
Integration of Classical and
Model-Based Technologies for

the Automated Synthesis of
Plans

Peter A Jarvis

A thesis submitted in partial fulfilment of the requirements of the
University of Brighton for the degree of

Doctor of Philosophy

School of Computing and Mathematical Sciences
The University of Brighton

In collaboration with
The Llewellyn Group of Companies

August 1997

Abstract

Abstract

• Context and Objective: Whilst offering a number of desirable features, classical planners have yet
to achieve wide spread application to "industrial" applications. Model-Based Planners, in contrast,
have been successfully applied to a number of "industrial" problems. This thesis examines both
technologies to justify, design, and evaluate an integrated architecture that exploits their relative
strengths.

• Research Infrastructure: To provide the infrastructure for considering an integrated architecture,
a KADS model of construction industry planning knowledge and a classical planning workbench
are developed. The workbench is built around a principled object oriented design derived from the
0-Plan system. This effort permits experimentation with classical planner components and
provides the classical element of the final integrated architecture. The KADS model set is
constructed through a combination of interviews with practitioners and observations at a
construction site. The set details the role of planning within the construction process and the
domain expertise applied in the planning task. This understanding of "industrial" application
requirements is used to identify the complementary strengths between classical and model based
planning and evaluate the integrated architecture.

• Complementary Strengths: Encoding the KADS model of construction expertise and
enhancements to existing benchmark domain descriptions identified that MBP can represent and
reason with domain knowledge that classical task refinement planners must resort to their
precondition achievement function to achieve. Specifically, MBP can effectively represent and
reason with expert knowledge for determining when actions should be included within a plan and
derive dependency constraints from relationships between domain concepts. Classical planning
offers the concepts of action preconditions and effects absent in MBP. These concepts facilitate the
establishment and protection of causal links between actions

• Integrated Architecture: The integrated architecture exploits MBP constructs to represent and
reason with domain expert knowledge. The actions and dependency constraints synthesised are
compiled into task refinement schemas. A task refinement planner is then applied to combine the
schemas into a complete and interaction free plan.

• Evaluation: The integrated architecture is evaluated from four perspectives. First, considering the
complementary strengths that motivated the architecture identifies the facet(s) that address each
issue. Second, a military evacuation scenario (Pacifica) is encoded within the formalism and a plan
synthesised to test the generality of the architecture. Third, comments from automated planning
experts obtained from publication of the architecture are examined and answered. Forth,
construction industry experts' comments on the industrial potential of the architecture are
discussed.

·

• Conclusion and Further Work: The integrated architecture successfully combines the expressive
MBP representation and reasoning with the causal link establishment and maintenance of classical
planning. Further work motivated by the integrated architecture lies in a number of directions: the
integration of the domain knowledge from MBP within existing classical explanation techniques,
further study of human inference and task knowledge, and tool support for building MBP domain
models.

Table of Contents

Table of Contents

1 . Introduction 1 ------------------------

1. 1. Background to the problem 1

1 .2. Aims and objectives 2
1 .3. Summary of achievements (contribution to knowledge) 2

1 .4. Approach and contents outline 4

1.5. Prerequisite knowledge 5

1.6. Published work 5

2. Al planning technologies 7

2.1 Introduction 7

2.2 Initial definition of the planning problem 8

2.3 Foundations of classical planning 9

2.3.1 Precondition achievement planning 1 1

2.3.2 Task refinement planning 21

2.3.3 Summary of the views on which classical planning technology best meets the

requirements of industrial planning problems ----------�28

2.4 Extending the classical framework ______________ 35

2.4.1 General definition of the planning problem 36

2.4.2 Overview of current research directions 37

2.5 Model-based planning __________________ 43

2.6 Summary and conclusions 47

3. Developing a research workbench 49

3.1 Introduction 49

3.2 Need for a research workbench 49

3.3 Realisation approach ___________________ 51

3.4 Developing the Classical Workbench 53

3.4.1 Overview of 0-Plan 53

3.4.2 Implementing the N (Nodes) and 0 (Orderings) 56

3.4.3 Implementing the VA (Variables and Auxil iary) 60

3.4.4 Implementing the I (Issues) 65

3.4.5 Overall workbench architecture 71

3.5 Implementation details ___________________ 72

3.5.1 Workbench testing 75

3.6 Summary and conclusions _________________ 76

i i

Table of contents

4. Limitations of existing representational devices - experiments

within the planning literature n
4.1 Introduction 77
4.2 Analysis method 78
4.3 Overview of a representative set of the domains considered in the planning

literature 80
4.3.1 Blocks world 80

4.3.2 Office world 84

4.3.3 Briefcase domain 86

4.3.4 Tate's house building domain 88

4.3.5 Pacifica 92

4.3.6 Flight simulator construction 96

4.4 Selecting a set of domains from the planning literature 98
4.4.1 Framework for classifying the potential future utility of specific domains 98

4.4.2 Applying the framework to the domains considered in planning literature __ 102

4.5 Experiments with classical planning ______________ 106
4.5.1 Tate's house building domain 106

4.5.2 Pacifica 125

4.6 Evaluating model-based planners ______________ 131
4.6.1 Flight simulator construction 131

4. 7 Summary and conclusion __________________ 134
5. Elicitation of planning knowledge from the construction industry 137

iii

5.1 Introduction 137

5.2 Selecting an application domain and a collaborating organisation 138
5.3 Selecting the knowledge elicitation approach 139

5.4 Overview of the KADS methodology 140
5.5 KADS models of the construction domain 142

5.5.1 Subset of KADS applied to the construction domain 142

5.5.2 Overview of the construction cases studied arid the knowledge acquisition

approach 144

5.5.3 Organisational model 147

5.5.4 Application model 151

5.5.5 Task model 153

5.5.6 Model of expertise ___________________ 154

5.6 Summary and conclusions _________________ 163

Table of Contents

6. Limitations of existing representational devices - experiments within

the construction industry 1 67

6.1 Introduction ______________________ 1 67

6.2 Classical planning 1 68

6.2.1 Task formalism method 1 68

6.2.2 Case 1 - encoding a specific design in a task refinement formalism 1 73

6.2.3 Case 2 - a generic encoding 1 80

6.3 Model-based planning __________________ 1 98

6.3.1 Scope 1 98

6.3.2 Encoding specific and generic knowledge 1 98

6.3.3 Generating a variable number of actions 1 99

6.3.4 Generating d ifferent methods 200

6.3.5 Generating dependency from relationships 201

6.3.6 Generating conditions and effects 202

6.4 Summary and conclusions _________________ 203

7. Development of an integrated architecture 207

7.1 Introduction 207

7.2 Overview of the proposed integrated architecture 208

7 .3 Domain modelling constructs 209

7.3. 1 Concepts and actions 209
7.3.2 Action levels 21 1
7.3.3 Domain model structure 21 2

7.3.4 Domain specific relationships 21 5

7.3.5 Facets 2 1 5

7.3.6 Instantiation directives and inference packages 21 6

7.3.7 Dependency assessment 220

7.3.8 Encoding an example domain 222

7.4 Model-based planner __________________ 229

7.4.1 Planner support functions 229

7.4.2 Planning functions 232

7.4.3 Applying the MBP algorithm 236

7.5 HTN planner interface __________________ 241

7.5.1 Interface point 241

7.5.2

7.5.3

7.5.4

Task-Definition _____________________ 242

Integrated task expand algorithm 242

Processing encapsulation-buster conditions 245

7.6 Implementation status __________________ 246

7.7 Summary and conclusions 247

iv

Table of contents

8. Evaluating the integrated architecture ___________ 249

8.1 Introduction 249

8.2 Strengths and limitations perspective 250

8.2 . 1 Expressiveness - HTN planning 250

8.2.2 Expressiveness - model-based planning 268

8.2.3 Redundancy 269

8.2.4 Semantic distance 270

8.3 Literature examples perspective _______________ 271

8.3.1 Pacific a 272

8.4 Automated planning expert perspective ____________ 284

8.4. 1 Originality 284

8.4.2 Expressiveness argument concerns 284

8.4.3 Semantic gap 286

8.5 Industrial planning expert perspective 287

8.6 Summary and conclusions 288

9. Summary, conclusion, and further work 291

9.1 Summary 291

9.2 Conclusion 292

9.3 Further work 293

9.3.1 Analysis of the integrated architecture as a problem solving method 293

9.3.2 Tool support for model construction 295

9.3.3 Explanation _____________________ 298

9.3.4 Continued use of industrial planning applications within planning research _299

9.3.5 Detailed issues 300

9.3.6 Resources 300

1 0. References ____________________ 301

Appendix A - Workbench algorithms A1

Appendix B - Workbench testing 81

Appendix C - Full task formalism domain descriptions C1

v

Table of f igures

Table of Figures
Figure 1 -1 Overview of the integrated architecture _______________ 3

Figure 2-1 , Planning in terms of a dynamical system 8

Figure 2-2, Example STRIPS operator, 1 2

Figure 2-3, Simple state space planning algorithm 1 2

Figure 2-4, Simple plan space algorithm 1 7

Figure 2-5, In itial task network for the decorate problem 21

Figure 2-6, Two methods for achieving the decorate task, 22

Figure 2-7, Initial refinement of the decorate task. 23

Figure 2-8, Refinement for the paint task 23

Figure 2-9, Plan resulting from the refinement of the paint task 23

Figure 2-1 0, Simple task refinement planning algorithm 24

Figure 2-1 1 , Kambhampati's analysis of task refinement planning's expressivity 30

Figure 2-1 2 , Generic planning architecture 36

Figure 2-1 3, Example configuration dialogue between the PIPPA configuration sub system

and a f l ight simulator designer 43

Figure 2-1 4, Sample configuration rule set from the PIPPA configuration sub system (From

(Marshall 1 988, pp34)) 43

Figure 2-1 5, Model resulting from the configuration process 44

Figure 2-1 6, Action attachment and dependency relationships 44

Figure 2-1 7, example rule-set for infer relationship 45

Figure 3-1 , Object diagram of ADS system 59

Figure 3-2, Object diagram of plan variable relationship critique system 61

Figure 3-3, Condition and effect manager system 63

Figure 3-4, HTN planning algorithm 66

Figure 3-5, Components of the WORKBENCH class 71

Figure 3-6, Workbench system architecture 71

Figure 3-7, Screen shot of the classes implemented in the workbench 72

Figure 3-8, TGM class 73

Figure 3-9, Workbench's user interface 74

Figure 3-1 0, Workbench's relationships with existing planner prototypes 76

Figure 4-1 , Transition from planning behaviour to planning theory 78

Figure 4-2, Methodology of example and counter example 79

Figure 4-3, Two versions of the blocks world domain 80

Figure 4-4, UCPOP blocks world operator specification 81

Figure 4-5, 0-Plan representation of the blocks world 82

Figure 4-6, The Office world (Fikes & Nilsson 1 971), 84

Figure 4-7, Fragment of STRIPS world operator specification 85

Figure 4-8, Briefcase domain representation (UCPOP) 86

Figure 4-9, Graphical representation of the house 88

Figure 4-1 0, Fragment of house building domain representation 89

Figure 4-1 1 , Operation Columbus task definition 93

Figure 4-1 2, Fragment of the PIPPA flight simulator domain representation 96

Figure 4-1 3, PIPPA representation of the need for a engineering report 97

Figure 4-1 4, P IPPA action assessment knowledge 97

Figure 4-1 5, Domain evaluation framework 1 01

vi

Table of figures

Figure 4-16, Design of the house encoded within Tate's house building domain

representation 106

Figure 4-17, Detailed fragment of the house design encoded in Tate's 107

Figure 4-18, Representation of the generic house design's actions 11 o
Figure 4-19, Regulations constraining building permission 111

Figure 4-20, Urban and rural refinements for schema obtain_permission_to_build 112

Figure 4-21, G raphical representation of the rural and urban encoding 112

Figure 4-22, Encoding single conditions in the task formalism 113

Figure 4-23, Adjusting encoding to isolate the dependant actions 114

Figure 4-24, Regulations constraining bui lding permission - multiple conditions case __ 116

Figure 4-25, Encoding of the multiple conditions case 117

Figure 4-26, Mapping of the logical OR connective into task networks 118

Figure 4-27, Nested if - then - else encoding in a task refinement formalism _____ 119

Figure 4-28, Modification to method-b to complete the if-then-else encoding 120

Figure 4-29, Example foreach and iterate constructs (from (Tate, Drabble, & Dalton 1994b,

pp51)) 121

Figure 4-30, Original encoding of schema transport_ground_transports and

transport_helicopters ________________________ 127

Figure 4-31, Pacifica encoding scheme 130

Figure 4-32, Fragment of the MBP representation of the flight simulator domain 131

Figure 4-33, A fl ight simulator instance 132

Figure 4-34, Completed instance diagram for a specific simulator 132

Figure 5-1, Initial supermarket building. 144

Figure 5-2, Final state of the building 144

Figure 5-3, Llewellyn organisational model 148

Figure 5-4, Application Model 151

Figure 5-5, Task model of construction planning 153

Figure 5-6, Fragment of the Pile and Beam layout diagram 155

Figure 5-7, Fragment of Beam, Slab and Wall Details Diagram 155

Figure 5-8, Fragment of the construction plan 155

Figure 5-9, Part-of component structure 159

Figure 6-1, TFM step 1 169

Figure 6-2, TFM step 2 1 70

Figure 6-3, TFM step 3 171

Figure 6-4, Task definition for build_supermarket_extension 173

Figure 6-5, Instance model of the supermarket extension 174

Figure 6-6, Encoding the schema build_supermarket_extension 175

Figure 6-7, Fragment of the building's design 175

Figure 6-8, schema /ay_roof 176

Figure 6-9, Modell ing levels attached to the supermarket building 177

Figure 6-10, Completed specific case schemata 178

Figure 6-11, fragment of the supermarket extension instance diagram 180

Figure 6-12, Generic model of construction planning knowledge 181

Figure 6-13, Generic case in itial task definition 183

Figure 6-1 4, Generic model with modell ing levels assigned 184

Figure 6-15, Schema build_building 184

vii

Table of figures

Figure 6-1 6, Example of multi levelled aggregate components_ 1 86
Figure 6-1 7, Example transition from aggregate to primitive level components 1 88

Figure 6-1 8, Example of relationships between components 1 91

Figure 6-1 9, Reproduction of Figure 6-1 7 - schema /ay_foundations 1 92

Figure 6-20, Model-based representation of the construction domain 1 98

Figure 6-21 , Specific bui lding design encoded in the Model-Based representation 1 99

Figure 6-22, Model-based relationship example 201

Figure 7-1 , Proposed integrated architecture 208

Figure 7-2, Object-oriented representation of objects and actions 209

Figure 7-3, Example action and object hierarchy exploiting inheritance 21 0

Figure 7-4, Abstract and primitive actions 21 1

Figure 7-5, Original MBP generic project model 2 1 2

Figure 7-6, Domain model pattern 2 1 2

Figure 7-7, Generic relationship template 21 5

Figure 7-8, Translation from KADS model to MBP classes 222

Figure 7-9, MBP classes with domain specific relationships encoded 223

Figure 7-1 0, Attachment of abstract and primitive actions to classes in the MBP domain model224

Figure 7-1 1 , Action classes 225

Figure 7-1 2, Inference packages 226

Figure 7-1 3 , Methods for determining dependency 227

Figure 7-1 4, Instances representing the restaurant extension __________ 228

Figure 7-1 5, if_needed facet processing pseudo code 230

Figure 7-1 6, Instantiation and inference package processing architecture 230

Figure 7-1 7, Directive search routine 231

Figure 7-18, Action synthesis algorithm 232

Figure 7-1 9, Action synthesis model transversal order 232

Figure 7-20, Action hierarchy 233

Figure 7-21 , Action hierarchy update algorithm_ 233

Figure 7-22, Activity synthesis algorithm 234

Figure 7-23, Dependency synthesis algorithm 234

Figure 7-24, Complete MBP algorithm 235

Figure 7-25, Interface mode selection algorithm 241

Figure 7-26, Task definition template 242

Figure 7-27, HTN-expand algorithm 243

Figure 7-28, Trace of the HTN-expand algorithm produced within the construction domain 244

Figure 8-1 , Aggregation relation 250

Figure 8-2, Schema compiled from the objects in Figure 8-1 ___________ ,250

Figure 8-3, Task formalism foreach construct 251

Figure 8-4, Task formalism approximation of the integrated architecture's variable nodes

function _____________________________ 251

Figure 8-5, Example of sub retaliation in the construction domain 251

Figure 8-6, Result of applying schema integrated-architecture-simulate to the construction

problem 252

Figure 8-7, Generic problem specification _________________ 253

Figure 8-8, Applying integrated-architecture-simulate to component x 253

Figure 8-9, Applying integrated-architecture-simulate to component y 253

viii

Table of f igures

Figure 8-1 0, Applying integrated-architecture-simulate to component z 254

Figure 8-1 1 , Position of conditional node reasoning with the domain model 255

Figure 8-1 2, class BEAM's primitive action specification 256

Figure 8-1 3, Inference di rective 256

Figure 8-1 4, HTN conditional nodes functional ity - stage 1 257

Figure 8-1 5, HTN conditional nodes functionality - stage 2 257

Figure 8-1 6, Position of effects within the domain model 260

Figure 8-1 7, Example of effect inclusion through association with actions 261

Figure 8-1 8, Example UCPOP action with conditional effects 261

Figure 8-1 9, Example of the UCPOP Axiom construct 262

Figure 8-20, Example of domain specific relationships between model instances 262

Figure 8-21 , Data structures participating in the relationship dependency synthesis

process _____________________________ 264

Figure 8-22, Class hierarchy 269

Figure 8-23, In itial Pacifica problem definition 273

Figure 8-24, F irst level model of the pacifica domain 273

Figure 8-25, Refinement of class LOCATE-EQUIPMENT 273

Figure 8-26, Refinement of class EVACUATE-CITIES 274

Figure 8-27, Initial instance model for operation Vanson 276

Figure 8-28, Trace of the MBP component solving operation Vanson 278

Figure 8-29, Actions synthesised with conditions and effects 279

Figure 8-30, Graphical representation of actions and activities synthesised 280

Figure 8-31 , Dependency synthesis in the pacifica domain 281

Figure 8-32, Trace of the HTN phase of planning operation Vanson 282

Figure 8-33, Instance diagram of the cities to be evacuated within a Pacifica operation _283

Figure 9-1 , Suggested structuring tool interface 295

ix

Dedication

Dedication

To Ivy, Laurence, Betty, and Elizabeth.

x

Acknowledgements

xi

Acknowledgements

Dr Graham Winstanley, The University of Brighton. For the initial direction and

constant academic debate, guidance, and motivation without which this thesis

would not have been written. I am in debt to you.

Dr Franco Civello, The University of Brighton. For the critical reviewing of this

thesis and expert advice on the facets of object-oriented modelling.

Mr A. Rollings, Mr F. Parker, and Mr J. Simons, The Llewellyn Group of

Companies. For supporting the knowledge acquisition and evaluation phases of

this thesis.

Dr Brian Drabble, CIRL, University of Oregon, USA, formerly of AIAI,

University of Edinburgh, UK. For discussions on the mechanics of the 0-Plan

planning system.

Engineering and Physical Sciences Research Council, Swindon, UK. For funding

this research project (award ref. 943 14463).

The following members of the planning community have either asked or answered

questions which have had an input into the direction of this thesis:

Ruth Aylett, Jim Blythe, Jeff Dalton, Kutluhan Erol, Lois Prior, Earl Sacerdoti,

Sam Steel, Austin Tate, and the anonymous reviews of the following conferences:

AIPS-96, UK Planning and Scheduling SIG 96, ES-96, AAAI-97 .

The following people have contributed their time, energy, support, comments or

friendship in an important and appreciated way:

Richard Bosworth, M Cherif Bouzeghoub, Jonathon Dayao, Jon Durrant, Sarah

Gordon, Richard Griffiths, Liz Guy, Victor Gonzalez Laria, Jane Hudson, Martin

Hunter, Araceli Hurtado, Dave King, Richard Mitchell, Jorge Nunez Suarez, Ian

Oliver, Lyn Pemberton, Dan Simpson.

The Integration of Classical and Model-Based Technologies for the Automated Synthesis of

Plans, PhD. Thesis, School of Computing and Mathematical Sciences, The University of

Brighton, August 1997. ©Peter Jarvis 1997.

Updated to reflect examiners' comments November llth 1997.

1. Introduction
If you ever get close to human behaviour be

ready to get confused

Bjork (1965 -)

1 .1 . Background to the problem

Introduction

"Artificial Intelligence (AI) is a field aiming to achieve functionality in computers

which, when exhibited by humans, is described as having indicated intelligence"

(Brooks 1991) . Planning is such a functionality and has therefore been studied by

AI researchers since the field's inception in the nineteen fifties.

Informally, planning requires a functionality that can analyse an agent's

environment and then develop a strategy that modifies that environment in

accordance with the agent' s goal(s) (Ginsberg 1993). This strategy is typically in

the form of a set of actions combined with constraints on the order of their

execution.

AI planning research has been based upon the hypothesis that planning

applications, although diverse, share many common facets. It is therefore possible

to build general-purpose planning systems that can process the specification of an

application domain and then generate solutions to planning problems in that

domain. This work is known as domain-independent planning.

Planning is an inherently complex problem. In order to provide an addressable

subset of issues, the central focus of domain-independent research has made a

number of simplifying assumptions known as the classical assumptions.

Automated planning systems developed under these assumptions are termed

classical planners. Whilst the development of classical planners has formed the

core of automated planning research, the technology has not yet reached its

industrial potential.

Model-based planning is characterised by the generation of plans from a central

domain model of an organisation's products or services. The technology has

developed independently from classical planning through an effort concerned with

providing implemented applications for industrial clients. Whilst model-based

planning has achieved successful commercial application, the technology's

independence from classical planning has prohibited a cross fertilisation of ideas

between the two approaches. This thesis examines both technologies, and

develops an integrated architecture that exploits their relative strengths.

1

Introduction

1 .2. Ai ms and objectives

The aim of this thesis is:

• to develop the industrial aptitude of automated planning by combining

classical and model-based technologies into a unified architecture which

exploits each technology's strengths.

To achieve this aim, this thesis addresses the following objectives:

1 . Identification of the complementary strengths and limitations of classical

and model-based technologies.

2. Design and implementation of an integrated planning architecture which

exploits the complementary strengths.

3. Evaluation of the resultant architecture against the rationale for its

construction.

1 .3. Summary of achievements (contribution to knowledge)

2

In terms of approach, the architecture developed in this thesis demonstrates the

potential for collaboration between planning in the space of a static object­

oriented domain model and planning in the space of an evolving partially-ordered

state-based domain model. The object space exploits an expressive formalism for

representing and reasoning with domain experts' knowledge. The state space

facilitates the establishment of action conditions with action effects and the

maintenance of these relationships by detecting and resolving interactions.

In terms of implementation, the integrated architecture details how task refinement

schemata may be compiled from the object-based domain-modelling scheme of

model-based planning.

The integrated architecture is summarised in Figure 1 - 1 below. The domain model

provides object-oriented constructs for representing domain-specific knowledge.

The model-based planner applies knowledge encoded in these constructs to

determine actions and ordering constraints. The model-based/ HTN interface

compiles the resultant structures into HTN schemata. The HTN-engine then

assembles the schemata to create a complete plan. HTN critics are invoked to

ensure the establishment and maintenance of conditions and effects over the plan.

Model I Model-Based planner
interface

�
Domain Model

... .. l..11 " {set of constructs} .. r l"'I ,
-

Model-Based planner I HTN
Engine interface

Nodes 4---{actions and ordering
constraints)

" ,
Critics

{represent and maintain f-detailed constraints }

Introduction

Model-Based Planner
{actions and dependency

synthesis algorithms}

....

..

I I
....

....
IITN Engine

{action expansion and
critic invocation }

Figure 1-1 Overview of the integrated architecture

3

Introduction

1.4. Approach and contents outl i ne

4

Chapter 2. overviews classical and model-based planning technologies,

emphasising the devices supported for specifying application domain

specific knowledge. The chapter draws conclusions on the possibility of

transferring ideas between the technologies, and the areas in which this

transfer is likely.

Chapter 3. defines the need for a planning workbench to support the aims

of this thesis, and details its implementation. Two appendices support the

description with details of the algorithms implemented (Appendix A),

and the test specification used to verify the workbench's correctness

(Appendix B).

Chapter 4. builds upon the possible transfer of ideas proposed in Chapter 2

by identifying specific limitations with the technologies' representational

devices. The limitations are identified through experiments within

application domains detailed in the automated planning literature. This

experimentation is supported by the research workbench described in

Chapter 3 .

Chapter 5. describes the elicitation of planning knowledge used by human

experts within the construction industry.

Chapter 6. verifies and extends the set of limitations with classical and

model-based planning technologies identified in Chapter 4 through a set

of encodings of the construction domain elicited in Chapter 5. From the

issues identified, a precise rationale for integrating classical and model­

based planners is developed.

Chapter 7. describes an integrated architecture which exploits the relative

capabilities of classical and model-based planning.

Chapter 8. evaluates the integrated architecture against the rationale for its

development identified in Chapter 4 and Chapter 6, and assesses its

commercial utility.

Chapter 9. summarises the research presented within this thesis, draws

conclusions as to its success, and defines areas for further investigation.

Introduction

1 .5. Prerequisite knowledge

The reader is assumed to have the basic understanding of Artificial Intelligence

that would be obtained by reading the introductory chapters of an Artificial

Intelligence textbook. Examples of such texts include (Luger & Stubblefield 1993 ,

Ginsberg 1 993, Pratt 1994)

The reader is assumed to have the basic understanding of object-oriented design

that would be obtained by reading the introductory chapter of an object orientation

textbook such as (Wirfs-Brock, Wilkerson, & Wiener 1990). The commercial

reader may wish to consider (Rumbaugh et. al. 1991) or (Booch 1991) . The more

formal reader may wish to consider (Cook & Daniels 1 994)

Whilst automated planning theory is described from first principles, the reader

would benefit from reading this thesis in combination with the excellent Readings

in Planning Volume (Allen, Hendler, & Tate 1990). The volume contains many of

the papers that define the foundations of planning theory referenced in this thesis.

1 .6. Published work

The following publications resulted directly from the research presented in this

thesis: (Jarvis & Winstanley 1 996a, Jarvis & Winstanley 1 996b).

This section is included in accordance with The University of Brighton's research

degree regulations.

5

Introduction

BLANK

6

Al planning technologies

2. Al planning technologies
Each generation imagines itself to be more

intelligent than the one that went before it, and wiser

than the one that comes after it.

George Orwell (1903-1950)

2.1 I ntroduction

This chapter overviews classical and model-based planning technologies,

emphasising the devices supported for specifying application domain specific

knowledge. The chapter draws conclusions on the possibility of transferring ideas

between the technologies, and the areas in which this transfer is likely.

Classical planning systems are described in two stages. Section 2.3 covers the

foundations of classical planning theory. Section 2.4 describes work that extends

the foundation theory to provide techniques that are closer to the requirements of

industrial planning applications. The overview concludes by bringing together

views on the applicability of the two predominant classical planning techniques to

industrial problems.

The overview begins with the definition of the problem used by early classical

planning researchers. This definition is expanded in section 2.4. 1 to provide a

framework closer to the requirements of industrial applications. With classical and

model-based technologies defined, the rationale for considering the transfer of

ideas between the technologies is presented.

7

Al planning technologies

2.2 Initial definition of the planning problem

8

Figure 2-1 presents Kambhampati' s definition of planning in terms of a dynamical

system (Kambhampati 1996). The figure is useful for determining the facets of the

planning problem that a domain independent planning system must consider.

::
Intelligent Agent

nns L1 of the � with goals r L1 instructs A t 0 Info
s tate of E execute actions

inE
'

Perceptual systems Actuator systems
p A

es the state t ofE Environment Executes

E , actions in E

Perce iv

Figure 2-1, Planning in terms of a dynamical system

The agent ..1 wishes to control the environment E in accordance with its own

goal(s) r. The agent may perceive the state of E through its perceptual systems P,

and it may effect changes on E through its actuator systems A. A plan is therefore

a set of actions which when executed by A, modifies E in accordance with r.

To solve the planning problem, a domain-independent planning system must

provide methods for addressing the following issues:

1 . Representation of an agent' s goals r.
2. Representation of the state of the environment E.

3. Representation of effects on E of the actions executable by A.

4. Provision of an algorithm to identify the subset of actions available to A

which will manipulate E to achieve r.

Issues 1 , 2, and 3 provide the requirement for a domain independent planning

system's representational devices. Issue 4 specifies the requirement of a domain

independent planning algorithm.

Al planning technologies

2.3 Foundations of classical planning

Within classical planning, the more expressive a language for representing the

state of the world, the goal(s) of an agent, and the actions executable by an agent's

actuators, the harder the task of writing a planning system to work with that

language (Weld 1994). Consider the issue of representing actions with effects that

vary depending upon the situation in which they are applied. An example action of

this type is release-car-foot-brake. This action will produce the effect that a car is

free to move if that car's hand brake is not engaged. If the car's hand brake is

engaged, the action will have the effect of the car being secured only by it' s hand

brake. Compared to the case where an action's effects do not depend upon an

action's context, with conditional effects the planning system must additionally

determine the situation of the action's application and identify effects that are then

applicable.

This is a common issue within artificial intelligence, and is known as the balance

of epistemological and heuristic adequacy (balancing the ability to represent and

reason about a problem with efficiency) (McCarthy & Hayes 1969). Classical

planning problems are defined as problems which conform to a number of

simplifying assumptions (Wilkins 1988, p 3); the aim being to provide problems

which require a restricted epistemology that is heuristically adequate. Classical

planners are domain independent systems, usually implemented on computer

hardware, which address the set of classical planning problems (Wilkins 1 988,

p8).

Classical planning's limiting assumptions are as follows (based upon (Weld

1994)):

• Atomic Time: Execution of an action by an agent' s actuators is

indivisible and uninterruptible. Hence, actions maybe modelled as atomic

transformation functions, changing the world state instantaneously. An

effect of this assumption is that actions cannot be executed

simultaneously, i.e. they must be supplied to the actuators one at a time.

• Deterministic Effects: The effect of an agent' s actuators executing any

action is a deterministic function of the action and the state of the world

when the action is executed. This assumption prohibits the specification

of probabilistic actions, such as tossing a coin.

• Omniscience: The agent has complete knowledge of the world and the

effects on world state of the actions executable by an agent's actuators.

The assumption implies that the agent's perceptual systems can

accurately perceive all facts within the world, and that the agent

possesses complete knowledge of the effects of its actuators upon that

world.

9

Al planning technologies

1 0

• Sole cause of change: The world state changes only through the

execution of actions by an agent' s actuators or through predefined events

(e.g. a bank opening at 09:00). Hence, no other agents unpredictably

affect the world state and the world state cannot change on its own.

The classical assumptions collectively define a world that changes instantly,

predictably, deterministically, and within the complete control of the agent

performing the planning function. The 'real world' does not meet these

constraints, but it is possible to formulate complex experimental worlds that do

conform to them, and then to develop powerful planners to address these

problems.

The following subsections review the main classical planning technologies:

precondition achievement planning, and task refinement planning. Precondition

achievement planning is further decomposed into plan space and state space

planning. Each technology is briefly defined, before the methods available for

specifying application domain-specific knowledge are examined. This section

concludes by comparing and contrasting the representational devices identified,

and within the context of current thinking, identifying the technique which best

meets requirements of industrial planning problems.

Al planning technologies

2.3.1 Precondition achievement planning

The first and arguably the most influential planner, STRIPS (the Stanford

Research Institute Problem Solver), was developed by Fikes and Nilsson in the

late nineteen sixties (Fikes and Nilsson 1971) . STRIPS casts the planning problem

as a search through the space of possible world states, and is therefore classed as a

state space planner. The overview of precondition achievement planners will

commence with this class of planner, before moving to the more sophisticated plan

space class.

2.3.1.1 State space precondition achievement planning

In state space planning, the initial world state (the way the environment is now)

and the goal world state (the way the agent wishes the environment to be) of a

problem are represented by logical sentences, and actions are described as state

manipulation functions. From this formalisation, planning becomes the search of

possible state transformations that start from the initial world state, and terminate

when a path is found which reaches the goal world state.

There are two components to a STRIPS style planner; the state based planning

algorithm and the STRIPS representation of actions. The latter providing the

representational devices for making application domain specific knowledge

available to the planning algorithm.

Fikes and Nilsson place the following requirements upon an action representation

language:

. . . we must state the preconditions under which it [the action] is applicable

and the effects on a world model schema.

(Fikes and Nilsson 1971)

If we define the world as being in a finite1 state at any given moment in time, we

can specify the preconditions of an operator as conditions which must hold in the

world state, and effects as the way in which this state changes as a result of an

operator' s application. STRIPS achieves this function through operator

specifications consisting of three fields, the first field specifying an action's

preconditions and the second and third specifying an action's effects. An example

STRIPS operator is depicted in Figure 2-2.

1 I.e. the number of facts holding in a world state is not infinite.

1 1

Al planning technologies

1 2

Operator Push (?Object, ?From, '!fo)
Preconditions: At-Robot (?From)

At (?Object, ?From)
Effects: Add: At (?Object, '!fo)

At-Robot ('!fo)
Del: At-Robot(?From)

At (?Object, ?From)

Figure 2-2, Example STRIPS operator,
from (Fikes and Nilsson 1971)

The push operator describes an action, executed by a robot, which moves an

object (?Object) from a location (?From) to a second location (?To). The

preconditions specify that before the action can be executed, the robot and the

object to be moved must be at the start location (?From). The operator's effects

are sub divided into two fields: Add and Del, abbreviations for Add List and

Delete List respectively. The Add List statements are added to the world model as

a result of the action's execution. Hence, execution will result in the object

(?Object) being at the goal location (?To) and the robot, having carried the object,

also being at the goal location. The Delete List specifies statements that should be

removed from the world as a result of the operator's execution. In the robot

example, the object is no longer at its start location (?From) and, as the robot has

moved with the object, the robot is also no longer at the start location.

The STRIPS representation provides a declarative mechanism for specifying an

action for use in a planning system. This representation is seminal in planning

research, and has underpinned much work since.

The second component to a STRIPS style planner is the planning algorithm. An

example state based algorithm, published by Weld (Weld 1 994), is specified in

Figure 2-3 below. The algorithm is invoked with the parameters plan-ss (Initial­

State, Goal-State, Set-Of-Actions,[]), where Set-Of-Actions is the set of actions

available to the planning agent for execution by its actuators, and [] is an empty

list.

Plan-ss (world-state, goal-list, set-of-actions, plan)
1. If world-state satisfies each conjunct in goal-state
2. then return plan
3. else let Act = choose from set-of-actions an action whose
precondition is satisfied by world-state.
4. if no such choice was possible then
5. return failure
6. else let S = the result of simulating the execution of Act

in the world state and return plan (S, goal-state, set-of-actions, concatenate
(plan, Act)

Figure 2-3, Simple state space planning algorithm

Al planning technologies

Step 1 defines the planner's success criteria. If all the statements in the goal-list

(the goal state on first invocation) hold in the world state, then planning is

complete and step 2 returns the plan. Thus, if on the first invocation all the

conjuncts in goal state hold in the world state, the plan returned will consist of an

empty list because no actions are required as no change to the world state is

needed - the goal state holds in the initial state. Step 3 selects an action from the

set of actions available, based on the action's preconditions holding in the current

world state
2
. If more than one action is applicable, we can assume the planner

records the choice point to permit backtracking. If no such choice was possible

(step 5), the algorithm has reached a dead end in its search space, and should

return to the previous back track point. Step 6 simulates the execution of the

action selected, producing a new world state. The new world state consists of the

previous world state in addition to the facts in the selected actions add list,

differenced with the facts in the actions delete list.

The plan-ss algorithm will consider all the possible actions that may be executed

from a state. It will therefore find a plan if one exists and is hence considered

complete. Completeness is at the expense of time, as no predictions may be made

on how long it will take to find a plan for a given problem (Weld 1 994).

It is important to note that whilst the concept of state space planning is generic, a

variety of methods have been developed to efficiently navigate the search space.

The algorithm plan-ss is known as progression, as it synthesises a plan starting

from the initial state and works towards the goal state. An alternative, regression

(Waldinger 1 977), plans by searching from the goal state backwards towards the

initial state. STRIPS itself employed the search strategy of means-end-analysis, a

technique originating in the theorem prover GPS (Newell & Simon 1961). These

techniques direct the search space considered by the planner, and have proved

more effective in a number of laboratory domains than progression.

2It is this behaviour which leads to the term precondition achievement planning.

Both state space and plan space planners aim to ensure the preconditions of

operators are satisfied.

1 3

Al planning technologies

2.3.1 .1 .1

1 4

Summary of the representational devices supported by state space

planners

State space precondition achievement planners utilise a state-based model for

specifying actions, agent's goals, and describing the world. Each category is

summarised in the table below.

Agent's Goals Specified as a set of logical statements that the planner

must work to achieve. The agent's goals are collectively

known as the goal world state.

World State Represented as a set of logical sentences, which together

specify the world at some moment in time. The state of the

world at the start of planning is defined as the initial world

state.

Actions Defined as state manipulation functions. Actions have

preconditions and effects. Preconditions specify the

statements that must be true in the world state before an

action can be executed. Effects specify the changes in the

world state which result from an action's execution. The

representation is known as the STRIPS representation.

In addition to the declarative knowledge representation techniques identified

above, the domain writer may modify the domain independent planning algorithm

to optimise it for the application domain under consideration. It is common

practice for a domain writer to examine the execution of a planner on a test

problem set, analyse the resultant search space, and then modify the algorithm and

the action representation (Drummond 1 994). The options available will be

discussed in depth in the next section, 2.3 . 1 .2

2.3.1.2 Plan space precondition achievement planning

Al planning technologies

The NOAH planning system (Sacerdoti 1975b) introduced several concepts

utilised by modern planners in both the precondition achievement category and the

task refinement category. One change initiated by NOAH was the reformulation of

planning from the search through world states, to the search through plan space. In

the plan space, nodes represent a partially specified plan, and the edges denote

plan refinement operations such as the addition of an action to a plan. This space

facilitated the development of more powerful planning algorithms. For example,

the space permits actions to be added to a plan at any point, in contrast to the

single insertion points offered in state space planning.

