 to 0 based on the number
of iteration t over the number of maximum iterations tmax, as
shown below:

a = 2− 2t

tmax
(13)

2) Bubble-net Attack (exploitation phase): The behavior
of whales’ bubble-net attack is modeled based on the ideas
of shrinking encircling and spiral position updating. We just
briefly introduce their principles as below.

Shrinking encircling. From Eq. (10), we can see that the
whales will shrink their encircling when |A| < 1. This means
that the individual whales will approach the whale in the
current best position, i.e., swim around the prey in a gradual
contraction of a circle. The larger the value of |A| is, the bigger
steps the whales will take, and vice versa.

Spiral position updating. Each individual humpback whale
first calculates its distance from the current optimal whale and
then moves in a spiral shaped path. The mathematical model
of the position update process is described as:

~X(t+ 1) = ~D′ × elb × cos(2πl) + ~X∗(t) (14)

where ~D′ = | ~X∗(t)− ~X(t)| is a vector indicating the distance
from the individual whale to the best whale (current best
found), b is a constant and l is a random number with the
value between -1 and 1.

In order to mimic the two behaviors in a simultaneous
way, it is assumed that the possibility of a whale updating
its location based on the contraction path and the spiral path
is 0.5 respectively, which can be described as

~X(t+ 1) =

{
~X∗(t)−A× ~D p < 0.5
~D′ × elb × cos(2πl) + ~X∗(t) p ≥ 0.5

(15)
where p is a randomly generated number between 0 and 1.

3) Search for Prey (exploration phase): To ensure that an
approximately global optimal solution can be achieved, the
search agents are pushed away from each other when |A| > 1.
In this case, the position of the current optimal search agent
will be replaced by a randomly selected search agent, and the
responsible mathematical model is expressed as

6

TABLE II
TERMINOLOGY MAPPING BETWEEN WHALE PREDATION AND TASK

SCHEDULING

Whale Predation Task Scheduling

individual whale cloud tasks
foraging process optimal solution search process
whale position a solution Anm for Fopt
leader whale optimal solution Anm for Fopt
fitness of whale value of Fopt

~X(t+ 1) = ~Xrand −A× |C × ~Xrand − ~X(t)| (16)

where ~Xrand is a position vector of the randomly selected
search agent.

B. WOA-Based Task Scheduling

Our task scheduling problem described in Section III can be
translated to the whale foraging problem with preemption as
summarized in Table II: An individual whale corresponding
to the given cloud tasks and the whale foraging process is
the optimal solution searching process. In a search, a whale
has a position corresponding to the scheduling problem has
a solution Anm, the position of the leader whale means the
current optimal solution, and the fitness value of the leader
whale is the current optimal value of the objective function
Fopt. In such scenarios, we can use the WOA algorithm to get
an optimized solution for our cloud task scheduling problem.
Namely, in an iteration t of WOA, when all the whales update
their positions, we can transfer the position information of
each whale to a solution Anm for given tasks. From the values
in a matrix Anm, we can compute the fitness value Fopt of
the whale. The one with the smallest value will be considered
for the leader whale, and its position information will be used
for updating the positions of other whales in the next iteration
(when required). All these processes will be repeated until the
final iteration is reached. The position information of the final
leader whale will be transferred to a matrix Anm, and this
solution will be used to generate the optimized task execution
plan in the could computing system.

C. Optimization of Search Capability

Compared to many other advanced approaches, the WOA
algorithm has several advantages. It is easy to implement and it
only has a few parameters. To further improve the convergence
speed and accuracy of our task scheduling process, we propose
two optimization strategies.

1) Nonlinear Convergence Factor: In WOA, a random
search agent is chosen for updating the positions of other
agents when |A| > 1, and the best solution is selected for the
case |A| < 1. To balance these exploration and exploitation
characteristics, the factor a is employed to make ensure that
the position of a newly updated search agent is in the range of
[−a, a]. Based on Eq. (13), the value of a decreases linearly
with the increase of the number of iterations. In this case, a

large a in the early iterations is able to facilitate a global search
and speed up the convergence of a search. In the meantime,
a small one in the late iterations makes sure a local optimum
can be achieved. However, this linear decrease could have two
possible issues: (1) the accuracy of a search will be greatly
impacted by the exploration if the global optimal value appears
in an early iteration (as the |A| will be still greater than 1); and
(2) a local convergence could be slow once an optimal value
is approached (because the step size would be very small for
the non-optimal agents).

