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ABSTRACT 

DCT-Based Image Feature Extraction  

and Its Application in Image Self-Recovery and Image Watermarking 

 

Mohamed Hamid 

 

Feature extraction is a critical element in the design of image self-recovery and 

watermarking algorithms and its quality can have a big influence on the performance of these 

processes. The objective of the work presented in this thesis is to develop an effective methodology 

for feature extraction in the discrete cosine transform (DCT) domain and apply it in the design of 

adaptive image self-recovery and image watermarking algorithms. 

The methodology is to use the most significant DCT coefficients that can be at any 

frequency range to detect and to classify gray level patterns. In this way, gray level variations with 

a wider range of spatial frequencies can be looked into without increasing computational 

complexity and the methodology is able to distinguish gray level patterns rather than the 

orientations of simple edges only as in many existing DCT-based methods. 

The proposed image self-recovery algorithm uses the developed feature extraction 

methodology to detect and classify blocks that contain significant gray level variations. According 

to the profile of each block, the critical frequency components representing the specific gray level 

pattern of the block are chosen for encoding. The code lengths are made variable depending on the 

importance of these components in defining the block’s features, which makes the encoding of critical 
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frequency components more precise, while keeping the total length of the reference code short. The 

proposed image self-recovery algorithm has resulted in remarkably shorter reference codes that 

are only 
1

5
 to 

3

5
 of those produced by existing methods, and consequently a superior visual quality 

in the embedded images. As the shorter codes contain the critical image information, the proposed 

algorithm has also achieved above average reconstruction quality for various tampering rates. 

The proposed image watermarking algorithm is computationally simple and designed for 

the blind extraction of the watermark. The principle of the algorithm is to embed the watermark in 

the locations where image data alterations are the least visible. To this end, the properties of the 

HVS are used to identify the gray level image features of such locations. The characteristics of the 

frequency components representing these features are identifying by applying the DCT-based 

feature extraction methodology developed in this thesis. The strength with which the watermark 

is embedded is made adaptive to the local gray level characteristics. Simulation results have shown 

that the proposed watermarking algorithm results in significantly higher visual quality in the 

watermarked images than that of the reported methods with a difference in PSNR of about 2.7 dB, 

while the embedded watermark is highly robustness against JPEG compression even at low quality 

factors and to some other common image processes. 

The good performance of the proposed image self-recovery and watermarking algorithms 

is an indication of the effectiveness of the developed feature extraction methodology. This 

methodology can be applied in a wide range of applications and it is suitable for any process where 

the DCT data is available. 
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Chapter 1  Introduction 

Image processing has penetrated all aspects of modern life and become an important part 

in multimedia, communications, surveillance and security, medical imaging, and many more. 

While the widespread use of the internet and mobile devices facilitates the creation, transmission 

and sharing of digital images, it sparks an enormous concern about image security and hence 

creates a critical need for effective image protection techniques. 

Image protection involves preservation of image ownership information, authentication of 

the image contents, detection of malicious alterations in image data, and restoration of the lost 

image information after attacks. Among the techniques for image protection, watermarking is 

usually used for image authentication and copyright protection among other applications. For 

image security, in particular, to enable images to withstand malicious tampering, one can embed 

some pertinent image information in the original image so that it can be used for image restoration. 

Such techniques are often referred to as image self‐recovery or self‐embedding techniques. 

Although image processing techniques, such as the image protection techniques mentioned 

above, have different emphases in their development and target different applications, there are 

some common issues in their performance metrics, such as the simplicity of processing and the 

visual quality of the processed images. However, as image processing usually deals with a huge 

volume of pixel data representing diverse signal features, it usually requires a vast amount of 

computation. More optimized results and an efficient use of the available resources, in terms of 

information represented in image data and computation capacity, can be achieved by adapting the 

processing to local image features. To this end, it is critical to find which kind of local image 



 

 

2 

 

features are required for a particular application, how to extract them, and how to apply them in 

the design of image processing algorithms such as image watermarking and image self‐recovery. 

The research work presented in this thesis is in the topic domain of image feature extraction 

and its application in image protection processes. In the following sub‐chapters, the challenging 

issues in this domain are addressed, the objectives of the work are identified, and its scope is 

specified. Also, the organization of the thesis is presented in the last section of the chapter. 

1.1 Challenges, Motivation, and Objective 

Feature extraction can be performed in the spatial domain by various approaches, such as 

those based on high‐pass filtering and/or local binary patterns [1-4]. The computations in such 

processes can be very complex especially if a wide range of variations need to be covered and 

classified. Feature extraction can also be carried out in the frequency domain. Image information 

is represented in a more compact manner in the frequency domain. It is known that most of visual 

information is concentrated in the lower frequency components and this property has been 

exploited extensively. However, one cannot extract all the significant image features from low 

frequency components only, and ignoring the signals in medium and high frequencies may risk 

the loss of important image information and potentially jeopardize the processing quality. 

Generally, including a wider frequency range in the process of feature extraction increases the 

required computation. Hence, in order to avoid excessive computations, the process is often 

designed to extract very limited "features", such as the direction of the most dominant edge of an 

image block or the levels of texture [5-12], instead of precise information about various local image 

patterns. Therefore, a new methodology to represent image features in the frequency domain 

should be developed by making good use of the compactness of information in the frequency 

components. 
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In image self-recovery, a reference code is generated from an image and embedded in the 

image itself to enable the regeneration of the lost or corrupted parts of the image if it was damaged. 

To achieve high reconstruction quality, longer reference codes are needed to represent the image 

more precisely. Embedding longer reference codes results in more alterations in the image data, 

which degrades the visual quality of the embedded image. Hence, a key issue in image self-

recovery is to generate a reference code that represents the critical image information to achieve a 

good reconstruction quality while being short enough not to cause visible distortions in the 

embedded image. To accomplish this, the pertinent image features are needed so that the encoding 

can be made adaptive to the image patterns. 

In image watermarking, a watermark, i.e. a logo or a secret key, is embedded into an image, 

and it should be extracted later to prove the ownership and/or the authenticity of the image. The 

watermark is required to be robust to sustain common image processes (e.g. filtering) and data 

transformations (e.g. image compression). Watermark embedding can be performed in the spatial 

domain or in the frequency domain. Spatial domain techniques tend to be simpler but frequency 

domain techniques generally yield more robust watermarks [13]. Increasing the robustness of the 

watermark usually makes larger data alterations in the original image, which results in more visible 

distortions in the watermarked image. The main challenge in image watermarking is addressing 

this inherent conflict between watermark robustness and the visual quality of the watermarked 

image. Adaptive watermarking techniques must be used to embed the watermark in locations 

where the image patterns would make it the least visible. To do so, the information about the image 

features is needed. 

The objective of the work presented in this thesis is to develop an effective and 

computationally simple image feature extraction methodology and apply it in the development of 
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two adaptive algorithms for image self-recovery and image watermarking. The emphasis in the 

developing the image self-recovery algorithm is on using minimal data to represent the image 

information as accurately as possible in order to achieve good visual quality in the embedded and 

reconstructed images. The work in image watermarking aims at maximizing the watermark’s 

robustness without causing visible distortions in the watermarked image. The effectiveness of the 

developed feature extraction methodology is critical in the design of both the image self-recovery 

and watermarking algorithms, and thus it can be evaluated through their performances. 

1.2 Scope and Organization of the thesis 

To achieve the objective stated above, the research work in this thesis focuses on 

developing a feature extraction methodology to extract the image features in the frequency domain 

to make good use of the high information compactness. The discrete cosine transform (DCT) is 

one of the most extensively used transforms and it is a part of many processes. A feature extraction 

methodology in the DCT domain will be applicable in a wide range of applications, therefore the 

work in this thesis will target the DCT domain and an analysis of the representation of image 

features in the DCT domain will be conducted towards the development of the feature extraction 

methodology. 

In the development of the image self-recovery algorithm, the image features will be used 

to achieve adaptive encoding by assigning appropriate numbers of bits to the DCT coefficients 

according to the gray level patterns. This way the code length will be variable with the image 

blocks prioritizing the DCT coefficients critical to the representation of each block. This approach 

is expected to lead to minimal length of the overall reference code and a good reconstruction 

quality. The work in image watermarking involves using the properties of the human visual system 

(HVS) to find the image patterns in which data alterations will be the least perceptible. The DCT-
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based image feature extraction will be applied to identify these patterns. Once the best locations 

are identified, the embedding strength is then determined according to the local image signal so 

that the watermark robustness is maximized and the visual distortion is minimized. 

The thesis will be organized as follows: In Chapter 2, the mathematical background of the 

DCT is presented along with the discussion of some relevant existing techniques of image feature 

extraction, image self-recovery and image watermarking. In Chapter 3, the proposed feature 

extraction methodology is described in detail. Chapter 4 is dedicated to the description and 

evaluation of the proposed image self-recovery algorithm. In Chapter 5, the proposed image 

watermarking algorithm is presented and evaluated. Chapter 6 is a summary of the contributions 

of this thesis.  
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Chapter 2  Background and Relevant Work 

Image feature extraction aims at finding the image characteristics that efficiently describe 

the image. Feature extraction is especially useful in adaptive image processes where image features 

are used to make adjustments in the process. As many image processes already include frequency 

transformations, extracting the required features from the frequency information of an image 

eliminates the need to add spatial domain techniques on top of the usually computationally 

extensive frequency transform. One of the most commonly used frequency transforms is the DCT 

which makes it very useful to be able to extract low level features directly from the DCT data of 

an image.  

Feature extraction can be used to enhance the two image protection techniques to be 

discussed in this thesis which are image watermarking and image self-recovery, and the DCT is 

extensively used in both of them. In image watermarking, adaptive processing is needed in order 

to maximize the watermark’s strength without causing visible distortions. In image self-recovery, 

adaptiveness helps reducing the number of bits used to encode image information while 

maintaining the reconstruction quality.  

In this chapter, the background and some relevant reported techniques of feature extraction 

in the DCT domain, image watermarking and image self-recovery will be discussed. First an 

overview of the DCT is given in Subchapter 2.1 and a brief discussion of the visual models based 

on the DCT is presented in Subchapter 2.2, followed by background of feature extraction in the 

DCT domain, image watermarking and image self-recovery respectively in the following 

subchapters. 
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2.1 The 2-D DCT 

In frequency domain, the image is decomposed into many frequency components with most 

of the image information being concentrated in a part of those components. This property of energy 

compaction along with the removal of redundancy are the main reasons why it is often preferred 

to process images in the frequency domain. 

The DCT is one of the most popular frequency transformations in image and video 

processing due to its simplicity and high energy compaction. For an image block 𝑥 of size 𝑁 × 𝑁, 

the type II 2-D DCT is defined as 

 

𝑋(𝑘1, 𝑘2) =
2

𝑁
𝑢(𝑘1)𝑢(𝑘2) ∑ ∑ 𝑥(𝑛1, 𝑛2) cos

𝜋(2𝑛1 + 1)𝑘1

2𝑁
cos

𝜋(2𝑛2 + 1)𝑘2

2𝑁

𝑁−1

𝑛2=0

𝑁−1

𝑛1=0

 

 

(2.1) 

where 𝑘1, 𝑘2 = 0,1,2, … , 𝑁 − 1, 𝑢(0) =
1

√2
 and 𝑢(𝑘) = 1 for 𝑛 ≠ 0. 

The 2-D IDCT can be expressed as 

 
𝑥(𝑛1, 𝑛2) =

2

𝑁
∑ ∑ 𝑢(𝑘1)𝑢(𝑘2)𝑥(𝑛1, 𝑛2) cos

𝜋(2𝑛1 + 1)𝑘1

2𝑁
cos

𝜋(2𝑛2 + 1)𝑘2

2𝑁

𝑁−1

𝑘2=0

𝑁−1

𝑘1=0

 

 

(2.2) 

Each DCT coefficient represents a certain spatial frequency. Those patterns are sometimes 

referred to as basis functions. Fig. 2.1 shows the spatial frequency patterns of the 8x8 DCT which 

is the most common block size used in image processing and the size we will be used throughout 

this thesis. In the DCT domain, an image block is represented as a combination of these basis 

functions with different magnitudes and/or signs. To put it in different words, if the image blocks 
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are thought of as visual words, then the basis functions of the DCT are the visual alphabet that 

composes these words. 