A second innovation of NOAH was partial-order planning, which lead to the least

commitment paradigm3 prevalent in state-of-the-art systems today. The innovation

notes that a plan should only have ordering constraints added when there is a clear

justification for them. In the total order approach found in state-space planning,

ordering constraints are intertwined with the order in which actions are added to a

plan. The Sussman Anomaly (Sussman 1974) provides a motivating problem that

demonstrates the problems with the total order approach. The planner is provided

with two goals on (block], block2) and on (block2 block3). If the planner attempts

to realise the first goal before the second, it will find it can no longer move block 2

onto block 3, as block I is on top of block 2, preventing it from moving. The

planner must then undo its first goal in order to achieve the second, before again

achieving the first goal. By detecting that moving block I onto block 2 would

delete the preconditions of the move block 2 onto block 3 action, an appropriate

ordering constraint may be added; therefore, removing the redundant action.

To achieve partial order planning we must refine our definition of a plan and a

planning algorithm. Partial order planning considers a plan as a three tuple <A, 0,

L>, where A is the set of actions in a plan, 0 is a set of constraints over the

execution order of A, and L forms a set of causal links (Weld 1994).

Consider the specification of A = {Action" Action2, Actions3 } and 0 specified to

be (Action1 < Action2, Action1 < Action 3). This representation constrains Action1

to occur before Action2, and Action1 to occur before Action3 . These constraints

are said to be consistent, as at least one valid ordering exists. The semantics of the

constraints are that Action2 and Action3 may be executed in any order relative to

each other.

3
The least commitment paradigm was also motivated by the MOLGEN planning

system (Stefik 1981) . In the context of biological experiment design, MOLGEN

demonstrated the effectiveness of gradually constraining a variable's instantiation

as opposed to immediately committing to an instantiation.

1 5

Al planning technologies

1 6

Least commitment planning requires the capability to trace past decisions and the

reasons behind these decisions; if a planner makes a ladder available it is for a

reason, and removing the ladder before it is needed would invalidate a plan.

Sacerdoti identified this issue and included the Table of Multiple Effects in his

NOAH system. The table recorded an entry for each expression that was asserted

or denied by more than one node within a plan. A conflict was recognised when an

expression that is asserted at some node is denied at a node that is not the asserting

node's goal. Information recorded about why decisions have been taken during

planning is referred to as a plan's Teleology (Sussman 1974).

Tate later devised the Causal Link within his Nonlin system (Tate 1 977) to address

a limitation of the table of multiple effects. The table of multiple effects considers

effects at the node level. Consequently, it maintains all the effects from a

producing node to its goal node. Typically, only a subset of the effects should be

maintained. Causal Links provide a teleology structure with three fields: a pointer

to a producer action Ap, a pointer to a consumer action Ac, and a proposition Q

which is an effect of AP and a precondition of Ac. Such links are represented

mathematically as:

Ap � Ac

Causal links are used to detect when a new action introduced to a plan interferes

with past decisions. Such an action is known as a threat. Mathematically A1

threatens Ap � Ac when 0 u (Ap < Ai< Ac) is consistent, and Ai has an

effect -,Q.

The concept of threat detection and removal was first implemented by Sacerdoti

and refined by Tate within the Question and Answering component of Nonlin

(Tate 1 977). The famous Modal Truth Criterion (Chapman 1 987) formalised the

notation of threats and their removal through the construction of the formal

TWEAK planner. The concept of plan critics and plan debugging originated with

HACKER (Sussman 1974).

For ease of representation, plan space planning specifies planning problems as null

plans. A null plan has two actions A=(A0, Aoc), one ordering constraint 0 = (Ao <

Aoc), and no causal links, L= (). Action0 is the start action of the plan and has no

preconditions, its effects are used to specify the world's initial state. Actionoc has

no effects, but its preconditions specify the goals of the planning problem.

Al planning technologies

The planning algorithm below (plan-ps) is a simple regressive algorithm,

developed by Weld (Weld 1994). The algorithm searches null plans, making

nondeterministic choices until all the conjuncts of every action's preconditions

have been supported by a causal link, and all threatened links have been protected

from possible interference. Plan-ps 's first argument is a plan structure and the

second is an agenda of goals that need to be supported by links. Initially each item

on the agenda is a pair <Q actio�>, i.e. the preconditions of action�, the goals of

the plan.

Plan-ps (<A,0,L>,Agenda, Set Of Actions Available)

I . If Agenda is empty, return <A,0,L>

2. Let <Q, Actionneedcd> be a pair on the agenda

3. Let Actiona<ldcd = Chose an action that adds Q (either a

newly instantiated action from Set Of Actions Available or an action already

in A that can be ordered consistently prior to Actionnecded· If no such choice is

possible then return failure.

Let L' = L u { Actionadded � Actionnee<led} , and let

O' = 0 U { Actionadded < Actionnecded } . If Actionadded is

Newly instantiated, then A' = A u {Actionadded} and

O' = 0 u (Action0 < Actionadded < Action�} . Otherwise, let

A' = A

4. Let agenda' = agenda - { <Q, Actionnee<led }

If Action,dded is newly instantiated, then for each conjunct

in, Q;, of its precondition, add <Qi> Actionadded> to agenda'

5. For every action A1 that might threaten a causal link
R

Ar � A,;, add a consistent ordering constraint, either

a) add A1 < Ar to O'

b) add Ac < A1 to O'

if neither constraint is consistent, then return failure.

6. Plan-ps(<A' ,O' ,L'>,agenda' ,Set Of Actions Available)

Figure 2-4, Simple plan space algorithm

Step 1 specifies the planning algorithm's success criteria. If the agenda is empty,

all the goals of the plan have been achieved. Step 2 selects an outstanding item for

achievement. Step 3 selects a new action that adds the effect Q just selected from

the agenda. Alternatively an action already existing in the plan, before A and

asserting the effect Q, may be used to establish Q. The agenda item satisfied is

removed from the agenda. If a new action has been instantiated, its preconditions

are added to the agenda. Step 5, the causal link protection stage, moves actions

that threaten other actions either before or after the range under protection. If

either technique resolves the conflict, the plan is consistent and the algorithm is

recursively called to solve the next agenda item.

1 7

Al planning technologies

1 8

The plan-ps algorithm contains several decision points: the selection of an entry

from the agenda, the selection of an existing condition (if possible) to satisfy the

agenda item selected against instantiating a new action, the choice of a new action

from the set of possible actions, and the selection of a method to resolve a conflict.

A more succinct decision is the choice of when to resolve the conflicts, the plan-ps

algorithm hard codes the resolution of all conflicts created by a new action before

considering the next agenda item.

Decision making strategies have been studied by a number of authors. To provide

an insight into the decision-making strategies available, the work of Poet and

Smith is summarised below.

Poet and Smith (Poet & Smith 1993)4 identify several strategies for removing

threats in partial order plan space planners. The separable delay technique notes

that many of the threats that occur during planning are ephemeral (short-lived). As

planning continues, new actions or variable bindings cause threats to be resolved

without intervention from the planner. The separable delay strategy therefore

waits until a threat has become definite i.e. all variable bindings have been

completed. The delay unforced threats strategy waits until only one threat

resolution option remains. Thus, if a threat could be resolved in plan-ps by both

promotion and demotion, the planner would wait until only one of these methods

would achieve a valid plan i.e. not introducing a new threat itself. Delay

resolvable threats ignores a threat until it becomes impossible to resolve, and

discards the partial plan. Delay threats to the end waits until planning is complete

before attempting to resolve threats.

Joslin and Pollack (Joslin & Pollack 1994)5 modify Poet and Smith's delay

unforced threat strategy to one named least cost flaw repair, and apply it to both

the selection of items from the agenda and selection of which flaws to repair.

Flaws are ranked against the number of possible ways of resolving them. The

strategy covers the contingency of all forced flaws being resolved and planning

being complete except for a set of unforced flaws (flaws with a cost > 1) . Least

cost flaw repair processes each flaw (open condition or threat) in ascending cost

order.

4A number of other authors have considered this issue (Yang & Chan 1994;

Minton, Bresina & Drummond 1 991 ; Barret & Weld 1994b)
5 The authors later develop a technique criticising the class of decision

postponements listed above, and introduce an active decision postponement

technique (Joslin & Pollack 1995).

2.3.1 .2.1

Al planning technologies

Summarising representational devices supported by plan space planners

Plan space planners enhance our understanding of the planning problem by

refining the general-purpose planning algorithm. The recasting of planning as a

search through the state of possible plans facilitates the introduction of non-linear

planning, plan teleology, and threat handling. This reformulation of planning to

the search through plan-space results in no enhancement to the declarative domain

knowledge available to a domain writer; the STRIPS action representation remains

unchanged.

As in state based planning, the domain writer has two methods available to specify

domain specific knowledge: a declarative action description language, and

algorithmic optimisation options. The declarative knowledge available to a plan

space planner is defined in the table below.

Agent' s Goals Specified as a set of logical statements that the planner

must work to achieve. The agents' goals are collectively

known as the goal world state. In plan-space planning the

goal world state is specified as preconditions on a final

dummy action.

World State Represented as a set of logical sentences that together

specify the world at some moment in time. The state of the

world at the start of planning is defined as the initial world

state. In plan space planning the initial state is specified as

effects of an initial dummy action.

Actions Defined as state manipulation functions. Actions have

preconditions and effects. Preconditions specify the

statements that must be true in the world state before an

action can be executed. Effects specify the changes in the

world state which result from an action's execution. The

representation is known as the STRIPS representation.

The algorithmic optimisation option permits the domain writer to make domain

specific knowledge available to a planner through modifications to the planning

algorithm. Plan space planners offer more modification options to a domain writer

than state space planners. Specifically, state-space planners offer two decisions

point for optimisation: the selection between the open conditions, and the selection

between the applicable actions to achieve the condition selected. Plan space

planning extends this set of decisions to include: the selection between the set of

open conflicts in a plan, the selection between the set of methods to resolve a

given conflict, and the decision to resolve conflicts or continue planning.

1 9

Al planning technologies

20

A number of decision-making strategies were described in the preceding text

(separable delay, delay unforced threats, etc.). The method employed by domain

writers for deciding between algorithmic optimisation options is one of

experimentation. The domain writer encodes a domain in the declarative action

representation language, then experiments with this representation on a number of

example problems in the domain under consideration. "Bottlenecks" in the

execution are identified, i.e. points at which the planner is exploring a large

number of options whilst attempting to make a decision. The available decision

making strategies are interchanged until a reduction in the identified bottleneck is

achieved.

Drummond states that precondition achievement planning' s applicability to real

problems is hindered by the technique's search space (Drummond 1994). He notes

that the technique's lack of effective search control prohibits the application of

precondition achievement planners to real world domains. Drummond has

identified a problem in the relationship between a domain and the allocation of

algorithmic optimisation techniques. For example, there is no answer to the

question of what features of a domain lead to the delay removable threats

technique being more applicable than separable delay. Precondition achievement

planners offer little advice to the domain writer; the decision must be based upon

experimentation.

This argument will be considered in more depth when comparing precondition

achievement and task refinement planning technologies in the next section.

Al planning technologies

2.3.2 Task refinement planning

Task refinement or Hierarchical Task Network Planners (HTN) (Tate 1 977) were

initially motivated by Tate's desire to combine AI planning techniques with

Operations Research. Tate noted that the Operations Research discipline provided

techniques for analysing plan networks, but offered no comment on their

construction (Tate 1977). As a result of this heritage, there are many similarities

between task refinement and precondition achievement planners, but also some

significant differences. A comparison between the techniques is provided in

section 2.3.3. This section aims to introduce the basic task refinement

representation and planning algorithm.

Task refinement planning is the search for plans that accomplish task networks

(Ero!, Hendler & Nau 1 993; Kambhampati 1 994). The process of task refinement

will be introduced through a simplified definition of task networks; therefore, for

the moment, accept the following definitions.

• primitive tasks describe the actions available to the actuators of the agent

for which we are planning.

• non-primitive tasks describe tasks that the planning process must

accomplish. Non-primitive tasks are themselves composed of other non­

primitive and I or primitive tasks, collectively defined as sub tasks -

relative to the defining non-primitive task. A non-primitive task may

place ordering constraints upon its sub tasks.

• plan executability is achieved when all the steps in a plan are mapped to

primitive tasks.

Planning problems are supplied to a task refinement planner in the form of a non­

primitive task network (a primitive task network is a completed plan, and would

therefore require no action by the planner). Considering a concrete example, to

generate a plan for decorating a house, the following task would be supplied to a

task refinement planner (Figure 2-5):

task decorate;
nodes 1 action { decorate) ;

end task decorate;.

Figure 2-5, Initial task network for the decorate problem

21

Al planning technologies

22

The initial task specification results in a plan with a single task: decorate.

Decorate is non-primitive (defined by the prefix "action") and therefore requires

further refinement. To refine the decorate task, the planner will search its domain

library for a task network indexed as a refinement of decorate. Several task

networks may share the same index, collectively referred to as methods. In the

decorate example, one method may decorate a house with wall paper and a second

with paint. Once the set of methods for achieving the decorate task has been

identified, the planner selects one method from the set for use in the plan (the

options available to guide this selection will be discussed latter). Figure 2-6

depicts two methods (decorate 1 and decorate 2) which may be used to achieve

the decorate task. Decorate 1 is intended for a building with a basement, whilst

decorate 2 is intended for a building without a basement.

schema decorate- I ;
expands { decorate} ;
nodes l action {fasten plaster} ,

2 action { pour basement floor} ,
3 action { lay finished flooring} ,
4 action {finish carpentry} ,
5 action (sand and varnish floors } ,
6 . action {paint} ;

orderings: 2� 3 , 3 � 4, 4� 5 , l � 3 , 6� 5 ;
end schema decorate-I ;

schema decorate-2;
expands {decorate} ;
nodes 1 action { fasten plaster} ,

2 action { lay finished flooring} ,
3 action {finish carpentry} ,
4 action { sand and varnish floors } ,
5 action { paint} ;

orderings: l � 2, 2� 3 , 3� 4, l � 2, 5� 4;
end schema decorate-2;

Figure 2-6, Two methods for achieving the decorate task,
based upon an example given in (Tate 1977)

Assuming the planner selects the decorate-] method, the initial decorate task will

be refined to (i.e. removed and replaced by) the decorate-] method. Figure 2-7

depicts the initial plan and the results of the first refinement.

Al planning technologies

basement floor

fasten plaster

The plan resulting from the initial
problem definition

decorate

The plan resulting from the refinement of
decorate with method decorate 1

lay finish. floor carpentry

paint

sand, varnish

Figure 2-7, Initial refinement of the decorate task.

Each of the tasks resulting from the initial refinement of the decorate task are non­

primitive, as each task has the prefix "action". Hence, the planner proceeds by

searching for methods in its domain library that will achieve each of the new tasks

(fasten plaster, pour basement floor . . . paint), and selecting appropriate

refinements. If the paint task has one method applicable for its refinement (Figure

2-8), the task network in Figure 2-7 will be refined to the network depicted in

Figure 2-9. Note how the ordering constraints imposed on paint are maintained by

the task's refinement.

schema paint;
expands {paint} ;
nodes 1 primitive { paint walls) ,

2 primitive {paint door frames } ,
3 primitive { paint doors } ;

orderings: 1 -t 2;
end schema painL;

Figure 2-8, Refinement for the paint task

basement floor lay finish. floor carpentry sand, varnish

fasten plaster r··········-.. ··-·······-;:;::·:��:···· .. ···-·········�:;:�·;;�:�:·-··-······· ····· .. --1
: I i I
I :
: I j paint doors � L. -.... " _. __!

Figure 2-9, Plan resulting from the refinement of the paint task

23

Al planning technologies

24

The refinement process repeats until each task in the a plan may not be further

refined, i.e. all tasks are primitive tasks. The process of task refinement is

described more formally in the algorithm below (Figure 2-1 0) which originates in

(Ero!, Hendler & Nau 1993).

Plan-tn (Initial Task)
1 . If P contains only primitive tasks, then resolve the conflicts

in P and return the result.
If the conflicts cannot be resolved, return failure

2. Choose a non-primitive task t in P
3. Choose an expansion for t
4. Replace t with the expansion
5 . Use critics to find the interactions among the tasks in P

and suggest ways to handle them
6. Apply one of the ways suggested in step 5
7. Go to step 1 .

Figure 2-10, Simple task refinement planning algorithm

On the algorithm' s first invocation, step 1 considers the initial task. If all tasks in

the plan are primitive, planning is considered complete. Step 2 selects a non­

primitive task from the initial task specification; hence, it is possible to describe

problems that initially consist of more than one task. Step 3 identifies methods

which maybe used to refine the task selected, and selects one to use as a

refinement. Step 4 performs the refinement by replacing the task selected for

refinement with the selected method for accomplishing it. Step 5 and 6 critique the

plan for inconsistencies in the constraints explained below. Step 7 recursively calls

the algorithm. Any non-primitive tasks added during the previous invocation of

the algorithm will be considered at step 2 for refinement.

As with precondition achievement planning algorithms, the task refinement

algorithm in Figure 2-1 0 offers several decision points: should all tasks be refined

before constraints are checked or, as in the algorithm above, should the process of

task refinement and constraint maintenance be interleaved? If a set of tasks require

refinement, which of these tasks should be considered first. Tsuneto et. al. identify

the choice points in task refinement planning and analyse the options available for

making these choices (Tsuneto et. al. 1996). The options correlate with Poet and

Smith's work in precondition achievement planning (Poet & Smith 1 993).

Al planning technologies

To date, this description has described non-primitive task networks as structures

containing a set of other non-primitive and or primitive task networks and ordering

constraints between these sub tasks. The domain writer may specify additionally

knowledge in the following categories: conditions, effects, and variable binding

constraints. Each category is described in turn below.

Conditions may be typed to permit the domain writer to define how each should be

established and maintained. The variety and meaning of condition types vary from

one specific planning system to another. For the purpose of this review, the types

in the Nonlin system will be examined. Nonlin was the first task refinement

planner6; therefore, the condition types available in today's state of the art systems

may be traced to those provided in Nonlin.

Nonlin supports achievable goals and three condition types: supervised,

unsupervised, and use-when (Tate 1 976). Achievable goals permit Nonlin to

include tasks in its network for to purpose of satisfying the condition the goal

prefixes. This is the only construct that permits Nonlin to include tasks for

satisfying a condition. The supervised condition type permits the specification of

the only goal node from which a condition may be satisfied7•

Unsupervised conditions may be established only by adding ordering constraints

to a plan. A planner will not add actions to a plan for the purpose of establish

conditions of this type. In Nonlin, the system waits until planning is complete

before attempting to match each unsupervised condition with a contributor. If

contributors cannot be found, Nonlin backtracks by trying different refinements

for tasks.

Use-when conditions provide a mechanism for selecting between the set of

methods available for achieving a task. For example, if a decorate schema is only

applicable to a house with a basement, a use-when condition of "building has a

basement = true" would be added. Once the set of methods for refining a task is

identified, the members whose use-when conditions do not hold in the current

world state are pruned. A task refinement planner will not attempt to satisfy a use­

when condition, hence, the planner will not attempt to construct a basement for

decorating a house.

6Nonlin draws upon concepts originating in Sacerdoti' s NOAH system. However,

Nonlin was the first planning system to implement task refinement planning as

found in today's planning systems.
7 The achievable goal concept has been replaced within the 0-Plan system with

the condition type achieve. In 0-Plan Supervised conditions may be satisfied

within a schema either by the deliberate inclusion of an effect or by the direct

inclusion (at a more detailed level of decomposition) of an action known to

achieve the necessary effect.

25

Al planning technologies

26

Effects are similar to those in precondition achievement planning. They describe

how the world state changes as a result of an action's execution. As tasks may be

organised into a hierarchy, effects may be organised into different levels of

abstraction.

Variables may have co-designation constraints placed upon them.

With the additional constraints specified, a complete definition of primitive and

non-primitive tasks may be presented.

• primitive tasks describe the actions available to the actuators of the agent

for which we are planning. They may assert effects and conditions upon

the world.

• non-primitive tasks describe tasks which the planning process must

accomplish. Non-primitive tasks are themselves composed of other non­

primitive and or primitive tasks, collectively defined as sub tasks -

relative to the defining non-primitive task. A non-primitive task may

assert the following constraints: orderings between its sub tasks, typed

conditions, and variable binding constraints.

Task refinement planning is the only technique which, to date, has successfully

been applied to "real world" planning problems (Kambhampati 1 995). In

comparison with precondition achievement planning, there is a lack of formal

understanding of task refinement planning. Until recently, many authors have

dismissed task refinement as an efficiency hack. However, Erol and Kambhampati

have recently made progress towards developing a formal understanding of task

refinement planning.

Al planning technologies

2.3.2.1 Summary of the representational devices supported by task

refinement planners

Task refinement planning offers a number of constructs to the domain writer for

declaring knowledge about actions in a domain. Each is summarised in the table

below:

Agent's Goals Planning problems are specified as one or more non-primitive

tasks which the planner must refine. Ordering constraints

between these tasks may be specified by the domain writer.

World State Represented as a set of logical sentences, which together

specify the world at some moment in time. The state of the

world at the start of planning is defined as the initial world

state.

Actions A domain is partitioned into a set of tasks, with a number of

methods for achieving each task. The tasks may be arranged

into a hierarchy, with each level representing a different level

of abstraction. Preconditions may be typed as achievable goals,

supervised, unsupervised, or use-when. Condition types inform

the planner how to satisfy and maintain conditions, therefore

reducing the planner's search space. Effects of actions may be

specified as in precondition achievement planning, as literals

which change in the world state. The hierarchy of task

specifications permit effects to be introduced at different levels

of abstraction.

The domain writer may modify a task refinement planner's decision-making

strategies in a number of ways. The options available are similar to those in

precondition achievement planning. This point is expanded in section 2.3.3 .2.

27

Al planning technologies

2.3.3 Summary of the views on which classical planning technology
best meets the requirements of industrial planning problems

Sections 2.3 . l and 2.3.2 identified two devices supported by both precondition

achievement and task refinement technologies for providing application domain

specific knowledge to a general-purpose planning system. First, declarative action

representations allow the domain writer to declare knowledge about the actions

and the objects in a domain. Second, algorithm optimisation techniques permit the

domain writer to adjust a general-purpose planning algorithm to optimise the

algorithm's performance for a specific application domain.

Both methods are summarised below, and conclusions drawn as to which

technology, precondition achievement or task refinement, best services the

representational requirements of industrial planning problems.

2.3.3.1 Declarative action representations compared

28

Both state space and plan space approaches to precondition achievement planning

support the declarative STRIPS action representation language. Within the

STRIPS formalism, the world is modelled as being in a finite state at any moment

in time. Actions are defined in terms of preconditions and effects, where

preconditions define the conditions which must hold in the world state before an

action can be executed, and effects specify the logical statements added to and

deleted from the world's state as a result of the action's execution.

As in precondition achievement planning, task refinement planners use a state­

based model as the underlying action description technology. The primary

differences lie in the way action knowledge is organised and the type prefixes that

may be added to conditions. Actions are organised into a hierarchy of tasks, where

each task may define its sub tasks, ordering constraints between those sub tasks,

conditions, effects, and variable binding constraints.

The differences between the declarative action representations of precondition

achievement and task refinement planning lead to the question: "which

representation is more expressive8?"

8In terms of features which are relevant to capturing domain specific knowledge in

the context of solving the planning problem.

Al planning technologies

From task refinement planning's conception in the nineteen seventies to the late

nineteen eighties, no formal analysis of the task decomposition was undertaken

(Barrett & Weld 1994b; Kambhampati 1994; Erol & Hendler & Nau 1994b).

Formal research focused on precondition achievement planning, neglecting task

refinement (Chapman 1 987; Pednault 1988; McAllester & Rosenblitt 1 991) .

Recently (the early nineteen nineties), researchers have started formally analysing

the implications of task refinement. Work in this area has been undertaken by

(Yang 1990; Erol & Hendler & Nau 1994a, 1994b; Kambhampati 1 994, 1 995;

Barrett & Weld 1994).

Erol et. al. (1994b) use Baader's definition of the expressivity of knowledge

representation languages to compare precondition achievement and task

refinement planning. Baader defines expressivity as follows. If a language L1 can

be expressed in a second language Li, then for any set of sentences in Li. there

must be a corresponding set in Li (Baader 1 990). Erol et. al. demonstrate through

a formalisation of task refinement and precondition achievement planning that the

precondition achievement representation can be expressed in a task refinement

formalism (Erol, Hendler & Nau 1994b). The authors then demonstrate that the

inverse is not possible, i.e. all sentences in a task refinement formalism cannot be

represented in a precondition achievement formalism. Therefore, under Baader's

definition of language expressivity, precondition achievement formalisms are less

expressive than task refinement formalisms. Erol et. al. (1994b) conclude that

precondition achievement planning is a special case of task refinement planning.

This analysis does not comment on the relevance of task refinements greater

expressivity in the context of capturing domain specific knowledge for a planning

system.

Kambhampati (Kambhampati 1 995) derives a formal framework that is similar to

Erol et. al.; however, he uses the framework to examine informal claims made

about task refinement' s advantages by a number of researchers in the context of

planning. Kambhampati' s analysis is summarised below:

29

Al planning technologies

30

It is often claimed that task refinement planners allow the domain writer to effect

more control over solutions than precondition achievement planning, as the

domain writer may rule out certain classes of solution through task specification.

For example, by specifying the task "build a house" rather than the goal "have a

house", the planner does not explore the options of purchasing a house or moving

an existing house to a new location. Kambhampati questions if the same

functionality may be achieved in precondition achievement planning. Barret and

Weld (Barret and Weld 1994a) offer such a comparison and conclude that whilst

many of the problem specification advantages can be achieved in precondition

achievement planners, task refinement planning is the more expressive.

Task refinement planners encode large plan fragments with pre-packaged causal

structure, hence, the planner does not have to work to create these plan fragments.

Kambhampati concludes that this advantage depends upon the level of interaction

between customised plans. Hence task refinement planners rely on addressing a

class of problem where the domain maybe structured into a relatively interaction

free task specifications.

Goal specification is arguably richer in task refinement planning as it is possible to

specify intermediate goals. For example, a round trip cannot be specified using

goals of attainment as the goal state and initial state are the same. Task refinement

planning permits the problem to be specified as two ordered tasks "travel to

Jocationl < travel back to original location" . Kambhampati notes that problems of

this type may be specified in precondition achievement planning by inserting a

dummy action. However, it is not possible in precondition achievement planning

to enforce restrictions on different parts of the plan. For example, enforcing the

constraint that the round trip should use the same mode of transportation on both

legs. A solution in precondition achievement planning would require modification

to the domain model, where task refinement systems allow a new high level

operator to be added, leaving the remainder of the domain model unmodified.

Kambhampati concludes that problem specification is simpler in task refinement

planning.

Task refinement planning is the only planning technique to be applied successfully

in real world problems. Kambhampati asks if this is necessarily so. Drummond

(Drummond 1994) argues that this practical success is no accident, attributing the

success to task refinements ability to make pertinent domain knowledge available

to a planning system. This is an unresolved point of contention.

Figure 2-11, Kambhampati's analysis of task refinement planning's
expressivity

Al planning technologies

Current formal views agree that task refinement planning offers more features to a

domain writer than precondition achievement planning. Erol's mechanistic

analysis of the techniques demonstrates that these features lead task refinement

planning to be the more expressive technology. Kambhampati' s reasoned

examination of task refinement's additional features indicates that the approach

has two types of benefit. First, some features of the industrial application domains

may be represented more simply in task refinement planning. Second, task

refinement planning can represent features of industrial application domains that

cannot be realised in any other technique.

McDermott provides a summary of the relationships between task refinement and

precondition achievement planning (below).

" . . . The truth is that {precondition] and {refinement] planners are not

competing. The spaces searched by [refinement] planners are quite different

to those searched by [precondition] ones. A [refinement] planner pastes

together big canned plans, postponing decision about how those plans will

interact. That approach makes no sense unless each of the plans is written

in a robust way that will allow it to succeed when other things are

happening. That gives the planner the freedom to ignore most interactions.

In other words, the planner is not avoiding interactions by means other than

search; instead, it is presupposing that plans have been written so that fatal

interactions are improbable. This presupposition is false in the blocks

world, where all the difficulties are due to intricate combinatorics in

stringing together tiny pieces of plan. " (McDermott 1991)

McDermott' s arguments are supported by Drabble and Tate 's description of the

target applications for their 0-Plan task refinement planner (Drabble & Tate

1994). The authors provide a taxonomy of problems which ranges from the

resource intensive scheduling problems to the interaction intensive puzzles, such

as blocks world. 0-Plan's target applications are defined as residing in the centre

of this continuum. The authors claim that many industrial applications of planning

technology lie in this area.

Combining the arguments above with the pragmatic observation that task

refinement planners have been applied more successfully to industrial problems,

one must conclude that the representational devices supported by task refinement

planning are the most effective classical offering for addressing industrial

problems.

31

Al planning technologies

2.3.3.2 Optimisation of planning algorithms compared

32

The table below demonstrates that the decision points within task refinement and

precondition achievement planning are comparable.

Precondition choice Task refinement choice point

Selecting an item from the set Selecting the next task from the set of

of items on the agenda for non-primitive tasks in a network for

achievement refinement

Selecting an action from the Selecting a task from the set of methods

set of actions available which available which refine that task

achieves the current goal

Should all conflicts be refined Should conflicts be addressed before the

before the next goal is next task is refined, or should the planner

addressed, or should the wait until planning is complete

planner wait until planning is

complete

Of the possible ways to Of the possible ways to resolve a

resolve a conflict, which conflict, which should be implemented.

should be implemented

Each of the decisions in the table above can be made using one of a number of

strategies. Each strategy offers a different trade off between the time taken to

compute the cost of each option available to the quick, but unsophisticated,

random choice. Task refinement planning, however, provides a number of

constructs in its declarative domain representation formalism for influencing each

decision point. The mapping between decision point and construct is depicted in

the table below.

Al planning technologies

Task refinement choice point Declarative construct

Selecting a task network to Effects may be typed to differentiate

establish an effect. between the effects for which an operator

should be included in a plan from the side

effects of an operator.

Selecting a task from the set of Filter conditions define the criteria which

methods available which must hold before a method is applicable.

refine that task The construct permits candidate methods

for inclusion in a plan to be discounted.

Should conflicts be addressed Condition typing constrains the order in

before the next task is refined, which conditions should be addressed.

or should the planner wait

until planning is complete

Of the possible ways to Condition typing constrains the method

resolve a conflict, which employed to establish each condition.

should be implemented.

In contrast to precondition achievement planning, task refinement planning

provides a domain writer with devices for controlling the execution of the domain­

independent planning algorithm' s execution.

33

Al planning technologies

2.3.3.3 Conclusion

34

Precondition achievement is the most general classical planning technology. The

precondition - effect representation places no assumptions upon the structure of

the domains to which it is applicable, leaving the complexity of planning to the

domain-independent planning algorithm. The technique' s industrial aptitude is

limited, however, by the large search space the planning algorithm must consider

and the lack of domain independent heuristics for reducing that space.

Task refinement planning offers a formalism that permits the structure of a domain

to be exploited, hence, addressing partially the prohibitive search of precondition

achievement planning. Task refinement's additional features place certain

assumptions upon the application domains to which it is applied. Specifically, that

the application domain can be encoded as a set of task networks with limited

interactions.

The assumption placed upon application domains by task refinement techniques

has held in a number of industrial applications. Hence, combined with the

inclusion of precondition achievement functionality in task refinement planning, if

one wishes to consider an industrial planning domain, task refinement technology

should be considered first.

Al planning technologies

2.4 Extending the classical framework9

The classical assumptions have provided a manageable subset of real world issues

for planning researchers to address. However, the techniques developed within

this framework are limited in their application as "real world" domains do not

conform to the classical assumptions. In recent years, the ARPA10 I Rome

Laboratory Planning Initiative (ARPI) (Tate 1996b) has provided the largest

single funding source for AI planning research, and has therefore effected a major

influence on the direction in which the field has progressed. The initiative

summarises its participants' perception of the status of planning research at its

conception (in the late nineteen eighties) in the quotation below:

The AI planning community believes that it has many of the constituent

theories in place, but what has yet to be demonstrated is what is important

and what is not 1 1 . reported in (Fowler et. al. 1996).

Erol, an ARPI participant, confirms this view with the following comment:

The current state of the art in planning research has not yet reached a level

to accommodate the demands of the planning applications. Developing fast,

reliable planning systems that work well in planning applications is still a

great challenge for planning researchers.

(Erol 1 995, pp 1 24)

The ARPI initiative has aimed to move planning technology closer to the demands

of industrial problems by biasing its funding towards research with an industrial

focus, hence, encouraging planning researchers to relax the classical assumptions

and identify and develop what Fowler reports as the important theories.

To provide a framework for the presentation of state of the art planning research,

the definition of the planning problem in Figure 2- 1 is extended in Figure 2- 12 to

provide a more general definition. State of the art research is then briefly

summarised against this framework, before conclusions are drawn as to how

current work is developing the domain knowledge available to planning systems.

9 This title is inspired by a chapter title in (Allen, Hendler & Tate, 1 990).
10

The Advanced Research Project Agency (ARPA) has recently been renamed the

Defence Advanced Research Project Agency (DARPA).
1 1This quotation is cited in (Fowler et. al. 1996), but is described as originating in

an unpublished technical report. Hence, the citation is attributed to Fowler et. al.

35

Al planning technologies

2.4.1 General definition of the planning problem

36

To provide a framework for the analysis of integrated planning systems, the

definition of a dynamical system in Figure 2-1 is extended in Figure 2-12 below.

The intelligent agent /1 has a set of goals r that indicate desires on the state of the

environment E. The agent possess two subsystems for reasoning about the actions

its actuator systems may take: a planning system and a reactive system. The

planning system provides the long term strategic reasoning of the agent, whilst the

reactive system supports immediate behaviour (in a robot this would equate to

swerving to avoid an obstacle12).

Intelligent Agent /1 f"''''''''' ''"''"'"'" __ , -... ,_ ... ,_, --.1

i I
I Goals r !
l Intelface between agent's j
· goals and the agent's • j plw111i11g sub system I I Planning system I
! l I "::.:::: :.�:;�:, I
i ; I Informs planning and Reactive system !

reactive sub systems of the i l state of E l
t Pla11 for actuator systems wl
l execute. I I Perceptual systems Actuator systems J
i p A l
t -.... ___ ······················-·�--· .. ·-··-.. ��···· --.. ·--...... ,. _ .. _ ... ,_,, J

Environment
E

Executes actions in E

Figure 2-12, Generic planning architecture

The following summary of state of the art planning research will draw upon this

definition of planning to set the work described into the context of the overall­

planning problem.

12 The need for a reactive and a planning component is a contentious issue. Brooks

(Brooks 1985; 199 1 a; 199 1 b) argues intelligent robots require only reactive

behaviour. Whilst Ginsberg (Ginsberg 1989) argues that it is impossible to encode

every situation an agent may find itself in, therefore planning functionality is

required.

Al planning technologies

2.4.2 Overview of current research directions

2.4.2.1 Relationships between planning, acting, and reacting

If the assumption of complete world knowledge is relaxed, during plan execution

an agent may discover its initial understanding of the world was incorrect or

incomplete (Beetz & McDermott 1 996). This scenario poses the question of when

to stop executing a plan as a result of discovering new knowledge, metaphorically

taking a step back to consider the option of replanning as opposed to continuing

the execution of the existing plan. A related concern is when to plan and when to

react.

The relationships between planning, acting, reacting, and replanning have formed

a major thread in AI planning research. The majority of such work has been driven

by robotics applications where there is a great emphasis on the need to react and

re-plan (Wilkins & Myers 1995). The robot work is typified by McDermott's

reactive planning language (RPL) (McDermott 1992; Beetz & McDermott 1 996).

RPL originally provided a language for specifying how a robot should respond to

sensory input in order to accomplish its tasks. Beetz and McDermott' s recent work

extends RPL to allow a robot to make decisions about when to replan, how to

continue a task when waiting for a plan, and how to integrate new plans into the

plan a robot is currently executing.

Task refinement researchers identified the need to consider the relationship

between a planner and its execution whilst addressing a military logistics domain

(Wilkins & Desimone 1994). The work has resulted in the SIPE-2 (Wilkins 1 988)

task refinement planner being integrated with the Procedural Reasoning System

(PRS) (Georgeff & Ingrand 1989) reactive system, creating the CYPRESS system

(Wilkins & Myers 1 995). Similar research has been undertaken on the 0-Plan

project in the context of a military evacuation domain (Tate 1993a). The essence

of this research is defining the communication between a planner and an execution

system. With particular emphasis on how a execution system may integrate a new

plan fragment into its existing plan, and the decision of when a plan must be

terminated and replanning initiated. Other research in this area is briefly

summarised below:

• Classical planning implicitly assumes a planner output provides

instructions for a single agent. Work by (Coddington & Aylett 1996)

addresses the issue of planning to co-ordinating many robots. Related to

this issue, is planning for environments in which an agent is competing

with other agents (Fuchs 1996).

• Blythe is working in domains where the environment changes

independently of the agent the planner controls (Blythe 1996). Blythe is

working with the management of oil spills, where the weather may

change, moving the spill into a different direction.

37

Al planning technologies

2.4.2.2 Developing the expressive power of planning languages

Planners require languages that can express knowledge about actions. Work in this

area has proceeded in task refinement and precondition achievement planning.

Advancements within each technology are summarised below.

Precondition achievement planning

38

In the early nineteen nineties, precondition achievement planning could be divided

into two camps. In the first group, formally complete partial-order planners could

reason with a restricted form of the STRIPS representation. E.g. TWEAK

(Chapman 1 987), SNLP (McAllester & Rosenblitt 1991) . In the second group,

formally complete planners could reason with relatively expressive formalisms,

but could work only with totally-ordered plans. E.g. Pedestal (McDermott 1991) .

Since partial order planning is preferable to total order approaches (Minton et al

1 991)13 , planning researchers have aimed to produce a formally complete, partial­

order planner that would support an expressive action representation.

Pednault's Action Description Language (ADL) is an expressive planning

language, designed to integrate the advantages of the STRIPS representation and

the situation calculus (Pednault 1 989). Pednault effectively reformulated the

situation calculus into action schemas akin to those in the STRIPS representation.