To remedy the above problems, we adopted a nonlinear
convergence factor for our WOA-based task scheduling with
updating the Eq. (13) to Eq. (17) as below.

a = (1− t

γtmax
)(1 +

1

1− γ t
tmax

) (17)

Here, γ is a parameter greater than 0. According to the above
design, the value of a will increase sharply and then decrease
quickly to a small value in the early iterations. After that, it
will increase very slightly to the value of 1− 2

γ . This makes
sure that the search agents can conduct a very effective global
searching at the beginning and then reach the possible optimal
value in a quick way.

2) Adaptive Population Size: In a metaheuristic algorithm,
a large population (with many search agents) can improve the
accuracy on getting an optimal solution. However, it would
impact the search performance when the searching space is
small. Similarly, a small poplution would lead a suboptimal
solution if the searching space is large. To improve this
problem, some self-adaptive strategies on population size, in
which the population pool size is either grown or shrunk every
iteration based on the performance status of an algorithm, have
been adapted in metahuristics [48].

In a WOA-based implementation, the number of whales is
fixed in all the iterations. To further improve the performance
of our task scheduling, we design a deterministic increase and
delete operator based on the trigger rules as described in [49],
and formulate our rules as following:
• rule 1: If the leader whale is continuously updated in 2

generations, and ps > PSmin, then the delete operator
is executed to delete ndec individual whales.

• rule 2: If the leader whale is not continuously updated in
1 generation, and ps = PSmax, then the delete operator
is executed to delete ndec individuals.

• rule 3: If the leader whale is not continuously updated in
1 generation, and ps < PSmax, then the increase operator
is executed to add ninc individuals.

Here, ps is the current population size, PSmin and PSmax are
the lower and upper bound of the population size respectively.
The number of whales to be increased or decreased is based on
the Logistic model [50], which is used to describe population
dynamics and general biological growth. The detailed designs
of the two operators are as below.

Increase operators: When new individual whales are
added, we should make sure that new information from the
leader whale can be shared. In detail, the implementation can
be mainly divided into three steps. The first is to determine

7

Algorithm 1 Whale Clustering
1: Generate a reference point R within the search range
2: Among the current whales P , select a whale X

′
with the

position closest to R
3: In P\{X ′}, find out the points closest to M − 1 and X

′

to form a sub-cluster
4: Delete M individual whales in P
5: Repeat 2-4 until the whales have been divided into Np\M

classes.

the number of individuals to be increased based on Eq. (18)
following [50]. The second step is to divide the population into
ninc groups using a general clustering approach as presented
in Algorithm 1, and the optimal individual in each group is
selected to form a set S. based on randomly selecting two
individuals x1 and x2 from S, new individuals are generated
in a cross way [51], as shown in Eq. (19), where α ∈ (0, 1).

ninc = ps× (PSmax − ps)2 × PS−2max (18)

xnew = α0.5x1 + (1− α0.5)x2 (19)

In the above approach, new individual whales around the
optimal value are added. This can improve the accuracy of
the current optimal solution and also enhance the global
development capability of the algorithm.

Decrease operators: Some redundant individuals could
appear with the growth of the iterations. Similar to the increase
operator, the decrease operator first determines the number
of individuals to be deleted using Eq. (20). After that, the
population is also divided into ndec classes with Algorithm 1,
and the worst individuals in each class are then deleted.

ndec = ps2 × (PSmax − ps)× PS−2max (20)

In this case, the deleted individuals would be evenly
distributed in the population, and thus the diversity of the
population can be maintained.

D. Cloud Task Scheduling using IWC

Based on all the above designs, we summarize our IWC
approach for cloud task scheduling as the flowchart demon-
strated in Fig. 2. Its main implementation can be divided into
the following four main steps:
• Step 1: This step focuses on the initialization of the imple-

mentation, which mainly includes the mapping between
cloud computing tasks and the humpback whales, and the
initialization of the positions of each individual whales.
Moreover, some implementation parameters such as the
search space dimension, the upper and lower bound of the
whale population, and the maximum number of iterations
are also initialized.

• Step 2: The optimal solution searching process based
on WOA starts once the initialization is done. In this
step, based on the position information, the fitness value
of each whale is computed first. The whale with the
smallest value, which is the current optimal solution, will

Start

Generate random
positions for

individual whales
(IWs), set t = 1

Satisfy end
condition

Transfer position info
to aij , computing

fitness values
for IWs, record

leader whale (LW)

Compute a with
Eq.(17), get A and
C with Eq.(11)
and (12), gen-
erate random

number p ∈ [0, 1]

p < 0.5

|A| < 1

Update IW positions
using Eq. (10)

Update IW positions
using Eq. (16)

Update IW positions
using Eq. (14)

Transfer LW
position into aij ,
and output Anm

End

n

n

y

n

y

y

LW, ps meet
inc/dec rules

Add or delete IWs
based on Eq. (18),

(19) or Eq. (20)

The positions of
IWs in iteration

t, set t=t+1

y

n

Fig. 2. The implementation flow of IWC for cloud task scheduling.

be recorded. The global exploration and local exploitation
behaviors of whales will depend on the value of the
current A and also the random generated number p. If
p < 0.5, whales will update their positions with a move
around the current leader whale following the Eq. (14).
Otherwise, the value of |A| will be checked. For the case
|A| ≥ 1, the whales will update their positions with a
randomly selected whale with Eq. (10), and they will
swim around the leader whale in a circular way and
update their positions using Eq. (10) when |A| < 1.

