88 research outputs found

    Resilience, reliability, and coordination in autonomous multi-agent systems

    Get PDF
    Acknowledgements The research reported in this paper was funded and supported by various grants over the years: Robotics and AI in Nuclear (RAIN) Hub (EP/R026084/1); Future AI and Robotics for Space (FAIR-SPACE) Hub (EP/R026092/1); Offshore Robotics for Certification of Assets (ORCA) Hub (EP/R026173/1); the Royal Academy of Engineering under the Chair in Emerging Technologies scheme; Trustworthy Autonomous Systems “Verifiability Node” (EP/V026801); Scrutable Autonomous Systems (EP/J012084/1); Supporting Security Policy with Effective Digital Intervention (EP/P011829/1); The International Technology Alliance in Network and Information Sciences.Peer reviewedPostprin

    HTN planning: Overview, comparison, and beyond

    Get PDF
    Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.<br/

    Architecture for planning and execution of missions with fleets of unmanned vehicles

    Get PDF
    Esta tesis presenta contribuciones en el campo de la planificación automática y la programación de tareas, la rama de la inteligencia artificial que se ocupa de la realización de estrategias o secuencias de acciones típicamente para su ejecución por parte de vehículos no tripulados, robots autónomos y/o agentes inteligentes. Cuando se intenta alcanzar un objetivo determinado, la cooperación puede ser un aspecto clave. La complejidad de algunas tareas requiere la cooperación entre varios agentes. Mas aún, incluso si una tarea es lo suficientemente simple para ser llevada a cabo por un único agente, puede usarse la cooperación para reducir el coste total de la misma. Para realizar tareas complejas que requieren interacción física con el mundo real, los vehículos no tripulados pueden ser usados como agentes. En los últimos años se han creado y utilizado una gran diversidad de plataformas no tripuladas, principalmente vehículos que pueden ser dirigidos sin un humano a bordo, tanto en misiones civiles como militares. En esta tesis se aborda la aplicación de planificación simbólica de redes jerárquicas de tareas (HTN planning, por sus siglas en inglés) en la resolución de problemas de enrutamiento de vehículos (VRP, por sus siglas en inglés) [18], en dominios que implican múltiples vehículos no tripulados de capacidades heterogéneas que deben cooperar para alcanzar una serie de objetivos específicos. La planificación con redes jerárquicas de tareas describe dominios utilizando una descripción que descompone conjuntos de tareas en subconjuntos más pequeños de subtareas gradualmente, hasta obtener tareas del más bajo nivel que no pueden ser descompuestas y se consideran directamente ejecutables. Esta jerarquía es similar al modo en que los humanos razonan sobre los problemas, descomponiéndolos en subproblemas según el contexto, y por lo tanto suelen ser fáciles de comprender y diseñar. Los problemas de enrutamiento de vehículos son una generalización del problema del viajante (TSP, por sus siglas en inglés). La resolución del problema del viajante consiste en encontrar la ruta más corta posible que permite visitar una lista de ciudades, partiendo y acabando en la misma ciudad. Su generalización, el problema de enrutamiento de vehículos, consiste en encontrar el conjunto de rutas de longitud mínima que permite cubrir todas las ciudades con un determinado número de vehículos. Ambos problemas cuentan con una fuerte componente combinatoria para su resolución, especialmente en el caso del VRP, por lo que su presencia en dominios que van a ser tratados con un planificador HTN clásico supone un gran reto. Para la aplicación de un planificador HTN en la resolución de problemas de enrutamiento de vehículos desarrollamos dos métodos. En el primero de ellos presentamos un sistema de optimización de soluciones basado en puntuaciones, que nos permite una nueva forma de conexión entre un software especializado en la resolución del VRP con el planificador HTN. Llamamos a este modo de conexión el método desacoplado, puesto que resolvemos la componente combinatoria del problema de enrutamiento de vehículos mediante un solucionador específico que se comunica con el planificador HTN y le suministra la información necesaria para continuar con la descomposición de tareas. El segundo método consiste en mejorar el planificador HTN utilizado para que sea capaz de resolver el problema de enrutamiento de vehículos de la mejor forma posible sin tener que depender de módulos de software externos. Llamamos a este modo el método acoplado. Con este motivo hemos desarrollado un nuevo planificador HTN que utiliza un algoritmo de búsqueda distinto del que se utiliza normalmente en planificadores de este tipo. Esta tesis presenta nuevas contribuciones en el campo de la planificación con redes jerárquicas de tareas para la resolución de problemas de enrutamiento de vehículos. Se aplica una nueva forma de conexión entre dos planificadores independientes basada en un sistema de cálculo de puntuaciones que les permite colaborar en la optimización de soluciones, y se presenta un nuevo planificador HTN con un algoritmo de búsqueda distinto al comúnmente utilizado. Se muestra la aplicación de estos dos métodos en misiones civiles dentro del entorno de los Proyectos ARCAS y AEROARMS financiados por la Comisión Europea y se presentan extensos resultados de simulación para comprobar la validez de los dos métodos propuestos.This thesis presents contributions in the field of automated planning and scheduling, the branch of artificial intelligence that concerns the realization of strategies or action sequences typically for execution by unmanned vehicles, autonomous robots and/or intelligent agents. When trying to achieve certain goal, cooperation may be a key aspect. The complexity of some tasks requires the cooperation among several agents. Moreover, even if the task is simple enough to be carried out by a single agent, cooperation can be used to decrease the overall cost of the operation. To perform complex tasks that require physical interaction with the real world, unmanned vehicles can be used as agents. In the last years a great variety of unmanned platforms, mainly vehicles that can be driven without a human on board, have been developed and used both in civil and military missions. This thesis deals with the application of Hierarchical Task Network (HTN) planning in the resolution of vehicle routing problems (VRP) [18] in domains involving multiple heterogeneous unmanned vehicles that must cooperate to achieve specific goals. HTN planning describes problem domains using a description that decomposes set of tasks into subsets of smaller tasks and so on, obtaining low-level tasks that cannot be further decomposed and are supposed to be executable. The hierarchy resembles the way the humans reason about problems by decomposing them into sub-problems depending on the context and therefore tend to be easy to understand and design. Vehicle routing problems are a generalization of the travelling salesman problem (TSP). The TSP consists on finding the shortest path that connects all the cities from a list, starting and ending on the same city. The VRP consists on finding the set of minimal routes that cover all cities by using a specific number of vehicles. Both problems have a combinatorial nature, specially the VRP, that makes it very difficult to use a HTN planner in domains where these problems are present. Two approaches to use a HTN planner in domains involving the VRP have been tested. The first approach consists on a score-based optimization system that allows us to apply a new way of connecting a software specialized in the resolution of the VRP with the HTN planner. We call this the decoupled approach, as we tackle the combinatorial nature of the VRP by using a specialized solver that communicates with the HTN planner and provides all the required information to do the task decomposition. The second approach consists on improving and enhancing the HTN planner to be capable of solving the VRP without needing the use of an external software. We call this the coupled approach. For this reason, a new HTN planner that uses a different search algorithm from these commonly used in that type of planners has been developed and is presented in this work. This thesis presents new contributions in the field of hierarchical task network planning for the resolution of vehicle routing problem domains. A new way of connecting two independent planning systems based on a score calculation system that lets them cooperate in the optimization of the solutions is applied, and a new HTN planner that uses a different search algorithm from that usually used in other HTN planners is presented. These two methods are applied in civil missions in the framework of the ARCAS and AEROARMS Projects funded by the European Commission. Extensive simulation results are presented to test the validity of the two approaches