This reformulation resulted in a formalism more expressive than STRIPS yet

computationally less demanding than full first order logic. McDermott's Pedestal

planner was the first implementation of this language (McDermott 199 1). Pedestal

used a total order plan representation, and McDermott argued the total order

approach was the only way to realise ADL. UCPOP (Penberthy & Weld 1 992)

provides the first partial-order implementation of a significant subset of ADL.

More specifically, UCPOP can represent actions with conditional effects,

universally quantified preconditions and effects, and universally quantified goals.

UCPOP has been proved both formally sound and complete.

13 (Minton, Bresina & Drummond 1994) demonstrate that the search space of a

partial-order planner is never larger than a total order planner. In some cases, it is

exponentially smaller. Hence partial order planning is generally more efficient

than total order planning.

Al planning technologies

UCPOP has provided an expressive and sound base upon which researchers may

develop planning technologies. The planner is currently in use in approximately

one hundred institutions (Weld 1996). A common research paradigm is

demonstrated by Weld & Etzioni (Weld & Etzioni 1 994). The World Wide Web

provides planners with a real world domain with which they may interact with

sensors (e.g. gopher) and actuators (e.g. ftp). Weld & Etzioni noted the

importance of safety in this domain. For example, a planner should be prevented

from producing a plan which deletes the files on a disk in order to optimise the

amount of free space. Weld & Etzioni add the concept of safety and tidiness to the

action representation of UCPOP and successfully addressed these issues. This

research paradigm may be summarised as, apply a planner to a new domain,

identify requirements the planner cannot represent, modify the planner to represent

the new requirements.

Other examples of work based on UCPOP are summarised below:

• XII Integrates UCPOP with an execution environment (Golden, Etzioni

& Weld 1 994)

• BURDIAN modifies UCPOP to represent actions with probabilistic

effects. (Kushmerick, Hanks & Weld 1995)

• PYRRHUS balances the cost of a plan against the degree of goal

satisfaction. (Haddaway & Hanks 1992)

It is important to note planners other than UCPOP are being utilised within the

"apply and develop" paradigm. Most notably PRODIGY (Minton et al 1989).

There is evidence to suggest more projects are moving towards UCPOP (e.g.

(Knoblock 1996)).

39

Al planning technologies

Task refinement planning

40

The task refinement paradigm is being developed through two practically oriented

projects: SIPE-2 (Wilkins 1 988) and O-Plan14 (Currie & Tate 1991) .

0-Plan aims to provide a generic planning architecture which permits the "plug

and play" of individual components (Tate 1993b). The rationale is, to allow the

system's optimisation for specific domains. Much of O-Plan's developments are

covered in other sections of this review (2.4.2. 1 , 2.4.2.3, 2.4.2.4). The expressive

power of 0-Plan's domain representation language (the task formalism) has been

enhanced in the following ways:

• Resource Types. Vere demonstrated that N onlin may be extended to

allow specification of goals with relation to time and events (Vere 1 983).

Work on the 0-Plan project has developed a rich model of resources to

aid search control.

• Refinement of Nonlin's task formalism. The 0-Plan project has refined

the original task formalism implemented in Nonlin. Notably the

semantics of condition types have been clarified (Tate & Drabble &

Dalton 1994) and a full specification of the task formalism published

(TFMANUAL).

14 0-Plan is in its second incarnation and until recently was referred to as O-Plan2.

The team has reverted to the 0-Plan name to prevent confusion with

implementation versions. (Private correspondence with Brian Drabble, formerly

AIAI Edinburgh, UK).

Al planning technologies

2.4.2.3 Relationship between an agent and its planning subsystem

The interface between an agent's goals and its planning component is a significant

issue in applications where a human user must interact with a software system.

This scenario has led to the development of the mixed initiative planning

paradigm.

0-Plan implements mixed initiative planning with user and planner co-operating to

solve a problem with the planner asking questions of the user and the user placing

tasks onto the planner's agenda (Tate 1 994). The 0-Plan scenario has been

applied to military logistics planning (Tate, Drabble & Kirby 1994b)

The TRAINS-95 system concentrates on the communication media between

planner and human (Ferguson, Allen & Miller 1996). TRAINS-95 uses speech

recognition, graphical representations of domain concepts and natural language

understanding to enter into a natural dialogue with the human user. Tate reports

work that is combining the planning strengths of 0-Plan with the user interaction

features of the TRAINS project (Tate 1997).

2.4.2.4 Plan quality

As planners address real world domains, the resultant plans increase in

complexity. It is difficult for humans to inspect such plans. Two complementary

techniques have been developed to support this analysis.

Simulation systems allow a planner's execution environment to be simulated.

MESS (Multiple Event Stream simulator) (Anderson & Cohen 1 996) provides a

domain independent simulation environment allowing streams of events to be

supplied to a planner and the resultant plans analysed.

A number of valid plans may be produced to solve a single problem. Typically

such plans vary in the number and type of resources used and the execution time

of the plan. Each valid plan for a problem is referred to as a possible course of

action (COA). Swartout and Gil provide a course of action evaluator that ranks the

different courses of action according to domain specific criteria (Swartout & Gil

1 996). The COA evaluator is combined with the EXPECT Knowledge acquisition

tool to allow us to quickly build plan ranking criteria.

In (Drabble, Gil & Tate 1995) the EXPECT system is applied to a military

domain, where plans are evaluated against the number of sea ports, air ports,

flights per hour, and other domain specific criteria. This type of analysis integrates

with the mixed initiative planning paradigm. In the military scenario, the user may

select a course of action and ask the planning system to modify it under certain

criteria. For example, reduce the number of aircraft resources required.

41

Al planning technologies

2.4.2.5 Developing planner knowledge bases

42

The construction, debugging, verification, and maintenance of planning

knowledge bases has until recently been neglected. Chien provides a set of tools to

support these tasks (Chien 1996). Specifically, Chien's tools tackle the problems

of incorrect plan generation and the failure to generate a plan.

Wang addresses the construction of knowledge bases through a learn by doing

paradigm in the OBSERVER system (Wang 1 994; 1996). OBSERVER learns

operators from sample problem solutions.

Al planning technologies

2.5 Model-based planning

Model-based planning systems (Marshall et al. 1 987, Winstanley et al. 1990,

Winstanley & Hoshi 1 993) were developed during the late nineteen eighties and

early nineties in a collaboration between The University of Brighton, UK,

Stanford University, USA, Rediffusion Simulation Ltd, UK, and Babcock

Woodall-Duckham Ltd, UK. The work addressed the design to implementation

process of large scale, high technology products.

Model-based planning systems form part of a larger configuration and planning

system. The configuration subsystem questions a designer with the factors

affecting component choice. An example of this dialogue from the PIPPA

(Marshall 1988) system working in the flight simulator domain is depicted in

Figure 2- 1 3 below. The configuration system applied rules of the form depicted in

Figure 2-14 to select the components for a specific product.

Is the simulator to be situated in an unusual or hostile environment?[yes, no, maybe]
user> yes
Is the site subject to temperature extremes?[yes, no]
user >yes
Enter the name of the cooling technique which is to be used [oil, gas]
user >oil
How far away from the cooling system will the simulator be in meters
user >35
Conclusion: the simulator will require a HTU cooling unit with a booster pump due to
the distance between the cooling system and the simulator.

Figure 2-13, Example configuration dialogue between the PIPPA
configuration sub system and a flight simulator designer

(from (Marshall 1988, pp 33)) If the environmental conditions of the simulator site are temperature hostile
then the piping material of the plumbing is stainless_steel
If the environmental conditions of the simulator site are humid
then the piping material of the plumbing is rubber.

Figure 2-14, Sample configuration rule set from the PIPPA configuration sub
system (From (Marshall 1988, pp34))

The model of a product resulting from this configuration process is depicted in

Figure 2-1 5 below. The mechanical_system and hydraulic_comp ovals represent

classes of component. Whilst the acuator _1 , upper _eye_end, lower _eye_end, and

jack_] represent actual components. The arrows between ovals indicate

relationships. The is_a label indicates an inheritance relationship; properties are

copied from the class at the start of the arrow to the class at the arrow's point. The

instance label indicates that the component at the arrow's point is an instance of

the class at the arrows start. The sub label indicates that the component at the

arrow' s point is a sub component of the component at the arrows start.

43

Al planning technologies

44

Figure 2-15, Model resulting from the configuration process

The model synthesised by the configuration process details the components of a

specific product together with their attributes and interrelationships. The

developers of the technique hypothesised that these structures may be used to

automate the generation a plan for constructing the product configured (Marshall

1988), thus, developing the MBP technique outlined below. As the emphasis of

the research from which MBP was developed was automated configuration, the

planning function is not described in detail. Hence, the description of the

technique below details only the essence of MBP and not the detailed algorithms

required too achieve the functionality. Part of the contribution of the integrated

architecture developed in Chapter 7 is the specification of the implementation

details of MBP.

procure

order

actuator_! upper_eye_end

must

install

Figure 2-16, Action attachment and dependency relationships

Figure 2-1 6 depicts the fragment of the flight simulator configuration in Figure 2-

1 5 with action and dependency relationships modelled. The class hydraulic_comp

is related too two actions procure and order through the relationship infer. This

structure specifies that if an instance of the class hydraulic_comp is present within

a design, then the MBP must determine if the related actions are required.

The actuator _l component is an instance of the class hydraulic_comp and

therefore inherits the procure and order actions. In addition to the inherited

Al planning technologies

actions, the component is related to an install action through the must relationship.

This relationship implies that if an actuator _1 component is present in a design, an

install action will always be required. The procure and install actions related to

the upper _eye_end component are related through the must relationships, hence,

they must always be included within a plan for a product which contains an

upper _eye_end.

The MBP assesses each component within a product to determine the actions that

should be associated and therefore included within a plan to construct the product.

In the case of the must relationship, actions are automatically added to the plan.

With the infer directive production-rules written by the domain modeller are

invoked to determine if the action attached should be associated. Two example

rule-sets are depicted in Figure 2-17 below.

rule-set infer-procure-for-hydraulic-comp
rule- I
if ?hydraulic-comp.stock-status = in-stock then

generate procure action
end-rule

end-rule-set

rule-set infer-order-for-hydraulic-comp
rule- I
if ?hydraulic-comp.stock-status = out-of-stock then

generate order action
end-rule

end-rule-set

Figure 2-17, example rule-set for infer relationship

The rule-sets will include a procure action if the hydraulic_comp is in-stock or a

order action if the component is out of stock. The actions synthesised by a MBP

for the model instance in Figure 2- 1 6 are depicted below.

procure actuator_!
install actuator_!
procure upper_eye_end
install upper_eye_end

With action synthesis complete, the MBP considers the dependency relationships

between actions. Two types of dependency knowledge may be specified. First, the

domain writer may specify production-rules for ordering a components own

actions. Within the actuator-I component the domain writer would specify that if

either a procure or order action is required, the action must be ordered before the

install action. The actions above are depicted below after the assessment of

ordering constraints local to each component.

45

Al planning technologies

46

procure actuator_! : pre { 0 }
install actuator_ I : pre {procure actuator_! }

procure upper_eye_end : pre { 0 }
install upper_eye_end : pre {procure upper_eye_end}

The second dependency assessment mechanism considers the relationships

between components. In Figure 2- 16 the upper _eye_end component is attached to

the actuator _1 component. The domain writer may attach production-rules to this

relationship that determine the ordering constraints which should be added to the

actions of the components related through the relationship. In the attached to case,

the rules specify that the install action of the actuator _1 component must be

completed before the install action of the upper _eye_end component. The actions

and ordering constraints above are reproduced below with the ordering constraints

resulting from the relationship dependency process included (in bold).

procure actuator_! : pre { 0 }
install actuator_! : pre (procure actuator_! }

procure upper_eye_end : pre { 0 }
install upper_eye_end : pre {procure upper_eye_end, install actuator_! }

The resultant plan is depicted graphically below:

procure actuator_!

install actuator_! Install upper_eye_end

procure upper_eye_end

Whilst MBP successfully determines the actions and ordering constraints based

upon domain knowledge encoded in production-rules, the technique does not

consider action preconditions and effects. MBP can not, therefore, detect and

resolve action interactions. For example, the procure acutator _1 action may delete

the effects of the procure upper _eye_end action. Hence, the actions should be

ordered so the actuator _1 action is completed before the upper _eye_end action.

Without the modelling of action preconditions and effects and the inclusion of an

action interaction detection and resolution strategy it is not possible to detect

issues of this type.

Al planning technologies

2.6 Summary and concl usions

The development of classical systems has formed the predominate direction in

automated planning research. Classical work has accepted a number of simplifying

assumptions about the requirements of planning applications. Specifically, that the

world changes instantly, predictably, deterministically, and within the complete

control of the agent performing the planning function.

By controlling the complexity of the planning problems considered, classical

research has developed a number of powerful technologies that address important

facets of planning applications. Precondition achievement planning is based upon

an action representation of preconditions and effects. Plans are constructed by

searching the set of actions available in an application domain, and combining

actions with effects that achieve the goals of the planning problem with actions

which ensure the preconditions of all operators are satisfied in a path leading from

the initial world state to the goal world state. Task refinement planning structures a

domain into a number of partial plan fragments or task networks arranged into a

hierarchy of abstraction levels. The task refinement process is the assembly of

these partial plan fragments into a complete and interaction free plan.

Precondition achievement planning is the most general planning technology,

placing no constraints on the type of application domain to which it is applied.

However, the technology's large search space and lack of domain independent

search control heuristics has limited its application in industrial domains. Whilst

task refinement planning makes the assumption that a domain may be partitioned

into a number of relatively interaction free fragments, this assumption has held in a

number of industrial application domains. Hence, the ability of task refinement

planning to exploit the structure of a domain has proved an important factor in the

technology's industrial success.

Current automated planning research is developing classical planning techniques

towards applications that do not conform to the limiting classical assumptions. The

ARPA I Rome Laboratory Planning Initiative (ARPI) has provided the largest

single funding source in recent years, hence, its bias towards real world domains

has been seminal in moving automated planning research as a whole into this

direction. Current research is addressing issues ranging from the integration of

planning, acting, and replanning, through to developing the expressive power of

action representations and the tools required to debug and verify planning

applications.

47

Al planning technologies

48

The techniques employed by model-based planners differ from classical planning

as the technologies have been developed independently. Model-based planning is

centred upon a frame-based domain model of a company's products. Planning is

effected in the space of components and relationships within such models. In

contrast to classical planning, the interactions between the conditions and effects

of actions are not considered. The technology is focused upon capturing the

domain specific knowledge used by application domain experts when planning.

Model-based planning has been successfully applied to a number of industrial

planning application domains. Hence, pragmatically the technique is worthy of

further consideration. Its independence from the research effort applied to

classical technology, however, has prohibited the cross fertilisation of concepts

between the two technologies.

The status of classical plan work towards the end of the ARPI project is

summarised by Stillman and Bonsissone as:

ARP! researchers have made significant progress in the development of

enabling technologies Crisis action planning still presents a challenging

set of problems.

(Stillman & Bonsissone 1996, pp 21)

One member of this challenging set was identified at the AAAI workshop on the

comparative analysis of planning systems in 1994:

Although encoding expert knowledge is at the heart of HTN planning, there

remains a considerable gap to bridge in using expert planning knowledge in

our systems

(reported by Wilkins 1 994, pp 69)

Model-based technologies have demonstrated through application an ability to

capture and reason with expert planning knowledge. Hence, considering the

integration of classical techniques with model-based techniques offers potential

benefits to automated planning as whole.

In conclusion, classical planning technology in the form of task refinement

planning provides a promising industrial technology. Task refinement planning,

however, has not reached its full industrial potential. Whilst the current substantial

research effort is considering many important facets of task refinement planning,

the previous independence of model-based research is prohibiting the inclusions of

the technique's ideas. Pragmatically, model-based planning has achieved industrial

application success, therefore, the probability of a beneficial cross-fertilisation of

ideas is high.

Developing a research workbench

3. Developing a research workbench
Nothing ever becomes real till it is experienced -

even a proverb is no proverb to you till your life has

illustrated it.

John Keats (1 795-1 821)

3.1 I ntroduction

The Chambers Dictionary1 defines a workbench as "a bench, often purpose-built,

at which a craftsman, mechanic, etc. works ". This chapter defines the need for a

planning workbench to support the aims of this thesis, and details its

implementation. Two appendices support the description with details of the

algorithms implemented (Appendix A), and the test specifications used to verify

the workbench' s correctness (Appendix B).

In this chapter, only the classical component of the research workbench is

described. A model-based planner is constructed within Chapter 7 as part of the

integrated architecture's development.

3.2 Need for a research workbench

AI planning research is centred upon demonstrable planner prototypes.

Historically, a number of early planning research efforts resulted in an

implemented prototype system, e.g. STRIPS (Fikes & Nilsson 1 97 1), ABSTRIPS

(Sacerdoti 1 975a), NOAH (Sacerdoti 1975b), HACKER (Sussman 1 974),

WARPLAN (Waldinger 1977), NONLIN (Tate 1977), TWEAK (Chapman 1987),

DEVISER (Vere 1983). Today, a major thread of research is either developing a

demonstrable system, e.g. UCPOP (Barrett & Weld 1992), 0-Plan (Currie & Tate

1 99 1), SIPE (Wilkins 1988), PRODIGY (Minton et. al. 1 989), SNLP (Pednault

1988) or enhancing an existing system. This central thread of planning research

leads to the question: "why are demonstrable planner prototypes so important?"

To answer this question, consider the following definitions of AI in general:

"AI is . . . aiming to achieve functionality in computers, which when
exhibited by humans, is described as having indicated intelligence."
(Brooks 1 991) .

"Al may be defined as the branch of computer science that is concerned

with the automation of intelligent behaviour. " (Luger & Stubblefield
1993).

" . . . the enterprise of programming computers to reason. " (Pratt 1 994)

"Al is a subdivision of computer science devoted to creating computer
software and hardware that attempt to produce results such as those
produced by people " (Turban 1992)

The importance of implemented prototypes in AI as a whole is intrinsically linked

with the engineering goal of the field. First, prototypes demonstrate the

1 The Chambers Dictionary. Copyright (c) 1 994 by Larousse pie

49

Developing a research workbench

50

executability of concepts - indicating how close the field has come to reaching its

goals. Second, prototypes provide the laboratory for experimentation, analysis and

comparison - the methodology for moving the field closer to its goals.

The motivation for constructing a research workbench as part of the research

reported in this thesis is two fold. First, the process of experimenting with a

planner prototype is an effective way to become familiar with the issues

fundamental to planning systems. Second, the resultant workbench will provide an

executing model of planning concepts to support the experimentation from which

the integrated architecture proposed in the conclusion to Chapter 2 may be

developed.

Developing a research workbench

3.3 Realisation approach

Two considerations influenced the approach to realising a workbench. First, the

aim of this thesis is to integrate classical and model-based planning technologies.

Classical planners require logic reasoning components, whilst model-based

planning requires rule-based and object-oriented mechanisms. Second, the

research workbench must support rapid and incremental development.

Specifically, the workbench must permit new planning concepts to be integrated as

they are developed, either as part of the research project or by other researchers.

Two approaches to realising a research workbench were considered: obtaining and

modifying an existing planning system, or developing a new planning system

based upon details in the planning literature. Table 3-1 , below, summarises the

systems available at the time the decision was taken (February 1995). Systems that

have since become available are presented as shaded entries at the bottom of the

table for completeness. The 0-Plan system was not publicly available, and its

predecessor Nonlin is a commercial product. SIPE, PRODIGY, and UM-NONLIN

formed the set of systems that may be used as the basis of workbench.

Planning System Availability Pragmatics

System Requirements.

Nonlin LISP Freely available from

(University of web site

Maryland)

Nonlin POP2 Purchase from No financial resources

(Original) University of available to purchase

Edinburgh the system.

0-Plan LISP Distributed only to From July 1 997 freely

members of the ARPI available for research

initiative. use.

PRODIGY LISP Freely available form

web site.

SIPE LISP Freely available from Requires Sun

Sun workstation web site hardware.

UCPOP LISP Freely available

C++ (soon to be

available)

Table 3-1, Summary of the prototype AI Planning systems available in
February 1995

51

Developing a research workbench

52

Basing the workbench on an existing planning system offered one key advantage.

The results of this thesis may be published as based upon a known planning

system. However, three considerations outweighed this advantage.

First, integrating classical and model-based planning requires an environment that

can support both logic based systems and object-oriented rule-based systems.

Second, using an existing system does not demand the same level of understanding

of planning theory as the development of a planning system. Third, the integration

was performed with an industrial collaborator which, as in many industrial

environments, was based around an IBM-PC compatible infrastructure.

The combination of modelling tool requirements, anticipated experience which

may be gained, and the infrastructure of commercial environments led to the

decision to develop a new workbench on IBM-PC compatible hardware using

lntellicorps KAPPA-PC. The points leading to the selection of KAPPA-PC are

summarised in the table below.

• Object-oriented modelling tools.

• Powerful rule-based system integrated into the object-oriented modelling

scheme.

• Excellent developers interface, and debugging tools.

• Potential for integration with existing PC applications through DDE.

• Integration with C and C++ programming languages

• Compiled applications may be distributed freely and executed under any

Microsoft Windows compatible environment.

With the approach and environment established, existing planning systems were

studied to find the detailed knowledge necessary to implement a planning system.

The 0-Plan system was chosen as the basis for the workbench as the system

provides the most clearly defined architecture in the planning literature.

Specifically, the architecture defines the modules from which a planner must

provide, interfaces between these modules, and details of what function each

module must perform.

Developing a research workbench

3.4 Developing the Classical Workbench

This subsection outlines the design and implementation of the classical

workbench. Full descriptions of the underlying algorithms are presented in

Appendix A. To introduce the underlying design philosophy behind the

workbench implementation, the 0-Plan system is described first.

3.4.1 Overview of 0-Plan

The 0-Plan system provides four components:

• A domain independent representation formalism (the Task Formalism)

which provides mechanisms for specifying the resources, actions,

procedures, entities, and relationships within a specific domain. The

constructs are domain independent, i.e. they are designed to be

applicable in any planning domain

• A domain independent task specification formalism, also part of the Task

Formalism, provides the constructs for specifying the objective of a

planning problem and the actual entities available to solve that problem.

The constructs are domain independent.

• A domain independent planning engine applies knowledge about a

domain encoded in the Task Formalism to solve a specific task.

• A logical model or <1-N-OV A> provides a conceptual model

underpinning the three concepts above.

The <1-N-OVA> model defines a plan as a set of constraints which together limit

the behaviour of agents to that which is desired (Tate 1995; 1996). By providing a

description of a plan's components, the model aims to make it possible for a plan

to be manipulated in systems other than the activity planner within which it was

generated. For example, a plan may be passed to an execution agent for execution,

or another (possibly more specialised) planning system for further refinement.

Within the development of the workbench, <1-N-OV A> is viewed as a

specification for the data types manipulated by a planner. The 0-Plan planning

engine (Currie & Tate 1991) may then be classified as an implementation of the

functionality required to process the constraints specified in <1-N-OVA>. The

domain specification and task specification formalisms are viewed as the

constructs for supplying the 0-Plan engine with problem definitions and domain

specific knowledge detailing the options available to solve those problems.

The <1-N-OV A> model is described below, before the different software modules

of the 0-Plan system are introduced.

Tate defines a plan as "a set of constraints which together limit the behaviour that

is desired when the plan is executed"(Tate 1996). These constraints are organised

into three sets: Implied, Node, and detail constraints (Ordering, Variable and,

Auxiliary).

53

Developing a research workbench

54

Implied constraints
2

represent pending or future constraints that will be added to a

plan as a result of handling unsatisfied requirements. In precondition achievement

planning, the implied constraints represent the conditions yet to be satisfied, and

interactions yet to be resolved. In task refinement planning, the implied constraints

represent the set of non-primitive tasks to be refined, and interactions yet to be

resolved. Implied constraints may therefore be viewed as a planner's "to-do list".

When this list is empty, the planner's task is considered complete. <1-N-OVA>

extends this model to permit Implied constraints which cannot be processed by a

specific generative planner. These constraints may be left unresolved and passed,

with the detailed constraints, to a second system for processing.

Plan entities relate to the actions within a plan, and provide the contextual

information for the detailed constraints.

Detailed constraints are divided into three categories. Ordering constraints

represent temporal relations between nodes. Variable constraints represent co­

designation and non co-designation constraints between variables. Auxiliary

constraints include conditions, time, resources, authority, and other application

specific knowledge types.

The 0-Plan system implements a demonstration planning scenario with three

agents: a task assignment agent, a planning agent, and a execution agent. The task

assigner specifies the task or goal of a plan (i.e. the initial issues). Once task

specification is complete, the planner agent is invoked to synthesise a plan to

achieve the plan's goals. The completed plan is passed to the execution agent for

execution. In the event of execution problems, the execution agent may pass a plan

back to the planner with failures represented as issues. If the goals of the plan are

no longer maintainable, the plan maybe passed back to the task assigner. This

scenario has proved effective in real world domains.

For the purpose of developing a research workbench, only the planner agent of the

0-Plan system was considered. The planner agent is described in a number of

reports and papers, and its relationship with <1-N-OVA> is described in (Tate

1 993a). The main components of the 0-Plan planner agent are briefly described

below. Familiarity with the system was obtained from a number of sources:

experimentation with the University of Maryland's Nonlin implementation, 0-Plan

technical reports, experimentation with 0-Plan over the World Wide Web, and

conversations with Dr Brian Drabble at AIAI (in person and via electronic mail).

2also referred to as Flaws or Issues or The Agenda.

Developing a research workbench

• The Associated Data Structure (ADS): The ADS maintains the

relationship between plan entities (activities in a planner) and the

ordering constraints within a plan. The structure provides the contextual

information to which more detailed constraints such as conditions,

effects, time, resources etc. may be attached.

• Knowledge Sources: Knowledge sources encapsulate the plan

modification operations (or planning knowledge) of 0-Plan. This

modularization facilitates experimentation with different

implementations of a knowledge source, and concurrent execution of

different knowledge sources.

• Constraint Managers: Maintain and support detailed plan constraints.

Each constraint type supported within 0-Plan has a dedicated constraint

manager. The set currently implemented includes: the time point network

manager, the TOME I GOST
3

Manager, the Resource Utilisation

Manager, the Plan State Variable Manager, and the Authority Manager4.

Collectively, constraint managers support the system's knowledge

sources in maintaining plan information.

• Other Support Modules: Other support modules provide a variety of

support utilities to the system. The current implementation includes plan

visualisation tools, instrumentation tools and event handlers. These

components and the constraint managers are collectively referred to as

the system's support modules.

• Controller: The controller is responsible for selecting outstanding flaws

or issues within a plan, and managing their allocation to knowledge

sources. A flexible allocation scheme is encoded, allowing the order of

flaw selection and the mapping of flaws to knowledge sources to be

configured to the requirements of a specific domain.

Collectively, 0-Plan and <1-N-OVA> provides the data structures and software

code specifications for an AI planning system.

3 The Table of Multiple Effects (TOME) and The Goal Structure (GOST) data

structures originate in NOAH (Sacerdoti 1975b) and Nonlin (Tate 1 977)

respectively. The structures provide a representation for the underlying condition

achievement procedure used in 0-Plan (c.f. Chapman's Modal Truth Criteria

(Chapman 1 987))
4 Designed but not implemented as of August 1 997

55

Developing a research workbench

3.4.2 Implementing the N (Nodes) and O (Orderings)

Within <I-N-OVA>, the node constraints provide the contextual information for

the detailed constraints. Issue constraints are processed by modifying the node and

detailed constraints. Thus, in terms of implementation, the node constraints

provide the most independent part of the model and were therefore implemented

and tested first.

The node constraints within <1-N-OV A> model plan entities; in a planner plan

entities correspond to activities. 0-Plan represents these constraints in a data

structure named the Associated Data Structure (ADS) layer. Whilst the <I-N­

OVA> model conceptually separates plan entities from their ordering constraints,

the ADS is designed to relate them. The structure is confirmed in the following

passage from the 0-Plan architecture guide.

The Associated Data Structure (ADS) provides the contextual information

used to attach meaning to the contents of the Time Point Network, and the

data defining the emerging plan. The main elements of the plan are activity,

dummy and event nodes with ordering information in the form of links as

necessary to define the partial order relationships between those elements.

(Tate, Drabble & Dalton 1994b)

The implementation of the ADS within the workbench provides a passive data

structure for storing plan context information and the functionality to modify and

query this information. The ADS is implemented in three parts: the class PLAN­

NODE, which represents the individual plan nodes, the class LINK, representing

the links between nodes, and the class ADS-MANAGER which is responsible for

maintaining and answering queries concerning the set of plan nodes and links

within a specific plan. Each component is described in turn before their

interrelationships are defined.

Class PLAN-NODE

56

Class PLAN-NODE records information about an individual activity in a plan. It is

derived from the ALLNODES data structure in the original Nonlin system (Tate

1976, Page 1 9), the author' s understanding of O-Plan, and the University of

Maryland's Nonlin implementation.

The attributes of class PLAN-NODE are described in the table below. The class

contains no functionality.

Class LINK

Developing a research workbench

Attribute Description

Predecessors List of plan node instances which are predecessors of this node.

The list contains at least the immediate predecessors.

Successors List of plan node instances which are successors of this node. The

list contains at least the immediate successors

Start Time point Name of an instance of time point which relates to the start of this

activity.

End Time point Name of an instance of time point which relates to the end of this

activity.

Max. Duration The maximum duration of this node.

Min. Duration The minimum duration of this node.

Type Activity I Primitive I Dummy.

Parent For use within Task refinement planning only. The name of a plan

node instance which was replaced by this node during refinement.

Pattern The pattern of this node. In the form Function argl . .argN.

Table 3-2, Attributes of PLAN-NODE

0-Plan's ADS separates the predecessor, successor, start time, and finish time

attributes whilst the workbench's PLAN-NODE class integrates them. The 0-Plan

structure enables the efficient implementation of Operation Research/ PERT type

algorithms. Efficiency is not the goal of the workbench, hence, redundant and

duplicate data is permitted to enable inspection of plans different perspectives. For

details of the 0-Plan ADS implementation see Drabble & Kirby (1990).

To support timed delays between activities a link data structure was created. A

link represents the relationship activity A < activity B . The start of this link is

recorded as the end time point of activity A. The end of this link is recorded as the

start time of activityB. Each link records its minimum and maximum duration.

Feature Description

Start time point Finish of first plan node.

Finish time point Start of second plan node.

Min. duration Minimum duration of the link.

Max. duration Maximum duration of the link.

Table 3-3, Attributes of LINK

57

Developing a research workbench

Class ADS-MANAGER

58

Class ADS-MANAGER is responsible for maintaining the set of plan nodes and

links within a plan. The class ADS MANAGER's attributes are described in the

table below.

Attributes Description

Nodes list List of nodes managed - nodes which are not in this

list are not part of the plan.

Link list List of links managed - links which are not in this

list are not part of the plan.

Table 3-4, Attributes of class ADS-MANAGER

The methods implemented within the class are described in the table below.

Method Description

Add Node (Pattern, Max. Dur., Creates a new node within the ADS.

Min Dur.)

Add link (Nodel Node2, Min Add the constraint Nodel < Node2 to the ADS.

Dur., Max. Dur.)

Return link Name (nodel , node2) Returns the name of the link between two nodes.

Return nodes code (pattern) Takes a pattern and returns the node code of the first

node found containing the pattern.

Set node type (node, type) Allows a node to be set as primitive, action or

dummy.

Before (NodeX, Node Y) Returns true if NodeX occurs before NodeY in the

plan network.

After (NodeX, NodeY) Returns true if NodeX occurs after Node Y in the

plan network.

Parallel (NodeX, NodeY) Returns true if NodeX is in parallel to NodeY in the

plan network.

Reset Destroys all information within the ADS, returning

a null plan.

Table 3-5, Methods of ADS-MANAGER

Developing a research workbench

Querying a plan network to determine how plan entities are related (before, after,

in parallel) is a frequent task performed by an AI planner. Fox and Long (1996)

describe the efficient algorithm used in their AbNLP (Fox & Long 1995) system.

Fox and Long criticise the method employed in many existing planners of

dynamically calculating the relationship between plan nodes when answering

graph queries. This approach is computationally expensive because the contextual

information must be recalculated each time it is required. Fox and Long implement

an algorithm which maintains the contextual information, updating it only when

new constraints are added to the graph. This approach is more efficient because in

general, a plan is queried more often than it is updated. The full algorithm is

reproduced from (Fox & Long 1 996) in Appendix A.

The overall ADS structure is presented in the object diagram below(Figure 3-1).

LINK

ADS-MANAGER � Start time point
end time point

Add Node
minimum duration

Add Link Managed by maximum duration

Return Nodes Code
Set Node Type

Managed by Reset
Before
After PLAN-NODE _ Succes sors

... I In Parallel
Start Time point �
End Time point �

Predec
maximum Duration

essors

Minimum Duration Parent
Type I Pattern

-
Child

Figure 3-1, Object diagram of ADS system

An instance of class ADS-MANAGER manages all the instances of class LINK and

class PLAN-NODE within a plan. Other components of the planner may not

modify instances of class LINK or class PLAN-NODE directly, but must direct

their requests through the ADS-MANAGER. An instance of the planner workbench

will contain one instance of the ADS-MANAGER. The one to many cardinality of

the "managed by" relationships constrain each PLAN-NODE and PLAN-LINK

instance to be related to one instance of class ADS-MANAGER only. It is therefore

impossible for a plan node or link to be a member of more than one plan.

59

Developing a research workbench

3.4.3 Implementing the VA (Variables and Auxiliary)

This subsection describes how the variable and auxiliary constraints are

implemented in the workbench, and the construction of plan critics to maintain

these constraints.

3.4.3.1 Plan variable relationship critic

Class VARIABLE

60

The plan variable relationship critic' s role is similar to the Plan State

Variable Manager's in the 0-Plan system. In the plan representation languages

used in task refinement planners, variables are not wild cards as in predicate logic,

but descriptions of possible instantiations which become further constrained as

planning progresses (Wilkins 1988). Variables are declared as being of a specific

type, and are therefore constrained to instantiations which are members of this

type. The type definitions correspond to enumerated types in procedural

programming languages such as ADA and Pascal.

Each plan state variable is represented by the following attributes.

Attributes Description

Value The actual value of the variable, if instantiated, otherwise it

is set to "none".

Type Type variable is constrained to be an instance of.

Constraints A list of co-designation and non-co-designation constraints.

These constraints may reference other variables or objects

of the variables type.

Table 3-6, Attributes of class VARIABLE

Developing a research workbench

Class PLAN-VARIABLE-RELATIONSHIP-CRITIC

Class PLAN-VARIABLE-RELATIONSHIP-CRITIC is responsible for creating and

maintaining plan state variables.

Method Description

Create Variable (Type) Creates a new variable of type specified in the

parameter Type, and returns the name of the

new variable.

What Is This(Entity) Replies if Entity i s a variable, an object or a

type.

Is instantiated(V ariable) Returns true if the variable has been

instantiated, false otherwise.

Check co-designation constancy Returns true if the co-designation and non co-

(Variable) designation constraints on Variable are

consistent.

Necessarily Co-designate (argument! Returns true if two statements are the same

argument2) objects, are instantiated to the same objects, or

are constrained to be instantiated to the same

objects, with the same constraints.

Possibly co-designate (argument! Returns true if two statements unify. i.e. it is

argument2) consistent to assume they have the same

instantiation.

Table 3-7, Methods of CLASS-PLAN-VARIABLE-RELATIONSHIP­
CRITIC

The full algorithms for the necessary and possibly co-designation methods are

provided in Appendix A. The algorithms are based on the definitions given in

(Wilkins 1 988, p 72). The architecture of the critique is presented in Figure 3-2

below.

PLAN-VARIABLE-
RELATIONSHIP-

CRITIC TYPE

Resc.:1 r Possible Values
Create New Type Muna�cd Bv

Add instance of type
create variable Instance of
K:odcsignation
consistency VARIABLE
Possibly co-designate Managed By L Necessari ly co- Value
designate Constraints
Is instantiated

Figure 3-2, Object diagram of plan variable relationship critique system

61

Developing a research workbench

3.4.3.2 Conditions and effects manager

Class CONDITION

Class EFFECT

62

The conditions and effects manager records the conditions and effects associated

with plan nodes (via their time points), and provides the functionality to query and

maintain the consistency of these constraints.

Class CONDITION records the individual conditions in a plan. An entry's

contextual information is supported through links to time points. Collectively, the

instances of class CONDITION make up the Goal Structure of a plan.

Attribute Description

Type Condition type: supervised, unsupervised, achieve, only_use_if,

only_use_for_query.

Function e.g. on(block l block2).

Value e.g. on I true I red I unset

Time point Time point at which the condition must hold.

Achieved Current status: holds, does not hold, may possibly hold with new

constraints.

Constraints Represent the constraints which maybe added to make the condition

hold.

Contributor Time point which contributes to this condition holding.

Table 3-8, Attributes of CONDITION

Class EFFECT records the individual effects within a plan. Collectively, the

instances of class EFFECT make up the Table of Multiple Effects of a plan.

Attribute Description

Type only_use_for_effects or effects

Function e.g. on (blockl block2)

Value e.g. True, False, Off, On, Red

Time Point Time point at which effect occurs.

Table 3-9, Attributes of EFFECT

Developing a research workbench

Class CONDITION-AND-EFFECT-MANAGER

Class CONDITION-AND-EFFECT-MANAGER supports the creation of

conditions and effects, and provides routines to ensure their consistency.

The condition and effect manager includes the Question and Answering

functionality of the workbench. The question and answering algorithm responds to

question of the type "does statement p hold value v at node n within a plan". The

critique responds yes, no, or maybe. The maybe response includes a set of

constraints (variable bindings and links) which could be added to a plan to make

statement p hold value v at node n. The implementation is based upon the details

in (Tate 1976) and reverse engineering of the University of Maryland's Nonlin

code. The full algorithm is provided in appendix A.

Method Description

Add Condition (function, type, at Creates a condition.

time point)

Add Effect (function, type, at time Creates an effect.

point)

QA (P V N) Responds yes if statement P holds value V at

node N. Returns No if the statement definitely

does not hold, or may be if it is possible to make

the statement hold.