• Step 3: We apply our population control strategies to
all the whales when their positions have been updated.
The increase and decrease operators will follow the
detailed rules as we have defined in Section IV-C2, i.e.,
whether the leader whale has continuously updated its
position. The added or deleted whales will be based on
the clustered whales and their numbers will be computed
on the basis of the Eq. (18) and Eq. (20) respectively.

• Step 4: One iteration will be done when the positions
of all the whales have been updated. The search process
will terminate when the maximum number of iterations is
reached, otherwise, it will go to Step 2 for a new search.
Once the assigned number of iterations has been reached,
the position of the leader whale will be transferred to the
decision variables aij as the best scheduling solution for
the cloud computing tasks.

8

TABLE III
MAIN PARAMETERS USED IN EXPERIMENTS

Algorithm Parameter Value Description

ACO
ρ 0.7 pheromone evaporation coefficient
p 0.3 path selection probability

PSO

w 0.9 inertia weight
c1 1.8 acceleration constant
c2 1.8 acceleration constant

IWC (part
for WOA)

b 1 spiral searching path parameter
PSmax 51 the largest population
PSmin 10 initial population
α 0.25 individual generate parameter
γ 20 nonlinear factor

TABLE IV
PARAMETER SETUP OF VMS AND TASKS

Parameter Value Range (VM) Value Range (Task)
CPU E [200, 500] [10, 50]
Memory S [100, 500] [50, 100]
Resource C [100, 250] [20, 50]

To date, almost all the current metaheuristic algorithms
have been applied to task scheduling in cloud computing.
However, as one of the latest approaches, WOA has not
been widely studied. Based on the WOA algorithm, our
above implementation has provided an efficient solution for
the task scheduling problem as described in Section III-C.
Moreover, to enhance the search capability of the WOA-
based scheduling, we have adopted two effective strategies
to optimize the WOA parameters and control the population
size during searching. As we will show in the experimental
evaluation, our approach is indeed very effective on cloud task
scheduling and can perform better compared to the current
metaheuristic algorithms.

V. EXPERIMENTAL EVALUATION

In this section, we conduct a performance evaluation of the
proposed IWC and compare it with some current approaches
based on a set of simulation-based experiments.

A. Experimental Setup

We compare the IWC algorithm with some commonly
used metaheuristic algorithms, i.e., ACO, PSO. Moreover, we
also compare it with the described WOA-based scheduling in
this work. We evaluate their performance on task scheduling
in cloud computing based on simulations. We have imple-
mented all the four algorithms using MatlabR2018b and all
the code used in this work is available at https://github.com/
longcheng11/IWC.

The evaluation metrics considered for performance analysis
contain the cost for time, load and price as well as the total
cost as we have described in our cost model in Section III.
The evaluation is composed of two group experiments based
on the number of scheduled tasks in the scenarios of small and
large-scale computing. The main implementation parameters
we have used in our tests for each algorithm are shown in
Table III. The parameter configurations for VMs and tasks are
shown in Table IV, and each parameter of a VM (task) is set
to a random value from the ranges there. Additionally, we set
the number of search agents (ants, particles and whales) to 50,

the number of VMs to 40. Since a large number of iterations
would bring in obvious significant for cloud task execution,
similar to some recent works [4], [41], we have set the number
of iterations to 100 in all our experiments.

B. Experimental Results

To characterize the detailed performance of each algorithm,
for each experiment, we report the achieved normalized values
by increasing the number of iterations and the actual costs by
varying the number of tasks.

1) Comparison with Small-scale Tasks: For the small-scale
case, we increase the number of tasks from 100 to 1000.
As a typical case, Fig. 3 shows the comparison of the four
algorithms by increasing the number of iterations under the
task 100. In Fig. 3(a), it can be seen that the (normalized)
total cost of each algorithm decreases with the increase in
the number of iterations, demonstrating the effectiveness of
all the approaches on task scheduling in cloud computing.
For the achieved best performance, the total cost of WOA
and PSO is smaller than the ACO algorithm. This means that
the two algorithms have better search capability on accuracy
compared to ACO. In the meantime, we can see that IWC
performs the best. Specifically, compared to the ACO, PSO
and WOA, it reduces the their total cost by more than 20%.
Moreover, with increasing the number of iterations, IWC can
get its optimal solution in a quicker way than WOA, which
means that our proposed optimization techniques can greatly
improve the convergence speed of the WOA algorithm.