The first DCT coefficient, X(0,0), is the 𝐷𝐶 coefficient. The DC coefficient has zero 

frequency in both the vertical and horizontal directions and it indicates the brightness of the image 

block since it corresponds to the average of the pixel values in the block. The remaining 

coefficients are called the 𝐴𝐶 coefficients. The AC coefficients closer to the DC coefficient have 

lower spatial frequencies and the frequencies increase as we move away from the DC coefficient 

in all directions. AC coefficients respond to gray level changes that are in the same direction as 

their spatial frequencies; for example, the coefficients in the first column respond to gray level 

changes in the vertical direction (horizontal edges) since their spatial frequencies are vertical. 

 

Fig.  2.1 Spatial frequency components of the 8x8 DCT 

2.2 Visual Models Based on the DCT 

The DCT is the most used transform in image compression because of its high energy 

compaction property. This sparked early studies of the visibility of the alterations made to DCT 
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coefficients in light of the properties of the human visual system (HVS) to determine suitable 

quantization matrices for use in image compression [14-20]. Andrew Watson used the properties 

of the HVS to develop a visual model for adaptive optimization of the DCT quantization matrices 

[21]. 

Following the same principle, the HVS properties were considered to define many DCT 

based Just Noticeable Distortion (JND) models which aim to define the thresholds beyond which 

modifications made to the DCT coefficients become visible [22-26]. These JND models are useful 

in a wide range of applications of image quantization and compression as well as in data hiding 

[27-31].  

2.3 Feature Extraction in the DCT domain 

As mentioned previously, the DCT is commonly used in many image processing 

applications. This means that the DCT calculation is a part of many systems and if feature 

extraction was carried out using the DCT data directly, significant increase in the speed of the 

system can be achieved because of the elimination of extra spatial domain computations. 

Motivated by this, some attempts at image feature extraction directly from the DCT information 

of an image were made [5-11, 32]. 

Chang and Kang [5] derived a method to classify edge directions of single edges using the 

DCT coefficients directly from a modified version of the spatial domain technique in [12]. In the 

spatial domain technique, an image block is partitioned into four sub-regions as shown in Fig. 2.2, 

where 𝑆𝑢𝑣 is the average of the pixels in the corresponding partition. The values of 𝑆𝑢𝑣 are used to 

classify the edges into four directions: 0, 
𝜋

4
, 

𝜋

2
 and 

3𝜋

4
. The authors then derived equations to 
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calculate the values of 𝑆𝑢𝑣 directly from the DCT coefficients without the need to perform the 

IDCT first. 

 

Fig.  2.2 Block of 8x8 in pixels partitioned into four sub-regions [5] 

A hardware implementation based on this method was given by Vega-Pineda et al [6] and 

it was extended by Wang et al [7] to consider more directions. In those three methods [5-7], the 

focus is only on finding the orientations of single edges and no attention is paid to the possibility 

of more complex patterns. In addition, even though the mathematical computations needed in them 

is less than what is needed to calculate the IDCT, these methods still require a lot of computations. 

Shen and Sethi [8] developed an algorithm capable of finding the orientations of single 

edges directly from the DCT information of the image. They presented an analysis of edge 

directions using comparisons of the two DCT coefficients with the lowest frequencies, namely 

X(0,1) and X(1,0), and proposed using equation (2.1) to accurately obtain the edge orientation 𝜃. 

Although this method is fairly simple and DCT based, it also focuses only on the case of a single 

edge. 

 tan 𝜃 = (∑ 𝑋(0, 𝑣)

7

𝑣=1

) (∑ 𝑋(𝑢, 0)

7

𝑢=1

)⁄  (2.1) 

Li et al [9] followed a similar analysis to [8]. They used comparisons between 10 AC 

coefficients to determine the orientations of edges including the case of the presence of two parallel 
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edges. Eom and Choe [10] used comparisons between the amplitudes of DCT coefficients X(0,1) 

and X(1,0) to classify single edges into four orientations: 0 , 
𝜋

4
, 

𝜋

2
 and 

3𝜋

4
. Jiang et al [11] included 

the coefficient X(1,1) in addition to X(0,1) and X(1,0) to achieve the same target. Park et al [32] 

used the averages of the coefficients in the first row, first column and the diagonal to do the same.  

In all of the methods in [8-11], the use of a fixed set of coefficients to determined edge 

orientations can lead to inaccuracies since in some cases, the most significant DCT coefficients 

may not be inside the considered set. Moreover, all of the methods discussed in this subchapter, 

[5-11, 32], seem to focus on finding the orientations of simple edges only and ignore other possible 

patterns. 

2.4 Image Self-Recovery 

The objective of image self-recovery, sometimes referred to as self-embedding, is to be 

able to reconstruct an approximate version of a corrupted part of an image using a code that was 

embedded in the image itself. The code is a compressed/lower quality version of the image itself 

and can be generated from the pixel domain image or from its frequency domain information. 

Many techniques have been reported for image self-recovery [33-48] and in this subchapter, the 

more pertinent ones will be discussed briefly. 

Fridrich and Goljan [33] introduced the two basic encoding methods for image self-

recovery that are followed by recent approaches. In the first method, a set of DCT coefficients is 

encoded in all image blocks. The generated reference code is then embedded into the least 

significant bits (LSB) of the pixel values of the original image. In the second method, the reference 

code is generated from the pixel values of the image. The gray level range of the image is reduced 

to form a low color depth version of the image which is then embedded in the original image. 
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In the algorithm proposed by Zhang et al [34], the gray level depth of the image is lowered 

by removing the 3 LSBs from each pixel, then the reference code is generated by encoding the 15 

lowest frequency coefficient in each block of lower gray level depth image. The generated code is 

then embedded in the 3 LSBs of pixels of the original image. The reconstruction quality was later 

improved by employing compressive sensing in the reconstruction process in [35].  

Korus et al [36] and Sarreshtedari et al [37] considered the communication of the reference 

code as an erasure channel problem. Korus et al [36] applied random linear fountain (RLF) coding 

to the code generated from the DCT information, which is generated in a similar way as in [34], 

before embedding. Sarreshtedari et al [37] used a set partitioning in hierarchical trees (SPIHT) 

source encoding algorithm to encode the multi-resolution wavelet transform coefficients. 

In all of the aforementioned methods [33-37], all image blocks are encoded in the same 

way regardless of their characteristics. This resulted in large reference code which required the use 

of two or three LSB planes for embedding. This in turn would lead to a significant degradation of 

the visual quality of the image after embedding. Some approaches where the embedding process 

is made adaptive to the level of texture in image blocks were reported to reduce the length of the 

reference code in [38-40]. 

Korus et al [38] modified the method presented in [36] to include multiple quality profiles. 

They used the variance of the pixel values to classify image blocks according to their level of 

texture into low, medium and high texture blocks. The information about the level of texture is 

used to control the encoding process by targeting higher reconstruction quality for high texture. 

They managed to reduce the reference code length requiring 2 LSB planes instead of 3, however, 

the code is still considered long. 
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Qian and Feng [39] used inpainting to assist in the reconstruction process and reduce the 

length of the reference code. An edge operator is applied to each image block, then they are sorted 

according in descending order according to the number of edges they contain. The blocks are then 

classified to: high, medium and low texture and flat blocks, with the high texture being the highest 

25% and the flat blocks being the lowest 25%. The flat blocks are excluded from encoding. The 

DCT is performed on the remaining blocks and their DCT coefficients are encoded with different 

code lengths according to their levels of texture. The generated reference code is embedded into 

the LSB of pixel values along with a map indicating texture levels of the blocks and authentication 

bits. In reconstruction, the blocks that were not included in the reference code because they were 

considered flat are recovered using the image inpainting method presented in [49]. This method 

yielded a shorter reference code requiring only 1 LSB plane for embedding but resulted in low 

reconstruction quality. 

In the two discussed adaptive methods [38, 39], the embedding process is only made 

adaptive to the level of texture in image blocks and the gray level patterns of those blocks were 

not considered. This way a high number of bits is assigned to an image block to cover as many 

DCT coefficients as possible in order not to miss any image features represented by those 

coefficients. Whereas if the gray level patterns of those blocks were considered, some bits can be 

saved by ignoring the DCT coefficients that are irrelevant to the pattern and concentrating on the 

coefficients that are critical to represent the specific image block. Thus, achieving further reduction 

in the reference code length while maintaining good reconstruction quality. 

2.5 Image Watermarking 

In image watermarking, a watermark is desired to be invisibly embedded into the original 

image. The watermark is generally required to be robust, i.e. to survive the application of common 
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image processes such as filtering and contrast adjustment and image data transformations such as 

JPEG compression.  

Image watermarking algorithms can be divided into two main categories: spatial domain 

techniques [50-56] and frequency domain techniques [13, 57-72]. In spatial domain, watermark 

embedding is performed by directly modifying the pixel values. An example of such techniques is 

embedding the watermark in the LSB of the pixels as in the discussed image self-recovery 

algorithms. Other popular spatial embedding techniques are ones based on difference expansion 

[51-54] and embedding via histogram modifications [55, 56]. In frequency domain techniques, the 

embedding is carried out by modifying the frequency components of the image. The two most 

commonly used frequency transforms are the DCT [13, 57-66] and the discrete wavelet transform 

(DWT) [67-70]. Spatial domain techniques generally yield less robust watermarks than frequency 

domain techniques [13]. 

Increasing the robustness of the watermark means bigger alterations in the image data are 

required which leads to more visible distortions in the watermarked image. This conflict between 

robustness and invisibility is the main challenge in designing image watermarking systems. 

Cox et al [13] introduced the idea of spread spectrum watermarking and viewed the 

frequency domain of an image as a communication channel. They argued that embedding the 

watermark in the most perceptually significant components of the image would increase its 

robustness, therefore, they embedded the watermark in the DCT coefficients with the highest 

magnitudes. While it is true that this makes the watermark harder to destroy, it undoubtedly 

degrades the visual quality of the watermarked image.  
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You et al [68] embedded the watermark in those singularities in the high frequency sub-

bands of the DWT in order to improve the visual quality of the watermarked image as the HVS is 

less sensitive to alterations in high frequencies. Lee and Li [63] chose to embed the watermark in 

the lowest frequency components to increase robustness and embedded multiple duplicates of the 

watermark to increase resistance to cropping. Some approaches used a combination of singular 

value decomposition (SVD) with a frequency transform in order to balance robustness and 

invisibility of the watermark [73, 74] but that adds more computational complexity to the system. 

These discussed approaches all accept some trade-off between the robustness and 

invisibility of the watermark. To maximize the robustness while maintaining the visual quality of 

the watermarked image, some adaptive approaches that made use of the HVS properties were 

reported [57, 61, 65, 70, 75]. 

Podilchuk and Zeng [57] used the work of Watson [21] to determine the upper bounds of 

watermark insertion in both the DCT domain and the DWT domain and adjust the embedding 

strength accordingly. In similar fashion, Zhi et al [61] explored the use of JND models in image 

watermarking. Wan et al [65] introduced a DCT based visual saliency model and used it to 

modulate the JND model used in [31] in order to avoid distorting the salient regions of the image. 

In the adaptive methods discussed above, the embedding is made adaptive in terms of the 

embedding strength only without careful consideration of the locations of embedding within the 

image nor of the choice of DCT coefficients for embedding.  

OuJun et al [62] proposed to choose the DCT coefficient used for embedding in each block 

according to the direction of texture in the specific image block. They divided the DCT coefficients 

into three groups representing the vertical, horizontal and diagonal directions. Then calculated the 
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total energy of each group and considered the direction of the group with maximum energy as the 

dominant direction. However, this approach does not necessarily produce the correct answer. For 

example, in a case where the DCT coefficient with the highest magnitude is outside the group that 

has the highest total energy, that coefficient might have a bigger influence on the direction 

variations than the entire group. 