Table 3-10, methods of class CONDITION-AND-EFFECT-MANAGER

The architecture of the condition and effect manager is depicted in Figure 3-3

below.

EFFECT

--4 Type
function

CONDITION-AND Value
EFFECT-MANAGER Time Point

Managed By

Add condition
Add Effect
QA Managed By CONDITION

rrypc
'-4 !Function

Value
Achieved
Con tmints
Contributor

Figure 3-3, Condition and effect manager system

63

Developing a research workbench

3.4.3.3 Resource and Time Critics

Time critic

Resources

64

Time and resource critics were not implemented in the workbench. The

considerations made for their inclusion at a latter date are described below.

Two time points are generated for each activity in a plan to represent each

individual activity's start and finish times. Links are provided between activities to

allow delays to be specified. Bell and Tate's (1985) constraint maintenance

algorithm is implemented to maintain the time information during plan updates.

Vere's (1983) paper describes the algorithms used within the DEVISER system to

specify temporal goals using the time point representation implemented. These

algorithms have not been implemented in the workbench.

No resource considerations have been implemented. Conformity to the 0-Plan

architecture will facilitate the inclusion of a Resource Utilisation Manager and

resources attached to time points at a latter date. Algorithms published in (Drabble

& Tate 1994) were identified as a potential way of using the resource information

to guide search within the workbench.

Developing a research workbench

3.4.4 Implementing the I (Issues)

The Issues component of the <1-N-OVA> model represents the outstanding "to-do

list" or agenda of a plan. 0-Plan provides a sophisticated mechanism for selecting

the next issue to address from the set of outstanding issues. Plan modification

operators (e.g. expand a non-primitive task, ensure conditions of a specific type

are satisfied) are encapsulated into knowledge sources, which are in turn

decomposed into stages. This architecture permits concurrent processing of issues,

and a reasoned allocation to be made between the set of outstanding issues and the

set of available knowledge sources. Knowledge source stages partition the

execution of a knowledge source most commonly into read and write phases. This

partitioning allows concurrent reading and writing process to be managed, thus

ensuring plan integrity.

Within the workbench, the controller and knowledge sources are integrated into

one component, the HTN engine. This architecture is not as flexible as the

equivalent 0-Plan implementation. The issues surrounding the optimal selection

and processing of outstanding flaws are not essential to the aims of this thesis.

The class' s methods are described in the table below.

Method Description

Set Task Allows the user to select a task from the set of

tasks available in the schema library.

HTN Plan (task file, schema file) The task refinement planning algorithm.

Expand Task(task, schema) Replaces a non-primitive task with a task network

defined in the parameter schema.

Select Method (set of schemas) Selects a method to replace a non-primitive task,

from the set of methods available.

Export plan (filename) Exports the contents of the ADS into a format

accepted by Microsoft Project.

Table 3-11, Methods of class HTN-ENGINE

The HTN Plan algorithm is specified below in Figure 3-4. The algorithm defines

how the components of the workbench are controlled to achieve the planning

function. A detailed description of the algorithm is provided immediately after

Figure 3-4.

65

Developing a research workbench

66

1 . Read problem definition and task formalism schemas

2. Append non-primitive tasks from task definition to the task queue

3 . Append achieve conditions from task definition to the task queue

4. While the task queue is not empty loop

5 . Select a task for processing (either at random, FIFO, or ask user)

6. if selected task is a non-primitive task then

7. -- task reduction procedure

8. Ask schema library for methods to achieve selected task

9. remove methods whose only_use_if conditions do not

1 0. hold

1 1 . if no methods available then

12 . return to select a task for processing

1 3 . end i f - - n o methods available

1 4. select a method from the set remaining (either at random

or ask user)

1 5 . expand the selected task with the selected method

1 6. else -- it must be an achieve task

1 7 . if it is possible to add links to make condition true then

1 8. add links

19. else

20. ask schema library for schema to make condition

true

2 1 . i f not methods available then

22. return to select a task for processing

23. end if -- no methods available

24. implement schema immediately before task

25. which requires condition

26. end if -- it is possible to add links . . .

27. end if -- selected task is a non-primitive task

28. call plan state variable critic

29. loop until critic replies yes to all variables or user quits

30. loop

3 1 . allow user to correct problems

32. end loop - PSVM critic

33 . call conditions and effects critique

34. loop until critic replies yes to all conditions or user quits

35. loop

36. allow user to correct problems

37. end loop - conditions and effects critique

38. end loop -- while task the task queue is not empty

39. Call PSVC to check unsupervised conditions.

Figure 3-4, HTN planning algorithm

Developing a research workbench

The HTN engine is invoked with the parameters "task file" and "schema file".

Both parameters refer to physical files on the workbenches hardware platform in

ASCII format. The task file contains the set of initial tasks provided by the domain

writer, specified in the Task Formalism syntax. The schema file contains the set of

non-primitive and primitive task networks specified by the domain writer,

specified in the Task Formalism syntax.

Line 1 (of the algorithm in Figure 3-4) instructs the schema library to load and

compile the tasks and task networks specified in the task and schema files into the

schema library' s internal data structures. The user is requested to select a task

from the set available to form the objective of the planning process. The HTN

engine constructs the initial plan from the task specification.

Line 2 appends all non-primitive tasks in the task definition to the planners task

queue.

Line 3 appends all conditions of type achieve in the initial definition to the task

queue. Achieve conditions may be satisfied in two ways: inclusion of links to

make the condition hold, or the introduction of new plan structure to attain the

condition.

Line 4 provides the main planning loop's termination criteria. The loop terminates

when the task queue is empty. I.e. there are no non-primitive tasks in the network

and all achieve conditions have been satisfied.

Line 5 selects a task from the set of outstanding tasks on the task queue. Three

methods have been implemented to guide this decision: random, user select or

FIFO. The random method selects a task at random. The user method provides the

user with the set of outstanding tasks, and asks the user to select the next task for

attainment. FIFO (First In First Out) models the method used in the original

Nonlin system. Tasks are appended to the end of a queue as they are identified.

The planner always selects the first task in this queue for processing next. A

system parameter set before planning commences defines which task selection

method is used. The task selected at this stage will be referred to as the selected

tasks.

Line 6 guards the task refinement path. Only outstanding tasks which are of the

type non-primitive task may proceed to the processing functions described in lines

7 - 15 inclusive.

67

Developing a research workbench

68

Line 8 <member of taskrefinementl makes a request to the schema library for methods

which are indexed as refinements of the selected task. The schema library returns

the set of schemas (possibly null) which match the selected task.

Line 9 (member of task refinement) removes members of the set of schemas returned in Line

8 whose only _use_if filter conditions do not currently hold in the world state. The

HTN engine invokes the condition and effect critics question and answering

method to achieve this function. Methods whose only_use_if conditions do not

attract a yes response are discarded.

Line 1 1 <member or task refinement) guards the possible case of no methods being

applicable to refine the selected task.

Line 12 <member of task refinementl handles the case of no available methods for

processing the selected task. The line returns control to line 5, with the constraint

that the next selected task must not equal the current selected task.

Line 14 (member of task refinement) selects a method from the set of methods available, at

random or by questioning the user, for inclusion into the plan.

Line 1 5 <member of task refinement) replaces the selected task with the method selected at

line 14.

Line 1 6 is the start of the case where the selected task is an achieve condition.

Line 17 <member o f achieve condition attainment) queries the condition and effect manager's

question and answering method to determine if the condition specified in the

selected task is already achieved in the network.

Line 1 8 <member of achieve condition attainment) if the question and answering method returns

yes at Line 17, this line adds a causal link from one of the possible contributors to

the selected task. This process is comparable to goal phantomisation in the

original N onlin system.

Line 20 <member of achieve condition atminmentl if it is not possible to make the condition

specified in selected task true, this line asks the schema library to return possible

schemas for achieving the condition.

Line 22 (member of achieve condition atminmentl if no schemas are available for achieving the

condition, this line returns processing to line 6, with the constraint that the next

selected task is not equal to the current selected task.

Developing a research workbench

Line 24 (member of achieve condition attainment) expands one of the schemas available to

introduce the effect required by the selected task. The schema is placed

immediately before the existing task which requires the condition.

The remaining processing is general to both achieve condition attainment and task

refinement flaw processing strategies.

Line 28 instructs the plan state variable critic to inspect the variables within the

plan.

Line 29 enters the correction loop of the plan state variable critic. The loop

terminates either at the users request (the plan may contain inconsistencies) or

automatically when all flaws have been processed.

Line 3 1 displays problems with the plan state variables to the user. The user is

invited to add binding constraints to resolve these problems.

Line 33 instructs the plan condition and effect critic to inspect all the conditions

within the plan of type achieve, supervised, and only_use_for_query.

Line 34 handles the case of the condition and effect critic identifies unsatisfied

conditions, the system enters a correction loop. The loop terminates at either the

user 's request (the plan may still contain interactions) or automatically when all

interactions have been resolved.

Line 36 allows the user to correct interactions by adding variable binding

constraints and links to the plan.

Line 38 marks the limit of the main planning algorithm. The line returns control to

Line 4 of the program.

Line 39 instructs the condition and effect manager to check unsupervised

conditions within the plan. The critic may add links to achieve unsupervised

conditions.

69

Developing a research workbench

70

The HTN planning algorithm processes two different types of issue: non-primitive

tasks and achieve conditions. This functionality allows the workbench to simulate

both precondition achievement and task refinement behaviour. Thus, addressing

the research constraint raised in Chapter 2 which specifies that the workbench

must not be constrained to a particular planning technology.

During the execution of the workbench, an authority relationship is maintained

between the HTN Engine and other components of the system. The ADS and plan

critics may not modify the plan state. Their interfaces are defined to return

constraints which may possibly be added to a plan to resolve conflicts. The

components collectively form planning support tools, with the central decision

making being made by the HTN algorithm. This authority models the relationships

between 0-Plan's components and has the advantage of centralising the planner's

decision making. Hence, different decision making strategies may be

experimented with by modifying one unit of the planning system.

The HTN-ENGINE class is supported by a SCHEMA-LIBRARY class, which is

responsible for reading, maintaining and querying domain knowledge supplied to

the planner. Its methods are described in the table below.

Method Description

Read TF File Reads a domain description in the Task Formalism format. The

schemas and tasks are stored internally for querying.

Return schemas returns the list of schemas which may be deployed to introduce

which match the effect to the plan.

(effect)

Return Schemas Returns the list of schemas which may be deployed to refine the

which match task described in the parameter pattern.

(pattern)

Table 3-12, Methods of class SCHEMA-LIBRARY

Developing a research workbench

3.4.5 Overall workbench architecture

Figure 3-5, below, presents the component classes of the class WORKBENCH.

HTN-ENGINE

ADS-MANAGER

PLAN-VARIABLE­
RELATIONSillP·

CRITIC

CONDITION-AND­
EFFECT-CRITIC

SCHEMA-LIBRARY

WORKBENCH

Initialise
Composed of

Figure 3-5, Components of the WORKBENCH class

The completed workbench architecture is presented in Figure 3-6 below .

SCHEMA-LIBRARY ueries---
H
-

T
-

N
--E-N_G_l_N_E_., Populates r--

A
-

D
_

S
_·_MA

_
N
_

A
_

G
_

E
_

R
___,

Manages Manages Manages

SCHEMA LINK PLAN-NODE

Queries

CONDITION

Queries

Manages CONDITION-AND
EFFECT-MANAGER1------- EFFECT

Manages

Queries

PLAN-VARIABLE Mann es
TYPES

RELATIONSillP-
CRITIC Instances

Manages VARIABLE

Figure 3-6, Workbench system architecture

Requires

Asserts

This separation of data structures and plan processing functionality facilitates the

future development of the workbench. It is possible to replace the 0-Plan inspired

functionality, whilst leaving the underlying data structures unchanged.

71

Developing a research workbench

3.5 Implementation detai ls

72

The workbench is implemented in Intellicorps Kappa-PC version 2 .3 . This section

provides several screen shots to demonstrate the implementation and its user

interface.

Figure 3-7 (below) presents the classes implemented within the workbench. The

solid lines indicate an inheritance relationship, whilst the dotted lines indicate an

instance of a class. Note the inclusion of a TPNM (l)(time point network

manager) and a RUM (2) (resource utilisation manager) to permit the extension of

the system. The plan depicted is representing a partial solution to the Sussman

Anomaly (Sussman 1974). Note the instances of the classes type, movable_objects

(3), and objects which have been compiled from the domain representation.

-------···········• TheAOS
· 1.'od*J

•• �:� nOIJ.t: 11��:[�:�; §�
···Nod•1

-------··---- TheTPHM
I TP1

,·:� 1P2
:"./.• TP3

.�·:f ��:: ;::
i��j�. ·��<·· TP11 � .. :. 1P12

\'· TP13
\ TP14

_______ Th•PSVM
-------· · ··· • .. TheTGM

----� - ��-------· ·: :;::::::. ��:c.:._ob)ffb
..... ..,.,h,

------•!;(�::.�:�::
··· t.lnM

•• ·Tom•1 10M.(;-------·(\ff:jg���
om1------�·:�::��:0:�

l:lo!p
:!

3

Figure 3-7, Screen shot of the classes implemented in the workbench

.... .

Developing a research workbench

The screen shot below (Figure 3-8) expands the TGM (TOME and GOST

manager) class in Figure 3-7. to present the classes methods. The QA method is

open, revealing a portion of the implemented code.

l.!l>d618 J;.d �011 Ma1nod1

P:ir•ut Ctassr Root

Bo

fllou.
GOSTPointsMnnaged
NextGOSTNo
NextTO:MENo
PV Node
QAReason
("11 .1.v .. - .u

/* Koditied i:oi: N'onlinei:ai: plmia, aince SUSSl!All Vecsion T/

/* P• Stat.aent, ie on (a h)
V,. Value ec;r (P= o n (a b) I • TP.U!
N• Node eg doel!I P • V at node H */

Retucns, TRD! , FA.LSI oi: HAYB! and com1caints tr/

(list)
1
1

/'
,. A!i:iUll.el!I calling pi:ogcu. he.s cceated a :r:lot IJA Conatr:aintti , TJith opcon

MakeSlot(Selt: QA. Comitr::aints) ;
Set:UotOption(Seli:: Q.A._Con,,tte.ints,tlOLTIPLE) ;
Cle1u:Lh t(Self: QJ._Consti:aints) ;

/* P'ind List or. P nodefl, ie: nodee vhich give p a value•/

/* Search tbcouoh tolUle toi: the. *I

Sell: PV Jlode � NULL;
H8lleSlo't(Self: P_Nodea) ;
SetSlotOption(Selt: P_Wodea,JruLTIPLE) J
Cle:acLiat(Self: P_Nodea) ;

AddEITect
AddPrecm1d
CheckGost

----n:;··••• ·" obj•ol•
• mov11�_obJ.e111

Figure 3-8, TGM class

73

Developing a research workbench

Figure 3-9 below depicts the user driven interface to the ADS. The interface

allows the user to hand code plans without reference to the HTN engine. The

interface is split into several windows. The goals and effects of the plan are shown

in the two windows at the bottom. The top left window displays the evolving plan

and includes the plan modification options open to the user. The top right window

is allowing the user to enter a new activity into the plan. This interface was

implemented to allow testing of the constraint managers and associated data

structure, independently of the HTN engine.

31 f'i....noi 1-'t<H pu Y1i u

odol ACTIVITY PfnnHead Pre: Sue:: NodoJ
ode2 ACTIVITY PhmEnd Pre: Node7 Sue:

Nodo3 ACTIVITY puton bloekC theT11ble Pre: Nodel Sue: Node4
ode4 SPLIT Split 1 Pre: Node] Sue: Node5 Node6
odo5 ACTIVITY Puton blockB bloekC Pre: Node4 Sue: Node7
ode6 ACTIVrTY Puton blockA bloekB Pre: Nodo4 Sue: Node 1
odo7 JOIN Join 1 Pre: Node5 Node6 Sue: Node2

I 0.l!alo Now Activity I Add Effocl I Add Precondilion

Add Uni< I I Display Ellod• I or1ploy Goals ' I I
I CroatoVcor J Die.play Vliflnblat j

!iCurrenl Gaul• l!l� Cl

on blockB blockC TRUE Nodo2 NO
on bloekA bloekB TRUE Node2 NO

Type !JOIN
Nttme !Join 1

Min Durn.tion p
Max Dra.tion �

Crnoto I I Exll

Elli!

on blockC blockA TRUE Nodol
on blockA lheT8ble TRUE Nodel

n blockB lheT11ble TRUE Nodel
le11rtop bloekB TRUE Nadel
loe>rtop blockC TRUE Nodel

Figure 3-9, Workbench's user interface

74

Developing a research workbench

3.5.1 Workbench testing

The workbench was tested against two domains from the planning literature:

blocks world (Winograd 197 1) and Tate's house building domain (Tate 1977).

Both domains were encoded using the Task Formalism descriptions from the 0-

Plan Task Formalism manual. Results were compared against those produced by

UM-Nonlin and those reported in (Tate 1 976) from the original Nonlin.

Example test cases are provided in Appendix B .

75

Developing a research workbench

3.6 Summary and conclusions

76

This chapter identified the role of prototypes in Automated Planning as

laboratories to support the field's advancement and demonstrators of the field's

current concepts. Within the context of the aims of this thesis, a workbench would

form the apparatus for developing the integrated classical and model-based

architecture.

A new workbench was developed in an environment which would support logic,

object-oriented, and rule-based constructs within the IBM-PC infrastructure of the

collaborating organisation.

The planning systems which technically influenced the workbench are depicted in

Figure 3-10 below. SIP�
Possible and Necessary

Codesignation

Nonlin /Question and Answering, Control
algorithm, Network Linking

1-N-OVA The Classical Workbench UM Nonlin
Data structure organisation

Management of Partial Order. /
plan network '7

AbNLP 0-Plan

Coding techniques

Architecture and Task
Formalism

Figure 3-10, Workbench's relationships with existing planner prototypes

In conclusion, the workbench constructed in this chapter is not an automated

planning system. The key decision points in the planning process are made by the

workbench's user. This strategy makes the operation of the system transparent to

its user; hence, allowing the user to view the mechanics of an AI planning system.

The development of the workbench has achieved its aims. First, constructing the

workbench has demonstrated to the author the issues encountered when

implementing a planning system. Second, it provides a test bed in which a new

integrated architecture may be developed and evaluated.

4.

Limitations of existing devices - planning literature

Limitations of existing representational devices -
experiments within the planning literature

I do not know what I may appear to the world,

but to myself I seem to have been only like a boy

playing on the sea-shore, and diverting myself in

now and then finding smoother pebble or prettier

shell than ordinary, whilst the great ocean of truth lay

all undiscovered before me.

Isaac Newton (1642-1 727)

4.1 I ntroduction

This chapter builds upon the potential for collaboration between classical and

model-based technologies identified in Chapter 2 by identifying specific

limitations with each technology's representational devices. The limitations are

identified through experiments within domains detailed in the automated planning

literature. This experimentation is supported by the workbench described in

Chapter 3.

Specifically, this chapter aims to identify limitations with the representational

devices supported by both classical and model-based planning technologies.

Domains from the planning literature are analysed to identify the expert

knowledge underlying the current encodings. This underlying knowledge is then

modified to include realistic facets of each domain not originally considered. The

ability of classical and model-based technologies to represent each modification is

assessed.

Before commencing the analysis, the analysis method is described and justified.

The method requires an understanding of domains previously considered by

planning researchers, hence, an overview of a representative set of these domains

is presented. Appendix C supports the overview with the full domain

specifications from which it is derived.

77

Limitations of existing devices - planning literature

4.2 Analysis method

78

To describe and justify the method used in this chapter to identify limitations with

existing technologies, it is necessary to consider the aim of automated planning as

a field, and the methods previously employed in its advancement.

Automated planning's aim is to formulate a theory which can simulate1 planning

behaviour. To develop this theory, the facets of planning behaviour must be

understood. This transition from behaviour to theory is represented in Figure 4-1

below. The figure depicts the domains of planning theory and planning behaviour

with the arrow indicating the transition from the understanding of the facets of

behaviour into theory. This transition currently results in the algorithms and

domain independent knowledge representation formalisms of planning systems.

The question pertinent to this chapter is, "How is this transition achieved?"

1------ Automated Planning Theory

Figure 4-1, Transition from planning behaviour to planning theory

The examination of example problems has been a key method employed in

previous work. Ginsberg describes the role of examples in AI in the following

passage.

The role of examples in AI is to test our theories, and it is the responsibility

of individual researchers to conduct an honest search for examples to test

their theories . . . It really is like physics in the sixteenth century; the principal

difference is that our experiments are introspective instead of material.

(Ginsberg 1993, p 14)

Ginsberg's observation obscures a significant benefit of working with examples in

AI planning. Whilst the use of examples tests the applicability of automated

planning theory, ultimately such tests highlight the incompleteness of that theory,

and are therefore a driving force in the task of understanding the requirements of

planning behaviour. Ginsberg's comparison between AI and sixteenth century

physics is pertinent. Automated planning is a relatively young discipline and has

yet to establish a significant set of theories upon which research may be built.

Hence, it is the process of examining examples that identifies the limitations of the

existing theories of planning behaviour.

The research method of formulate example, formulate theory, and formulate

counter example is depicted in Figure 4-2 below.

1 The use of simulate as opposed to emulate is deliberate. The automated planning

field does not claim to replicate the actual cognitive processes within humans

(Wilkins 1988).

Limitations of existing devices - planning literature

Modify planning
theory

Test planning theory Formulate example
against examples !9-------1 or counter example

Figure 4-2, Methodology of example and counter example

The methodology of example and counter example is applied in this chapter to

identify limitations with existing representational devices. A number of domain

definitions in the planning literature are examined to identify the knowledge from

which the encoding is derived. With the underlying knowledge identified, the

domain description is enhanced to include facets not addressed in the current

representation. The ability of existing representational devices to capture these

changes in specification and the planning engine's ability to reason with the new

knowledge is then analysed.

The next section selects a number of domains from the automated planning

literature as the motivating examples for study. With the domains for examination

selected, the following sections apply the analysis method described above.

79

Limitations of existing devices - planning literature

4.3 Overview of a representative set of the domains
considered in the planning l iterature

This section summarises a representative set of domains to which automated

planners have been applied. The domains considered are all publicly available;

either through the World Wide Web or referenced publications. This qualification

excludes some applications of planning technology as commercial applications are

proprietary. Hence, it is not possible to obtain them for evaluation.

It is important to note the complexity of modelling application domains in

planning formalisms. Chien (1996) states that the complexity of this activity is a

prohibiting factor when applying automated planning techniques to industrial

planning problems. The issues surrounding this task are discussed in Chapter 5

which describes the elicitation of knowledge from the construction industry.

4.3.1 Blocks world

80

The blocks world originates in (Winograd 1 971) and has provided a motivating

problem in planning research (e.g. goal protection (Manna & Waldinger 1974)

and action interactions (Sussman 1 974)).

rn
1

x
A
D T
2 3 4 5

Figure 4-3, Two versions of the blocks world domain

6

The blocks world consists of a number of blocks and a table (Figure 4-3). The

table may be infinite (left side of Figure 4-3) or divided into a number of finite

positions (right side of Figure 4-3). The latter modelling adds the complexity of

considering where blocks should be placed on the table. Domain knowledge

pertinent to planning maybe summarised as follows:

The world consists of a number of blocks, together with a table. The

table may hold any number of blocks (assume the simpler

modell ing\ A block may be moved if it is not obstructed by another

block. Only one block may be moved at any given time. The table

cannot be moved.

The UCPOP representation of the blocks world's puton operator (Barrett & Weld

1992) is depicted in Figure 4-4 below.

2 The inclusion of positions effectively adds blocks the problem which cannot be

moved. Specifically, the planner may move blocks to a position on the table, but

may not move that position. This consideration is not essential to the aims of this

chapter, therefore the simpler representation is described.

Limitations of existing devices - planning literature

I . (define (operator puton)
2. :parameters (?X ?Y ?Z)
3. :preconditions (and (on ?X ?Z) (clear ?X) (clear ?y)
4. (neq ?X ?Y) (neq ?X ?Z) (neq ?X ?Y)
5. (neq ?X Table))
6. :effect (and (on ?X ?Y) (not (on ?X ?Z))
7. (when (neq ?Z Table) (clear ?Z))
8. (when (neq ?Y Table) (not (clear ?Y)))))

Figure 4-4, UCPOP blocks world operator specification

Line 1 and line 2 name the operator and define its parameters. The parameters

hold the following semantics:

• ?X : the block to be moved.

• ?Y : the location the block (?X) is to be moved to.

• ?Z : the location upon which the block (?X) is currently positioned.

The operator may be read as put a block (?X) onto location (?Y) from its current

location (?Z).

The operators preconditions represent two categories of knowledge. Line 3

stipulates that this operator may only be applied if the block to be moved is clear

(i.e. no block is on top of it) and the location the block is to be moved to is also

clear. Lines 4 and 5 capture relationship knowledge between the operators

parameters. The neq ?X ?Y constraint stipulates that the block to be moved cannot

be the same as the location the block is to be moved to. The neq ?X ?Z constraint

stipulates that the blocks initial location must not equal its destination location.

The neq ?X ? Y constraint stipulates that the block to be moved must not be the

same as the destination location. The neq ?X Table constraint stipulates that the

table cannot be moved.

Operator Puton's effects are split into two groups. The effects described on Line 6

always occur as a result of applying the operator. They specify that the block has

moved from the initial location ((not (on ?X ?Z))), and that the block is at the goal

location ((on ?X ?Y)). Lines 7 and 8 specify the conditional effects of the operator.

If the destination location of the block (?Z) is not the table, then the effect that the

destination location is no longer clear is asserted ((when (neq ?Z Table) (clear

?Z))). If the initial location of the block was not the table, the effect that the initial

location is clear is asserted ((when (neq ?Y Table) (not (clear ? Y))).

Consider the representation of the blocks world taken from the 0-Plan system

(Tate, Drabble, & Dalton 1994b) in Figure 4-5 below.

81

Limitations of existing devices - planning l iterature

82

1 . always { cleartop The Table} ;
2 . types objects = {BlockA BlockB BlockC TheTable),
3. movable_objects = {BlockA BlockB BlockC} ;

4 . schema puton;
5 . vars ?x = ?{ type movable_objects)
6. ?y = ?{ type objects}
7. ?z = ? { type objects }

8. var. relations
9. ?x l=?y, ?yl= ?z, ?xl=? Z
I 0. expands { puton ?x ?y)
1 1 . only_use_for_effects
1 2. { on ?x ?y}
1 3 . {cleartop ?y}
14. { on ?x ?z)
1 5 . { cleartop ?z}
16. conditions
1 7 . only_use_for_query
1 8. achieve
19 . achieve
20.end-schema

true
false
false
true

{ on ?x ?z}
(cleartop ?y)
{ cleartop ?x}

Figure 4-5, 0-Plan representation of the blocks world

Lines 2 and 3 group the domain entities into two sets, movable objects and

objects. The movable object set is a subset of the objects set. The allocation of

domain entities to sets captures the knowledge that the table cannot be moved.

The vars section describes the parameters used within the operator. The

parameters hold the following semantics:

• ?X : the block to be moved.

• ?Y : the location the block (?X) is to be moved to.

• ?Z : the location upon which the block (?X) is currently positioned

The type constraints upon the variable ?x prevent the object to be moved being

instantiated to the table, as it is not a member of movable_objects.

The var relations specify the co-designation and non co-designation constraints

between the variables. The ?x I= ?y constraint stipulates that the block to be

moved must not equal the location to which the block is to be moved to. The ?yl=

?z constraint stipulates that the location the block is to be moved to must not equal

the blocks current location. The ?xl= ? z constraint stipulates that the block to be

moved must not equal the location to which the block is to be moved to.

Limitations of existing devices - planning l iterature

The only_useJor _effects section defines the effects of the operator for which this

operator maybe used to achieve. The inclusion of an "effects" section would

describe side effects of the action. In the puton example there are no instances of

effects. The main effects of the action are as follows: {on ?x ?y} = true states that

the block is now located at the destination location. {cleartop ?y} = false states the

destination location of the block is no longer clear. {on ?x ?z} = false states that

the block is no longer on its initial location. { cleartop ?z} = true states that the

initial location of the block is now clear.

The conditions section defines the conditions of the operator. The

only_useJor _query prefix denotes variable binding conditions, whilst the achieve

prefix denotes conditions the planner may add new plan structures to achieve.

only _use Jar _query {on ?x ?z} places a condition that before the operators

execution, ?z must be bound to the object upon which ?x is located. This condition

maybe rebound at any time to ensure its maintenance. The achieve { cleartop ?y}

and achieve { cleartop ?x} conditions specify that the location the block is to be

moved to, and the block to be moved, respectively must be clear.

The 0-Plan representation encodes the knowledge that the table is infinite through

the always { cleartop The Table} at line 1 . If the puton operator is instantiated with

the destination TheTable, the effect cleartop TheTable = false will be overridden

by the always constraint.

The representations differ slightly in structure due to the different planning

knowledge encoded in the UCPOP and 0-Plan systems. Negating these

differences in representation, both formalisms capture and employ the same

knowledge about the blocks world. Both formalisms capture all domain

knowledge pertinent to planning.

The essence of blocks world planning problems is identifying and sequencing the

movement of blocks to achieve their rearrangement. The successful sequencing of

the blocks movement relies on the ability to detect and resolve interactions

between actions.

83

Limitations of existing devices - planning literature

4.3.2 Office world

84

The Office World originates in the defining STRIPS planning system paper (Fikes

& Nilsson 197 1) . The domain reflects the STRIPS systems initial target domain of

robot planning tasks. The world is depicted in Figure 4-6 below.

Room 4

Room 3

Room 2

Light switch

Room l

�
Bo

_
x
_

L �I I Box

�

2_I
-----.

Box 3

Room s

Door 4

Door 3

Door 2

Door l

Figure 4-6, The Office world (Fikes & Nilsson 1971),
reproduced from (Allen, Hendler & Tate 1990, p 95)

The operators available in the domain are depicted in Figure 4-7 below. The

domain consists of a number of interconnected rooms. The rooms contain boxes

and light switches. To operate a light switch the robot must be standing on a box,

and the box must be located next to the light switch. The robot is free to move

boxes around rooms, and from room to room. The constraints on the movement of

boxes are that the rooms are connected. For example, the robot cannot move a box

from Room 1 to Room 4, without first going through room 5 .

Example tasks within the domain include locating boxes in specific rooms and

switching on lights.

The office world requires the generation and sequencing of actions to achieve

tasks. The domain requires the planner to include actions which achieve the

intermediate steps of actions.

Limitations of existing devices - planning l iterature

I . gotol(m) : robot goes to co-ordinate location m
2. preconditions:
3. (onfloor) " (3 x) [in room (robot, x) A locinroom(m, x)]
4. de! list:
5 . atrobot(s), nexto(robot, s)
6. add list:
7. atrobot(m)

8. goto2(m) : robot goes next to item m
9. preconditions:
10 : (onfloor) A { (3x)[in room (robot, x) A in room (m, x)] v

(3x)(3y) [in room(robot, x) A connects(m, x, y)] }
1 1 . de! list:
1 2. at robot (s), next to (robot, s)
13. add list:
1 4. next to (robot, m)

1 5 . pushto(m, n) : robot pushes object m next to item n
1 6 . preconditions:
17 . pushable(m) " onfloor A next to (robot, m) A { (3x)

[in room (m, x) A in room (n, x)] v (3x, 3y)[in room
(m, x) " connects (n, x, y)] }

1 8 . de! list:
19 . a t robot (s), next to (robot, s) next to (s, m), at (m, s)
20. next to (m, s)
2 1 . add list:
22. next to (m, n), next to (n, m), next to (robot, m)

23 . turnonlight(m) : robot turns on light switch m
preconditions:

((3n) [type (n, box) A on(robot, n) A nexto(n, m) "
type (m, lightswitch)] }

del list: status (m, off)
add list: status (m, on)

24.climeonbox(m) : robot climbs up on box m

25. climeoffbox(m) : moot climbs off of box m

26. gothrudoor (k, I, m) : robot goes through door k from room I into room m

Figure 4-7, Fragment of STRIPS world operator specification

85

Limitations of existing devices - planning literature

4.3.3 Briefcase domain

86

The briefcase world originates in (Pednault 1988) and demonstrates the need for

both universal quantification and conditional effects in domain operator

descriptions. Planning knowledge pertinent to the domain is described in the

paragraph below.

An object may only be put in a brief case if it is at the same location

as the brief case. When objects are taken out of the briefcase they

are located at the current location of the briefcase. If a brief case

moves, all objects inside the briefcase moves.

The operators available in the briefcase domain are described below (Figure 4-8).

l. define (operator rnove-b)
2. :parameters (?rn ?I)
3 . :precondition (and (at B ?rn) (neq ?rn ?I))
4. :effects (and (at b ?I) (not(at B ?rn)))
S. (forall (?z)
6. (when (and (in ?z) (new ?z B))
7. (and (at ?z ?l) (not (at ?z ?rn)))

8. define (operator put-in)
9. : parameters(?x ?I)
10. :preconditions (neq ?z B)
1 1 . :effect (when (and (at ?x ?I) (at B ?I))
1 2. (in ?x))

1 3 . define (operator take-out)
1 4. :parameters (?x)
IS : :preconditions (neq ?x B)
16 . :effect (not (in ?x))

Figure 4-8, Briefcase domain representation (UCPOP)

The move-b operator specifies the relocation of the briefcase from place ?m to

place ?l. The action' s preconditions are similar to those in the blocks world. The

briefcase B must not equal to location from which the briefcase is being moved.

The destination location ?l must not equal the initial location ?m. The effects

demonstrate the use of universal quantification in an operators effects. The forall

(?z) component specifies that for all the entities ?z which are in the briefcase, the

location of the set ?z moves to location ? l with the briefcase.

Limitations of existing devices - planning l iterature

The put-in operator describes the action of putting objects into the briefcase. The

conditional effect when at (?x ?l) and at(?b ?l) specifies that the object being put

into the briefcase must be at the same location as the briefcase for the effect (in

?x) to be asserted.

A typical planning task within the domain would involve the movement of objects

to a variety of locations, using the briefcase as the method of transport.

The briefcase domain demonstrates the need for universal quantification and

conditional effects in domain operators. The planning complexity is similar to the

blocks world and the office world domains.

87

Limitations of existing devices - planning l iterature

4.3.4 Tate's house building domain

88

The house building domain originated as a test domain within the Nonlin project

(Tate 1976). It is currently used to demonstrate the Task Formalism domain

representation language and the operation of the 0-Plan system.

The design of the house considered in the domain from which a construction plan

is generated is depicted in Figure 4-9 below.

Roof shingle

Brick

work

Gutters and
Down Pipes

Electrical Work

Concrete
Foundations.

Kitchen

Wall paper

Wooden Frame

Path and
Landscape.

grade for slab

Figure 4-9, Graphical representation of the house
in Tate's house building domain

A proportion of the domain's planning knowledge is described in the text below.

The bui lding is made up of a number of interrelated components. The

planning task is to assemble these components to achieve the

construction of the house. The house has two major components: the

foundations, and the walls and roof. The foundations are further

decomposed into a number of sub-components: the location the slabs

are to be laid, the reinforcement rods, and the concrete slabs. The

walls and roof are further decomposed into a number of sub­

components: the wooden frame, the exterior sheathing, the insulation,

the sheetrock and plaster, the gutters and down spouts, the shingle

for the roof, the brickwork.

The foundations must be completed before work commences on the

walls and roof because they support the walls and roof. The rough

plumbing and wiring must be installed before the outside walls are

insulated because the insulation encloses the rough plumbing.

Limitations of existing devices - planning l iterature

A fragment of the domain representation is depicted in Figure 4-10 below. The

modelling of the problem is analysed immediately after this figure.

task build_large_house;
nodes I start,

2 finish,
3 action (build house I ;

orderings I ---> 3, 3 ---> 2 ;
end_ task;

schema build;
expands {build house} ;
nodes I action (obtain building permit) ,

2 action (Jay foundations },
3 action (build walls and roof},
4 action {joinery },
5 action {decorate and fit),
6 action (install services) ,
7 action { landscape) ,
8 action (close out house} ;

orderings I ---> 2, 2 ---> 3, 2 ---> 4, 2 ---> 5,
2 ---> 6, 2 ---> 7, 3 ---> 8;

conditions unsupervised {wooden frame and roof erected} at 5;
end_schema;

schema lay_foundations;
expands (lay foundations } ;
nodes I action (clear lot and grade for slab } ,

2 action { place concrete forms reinforcement rods and sewer lines } ,
3 action (pour slab } ;

orderings I ---> 2, 2 ---> 3 ;
effects (foundations laid} ;

end_schema;

schema build_ walls_and_roof;
expands (build walls and roof};
nodes 1 action (erect wooden frame including roof} ,

2 action {fasten exterior sheathing) ,
3 action { insulate outside walls } ,
4 action { sheetrock and plaster inside walls } ,
5 action (place insulation i n attic) ,
6 action { attach gutters and downspouts } ,
7 action (shingle roof) ,
8 action (lay brickwork exterior walls plus inside fireplace} ;

orderings 1 ---> 2 , 2 ---> 3, 3 ---> 4, 4 ---> 5, 5 ---> 6, 1 ---> 7,
7 ---> 3, 2 ---> 8, 8 ---> 5 ;

conditions unsupervised (foundations laid} a t I ,
unsupervised {rough plumbing installed } a t 3 ,
unsupervised (rough wiring installed} at 3 ,
unsupervised { exterior trim complete} at 8 ;

end_schema;

Figure 4-10, Fragment of house building domain representation

89

Limitations of existing devices - planning literature

90

The house building domain is modelled at a number of abstraction levels. The first

abstraction level is represented by the schema build. The schema partitions the

house building task into a number of sub tasks.

1 . obtain building permit

2. lay foundations

3 . build walls and roof

4. joinery

5 . decorate and fit

6. install services.

Each task represented at this level may have a set of methods available for its

refinement. In this example domain, only one method is available for the

refinement of each task. The use of modelling levels permits constraints to be

placed at different levels of abstraction. For example, the ordering constraint 1 -­
> 2 is stipulating that the building permit must always be obtained before the

foundations are laid. Hence, all the sub tasks of lay foundations will be ordered

after the sub tasks of obtainin building permit. The planning system does not have

to deduce this constraint, it must only maintain it.