The results of the normalized load and price cost are shown
in Fig. 3(c) and (d) respectively. The curves of the four
algorithms there generally decrease with the increase of the
number of iterations, showing that their cost can be effectively
reduced during the optimal solution searching process. Similar
to the total cost, IWC performs much better than the other
three algorithms, in terms of convergence speed and accuracy.
Compared to the three results in Fig. 3(a), (c) and (d), the time
cost as presented in Fig. 3(b) are kind of different. It can be
seen that the cost values of PSO, WOA and IWC fluctuate with
the increase of iterations. From a global view, the ACO, PSO
and WOA generally decrease while the IWC first decreases
and then increases obviously to reach a stable status. This
means that the first three approaches can use the CPU power
in a more efficient way with the growing of the iterations.
In comparison, IWC can not use the available CPU power in
an optimal way. The reason for this could be that there is a
trade-off between the local optimal value (i.e., time cost) and
global optimal value (i.e., total cost) in the searching process.
The IWC can reach a global optimal value based on a sacrifice
of a local one, demonstrating again its strong capability on
solving complex optimization problems.

The performance comparison of each algorithm with in-
creasing the number of tasks is presented in Fig. 4. The
normalized total cost in Fig. 4(a) shows that PSO and WOA
perform better than ACO. However, IWC performs the best
for all the tasks, indicating that it can effectively reduce
the system cost for small-scale tasks in cloud computing.
Fig. 4(b)-(d) present the actual cost of each algorithm on their

9

0 20 40 60 80 100
Number of Iterations

0.22

0.24

0.26

0.28

0.3

0.32
T

ot
al

 c
os

t

ACO
PSO

WOA
IWC

(a) the value of Fobj

0 20 40 60 80 100
Number of Iterations

0.34

0.36

0.38

0.40

T
im

e
C

os
t

ACO
PSO

WOA
IWC

(b) the value of F1

0 20 40 60 80 100
Number of Iterations

0.15

0.20

0.25

0.30

0.35

Lo
ad

 C
os

t

ACO
PSO

WOA
IWC

(c) the value of F2

0 20 40 60 80 100
Number of Iterations

0.12

0.14

0.16

0.18

0.20

0.22

P
ric

e
C

os
t

ACO
PSO

WOA
IWC

(d) the value of F3

Fig. 3. The best performance (normalized values) achieved by increasing the number of iterations, for 100 tasks.

0 200 400 600 800 1000
Number of Tasks

0.22

0.24

0.26

0.28

0.3

0.32

T
ot

al
 c

os
t (

no
rm

al
iz

ed
)

ACO
PSO
WOA
IWC

(a) the value of Fobj

0 200 400 600 800 1000
Number of Tasks

 0

 20

 40

 60

 80

100

T
im

e
C

os
t

ACO
PSO
WOA
IWC

(b) the value of f1

0 200 400 600 800 1000
Number of Tasks

 0

100

200

300

Lo
ad

 C
os

t

ACO
PSO
WOA
IWC

(c) the value of f2

0 200 400 600 800 1000
Number of Tasks

 0

 50

100

150

P
ric

e
C

os
t

ACO
PSO
WOA
IWC

(d) the value of f3

Fig. 4. The best performance achieved of each approach in the small-scale test.

0 20 40 60 80 100
Number of Iterations

0.22

0.24

0.26

0.28

0.3

0.32

T
ot

al
 c

os
t

ACO
PSO

WOA
IWC

(a) the value of Fobj

0 20 40 60 80 100
Number of Iterations

0.36

0.37

0.38

0.38

0.39

T
im

e
C

os
t

ACO
PSO

WOA
IWC

(b) the value of F1

0 20 40 60 80 100
Number of Iterations

0.15

0.20

0.25

0.30

0.35

Lo
ad

 C
os

t

ACO
PSO

WOA
IWC

(c) the value of F2

0 20 40 60 80 100
Number of Iterations

0.14

0.16

0.18

P
ric

e
C

os
t

ACO
PSO

WOA
IWC

(d) the value of F3

Fig. 5. The best performance (normalized values) achieved by increasing the number of iterations, for 1000 tasks.