The work of Watson [21] specified three main HVS properties that should be exploited: 

The HVS’ sensitivity decreases as the brightness increases, the HVS is less sensitive to changes in 

regions that contain high texture, and the dominant image pattern masks the visibility of other 

patterns of similar orientations. In each of the reported methods, only one or two of those properties 

are exploited and not all three. Moreover, in some of them, complex mathematical equations are 

needed to calculate the embedding parameters. 

2.6 Summary 

In this chapter, some background on the DCT is presented and existing techniques in image 

feature extraction in the DCT domain, image self-recovery and image watermarking are discussed. 

The reported methods for image feature extraction in the DCT domain are only capable of 

determining the orientations of simple edges and are unable to detect other gray level patterns. In 

this thesis, a DCT based image feature extraction that is capable of distinguishing different gray 

level patterns is to be developed and it will be applied in the design of image watermarking and 

image self-recovery algorithms. 

The existing methods for image self-recovery use long reference codes to represent the 

image and the adaptive ones only adapt to the level of texture in the image blocks. Significant 

reduction in the amount of data used to represent the image can be achieved if the encoding is 
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made adaptive to the gray level patterns by selecting only the DCT coefficients critical for the 

specific pattern only. 

In image watermarking, most methods accept a trade-off between the watermark’s 

robustness and invisibility and the adaptive methods attempting to solve the conflict do not fully 

exploit the HVS properties and do not yield optimal results. In this thesis, a DCT based image 

watermarking algorithm that adapts to the characteristics of the image and exploits the HVS 

properties in order to maximize the watermark’s robustness without causing visible distortions will 

be developed. 
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Chapter 3  Feature Extraction in the DCT Domain 

The approaches to extract image features in the DCT domain discussed in Chapter 2 fall 

into two main categories. In the first category, the information used to extract the image features 

are obtained by means of a partial inverse DCT transformation [5-7], which requires less 

computation than the full inverse transform, but is still not computationally simple enough for 

many applications. The second category uses direct comparisons of certain DCT coefficient and/or 

comparison of some parameters calculated from a fixed set of DCT coefficients [8, 9, 11, 32], 

which is computationally simple. Nevertheless, in this category, only the lowest frequency 

coefficients are taken into consideration which leads to inaccuracies in the feature extraction 

process because the significant DCT coefficients for many image blocks may be outside the fixed 

frequency range examined. Furthermore, the reported approaches in both categories represent all 

the texture in the image as single edges and the final result is only the orientations of those simple 

edges. 

The work in this thesis aims at developing an efficient methodology to analyze image 

features in the DCT domain and to apply this methodology to the design of image watermarking 

and image self-recovery algorithms. This methodology is to use a minimal amount of DCT data to 

effectively distinguish and represent as many different features as possible with a view of 

developing a computationally simple algorithm for feature extraction. 

In Subchapter 3.1, the relationship of the DCT coefficients with the pixel domain image is 

analyzed. A method to distinguish image blocks with variations from flat blocks adaptively is 

presented in Subchapter 3.2. The classification of texture into different profiles is discussed in 

Subchapter 3.3 followed by a summary in Subchapter 3.4. 
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3.1 Correlation Between Texture Patterns and DCT Coefficients 

As described in chapter 2, each DCT coefficient represents a spatial frequency component 

and the pattern of an image block is a combination of those spatial frequency components with 

different magnitudes and signs. The reported methods to extract the features directly from the DCT 

information tend to operate under the assumption that an image block can contain only a single 

edge and focus on determining the orientation of those edge using the lowest frequency 

coefficients. Even though blocks of 8×8 pixels are small enough to contain only simple patterns 

of texture, it is possible for a simple pattern to consist of multiple edges in the same or different 

directions. Therefore, it is important to analyze the correlation between the different patterns and 

the DCT coefficients to identify the most critical elements that define more characters in different 

patterns rather than simple edge orientations only. 

The DC coefficient of an image block represents the average of pixel gray levels in the 

image block. The AC coefficients respond to gray level changes in different directions, and so, 

their values and signs directly relate to the strength, shape and orientation of the texture in the 

image blocks. More importantly, it has been observed that the texture in an image block can be 

characterized by the most significant AC coefficients, referred to here as the DCT peaks, or simply 

the peaks. 

These DCT peaks are the key elements and should be given primary importance in the 

analysis of the frequency components of an image block. To analyze the locations of these peaks 

in the DCT matrix, a number of images of 512×512 pixels were used. Each of them is divided into 

4096 blocks of 8×8 pixels and the location of highest DCT peak of each block is recorded. Each 

of the graphs in Fig. 3.1 shows the spatial frequency distribution of the highest peak in the DCT 

matrices of a commonly used test image. The DCT coefficients are numbered in the zigzag order 
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shown in Fig. 3.1 (e). It can be observed that the peaks are concentrated in coefficients in the low 

to medium frequency range. Even though the majority of those peaks are in the lowest two 

frequencies, i.e. the coefficients numbered 1 and 2 in the zigzag order, a noteworthy number of 

blocks have their peaks in higher frequency coefficients representing features such as multiple 

edges. It is risky to neglect such blocks, especially since they may be in critical areas of the image 

and misrepresenting them can lead to a substantial loss of accuracy. 

(a) Lena (b) Boat

(c) Baboon (d) Bridge

(e) Zigzag Order of the DCT Coefficients  

Fig. 3.1 Distribution of the highest peak in the DCT matrices extracted from different test images 
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The analysis in the following paragraphs will consider the identification of the most 

dominant orientations of edges in a block, the number of edges, the offset from the center; and the 

eventual presence of edges in different directions. A number of examples of image blocks extracted 

from real images are shown in Fig. 3.2 and they will be used throughout the analysis. 

The most dominant edge orientation of the texture in an image block is reflected in the 

highest peak among the non-zero AC coefficients of the block. If an image block contains gray 

level changes in the horizontal direction (appearing as vertical edges), the highest peak in the DCT 

matrix is likely to be located in the first row. For example, in Fig. 3.2 (a) the pattern consists of a 

single vertical edge and the highest peak in the DCT matrix is the coefficient X(0,1). In Fig. 3.2 

(b), the image block contains two vertical edges and the highest peak is the coefficient X(0,2) 

which is also located in the first row of the DCT matrix. In contrast, the blocks in Fig. 3.2 (c) and 

(d), contain horizontal edges and the highest DCT peaks are found in the first column of the DCT 

matrix. 

In addition, the location of the highest peak also indicates the number of parallel edges in 

the dominant orientation. If the block contains a single edge, the highest peak will be either X(0,1) 

or X(1,0). On the other hand, if the block contains multiple parallel edges, the highest peak will be 

in coefficients of higher spatial frequencies. For example, the block in Fig. 3.2 (b), the image block 

contains two vertical edges so the highest DCT peak is X(0,2). In Fig. 3.2 (d), the image block 

contains two horizontal edges, and the highest peak is X(2,0). Whereas in the cases of the single 

edges in Fig. 3.2 (a) and (c), the highest peak is found at X(0,1) and X(0,2) respectively. 
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(a)

(A)

(b)

(B)

(f)

(F)

(e)

(E)

(c)

(C)

(d)

(D)

(g)

(G)

(l)

(L)

(k)

(K)

(j)

(J)

(i)

(I)

(h)

(H)

 

Fig. 3.2 Examples of 8x8 image blocks with simple patterns and their corresponding DCT matrices;  

(a)~(l) image blocks and (A)~(L) the corresponding DCT matrices respectively. 
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While the dominant orientation of edges and the number of parallel edges in that direction 

are indicated by the highest peak, more details are reflected by the second and third most 

significant DCT coefficients, referred to as the second and third peaks. If they are located in higher 

frequencies, they indicate offsets from the center and/or the presence of additional directions of 

change in the image block. 

If the gray level pattern in an image block has an offset from the center, this offset can be 

indicated in the DCT matrix by the second and/or third highest peak being located in the same row 

or column as the highest peak. Such a case is illustrated in Fig. 3.2 (e), and the corresponding DCT 

matrix shows the highest peak to be at X(0,1) indicating a single vertical edge, and the second 

highest peak is at X(0,2) indicating an offset. In the same way, in Fig. 3.2 (f), both the highest peak 

and the second highest peak are located in the first column of the corresponding DCT matrix. 

A single diagonal edge can be seen as the result of a gray level change in the vertical 

direction superimposed with a change of comparable amplitude in horizontal direction. Therefore, 

they are indicated in the DCT domain by significant values for both the vertical and horizontal 

coefficients with the lowest spatial frequencies, i.e. X(0,1) and X(1,0). The highest peak will 

correspond to the more dominant direction and the second or third highest peak will be in the 

orthogonal direction. For example, in Fig. 3.2 (g), the edge is horizontally dominant, so the highest 

peak is found at X(1,0) and the second highest at X(0,1). In Fig. 3.2 (h), the edge is vertically 

dominant, therefore, the highest peak is found at X(0,1) and the second highest peak is at X(1,0). 

In a more complicated case, some image blocks contain two different directions of gray 

level variations. In such blocks, the highest DCT peak will indicate the most noticeable direction 

of change. The second and/or third highest peaks will be located in higher frequencies in a different 

row or column to indicate the direction of the second grey level change. For example, the image 
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block shown in Fig. 3.2 (k) contains changes in both the vertical and horizontal directions and its 

DCT matrix is given as: 

[ 757.75 73.00 130.76 -44.73 28.00 -1.17 -21.42 11.84  

 386.86 81.84 111.58 -31.55 28.07 -3.97 -25.03 0.96  

 -6.99 22.24 -11.76 13.74 18.46 -5.32 -17.66 -15.48  

 -50.27 -7.95 -49.52 23.76 4.72 -9.17 -9.36 -21.43  

 21.00 -9.92 -29.54 2.70 -3.75 2.57 2.50 -19.7  

 17.79 0.58 -2.29 -3.63 -11.18 4.38 3.26 -8.45  

 -5.76 -3.69 6.34 -5.18 -9.00 5.45 0.26 2.56  

 -10.71 -5.99 3.05 -5.02 -8.01 -2.20 3.11 -3.49 ] 

 

The more noticeable change in Fig. 3.2 (k) is in the vertical direction, which is resembled 

by the strong horizontal edge. Thus the highest peak is at X(1,0), while the second highest peak is 

at X(0,2) representing the smaller vertical change. Similarly, in Fig.3.1 (l), the vertical edge is the 

dominant one and it is indicated by the highest peak located at X(0,1) while the less significant 

parallel horizontal edges are indicated by the second highest peak at X(2,0). 

From this analysis, it is evident that the DCT peaks, found in the low to medium frequency 

range, are the critical elements to be analyzed to extract different characteristics from an image 

block. The highest peak indicates the dominant edge orientation as well as the number of parallel 

edges in that orientation, while the second and third highest peaks can indicate the offset of the 

gray level pattern and/or the presence of visible edges in a direction different from the dominant 

one. 

3.2 Detection of Image Blocks That Contain Texture 

In the research work of this theses, identification of texture blocks, i.e. blocks that contain 

significant texture, is needed so that feature extraction can be applied exclusively to texture blocks 

rather than the entire image in order to reduce the overall computation of the processes of image 
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self-recovery and image watermarking. In the case of image self-recovery, it’s logical to use a 

fewer number of bits to encode flat blocks and more bits for encoding blocks with texture in order 

to decrease the overall length of the generated code. In image watermarking, it is desired to avoid 

embedding watermarks in flat regions of an image because the HVS is sensitive to changes in these 

regions [21]. 