The unsupervised condtion wooden frame and roof erected at 5 stipulates that the

sub tasks of decorate and fit require the wooden frame and roof to be errected

before they commence. The use of the unsupervised condtion type constrains the

planner to make this condtion hold through ordering constraints only. It is

assumed that at atleast one other point in the plan this condtion will be made true.

The second modelling level describes the methods available for attaining each of

the tasks described at the first modelling level. One method is avialble for refining

the build walls and roof action; hence, refining this task will result in the

following tasks being added to the plan:

1 . erect wooden frame including roof

2. fasten exterior sheathing

3 . insulate outside walls

4. sheetrock and plaster inside walls

5 . place insulation in attic

6. attach gutters and downspouts

7. shingle roof

8. lay brickwork exterior walls plus inside fireplace

As with the first modelling level, the second level may place constraints upon

tasks which all refinements of the constrained tasks must maintain. E.g. the

ordering constraint 1 --> 7 captures the constraint that the roof must be laid before

the roof covering is installed.

The second modelling level contains a number of unsupervised conditions. The

use the unsupervised condition type indicates that the schemas at this modelling

Limitations of existing devices - planning literature

level are aware of a number of conditions required for their attainment, but are

unaware of the task or tasks which obtain them.

Effects, like conditions, are modelled at different levels of abstraction. At the

second modelling level the lay_foundations action asserts that the effect

foundations laid. This is a high level effect, describing the aggregation of effects

resulting from the tasks possible refinements.

91

Limitations of existing devices - planning literature

4.3.5 Pacifica

92

Pacifica (Reece et. al 1993) is an imaginary evacuation scenario developed by the

Artificial Intelligence Applications Institute at Edinburgh University to provide a

test domain for transportation logistics problems. The domain is summarised in the

text below.

The evacuation problem consists of three tasks: the deployment of

evacuation equipment, effecting the evacuation of outlying areas to a

central point, the evacuation of people and evacuation equipment

from the central point to a safe location.

The deployment of evacuation equipment involves the loading of air

and ground transports onto cargo aircraft. The cargo aircraft must fly

to location to be evacuated before the evacuation equipment may be

unloaded. The aircraft must take off from runways one at a time.

Evacuation equipment and cargo aircraft must be in the same

physical location before loading may commence.

Effecting the evacuation requires the deployment of ground and air

transports to move the people to be evacuated to a central point. A

finite number of air and ground transports are avai lable. An air or

ground transport cannot perform two trips simultaneously.

After the people to be evacuated have been located at a central point,

the evacuation equipment and people are loaded onto transport

ai rcraft and removed from evacuation location.

An example Pacifica task definition (Operation Columbus) is depicted in Figure

4-1 1 below. The task definition is broken down into three sections, reflecting the

structure of the domain described above. Tasks 3 and 4 specify the location of

evacuation equipment. Tasks 5, 6, and 7 specify the evacuation of the area. Tasks

8, 9 and 10 specify the return of evacuees and evacuation equipment to safety.

In addition to specifying the component tasks of Operation Columbus, the task

definitions specifies the current location and status of the area in which the

operation is going to be undertaken. The location of evacuation resources and

cargo planes is specified in the task definitions effects (e.g. location_gt GTl =

Honolulu at 1, at C141 Honolulu at 1) . The task definition also specifies the

initial runway status at both Delta and Honolulu as clear, and the capacity of the

transport air craft and trucks (gt_capacity 25, at_capacity 35).

Limitations of existing devices - planning literature

task operation_columbus
nodes sequential

I start,
parallel

3 action (transport_ground_transports Honolulu Delta)
4 action (transport_helicopters Honolulu Delta)

end_parallel
parallel

5 action (evacuate Abyss 50)
action (evacuate Barnacle 100)
action (evacuate Calypso 20)

6
7

parallel
8 action (fly_passengers Delta Honolulu)
9 action (transport_ground_transports Delta Honolulu)
10 action (transport_helicopters Delta Honolulu)

end_parallel
2 finish

end_sequenctial;
effects

(location_gt GT l) = Honolulu at 1
(location_gt GT2) = Honolulu at 1
(in_use_for GT!) -= in_ transit at I
(in_use_for GT2) = in_transit at 1
(location_at AT!) = Honolulu at I
(in_use_for A TI) = in_ transit at 1
(apportioned_forces GT) at 1
(apportioned_forces AT) at 1
(at Cl41) = Honolulu at 1
(at C5) = Honolulu at I
(at KCl O) = Honolulu at 1
(at B707) = Delta at I
(runway_status_at Delta) = clear at 1
(runway_status_at Honolulu) = clear at 1
(gt_capacity 25) at I
(at_capacity 35) at 1

cnd_task;
Figure 4-11, Operation Columbus task definition

The encoding of the domain exploits task refinement behaviour for completing the

tasks 3, 4, 8, 9, and 10, and precondition achievement behaviour is exploited to

complete the tasks 5, 6, and 7. One task from each attainment method is described

in detail below. The schema "transport ground transport Honolulu Delta " is used

as an example of the methods employed in tasks 3, 4, 8, 9, and 1 0. The schema

Evacuate abyss 50 is used as an example of the method employed in tasks 5 ,6, and

7.

93

Limitations of existing devices - planning l iterature

Schema transport ground transports

94

schema transport_ground_transports
expands { transport_ground_transports ?from ?to }
vars?from = ?{ type air_base}

?to = ?{type air_base }
nodes

1 action (load ground_ transports }
2 action (take_off_from ?from}
3 action { fly_to ?to}
4 action{ land_at ?to}
5 action (unload ground_ transports]

orderings 1->2, 2->3,3->4,4-5
conditions

achieve {at c5 } = ?from at 1
unsupervised { location_gt GTI } = ?from at 1
unsupervised { location_gt GT2 } = ?from at 1
unsupervised (runway_status_at ?from) = clear at begin_ of 2
supervised {runway_status_at ?from) = inuse at end_of 2 from begin of 2
unsupervised {runway_status at ?to} = clear at begin_of 4
supervised { runway_status_at ?to} = in_ use at end_ of 4 from begin of 4

effects
(at c5) = ?to at 5
(location_gt GTI } = ?to at 5
(location_gt GT2 } = ?to at 5
{ in_use_for GTI) = available at 5
{ in_use_for GT2} = available at 5
{ runway_status_at ?from} = in_ use at begin_ of 2
{ runway_status at ?from} = clear at end of 2
{ runway _ststus al ?to} = in_ use at begin of 4
(runway_status at ?from) = clear at end_of 4

end_schema

The schema encodes the task of locating the ground transports required for an

evacuation operation. The parameters ?from and ?to specify the initial location

from which transportation is to begin and the location from which evacuation is to

commence respectively. The typing of these parameters as air base prevents

missions being considered which fly to or from a location which is not an air base.

The schema decomposes the task of locating the ground transports into the sub

tasks load ground transports, take off from the initial location, fly to the location

to be evacuated, land at the location to be evacuated and unload ground

transports at the destination location. These actions are ordered in the sequence

load, take off, fly to, land at, unload.

The conditions achieve at C5 at 1 permits the planning system to generate plan

components which move the cargo plane to the ?from location. The unsupervised

constraints of loacation_GTJ = ?from and location_GT2 ?from records the

assumption that the ground transports will be located at the ?from location by

another part of the plan. The unsupervised runway status = clear constraints

record the knowledge that the planner should make no attempt to clear a runway.

The planner must order the take off and land tasks when the runway is clear. The

supervised runway constraints record when the sub tasks of the schema change the

status of the runway.

Limitations of existing devices - planning l iterature

The schema's effects specify that the cargo plane and its cargo of ground

transports will be located at the evacuation location when the actions of the

schema have been executed.

Schema evacuate city

schema evacuate_city
expands {evacuate city ?city ?number)
vars ?city = ?{ type city}

?number = ? { satisfies numberp)
conditions

achieve { evac_status ?city) = (0 ?number} ;
end_schema;

The schema evacuate city provides an expansion for tasks of the form evacuate

city ?city ?number. The expansion adds a single condition to a plan, evac_status

?city = 0 ?number, typed as achieve. The achieve typing permits the planner to

add new plan structure whilst attempting to make the condition it prefixes hold .

Two schemes within the domain description possibly achieve the evac_status

condition: schema Road_Transport and schema Air_ Transport. Assume the

planner chooses the schema Air _Transport.

schema Air_ Transport
only_use_for _effects {evac_staus ?from} = {e_left e_safe};
vars

?from
?to
?at
?e_left
?e_safe
?c_left
?c_safe
?capacity
?take

=?{type city}
=?{type air_base}
=? (type airtransport}
=?{type numberp }
=?{type numberp }
=?{type numberp }
=?{type numberp)
=?{ type numberp)
=?{ type numberp }

nodes
I action {fly ?take in ?gt from ?from}
2 dummy

conditions
only_use_if { apportioned_forces AT)
only_use_if { evacuate_to ?to}
only_use_if {gt_capacity ?capacity}
compute { ?capacity ?e_left ?e_safe} = { ?c_left ?c_safe)
compute { - ?e_safe ?c_safe) = ?take
achieve { evac_status ?from} = (?c_left ?c_safe) at 2
unsupervised { location_gt ?AT} = ?to at begin_of I
unsupervised { in_use_for ?at) = available at begin_of l
supervised { in_use_for ?at} = ?from at end_ of I from begin_ of l

effects
{ in_use_for ?at} = ?from at begin_ of l
{ in_use_for ?at) = available at end_of l

end_schema

The processing of instantiating the schema's parameters subtracts the number of

people one air transport may carry, and asserts a new condition of achieve

evac_status city {?previous number safe + ?capacity of at, ?previous number

evacuees in danger - ?capacity of at}. Hence, new achieve conditions are added to

the plan until sufficient trips to an outlying city are entered into the plan to

evacuate all evacuees from a city.

95

Limitations of existing devices - planning l iterature

4.3.6 Flight simulator construction

96

The PIPPA (Marshall 1988) Model-Based planning system has been applied to the

domain of flight simulator construction (Marshal, Boardman & Murray 1987). The

text below summarises a fragment of the flight simulators construction domain' s

knowledge.

The fl ight simulator industry regulations requires that a feasibility

study is completed before a bid for a contract may be initiated. A

feasibil ity study is made up of at most three documents: An

engineering report, a cost break down, and a structured design.

An engineering report is requ ired only i f a flight simulator of similar

specification has not been build by the company before, or the bid is

taking place under US air traffic regulations. In the latter case, the

structured design for a previous project must be retrieved and

updated to match the project currently under consideration. If a new

engineering report is written, or an old report modified, the new

document must be approved by an internal engineering committee.

The PIPPA representation of the domain is depicted in Figure 4-12 below.

Assessment Knowledge

Draft

Document
Approve

Retrieve
Are types of

Engineering report Structured Design

Is made up of

Feasibility study

Figure 4-12, Fragment of the PIPPA flight simulator domain representation

Limitations of existing devices - planning literature

The PIPPA model-based representation is centred around the concepts in the

domain. In the flight simulator domain, the abstract concept document captures the

knowledge that a document may have three actions associated: draft, approve, and

retrieve. The assessment knowledge box provides a knowledge marker, indicating

that knowledge relating to a specific document type must be inserted to indicate

when each of the set of actions should be associated with a specific document.

Engineering reports, cost break downs, and structured designs are represented as

specialisation' s of the concept document (through the triangle connection in the

notation). Each of these specialisations inherit the features of the generic

document concept. The feasibility study concept is specified as being possibly

made up of the three sub concepts of document.

The feasibility concept contains the knowledge for assessing the need for

engineering reports, cost break down and structured design in the form of a rule­

based system. An example rule set is depicted below (Figure 4- 13).

rule #I requirement for engineering report

if not built similar simulator or standard body = US then
i nclude a engineering report

end rule

rule #2 decide if built a similar simulator before
if database contains same specs or user identifies similarities then

built similar simulator = true

end rule

Figure 4-13, PIPPA representation of the need for a engineering report

The engineering report concept contains the knowledge for assessing which of the

three actions are required to produce it. An example rule set is depicted below

(Figure 4-14) .

rule #3 requirement for draft action o n a n engineering report in a feasibility study
if standard body = US and built similar simulator then

retrieve previous engineering report
approve previous engineering report

end rule

rule #3 not previous built a similar simulator

if not build similar simulator then

draft engineering report

approve engineering report.

end rule

Figure 4-14, PIPPA action assessment knowledge

Planning proceeds by identifying the actions attached to each component and

adding them to the plan.

97

Limitations of existing devices - planning l iterature

4.4 Selecting a set of domai ns from the planning l iterature

This section examines the current debate within the automated planning

concerning the application domains from which further analysis is likely to

advance the field. Central to this argument is the future utility of "real world" as

opposed to "toy" domains as the motivating examples in planning research. A

framework is constructed from this debate to identify domains with a potential

utility in experiments to identify limitations with existing representational devices.

The resultant framework is then applied to the domains summarised in Appendix

C.

4.4.1 Framework for classifying the potential future util ity of specific

domains

The planning literature contains three perspectives for classifying domains and

proposing which offers the greatest utility. Each perspective is summarised below,

before a unified framework is constructed.

4.4.1 .1 Economical perspective

98

Drummond (1994) proposes a thesis that precondition achievement planning may

be a formulation without significant application. To support this proposition,

Drummond provides the following comment on the current domains to which

precondition achievement planning has been applied:

Of course, one can construct endless toy domains where the operators are

specifically formulated so as to facilitate the direct and immediate

construction of a solution plan, but such toy domains do not pass our test

for economic viability. (Drummond 1994, pp 3)

Drummond provides the following test for determining the economic viability of a

specific domain:

• Who is the person that wants the problem solved? Call this person the

problem 's owner.

• Does the owner really want a fully automatic solution ? Or would they

prefer some sort of decision support system - they make the decisions,

the system tracks the details.

• If the owner really wants an automatic solution, how much are they

willing to pay for the required system ?

• Are there people who are already good at solving the problem, or is it a

problem without an existing manual solution ?

(Drummond 1994, pp 2)

Limitations of existing devices - planning l iterature

Whilst Drummond does not explicitly criticise the use of "toy" domains, he

proposes that research should concentrate on better understanding the planning

techniques which have succeeded in economically viable applications. He is

implicitly assuming the aim of automated planning is to create problem solving

tools which may be applied to commercial problems. Drummond's

recommendation of focusing on planning technologies which have demonstrated

an industrial aptitude must suggest working within domains which pass his test for

economic viability.

4.4.1 .2 Phi losophical perspective

Brooks proposes that AI research should at each stage "build complete intelligent

systems that we let loose in the real world with real sensing and real actions"

(Brooks 199 1 a), and that those agents should be "embodied as mobile robots"

(Brooks 199 l b). Etzioni (1993) justifies the use of softbots in AI research by

accepting the arguments behind Brooks first proposition and refuting the

reasoning behind the second.

Brooks provides an engineering methodology argument to justify the use of real

domains and therefore robots as the basis of AI research. As part of this argument,

he observes the following danger of working within "toy" domains.

with a simplified world . . . it is very easy to accidentally build a sub module of

the system which happens to rely on some of those simplified properties . . .

the disease spreads and the complete system depends in a subtle way on the

simplified world. (Brooks 1 99 l a)

Etzioni applies Brooks' criticism of simplified worlds to justify the use of softbots

through the argument that the domains to which softbots are applied have not been

engineered by softbot designers, and therefore are not in danger of the

simplification disease.

In summary, the philosophical perspective recommends that the domains

considered in planning research should not be engineered by planning system

designers. By working with "real world" domains, research will avoid developing

systems which are dependant upon the simplifications made in "toy" domains.

99

Limitations of existing devices - planning literature

4.4.1 .3 Metric perspective

1 00

Andrews et. al. (1995) provide the following justification for designing a realistic

bench mark and development problem for planning systems .

. . . a number of toy domains have been devised to assist in the analysis and

evaluation of planning systems and techniques. The most well known

examples are "Blocks World" and "Towers of Hanoi ". As planning systems

grow in sophistication and capabilities, however, there is a clear need for

planning benchmarks with matching complexity to evaluate those new

features and capabilities.

Andrews et. al. are observing that planning systems have grown in complexity, but

the common bench marking domains have not developed in parallel with the

technologies they measure. The implication is that the capabilities of the current

planning theory is already beyond the minimum requirements of "toy" domains.

The authors go on to define the "matching complexity" of domains through a

comparison of their UM Translog domain with the domain upon which it is based

(CMU Transport Logistics (Veloso 1992))

UM Trans log is an order of magnitude larger in size (41 actions versus 6),

number of features and types of interactions. It provides a rich set of

entities, attributes, actions and conditions which can be used to specify

complex planning problems with a variety of plan interactions. The

detailed set of operators provides long plans (40 steps) with many possible

solutions to the same problem, and thus this domain can also be used to

evaluate the solution quality of planning systems.

The metrics perspective argues that the domains used to test and develop planning

systems should match the capability of those systems. The perspective identifies a

set of axes upon which domains may vary, and indicates the position of useful

domains upon those axes.

Limitations of existing devices - planning l iterature

4.4.1 .4 Selection framework

The past utility of domains formulated by planning system designers was

demonstrated in Chapter 2 of this thesis. By focusing on specific aspects of the

planning problem, powerful techniques such as the STRIPS action representations

(Fikes and Nilsson 197 1) and the question and answering procedure over partial­

order networks (Tate 1977) have been developed. As the three perspectives above

demonstrate, classical planning systems have already developed features capable

of addressing more realistic domains, and working continually within simplified

domains carries the risk of developing systems which are dependent upon those

simplifications.

The two sets of criteria presented in Figure 4-15 below summarise the current

thinking within the three perspectives for identifying a domain's type and

determining the potential utility of that domain in future planning research.

Type Criteria
1 . Is there an identifiable person, other than an AI planning system designer,
who wants the problem solved?

Utility Criteria
2. Is there sufficient domain knowledge available to solve the problem?
3 . Is there a significant number of entities and attributes in the

domain?
4. Are the plans of a significant length?
5 . Are there multiple solutions t o the problem?

Figure 4-15, Domain evaluation framework

The type criteria is derived from Drummond's economic perspective and Brooks'

philosophical perspective. The type criteria differentiates between "toy" and "real

world" domains. The utility criteria are derived from Drummond' s economic

perspective and Andrews et. al . 's metric perspective. Collectively, the utility

criteria provide a test for determining if a specific domain is of sufficient

complexity to facilitate future planning research.

The inclusion of the type criteria to differentiate "real world" and "toy" domains

is not intended to suggest "toy" domains should not be considered by future

research. The intention is that if a domain is classed as a "toy" yet of a high utility,

it should be carefully considered to ensure resultant work is not unintentionally

based upon the simplified facets of the domain.

The following section applies this evaluation framework to the planning domains

summarised in Appendix C to identify a set of domains which may be studied with

a high probability of identifying limitations with existing representational devices.

1 01

Limitations of existing devices - planning l iterature

4.4.2 Applying the framework to the domains considered in planning
l iterature

This section applies the unified framework developed in section 4.4. 1 .4 to the

domains summarised in Appendix C. All of the domains considered are published;

full references are provided within the summaries in Appendix C.

4.4.2.1 Blocks world

Criteria Result

1 It is not possible to envisage a person prepared to pay for solutions to

problems in this domain.

2 Yes. The domain may be reproduced in a typical office environment

and the domain' s knowledge elicited without the need for a domain

expert.

3 The domain contains a small number of entities (blocks and a table) .

The blocks have simple attributes (clear or obstructed).

4 Plans produced are typically quite small (5 or 6 actions)

5 Yes. There are typically several orders in which blocks may be

moved, however, there is a limited set of criteria for evaluating

solutions (e.g. the length of plans).

4.4.2.2 Office world

Criteria Result

1 Yes, there is a demand for systems which can accomplish tasks in an

office environment. E.g. delivering mail, and cleaning.

2 Knowledge about the actions available in an office domain are easily

elicited without the need for a domain expert.

3 If the domain is expanded to include a real office environment the

problem would contain a significant number of entities and attributes.

If the domain is expanded to include a real office environment the

4 plans required would be of a significant length.

If the domain is expanded to include a real office environment there

would be multiple ways of achieving tasks.

5

1 02

Limitations of existing devices - planning literature

4.4.2.3 Briefcase domain

Criteria Result

1 It is not possible to define a person who would be prepared to pay for

solutions in this domain.

2 Yes, the domain is accessible to any person without the need for a

specific domain expert.

3 No. The domain is limited to several objects and a briefcase.

4 The plans are typically short (2 to 1 0 actions)

5 Multiple solutions are possible but the criteria for differentiating

between them are limited to plan length.

4.4.2.4 Tate's house building domain

Criteria Result

1 Yes. There are a large number of construction organisations which

may be prepared to pay for a system which plans in this domain.

2 People are available who are currently very good at solving problems

in this domain. However, the domain is not immediately assessable to

a researcher. A domain expert is required.

3 There are a large number of entities in the domain, each with a large

set of attributes.

4 The plans have the potential to be very long.

5 Yes, solution may vary on several dimensions. E.g. resources used,

time to construct etc.

4.4.2.5 Pacifica

Criteria Result

1 Yes. Military organisations have identified the need to plan more

rapidly during operations.

2 There are people available who are good at solving problems in this

domain. The complexity of the domain requires a domain expert for

knowledge elicitation.

3 There is a large number of entities with a large set of attributes.

4 The plans may be of a significant length.

5 Solutions may vary against several criteria. E.g. time, cost, resources

utilisation, probability of success etc.

1 03

Limitations of existing devices - planning l iterature

4.4.2.6 Flight simulator construction

Criteria Results

1 Yes. Organisations constructing flight simulators have identified a

need to improve the speed of their planning process.

2 People are available who are good at solving the problem. The

complexity of the domain requires a domain expert for knowledge

acquisition.

3 There are a large number of entities with a large set of attributes.

4 The plans may be of a significant length.

5 Plan solutions may vary against several criteria. E.g. time, cost,

resource utilisation etc.
-

1 04

Limitations of existing devices - planning literature

4.4.2. 7 Conclusion

The domain evaluation framework defined in section 4.4.1 categorises the type of

each domain summarised in Appendix C as follows.

"real world" domains under the type criteria

• Tate's House Building Domain

• Pacifica

• Flight Simulator Construction

"toy" domains under the type criteria

• Blocks world

• Briefcase domain

• Office world

The framework assigns the following utility classifications to the same domains.

High utility domains under the utility criteria

• Tate's House Building Domain

• Pacifica

• Flight Simulator Construction

Low utility domains under the utility criteria

• Blocks world

• Briefcase domain

• Office world

None of the domains classified as being of a high utility are also classed as toy

domains. Therefore, no special scrutiny is required of the high utility domains

before considering their use in further research.

The following sections (4.5 and 4.6) evaluate the representational devices

supported by classical and model-based planners respectively. Classical planners

are evaluated against Tate's House Building domain and the Pacifica domain.

Model-based planners are evaluated against the flight simulator domain.

1 05

Limitations of existing devices - planning l iterature

4.5 Experiments with classical planning

This section describes experiments based upon encodings of Tate's House

Building domain and the Pacifica Evacuation domain in the 0-Plan system's Task

Formalism notation. 0-Plan was selected as the system provides a state of the art

implementation of task refinement planning. The experimentation identifies the

domain knowledge underlying each domain, and then expands each domain

definition to include facets not currently represented. The ability of classical

planners to represent and reason with each enhancement is examined.

4.5.1 Tate's house building domain

This subsection identifies the components of a building's design and their

interrelationships as the domain knowledge from which Tate's House Building

domain representation (as defined in Appendix C) is derived. The Task

Formalism's ability to support variations in a building's design is then assessed.

4.5.1 . 1 Identifying the domain knowledge from which Tate's house

bui lding encoding is derived

1 06

Tate's House Building representation encodes a specific building's design. An

overview of the design derived from the encoding is depicted in Figure 4-1 6

below. A detailed fragment of this design is depicted i n Figure 4-17. The process

from which these figures were derived is described after Figure 4-17 .

Brick
work

Gutters and
Down Pipes

Electrical Work

Paths anu-,�=:::::=:::::=:::::�
Landscape.

Drains

Concrete �
Foundations.

Wall paper

Wooden Frame

Kitchen

grade for slab

Figure 4-16, Design of the house encoded within Tate's house building
domain representation

Limitations of existing devices - planning literature

Exterior Sheathing - � Sheetrock and plaster

Insulation

rk r Brick WO Wall paper

Finished Electrical Work

Fram .� Rough Wiring

Foundation co mponent

Figure 4-17, Detailed fragment of the house design encoded in Tate's
house building problem

• The building's frame is supported by the foundation component. This

knowledge is encoded in the schemas "build" and

"build_walls_and_roof'. The schema "build" contains the ordering

constraint "2-->3", where action 2 is "lay foundations" and action 3 is

"build walls and roof'. The schema "build_ walls_and_roof' asserts the

condition "unsupervised { foundations laid } at 1 ", where action 1 is

"erect wooden frame including roof'.

• The exterior sheathing is attached to the frame component. This

knowledge is encoded in the schema "build_ walls_and_roof' through the

constraint " 1-->2", where action l is "erect wooden frame including

roof' and action 2 is "fasten exterior sheathing".

• The insulation component is attached to the frame and exterior sheathing

components. This knowledge is encoded in the schema

"build_walls_and_roof' through the constraint "2-->3". Where action 2

is "fasten exterior sheathing" and action 3 is "insulate outside walls"

• The brickwork component encloses the exterior sheathing and the outside

face of the frame. This enclose exterior sheeting knowledge is encoded in

the schema "build_ walls_and_roof' through the constraint "2-->8".

Where action 2 is "fastening exterior sheathing" and action 8 is "lay

brickwork exterior walls plus inside fireplace". The enclose outside face

of the frame knowledge is encoded in the constraint "1--> 2". Where

action 1 is "erect frame and roof' and action 2 is "fastening exterior

sheeting".

1 07

Limitations of existing devices - planning l iterature

1 08

• The sheetrock and plaster component encloses the insulation

component3. This relationship is encoded in the schema

"build_walls_and_roof' through the constraint "3-->4". Where action 3

is "insulate outside walls" and action 4 is "sheetrock and plaster inside

walls".

• The sheetrock and plaster component is attached to the inside walls. This

relationship is encoded in the schema "build_ walls_and_roof' through

the constraints " 1 -->2", "2-->3", "3-->4".

• The rough wiring is attached to the wooden frame. This relationship is

encoded in the schema "electrical_services" through the constraint

"wooden frame and roof erected at l ". Where action 1 is "install rough

wiring".

• The finished electrical components are attached to the rough wiring and

damage and protrude though the wallpaper. This constraint is encoded

in schema electrical_services. The attached relationship is captured by

the ordering " 1-->2". And the damage and protrude through the

constraint "selected surfaces wallpapered at 2".

The components in the fragment of the building considered are summarised in the box

below.

foundations, frame, brickwork, insulation, exterior sheathing, sheetrock and

plaster, wallpaper, finished electrical work, rough wiring.

The interrelationships between the components of the building fragment are

summarised in the box below.

frame supported by foundations

exterior sheathing

insulation

attached to frame

brickwork

sheetrock and plaster

sheetrock and plaster

rough wiring

finished electrical work

finished electrical work

supported by frame and exterior sheathing

encloses exterior sheathing

encloses insulation

attached to the inside walls

attached to the wooden frame

protrudes wall paper

damages wall paper

3 It is assumed the insulation is injected through the inside walls into the cavity

created by the frame and exterior sheathing.

Limitations of existing devices - planning literature

From the analysis above, it is valid to conclude that Tate's house building domain's

encoding is derived from a building' s design. With the source of the description

identified, the following sections experiment with the ability of classical planning to

represent and reason with enhancements to this description.

The house building experimentation defines a hypothetical planning application based

upon a construction company which provides a house design which may vary

according to a customer' s requirements and the area in which it is to be built. The

ability of task refinement planning too support this type of application is tested. The

experimentation commences by encoding a schema to capture the generic structure of

a building. The ability of classical planners to represent the knowledge required to

produce a design from this schema based upon a specific design is then considered.

1 09

Limitations of existing devices - planning literature

4.5.1 .2 Representing the general tasks required to build a house

1 1 0

The generic design of the building provided by the hypothetical construction

company may be mapped onto the following Task Formalism schema.

schema generic_build;
expands {build house} ;
nodes 1 action { obtain_permission_to_build},

2 action { lay_foundations } ,
3 action { build_structure} ,
4 action { carpentry) ,
5 action (decorate_and_fit},
6 action { install_services} ,
7 action { landscape} ;

orderings
1-->2, 2-->3, 2-->4, 2-->5, 2-->6, 2-->7;

end schl!ma;
Figure 4-18, Representation of the generic house design's actions

Schema generic_build captures the tasks that must be performed for all houses

constructed by the building company. The schema is stating that all houses require

the tasks obtain_permission_to_build, layJoundations, build_structure,

carpentry, decorate_and_fit, install_services, and landscape. The ordering

constraints state that obtain permission to build must always be completed before

any other activity and that layJoundations occurs immediately after permission to

build is obtained and before any other task. The ordering of the remaining tasks is

not constrained.

The task refinement representation proves capable of capturing the generic

structure of the house. The following sub sections examine the issues encountered

when modelling the more specific levels of abstraction. Semantically, the

generic_build schema is stating a building will always contain the set of tasks it

specifies. It is the responsibility of the lower level tasks to evaluate precisely how

each task will be translated into appropriately ordered primitive actions and what

those primitive actions should be.

Limitations of existing devices - planning literature

4.5. 1.3 Encoding the task obtain permission to build
Schema generic_build states that a plan to construct a specific building requires

actions to obtain permission before building may commence. This section

considers the issues encountered when encoding this refinement. The encoding is

divided into three cases. Case one considers a single condition (location) affecting

the actions required to obtain permission to build. Case two extends case one to

consider a number of conditions (historical significance, mining work, footpaths,

and sewage) affecting the actions required to obtain permission to build. Case

three examines the expressiveness of the filter condition construct supported by

task refinement planners as a result of the constructs importance identified in cases

one and two.

Case 1 : Single condition

Assume that permission to build is obtained under the following regulations:

1 . If the location of the construction is rural then planning pennission is required
from the local authority.

2. If the location of the construction is urban then planning pennission is required
from the local authority and a safety document must be submitted and approved
by the local authority.

3. Planning pennission cannot be drafted without obtaining an approved safety
document in an urban area.

Figure 4-19, Regulations constraining building permission
- single condition case

The regulations may be formalised into two methods; one applicable to an urban

area, and one to a rural area. This structure is expressed in the figure below.

to obtain permission to build
if location == urban then

refine using method obtain_permission_to_build_urban
else if location == rural then

refine using method obtain_permission_to_build_rural
end if

From the formalisation above, the permission regulations may be translated into

the two task networks depicted below. Schema

obtain__permission_to_build_urban encodes the case when building is performed

within an urban area. Schema obtain__permission_to_build_rural encodes the case

when building is performed within a rural area. The urban case includes two

actions in addition to the rural case: draft safety schedule and submit safety

schedule.

1 1 1

Limitations of existing devices - planning l iterature

1 1 2

schema obtain_permission_to_build_urban;
expands (obtain permission to build I ;
nodes l action (draft safety schedule} ,

2 action {submit safety schedule} ,
3 action { draft planning permission } ,
4 action {submit planning permission } ;

orderings
1 -->2, 2-->3, 3-->4;

conditions
only _use_if area_ type = urban;

only_use_for_effects
permission to build obtained = true;

end_schema;

schema obtain_permission_to_build_rural;
expands (obtain permission to build } ;
nodes I action (draft planning permission} ,

2 action (submit planning permission} ;
orderings

1-->2;
conditions

only _use_if area_ type = rural;
only _use_for_effects

permission to build obtained = true;
end_schema;

Figure 4-20, Urban and rural refinements for schema
obtain __permission _to _build

Selection of the appropriate method for obtaining permission to build is achieved

through the area_type condition that may take the values urban or rural. The

bolded only_use_if filter condition in each schema specifies the value of the

area_type condition under which each method is appropriate. When refining the

task obtain__permission_to_build the planner will identify both methods as

candidate refinements. The planner will then discount the method whose

only_use_if condition does not hold within the current plan state. Hence, the

_rural version will be used if area_type is set to rural, and the _urban version will

be used if the area_type is to urban.

This encoding is depicted graphically in Figure 4-21 below. The generic_build

schema is assigned the modelling level zero, and the schema's two possible

refinements level one. Only one of the schemas at level one will be selected as the

refinement. Hence, within the figure, task refinement moves downwards selecting

one available path at each level. r··t;��i .. 0 -.... ·:��=: :::�;��=·��� _. _ ,._ .. _I
! obtain permission to build i I i I i
�·--··--····• '''""'······················ -.............. -... _ . ., ,. �·····-····· -

! Level l I
i I
j ! chema

! I btain ermission_to_build_rural !
I i . ! Only_usc_Jf location = urbnn ! Only_use_if location = rural i l... _. -.................. _ -..... _l _ _ ... _ -... J

Figure 4-21 , Grapbica) representation of the rural and urban encoding

Limitations of existing devices - planning literature

Generically, the task refinement formalism is representing application domain

knowledge of the form:

to achieve task t
If condition = value, then

refine using method-a
else if condition = value0 then

refine using method-n
end if

The encoding method used to map application domain knowledge of this form into

task networks is depicted in Figure 4-22 below. Each method for refining a task is

mapped to a task network, and the conditions under which each method is

applicable are distinguished by filter conditions.

r-... -.. -................. ___ , .. _,_
....

................ -..... -... --........... -.... _ .

...
...............

...
.
...

.......
.
.........

...
-.... ·-····-...

.. ,
i Level 0

. I I chcma e11eric
l '
I ! I task t �
i ...

.
.....

..
...........

, .. ,_
...

.
..

_
......

..
.....

.
..

....
.....

.
..

,
..

......
..

..
......

.
............

.....
..

...
.
.
...

. -...... ---
.

................................ -............. .1 :Level l i '

! chema method_a j chema method_n i ! I I ! 1· .
I Only_use_if condition = v1 Only_use_if condition = valuen

I l i .. -........ �
.....

................... -.............. L
..

........
.

.. -............... 1 -...,... _. __ •.•• • •• -.......... J

Figure 4-22, Encoding single conditions in the task formalism

This mapping from domain knowledge into a task refinement notation raises a

number of issues. First, if a method is encoded for each value a condition may

take, as the number of values a condition may take increases, so does the number

of methods which must be written. The two methods written for the obtain

permission to build task contain two common actions (draft planning permission

and submit planning permission). If this knowledge changes, both schemas will

require editing. Therefore, as the number of methods encoded increases so does

the probability of redundancy in the form of the same action specified in a number

of methods. As redundancy grows, so does the maintenance requirement of a

domain's specification.

Second, the mechanism for determining the applicability of methods is limited by

the expressiveness of the filter condition construct. This issue is considered further

in the in case three. The remainder of this case considers only the redundancy

issue.

1 1 3

Limitations of existing devices - planning literature

1 1 4

A possible method for addressing the redundancy issue is to identify the actions

dependent on and independent from the filter conditions. In the construction

example, the regulations constraining permission to build always demand planning

permission actions, only the safety schedule actions are dependent upon the

location of construction. It is therefore possible to write a schema

generic_obtain_permission with two sub tasks: planning permission and safety

schedule. As planning permission is always required, only one refinement without

filter conditions must be written. The safety schedule task, however, requires two

possible refinements. The first with a filter condition location = rural and the

second with the filter condition location = urban. The first method will contain

one dummy action as no safety schedule actions are required in a rural area. The

second method will contain the two safety schedule actions as a safety schedule is

required in an urban area.

Figure 4-23 below depicts this encoding. Modelling level two contains the two

methods for refining the safety schedule task and the single method for refining

the planning permission task. The notation separates these sets within a modelling

level with a partial dot dash line.

, __ -.............................. _ -................ _ .. -... . ,
I. Level 0 chema eneric build ! . - I I ! i obtain_permission_to_build i : I 1 ---·····---······-···· ····················· .. ·-····-... ,_ _ ·lj
i Level l
i I I I ' ! I � I .1 -.. , ·-- ················""""''''''''''''''''''''""'''''""'""' "''" ''''"'''""-·······�
: Level 2 j I ! j i
I
i chcmn safcly_schedule_urban f,;;. chcmn safet _schcdulc_r11ra/ 11';

Only_use_if location = urban Only_use_if location = rural

l dnift snfoty schedule i dummy l j submit safety schedule ! I I _____ _____ _ _ __________ L______ _____ I
I Schema planning_permission I I draft planning permission ! I submit planning permission I I ,
................. Figo·r'4!·1:t::23···Attju-sllng·l�lii!C>ding.lo'iSotimrthi!'1'telfe1Itt�nn··i'Rtlo'fis· -....... i

Limitations of existing devices - planning literature

The encoding method presented in Figure 4-23 successfully determines the actions

which are required in a given situation whilst addressing the redundancy issue.

However, the conditional ordering constraint within the regulations has not yet

been considered. Note that line three of the regulations in Figure 4-1 9 states that a

safety schedule must be completed before a planning application is approved.

Within the encoding above, the domain writer may place a supervised condition

combined with an ordering constraint between the planning permission and safety

schedule tasks at modelling level one. The condition would be of the form

supervised safety schedule submitted at 1 from [2] (assuming planning permission

is node 1 and safety schedule node 2). With this constraint added to the

representation, two plans are possible. First, null --> planning permission.

Second, safety schedule --> planning permission. In the first case, the planner will

work unnecessarily to maintain the null action before the planning permission

action. This encoding therefore addresses the redundancy issue but at the expense

of possibly unnecessary ordering constraints for the planner to maintain.

When restricted to the task refinement process, the domain writer cannot use the

unsupervised condition type at modelling level two to order the safety and

planning tasks only in the case when a safety schedule action is required .

Supervised conditions may place a precondition constraint only, I.e. the action

producing the condition prefixed by the unsupervised type is ordered before the

action requiring the condition. Thus, it is not possible for the safety schedule task

to constrain the planning permission tasks to follow itself - unsupervised

conditions work backwards only over a plan.

The single condition case leads to the following conclusion. As the number of

values a condition affecting the actions in a plan increases, the number of methods

which have to be written increases, and the probability of redundancy between

methods will also increase. Whilst it is possible to separate the actions dependant

upon a condition from those which are not, such an encoding complicates the

specification of ordering constraints. Hence, even in the case where a number of

actions may be independent of domain conditions, if ordering constraints between

the dependant actions are required, the domain writer must include the

independent actions within the dependant action' s methods.