0 2000 4000 6000 8000 10000
Number of Tasks

0.2

0.22

0.24

0.26

0.28

0.3

T
ot

al
 c

os
t (

no
rm

al
iz

ed
)

ACO
PSO
WOA
IWC

(a) the value of Fobj

0 2000 4000 6000 8000 10000
Number of Tasks

 0

 200

 400

 600

 800

1000

T
im

e
C

os
t

ACO
PSO
WOA
IWC

(b) the value of f1

0 2000 4000 6000 8000 10000
Number of Tasks

 0

1000

2000

3000

Lo
ad

 C
os

t

ACO
PSO
WOA
IWC

(c) the value of f2

0 2000 4000 6000 8000 10000
Number of Tasks

 0

 500

1000

1500

P
ric

e
C

os
t

ACO
PSO
WOA
IWC

(d) the value of f3

Fig. 6. The best performance achieved of each approach in the large-scale test.

task execution time, system load and price, respectively. We
can see that all the values are increasing with increasing the
number of tasks. This is reasonable, since the system workload
increases. Regarding to the time cost, although the normalized
values of the four algorithms have some differences, their
actual values are nearly the same for each given task. This
means that the computing power of the underlying system can
be consumed in a similar way by the scheduled plans for all
the four approaches. For the load and price cost, IWC can
achieve obvious lower values than the other three algorithms.
By increasing the number of tasks, the difference is more
obvious. All these results show that IWC can greatly im-

prove the utilization of system memory in a cloud computing
environment. In the meantime, it can also obviously reduce
the economical cost of resource utilization, compared to the
current solutions.

2) Comparison with Large-scale Tasks: For the large-scale
test, we gradually increase the number of tasks from 1000
to 10000. For the case with 1000 tasks, Fig. 5 shows the
comparisons on the normalized values for all the four algo-
rithms by increasing the number of iterations. Similar to the
small-scale case, as illustrated in Fig. 5(a), the total cost of
each algorithm decreases as the number of iterations increases,
which demonstrates the advantages of all the approaches again

10

on cloud task scheduling. Moreover, it can be seen that IWC
can achieve the best performance on the total cost, compared
to the other three algorithms. This demonstrates again the
effectiveness of the proposed IWC on handling large-scale
task executions in cloud computing. With more details for
the time cost shown in 5(b), the results are kind of different
from the small-scale case in which IWC starts to perform
better. This means that our approach can use system CPU
power in a more efficient way in the presence of large task
instances. Although IWC has a higher value than PSO here, it
has a stronger capability on searching global optimal solution
than PSO, when we consider the total cost. The results of
the load and price cost of the four algorithms are shown
in Fig 5(c) and (d), respectively. We can see that IWC can
utilize the available system memory more efficiently, and it
can also reduce more resource consumption for large-scale
tasks. Specifically, compared to the other three methods, IWC
can reduce the load cost by around 50% and about 30% on
the price cost for underlying systems.

Fig. 6 presents the cost of the four algorithms by varying
the number of tasks. For the normalized total cost as shown
in Fig. 6(a), IWC always performs much better than other
algorithms, which demonstrates the performance advantages of
IWC on cloud task scheduling. Specifically, with the growth of
the number of tasks, the normalized cost of IWC has slightly
decrease while the other three approaches increase slightly,
demonstrating that IWC has obvious advantages on searching
optimal solutions in the presence of large or complex task
workloads. For the actual cost on system time, load and price
presented in Fig. 6(b)-(d), the curves of the four approaches
are nearly the same as the results in the small-scale test.
For example, all the values are increasing with increasing the
number of tasks, and all the four algorithms perform generally
the same for given tasks in terms of task execution time.
The load and price cost of the proposed IWC algorithm is
obviously smaller than the other three algorithms, and the
differences become bigger with the increase in the number
of tasks. All these demonstrate again that IWC can provide a
obvious better solution on task scheduling in cloud computing,
compared to the ACO, PSO and WOA algorithms.

VI. CONCLUSIONS

In this work, we have introduced a WOA-based task
scheduling approach for cloud computing, which aims to
improve the performance of a system with given computing
resources. Moreover, to further improve the searching capabil-
ity of the WOA-based scheduling, we have proposed the IWC
approach with two advanced optimization strategies. We have
presented the detailed implementation of IWC and our exper-
imental results have shown that the proposed IWC is indeed
efficient in terms of searching optimal scheduling plans. It can
greatly improve the efficiency of a cloud computing system, in
terms of both system load and system resource utilization cost,
compared to some commonly used metaheuristic algorithms.