As discussed in the preceding subchapter, the presence of texture in an image block is 

indicated by the peaks in the DCT matrix. In flat blocks, we expect to see low values of the AC 

coefficients while in blocks that contain texture, at least one AC coefficient will have a significant 

value. As the HVS is less sensitive to texture in higher brightness regions of an image [21], the 

perception of texture is not only related to the magnitude of the AC components but also to the 

brightness of the image block observed. Therefore, it is important to Include the brightness of the 

image block, which is indicated by the DC coefficient, in texture detection. In flat blocks, the ratio 

between the highest DCT peak and the DC coefficient should be low, while in texture blocks, it 

should be relatively high. Accordingly, the ratio between the highest DCT peak and the DC 

coefficient, Peak/DC ratio, provides a meaningful measure of the level of texture in the image 

block. Other parameters, such as the average of the magnitudes of the AC coefficients of the block 

or their variance [8], can also be used to measure the level of texture in the block. Fig. 3.3 shows 

Peak/DC ratios, AC coefficients average and variance for the test image “Lena”. All the measures 

in Fig. 3.3 are normalized by dividing by their maximum value in the image. 
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Fig. 3.3 Comparison of texture detection using peak/DC ratio and average and variance of the AC coefficients 

It can be seen from Fig. 3.3 that all three measures offer indications of the levels of texture. 

The Peak/DC ratio appears to better illustrate different levels of texture than the other two, which 

can be attributed to the inclusion of the brightness of the block. Moreover, the computation of the 

Peak/DC ratio is simpler than the other two, and that makes it an attractive option for the purposes 

of the work presented in this thesis. 

Texture blocks can be identified in an image by applying a threshold value to the Peak/DC 

ratios of the blocks. If the ratio for a block is higher than the threshold, it is considered to contain 

(a) Original image (b) 𝑃𝑒𝑎𝑘/𝐷𝐶 Ratio 

(c) Average of AC coefficients (d) Variance of the AC coefficients 
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texture; otherwise, it is considered a flat block. However, a more flexible approach would be to 

simply calculate the Peak/DC ratio for all image blocks and then selecting a portion of the blocks 

with the highest ratios, for example, selecting the highest 50% or 25% ratios. This approach allows 

the detection to be adjusted to the needs of the application. For example, if the application requires 

the selection of the most complex textures, such as in the case of an image watermarking algorithm 

that requires only a quarter of the image blocks for embedding the watermark. In such a situation, 

the blocks with the highest 25% of the Peak/DC ratios can be selected. Fig. 3.4 shows the results 

of texture detection using the peak/DC ratio when choosing the 50% and 25% of the blocks that 

have the highest 𝑝𝑒𝑎𝑘/𝐷𝐶 values. 

 

Fig. 3.4 Results of detecting texture using the peak/DC ratio 

3.3 Texture Classification in the DCT Domain 

Texture classification is applied to the identified texture blocks only and it is done using 

the DCT information. Since the DCT is usually included in many image processes, texture 

identification and classification add little computation to the process. In image watermarking, the 
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features of the original block are needed to determine the most appropriate locations for embedding 

the watermark with maximum strength while minimizing visible distortions. In image self-

recovery, it helps in determining the most critical DCT coefficients that represent the block, which 

allows adaptive encoding of the image using minimal data while achieving good reconstruction 

quality. 

The distributions of the highest peaks in the texture blocks of the four images used in Fig. 

3.1 are shown in Fig. 3.5. Texture blocks were detected using the Peak/DC ratio and choosing the 

highest 50% of the blocks. The difference between Figs. 3.1 and 3.5 is that the former includes the 

flat blocks, in which the highest peaks are merely made by high frequency fluctuations. It can be 

seen from Fig. 3.5 that the peaks are concentrated in the coefficients numbered 1 to 20 in the zigzag 

order. It is thus reasonable to concentrate the analysis only on the 4x4 coefficients on the top left 

of the DCT matrix. 

Among the 4x4 DCT coefficients, the two coefficients with the lowest special frequencies, 

i.e. X(0,1) and X(1,0), are undoubtedly the most important, however, other coefficients are not 

negligible for good feature extraction. To simplify the inspection of the peaks, the remaining 13 

AC coefficients taken into consideration are divided into 5 groups, in each of which the coefficients 

have a common nature in their spatial frequencies reflecting gray level variations in the same 

direction. For example, the coefficients in the first row of the DCT matrix other than X(0,1) 

indicate multiple parallel edges in the vertical direction, and similarly, the coefficients in the first 

column, except X(1,0) indicate multiple parallel edges in the horizontal direction. The DCT 

coefficients are divided into groups as shown in Fig. 3.6. The groups G_v and G_h represent 

parallel edges in the vertical and horizontal directions respectively; G_d1 represent parallel 

diagonal edges; G_d2 represents vertically dominant parallel diagonal edges; and G_d3 represents 
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horizontally dominant parallel diagonal edges. The coefficients X(0,1) and X(1,0) together with 

the defined groups are used for texture classification. 

(a) Lena (b) Boat

(c) Baboon (d) Bridge  

Fig. 3.5 Distribution of the highest peak in the DCT matrices extracted from high texture blocks 
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Fig. 3.6 DCT coefficients' groups in the low frequency 4x4 portion of the DCT matrix 

As discussed previously, 8x8 blocks are small and contain only simple patterns of gray 

level variations. This enables us to define a small set of profiles that describes the possible patterns 

in 8x8 blocks. Thirteen different profiles are defined and they are shown in Table 3.1. Profiles H1, 

V1, D1 and D3 represent the cases of a single edge in different directions. The profiles, H2, V2, 

D2, D4 and D5 represent the cases of two or more parallel edges. The remaining profiles, namely 

T1, T2, Rec and Cross, represent the cases where more than one visible edge orientation exists in 

the block. 

From the analysis in Subchapter 3.1, it is evident that each of the patterns presented in 

Table 3.1 can be represented by the highest three DCT peaks in the top left 4x4 coefficients of the 

DCT matrix. For example, if the highest peak is at X(0,2), it indicates the presence of vertically 

dominant edges, which could be any of the profiles V2, D2 or Cross. The second peak helps 

distinguish between those three profiles. If it is located in first row, then the profile would be V2. 

For the profile D2, the second peak should be in group G_d1 or group G_d2. In case of the profile 
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Cross, the texture pattern is characterized by a dominant medium frequency coefficient (in G_v, 

G_h, G_d1, G_d2 or G_d3) subject to one of the other 2 peaks being in another medium frequency 

coefficient of an orthogonal spatial frequency. 

Table 3.1 The defined profiles 

Profile Description Examples 

V1 Vertical edge 

 

V2 Vertical line (2 edges) 

 

H1 Horizontal edge 

 

H2 Horizontal line (2 edges) 

 

D1 Vertically dominant diagonal edge 
 

D2 Parallel vertically dominant diagonal edges 

 

D3 Horizontally dominant diagonal edge 
 

D4 Parallel horizontally dominant diagonal edges 

 

D5 Parallel diagonal edges 

 

T1 Horizontal T shape 
 

T2 Vertical T shape 
 

Rec Rectangular shape 

 

Cross Cross shape 
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The classification conditions are summarized in Table 3.2, which covers all possible 

combinations of the locations of highest three peaks. For example, if the highest peak was X(0,1) 

and the second peak was X(1,0), then regardless of the third peak, the block should have a single 

vertically diagonal edge and it will be classified as the profile D1. 

Using this approach, only the locations of the highest three DCT coefficients in addition to 

the DC coefficient are needed to detect and classify texture blocks, and hence a minimal amount 

of DCT data is used. Additionally, the computation needed to locate the highest three peaks is 

reduced by concentrating on a 4x4 portion rather than the full 8x8 DCT matrix.  

3.4 Summary 

In this chapter, the correlation between gray level variations and the DCT coefficients have 

been analyzed with the objective of developing a methodology to extract the characteristics of an 

image block directly from its DCT information. It has been found that gray level variations in the 

pixel domain can be effectively characterized by the highest DCT peaks. Those peaks are not only 

located in the lowest frequencies as indicated by many reported methods but can be found in the 

low to medium frequency range. In the developed methodology, the Peak/DC ratio is used to detect 

image blocks with texture then those blocks are classified to a small set of profiles based on the 

locations of the highest three peaks in the DCT matrix. The proposed method will lead to 

computationally simple feature extraction algorithms since it uses only the DC coefficient and the 

highest three DCT peaks, which makes it very suitable to be applied in image watermarking and 

image self-recovery.  
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Table 3.2 Classification of blocks using the locations of the highest peaks in the DCT matrix 

1st Peak 2nd Peak 3rd Peak Profile 

𝑋(0,1) 

G_v 

G_h or G_d3 T1 

X(1,0) D1 

otherwise V1 

𝑋(1,0) × D1 

G_d1 or G_ d2 × D2 

G_h or G_d3 × T1 

G_v 

First row × V2 

G_d1 or G_d2 × D2 

G_h or G_d3 × Cross 

𝑋(1,0) 

G_h 

G_v or G_d3 T2 

𝑋(0,1) D3 

otherwise H1 

𝑋(0,1) × D3 

G_d1 or G_d3 × D4 

G_v or G_d2 × T2 

G_h 

First column × H2 

G_d1 or G_d3 × D4 

G_v or G_d2 × Cross 

G_d1 

G_d1 × D5 

𝑋(0,1) 
𝑋(1,0) Rec 

otherwise D2 

𝑋(1,0) 
𝑋(0,1) Rec 

otherwise D4 

G_v or G_d2 
G_h or G_d3 Cross 

otherwise D2 

G_h or G_d3 
G_v or G_d2 Cross 

otherwise D4 

G_d2 
First row or G_d1 × D2 

First Column or G_d3 × Cross 

G_d3 
First row or G_d2 × Cross 

First Column or G_d3 × D4 

* × represents don’t care conditions 
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Chapter 4  Image Self-Recovery 

In image self-recovery, a reference code is generated from the image, usually from its 

frequency information, and is embedded in the image itself. If that image is partially corrupted or 

damaged, the reference code will be extracted and used to recover the altered parts of the image. 

The reference code should be as short as possible to make computations simple and to minimize 

the visual distortions caused by embedding the code in the original image. However, it should be 

long enough to represent sufficient image features for an acceptable reconstruction quality. 

In this chapter, an adaptive image self-recovery algorithm is proposed based on the feature 

extraction method presented in the preceding chapter. The objective is to design an image self-

recovery system that represents the image using minimal data while achieving good reconstruction 

quality. The basic scheme of the algorithm is presented in Subchapter 4.1 and a detailed description 

of the proposed algorithm is given in the subchapters from 4.2 to 4.6. The simulation results are 

presented and discussed in Subchapter 4.7. 

4.1 Principles of the Algorithm 

Fig 4.1 shows a block diagram illustrating a basic scheme for image self-recovery with 

adaptive encoding [38-40]. It contains three major processes: classification of image blocks, 

encoding and embedding. The classification is carried out to group the blocks according to the 

complexity of their texture, and a particular encoding method is applied to the DCT coefficients 

of each block in the same group to generate the reference code, i.e. the code to be embedded and 

used to reconstruct the image blocks. Authentication bits, either preset by the user or calculated 

from the image information, are usually added to the code to enable the automatic detection of 

tampering. 
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Fig.  4.1 Block diagram of an image self-recovery system with adaptive encoding 

As discussed in Chapter 2, in existing image self-recovery methods, block classification is 

usually performed in spatial domain. The blocks are classified into a number of groups of different 

levels of texture without distinguishing patterns of textures in image blocks. For a particular group 

of a certain level of texture, all the blocks in that group are encoded in the same way and not 

discriminatively. As there can be different gray level patterns in a given level of texture, a relatively 

large number of bits are assigned to encode a wide range of frequency coefficients in order not to 

neglect significant features that may be represented in different frequency ranges. 