1 1 5

Limitations of existing devices - planning l iterature

Case 2: multiple conditions

1 1 6

Case One considered only a single condition affecting the selection between

refinements of a task. This case considers the issues encountered when multiple

conditions affect the selection of a task's refinement. For the purpose of this

investigation, assume that the original regulations constraining obtaining

permission to build in Figure 4-19 are replaced with the following:

1 . If the location is of historical significance then pennission must be sought from the
National Historical Department of the government.

2. If the area contains old mining work then a search must be performed at the local mining
companies records office to ensure the location is stable.

3 . If the location i s crossed b y a public foot path then legal advice must b e sought to ensure
no infringement on public rights of way.

4. If the location contains major serves (water, gas, sewage) then approval must be obtained
from the local service providers.

Figure 4-24, Regulations constraining building permission - multiple
conditions case

These regulations may be formalised into the following conditions:

historical = true or false
mining area = true or false
public footpath = true or false
5ewnge = true or false

Figure 4-25, below, presents an encoding of these regulations following the

framework developed in Case One above. Each condition is converted into a sub

task of the schema obtain_permission__generic at modelling level one. A

refinement is then provided at modelling level two for the actions dependant upon

each condition.

The encoding described in Figure 4-25 assumes that the actions require no

ordering constraints. If ordering knowledge is required, the level one schema

obtain_permission__generic may place ordering constraints and supervised

conditions between its four sub tasks. These constraints and conditions must,

however, hold for all possible refinements. For example, if historical significance

must always be performed before the services task, an ordering constraint 1 -->4

(assume historical significance is assigned the label 1 and services the label 4) and

a supervised condition supervised historical significance checked at 4 from [1]

may be placed. This constraint and condition will be maintained by all possible

refinements of the tasks specified.

If, however, the relationship between the tasks historical significance and services

is not constant, i.e. it varies depending upon the value of conditions in a specific

problem instance, the supervised condition and ordering constraint mechanism

may not be used. The schemas defined at modelling level two may not place

constraints directly on actions in other schemas. For example, schema

historical_significance_true may not place a supervised constraint on an action

introduced by schema services_true. Each schema is a unit of encapsulation and

supervised conditions and ordering constraints may only be placed within that

unit.

Limitations of existing devices - planning l iterature r·��:; .. �············-····· �.���:-::::=�:�;�······· .. ·-·--··· .. -· .. -·-·· .. ---·-···-·············

I I obtain_pennission_to_build I I I , __ ,, .. __ .. _ .. , ,
! Level 1 I I I I I
i I I I

I I ; I
i I r-.. ·-·· -....... -........... -.... r······· .. ·················· .. ·············· _ t.
i Level 2 ! I r l' chcma ;!' chema

1istorical_sig11ificnnce_tme istorical__significanceJalse :

Only_use_if historic = true I Only_use_if historic = false � ;
!

<h•m• min��::;;:--------r-:::�:.:.:.� .•.

Only_use_if mining = true I Only_use_if mining = false

; I I -··-··-·-.. ····---........................ -.. -.. ..!. -.. ----··--.. -···"···· I
chemafootpathJalse

Only_use_if footpath = false

chema services_true Schema servicesJalse i j
.

Only_use_if services = true I Only_use_if services = false l I ' I
I l I
L _ _.__.... -.1-.................................. .. _ .. � . . -............. -... -................................ J

Figure 4-25, Encoding of the multiple conditions case

If the domain regulations are modified to make the actions and ordering

constraints required to obtain permission to build different for each combination

of values the conditions may take, a method would be required for each

combination. As identified in case one, when the number of methods specified

increases, so does the probability of redundancy between method specifications.

The observations above concur with the conclusions of case one. Multiple

conditions increase the number of method specifications which may potentially be

required from equal to the number of values a condition may take in the single

case, to the product of the number of values each of the conditions may take in the

multiple case.

1 1 7

Limitations of existing devices - planning literature

Case 3: Expressiveness of filter conditions

1 1 8

Encoding task decorate identified filter conditions as the mechanism provided by

task refinement formalisms for specifying the applicability of different methods

for achieving a task. This case considers the expressiveness of filter conditions.

A task's filter conditions are conjunctive i.e. all filter conditions must hold for a

task to be applicable. Consider the following generic knowledge structure

containing the logical OR connective.

to achieve task t
if condition = value1 or condition = value2 then

refine using method-a
else if condition = value3 then

refine using method-b
end if

The method-a is applicable if condition is equal to value1 or value2• This

knowledge may be encoded by splitting each side of the OR connective into

different tasks. As demonstrated in the figure below, if during refinement

condition is equal to valuei, then schema filter I will be selected and then method­

a. If condition is equal to value2 then schemafilter2 will be selected and then

method-a.

l_ --........... -.... -................................ ,,. __ ,,, ... : .. _ .. 1
Level 0 chema high level task :

l
- - !

! ! I �* t l I . I I rr:;;·��i .. 1 _ -r -.... - ... -.... r ... __ _···-·--·-........................ ,
I chema.filterJ j chcmn 11ter2 I chemn metlrod_b i I ; I I I Only_use_if value1 l nly_use_if value2 I nly_use_if condition = value3 ., I I I . i I i � .. -.. .., -.................... , , -... --..... --........ _ --...... ___ , ___) jLevel 2 j ! ' I Schema method a I
i i I I I i
I �
: I I Figure 4-26, Mapping of the logical OR connective into task networks
" ••H-•ooooooooooooooooooooooo•••••••••••--io••ooooooooooo-•o.,.•o •o ••••••.0.0•••00000000000000000000000000- -

The logical OR connective may therefore be achieved with a combination of filter

conditions and the schema selection process.

Limitations of existing devices - planning literature

Consider the following nested if - then - else knowledge.

I . if (condion1 = value1 and condtion2 =value3) or (condtion1 = values) then
2. if condtions = value6 and condition4 = value2 then
3. refine using method-a
4. else
5. refine using method-b

Figure 4-27 presents a initial attempt at encoding of this knowledge using a

combination of the task selection process and filter conditions. The knowledge

above specifies the conditions which must hold for a task T to be refined to

method-a or method-b. Line one of the conditions is mapped to the two schemas at

modelling level one. Bothfilterl andfilter2 contain the same non-primitive task

T2. Both schemasfilter3 and method-b are possible refinements of T2. Schema

filter3 will be selected only if its filter conditions hold. lfjilter3 is selected

method-a will be used to refine task T2 and therefore T.

!"""'"'' "" '··· · · .. ····· .. , ... _ .. _,_ ----·-·----")
i Level 0 cherna high_level_task I
i I . I I task t 1 I _ I ,L;;��l . . i _ -.............................. _ .. -. -.. ---.. -... -........................ 1
II Schema lterl I Only_use_if condtion1 = value1 I Only_use_if condtion2 = value3 j I . rl · -- "'"'"'""'_"_''''"""""'"""""""' """"'"'""'"""""'"" ""'""'""""''''""'"''"'""'"""""""'"""""""""•• ••-••

.
,••••••- """""""'"""""""'""'"""'"'" '""""""'"""""'11 vel 2 Schema.filter3 Schema method-b I

I
,

Only_use_if condtions = value6 I I Ooly_ow_;r ooodtio"< " ,,i,., I
i I
f�········_•-, �•························ .. ······· .. ··· .. ··········· .. ····························· _. -... -............ ; ' I l Level 3 I ! !schema method-a I l I
i !
i I
J _ .. _ ... -......... 1

Figure 4-27, Nested if · then - else encoding in a task refinement formalism

1 1 9

Limitations of existing devices - planning l iterature

1 20

This first attempt at encoding does not match the requirements of the domain

knowledge. The knowledge specifies that method-b should be used if and only if

condtion5 does not equal value6 and condtion4 does not equal value2. When the

task refinement planning engine seeks an expansion to T2 at modelling level one,

both schemas filter3 and method-b will be considered. Filter3 will be selected if

and only if its filter conditions hold. If the filter conditions of schemafilter3 do

hold there can be no guarantee the planner will not select method-b. Task

refinement planners (in the general case) non-deterministically select a method

from the applicable set available. To correctly achieve the semantics of the if-then­

else construct, a filter condition must be added to method-b stating that it may only

be used when the filter conditions of schemafilter3 does not hold. The modified

method-b is depicted in Figure 4-28.

chema method- b

Only_use_if condtions = --,value6
nly_use_iF condtion4 = --,value2

Figure 4-28, Modification to method-b to complete the if-then-else encoding

The need for additional filter conditions to achieve the else part of an if-then-else

statement adds to the maintenance overhead of a domain's encoding. If the if

clause requires modification, the else clause's filter conditions will also require

modification.

In conclusion, filter conditions and the task refinement process may be combined

to capture conditions in the form nested if-then-else structures for specifying

methods applicability. However, the syntax of the encoding is distant from the

original if-then-else knowledge structure.

Limitations of existing devices - planning literature

4.5. 1.4 Encoding task decorate
Assume that the decorate task must take into account the number of rooms in a

specific design and the final wall coverings selected for each room. The variable

number of rooms issue may be addressed using a combination of the type ROOM

and instances of this type may be used to specify the actual number of rooms in a

specific design. An example encoding is depicted below:

{front-room, home-office] type ROOM;

To specify the final wall covering of a room, a condition may be written in a

planner's always context (i .e. facts which do not change during the planning

process). An example specification is depicted below.

front-room final-surface-covering = wallpaper,
home-office linal-surfuce-covcring .:: paint;

A decorate schema must account for both the variable number of rooms within a

design and the variations in wall coverings. The Task Formalism provides the

constructsforeach and iterate for addressing this type of requirement. An example

of each (taken from the Task Formalism manual from an example transporting

aircraft to grid locations) is depicted below.

N iterate action { fly_to ?way_point)
for ?way _point over ({ I 00 50} { 200 60} { 150 40))

N foreach action {counter_problem ?problem)
for ?problem over (issue_! issuc_2)

Figure 4-29, Exampleforeach and iterate constructs (from (Tate, Drabble, &
Dalton 1994b, pp51))

The iterate construct will generate a set of totally ordered actions of the form

fly_to ?way__point for each member of the set specified by the over element. In the

example above, the construct will generate the following schema.

Nodes N action { fly_to (1 00 50) ,
X action { fly_to (200 60] .
Y action { fly_to { l 50, 40} ;

orderings
N -·>X. X-->Y:

The foreach construct differs from the iterate construct only by the ordering

constraints placed on the actions generated. foreach permits all the actions in the

schema generated to be executed in parallel. Iterate adds sequential constraints

between the actions generated.

1 21

Limitations of existing devices - planning literature

1 22

Using theforeach and iterate constructs in combination with thefinal-surface­

covering condition permits schemas of the type depicted below to be written. The

schema will generate a paint action for each room which is a member of the set

final-surface-covering = paint and a wallpaper action for each room which is a

member of the setfinal-surface-covering = wallpaper.

schema decorate;
N foreach action {paint ?room)

for ?room over (set of rooms defined as type painted);

N foreach action {wallpaper ?room}
for ?room over (set of rooms defined as type wallpaper) ;

only_use_for_effects
rooms decorated = true;

end schema

In the specific house building example above, this schema will be instantiated as

follows. The encoding assumes the methods detailing the actions for painting and

wallpapering a room are specified at a lower modelling level.

schema decorate_specific_house;
nodes 1 { paint home-study) .

2 (wallpaper front-room } ;

only _use_for_effects
rooms decorated = true.

end_schema;

This encoding method is successful when the actions within a domain do not

interact. To demonstrate this point, consider the following addition to the

decoration specification. Electrical work (i.e. wiring and power points) may be

hidden below the final wall covering or be placed above the final wall covering.

The requirements of each room may be formalised as follows:

front-room electrical-work = hidden
hoim�·study electrical-work = exposed

The domain knowledge governing the relationships between final wall covering

and rough electrical work is specified in the following text.

1 . If the electrical work is hidden, then the rough electrical work must be installed before the
final wall covering is applied.

2. If the electrical work is exposed, then the final wall covering must be applied before the
rough electrical work is installed.

Limitations of existing devices - planning literature

The Task Formalism representation of this situation is depicted below. Two

schemas are written for both the paint and electrical work tasks. One schema for

each value electrical-work may take. In the hidden case, an unsupervised

condition is added to the paint task indicating that the electrical work should be

ordered before the paint task. In the exposed case, an unsupervised condition is

added to the electrical work task indicating that the paint task should be completed

before the electrical task.

schema paintl ;
expands {paint ?room} ;
nodes

I primitive {paint ?room) ;
conditions

only_use_if ?room electrical work = hidden,
unsupervised ?room electrical-work completed at I ;

end_schema;

schema paint2;
expands (paint ?room) ;
nodes

I primitive [paint ?room} ;
conditions

only_use_if ?room electrical-work = exposed;
end_schema;

schema electricall ;
expands { wire up ?room) ;
conditions

only_use_if ?room electrical-work = exposed,
unsupervised painting ?room completed at l ;

end_schema;

schema electrical2;
expands {wire up ?room) ;
only_use_if ?room electrical-work = hidden;

end_schema;

This encoding raises the following issues. First, knowledge describing the

relationship between decoration and electrical work is distributed between four

schemas. Second, ordering constraints are specified through the unsupervised

condition type; the condition types move responsibility for identifying the action

that supports a condition from the domain writer to the planning system's engine.

Distributing the knowledge about the relationship between decoration and

electrical work makes domain writing and maintenance more error prone. The

domain writer must consider and potentially edit four schemas if the ordering

relationship changes. The use of an unsupervised condition type places the

responsibility on the planning engine for identifying the action which achieves the

condition it prefixes and adding ordering constraints to a plan to establish the

constraint. If the relationship between them could be specified within the task

decorate, a supervised condition may be used, hence, informing the planning of

the producing action for the condition.

1 23

Limitations of existing devices - planning l iterature

1 24

Both the issues identified above result from the encapsulation unit of the schema.

Consider the schema decorate_extended below. The bolded construct at the

bottom of the schema is not supported by task refinement formalisms but

demonstrates the encapsulation argument. The semantics of the construct are that

after the Jo reach constructs have generated the appropriate paint and wallpaper

actions, the bolded condition recurses over each of these actions and adds ordering

constraints dependant upon the state of the wiring condition for a room.

schema decorate_extended;
N foreach action {paint ?room}

for ?room over (set of rooms defined as type painted);

N foreach action {wallpaper ?room}
for ?room over (set of rooms defined as type wallpaper} ;

only_use_for_effects
rooms decorated = true;

conditions
for all {wallpaper ?room} and {paint ?room} actions

if {wiring ?room} = exposed then order {decorate ?room} before {paint room}
or {wallpaper ?room},

if {wiring ?room} = hidden then order {install wiring ?room} before {paint
?room} or {wallpaper ?room};

end-schema

Specifying the ordering knowledge at this modelling level has two advantages.

First, the knowledge is specified in a single a schema. Thus, both the processes of

understanding and maintaining a domain description are simplified. Second, the

supervised condition type may be used as all actions affected by the knowledge

are described within a single schema. Hence, the planning engine does not need to

work to establish the conditions.

In conclusion, the issues identified in section 4.5 . 1 .3 Encoding the task obtain

permission to build are confirmed when encoding the task decorate. The decorate

task adds the complexity of a variable number of actions dependent upon the

number of objects within a specific domain problem. The foreach and iterate

constructs support a variable number of actions, but there are no constructs to

introduce variations in conditions and effects within a schema. To utilise all the

constructs supported by task refinement planning, a domain writer must provide a

schema for each combination of entities within a domain. In the decorate case this

would equate to one schema for the case of one painted and one wallpapered

room, one schema for the case of two painted and one wallpapered rooms etc.

4.5.2 Pacifica

Limitations of existing devices - planning literature

This section first identifies the domain knowledge underlying the Pacifica domain

(Reece et. al. 1993). The definition identified is then enhanced to include facets of

the problem not currently represented, and limitations with the representational

devices supported by classical planners are identified.

Appendix C summarises the Pacifica domain.

4.5.2.1 Identifying the domain knowledge in the Pacifica problem

The Pacifica task Operation Columbus is divided into three sub tasks: the

deployment of evacuation equipment, the utilisation of that equipment to evacuate

an island to a central point, and the return of the evacuation equipment and

evacuees to a safe location. The knowledge behind the encoding of each task is

identified in turn below.

Phase one of Operation Columbus deploys a number of ground transports (GT's)

and air transports (AT's) from a military base in a friendly location to the location

which is to be evacuated. Two schemas transport_ground_transports and

transport_helicopters (specified in Appendix C) are provided to describe the

methods for achieving these two elements of Operation Columbus. Each schema

records knowledge about the number of transport types which are to be located

and the cargo craft which will effect their deployment.

Phase two of Operation Columbus utilises the ground and air transports positioned

in phase one to evacuate a number of cities to a central point. Two schemas road

transport and air transport are provided to describe the methods for achieving the

evacuation of a city via the two transport methods available. Both schemas contain

knowledge about the steps required to physically move a transport vehicle to a

location, load that vehicle, and return it to the central evacuation point. The

schemas detail how many people may be evacuated by each trip of a transport

vehicle and the calculation of the number of people remaining at the evacuation

location after the transport vehicle 's capacity has been reached.

Phase three of Operation Columbus loads the evacuation equipment and evacuees

onto appropriate transport aircraft and returns both equipment and people to a safe

location. The schemas transport ground transports and transport helicopters

(specified in appendix C) are used again in addition to the fly passengers schemas.

The fly passengers schema encodes knowledge about the loading and flying of a

transport air craft

With the knowledge behind the Pacifica domain identified, the following sections

consider the expansion of each stage of Operation Columbus and assess the Task

Formalisms ability to represent and reason which such modifications.

1 25

Limitations of existing devices - planning l iterature

4.5.2.2 Phase 1 - locating evacuation equipment

1 26

Figure 4-30, below, presents the encoding of transport__ground_transports

produced by (Reece et. al. 1 993). The current representation contains two limiting

issues.

First, the bolded lines highlight the encoding of the number of ground transports

and air transports available to a mission. The current encoding is static, i.e. the

schemas explicitly encode the ground and air transports within a mission and the

cargo aircraft which carry them to the evacuation site. If the number of air or

ground transports available to a specific mission was to vary, both schemas would

require modification. Modification would also be required if the relationship

between the air and ground transports and the cargo aircraft was to change.

Second, the schemas contain similar actions, conditions, and effects as the process

of transporting air transports and ground transports is similar. Specifically, lines 6

to 1 1 and 39 to 44 duplicate the same load, take off, fly to, and land actions. Lines

16 to 19, 26 to 29 and 48 to 51, 53 to 59. duplicate the conditions required by the

take off and land actions from a runway. Lines 13 to 19 and 46 to 50 duplicate the

conditions on the location of cargo equipment and the cargo equipment's cargo

before loading may commence. If knowledge affecting any of these areas was to

change, both schemas would require modification.

The current representation of the task of locating evacuation equipment is both

inflexible and contains redundancy between schemas. This section examines the

ability of task refinement representations to address these issues.

Assume that the number of ground transport and air transports available varies

between missions. For example, one mission may have two ground transports and

four air transports available, whilst another ten ground transports and zero air

transports. The number of cargo transports available to a specific mission may also

vary. An example specification is depicted below.

GT! , GT2, GT3: GROUND-TRANSPORTS
ATl, AT2, AT3, AT4: AIR-TRANSPORTS
C l 40, CISO: CARGO-TRANSPORTS

Assume that the relationship between transport vehicles and cargo aircraft is

specified as follows:

Cl40 carries GTl , GT2, GT3
C ! SO carries AT I , AT2, AT3, AT4

Note GT = Ground Transport and A T = Air Transport

Limitations of existing devices - planning l iterature

I . schemn lrnnspon ground transpons:

2. expands I transport_ground_transports ?from ?to } ;
3 . vars ?from = ? { type air_base) ,
4. ?to = ? I type air_base} ;
5 . nodes
6. I action { load ground_transports) ,
7 . 2 action { take_off_from ?from) ,
8 . 3 action (fly_to ?to) ,
9 . 4 action{land_at ?to) ,
I 0. 5 action { unload ground_ transports } ;
I I .orderings 1 ->2, 2->3,3->4,4-5;
1 2.conditions
13 . achieve { at c5) = ?from at I ,
14. unsupervised {location_gt GTl } = ?from at 1,
1 5 . unsupervised {location_gt GT2} = ?from a t 1 ,
16. unsupervised { rnnway_srntus_at . from} = clear at begin_of 2,
1 7 . supervi. e d I runwa _smtus_at ?from) = i n use at end_ o f 2 from begin o f 2,
1 8 . unsupervised (runway_status a t ?to} = clear at bcgin_of 4,
1 9 . supervised [runway_stntus_at ?to) = in_use at end_of 4 from begin of 4;
20.effects
2 1 . { at c5) = ?to at 5 ,
22. {location_gt GTl} = ?to at 5,
23. {location_gt GT2} = ?to at 5,
24. {in_use_for GTl} = available at 5,
25. {in_use_for GT2} = available at 5,
26. { runway_status_at ?from) = in_use at begin_of 2,
27. { runway_status at ?from) = clear at end of 2,
28. (runway_slstus at ?to) = in_ use at begin of 4,
29. { runway_status at ?from) = clear at end_of 4;
30.end_schema;
3 1 .
32" chcma trnnsnon helicopters:
33.
34.expands (transport_helicopters ?From ?to) ;
35 .
36.vars
37.
38 .nodes

?from
?to

= ?[type air_base),
= ? { type air_base) ;

39. I action (load air_transports) ,
40. 2 action { take_off_from ?from) ,
4 1 . 3 action (fly_to ?to) ,
42. 4 action { land_at ?to) .
43 . 5 action { unload air_transports) ;
44.orderings 1 ->2, 2->3,3->4,4-5;
45 .conditions
46. achieve { at c l 4l) = ?from at I ,
47. unsupervised {location_at ATl } = ?from at 1,
48. unsupervi ed {runway_s1atus_:11 ?from) = clear tll begin_ of 2,
49. supervised (runway _status_nl 'lfrom) = inuse at end_ of 2 from begin of 2,
50. unsupervised { runwny _status at ?to} = clear at begin_ or 4,
5 1 . supervised [runwny_status_at ?to} = in_use at .:nd_of 4 from begin of 4;
52.effects
53 . {at c\40) = ?to at 5,
54. {location_gt ATl} = ?to at 5,
55 . {in_use_for ATl} = available at 5,
56. {runway_status_at ?from} = in_use at begin_of 2,
57. (runway_status at ?from) = clear at end of 2,
58 . {runway_ststus at ?to} = in_use at begin of 4,
59. { runway_status at ?from} = clear at end_of 4;
60.cnd_schemu;

Figure 4-30, Original encoding of schema transport_ground_transports and
transport_helicopters

1 27

Limitations of existing devices - planning literature

1 28

The first stage of a domain description capable of varying the number of cargo

aircraft, the number of air and ground transports, and the relationship between

cargo and cargo aircraft is depicted below. Schema

load_and_locate_cargoJor _mission specifies the task of achieving the first phase

of Operation Columbus.

schema load_and_locate_cargo_for_mission;
expands [load_and_locate_cargo_for_mission ?from ?to } ;
nodes

N for each action { load_and_locate ?transport ?from ?to}
for ?transport over {set of cargo transports } ;

end schema;

The schema loops over each instance of the type CARGO _TRANSPORT,

generating a load_and_locate action. The schema below details the results of

load_and_locate_cargoJor _mission if applied to the sample initial domain

description above with a ?from location of UK and ?to location of Pacifica.

schema load_and_locate_cargo_for_rnission ;;instantiated
expands { load_and_locate_cargo_for_rnission UK Pacifica} ;
nodes 1 action { load_and_locate c140 UK Pacifica}.

2 action [load_and_locate c130 UK Pacifica } ;
end schema;

Schema load_and_locate_cargoJor _mission generates a load_and_locate task

for each of mission's transports. Load_and_locate has the responsibility of loading

cargo onto a cargo craft and transporting the cargo craft from the ?from location

an to the ?to location. The expansion for this task, schema load_and_locate, is

depicted below.

schema load_and_locate;
expands [load_and_locate ?cargo ?from ?to } ;
nodes 1 . action { load ?cargo } ,

2. action { takeoff ?cargo ?from},
3 . action { fly_to ?cargo ?to } ,
4 . action { land_at ?cargo ?to } .
5 . action { unload ?cargo};

orderings 1 -->2, 2-->3, 3-->4, 4-->5;
conditions

achieve { at ?cargo } = ?from at I ,
unsupervised {runway_status_at ?from } = clear at begin_of 2,
supervised {runway_status_at ?from} = inuse at end_of 2 from begin of 2,
unsupervised { runway_status at ?to) = clear at begin_of 4,
supervised {runway __ status_at ?to} = in_use at end_of 4 from begin of 4;

end schema:

Limitations of existing devices - planning l iterature

The take off, fly to, and land at actions are expanded as in previous encoding.

Only load task is different, and therefore specified below.

schema load_cargo_onto_transport;
expands (load ?cargo } ;
nodes N for each action (load_onto ?cargo ?transport}

for ?cargo over { set of transports defined as carried by ?transport) ;
end schema;

The schema generates a load_onto action for each transport (air or ground)

associated with a cargo aircraft through a carried-by relationship. The two

instantiations of this schema which will be generated are depicted below.

schema load_cargo_onto_transport ;; instantiated;
expands (load ?cargo } ;
nodes I action (load GT! CJ40},

2 action (load GT2 C l40},
3 action (load GT3 C140 } ;

end schema;

schema load_cargo_onto_transport ;; instantiated;
expands {load ?cargo} ;
nodes I action [load AT! C l 30} ,

2 action [load AT2 C l 30 } ;
end schema;

This encoding is presented graphically in Figure 4-3 1 below. Level zero

corresponds to the mission task definition. The first phase of level zero refines to

the level one schema load_and_locate_cargoJor _mission. Level one generates a

load_and_locate task for each cargo aircraft within a domain (indicated by the *

notation used within the figure). load_and_locate contains the actions to load the

cargo onto a cargo transport and the to physically move the cargo transport from

its initial location to the evacuation location. The load sub task generates a load

action for each of the cargo items to be loaded onto a cargo craft.

The encoding below works because there is no interaction between the

load_and_locate tasks of for each cargo transport and the loading of cargo onto

cargo transports. All the ordering constraints required within the domain may be

specified at modelling level two

In conclusion, the Pacifica domain demonstrates the effectiveness of task

refinement planning' s representational devices within domains which may be

formulated into methods which do not interact.

1 29

Limitations of existing devices - planning l iterature

r .. ·r·-··-·-·---·· ... -............ -............ -.................................
...........................

.
..... -.......... ,

i Level O fask

I · • olumbu•

' i -... -............................. -...................
.

.. .., _ .. _ -......................... -... -.... -i
i Level l
;

for all cargo transports

* load_and_locate l
nd loop I

. I I 1
i··--

....
................ .

.
......

_

....
-............

.
. ---�--·"'' "'-· ·- ·· -

..
-····-··

.........
.

............................ _,,_
..

_ -......... , _

.... -.. f I Level 2 ·1 I chema load_and_locate i

I �::ff I l � � I I I I �� � I

I I unload I I L_��-=---------------· i l t••••••••••.•••••u.,.,,.,..,,,.,..,,.,.,. ... ,,,,,,,.,, •••• ,,,,,,,,_,..,,.,w,, ,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,.,,,,,,,,,,_,,,., .. ,..,,,,,.,.,,,,,.,,,.,,,,,,,,,,,,..,,,,,,,,.,,,,._., , _ .. , .. _,_, ,_,,,
I I Level 3

I
i
! I I

chcma load

for all cargo carried by cargo craft

* load_onto

I I I nd loop I ; li'igure 4-31 , Pacifica encoding scheme 1 l. -........, ... _ , -... -.... •

4.5.2.3 Phase 2 - evacuating the cities

The current representation utilises precondition achievement behaviour to search

the possible combinations of transport types against the number of evacuees in

each city to be evacuated. The representation may therefore adjust itself to a

variable number of transports and evacuees.

4.5.2.4 Phase 3 - returning evacuees and equipment

1 30

The issues surrounding the returning of evacuation equipment and evacuees are

identical to those identified in section 4.5.2.2 Phase 1 - locating evacuation

equipment.

Limitations of existing devices - planning l iterature

4.6 Evaluating model-based planners

This section examines the encoding of the flight simulator construction domain in

a model-based planner (MBP) formalism. The domain definition is enhanced and

the MBP's ability to represent and reason with the enhancements is examined. The

flight simulator construction domain is summarised within Appendix C.

4.6.1 Flight simulator construction

Figure 4-32 presents a fragment of the MBP representation of the flight simulator

domain (Marshall 1988). The figure is a class diagram which specifies the

structure a specific flight simulator instance will follow. The FLIGHT­

SIMULATOR class may be decomposed via the sub relation into a number of

instances of class COMPONENT. Each instance of class COMPONENT will be

further decomposed through the sub relations into a instance of class

DOCUMENTATION. An instance of class DOCUMENTATION may have three

actions associated through the i.action relationship. The relation i.action indicates

that inference is required to determine if each action in the set should be

associated with an instance of class COMPONENT's documentation. The

specification of this assessment knowledge will be discussed latter.

required for used to calculate

Figure 4-32, Fragment of the MBP representation of the flight simulator
domain

1 31

Limitations of existing devices - planning literature

1 32

A specific instance of a flight simulator is depicted below.

sub Visual System's
documentation

Figure 4-33, A flight simulator instance

During the planning process, the MBP algorithm will recurse through this model

assessing the actions associated with each component through the i.action

relationship. Within Figure 4-33, only the instances of class DOCUMENTATION,

Visual System's document, have potential actions. In the case of class

DOCUMENTATION, the domain writer provides production rules for deterring if

an instance of the classes ENGINEERING-REPORT, STRUCTURED-DESIGN, or

COST-BREAKDOWN are required for a specific component. A fragment of this

rule set is depicted below:

rule-base visual system documentation
if the-visual-system is bought-in AND visual-system.supplier NOT BAA approved then
require ENGINEERING-REPORT
require STRUCTURED-DESIGN
require COST-BREAKDOWN

end if
if the-visual-system is stock-item AND BAA-approved-component then

require COST-BREAKDOWN
end if

The MBP invokes this rule-set to determine which actions should be associated

with a specific component. Figure 4-34 below depicts the flight simulator instance

with action assessment completed.

sub
Visual System

req11iredf11r u.rt:d to calculq�
Figure 4-34, Completed instance diagram 1or a specmc simulator

Limitations of existing devices - planning literature

A similar production rule mechanism may be attached to the relationships between

actions. For example, a structured design may only require an engineering report if

the component to which it is attached is a non standard component. Figure 4-34

includes the relationships between actions generated by this knowledge.

Dependency constraints may be synthesised within MBP between components

which are explicitly related. The technology does not incorporate condition and

effect reasoning. Hence, it is not possible to specify that an action requires

management approval for bidding = given without explicitly stating the action

which will provide that condition. Without condition and effect reasoning, MBP

cannot establish causal structures and protect them for interactions between

actions.

In summary, MBP supports rule-based reasoning for determining the action and

ordering constraints which should be associated with a specific product. The

absence of condition and effect reasoning within the technology, however,

prohibits the detection of action interactions and the specification of an action's

preconditions without explicitly stating the action or actions which will achieve

them.

1 33

Limitations of existing devices - planning literature

4. 7 Summary and conclusion

1 34

When restricted to task refinement, HTN planning' s representational devices

encode a domain into a number of partial plan fragments or methods for achieving

tasks. Several methods may be encoded for achieving each task, and the

applicability of each method determined through the filter condition construct.

Encoding the decorate and obtain_permission_to_build extensions to Tate's

House Building domain identified a number of issues with this method - filter

condition mechanism:

• As the number of conditions affecting the selection of a method

increases, so does the number of methods that must be specified for

achieving a task.

• In the case of a single condition affecting the selection of a method, in

the worst case, the domain writer must provide a method for each value

the condition may take.

• If a number of conditions affect the selection of a method, in the worst

case, the domain writer must provide a method for each combination of

values the conditions may take.

• Separating the actions dependant upon a condition form those actions

independent within a method into different task networks is effective

providing the ordering constraints between the actions are not also

dependant upon the conditions. Introducing new modelling levels

prohibits the use of supervised condition type and ordering constraints

due the encapsulation constraints upon task networks.

Encoding the decorate task highlighted a specific problem which occurs when

using the foreach and iterate constructs in domain descriptions with a variable

number of entities. The absence of conditional ordering and condition constructs

prohibits the inclusion of ordering constraints and conditions with each action

generated by the foreach and iterate constructs. Hence, the domain writer is forced

to write these constraints at lower modelling levels with the associated

encapsulation constraints on the constructs that may be used. This issue is

particularly important in the case of a domain with a variable number of entities,

as writing methods for all possible combinations of entities is unfeasible.

The analysis of the expressiveness of filter conditions lead to the following

conclusions.

• It is possible to use filter conditions in collaboration with the task

refinement process to achieve the logical OR connective and nested if­

then-else structures.

• The syntax of such an encoding is distant from the construct the domain

writer wishes to encode. Thus, increasing the cognitive overhead of the

encoding process and the understanding a domain description.

Limitations of existing devices - planning literature

• The else clause of a if-then-else must have the negation of the if

statements condition specified as task selection is non-deterministic. This

redundant specification increases the maintenance overhead of a

domain's description.

Encoding the Pacifica domain demonstrated the effectiveness of task refinement

planning in domains where the tasks may be encoded as relatively interaction free

units.

The limitations identified above may be addressed if the task refinement technique

is used in conjunction with the precondition achievement functionality supported

by task refinement planners. However, the use of precondition achievement in the

examples from which the limitations are derived would require a planner to search

for actions and ordering constraints for which domain knowledge is available to

determine. It is the ability of task refinement planning to represent this knowledge

which is being criticised.

Turning to MBP, the flight simulator encoding highlighted the expressive power

of MBP formalisms at capturing domain knowledge that maps into production

rules. However, the absence of condition and effect reasoning enforces ordering

constraints to be specified only if the producing and consuming action are known.

It is not possible to specify action preconditions, leaving their establishment to the

MBP.

This analysis leads to the following conclusions. First, the limitations of task

refinement formalisms are justified within the context of the computational

complexity of partially ordered and instantiated plans. In such a context,

determining the truth of a statement is computationally expensive. Thus, task

refinement developers have limited the expressiveness of the constructs their

formalisms support to prevent domain writers specifying computationally

intractable domain descriptions. However, all the conditions upon which the cases

above depend upon do not change during the planning process and therefore are

not subject to the computational complexities of determining truth. Hence, more

expressive formalisms may be used.

MBP planning operates only in the space of domain facts that do not change

during the planning process. Hence, the technology has developed a highly

expressive formalism that maps closely to application domain knowledge.

MBP contains no mechanisms for establishing and maintaining causal structures in

a plan.

The rationale for integrating classical and model-based technologies developed in

Chapter 2 may be refined as a result of these conclusions. Task refinement

planning is designed to address the computational complexities inherent when

determining truth over a partial-order plan. MBP is designed to exploit domain

1 35

Limitations of existing devices - planning literature

1 36

experts' knowledge within the computationally inexpensive space of facts outside

of the evolving world state within a partial-order plan.

An integrated architecture would permit the expressive MBP formalisms to be

deployed for generating the actions and ordering constraints obtainable from an

expert' s knowledge of a domain. Classical planning techniques may then be used

to establish and maintain causal structures.

This type of integration is supported by Nau, Gupta and Regli (1995).

Since AI planning researchers are usually more interested in general

conceptual problems than domain-dependent details, the AI approach to

manufacturing planning has typically been to create an abstract problem

representation that omits unimportant details, and look for some way to

solve the abstract problem. From the point of view of manufacturing

engineers, these "unimportant details " often are very important parts of the

problem to be solved Manufacturing planning researchers typically want

to solve a particular manufacturing problem and present their research . . .

without discussing how the approach might generalise to other planning

domains.

(Nau, Gupta and Regli 1 995)

The analysis presented in this chapter is based upon the author's generation of

counter examples from existing domain representations. To confirm and identify

other issues encountered in application domains, Chapter 5 elicits the planning

knowledge utilised by experts in the construction industry. Chapter 6 then

considers the task of encoding this knowledge within task refinement and model­

based formalisms.

Elicitation and modelling of construction planning knowledge

5. Elicitation of planning knowledge from the
construction industry

An expert is one who knows more and more about

less and less.

Nicholas Murray Butler (1862-1947)

5.1 Introduction

Chapter 4 identified the benefits of basing planning research within industrial

planning domains. This chapter describes the elicitation of planning knowledge

from the construction industry; a domain not previously extensively studied by

classical researchers. The resultant knowledge is used within Chapter 6 to verify

and extend the limitations identified in Chapter 4 within an industrial context.

Within this chapter, knowledge elicitation is defined as a compound task

consisting of knowledge acquisition and knowledge modelling, where knowledge

acquisition is the task of identifying domain knowledge from experts,

documentation etc. Knowledge modelling is the task of combining the elicited

knowledge to produce a model of a domain.

Whilst the primary aim of the research presented in this chapter was the actual

elicitation of construction knowledge, the key secondary aim was that this

elicitation should be independent of the aims of this thesis. The results will,

therefore, provide a generic model of construction planning knowledge which is

not skewed towards the overall aims of this thesis.

Knowledge acquisition was effected through a set of interviews, observations of

experts planning, and observations of the use of plans on a construction site.

Knowledge modelling was achieved through the KADS methodology. This

chapter initially discusses the reasoning behind the acquisition and modelling

approach and the selection of the collaborator. The discussion then moves to

describe and present the resultant KADS models.

1 37

Elicitation and modelling of construction planning knowledge

5.2 Selecting an appl ication domain and a col laborating
organisation

The construction domain has had a limited history within classical planning

literature. Publications have centred upon Tate's House Building Domain (Tate

197 6) as a demonstration of the capabilities of task refinement planning systems

(Kartam, Levitt & Wilkins 1991). Therefore, unlike the military evacuation and

logistics domain at the centre of ARPI, construction planning has not been

exhaustively investigated. Further investigation may identify new generic concepts

that may be applied to other planning domains.