As the future work, to achieve better performance on
convergence speed and accuracy in task scheduling, we will
consider proposing more advanced strategies to further im-
prove the balance between exploration and exploitation in the

IWC approach. In the meantime, to reduce the scheduling
overhead of the method in the presence of large workloads,
we will explore the parallel implementations of our approach
in cloud environments. Moreover, we will extend the proposed
performance model and method with some more advanced
features for task scheduling in cloud computing. For example,
we will try to optimize the QoS problems, in which some tasks
have higher priorities than others. Additionally, we also plan
to use our approach to handle more complex task jobs, such as
workflows [52], the tasks in which are not independent from
each other, and cloud-based deap learning workloads [53]. Our
long term goal is to develop a highly adaptive and efficient
scheduling system for cloud computing in the presence of
different task workloads.

REFERENCES

[1] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud
computing environments: Challenges, taxonomy, and survey,” ACM
Computing Surveys, vol. 47, no. 1, p. 7, 2014.

[2] M. Cusumano, “Cloud computing and SaaS as new computing plat-
forms,” Communications of the ACM, vol. 53, no. 4, pp. 27–29, 2010.

[3] S. K. Gavvala, C. Jatoth, G. Gangadharan, and R. Buyya, “QoS-aware
cloud service composition using eagle strategy,” Future Generation
Computer Systems, vol. 90, pp. 273–290, 2019.

[4] P. Kaur and S. Mehta, “Resource provisioning and work flow scheduling
in clouds using augmented shuffled frog leaping algorithm,” Journal of
Parallel and Distributed Computing, vol. 101, pp. 41–50, 2017.

[5] Z. Li, H. Shen, and C. Miles, “PageRankVM: A pagerank based
algorithm with anti-collocation constraints for virtual machine placement
in cloud datacenters,” in Proc. 38th IEEE International Conference on
Distributed Computing Systems, 2018, pp. 634–644.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[7] H. Morshedlou and M. R. Meybodi, “Decreasing impact of sla vio-
lations: a proactive resource allocation approachfor cloud computing
environments,” IEEE Transactions on Cloud Computing, vol. 2, no. 2,
pp. 156–167, 2014.

[8] B. Xu, C. Zhao, E. Hu, and B. Hu, “Job scheduling algorithm based on
Berger model in cloud environment,” Advances in Engineering Software,
vol. 42, no. 7, pp. 419–425, 2011.

[9] S. Kayalvili and M. Selvam, “Hybrid SFLA-GA algorithm for an optimal
resource allocation in cloud,” Cluster Computing, pp. 1–9, 2018.

[10] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization
in cloud computing based on heuristic algorithm,” Journal of networks,
vol. 7, no. 3, p. 547, 2012.

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[12] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Computing Surveys, vol. 47, no. 4, p. 63, 2015.

[13] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys,
vol. 35, no. 3, pp. 268–308, 2003.

[14] Z. Liang, X. Wang, Q. Lin, F. Chen, J. Chen, and Z. Ming, “A
novel multi-objective co-evolutionary algorithm based on decomposition
approach,” Applied Soft Computing, vol. 73, pp. 50–66, 2018.

[15] G. Kobeaga, M. Merino, and J. A. Lozano, “An efficient evolutionary
algorithm for the orienteering problem,” Computers & Operations Re-
search, vol. 90, pp. 42–59, 2018.

[16] M. A. Dulebenets, “A comprehensive evaluation of weak and strong
mutation mechanisms in evolutionary algorithms for truck scheduling at
cross-docking terminals,” IEEE Access, vol. 6, pp. 65 635–65 650, 2018.

[17] W. Du, M. Zhang, W. Ying, M. Perc, K. Tang, X. Cao, and D. Wu,
“The networked evolutionary algorithm: A network science perspective,”
Applied Mathematics and Computation, vol. 338, pp. 33–43, 2018.

[18] M. A. Dulebenets, “A delayed start parallel evolutionary algorithm for
just-in-time truck scheduling at a cross-docking facility,” International
Journal of Production Economics, vol. 212, pp. 236–258, 2019.

11

[19] B. Vahdani and S. Shahramfard, “A truck scheduling problem at a cross-
docking facility with mixed service mode dock doors,” Engineering
Computations, 2019.

[20] E. Gafarov and F. Werner, “Two-machine job-shop scheduling with equal
processing times on each machine,” Mathematics, vol. 7, no. 3, p. 301,
2019.

[21] A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling tech-
niques in cloud computing: A literature survey,” Future Generation
Computer Systems, vol. 91, pp. 407–415, 2019.

[22] M. Gen and R. Cheng, Genetic algorithms and engineering optimization.
John Wiley & Sons, 2000, vol. 7.

[23] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Proc. 1999 Congress on Evolutionary Computation, vol. 2,
1999, pp. 1470–1477.