To achieve the objective of minimizing the data volume and computations for image self-

recovery, two issues are considered. The first is to classify the image blocks solely based on their 

frequency domain information, i.e. DCT coefficients, in order to spare the computations in spatial 

domain. It is known that edge information can be extracted from the DCT matrix [8] and the study 

presented in Chapter 3 demonstrated how the gray level variations can be characterized the peaks 

of the DCT coefficients. Hence the classification can be simply and effectively performed in the 

DCT domain. 
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The second issue is to adapt the encoding to the texture patterns of image blocks instead of 

simplistically adapting only to different levels of texture. Since the texture patterns in a block of 

8x8 pixels can be classified to one of the profiles presented in Table 3.1 and each profile can be 

indicated by the highest DCT coefficients as shown in Table 3.2, one can encode the most critical 

DCT coefficients for the specific profile instead of those in the entire frequency range. In this 

manner, the image information encoding will be made more precise and adaptive to the image 

features of the profiles with a minimized code length. The block diagram of the proposed image 

self-recovery scheme is shown in Fig. 4.2, where feature extraction is the most critical process. 

 

Fig.  4.2 Block diagram of the proposed image self-recovery algorithm 

Feature extraction in the proposed method is composed of three steps: texture detection, 

texture classification, and bit assignment as shown in Fig. 4.3. Texture detection is a preliminary 

step to separate flat blocks, which are smooth and do not contain significant gray level variations, 

from blocks that contain texture. In texture classification, texture blocks are classified into a 

number of profiles according to their patterns. After the profile is identified, the most critical DCT 

coefficients are chosen for encoding with the number of bits assigned appropriately according to 

the profile. 

x x’Embedding
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Fig.  4.3 The proposed feature extraction procedure 

4.2 Feature Extraction 

To efficiently use a small amount of data to represent the image, the length of code 

representing the image should be variable depending not only on the level of texture, but also on 

the texture profile. Thus, it is vital to be able to get a characteristic description of the image block 

through an appropriate block classification method. The feature extraction method developed in 

Chapter 3 is able to use minimal DCT data to distinguish different gray level patterns, which makes 

it suitable for application in image self-recovery. The application of this method in the proposed 

algorithm is described in detail in this subchapter. 

4.2.1 Texture Detection and Classification 

The first step of feature extraction is to separate flat blocks and texture blocks. Flat blocks 

do not contain significant details or meaningful information and require less attention in the feature 

extraction procedure. A flat block is considered an easy case for encoding and can be simply 

represented by its gray level average without visibly affecting the reconstruction quality. Texture 

blocks are the blocks that contain gray level variations representing meaningful information; 

therefore, they require more attention in analysis and it is important to encode the frequency 

components relevant to their patterns with the maximum possible accuracy. 
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In the proposed image self-recovery algorithm, the texture detection is performed using the 

Peak/DC ratios, as described in Chapter 3. The portion of blocks having the highest Peak/DC ratio 

values are considered texture blocks. For instance, one can choose 50% of blocks with the highest 

ratios in an image as texture blocks. The partitioning can be adjusted according to the requirements 

in different aspects. For example, if a higher reconstruction quality is required, a higher percentage 

of blocks should be selected as texture blocks. However, it must be kept in mind that higher 

accuracy comes at the expense of a longer reference code. To balance the reconstruction quality 

and code length, it is reasonable to select half of the image blocks as texture blocks as this way, it 

is more likely to capture most of the blocks with important details without assigning a big portion 

of the reference code to non-important blocks. 

It is known that most of the visual information is concentrated in the low and medium 

frequency range, and in Chapter 3 it has been shown that for 8x8 blocks, it is sufficient to consider 

only the 4x4 DCT coefficients in the top left corner of the 8x8 DCT matrix to represent different 

image features because of the simplicity of the patterns contained by such small blocks. The 13 

profiles defined in chapter 3 provide a very good representation of the possible gray level patterns 

that could appear in 8x8 blocks. They are defined following the analysis of different combinations 

of frequency components so that they offer a platform to identify the most critical frequency 

components needed to regenerate the pattern of each profile.  

Texture classification is applied exclusively to the identified texture blocks. To classify a 

texture block, first, its DCT coefficients are examined and the highest three DCT peaks are located, 

then Table 3.2 is used to classify the texture block to one of the 13 profiles of Table 3.1. The results 

of texture classification make it possible to choose an appropriate set of coefficients to represent 

the particular gray level pattern in each texture block. 
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4.2.2 Bit Assignment 

After the profile of an image block is identified, the most critical DCT coefficients to 

represent the block should be chosen and appropriate code lengths assigned to encode them with 

a view to minimize the overall number of bits. As the important DCT coefficients vary with gray 

level patterns, the DCT coefficients selected and the number of bits assigned to each DCT 

coefficient should vary with the texture profiles to adapt to the gray level patterns. 

For a more precise representation of the image blocks, more bits should be assigned to the 

most critical coefficients that represent each profile. As revealed in the analysis presented in 

Chapter 3, the DCT peaks are the critical elements, therefore, they should be assigned more bits. 

Moreover, the texture profiles that appear more frequently should be encoded with more precision. 

The DC coefficient reflects the gray level average of an image block. It is therefore the 

most important element in a DCT matrix regardless of the gray level pattern of the image block 

and it should be preserved with the maximum possible accuracy. From the DCT equation it can be 

seen that the DC coefficient is in fact equal to eight times the gray level average. This means that 

if the DC coefficient is quantized by 8, its maximum value would be 255 and 8 bits are needed to 

encoded it without any loss. 

As discussed previously, there are no significant gray level variations in flat blocks and 

their signals can be represented by their pixel average without any significant loss of accuracy. 

Hence, the DC coefficient is sufficient to represent flat blocks. 

For the 13 texture profiles presented in Table 3.1, the encoding bits should be distributed 

appropriately among the important AC coefficients, shown in Table 3.2, while taking into 

consideration that some profiles appear more frequently than others. To be more specific, the 
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highest DCT peak is assigned the highest number of bits with respect to the other AC coefficients. 

Fig. 3.5 shows the distribution of the highest peaks and provides an insight on how frequently a 

profile can be seen in an image. It is reasonable that the highest peaks are assigned more bits in 

the cases of the most frequently appearing profiles. The number of bits assigned to the DCT 

coefficients for the 13 texture profiles is shown in Fig. 4.4. 

The number of bits assigned to the locations of the highest peaks in different blocks varies 

from 8 to 5 depending on the profiles. The profiles H1 and V1 make up almost half of the texture 

blocks in an image, as can be seen in Fig. 3.5, and the locations of the peaks are determined, i.e. 

X(1,0) in case of H1 and X(0,1) in case of V1. Hence, 8 bits are assigned to those coefficients. In 

the case of the profiles D1 and D3, the amplitudes of the highest two peaks are comparable, and 

their locations are also determined; therefore, they are both assigned 7 bits. In the remaining 

profiles, the highest peak is less dominant than in H1 and V1. Additionally, its location is less 

determined. In other words, it can be found in a position belonging to one of the coefficient groups 

shown in Fig. 3.6. Each of the locations where the highest peak may appear is assigned 7 bits. The 

locations of the second and third peaks in the remaining profiles are assigned 4 to 6 bits according 

to their frequencies and the likelihood that a peak is located in them. Each of the profiles D2 and 

D4 can occur as a result of 4 different combinations of peaks, therefore they were divided into 4 

sub-profiles as in Fig. 4.4 with two extra bits used to distinguish among the four possibilities. The 

profile Cross can also result from different combinations of peaks, however, as it is among the 

least encountered profiles, the assigned bits were spread among the AC coefficients instead of 

trying to represent each possible combination separately. 
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The DCT coefficients are quantized before encoding to reduce the range of their 

magnitudes and allow them to be encoded with acceptable accuracy with fewer bits. The 

quantization step, Q, used in the proposed algorithm is given by equation 4.1. 

 𝑄(𝑖,𝑗) =  {
8,        𝑖𝑓 𝑖 = 𝑗 = 0
10,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.1) 

As mentioned previously, the DC is quantized by 8 for it to be encoded by 8 bits without 

loss. The magnitude of the highest AC component was observed to rarely exceed 500. The 

maximum number of bits assigned to an AC coefficient is 7 bits which allows to encode values in 

the range [-63,+63]. Therefore, a quantization step of 10 is sensible since it would allow encoding 

values in the range [-630,+630]. If the value of a coefficient is too high to be encoded by the 

assigned number of bits, it is clipped to the maximum value allowed. 

Since there are 13 possible texture profiles in addition to the flat profile, 4 bits are needed 

to indicate the profile of each block. Hence the length of the profile map would be 4N bits. From 

Fig. 4.4, it can be seen that the image info in each texture block is represented by a code in the 

rage between 29 and 60 bits in the cases of the profiles Rec and Cross respectively. However most 

of the texture blocks will be represented by 37 to 49 bits. A flat block is assigned only 8 bits since 

it is represented by its DC coefficient only. For an image consisting of N blocks, half of those 

blocks are considered flat blocks, thus, the contribution of flat blocks to the overall reference code 

is 
8𝑁

2
. For the texture blocks the maximum number of bits would be 

60𝑁

2
 if all texture blocks 

belonged to the Cross profile while the minimum would be 
29𝑁

2
 if all blocks belonged to the Rec 

profile. Therefore, the maximum possible overall length of the reference code is 34𝑁 bits and it 

will always be between 19N and 34N bits. 
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Fig.  4.4 The number of bits assigned to the DCT coefficients for the 13 texture profiles 
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4.3 Encoding 

After bits are assigned to the DCT coefficients of an image block, its DCT coefficients are 

quantized and their values are converted to binary. The DC component is converted to an unsigned 

8-bit integer and the AC coefficients are converted into signed integers with different lengths 

according to the bit assignment. In the cases of the profiles D2 and D4, two bits are added to the 

beginning of the code to distinguish between the four possible sub-profiles. The resulting binary 

integers are concatenated to form the block code. The coefficients are ordered column wise from 

top to bottom and left to right and the coefficients with 0 bits assigned are skipped. The image 

blocks are scanned in the same order and all the block codes are concatenated to form the reference 

code R. 

The 4 bits indicating the profile of each block are recorded in the same order to generate 

the profile map M. Since this map is critical for decoding of reference code, it is important to 

duplicate M many times and embed it in different locations. 

4.4 Authentication Bits 

The inclusion of the authentication bits in the code is essential in order to automatically 

detect tampering and localize the tampered regions of the image at reconstruction. The 

authentication bits for each block are generated using the MD5 hashing method used in [36, 37, 

39]. The MD5 hashing method generates a unique set of 128 bits for each set of data, which makes 

it very suitable for image authentication. 

The authentication bits for each profile are generated from the gray level values of pixels. 

The MD5 hash code is calculated from all the pixel values with all LSBs set to 0 and the resulting 

64 bits are divided into 16 groups. An XOR operation is performed on all the bits in each group to 



 

 

44 

 

produce 𝐻𝑛, the 16-bit authentication code for the image block, which will be embedded in the 

same block from which it was generated. 

4.5 Embedding 

The watermark to be embedded in the image consists of the generated reference code R, 

the profile map M and the authentication code H. It is required to be fragile, i.e. it should not 

survive tampering, in order to be able to use the authentication bits to detect any manipulations. In 

addition, the embedding method should permit embedding the entire set of codes in the cover 

image. To meet these two requirements, the watermark is embedded in the LSBs of the pixel values 

to produce the watermarked image. The embedding procedure is very similar to the procedure used 

in [39], however, because of the shorter reference code, not all pixels in the image are needed in 

embedding. 

In general, an image consisting of N blocks of 8x8 pixels has the embedding capacity of 

64𝑁 bits if the LSB of each pixel is used. As mentioned previously, the maximum possible length 

of the reference code R in the proposed algorithm is 34𝑁, which means that even with the addition 

of the profile map M and the authentication code H, it is sufficient to use only one LSB plane for 

embedding unlike the methods in [35-38], where 2 or 3 LSB planes are needed. 