The Llewellyn Group of Companies was selected as an industrial collaborator for

two reasons. First, the organisation is an established construction company with

experience of a variety of projects. Second, the organisation was prepared to

commit the time and resources necessary for the elicitation process.

Profile of the Llewellyn Group of Companies

1 38

The Llewellyn Group of Companies provides a comprehensive range of

construction services. Recent refurbishment projects range from the eight million­

pound modernisation of tower blocks in central London through to the protection

of an ageing water intake jetty for Scottish Nuclear Fuels on the Firth of Clyde.

Design and build projects range from a leisure centre in Berkshire to a

multimillion-pound divisional police headquarters in Surrey. Recent customers

include: British Telecom, J Sainsbury, Inland Revenue, Kent County Council,

Sussex NHS trust, and The Employment Service.

The group is based in the south of England at Eastbourne, Brighton, Hastings,

London, and Milton Keynes employing around 800 people (excluding labour and

material sub contractors).

Elicitation and modelling of construction planning knowledge

5.3 Selecting the knowledge elicitation approach

The knowledge acquisition bottleneck (Feigenbaum 1980) was identified by early

knowledge-based system development projects (Parsaye & Chignell 1988).

Overwhelmed by the complexity of domain knowledge and the difficulties

encountered when trying to elicit it, early expert system developers identified the

need for tools and methods to support knowledge acquisition.

CommonKADS1(Schreiber 1992) was conceived in 1983 with the aim of

providing a comprehensive methodology for developing expert systems. A

succession of further research projects have developed CommonKADS into a

mature tool-supported methodology which aims to become the commercial

standard within Europe (KADS Consortium 1997).

By following the leading commercial methodology, the two aims of the knowledge

acquisition phase may be addressed. First, industrially proven knowledge

modelling techniques can be utilised. Second, by following an independent

methodology, the resultant knowledge model will not be skewed towards the aims

of this research project.

An additional benefit of KADS is that by using a standard notation, the resultant

model may be communicated to a large audience. KADS has recently been used to

describe the generic planning knowledge encoded in domain independent planning

algorithms (Valente 1 995 ; Barros, Valente & Benjamins 1 996; Kingston, Shadbolt

& Tate 1 996, Benjamins, Barros & Valente 1 996).

1KADS was originally an acronym for the "Knowledge Analysis and

Documentation System." This definition was latter modified to "Knowledge

Analysis and Design Support." Today KADS it is used as a proper noun.

1 39

Elicitation and modell ing of construction planning knowledge

5.4 Overview of the KADS methodology

1 40

This overview is based upon the defining KADS methodology text (Schreiber &

Wielinga & Breuker 1 993).

KADS decomposes the knowledge acquisition process into three tasks: elicitation,

interpretation, and formalisation. Elicitation is the process of identifying

knowledge from domain sources (experts, documentation etc.). The interpretation

phase moves the elicited knowledge into a conceptual framework. Formalisation

moves the knowledge from the conceptual framework into a form suitable for use

by a computer program.

Knowledge acquisition techniques are not defined within KADS. The authors of

the methodology assume such techniques are well documented and understood

elsewhere. The methodology, however, does indicate where the products of

various acquisition techniques feed into the model set (Wielinga, Schreiber, &

Breuker 1993 pp 42-43). KADS focus is on the interpretation and formalisation

activities, basing the methodology on two principles: multiple models and

knowledge-level modelling. Multiple models provide a mechanism for addressing

complex systems. Each of the models concentrates on specific aspects of a system

whilst ignoring others. Collectively, the different models capture all facets of the

system under consideration. This approach is common throughout software

engineering e.g. (DeMarco, 1982). Knowledge level modelling is motivated by

Newell (Newell 1982). The rationale being a desire to model knowledge from the

perspective of why a system performs an action, independently from how this

functionality will be realised in rules, frames, logic etc.

The principle of multiple models is realised in KADS through the set of

interrelated models. Knowledge level modelling is achieved within a specific

model in the KADS set; the model of expertise. Each member of the KADS model

set is introduced below.

• Organisational Model captures the socio-economical environment of a

KBS. The model results in a description of the functions, tasks and

bottlenecks within the organisation under consideration. The model

predicts how the KBS will influence the organisation and the people

working in it.

• Application Model defines what problem the KBS should solve within

the organisation and what the function of the system will be in that

organisation. The model captures external constraints, relevant for the

development of an application. Examples being the speed and efficiency

of such a system, the hardware, and software available.

• Task Model specifies how the function of the system, defined in the

application model, is achieved through the tasks the system must

perform.

Elicitation and modelling of construction planning knowledge

• Model of Co-operation identifies the human-machine relationships

required by the tasks in the task model. The model differentiates the

functionality executed by humans from that realised by the machine.

• Model of Expertise forms the central activity in KBS construction. The

model specifies the problem solving behaviour of a target KBS through

extensive categorisation of the knowledge required to generate this

behaviour. Knowledge levels are introduced to separate control from

domain concepts.

• Design Model describes the computational and representational

techniques required too realise the artefact specified in the previous

models. It is at this point KADS moves from the logical, implementation

independent perspective, to the implementation dependent view.

In summary, KADS provides a set of models for capturing the facets of a system

relevant to constructing a knowledge-based system. A set of guidelines and

assessment criteria facilitate the construction of the model set.

1 41

Elicitation and modelling of construction planning knowledge

5.5 KADS models of the construction domain

This section describes how the knowledge elicitation process was achieved,

detailing how knowledge was acquired, and the construction of the KADS model

set. Before the models are described, the subset of the KADS methodology

applied to construction problem is described and justified.

5.5.1 Subset of KADS applied to the construction domain

1 42

KADS is designed to support the development of a knowledge-based system for a

specific application. The aim of this chapter is to identify and model the planning

knowledge within the construction domain. Hence, not all the steps and models

within KADS were applied. This sub section presents the rationale for including

and excluding specific models to achieve the aims of this chapter.

The KADS methodology provides the organisational and application models to aid

a domain modeller in understanding an organisation's business process, social

factors, and the inputs and outputs of the planning process. Two factors lead to the

decision to develop both models. First, understanding the overall construction

business was considered an essential precursor to developing the model of

construction domain's planning knowledge. The models will provide the structure

of the domain and its terminology. Second, the models will provide the application

requirements of the planning process, defining its inputs and outputs. This

understanding will form the basis for assessing the ability of classical and model­

based planning techniques to address industrial applications.

The task model identifies the high level tasks performed during an organisation's

existing planning process. The model was constructed to isolate expert planning

"functionality", hence, providing a framework to stimulate discussion. For

example, the model led to questions of the type "what knowledge is important

within task A, but is not used in any other task".

A model of co-operation was not constructed. The inputs and outputs to a planning

application in construction planning are identified by the application model. By

definition, an automated planning algorithm will require no user involvement

during the planning process.

Elicitation and modelling of construction planning knowledge

The KADS model of expertise consists of four layers: strategic, task, inference,

and domain knowledge. The domain knowledge layer captures the concepts,

concept-properties, and relationships used by human experts when performing the

task, in this case planning, that is being considered. The inference and task layers

model the inferences and ordering of those inferences used by human experts

receptively. The reconfiguration of task structures under particular problem

solving domains is modelled by the strategic layer.

The domain knowledge layer provides the input to an automated planning system;

hence, the model is essential to the aims of this thesis. It was not felt appropriate

to model the three remaining layers. Although aspects of the task layer were

modelled in conjunction with domain knowledge acquisition. The purpose of the

elicitation described in the chapter is to provide a vehicle to motivate and evaluate

the integration of classical and model-based planning. The further work section

within Chapter 9 discusses the important research direction of building a model of

human problem solving within the construction industry and the comparing

existing planning technologies with this requirement.

1 43

Elicitation and modelling of construction planning knowledge

5.5.2 Overview of the construction cases studied and the knowledge

acquisition approach

This section overviews the two construction cases studied and the knowledge

acquisition process applied to them.

5.5.2.1 Case 1: extension to a supermarket to provide a restaurant facility

1 44

The first case considered was an extension to an existing supermarket to provide a

new restaurant facility. The project was completed at the time elicitation started.

Hence, it was possible to fully evaluate the building's design, the plans used in the

construction, and photographs of different phases in the construction.

Figure 5-1 depicts the situation before the construction commenced. The

supermarket has an unused sub unit backing onto a planting bed. The project's aim

was to convert this space into a restaurant facility, exploiting the existing wall and

roof structures.

Existing Roof

r····-···--···-···•··-········1
I i .. , j Planting Bed I

Unused .;;·. ! J Sub Unit !... _

Existing Store

Figure 5-1, Initial supermarket building2•

[
I

New restaurant facility

Existing S tore

=

Figure 5-2, Final state of the building

2 The diagram is not to scale. Approximate area displayed is 300 x 300 m.

Elicitation and modelling of construction planning knowledge

Figure 5-2 depicts the final building structure. The original unused sub unit and

planting bed form the area of the new restaurant facility. The bolded walls were

constructed and the new area decorated.

Knowledge acquisition of the case commenced by studying the set of design

diagrams describing the modifications to the building and the plan followed during

that construction. The design diagrams detailed the components of the new

restaurant facility and their interconnections. The material was studied before the

first meeting with the collaborating organisation. Without previous knowledge of

the construction domain, it was possible only to relate activities with components.

To determine why the activities were required and the reasons leading to the

ordering constraints required questioning of domain experts.

The initial contact with domain experts concentrated on the overall construction

process through interviews. Questioning covered the process from a customer

approaching the organisation to a completed building being delivered to that

customer. This elicitation phase lead to the construction and reviewing of the

organisation model.

With the organisation model defined, questioning centred upon the planning

function within the overall constructing process. The results isolated the planning

function to produce the organisational model. Domain experts were used to formal

notations (from design notations used in the domain) and readily adapted to

understanding and critiquing both the organisational and applications models.

With the context established, elicitation moved to considering the tasks performed

during planning. The task model provided a notation to record this knowledge, and

as with the organisation and application models, provided a central focus for

discussions.

Construction of the domain knowledge layer of the expertise model was structured

from the task model. Experts were asked to define the concepts and relationships

used in each task. This approach facilitated the gradual modelling of domain

knowledge - allowing domain experts to concentrate on each task in turn. Experts

at times had difficulty in verbalising their knowledge replying, for example, to

questions of the form "why is activity I ordered before activity2" with "It just has

to be done that way." This issue was addressed by phrasing questions as "what

effect would moving activity2 before activity I have." This approach proved

successful.

1 45

Elicitation and modelling of construction planning knowledge

5.5.2.2 Case 2: construction of retirement flats

1 46

Elicitation commenced on a project to construct a five-story block of flats as

building was about to commence. This case enabled the author to observe a

working construction site, offering the opportunity to question the construction

workers and managers as planning decisions were being made.

The model set elicited in case one was based upon interviews and hypothetical

problem solving exercises. To verify the integrity of the models this second case

used weekly visits to an actual construction site. As the design of the flats differed

from the design of the supermarket extension (e.g. trench foundations as opposed

to piles and beams), the generality of knowledge elicited during the first case study

could be tested.

Observing and discussing the use of plans on-site refined the organisation and

application models. This was a natural refinement, the expertise of individuals

working in the earlier phases of the construction process on latter phases was not

as current as those actually working within those phases. The overall structure was

found to be correct, just subtle changes in detail were required.

The expertise model was reinforced by actually observing the constraints

described during the interviews in case one. For example, one could see the

physical size of plant equipment (cranes, mechanical-diggers etc.) and the need to

sequence activities around their ability to access different parts of the site. The

consequences of omissions in planning detail could also be observed. For

example, the damaged caused by plant equipment moving over drainage pipes

which would have been avoided had the drains be laid after the plant had

completed its work in that area.

Elicitation and modelling of construction planning knowledge

5.5.3 Organisational model

The organisational model was elicited through a combination of structured

interviews at various levels within the Llewellyn organisation and observations of

experts planning. One of the organisation's directors provided strategic

organisational knowledge, whilst those involved in the planning of projects

supplied detailed planning-specific knowledge. Site managers, the users of the

plans, identified how the results of the planning phases are used, problems

highlighted, and replanning initiated.

The organisational model is presented in Figure 5-3. The figure shows the main

processes, data stores, and external entities in the organisation. The figure is

biased to the planning functions within the organisation and omits non-essential

detail.

The model encapsulates three different scenarios:

• Design and Build. A dialogue between Llewellyn and the customer

establishes the requirements for a construction project (the analysis

process). From this, a detailed design is produced (the design process).

The detailed design is combined with product knowledge to prepare a

high level plan (the construction planning process). The plan is used to

prepare materials and plant equipment schedules (the material and plant

ordering process). Once construction begins, the plan is refined into daily

and or weekly plans, depending upon the phase the project has reached.

Generally the more trades active on a site, the lower the granularity of

planning. More trades result in more interactions between activities;

hence, trades must be carefully co-ordinated to ensure efficient working.

1 47

Elicitation and modelling of construction planning knowledge

1 48

Detailed Building
Design

Component Knowledge

Detailed component
Knowledge

Suppliers 14141-----r

Daily Plan

Weekly Plan

Design Requirements

Design
Requirements

Design

Analysis

Detailed Building
Desi n

Building Design

Detailed design
knowledge

High Level Work Plan

Weekly plan

Figure 5-3, Llewellyn organisational model

Elicitation and modelling of construction planning knowledge

• Build. A customer may provide a detailed building design, requiring the

Lewellyn group to construct it. This phase starts at the construction

planning process and proceeds from that point as in design and build

case.

• Bid. Bidding runs through the analysis, design, and construction

planning phases. The resultant building design and construction plan are

used to produce cost estimates for realising the project. The customer

may or may not accept the bid for reasons of cost or time scales

(typically the construction process would be too long). Bidding is

therefore a gamble; more time spent designing and planning to produce

accurate and competitive estimates, balanced against the risk of losing

the bid and the investment in producing it.

The three scenarios presented above represent the typical activities the

organisation encounters. There are many different variations; for example a build

project may revert to a design and build, if the customer's design proves

impractical (the site may be found unsuitable for the foundation construction

techniques envisaged after ground tests are completed).

Issues relating planning to the organisations goals are listed below.

1 . Time taken to produce a high level working plan from a buildings

design. Producing the high level construction plan is a slow and costly

process, requiring input from highly skilled practitioners from several

disciplines. Much emphasis was placed from all involved in the process

on the need for experienced people. It is the combination of experience,

skill, and collaborative working requirements which make planning a

costly and time consuming process.

2. Knowledge archiving. The practitioners involved in the planning

process are a valuable resource to an organisation. There were

indications that a project would not be considered if people with previous

experience of the techniques demanded were not available. Concern was

expressed at the organisation's strategic level of the effects of key people

leaving the organisation. A way of archiving knowledge was desired.

1 49

Elicitation and modell ing of construction planning knowledge

1 50

3. Cost of Planning. The cost of planning was highlighted in issue 1 but

becomes a major issue in bidding. Time spent planning is not guaranteed

to be recouped, as the project may not be awarded. However, if planning

is not sufficiently detailed, a bid may be won, only to find the cost of

construction is greater than the income generated. There is a major desire

in the organisation to optimise the planning function to increase its speed

and accuracy, while reducing the costs.

4. Level of detail in plans. The high level work plan typically considers the

building at a high level of abstraction. This is a cost saving practice, as

the lower level of detail considered in the planning the phase, the greater

the time required to produce a plan. The need for constant on-site

planning reflects the limitations of ignoring much of the building's detail

at this early stage. Planning to a lower level of abstraction during the

construction planning process is desirable.

The points identified above indicate a need for improvements to the planning

support available to the construction industry. Socio-economical factors complete

the organisational model, and are presented below:

1 . Perception of information technology. Llewellyn use computer aided

design software to support the design process, and office automation

technology (spread sheets, databases, word processors) for

administration support. Parts of the organisation use no information

technology (IT), for example no computers are available on construction

sites and a high percentage of design work is carried out on paper. The

organisation' s perception is therefore polarised from everyday

experience of IT, through to little awareness of IT.

2. Automation concerns. People involved in both the development and the

execution of plans were concerned that automated planning technology

would impose constraints upon their working practices. For example,

imposing tightly-controlled schedules which may lead to robotic type

working conditions. The need for highly configurable tools was stated by

all levels within the organisation.

3. Disbelief. A number of human planners felt automated planning was

simply impossible. The number of constraints considered by humans was

felt to be beyond the storage capacity of computer technology. The need

to convince people of the feasibility of automated planning before

securing their support for the knowledge elicitation process was

identified.

4. Explanation. A plan with a supporting rationale was considered

essential by all levels within the organisation.

Elicitation and modelling of construction planning knowledge

5.5.4 Application model

Component Knowledge

Detailed component
Knowledge

Building Design

Detailed design
knowledge

High Level Work Plan

Figure 5-4, Application Model

The application model refines the organisational model (section 5.5.3) by

identifying the processes to be addressed by a KBS . The construction planning

and on site planning processes provide the planning functions of the organisation,

hence, the processes have been extracted from the organisational data flow (Figure

5-3) together with their input and outputs to produce the application model (Figure

5-4).

The construction planning task takes as its input a building's design and

component construction knowledge and produces as its output a plan to realise the

design. The resultant high level work plan is used to guide the construction. The

on site planning process refines the high level work plan to the level of granularity

required by the site manager. Problems with the high level plan may be

encountered on site. The site manager modifies the high level work plan to reflect

this.

1 51

Elicitation and modelling of construction planning knowledge

1 52

The construction planning process takes two inputs: component knowledge and a

building design. The building design is presented as drawings output from a

computer aided design tool. Component knowledge is located in engineers '

experience and component manuals from manufacturers.

The construction planning process produces one output: a high level working

plan. The plan is normally implemented on a presentation and analysis tool (e.g.

Microsoft Project™) and can be viewed, for example, as GANTT and PERT

charts.

On site planning takes a paper copy of the high level work plan in GANTT chart

format. The process is carried out using pencil and paper. Daily and weekly plans

are produced on paper, utilising the techniques developed by individual site

managers. The process may be described as ad hoe, but is highly effective. S ite

managers develop a mental model of the project they are working on and use

model to identify problems.

Elicitation and modelling of construction planning knowledge

5.5.5 Task model

The task model refines the process identified in the application model to specify

how the function is achieved through a number of tasks.

Figure 5-5 presents the task model derived from observing human planners. Each

task is described below:

• Specify Problem The human planners spend time examining a building's

design to familiarise themselves with it.

• Identify Activities Components are viewed at different levels of

granularity, and the humans define activities which need to be completed

for the building to be constructed.

• Identify Ordering Constraints The interrelationships between

components are examined to define the ordering relationships between

activities.

• Resource Needs. By examining the overall set of activities, resources are

selected.

• Review plan. Several different disciplines examine the plan and identify

problems and discuss methods for resolving them.

The process above is initially sequential, before moving to a phase where the

human planners move from one task to another as issues arise.

Identify
Orderings

Figure 5-5, Task model of construction planning

1 53

Elicitation and modelling of construction planning knowledge

5.5.6 Model of expertise

The model of expertise is the most important in the KADS model set; it is the

model which differentiates the development of knowledge based systems from

traditional information systems. Constructing the previous models developed an

understanding of the operation of the company, its terminology, how the planning

functions integrate into the business, and the requirements of an automated

planning system in this organisation. The goal of the model of expertise is to

specify the problem solving expertise required to solve the process identified in

the application model: construction planning.

The model of expertise is broken down into four interrelated sub models: domain

knowledge, inference knowledge, task knowledge, and strategic knowledge. The

separation allows different types of domain expertise to be identified and related.

For the purpose of identifying the domain knowledge utilised in construction

planning, only the domain knowledge sub-model is constructed.

5.5.6.1 Domain knowledge sub-model

1 54

The domain knowledge model provides the conceptualisation of a domain, for a

particular application, in the form of a domain theory. Domain knowledge is

partitioned into four categories: concepts, properties, relation between concepts,

relation between property expression, and structure. The first three categories are

derived in turn below. The structure category is not presented within this chapter,

but is presented in Chapter 6. The structure category combines the concepts,

properties, and relations between concepts into one diagram.

Elicitation and modelling of construction planning knowledge

5.5.6.1 .1 Domain concepts

Domain concepts are the central objects in the domain knowledge and may be

compared with entities in an Entity Relationship diagram (Chen 1 976) and objects

in an Object Model (Rumbaugh et. al., 199 1). The first task in constructing the

domain knowledge sub-model is to identify the domain concepts.

Llewellyn supplied a set of diagrams which together described the components of

a building's design. Construction is a mature engineering discipline, hence, its

notations are precise and unambiguous. The design documents were

complemented with a plan for the construction of the building depicted. The

domain experts were asked to describe each diagram and questions were posed to

identify the planning knowledge applied. Figure 5-6 and Figure 5-7 present

fragments of the diagrams provided. Figure 5-8 depicts a fragment of the

construction plan. Table 5-1 presents a transcription of the expert's description of

Figure 5-6, Figure 5-7 and Figure 5-8.

0 0
3 4

eaml

Beam2

Figure 5-6, Fragment of the Pile and Beam layout diagram

Slab 2

Beaml

Figure 5-7, Fragment of Beam, Slab and Wall Details Diagram

Lay Pile Mat Drive Pile Place Beam 1 Start Wa11 4 Lay slab 2

Figure 5-8, Fragment of the construction plan

1 55

Elicitation and modell ing of construction planning knowledge

Name Transcripti0n of experts comments

[CHQ.94.2 The two ground beams, beam] and beam2 support the force of the

1 79.04], walls above them. Pile 3 and Pile4 support the weight of the beams.

(Figure 5-6 Piles are laid using a piling machine. The machine needs a pile mat

above) to stop it sinking into the ground. Once the pile mat is in place, the

pile is driven into the ground

(CHQ.94.2. Beam] is supporting the weight of wall 4 and slab2. The beam must

1 76.02], be laid before the wall and slab. Some of the Wall must be built

(Figure 5-7 before the slab, hence removing the need for formwork at the wall

above) end of the slab

[CHQ .94. The pile mat must be placed before the pile can be driven. Otherwise

3 . 1 78.04] the piling rig will sink into the ground. Piles are laid before beams

(Figure 5- because they support the beams. The wall is started before the slab

8 above) because the slab rests on the beam and against the wall. Hence,

working this way removes the need for formwork on the slab, as the

wall acts as the formwork.

Table 5-1, Domain experts comments on the design fragments and the plan

Words in Table 5- 1 highlighted in italics indicate potential concepts or

relationships. From the comments on Figure 5-6, the following concepts were

identified: beam], beam2, beams, pile3, pile4, piling-machine, and pile-mat. Each

was recorded as a candidate concept using the KADS domain description language

(Schreiber & Wielinga & Breuker 1993, pp 7 1-91) :

concept beam concept beam]
concept lay-beam concept lay-beam!

The process of reviewing each design diagram with an expert was repeated until

the concepts in the specific building were identified.

5.5.6.1 .2 Properties

1 56

The concepts identified in section 5 .5 .6. 1 . 1 may have properties associated with

them. Properties are defined through their name and a description of the values it

may take. Each concept was examined and properties identified. Physical

properties (size, weight, etc.) were simple to identify, they are recorded on the

building's design drawings. The beam, beam] , lay-beam, lay-beam] concepts

identified in section 5 .5 .6. 1 . 1 are refined below to include their properties.

Elicitation and modelling of construction planning knowledge

concept beams
properties:

concept beam]

length: integer mm
height: integer mm
width: integer mm

properties:
length: 5040
height: 1000
width: 2000

concept lay-beam
properties:

dependent upon: actions

concept lay-beam]
properties:

dependent upon: Pile3 and Pile4 being laid.

1 57

Elicitation and modelling of construction planning knowledge

5.5.6.1 .3 Relations between concepts

KADS notes that the most common relations between concepts are the sub-class

relation and the part-of relation. These relationships are presented first, followed

by the domain specific relationships identified.

Sub-class relationships

1 58

Within the modelling phase, identifying the sub-class relationship served two

purposes. First, to differentiate between instances and generic knowledge. Second,

to identify generic knowledge common between two or more types of concept.

The beam] concept identified in the previous section is an instance of the

candidate concept beam, as beam] has all the properties of beam but specific

values for each property. The concept beam and instance beam] are presented

below. Note the addition of the instance-of field in the description of the instance

beaml . The field records the concept from which the instance is derived. Note

once a concept is confirmed as a concept, its name is depicted in uppercase.

concept BEAM
properties:

instance beam]

length: integer mm
height: integer mm
width: integer mm
stress: compression, tension

instance-of beam
properties:

length: 5040
height: 1 000
width: 2000
stress: compression

The sub class relationship allowed concepts to be organised into hierarchies,

capturing the common knowledge between two or more concept. The example

below demonstrates how this principle was applied to piles. The generic PILE

concept captures the purpose of piles and general domain properties. The more

specific BORE-PILE and DRIVEN-PILE capture knowledge specific to these

types. Instances of concept BORE-PILE differ from instances of DRIVEN-PILE

by the method used to place them into the ground. BORE-PILE instances are

screwed into the ground, where DRIVEN-PILE instances are hammered into

position. Placing BORE-PILE instances results in quantities of soil being

deposited on the surface. A plan must therefore include actions to remove this

waste. Organising concepts into hierarchies facilitated the discovery of this type of

knowledge.

Part-of relationship

Elicitation and modell ing of construction planning knowledge

concept PILES

knowledge elicitation
description Piles are used in areas where the ground is too soft to
support a building' s weight directly. By driving a pile into the ground,
the force of the building is distributed over a large area.

domain properties Piles need to have their position accurately set out
and a pile mat to be laid before they maybe placed.

sub-type-of OBJECTS

concept BORE-PILES
knowledge elicitation
description A type of pile, placed with a screwing action. Bore piles

move earth onto the surface, planning must take into account the
removal of this waste.

domain properties
sub-type-of PILES

concept DRIVEN-PILES
knowledge elicitation
description Hammered into the ground
domain properties
sub-type-of PILES

The aggregation (part-of) relationship allowed the domain experts' grouping of

concepts to be identified. During planning, experts reason at different levels of

concept aggregation. For example, activities are created and sequenced at the level

of "the foundations" at early points of the planning process, but later refined to the

constituent components of the foundations.

Below is the KADS representation of the specific foundations instance occurring

in a building. The-foundations are shown to have several sub components (pilel . . .

beam5). A graphical representation is given in Figure 5-9.

instance the-foundations

pilel

instance of: FOUNDATIONS
implementation: I_Sub Value < pile] pile2 pile3 pile4 pile5 pile6 pile7
pile8 beam] beam2 beam3 beam4 beam5 >

the supermarket

the foundations

-----------.. r···················..J-·····-···· , -----------
pile2 i i beams

------- .. � -------

Figure 5-9, Part-of component structure

1 59

Elicitation and modelling of construction planning knowledge

Domain specific relationships

1 60

Whilst the part-of and sub-class relation elicited the structure of the domain's

knowledge, domain specific relations were found essential to the planning task.

Human planners utilised the interrelationships between components when deciding

the ordering constraints between activities. The example supported-by relationship

is specified below.

relation supported-by
inverse: supports
argument-1 :Object

role
cardinality min 1 ; max l ;

argument-2: Object
role
cardinality min O; max infinity;

semantics: argument- I is physically supported by argument-2
luplcs: examples. beaml is supported-by pile3

A second set of relationships were identified between actions and components.

Generically, experts described components as having associated actions. For

example, the statement "a pile requires a pile mat to be laicf' would translate to

the following relation.

concept P !LE [has an actionj concept LAY-PILE-MAT

The "has an action" relationship was extended to include the "possibly has an

action" relationship. This latter case captures the knowledge that some actions are

associated with components only if certain criteria are satisfied.

Experts additionally described actions at different levels of abstraction. This

levelling resulted in a collective name for the actions which install a component.

The term is then used as a high level construct for placing constraints upon all the

constituent actions.

The above framework was modelled by relating components to actions through

abstract or compound action relationships. Each action which may be associated

with a concept was further subdivided into "must" or "infer" relationships,

indicating that some actions "must" always be assisted with a component. Whilst

others need inference ("infer") to determine if they should be included within a

plan.

Elicitation and modell ing of construction planning knowledge

5.5.6.1 .4 Relations between property expressions

Expressions are defined within KADS as statements about the values of the

properties of concepts. An example relationship between property expressions

provided by Wielinga, Schreiber and Breuker (1993) is that the concept

amplifier's power-button property being set to pressed causes the amplifier's

power property to be equal to on.

Five types of relation between property expressions were identified in the

construction domain. Each is described below.

Relationships between a component and actions

Experts associate each component with a set of possible actions for constructing it.

For example, the concept BEAM is associated with the possible action set SET­

OUT-POSITION, EXCAVATE-BEAM, BLIND-BOTTOM, LAY-FORMWORK,

POUR-CONCRETE, CURE-CONCRETE, VIBRATE CONCRETE, LAY-MOULD-

0/L, and STRIKE-FORMWORK.

Which members of the potential action set which will be associated with an actual

instance of a component is dependant upon the properties of that component and

other component instances. For example, the formwork-type property of concept

BEAM causes a LAY-MOULD-OIL action and a STRIKE-FORMWORK action to

be associated if and only if the formwork-type property of beam is equal to

custom.

Dependency relationships between a component's actions

The actual set of actions associated with a component are sequenced according to

the values taken by properties of the component to which they are related. For

example, an instance of the concept BEAM will order its LAY-MOULD-OIL action

before its POUR-CONCRETE action if the beam's property formwork-type is set

to custom.

Dependency relationships between actions from component relations

The actions associated with components are made dependant upon actions

associated with other components as a result of the relationships between

components. For example, the actions associated with an instance of concept

BEAM will be made dependant upon the actions associated with a instance of the

concept PILE if as supported-by relationship exists between the PILE and BEAM

instances.

1 61

Elicitation and modelling of construction planning knowledge

Aggregate conditions

1 62

Aggregate conditions are conditions which hold before an action may be executed

but the action set which achieves each aggregate conditions is dependant upon the

other components within a specific design. For example, the installation of

electrical work requires the condition dry building to hold. The actions which

combine to constitute a dry building are variable. If for example a building

contains a concrete floor, the dry building condition will only hold after the floor

has dried. If, however, the floor is of some other construction they completion of

the floor will have no effect of the dry building condition.

Elicitation and modell ing of construction planning knowledge

5.6 Summary and conclusions

The construction domain has a limited history within classical planning research.

Publications have centred upon Tate's House Building Domain as a demonstration

of the capabilities of task refinement planning systems. Therefore, unlike the

military evacuation and logistics domains studied by ARPI researchers, further

investigation may identify new generic concepts which may be applied to other

domains.

The knowledge elicitation described in this chapter applied a combination of

structured interviews, observations, and domain document analysis to acquire the

underlying domain knowledge. Knowledge modelling was effected through a

subset of the KADS methodology's model set. Organisational and application

models were constructed to develop an understanding of the construction industry

business process and to provide the context in which a commercially placed

planning system must operate. A task model was constructed to identify how

human planners partition the planning process, facilitating questioning. The

domain knowledge level of the model of expertise was constructed to identify the

concepts and relationships within the construction domain which underlay the

planning process.

The organisational model identified the position of planning within the overall

construction process as commencing after a building's design has been finalised

and before actual construction commences. The current human centred planning

process is limited by the time the process takes, and the high level of skill and

experience required by human planners. Any commercially fielded automated

planning system must, however, address a number of socio-economical factors.

Specifically, the level of current IT expertise in the industry, the concerns about

automation leading to robotic working conditions, disbelief at the capability of

machines to undertake what is perceived as a complex task, and the need for

explanation from an automated system.

The model of expertise identified the components of a building and their

interrelationships as the domain knowledge underlying construction planning.

Domain experts associate actions with components depending upon the values of a

specific instance' s properties. Dependency assessment is achieved from three

types of domain knowledge. The actions required to construct a component are

ordered dependant upon the values of a specific instances properties. The set of

actions relating to a component are ordered because of the interrelationships

between components. Aggregate conditions are satisfied depending upon the type

of components which exist in a specific design.

1 63

Elicitation and modell ing of construction planning knowledge

Blank

1 64

Limitations of existing devices - construction industry

6. Limitations of existing representational devices -
experiments within the construction industry

In order to draw a limit to thinking, we should have to

be able to think both sides of this limit.

Ludwig Wittgenstein (1889-1951)

6.1 I ntroduction

This chapter verifies and extends the set of limitations with classical and model­

based planning technologies identified in Chapter 4 through a set of encodings of

the construction domain elicited in Chapter 5. From the issues identified, a precise

rationale for integrating classical and model-based planning is developed.

The classical encoding is divided into two cases: the specific and the generic. The

specific case tests the ability of classical planning to represent a specific instance

of a building' s design. The generic case identifies the issues encountered when

providing an encoding of generic planning knowledge which may be applied to a

number of specific designs. The model-based encoding considers only the generic

case. From the limitations identified, a precise rationale is constructed for

integrating classical and model-based planning technologies.

1 67

Limitations of existing devices - construction industry

6.2 Classical planning

This section identifies the issues encountered when encoding the construction

domain in a task refinement formalism. Two cases are provided. The first

considers only a specific building's design, and the second a domain description

which may be applied to a number of specific designs.

Before presenting the two encoding cases, the framework followed for translating

the KADS model of expertise of the construction domain into a task refinement

formalism is described.

6.2.1 Task formalism method

1 68

The KADS model of expertise describes the domain knowledge used by human

planners in the construction industry. This section considers the methods available

to support the translation of this model into a task refinement formalism.

Ero! (1 995, pp91) summaries the status of the current methods for advising the

process of writing planning domains as follows:

" . . . it is the most neglected aspect of planning, and there is not an established

software-engineering methodology to guide this job. "

Whilst Erol's comments are valid, the Task Formalism Manual (Tate, Drabble, &

Dalton 1994b 1995) provides some considered steps, collectively known as the

Task Formalism Method (TFM), to guide the writing of domain descriptions. The

authors, however, place the following qualification on the maturity of their

method:

"We rather grandly call this the Task Formalism Method (TFM) to reflect

our desire to gather experience of writing TF to improve the method itself.

(Tate, Drabble, & Dalton 1994, p 59)

Whilst the task of encoding domains is not yet supported by intensively researched

methods, the TFM does encapsulate practical experience. Hence, it is a worthy

guiding framework. Each stage of the TFM is briefly outlined below together with

details of how it was applied to the KADS model of expertise.

Limitations of existing devices - construction industry

6.2.1 .1 TFM step 1 : scope of the domain and initial analysis

Like any data analysis task, it is important to plan carefully how a domain

description is to be provided in TF to 0-Plan. It is all too easy to let a

domain description grow in a haphazard and inconsistent way . . . It is useful

to view one user role in writing a domain description in TF as being that of

Domain Expert. This user will decide on the scope of the domain and

introduce the top level description. It is then possible to "fill-in " the details

by considering other information given to describe a domain in TF as being

provided by one or more Domain Specialist.

(Tate, Drabble, & Dalton 1994b, pp 59)

Figure 6-1, TFM step 1

Figure 6- 1 presents the first stage of the TFM. This step calls for a considered

approach to the analysis of a domain. Specifically, it recommends the selection of

a single domain expert from whom an outline "skeleton" of a domain may be

elicited. Other domain specialists may then be called upon to add detail to this

skeleton. Thus, the skeleton provides a structure to a domain within which other

expert' s knowledge may be positioned.

In the context of the construction domain, the "considered approach" criteria was

satisfied through the application of the KADS methodology. KADS provides a

considered and structured approach to analysing a domain. The "structure domain

and then refine" criteria was also satisfied through the application of KADS. The

first stage of constructing an organisation model resulted in a strategic overview of

the domain. The organisational model was then refined into application, task, and

expertise models by eliciting knowledge from other domain experts at a

progressively lower level within the organisation. At each organisational level,

experts comments' were positioned into the overall picture derived from the

strategic expert. When knowledge elicited at a low level in the domain did not fit

into the strategic framework, the high level expert was consulted. The process

either identified a flaw in the understanding of overall domain structure or a flaw

in the low level knowledge.

1 69

Limitations of existing devices - construction industry

6.2.1 .2 TFM step 2: action expansion or goal achievement

1 70

Two different approaches are possible to model domains. A hierarchical

action expansion approach is primarily supported by 0-Plan. However, it is

also possible to state required conditions on the state of the world at certain

points - a goal achievement approach . . . The approaches can be mixed in

any way convenient to model the domain. However, it is useful to consider

which is to be the main approach during the initial domain modelling

exercise.

(Tate, Drabble, & Dalton 1994b, pp 59)

Figure 6-2, TFM step 2

The second stage of the TFM (Figure 6-2) recommends an early commitment to

the primary method of attainment (task refinement or precondition achievement).

Both precondition achievement and action expansion are described in detail within

Chapter 2.

The decision to base the domain modelling around precondition achievement or

task refinement was based on two early observations. First, domain experts spoke

in terms of methods for achieving the construction of each component. For

example, experts made statements of the form "in order to build the foundations

you must in this case carry out the following actions". Second, the potential size of

a precondition achievement solution's search space was considered prohibitively

large.

Whilst action expansion was selected, the decision was considered reversible if a

encoding from this perspective proved unfeasible. However, in the case of the

construction industry, the decision proved correct. This observation concurs with,

and therefore supports, Drummond's (1994) argument that industrial domains map

naturally to task refinement as opposed to precondition achievement

representations.

Limitations of existing devices - construction industry

6.2.1 .3 TFM step 3: levels of modell ing

Step 3 (Figure 6-3) of the TFM provides guidance for writing the actual schemas.

The stage provides two key recommendations. First, that the process should

proceed by encoding schemas at a high level, before gradually moving down

towards the lower levels and ultimately the primitive schemas. Second, that

conditions and effects be attributed to modelling levels. The resultant levels may

then be used in conjunction with modelling heuristics to ensure consistency

between the set of condition types available and the effects within a domain

description.

It is all too easy to introduce actions, events, effects and resources and state

conditions or use resources at different levels, making the modelling

awkward and unnatural. This is sometimes referred to as "hierarchical

promiscuity " or "level promiscuity ". This will almost certainly lead to the

inability to make effective use of search restriction domain information such

as condition and resource types.

Actions and the effects they introduce are at a particular domain

modelling level. Higher levels are more abstract, lower levels more detailed.

In some cases certain (external) types of conditions can only be stated on

effects introduced at a domain modelling level which is at a higher or the

same modelling level as the condition.