[24] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine
learning. Springer, 2011, pp. 760–766.

[25] W.-z. Sun, J.-s. Wang, and X. Wei, “An improved whale optimization al-
gorithm based on different searching paths and perceptual disturbance,”
Symmetry, vol. 10, no. 6, p. 210, 2018.

[26] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in Engineering Software, vol. 95, pp. 51–67, 2016.

[27] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization for
computational applications on hybrid cloud infrastructures,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1786–1794, 2013.

[28] L. Grandinetti, O. Pisacane, and M. Sheikhalishahi, “An approximate
ε-constraint method for a multi-objective job scheduling in the cloud,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 1901–1908,
2013.

[29] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, “Cost-
efficient task scheduling for executing large programs in the cloud,”
Parallel Computing, vol. 39, no. 4-5, pp. 177–188, 2013.

[30] T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks on an
unbounded number of processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 9, pp. 951–967, 1994.

[31] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE transactions on Parallel and Distributed systems, vol. 4, no. 2,
pp. 175–187, 1993.

[32] Metaheuristic, https://en.wikipedia.org/wiki/Metaheuristic.
[33] C.-W. Tsai and J. J. Rodrigues, “Metaheuristic scheduling for cloud: A

survey,” IEEE Systems Journal, vol. 8, no. 1, pp. 279–291, 2014.
[34] H. Aziza and S. Krichen, “Bi-objective decision support system for task-

scheduling based on genetic algorithm in cloud computing,” Computing,
vol. 100, no. 2, pp. 65–91, 2018.

[35] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in 2011 Sixth Annual
ChinaGrid Conference. IEEE, 2011, pp. 3–9.

[36] S. Wang, A. Zhou, C.-H. Hsu, X. Xiao, and F. Yang, “Provision of
data-intensive services through energy-and qos-aware virtual machine
placement in national cloud data centers.” IEEE Trans. Emerging Topics
Comput., vol. 4, no. 2, pp. 290–300, 2016.

[37] X. Chen and D. Long, “Task scheduling of cloud computing using
integrated particle swarm algorithm and ant colony algorithm,” Cluster
Computing, pp. 1–9, 2017.

[38] C.-Y. Liu, C.-M. Zou, and P. Wu, “A task scheduling algorithm based
on genetic algorithm and ant colony optimization in cloud computing,”
in Proc. 13th International Symposium on Distributed Computing and
Applications to Business, Engineering and Science, 2014, pp. 68–72.

[39] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and C.-S. Yang,
“A hyper-heuristic scheduling algorithm for cloud,” IEEE Transactions
on Cloud Computing, vol. 2, no. 2, pp. 236–250, 2014.

[40] E. Demir, T. Bektaş, and G. Laporte, “The bi-objective pollution-routing
problem,” European Journal of Operational Research, vol. 232, no. 3,
pp. 464–478, 2014.

[41] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective
optimization scheduling method based on the ant colony algorithm in
cloud computing,” IEEE Access, vol. 3, pp. 2687–2699, 2015.

[42] M. Sheikhalishahi, R. M. Wallace, L. Grandinetti, J. L. Vazquez-
Poletti, and F. Guerriero, “A multi-dimensional job scheduling,” Future
Generation Computer Systems, vol. 54, pp. 123–131, 2016.

[43] F. Ramezani, J. Lu, and F. Hussain, “Task scheduling optimization in
cloud computing applying multi-objective particle swarm optimization,”
in International Conference on Service-oriented computing, 2013, pp.
237–251.

[44] Y. Mao, V. Green, J. Wang, H. Xiong, and Z. Guo, “DRESS: dynamic
resource-reservation scheme for congested data-intensive computing

platforms,” in Proc. 11th IEEE International Conference on Cloud
Computing, 2018, pp. 694–701.

[45] J. Liu and H. Shen, “Dependency-aware and resource-efficient schedul-
ing for heterogeneous jobs in clouds,” in Proc. 2016 IEEE CloudCom,
2016, pp. 110–117.

[46] X. Liu and R. Buyya, “Resource management and scheduling in
distributed stream processing systems: A taxonomy, review and future
directions,” ACM Computing Surveys, vol. 1, no. 1, 2018.

[47] Y. Hu, C. De Laat, Z. Zhao et al., “Multi-objective container deployment
on heterogeneous clusters,” in Proc. 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2019, pp. 592–599.

[48] S.-T. Hsieh, T.-Y. Sun, C.-C. Liu, and S.-J. Tsai, “Solving large scale
global optimization using improved particle swarm optimizer,” in Proc.
2008 IEEE Congress on Evolutionary Computation, 2008, pp. 1777–
1784.