The following steps are performed for embedding: 

1. Divide the reference R into N segments, where each segment contains S bits, to form 𝑅′ 
where: 

 𝑅′ = {𝑅n
′ :  n = 1,2,3, … , N} (4.2) 

 𝑆 =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑅

𝑁
 (4.3) 
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The index number n is mapped to m to reorder 𝑅′ to 𝑅′′ using the following mapping 

function: 

 𝑚 =  {
(𝑛 + 𝑘)𝑚𝑜𝑑 𝑁,   𝑖𝑓 𝑛 + 𝑘 ≠ 𝑁
𝑁,                          𝑖𝑓 𝑛 + 𝑘 = 𝑁

 (4.4) 

 𝑅′′ = {𝑅′n
′ :  n = 1,2,3, … , N} (4.5) 

where k is a secret key.  

As the length of R is determined by the features of the texture blocks and varies 

from one image to another, the value of S, calculated by equation (4.3), is important for 

decoding R. Since the length of R is between 19𝑁 and 34𝑁, S will be in the range between 

19 and 34 bits. Hence S can be represented by 𝑆′ where: 

 𝑆′ = 𝑆 − 19 (4.6) 

The maximum value of 𝑆′ is 15 which means only 4 bits are needed to encode 𝑆′. 

2. Concatenate 𝑆′ to the beginning and end of 𝑀 and duplicate the result 3 times to form 𝑀′. 

 𝑀′ = {𝑆′, 𝑀, 𝑆′, 𝑆′, 𝑀, 𝑆′, 𝑆′, 𝑀, 𝑆′} (4.7) 

The duplication is done because this information is critical when decoding the reference. 

 𝑇ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑀′ =  3 × 4𝑁 + 3 × 4 = 8𝑁 + 16 𝑏𝑖𝑡𝑠. (4.8) 

𝑀′ is divided into N segments where the first 16 segments contain 9-bits each and 

the remaining segments are 8-bits each. The result is 

 𝑀′′ = {𝑀𝑛
′′:  𝑛 =  1,2,3, … , 𝑁} (4.9) 

This way, the profile map will be embedded in multiple locations across the image and if 

some part of the image is corrupted, it can be retrieved from the uncorrupted parts. 
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3. In the 𝑛𝑡ℎ image block 𝑥𝑛, its authentication code 𝐻𝑛, the 𝑛𝑡ℎ segment of 𝑀𝑛
′′ and the 𝑛𝑡ℎ 

segment of the 𝑅𝑛
′′ are embedded into the LSBs of the pixel values to produce the 

watermarked block 𝑥′𝑛. Not all pixel values will be used because the maximum possible 

number of bits to be embedded will be 9+16+34 = 59. The unused bits are left unchanged. 

 𝑥′𝑛 = 𝑒𝑚𝑏𝑒𝑑(𝑥𝑛, [𝐻𝑛 𝑀𝑛
′′ 𝑅𝑛

′′]) (4.10) 

4.6 Reconstruction 

First, the authentication bits 𝐻 are extracted from the received image. The same procedure 

used for authentication is repeated to calculate the 16-bit authentication sequence for each received 

image block and they are compared to 𝐻. The blocks where a match was not found are considered 

corrupted. The profile map, 𝑀, and the number of bits in each reference code segment, 𝑆, are 

retrieved from the authentic parts of the image and they are used to decode the reference code. The 

reference code is then used to generate the DCT coefficients for the corrupted image blocks and 

the IDCT is performed to reconstruct those image blocks and replace the corrupted blocks. 

4.7 Simulation Results 

The proposed scheme was simulated using MATLAB to evaluate its performance in terms 

of the length of the generated reference code and the visual quality of the reconstructed image. The 

visual quality of an images is measured using the Peak Signal-to-Noise Ratio (PSNR). The images 

used in the simulations are commonly used gray-scale images of 512x512 pixels having different 

characteristics. The performance of the proposed algorithm is compared to the results of the 

methods reported in [35-39]. The method in [39] is an adaptive approach that shares the same 

objective of reducing the encoding data with the proposed method. The method in [38] is another 

adaptive method but with emphasis on controlling the reconstruction quality by providing high 
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quality recovery for the important contents at the expense of the less valuable background content. 

The remaining methods [35-37] are recent methods that show good reconstruction quality. 

4.7.1 Length of the generated Reference Code and Visual Quality of Embedded Images 

The lengths of the reference codes generated using the proposed method from different 

images in bits is shown in Table 4.1. Even though the code lengths in individual blocks are profile 

dependent, the total length varies only slightly from one image to another. The average reference 

code length is compared to those of the reported methods [35-39] in Fig. 4.5. From Fig. 4.5, it can 

be seen that the proposed method results in a reference code that is considerably shorter than the 

compared methods, requiring only between 
3

5
 to less than 

1

5
 of those of the methods reported in [35-

39]. For the method reported in [37], the 2 LSB versions were used since they result in shorter 

codes.  

The short code length facilitates embedding and leads to a very high visual quality in the 

watermarked image with an average PSNR of 51.64 dB as seen in Table 4.2. This because the 

proposed method uses only a portion of the LSBs of the pixels for embedding, whereas the 

compared methods require the 2 or 3 LSBs. According to a study presented in [37] , the PSNR 

values of the watermarked image using 2 LSB planes [35, 37, 38] and the methods using 3LSB 

planes [35, 36] are 44.15 and 37.92 dB respectively. The decay in PSNR due to the use of an 

additional LSB plane is about 6 dB. The proposed method uses a reference code short enough to 

be embedded in only a portion of the LSBs of the pixels resulting in high visual quality. Moreover, 

it makes it possible to duplicate critical parts of the code to improve the chance of recovering 

severely damaged image blocks. 
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Table 4.1 Number of bits of the reference code generated using the proposed method 

Image Boat Lena Baboon Peppers Barbara Bridge Tiffany Zelda Pirate Average 

Ref. Code 

Length 
114,041 114,477 119,441 115,992 116,991 115,862 115172 116,544 115,832 116,039 

 

Table 4.2 Visual quality of the watermarked image 

Image Boat Lena Baboon Peppers Barbara Bridge Tiffany Zelda Pirate 

PSNR 

(dB) 
51.68 51.71 51.56 51.61 51.63 51.64 51.66 51.64 51.64 

 

 

Fig.  4.5 Comparison of the number of bits of the reference code 

4.7.2 Reconstruction Quality 

To evaluate the visual quality of reconstruction, parts of the test images, after encoding and 

embedding, are removed to produce the corrupted versions of the images, then they are recovered 

using the codes extracted from them. Examples of the original test images that were used in the 

tests and corrupted versions of them are shown in Fig. 4.6 and Fig. 4.7 respectively. The recovered 

versions are shown in Fig. 4.8, where it can be noticed that the corrupted regions were successfully 

recovered with an acceptable level of detail. Fig. 4.9 shows the recovered regions in the cases of 

Boat 1 and Lena 1 and offers a better view of the recovered area in comparison to its original 
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version. It can be seen from Fig. 4.9 that the general texture patterns of the objects were recovered 

with good quality. The recovered region in Fig. 4.9 (a) is clearly part of a boat and in (b) the 

recovered face is easily recognizable as the face of Lena. Table 4.3 shows the PSNR values of the 

recovered versions in Fig. 4.8. The PSNR values of the recovered versions are very good 

considering that the corrupted areas where all areas that contained significant textures. 

Table 4.4 shows a comparison of the PSNR values of the recovered versions of various 

images using the proposed methods to the results presented in [39] with the tampering rate (TR) 

set to 50%, i.e. half of the blocks of each image are corrupted. The proposed scheme results in 

significantly higher PSNR values, about 2.5 dB higher in average, despite using a reference code 

that is almost half the length of the code used in [39].  

The average reconstruction quality calculated from a set of 9 images at different tampering 

rates is compared to that of the methods in [35-38, 42]. The comparison is shown in Table 4.5 and 

Fig. 4.10.  It can be seen from Fig. 4.10 that the proposed algorithm performs better than the 

methods in [35] and [42]-B. The methods in [42]-A and [37] seem to produce better results for a 

limited range of tampering rates, 20% and 30% respectively, while the proposed algorithm can 

successfully perform for tampering rates up to 50%. The methods in [36] has a constant 

reconstruction quality up to a TR of 50% and provides better results than the proposed algorithm 

for low TR values and the method in [38] provides better results for the entire TR range. However, 

it should be noted that the recovery quality is related to the information carried by the reference 

code, and the ideal case is to have maximum information given the shortest code. Among the cases 

presented in Table 4.5, the proposed method has a remarkably shorter code than all the others (70% 

and 82% shorter than those of [38] and [36] respectively) while its reconstruction quality is always 

above the average level at different tampering rates. Overall, the proposed feature extraction and 
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encoding methods lead to minimized reference code length with excellent density of image 

information in each bit of the code. 

Table 4.3 The PSNR of the reconstructed images of Fig. 4.8 

Image Boat 1 Boat 2 Lena 1 Lena 2 Baboon Peppers 

PSNR of the 

Recovered Version 
37.44 41.15 42.62 44.05 39.02 41.69 

 
Table 4.4 The reconstruction quality of the proposed method compared to [1] with a TR of 50% 

Image 
PSNR of the Reconstructed Version (dB) 

Qian [39] Proposed 

Peppers 31.8 34.85 

Lena 32.8 34.27 

Baboon 22.6 28.97 

Zelda 36.8 37.45 

Barbara 24.8 28.08 

Tiffany 32.2 32.22 

Average 30.17 32.64 

 

Table 4.5 Comparison of the average PSNR values (in dB) of the recontstructed images at different tampering rates 

Method 
Tampering Rate 

10% 20% 30% 40% 50% 

[37] 40.5 40.5 40.5 0 0 

[38] 44 44 39 37 34 

[36] 36.4 36.4 36.4 36.4 36.4 

[35] 37.2 34.8 29.1 28.1 27 

[42]-A 40.7 40.7 0 0 0 

[42]-B 31.7 31.7 28.7 28.7 25.8 

Proposed 41.58 37.32 34.42 32.46 31.70 
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Fig.  4.6 The original test images 

(c) Peppers (d) Baboon

(a) Boat (b) Lena
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Fig.  4.7 Corrupted versions of the images of Fig. 4.6 

(a) Boat 1

(c) Lena 1

(b) Boat 2

(d) Lena 2

(e) Baboon (f) Pepper
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(a) Boat 1

(b) Boat 2
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(c) Lena 1

(d) Lena 2
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Fig.  4.8 Recovered versions of the images of Fig. 4.7 

(e) Baboon

(f) Peppers
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Fig.  4.9 The recovered regions in the cases of Fig. 4.8 (a) and (c) 

  

(a) Boat 1

(b) Lena 1

ReconstructedOriginal

Original Reconstructed
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Fig.  4.10 Comparison of the average PSNR values of recovered mages at different tampering rates 

 

4.8 Conclusion 

In this chapter, the feature extraction method developed in the preceding chapter was 

applied to propose an adaptive image self-recovery algorithm. The proposed algorithm adapts to 

the gray level patterns rather than to the complexity of texture only. It is computationally simple 

and uses minimal data to encode the image information. The simulation results have shown that it 

yields good reconstruction quality and its performance is superior to recently reported methods in 

terms of achieving remarkable reductions in the encoding data. 
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Chapter 5   Image Watermarking 

In Image watermarking, it is desired to embed a robust watermark into an image without 

causing visible distortions in the watermarked image. As discussed in Chapter 2, the main 

challenge in image watermarking is addressing the conflict between robustness and invisibility. 

Some adaptive techniques aiming at resolving this conflict were reported [57, 58, 60, 61, 65, 66]. 

However, these methods focus mostly on finding the suitable regions of the image for watermark 

embedding and/or adjusting the strength of embedding and not on choosing the most suitable 

frequency components for embedding. 

The objective of the work in this chapter is to develop a DCT based image watermarking 

algorithm that maximizes the embedding strength while minimizing visual distortions. The 

developed algorithm should be computationally simple and allow for the blind extraction of the 

watermark, i.e. without the presence of the original image. An image-adaptive approach is taken 

to achieve the objective and the feature extraction scheme presented in Chapter 3 is applied in the 

development of the algorithm with focus on determining the most suitable frequency components 

for embedding. 