    Pruning Techniques for Lied SAT-Based Hierarchical Planning

    Get PDF

    Automated Hierarchical, Forward-Chaining Temporal Planner for Planetary Robots Exploring Unknown Environments

    Get PDF
    The transition of mobile robots from a controlled environment towards the real-world represents a major leap in terms of complexity coming primarily from three different factors: partial observability, nondeterminism and dynamic events. To cope with them, robots must achieve some intelligence behaviours to be cost and operationally effective. Two particularly interesting examples of highly complex robotic scenarios are Mars rover missions and the Darpa Robotic Challenge (DRC). In spite of the important differences they present in terms of constraints and requirements, they both have adopted certain level of autonomy to overcome some specific problems. For instance, Mars rovers have been endowed with multiple systems to enable autonomous payload operations and consequently increase science return. In the case of DRC, most teams have autonomous footstep planning or arm trajectory calculation. Even though some specific problems can be addressed with dedicated tools, the general problem remains unsolved: to deploy on-board a reliable reasoning system able to operate robots without human intervention even in complex environments. This is precisely the goal of an automated mission planner. The scientific community has provided plenty of planners able to provide very fast solutions for classical problems, typically characterized by the lack of time and resources representation. Moreover, there are also a handful of applied planners with higher levels of expressiveness at the price of lowest performance. However, a fast, expressive and robust planner has never been used in complex robotic missions. These three properties represent the main drivers for the outcomes of the thesis. To bridge the gap between classical and applied planning, a novel formalism named Hierarchical TimeLine Networks (HTLN) combining Timeline and HTN planning has been proposed. HTLN has been implemented on a mission planner named QuijoteExpress, the first forward-chaining timeline planner to the best of our knowledge. The main idea is to benefit from the great performance of forward-chaining search to resolve temporal problems on the state-space. In addition, QuijoteExpress includes search enhancements such as parallel planning by division of the problem in sub-problems or advanced heuristics management. Regarding expressiveness, the planner incorporates HTN techniques that allow to define hierarchical models and solutions. Finally, plan robustness in uncertain scenarios has been addressed by means of sufficient plans that allow to leave parts of valid plans undefined. To test the planner, a novel lightweight, timeline and ROS-based executive named SanchoExpress has been designed to translate the plans into actions understandable by the different robot subsystems. The entire approach has been tested in two realistic and complementary domains. A cooperative multirover Mars mission and an urban search and rescue mission. The results were extremely positive and opens new promising ways in the field of automated planning applied to robotics
    corecore