[49] R.-F. Wang, L.-C. Jiao, F. Liu, and S.-Y. Yang, “Nature computation
with self-adaptive dynamic control strategy of population size,” Journal
of Software, vol. 23, no. 7, pp. 1760–1772, 2012.

[50] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,”
Mathematical biosciences, vol. 179, no. 1, pp. 21–55, 2002.

[51] M. S. Arumugam and M. Rao, “On the improved performances of
the particle swarm optimization algorithms with adaptive parameters,
cross-over operators and root mean square (rms) variants for computing
optimal control of a class of hybrid systems,” Applied Soft Computing,
vol. 8, no. 1, pp. 324–336, 2008.

[52] L. Cheng, B. Van Dongen, and W. Van Der Aalst, “Scalable discovery
of hybrid process models in a cloud computing environment,” IEEE
Transactions on Services Computing, 2019.

[53] W. Zheng, M. Tynes, H. Gorelick, Y. Mao, L. Cheng, and Y. Hou,
“Flowcon: Elastic flow configuration for containerized deep learning
applications,” in Proc. 48th International Conference on Parallel Pro-
cessing, 2019, pp. 87:1–87:10.

Xuan Chen an Associate Professor with Design and
Art, Zhejiang Industry Polytechnic College, Shaox-
ing, China. He received the B.S. degree in infor-
mation management and information system from
Zhengzhou University of Aeronautics, Zhengzhou,
China in 2003 and received the M.S. degree in com-
puter Software engineering from University of Elec-
tronic Science and Technology of China, Chengdu,
China in 2011. His research interests include cloud
computing and algorithm design.

Long Cheng is an Assistant Professor in the School
of Computing at Dublin City University, Ireland. He
received the B.E. from Harbin Institute of Tech-
nology, China in 2007, M.Sc from University of
Duisburg-Essen, Germany in 2010 and Ph.D from
National University of Ireland Maynooth in 2014.
He was a Marie Curie Fellow at University College
Dublin. He has worked at organizations such as
Huawei Technologies, IBM Research, TU Dresden
and TU Eindhoven. His research focuses on high
performance data analytics, distributed systems and

process mining. He is a member of the IEEE.

12

Cong Liu is a Professor with the Shandong Univer-
sity of Technology, China. He received the B.S. and
M.S. degrees in computer software and theory from
the Shandong University of Science and Technology,
Qingdao, China, in 2013 and 2015, respectively, and
the Ph.D. degree in computer science and infor-
mation systems from the Eindhoven University of
Technology, The Netherlands, in 2019. His current
research interests include business process manage-
ment, process mining, Petri nets and big data.

Qingzhi Liu is a Lecturer at the Information Tech-
nology Group, Wageningen University, The Nether-
lands. He received a B.E. and a M.Eng. from Xidian
University, China in 2005 and 2008 respectively. He
received a M.Sc. (with cum laude) and a Ph.D. from
Delft University of Technology, The Netherlands in
2011 and 2016 respectively. He was a Postdoctoral
Researcher at the System Architecture and Network-
ing Group, Eindhoven University of Technology,
The Netherlands from 2016 to 2019. His research
interests include Internet of Things and machine

learning.

Jinwei Liu is an Assistant Professor in the De-
partment of Computer and Information Sciences
at Florida A&M University. He received the M.S.
degree in Computer Science from Clemson Univer-
sity and University of Science and Technology of
China. He received his Ph.D. degree in Computer
Engineering from Clemson University in 2016. He
has worked at University of Virginia and University
of Central Florida. His research interests include
cloud computing, big data, machine learning and
data mining, cybersecurity, wireless sensor networks,

social networks, HPC and IoT. He is a member of the IEEE and the ACM.

Ying Mao is an Assistant Professor in the Depart-
ment of Computer and Information Science at Ford-
ham University in the New York City. He received
his Ph.D. in Computer Science from the University
of Massachusetts Boston in 2016. His research in-
terests mainly focus on the fields of cloud comput-
ing, virtualization, resource management, and data-
intensive platforms.

John Murphy is a Professor at University College
Dublin (UCD). He is an IBM Faculty Fellow, a
Fellow of the IET, a Senior Member of the IEEE, a
Fellow and Chartered Engineer with Engineers Ire-
land, and a Fellow of the Irish Computer Society. For
many years he held an academic part-time position at
the Jet Propulsion Laboratory in Pasadena, and acted
as a consultant to the US Department of Justice.
He has published over 200 peer-reviewed journal
articles or international conference full papers in
performance engineering of networks and distributed

systems. He has supervised 24 Ph.D. students to completion and been awarded
over 30 competitive research grants.