5.1 Principle of the algorithm 

Image watermarking can generally be classified into spatial domain and frequency domain 

techniques. While spatial domain techniques are generally simpler, frequency domain techniques 

yield higher robustness [76]. As the DCT is a widely used and already a part of many image 

processes, embedding signals in the DCT coefficients gained popularity in image watermarking. 

In DCT based watermarking schemes, the watermark data is embedded by modifying the 

DCT coefficients of the image. To increase the robustness of the watermark, greater alterations 
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have to be made in the DCT coefficients which leads to more visible distortions in the watermarked 

images. To solve this conflict between robustness and visual quality, the watermark must be 

embedded in the image regions of the image where data alterations are the least perceptible. To 

determine which regions of an image and which frequency components are the most suitable for 

embedding, it is necessary to consider the properties of the human visual system (HVS). 

The work of Andrew Watson on developing visual models for adaptive quantization made 

use of the luminance and contrast masking properties of the HVS [21], which can be summarized 

in the following points: 

1. The HVS is less sensitive to alterations in regions that contain significant gray level 

variations, i.e. regions that contain texture; 

2. The presence of a dominant image pattern strongly masks smaller variations that have 

a similar orientation and spatial frequencies; and 

3. The HVS sensitivity decreases as the background luminance increases, i.e. it is harder 

to perceive gray level variations in the brighter regions of an image. 

According to the properties stated above: the watermark should be embedded in regions 

that contain sufficient gray level variations (GLV) to mask the alterations caused by embedding; 

the DCT coefficients used for embedding should be chosen is such a way that the resulting 

variations have the same orientations as the dominant original gray level patterns; and the 

embedding strength should be adjusted according to the brightness. 

Accordingly, the image features needed for adaptive embedding are the levels of texture, 

gray level patterns and brightness of image blocks. If those features can be efficiently extracted 

from the DCT coefficients of the image, a fair amount of computations can be saved because there 
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will be no need for extra spatial domain processes. The feature extraction method presented in 

Chapter 3 is a computationally simple where the level of texture is measured using the 𝑃𝑒𝑎𝑘/𝐷𝐶 

ratio and texture patterns are classified using the highest DCT peaks. This makes the method 

presented in Chapter 3 very suitable for use in image watermarking. 

In the proposed algorithm, the aforementioned HVS properties must be exploited to allow 

maximization of the embedding strength while maintaining high visual quality of the image. The 

watermark is to be embedded in the image blocks with significant gray level variations. Within 

such blocks, the DCT coefficients used in embedding will be chosen so that the alteration caused 

by embedding will have the same orientation as the dominant gray level pattern in the block, and 

the embedding strength will be adjusted according to the gray level mean of the block, i.e. the 

brightness of the block. In the following subchapter, a simple implementation of the discussed 

principles is presented.  

5.2 The Watermarking Algorithm and Its Implementation 

Fig. 5.1 shows a block diagram of the proposed algorithm. The input image 𝑥 is divided 

into blocks of 8x8 pixels which is the most commonly used size and the one used in Chapter 3. 

The watermark 𝑤 is of 𝑚2 bits and it is to be embedded in the DCT matrices of 𝑚2 selected image 

blocks. After embedding, the watermarked image 𝑥′ is obtained by performing the IDCT. A binary 

image is used as a watermark in the proposed algorithm to facilitate blind extraction.  

As mentioned previously, the method presented in Chapter 3 will be used to extract the 

required features in the proposed algorithm. Feature extraction is composed of two steps: the first 

is to detect the texture level of the image blocks in order to choose the blocks with the most 

significant gray level variation for embedding. The second step is to detect the dominant 
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orientations of the gray level variations in those blocks so that appropriate DCT coefficients are 

chosen for embedding. It must be denoted that the orientations of gray level variations are generally 

perpendicular to edge orientations, for example, in a horizontal edge the gray level variations have 

a vertical orientation. 

 

Fig.  5.1 Block diagram of the proposed Image Watermarking Algorithm 

5.2.1 Texture Detection and Selection of Image Blocks for Watermark Embedding 

As discussed previously, the image blocks with the most significant gray level variations 

must be chosen for embedding the watermark because the HVS is less sensitive to alterations in 

such blocks. The 𝑃𝑒𝑎𝑘/𝐷𝐶 ratio is used, as described in Chapter 3, to detect the level of gray level 

variations in the image blocks. The image blocks with the higher ratios, referred to as texture 

blocks, are chosen for embedding. The threshold value of the 𝑃𝑒𝑎𝑘/𝐷𝐶 ratio to separate texture 

and flat blocks is chosen according to the watermark size. For example, if a watermark of 32×32 

bits is used, the 1024 blocks with the higher 𝑃𝑒𝑎𝑘/𝐷𝐶 ratios will be selected. This way the 

selection adapts to the image features and the watermark will always be embedded in the most 

suitable blocks in an image. 
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5.2.2 Detection of the Directions of Gray Level Variations 

Knowledge of the directions of gray level variations is necessary to choose the most 

appropriate DCT coefficients for embedding the watermark data adaptively. In the method 

presented in Chapter 3, thirteen profiles are defined to describe the different gray level patterns in 

8x8 image blocks. However, for the purposes of the work in this chapter, only the most dominant 

direction of gray level variations is needed while the number of edges and the secondary directions 

of change are less critical. Therefore, the texture classification explained in Chapter 3 can be 

simplified for use in the proposed watermarking algorithm. For example, the dominant direction 

of variations is the same for the profiles, V1, V2 and T1, i.e. the horizontal direction, therefore in 

the proposed algorithm, there is no need to distinguish among them. 

In the proposed algorithm, five directions of gray level variations are considered: vertical, 

horizontal, diagonal, vertically dominant diagonal and horizontally dominant diagonal.  Following 

the same reasoning as in Chapter 3, the dominant direction of variations can be detected using the 

locations of the highest two DCT peaks in the DCT matrix as shown in Table 5.1. The detection 

conditions in Table 5.1 are evaluated sequentially starting from the top. For example, in case of a 

block with horizontally dominant diagonal variations, the first three conditions will be found false 

and the fourth will be true. 

5.2.3 Selection of the DCT Coefficients for Embedding 

In the proposed algorithm, 1 bit of the binary watermark is embedded into each of the 

selected image blocks, and a single DCT coefficient must be chosen for embedding in each block. 

As mentioned previously, the chosen coefficient must have a spatial frequency that has the same 

orientation as the gray level variations in the original block. This way, the distortions resulting 

from embedding will be masked by the original variations. However, alterations to the highest 
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DCT peak must be avoided in the embedding process since it reflects the most dominant 

orientation as established in Chapter 3. In Addition, the chosen coefficient must be of a medium 

frequency, because alterations in the low frequency components are easier to perceive in the spatial 

domain and data embedded in high frequencies can be easily removed by simple low pass filtering 

without degrading the visual quality of the image. 

Table 5.1 Detection conditions of the directions of gray level variations 

Direction of Gray 

Level Variations 
Example Detection Condition 

Horizontal Profiles V1, V2 and T1 Both peaks are in the first row. 

Vertical Profiles H1, H2 and T2 Both peaks are in the first column. 

Diagonal Profile D5 The highest peak is on the diagonal line. 

Horizontally 

Dominant Diagonal  
Profiles D1 and D2 The highest peak is above the diagonal line. 

Vertically Dominant 

Diagonal 
Profiles D3 and D4 The highest peak is below the diagonal line. 

 

To facilitate the selection of coefficients and embedding, the DCT coefficients are divided 

into 5 groups corresponding to the five directions shown in Table 5.1, where the coefficients in 

each group have spatial frequencies of similar orientations to the corresponding direction. The 

groups are shown in Fig. 5.2. After detecting the direction one coefficient from the corresponding 

group will be chosen for embedding the watermark bit. 

In Fig. 5.2, the locations of the coefficient to be chosen for embedding in each case are 

shown. The coefficient indicated by a solid circle is chosen if it is not the highest DCT peak, 

otherwise, the coefficient indicated by the dashed circle will be chosen. For example, if the gray 
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level variations were detected to be in the vertical direction, the coefficient 𝑋(4,0) will be chosen, 

unless it is the highest peak, in which case, the coefficient 𝑋(3,0) will be selected. 

 

Fig.  5.2 DCT matrix in zigzag order with the coefficients groups corresponding to the directions of gray level 

variations shown in Table 1: (a) Vertcal, horizontal and diagonal; (b) Horizontally dominant diagonal: and (c) 

vertically dominant diagonal [77] 

5.2.4 Watermark Embedding 

The watermark embedding process should be reversible and allow for blind extraction of 

the watermark. To facilitate blind extraction, the embedding should be carried out by modifying 

some relationship between the chosen coefficient and other DCT coefficients so that the extraction 

can be simply performed by testing this relationship without need for the original image. It should 

also be noted that the sign of the chosen coefficient should not be modified. 
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As the HVS is less sensitive to image data alterations in bright regions, the strength of 

embedding can be increased for blocks with higher gray level means. The gray level mean can be 

extracted from the DC coefficient by simply dividing it by 8 as can be seen from the DCT equation. 

In the proposed algorithm, the watermark is embedded by making the amplitude of the 

chosen coefficient greater of less than the average of the amplitudes of the remaining coefficients 

in its direction group. The watermark is embedded as shown in Table 5.2, where:𝑤 is the 

watermark bit, 𝐶 is the original value of the chosen coefficient, 𝐶′ is the new value of the chosen 

coefficient, and 𝐴𝑉𝐺 is the average of the amplitudes of the coefficients in the coefficients’ group 

representing the detected direction of variations, calculated excluding the chosen coefficient and 

the highest DCT peak if it happened to belong to the group. 

Table 5.2 Watermark embedding 

𝑤 = 0 𝑤 = 1 

|𝐶′| =  {
𝐴𝑉𝐺 − 𝐾            , |𝐶| > 𝐴𝑉𝐺 − 𝐾 

|𝐶|               , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 |𝐶′| =  {

𝐴𝑉𝐺 + 𝐾            , |𝐶| < 𝐴𝑉𝐺 + 𝐾 
|𝐶|               , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The value of 𝐾 determines the strength of watermarking and it is controlled by the value 

of the DC coefficient as shown in Equation 5.1: 

 𝐾 = 𝐾′ + 𝛼 ∙
𝐷𝐶

8
 (5.1) 

where: 𝐷𝐶 is the value of the DC coefficient, 𝐾′ is a predetermined constant, and 𝛼 is a scaling 

factor. 
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5.2.5 Watermark Extraction 

In the proposed algorithm, the watermark can be extracted without the presence of the 

original watermark. The received image is divided into 8x8 blocks, then blocks with the higher 

𝑃𝑒𝑎𝑘/𝐷𝐶 ratios are considered the ones that contain the watermark bits. The direction of gray 

level variations in each of those blocks is then determined, the DCT coefficient used for embedding 

is identified, and the average of the amplitudes of the coefficient group representing the determined 

direction is calculated in the same way described for the embedding process. Then the watermark 

bit is extracted from each block using the following equation: 

 𝑤′ = {
0, 𝐶 ≤ 𝐴𝑉𝐺
1, 𝐶 > 𝐴𝑉𝐺

 (5.1) 

where: 𝑤′ is the extracted watermark bit. The binary image formed by the extracted bits is the 

extracted watermark. 

5.3 Simulation Results 

The proposed algorithm is evaluated in terms of the visual quality of the watermarked 

image and the robustness of the watermark against several attacks. The PSNR is used to assess the 

visual quality of the watermarked image while the correctness rate (CR) is used to evaluate 

robustness. The CR is simply the ratio of the correct bits to the total number of bits in the extracted 

watermark. Preliminary results of the proposed algorithm are presented in [77]. 

In the simulations, a binary watermark of 32×32 bits has been embedded into several 

commonly used gray level test images of 512×512 with different characteristics were used. Fig. 

