16 research outputs found

    An improved scaling factor for robust digital image watermarking scheme using DWT and SVD

    Get PDF
    As the internet has becoming very popular for digital media sharing, the digital media is easy to be accessed, downloaded and vulnerable to image processing attacks. Digital watermarking is a technique used to secure information by embedding an additional information known as watermark into the original data. The proposed scheme is approach to improve scale factor for robust image watermarking using two level of Discrete Wavelet Transform with Singular Value Decomposition. The first and second level of DWT decomposition are performed on HL and HL1 sub band respectively. One of the main contribution of this proposed approach is the decomposition of host image using two level DWT decomposition. The aim of this project primarily is to enhance the robustness of watermarking techniques by obtaining the most optimize scaling factor which increased and control the strength of watermarked image. Scale factor is a coefficient that can influence the quality and robustness of watermarked image. To achieve the research objectives, three phases of research framework are fulfilled; First phase is the analysis on scaling factor, DWT and SVD, secondly is the watermark encoding and the generation of scale factor value and lastly is the evaluation of watermarked image quality and robustness based on the scale factor. The highest PSNR recorded is 69.2112 with best scale factor 0.01. The experimental result shows significant improvement on the quality and robustness of the watermarked image using this proposed scheme

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4脳4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    A Robust and Oblivious Watermarking Method Using Maximum Wavelet Coefficient Modulation and Genetic Algorithm

    Get PDF
    An image watermarking method using Discrete Wavelet Transform (DWT) and Genetic Algorithm (GA) is presented for applications like content authentication and copyright protection. This method is robust to various image attacks. For watermark detection/extraction, the cover image is not essential. Gray scale images of size 512聽脳聽512 as cover image and binary images of size 64聽脳聽64 as watermark are used in the simulation of the proposed method. Watermark embedding is done in the DWT domain. 3rd and 2nd level detail sub-band coefficients are selected for further processing. Selected coefficients are arranged in different blocks. The size of the block and the number blocks depends on the size of the watermark. One watermark bit is embedded in each block. Then, inverse DWT operation is performed to get the required watermarked image. This watermarked image is used for transmission and distribution purposes. In case of any dispute over the ownership, the hidden watermark is decoded to solve the problem. Threshold-based method is used for watermark extraction. Control parameters are identified and optimized based on GA for targeted performance in terms of PSNR and NCC. Performance comparison is done with the existing works and substantial improvement is witnessed

    An Oblivious and Robust Multiple Image Watermarking Scheme Using Genetic Algorithm

    Full text link

    New watermarking methods for digital images.

    Get PDF
    The phenomenal spread of the Internet places an enormous demand on content-ownership-validation. In this thesis, four new image-watermarking methods are presented. One method is based on discrete-wavelet-transformation (DWT) only while the rest are based on DWT and singular-value-decomposition (SVD) ensemble. The main target for this thesis is to reach a new blind-watermarking-method. Method IV presents such watermark using QR-codes. The use of QR-codes in watermarking is novel. The choice of such application is based on the fact that QR-Codes have errors self-correction-capability of 5% or higher which satisfies the nature of digital-image-processing. Results show that the proposed-methods introduced minimal distortion to the watermarked images as compared to other methods and are robust against JPEG, resizing and other attacks. Moreover, watermarking-method-II provides a solution to the detection of false watermark in the literature. Finally, method IV presents a new QR-code guided watermarking-approach that can be used as a steganography as well. --Leaf ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b183575

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    DCT-Based Image Feature Extraction and Its Application in Image Self-Recovery and Image Watermarking

    Get PDF
    Feature extraction is a critical element in the design of image self-recovery and watermarking algorithms and its quality can have a big influence on the performance of these processes. The objective of the work presented in this thesis is to develop an effective methodology for feature extraction in the discrete cosine transform (DCT) domain and apply it in the design of adaptive image self-recovery and image watermarking algorithms. The methodology is to use the most significant DCT coefficients that can be at any frequency range to detect and to classify gray level patterns. In this way, gray level variations with a wider range of spatial frequencies can be looked into without increasing computational complexity and the methodology is able to distinguish gray level patterns rather than the orientations of simple edges only as in many existing DCT-based methods. The proposed image self-recovery algorithm uses the developed feature extraction methodology to detect and classify blocks that contain significant gray level variations. According to the profile of each block, the critical frequency components representing the specific gray level pattern of the block are chosen for encoding. The code lengths are made variable depending on the importance of these components in defining the block鈥檚 features, which makes the encoding of critical frequency components more precise, while keeping the total length of the reference code short. The proposed image self-recovery algorithm has resulted in remarkably shorter reference codes that are only 1/5 to 3/5 of those produced by existing methods, and consequently a superior visual quality in the embedded images. As the shorter codes contain the critical image information, the proposed algorithm has also achieved above average reconstruction quality for various tampering rates. The proposed image watermarking algorithm is computationally simple and designed for the blind extraction of the watermark. The principle of the algorithm is to embed the watermark in the locations where image data alterations are the least visible. To this end, the properties of the HVS are used to identify the gray level image features of such locations. The characteristics of the frequency components representing these features are identifying by applying the DCT-based feature extraction methodology developed in this thesis. The strength with which the watermark is embedded is made adaptive to the local gray level characteristics. Simulation results have shown that the proposed watermarking algorithm results in significantly higher visual quality in the watermarked images than that of the reported methods with a difference in PSNR of about 2.7 dB, while the embedded watermark is highly robustness against JPEG compression even at low quality factors and to some other common image processes. The good performance of the proposed image self-recovery and watermarking algorithms is an indication of the effectiveness of the developed feature extraction methodology. This methodology can be applied in a wide range of applications and it is suitable for any process where the DCT data is available

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribuci贸n multimedia se ha extendido mundialmente en los 煤ltimos a帽os. La amplia popularidad de este paradigma se debe, principalmente, a la distribuci贸n eficiente de los contenidos, pero tambi茅n da lugar a la pirater铆a, a la violaci贸n del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribuci贸n de contenidos P2P no quiere revelar su identidad durante una transacci贸n con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido m谩s adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribuci贸n de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el prop贸sito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco pr谩cticos para distribuir archivos de gran tama帽o, tales como 谩lbumes de m煤sica o pel铆culas.L'煤s de solucions d'igual a igual (peer-to-peer, P2P) per a la distribuci贸 multim猫dia s'ha est猫s mundialment els darrers anys. L'脿mplia popularitat d'aquest paradigma es deu, principalment, a la distribuci贸 eficient dels continguts, per貌 tamb茅 d贸na lloc a la pirateria, a la violaci贸 del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribuci贸 de continguts P2P no vol revelar la seva identitat durant una transacci贸 amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il路legalment el contingut m茅s endavant. Per tant, hi ha una gran necessitat de mecanismes de distribuci贸 de continguts per mitj脿 de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el prop貌sit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptaci贸 que impliquen unes c脿rregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pr脿ctics per a distribuir arxius de grans dimensions, com ara 脿lbums de m煤sica o pel路l铆cules
    corecore