5.3 shows some of the images and the watermark. The parameters 𝐾′ and 𝛼 have been preset to 

10 and 0.05 respectively in the simulation. 
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Fig.  5.3 Some of the test images and the used watermark 

(c) Peppers (d) Baboon

(a) Boat (b) Lena

(e) The Watermark
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The performance of the proposed algorithm is compared to the those of the algorithms in 

[61, 63, 65, 66, 68], all of which use binary watermarks and are designed for blind extraction. In 

[61], four JND models were applied to the development of the watermarking methods. We will 

compare to the two methods based on the JND models in [22] and [25] because they yielded better 

results. They will be denoted by Zhi-1 and Zhi-2 respectively. 

5.3.1 Visual Quality of the Watermarked Image 

Fig. 5.4 shows the watermarked versions of the four images in Fig. 5.3. It is hard to notice 

any differences between the watermarked images and the original ones. Table 5.3 shows the PSNR 

values of the watermarked images compared to those of [63, 68]. The algorithm in [65] is designed 

to produce a fixed PSNR of 42 dB, and in [66], the average PSNR is presented as 42.51 dB. From 

Table 5.3, it can be seen that the proposed algorithm results in higher PSNR in all cases, with an 

average of 44.13 dB with respect to 40.89, 39.78, 42 and 42.51 dB in [68], [63], [65] and [66] 

respectively. This shows that the proposed algorithm leads to watermarked images with a 

significantly better visual quality. This is believed to be because the embedding adapts to the 

directions of gray level variations which is not the case in the compared methods. 
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(a) Watermarked Lena

(b) Watermarked Boat
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Fig.  5.4 Watermarked versions of the images in Fig. 5.3 

(c) Watermarked Peppers

(d) Watermarked Baboon
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Table 5.3 Comparison of the PSNR of the watermarked images 

Image 
PSNR (dB) 

You [68] Lee [63] Proposed 

Lena 40.58 41.29 44.34 

Boat 39.75 40.54 42.77 

Peppers 40.37 41.91 46.29 

Baboon 38.41 39.79 43.35 

Bridge N/A N/A 43.55 

Plane N/A N/A 44.27 

Pirate N/A N/A 44.33 

Average 39.78 40.89 44.13 

 

5.3.2 Robustness of the Watermark 

To determine the robustness of the watermark in the proposed algorithm, the watermarked 

images are modified by different processes then the watermark is extracted and compared to the 

original watermark.  

Fig. 5.6 shows the extracted watermarks from the watermarked versions of the test image 

Lena after several attacks. The watermark seems to be successfully extracted with good accuracy 

after JPEG compression even at a low quality of 30%. To better illustrate the robustness of the 

proposed algorithm to JPEG compression, the average correctness rate, CR, calculated from seven 

test images is compared to those reported in [61, 63, 65, 66, 68] at different quality factors (QF). 

The comparison is shown in Table 5.4 and as can be observed, the proposed algorithm performance 

is above average for the whole range with only the method in [65] yielding higher CR values, 

however, it must be kept in mind that the PSNR of the watermarked image in the proposed method 
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is 2.1 dB higher in average which is a considerable improvement. The CR values of the proposed 

algorithm are very high even at very low quality factors. 

 

JPEG 

(Quality: 80%) 

JPEG 

(Quality: 50%) 

JPEG 

(Quality: 30%) 

   

Salt and Pepper Noise 

(Density =0.01)  

Salt & Pepper Noise 

(Density =0.05) 

Gaussian Noise 

(Variance = 0.01) 

   

Brightness Adjustment 

(+50%) 

Brightness Adjustment 

(-50%) 

Gaussian Filter 

(Standard deviation = 0.5) 

   

Contrast Adjustment 

(+50%) 

Contrast Adjustment 

(-50%) 

Contrast Adjustment 

(+30%) 

   

Fig.  5.5 The extracted watermarks from the watermaked version of Lena after several attacks 
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Table 5.4 Comparison of CR at different JPEG quality factors 

QF 

Correctness Rate (%) 

You [68] Lee [63] 
Zhi-1 

[61] 

Zhi-2 

[61] 
Wan [65] 

Zong 

[66] 
Proposed 

90 N/A N/A 99 100 N/A 99.9 99 

80 97.35 97.41 95 98 N/A N/A 98 

70 N/A N/A 72 85 N/A 88.8 97 

60 95.48 95.94 71 80 99.8 N/A 96 

50 95.01 97.71 70 74 99.3 73.56 95 

40 N/A N/A 30 70 98 N/A 93 

30 N/A N/A 45 38 94 N/A 89 

20 N/A N/A N/A N/A 80 N/A 82 

10 N/A N/A N/A N/A N/A N/A 76 

 

The watermark also survives Gaussian filtering, brightness adjustments. It seems more 

robust to contrast decrement than increment, nevertheless, the extracted watermark is recognizable 

in both cases. However, the watermark seems fairly susceptible to noise as it is not retrieved 

correctly after Gaussian and Salt and Pepper noises. Regardless of susceptibility to noise, the 

watermark seems robust to the other attacks, most significantly to JPEG compression. This means 

that this scheme allows the storage and sharing of the image which makes it suitable for 

authentication purposes. 

Overall, the proposed algorithm results in a remarkably better visual quality in the 

watermarked images, which proves the effectiveness of the feature extraction methodology used. 

The proposed algorithm yields good robustness against many attacks with noise as the only 

exception. Most significantly, the proposed algorithm is highly robust to JPEG compression which 
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makes it very suitable for image authentication purposes. Moreover, the algorithm’s computational 

simplicity allows efficient real-time implementations. 

5.4 Conclusion 

In this chapter, the feature extraction methodology presented in Chapter 3 is applied 

towards the development of a DCT based image-adaptive watermarking algorithm that allows for 

the blind extraction of the watermark. Simulation results has shown that the proposed algorithm is 

superior in terms of the visual quality of the watermarked images and it results in excellent 

robustness against compression even at low quality factors. In addition to the high performance in 

these two usually conflicting aspects, the computational simplicity of the proposed algorithm 

makes it a very good option for image authentication purposes and real-time applications. 
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Chapter 6   Conclusions and Future Work 

6.1 Concluding Remarks 

The work presented in this thesis has aimed at the development of a simple image feature 

extraction methodology and its application in image protection schemes. A DCT based feature 

extraction methodology has been developed and based on it, two algorithms, one for image self-

recovery and the other for image watermarking, have been proposed. 

Regarding image feature extraction, the main concerns were computational simplicity and 

the ability to distinguish different gray level patterns. An analysis has been conducted to identify 

how image features are represented in the DCT domain. The analysis revealed that the DCT 

coefficients with the highest amplitudes, referred to as the DCT peaks, are the most critical 

frequency coefficients in the representation of image features. They are located in the low and 

medium frequencies, and therefore it is necessary to extend the range used in feature extraction to 

include medium frequencies rather than the lowest frequencies only. 

In the proposed feature extraction methodology, image blocks containing significant gray 

level variations, i.e. texture blocks, are identified by their higher ratio of the highest DCT 

amplitude to the DC component. Then texture classification is applied exclusively to the identified 

texture blocks. Since blocks of 8 × 8 pixels are small enough to contain only simple gray level 

patterns, a small set of profiles, thirteen in this work, have been defined and can be used to 

represent the possible gray level patterns. The texture blocks are classified according to the 

locations of the highest 3 DCT peaks, so a wider range of frequencies is included without 

increasing the computational complexity. As a result, the developed methodology is 
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computationally simple and capable of identifying simple gray level patterns, whereas the existing 

DCT based feature extraction methods target edge orientations only. 

One of the challenges in image self-recovery is to minimize the length of the reference 

code, in order to facilitate the code embedding it in the cover image without losing the critical 

image information required to achieve good reconstruction quality. The developed feature 

extraction methodology has been applied in the proposed image self-recovery algorithm to make 

the encoding process adaptive to local image features. According to the profile of each block, the 

critical DCT coefficients representing the specific gray level pattern of the block are chosen and 

encoded with appropriate numbers of bits. This means the code length assigned to each block is 

variable depending on its profile. More bits are assigned to the DCT coefficients that are more 

important to determine the gray level pattern of the block. This way, the encoding process has been 

made adaptive to the gray level patterns of the image blocks rather to the levels of texture only as 

in the existing adaptive methods, and consequently, the total number of bits is smaller. Simulation 

results have shown that the lengths of the reference codes produced by the proposed algorithm are 

about 
1

5
~

3

5
 of those in the existing methods. This short code requires the use of only 1 LSB plane 

for embedding, unlike the 2 or 3 LSB planes used by other algorithms. Consequently, the proposed 

algorithm has resulted in superior visual quality of the embedded images with an average PSNR 

of 51.64 dB, which is about 7.4~13.7 dB higher than the relevant existing methods. It has also 

been shown that using the shorter reference codes, as they contain the pertinent image feature 

information, one can obtain reconstructed images with above average quality at various tampering 

rates. Overall, the proposed algorithm is computationally simple and very efficient. 

Regarding image watermarking, the main challenge is the conflict between the 

watermark’s robustness and the visual quality of the watermarked image. The objective of this 
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work was to develop a computationally simple algorithm that maximizes the robustness of the 

watermark without causing visual distortions in the watermarked image and that allows for the 

blind extraction of the watermark. In order to achieve that objective, by exploiting the properties 

of the human visual system (HVS), the proposed watermarking algorithm has been made adaptive 

to image features in three aspects. The first one is that the watermark is embedded in image blocks 

that contain significant gray level variations so that the resulting alterations are less noticeable. 

The second as aspect is that the DCT coefficients used for embedding are chosen so that the 

resulting alterations have the same orientation as the dominant gray level pattern. The third aspect 

is that the embedding strength is adjusted according to the brightness of the block. The developed 

feature extraction methodology has been applied to detect the gray level variations and their 

directions and choose the most suitable DCT coefficients for embedding. The simulation results 

have shown that the proposed watermarking algorithm results in a significantly higher visual 

quality of the watermarked images than the relevant reported methods with a PSNR that is 2.7 dB 

higher on average. The proposed algorithm also yields high robustness against JPEG compression 

even at very low quality factors. This in addition to its computational simplicity, makes it very 

suitable for image authentication purposes and real-time applications. 

In both of the proposed image self-recovery and image watermarking algorithms, adapting 

to local image features is critical to ensure the quality of performance. The good performances of 

the proposed algorithms prove the effectiveness of the new DCT-based image feature extraction 

methodology. This methodology is not confined to these two applications and can be used in a 

wide range of applications involving the DCT. Furthermore, its computational simplicity makes it 

useful in hardware and real-time implementations. 
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6.2 Suggestions for Future Work 

In the proposed image feature extraction methodology, only the locations of the highest 

three DCT peaks were considered and not their amplitudes. Inclusion of the amplitudes can help 

determine if the edges are step or ramp edges, i.e. if the edges are sharp or smooth. Also more 

profiles can be added to the thirteen profiles and more peaks can be examined for higher accuracy. 

In image self-recovery, the reference code used required only a portion of the LSB of pixels 

in an image to be embedded. This means that the reference code or part of it can be duplicated to 

increase the chances of recovery in case of severe damage. In addition, more sophisticated 

encoding techniques can significantly improve the quality of reconstruction and allow the 

inclusion of more image data in the reference code without a high increase in the length. The 

inclusion of more texture profiles could also be considered for more precision. Different quality 

levels can also be included for different levels of texture, for example the texture blocks can be 

divided into high, medium and low texture blocks and targeting higher reconstruction for higher 

texture levels. 

In Image watermarking, some analysis of the embedding scheme must be conducted to 

improve robustness to noise. Also, the use of JND models can be investigated in adjusting the 

embedding strength. The choice of the DCT coefficient for embedding in the proposed method is 

only based on the dominant orientation of gray level directions. More watermark invisibility might 

be achieved if the choice depended on the gray level patterns. To do so, the profiles defined in the 

feature extraction method can be investigated to determine the most suitable choice in each case. 
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