In anything other than trivial domains, it is essential to have a plan based

on an initial analysis of the structure of the problem to decide on what

actions, events, effects and resources will be modelled at progressively more

detailed levels.

I. Identify the main actions (or events) that will appear at the top of a task

or plan. This is the task or top level.

2. Gradually worked down through progressively lower levels of detail and

try to identify the more detailed actions (and events) to be introduced. It

is best if each level introduced has some real meaning to those involved

in planning in the real world. Giving a name to each level is a good

discipline to ensure that the modelling levels will be useful.

3. It is useful to decide on what statement about the world (in the form of

effects) will be introduced and manipulated at the various levels by the

actions (and events) at each level.

4. It is only after these steps have been taken that the conditions required

for each actin (or event) need to considered. It is then possible to ensure

that these are introduced at a level at or below the level in which the

relevant effects are introduced. Type information to restrict the usage of

conditions to those that are meaningful in the domain can now be added

readily. (Tate, Drabble, & Dalton 1 994b pp 59-60)

Figure 6-3, TFM step 3

1 71

Limitations of existing devices - construction industry

1 72

The purpose of assigning conditions and effects to distinct modelling levels is to

address the problem of hierarchical promiscuity (Wilkins 1988, pp 49 - 57).

Problems surrounding hierarchical promiscuity are described by Collins & Pryor

(1992; 1 994). Tate, Drabble and Dalton (1994a) suggest that adherence to

modelling levels will resolve the issues raised by Collins & Pryor.

To address the hierarchical promiscuity issue, the set of criteria defining the

relationships between condition types and effects within (Tate, Drabble, & Dalton

1994a) will be followed.

Limitations of existing devices - construction industry

6.2.2 Case 1 - encoding a specific design in a task refinement

formalism

6.2.2.1 Introduction

The aim of this case is to test the ability of task refinement planning to represent

and reason with the planning knowledge within a specific building's design. This

case considers the supermarket extension design as depicted in Figure 6-5 below.

This specific case has limited commercial utility. The construction domain

application model, defined in Chapter 5, requires a planning system which can

produce plans for a variety of designs. However, this case verifies the ability of

task refinement formalisms to represent a building' s design: a necessary capability

to demonstrate before considering the problem of reasoning with different designs

is considered.

This case is similar to Tate's House Building Domain (Tate 1976) in scope and

therefore serves to verify that experiment in addition to providing the author with

experience of encoding domains in a task refinement formalism.

6.2.2.2 Encoding the actions

Figure 6-5 below presents the components of the specific supermarket extension

project detailed in Chapter 5. A subset of the relationships between components

are depicted as dotted lines. The encoding problem is to represent in a task

refinement formalism the schemas necessary to produce a plan for constructing

this building.

The first stage of the TFM (defined in Figure 6-3) is to identify the main planning

task. A user of the construction planning system will wish the planner to achieve

the task build supermarket_extension. This initial task is encoded below in Figure

6-4. The task definition specifies a plan with two dummy nodes (start, finish)

denoting the initial and final points of the plan. The non-primitive action build

supermarket_extension specifies the task which the planner must achieve.

task build_supermarket_extension;
nodes 1 start,

2 action { build supermarket_extension) .
3 finish;

orderings 1 -->2, 2-->3 ;
end-task;

Figure 6-4, Task definition for build_supermarket_extension

1 73

Limitations of existing devices - construction industry

plant-steelwork

Supports

Next To

Under

1 74

the-ground-slabs

Encloses

Figure 6-5, Instance model of the supermarket extension

Abbreviations
= External Wall

m= Beam
= Window
= Door

e = Demolish External
all

= Ground Slab
· = Demolish Internal
all

Limitations of existing devices - construction industry

With the problem definition complete, the next encoding stage is the provision of

a schema for refining the build supermarket_extension task. This schema is

depicted in Figure 6-6 below. The schema contains a node for each of the

components which are immediate subcomponents of the supermarket instance in

Figure 6-5 .

schema build_supermarket_extension;
expands {build superrnarket_extension} ;
nodes 1 action {install plant_room} ,

2 action {lay foundations } ,
3 action {build external_ walls } .
4 action {lay ground_slabs} ,
5 action {lay roof} ,
6 action {install windows_and_doors] ,
7 action { install services] ;

orderings 4--> l ;
end-schema;

Figure 6-6, Encoding the schema build_supermarket_extension

The single ordering constraint within the schema (4-->l) encodes the knowledge

that the plant room is composed of heavy electrical equipment (boilers, air

conditioning etc.). Hence, the areas construction must not commence until the

building' s floor is in position, therefore, permitting the delivery of the heavy

equipment.

Figure 6-7 below presents the subset of the building for which schemas will be

written in the remainder of this section. The lay roof node within the schema in

Figure 6-6 requires an expansion which includes actions for constructing the

subcomponents of the-roof component in Figure 6-7. Specifically, the laying of

the roof steelwork, the roof deck, and the roof covering. A schema meeting this

requirement is depicted in Figure 6-8 below.

steelwork

the-supermarket

Supports Supports
Figure 6-7, Fragment of the building's design

1 75

Limitations of existing devices - construction industry

1 76

schema lay _roof;
expands {lay roof} ;
nodes 1 action {erect steelwork} .

2 action { lay roof_deck} ,
3 action {lay roof_covering } ;

orderings 1-->2, 2-->3;
end-schema;

Figure 6-8, schema lay _roof

The relationships between the steelwork the roof-deck and the roof-covering are

translated into the ordering constraints 1-->2, and 2-->3. This encoding

demonstrates the transition from relationships in the domain to ordering

constraints in a task refinement formalism.

This encoding process may be repeated for the remaining subcomponents of the­

supermarket.

Limitations of existing devices - construction industry

6.2.2.3 Encoding the conditions and effects

With the encoding of schemas completed, the TFM advises that next a domain's

effects and then conditions be considered. The TFM suggests that a domain is first

structured into a number of levels. Figure 6-9 below divides a fragment of the

restaurant extension into levels (the thick horizontal lines). The assignment of

levels is based upon the different types of component within the domain. The

project level component describes the single concept which makes up a project.

The project component may have subcomponents but will not itself be a

subcomponent of any other component. The aggregate component level consists of

the immediate subcomponents of the project level. Components at this level may

have subcomponents. Finally, the primitive component level is made up of

components which have no subcomponents. This level represents the lowest level

of abstraction within the construction domain.

the-supermarket
Project Level

Encloses Primitive Component Level

Figure 6-9, Modelling levels attached to the supermarket building

With the domain partitioned into levels, the encoding of effects and then

conditions may commence. Actions at the project level result in the single effect

supermarket extension = complete. The aggregate component level produces the

effects resulting from the construction of each aggregate component. From the

figure above, the effects foundations = laid, roof = laid, and external walls =

built may be assigned. The primitive component level introduces the effects

associated with the completion of the lowest level components within the building.

In the figure above, the effects will include beam2 = laid, beam3 = laid, the roof

steelwork = in_position, etc.

1 77

Limitations of existing devices - construction industry

1 78

With effects defined and assigned to levels, the encoding of conditions may

commence. Tate, Drabble, & Dalton (1994) provide guidance on the relationships

between condition types and the level of effects upon which they may be placed.

Supervised conditions may only be placed upon effects at the same or lower

modelling level. Hence, the lay roof action at the aggregate level may assert the

supervised conditions the_roof_steelwork = in_position between the primitive

level lay roof_deck action and lay roof_steelwork action. Unsupervised conditions

must be placed on effects at the same or higher modelling level. Therefore, the

primitive level component lay roof_steelwork may place the unsupervised

condition beam] = laid which results from the primitive level lay beam action

The completed schemata are depicted in Figure 6-10 below.

schema build_supermarket_extension;
expands {build supermarket_ extension} ;
nodes 1 action { install plant_room} ,

2 action {lay foundations } ,
3 action { build external_ walls } ,
4 action { lay ground_slabs } ,
5 action { lay roof) ,
6 action (install windows_and_doors } ,
7 action (install services } ;

orderings 4--> 1 ;
conditions

supervised {ground_slabs laid} at 1 from [4];
only _use_for _effects

plant_room = built at 1 ,
foundations = laid at 2,
external_ walls = built at 3,
ground_slabs = laid at 4,
roof = laid at 5,
windows_and_doors = installed at 6,
services = installed at 7;

end-schema;

schema lay_roof;
expands (lay roof} ;
nodes I action {erect steelwork} ,

2 action { lay roof_deck} ,
3 action { lay roof_covering } ;

orderings 1 -->2, 2-->3;

conditions
supervised {steelwork erected} at 2 from [1],
supervised {roof_deck laid} at 3 from [2],
unsupervised {bearn2 laid} at 1,
unsupervised {beam3 laid} at 1,
unsupervised {beamS laid} at l;

only _use_for _effects
steelwork = erected at 1,
roof_deck = laid at 2,
roof_covering = laid at 3;

end-schema;

Figure 6-10, Completed specific case schemata

Limitations of existing devices - construction industry

6.2.2.4 Case 1 - conclusion

The encoding above demonstrates that it is possible to represent a specific

building's design within a task refinement formalism. By following the stages of

the TFM it is feasible to encode a KADS model of expertise into schemata. Once

combined through the task refinement process, the schemata above will define a

plan for constructing the restaurant facility.

Whilst the case demonstrates the expressiveness of a task refinement formalism

within the context of a specific design, the commercial utility of such a system is

limited. The application model developed in Chapter 5 demands a system which

can generate plans for a number designs. Case 2, below, considers the issues

encountered when producing such an system.

1 79

Limitations of existing devices - construction industry

6.2.3 Case 2 - a generic encoding

The aim of this second case is to test the ability of task refinement formalisms to

capture generic construct.ion planning knowledge which may be applied to a

number of designs. The case meets the requirements of the application model in

Chapter 5 .

6.2.3.1 Overview of the problem and the encoding approach

1 80

The previous case (section 6.2.2) encoded knowledge of the form depicted in

Figure 6- 1 1 below. This figure is an instance diagram, with each rounded box

representing a specific component within a specific building. In the case of the

figure below, the specific building is the supermarket restaurant extension elicited

in Chapter 5. Case one demonstrated that task refinement formalisms are capable

of capturing this specific case.

the-supermarket

the-foundations

Supports Supports

Figure 6-11, fragment of the supermarket extension instance diagram

Figure 6-1 2 provides a generic representation of construction knowledge which

may be instantiated for different buildings. The figure is composed of rectangles,

each representing a class of component. The diagram is stating that a building may

be made up of one instance of two components: a foundation and a roof. The class

FOUNDATIONS may be further decomposed into any number of instances of the

classes BEAM and PILE. Instances of the PILE class may be supported by any

number of instances from the BEAM class. Note that the relationships within

Figure 6-12 specify the type of relationships which may exist. For example, the

diagram is stating that a relationship may exist between instances of the class

ROOF-STEEL-WORK and the class ROOF-DECK, but not between the classes

ROOF-STEELWORK and ROOF-COVERING.

Limitations of existing devices - construction industry

BUILDING

FOUNDATIONS

STEELWORK ROOF-DECK ROOF-COVERING

Supports Supports

Supports

Figure 6-12, Generic model of construction planning knowledge

The generic case requires the capability of specifying generic construction

planning knowledge of the form depicted in Figure 6-12. The following sections

detail the issues encountered when providing a representation within a task

refinement formalism which meets the requirements of the generic case.

The encoding approach follows the TFM guidelines described in the overview at

the start of this chapter. First, the main task a planner is to achieve is encoded.

From this initial task, a number of refinements are written to generate the actions

required by a specific building. With action synthesis considered, the encoding

address the issues surrounding conditions, effects, and ordering constraints.

Before considering the synthesis of actions, the representation of specific designs

is considered.

1 81

Limitations of existing devices - construction industry

6.2.3.2 Specifying a specific design in a task refinement formalism

1 82

This section identifies how a specific design may be specified within a task

refinement formalism.

Classes (e.g. FOUNDATIONS, EXTERNAL-WALLS) may be translated into types

and instances of classes into instances of those types. An example of this

translation is depicted below.

types PROJECT
FOUNDATIONS
PILE

:= supermarket_extension,
the_foundations,
pile! , pile2,

ROOF _COVERING :: lhe_roof_covering;

In the fragment above, the class FOUNDATIONS within Figure 6-1 2 has been

translated into the type FOUNDATIONS. The instance of the class

FOUNDATIONS (depicted in Figure 6-1 1), theJoundations, has been translated

into a instance of the type FOUNDATIONS.

The properties of instances may be translated into initially statements. A task

refinement planner's compiler will note that no actions in the domain's library

modify these facts, hence, the statements may be queried without reference to the

question and answering system. The computational cost of checking these

conditions is therefore inexpensive. The value of a specific instance of class

BEAM's formwork type is depicted below.

Initially formwork_lype bearnl ::: custom;

The structural relation subcomponent may be translated into a property of a

instance. The example below defines the subcomponents of the instance building

to be theJoundations and the_roof

Initially sub upermarket_extension = (the_foundations, thc_roof} ;

Domain specific relationships between instances may be translated in the same

way as the sub relationship. The example below specifies that the instance beam]

is supported_by the instances pilel and pile2 .

I Initially supported_by beaml := (pi le I , pile2] ;

Using the above encoding it is possible to specify a number of specific designs

within a task refinement formalism.

Limitations of existing devices - construction industry

6.2.3.3 Specifying the overal l task the planner is to achieve

The user of a construction planning system would wish to specify the task build

?building, where the variable parameter ?building corresponds to the name of the

project to be constructed. Figure 6-13 presents the encoding of the task

specification for the supermarket extension project. The definition initiates a plan

with start as the first dummy node, finish as the last dummy node, and a single

non-primitive task build supermarket_extension. The term supermarket_extension

must match to the term defined as being of type PROJECT in the design specified

within the domain' s initially statements (see section 6.2.3 .2).

task build_supermarket_extension;
nodes 1 start,

2 action {build supermarket_extension} ,
3 finish;

ordering
1 -->2,2-->3;

end-task;

Figure 6-13, Generic case initial task definition

The design specification and initial task specification should form the only design

dependant parts of the generic encoding. With the ability to specify a design and

initiate a HTN planning system to plan on that design established, the following

sections consider the encoding of schemas for producing the relevant actions,

conditions, effects, and ordering constraints.

1 83

Limitations of existing devices - construction industry

6.2.3.4 Specifying the project level to the aggregate component level

1 84

Figure 6-9 in the specific case assigned the modelling levels project, aggregate

component, and primitive component to a specific design. The same levels may be

assigned to the generic case as depicted in Figure 6- 14 below. This section

considers the problem of specifying a refinement to the initial task specification

which generates the actions required by an instance of BUILDING.

BUILDING
Project Level

FOUNDATIONS

Aggregate Component Level

STEELWORK ROOF-DECK ROOF-COVERlNG

Supports Supports
Primitive Component Level

Supports

Figure 6-14, Generic model with modelling levels assigned

An instance of the class BUILDING will have a set of subcomponents defined.

Figure 6-14 specifies what classes these subcomponents may be instances of,

specifically, a single instance of class ROOF and a single instance of the class

FOUNDATIONS. An instance of class BUILDING may be related to one or both

of these classes with instance names defined by the domain writer.

The following build_building schema uses the foreach construct to generate a

install ?component action for each subcomponent of a specific building. The build

?a_building expands pattern will match against the initial task definition defined

above.

schema build_building;
vars ?a_building BUILDING;
expands {build ?a_building} ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ? a_ building} ;
end-schema;

Figure 6-15, Schema build_building

If a specific building is defined as having the following subcomponents:

Initial! . . ub_supermarkeLextcnsion = (the_foundations, the_roof} ;

Limitations of existing devices - construction industry

The build_building schema will be instantiated as follows:

schema build_building ; ; ;instantiated
vars ?a_building BUILDING;
expands {build supermarket_extension} ;
nodes 1 action {install the_foundations},

2 action {install the_roof} ;
end-schema;

The build_building schema successfully accounts for number and names of

components within a specific design.

1 85

Limitations of existing devices - construction industry

6.2.3.5 Specifying the refinements within the aggregate component
level

1 86

The example within Figure 6-14 contains only one level of components at the

aggregate component level. The classes FOUNDATIONS and ROOF are

composed of primitive components. Within a building, it is common to have

components which refine through several levels of aggregate components before

the primitive level is reached. Consider the example in Figure 6- 16 below. The

figure is stating that a building may have a subcomponent WALLS which is in turn

decomposed into INTERNAL-WALLS and EXTERNAL-WALLS.

BUILDING

WALLS

INTERNAL
WALLS

INTERNAL
WALL

EXTERNAL
WALLS

EXTERNAL
WALL

Project Level

Aggregate Component Level

Primitive component Level

Figure 6-16, Example of multi levelled aggregate components

The project to aggregate component level encoding mechanism described in

section 6.2.3.4 will produce a task install the_walls if and only if an instance of

the class BUILDING is defined as having a subcomponent which is an instance of

class WALLS. The task of the aggregate to aggregate level encoding is to expand

the install the_walls task to account for instances of classes INTERNAL-WALLS

and EXTERNAL-WALLS.

The aggregate to aggregate component level encoding may be achieved using the

same Jo reach construct method as in the project to aggregate component level

encoding schema. The install_walls schema below will generate an install

?a_set_of_walls task for each instance of classes INTERNAL-WALLS and

EXTERNAL-WALLS defined as subcomponents of an instance of class WALLS.

schema install_ walls;
vars ?a_set_of_walls : WALLS;
expands {install ?a_set_of_walls } ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ?a_set_of_ walls } ;
end-schema;

Assuming a specific design includes the instances the_internal_walls and

the_external_walls defined as subcomponents of an instance of class BUILDING,

the following schema will be instantiated.

Limitations of existing devices - construction industry

schema install_ walls ;;;;;instantiated
vars the_walls : WALLS;
expands (install the_ walls} ;
nodes 1 action {install the_internal_ walls} ,

2 action {install the_ external_ walls } ;
end-schema;

The encoding above successfully generates an appropriate number of actions when

moving between layers of the aggregate component level.

1 87

Limitations of existing devices - construction industry

6.2.3.6 Specifying the refinement from the aggregate component level
to the primitive component level

1 88

The sections above describe how an a task refinement planner may successfully

capture the refinements from the project level to the aggregate component level

and from aggregate component level to aggregate component level. This section

considers the penultimate refinement from aggregate component level to primitive

component level. As demonstrated in Figure 6- 17, this transition may be achieved

using the same foreach mechanism as in the previous model levels.

schema lay_foundations;
var ?a_set_of_foundations : FOUNDATIONS ;
expands { install ?a_set_of_foundations } ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ?a_set_of_foundations } ;

end-schema;

Figure 6-17, Example transition from aggregate to primitive level

components

If the layJoundations schema is applied to a instance of class FOUNDATIONS

which is related to the subcomponents beam], beam2, pile], and pile2, the schema

will be instantiated as follows:

schema lay_foundations;; instantiated
var the_foundations : FOUNDATIONS;
expands { install the_foundations } ;
nodes 1 action { install beaml } ,

2 action {install beam2} ,
4 action {install pile 1 } ,
5 action { install pile2 } ;

end-schema;

Task refinement formalisms may successfully capture the transition from

aggregate to primitive level components.

Limitations of existing devices - construction industry

6.2.3.7 Specifying the refinements at the primitive component level
The encoding described in the sections above traverses a building's design from

the task level to the primitive component level accounting for the variable number

of components which may exist in a specific design. The primitive component

level encoding must account for the actual actions required to construct each

primitive component. For example, the schema in Figure 6- 17 will produce a

number of lay pile and lay beam tasks which must each be refined to include

within a plan the actions required to construct them. This section considers the

issues surrounding such an encoding.

Taking the refinement of a lay beam task, there are a number of possible

refinements, two methods from this set are depicted below. The applicability of

the methods is distinguished by the type of formwork used within a beam. If a

beam has prefabricated formwork the first method must be employed. If the beam

has custom formwork then the second method is employed. This distinction is

made through the bolded only_use_if filter conditions.

schema lay_beam_prefabricated_fonnwork;
vars ?beam : beam;
expands (lay ?beam);
nodes 1 action (set_out_position ?beam),

2 action (lay_formwork ?beam),
3 action (lay_steelwork ?beam),
4 action (pour_concrete ?beam);

only _use_if ?beam formwork = prefabricated;
end-schema;

schema lay _beam_custom_formwork;
vars ?beam : beam;
expands (lay ?beam);
nodes 1 action (set_out_position ?beam),

2 action (lay_formwork ?beam),
3 action (lay_steelwork ?beam),
4 action (pour_concrete ?beam),
5 action (strike_formwork ?beam);

only _use_if ?beam formwork = custom;
end-schema;

The primitive component level encounters the same encoding issues described

within the encoding of the task obtain permission to build in Chapter 4. Chapter 4

considered the case of a single condition, multiple conditions effecting the

selection of methods for achieving a task, and the expressiveness of filter

conditions. The construction industry problem verifies the conclusions reached

within that chapter. The extensions to Tate's House Building domain are realistic.

1 89

Limitations of existing devices - construction industry

6.2.3.8 Encoding effects

1 90

The encoding method above will generate the appropriate actions for a design.

This section considers the issues encountered when adding action effects to this

encoding.

Consider the building design depicted in Figure 6-14 and the first level refinement

schema build_building in Figure 6- 15 . The build_building schema generates the

actions required to construct a building and may therefore be assigned the effect

?a_building construction = completed, where ?a_building is a variable term

which is instantiated to the name of a specific building. The build_building

schema with this effect attached is depicted below.

schema build_building;
vars ?a_building BUILDING;
expands {build ?a_building} ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ?a_building) ;
only _use_for _effects

?a_building construction = completed;
end-schema;

It is not possible to include effects within the build_building schema which are

dependant upon the actions it generates. For example, over a specific design the

schema may generate the actions install the-foundations, and install the-roof. Task

refinement formalisms do not support constructs to permit the effect foundations

= laid, and roof = built to be synthesised within the build_building schema. These

effects must be asserted by the relative expansions of build_building (see schema

layJoundations below).

schema lay_foundations
vars ?a_foundation : FOUNDATIONS;
expands { install ?a_foundation) ;
nodes N for each action {install ?component) for

?component over { set of subcomponents of ?a_foundation) ;
only _use_for _effects

?a_foundation = laid;
end-schema;

The same encoding mechanisms may be used to successfully encode action effects

from project level through to primitive level components.

Limitations of existing devices - construction industry

6.2.3.9 Generating conditions from relationships

Relationships between components are the main cause of ordering constraints

between actions in the construction domain. Figure 6-1 8 presents a fragment of an

object model depicting the possible relationships between components. The figure

is, for example, stating that an instance of the class STEELWORK may be related

to a number of instances of the class PILE through the supports relationship.

FOUNDATIONS

STEELWORK ROOF-DECK ROOF-COVERING

supports supports

supports

Figure 6-18, Example of relationships between components

Using the design fragment in Figure 6- 18 , the following subsections consider three

cases of relationships causing ordering constraints or conditions between actions.

The first case considers a number of related components which share the same

immediate super component. The second case considers a number of related

components which do not share the same immediate super component. Finally, the

third case considers relationships which do not automatically imply ordering

constraints between actions.

1 91

Limitations of existing devices - construction industry

6.2.3.9.1

1 92

Related components which share the same immediate super

component

Consider the PILE and BEAM classes in Figure 6-1 8 above. The figure is stating

that instances of class PILE and class BEAM may be related through a supports

relationship. The semantics of this relationship are that the PILE instance is

physically supporting the weight of the BEAM instance. Hence, the PILE instance

must be constructed before the BEAM instance.

Actions for specific PILE and BEAM instances are first introduced at the

aggregate component level to primitive component level stages of an encoding.

Figure 6-17 above encodes these actions and is therefore reproduced below.

schema lay_foundations;
var ?a_set_of_foundations : FOUNDATIONS;
expands { install ?a_set_of_foundations } ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ?a_set_of_foundations} ;
end-schema;

Figure 6-19, Reproduction of Figure 6-17 - schema layJoundations

The schema will work over each subcomponent of an instance of the class

FOUNDATION generating an install action. Assume that a design contains an

instance of class FOUNDATIONS named the-foundations, an instance of class

PILE named pilel, and an instance of class BEAM named beaml. The

subcomponents of the-foundations are pilel and beam} and pilel is supporting

beaml . Over this design, schema layJoundations will be instantiated as follows:

schema lay_foundations ;; instantiated
vars the-foundations :FOUNDATIONS;
expands [install the-foundations } ;
nodes l actions { install pile l } ,

2 actions { install beam I } ;
end-schema;

With schema layJoundations instantiated, it is desirable to add a supervised

conditions supported with an ordering constraint to capture the fact that the install

pilel action should be completed before the install beam} action because of the

supports relationship between the two instances. A supervised condition of the

form pile 1 laid at 2 from 1 and the ordering constraint 1 --> 2 would permit the

HTN planner to maintain this constraint without need to discover how to establish

it.

However, task refinement formalisms do not provide constructs for adding

conditions and ordering constraints dependent upon the actions generated by a

foreach or iterate construct. Consider the lay-foundations-ideal schema below,

where the balded lines indicate the type of construct required.

Limitations of existing devices - construction industry

schema lay _foundations_ideal;
var ?a_set_of_foundations : FOUNDATIONS;
expands { install ?a_set_of_foundations } ;
nodes N for each action { install ?component} for

?component over { set of subcomponents of ?a_set_of_foundations } ;
;;;if ?component is of the type BEAM and i t is related t o any
;; ;instances of the type PILE through a supports relationship, then
;;;include an ordering constraint "all instances of class PILE related

;;; --> ?component"
only_use_for_effects

foundations laid = true;
end-schema;

As it is not possible to include a supervised condition within the layJoundations

schema, the next option is to consider an unsupervised condition within the

refinement of a lay beam schema. Consider the following

lay_beam_prefabricatedJormwork schema.

schema lay _beam_prefabricated_formwork

vars ?beam : beam;
expands (lay ?beam);
nodes l .action (set_out_position ?beam),

2.action (lay_formwork ?beam),
3.action (lay_steelwork ?beam),
4.action (pour_concrete ?beam);

only_use_if ?beam formwork = prefabricated;
;;;if ?beam is related to any instances of the type PILE through a
;;;supports relationship, then include an ordering constraint "all

; ; ; ;instances of class PILE related --> ?component"
end-schema;

The bolded lines indicate the type of construct required but not supported by task

refinement formalisms for adding an unsupervised ordering constraint to a lay

beam schema if and only if the beam within the schema is supported by a pile.

The above schemas demonstrate that it is not possible to include ordering and

condition constraints within task refinement schemas which are dependant upon

the ordering constraints between a design's components

1 93

Limitations of existing devices - construction industry

6.2.3.9.2 Related components which do not share the same immediate super

1 94

component

Consider the PILE and STEELWORK classes in Figure 6-17 above. Instances of

class STEELWORK may be supported by instances of class PILE. Semantically

the weight of the PILE instance is physically supporting the weight of the

STEELWORK instance. This case differs from the PILE and BEAM relationship as

the PILE and STEELWORK classes do not share the same immediate super

component. Class PILE is a subcomponent of class FOUNDATIONS and class

STEELWORK a subcomponent of class ROOF. As the classes do not share the

same immediate super component, the encoding described in the sections above

will introduce the lay pile and lay steelwork action in different schemas.

The encapsulation constraint on supervised conditions prohibits the constructs use

on actions which do not appear within the same schema. Hence, it not possible to

place a supervised condition between lay pile and lay steelwork actions. The

remaining condition types available to a domain writer are unsupervised and

achieve.

schema build_external_ walls
vars ?entity external_ walls
expands install ?entity

N for each action { install ?type) for
?install over (set of items declared as sub of foundations)

; ; ;if install is related to a beam through a supported by
;; ;relationship then include the following condition

;; ;unsupervised beam related through = laid at current
;;; action

only _use_for_effects
external walls built = true;

end-schema;

There is currently no construct within the Task Formalism to support this type of

reasoning. Therefore, conditions depending upon relationships cannot be

implemented.

Limitations of existing devices - construction industry

6.2.3.9.3 Case when a relationship between components does not

automatically imply dependency constraints

Consider the case of a drain being related to a beam by an on top of relationship.

The semantics are that the drain runs below the intended location of a beam. If the

beam is laid first, a tunnel must then be dug under the beam to allow the drain to

be placed. If the drain is laid first, the beam may be laid over the drain. Hence, it

is simpler to lay a drain before any beam which is related to it through an on top of

relationship.

A drain may not always be laid before the beam it passes under. For example, the

beam may require mechanical devices to support its positioning. If the drain is laid

first there is a danger of the mechanical devices damaging the drain. Thus,

inference is required to determine if an on top of relationship between a drain and

a beam results in a dependency relationship. There is currently no mechanism in

the task formalism to support this reasoning.

1 95

Lim itations of existing devices - construction industry

6.2.3.1 0 Generating aggregate conditions

1 96

Aggregate conditions are conditions which may be referred to as a single concept,

e.g. building = dry, but require a variable number of other conditions to hold

before they are satisfied. Consider the example of the condition dry building. If a

building includes a concrete floor, the building will not be dry until the floor is

dry. Thus, the condition building = dry will require floor = dry. However, if the

building does not contain a concrete floor the building = dry condition will not

require any reference to afloor = dry condition.

A current implementation of an aggregate condition is specified below. The two

schemas are taken from the 0-Plan test set's three little pigs domain.

task build_cheap_secure_house;
nodes 1 start,

2 finish,
3 action {build house) ,

4 action { check security) ;
orderings 1 ---> 3 , 3 ---> 4, 4 ---> 2;
resources consumes {resource money) = 0 . . 500 pounds overall;

end-task;

schema security_checker;
expands {check security} ;
local_vars ?material = ? { type material} ;
conditions unsupervised { proof_against wolf ?material } ,

unsupervised {material wall } = ?material,
unsupervised { wolf_proof door} ,
unsupervised { wolf_proof windows } ;

end-schema;

The build_cheap_secure_house task generates two non-primitive tasks: build

house and check security. The security check is performed after the house building

actions and must be satisfied before planning may be completed. The security

checker schema' s semantics are as follows. For a building to be wolf proof, the

material used in the houses walls construction must be wolf proof and the doors

and windows must be wolf proof.

The encoding of a security checker may be applied to the dry building condition.

Limitations of existing devices - construction industry

schema dry _building_checker;
expands {check dry _building } ;
conditions
unsupervised { concrete floor} = dry,

unsupervised {windows and doors } = fitted;
only _use_if building contains a subcomponent concrete .floor.

end-schema;

schema dry _building_checker;
expands {check dry _building } ;
conditions

unsupervised {windows and doors } = fitted;
only_use_if building does not contain a subcomponent concrete floor.

end-schema;

The different cases which constitute a dry building are encoded as separate

schemas. Which definition of dry building to apply is determined by the

only_use_iffilter condition. Any schema requiring a dry building may therefore

include a check dry_building task and order it before the actions which require the

condition.

This checker schema solution to the aggregate condition issue results in a schema

required for each case of what may constitute a dry building. Thus, redundancy is

too easily encoded causing a high maintenance overhead.

1 97

Limitations of existing devices - construction industry

6.3 Model-based planning

6.3.1 Scope

This section considers the encoding of the generic construction planning

knowledge and the translation from a specific design into a plan. The scope is

identical to the generic case considered in the task refinement encoding described

in section 6.2.3.

6.3.2 Encoding specific and generic knowledge

1 98

Model-based planning is centred around a frame based modelling scheme which

may be mapped directly onto the KADS model of expertise. Figure 6-20 presents

a fragment of generic construction planning knowledge encoded in a model-based

formalism. Whist model-based planning uses a different notation to the KADS

model of expertise, the mapping of concepts and relationships is direct.

PILES

Supports

Figure 6-20, Model-based representation of the construction domain

A specific design may be encoded by attaching components to classes. For

example, a design which contained two piles will be represented by attaching two

instances (pilel and pile2) the PILE class in Figure 6-20.

The following sub sections detail how the model-based representation above may

be used to generate actions and ordering constraints.

Limitations of existing devices - construction industry

6.3.3 Generating a variable number of actions

Consider the fragment of the supermarket extension encoded in the model-based

formalism in Figure 6-21 below.

�
the-walls

Figure 6-21, Specific building design encoded in the Model-Based

representation

The model-based planning algorithm exploits the subcomponent relationships

ensuring each object is visited and actions generated. Hence, the planner

automatically adjusts the number of actions included within a plan to the number

of components in a specific building.

1 99

Limitations of existing devices - construction industry

6.3.4 Generating different methods

200

Model-based formalisms permit actions to be associated with components under

two directives: must, and infer. Must implies that the action will always be

associated with a component. Infer implies that some inference is required.

Consider the encoding of a beam's actions below.

BEAM.actions = must(a, set_out_position),
must (a, lay_formwork),
must (a, lay_steelwork),
must (a, pour_concrete),
infer (a, strike_formwork, INPER_S1RIKE_FORMWORK)
infer (a, pUJnp_area, INPER_PUMP _AREA)

The first 4 actions (set_out_position to pour _concrete) must all be included in a

plan which includes a beam. The strikeJormwork and pump_area require

inference to determine if they are required. The capitalised statement immediately

after the names of these actions in the encoding above indicates the inference

mechanism which should be invoked to determine the action's relevance. An

example of the inference identified as INFER_STRIKE_FORMWORK is encoded

below.

INPER_S1RIKE_FORMWORK
goal strike_formwork
Backward chain
rule 1
if beam. form work type = custom then

true
end rule
rule 2
if beam. formwork type = prefabricated then

false
end rule

The two rules in the rule set encode the knowledge that a strike formwork action is

only required if a beam is made with custom formwork. Thus, it is possible to

generate actions for constructing a components depending upon the properties of a

component.

Limitations of existing devices - construction industry

6.3.5 Generating dependency from relationships

The model-based formalism permits actions to be ordered according to the

relationships between instances. Figure 6-22 below depicts a beam related to a pile

through a supported by relationship. The semantics of the relationship are that the

pile is supported by the beam, hence, the beam should be constructed after the

pile. The box next to the supported by relationship represents the reasoning which

may be invoked to determine dependency between the components participating in

the relationship. The contents of the greyed box are specified below the figure.

Beam! Pile!

Supported by

Infer Dependency from beam and
pile support relationship

Figure 6-22, Model-based relationship example

BEAM.generate dependency
forall X, where X is supported by self

make the actions of X dependent upon the actions of self.
end forall

The inference attached to the relationship causes the construction action of the

beam to be deponent upon the pile. Thus, it is possible to generate dependency

between actions which is dependent upon the relationships between components in

a design.

201

Limitations of existing devices - construction industry

6.3.6 Generating conditions and effects

202

Model-based planners have not, to date, implemented the concept of action

conditions and effects. Dependency constraints may only be reasoned over

components which are related through domain specific relationships (e.g.

supported by).

The absence of action conditions and effects leads to a number of limitations.

First, dependency knowledge must be specified in terms of the producing and

consuming actions. It is not possible to state an action requires a condition,

leaving the selection of producing action to the planning engine. Second, model­

based planners cannot identify action interactions and take steps to remove such

plan flaws. Action iterations occur when an action deletes the effect of a second

action before a third action which requires the deleted effect. Such a functionality

requires action conditions and effects combined with a question and answering

system (as developed by (Tate 1977)).

Limitations of existing devices - construction industry

6.4 Sum mary and concl usions

This chapter identified a number of limiting issues encountered when encoding the

construction domain in both classical and model-based planning technologies.

Considering the approach to the classical encoding, whilst the process has not

been extensively researched, the Task Formalism Method (TFM) provided an

effective interface between the KADS model of expertise developed in Chapter 5

and task refinement schemas. The approach of first writing actions at the highest

level of abstraction before progressively moving to lower levels of abstraction

mapped onto the top down structure of the KADS model set. Writing action

effects and then conditions after the action hierarchy has been constructed,

combined with the use of modelling levels and the associated levelling constraints

on condition types, allowed a considered representation to be developed which

avoided the problem of hierarchical promiscuity.

The first classical case considered the problem of specifying the representation

required by a specific design. This scope is identical to Tate's House Building

domain. The case confirmed that a task refinement formalism may successfully

capture a specific design, and provided the author with experience of task

refinement encoding. The commercial utility of such an encoding is, however,

limited. The application model presented in Chapter 5 demands an encoding

which will accept a number of building designs and then synthesis plans based

upon the specific components and relationships within each design.

The second classical case considered the requirements of a commercial

construction planning application. The case identified that design details may be

specified within a planner's always context (facts which do not change during

planning), translating classes from the KADS model into types and instances of

classes into instances of types. The subcomponent relationship, domain specific

relationships, and properties may be converted into logical statements.

The foreach construct may be exploited to navigate through the design specified

in a planner's always context generating actions according to the number and type

of components. This encoding identified two limitations.

203

Limitations of existing devices - construction industry

204

First, the issues identified in Chapter 4 surrounding the need to specify multiple

methods for achieving tasks distinguished by filter conditions was encountered

and confirmed. Methods within the construction domain were found to be

dependant upon multiple conditions. The limitations of the task refinement

formalisms forced multiple methods to be specified with the associated

redundancy and therefore maintenance problems.

Second, the foreach construct is not supported with a conditional effect and

condition mechanisms. Hence, it is not possible to generate actions and then infer

the ordering and supervised or unsupervised conditions which must exist between

them. The problem is compounded by the encapsulation constraint between

schemas. Even assuming the existence of a conditional condition construct, it

would be possible only to generate supervised conditions between components

which share the same immediate supercomponent, as actions relating to both

components will be generated within the same schema. If two components do not

share the same immediate supercomponent they will be generated within different

schemas, hence, as the supervised condition construct may only be placed within a

schema, the construct may not be used in this case.

Considering the model-based case, only the commercial application requirement

was assessed. The constructs within the KADS model of expertise of the

construction problem mapped directly onto to model-based representation. Model­

based planning provided facilities for generating actions appropriate to the number

and type of components in a specific design. The absence of action conditions,

effects, and ordering constraints prevent model-based planners from inferring

ordering constraints other than those where both the producing and consuming

action are specified. Without conditions, effects, and a question and answering

algorithm model-based planners cannot detect and resolve interactions between

actions.

In conclusion, the generic construction industry case identified limitations with

both classical and model-based technologies. The classical limitations are

summarised under the following three headings:

• Expressiveness. Task refinement formalisms do not provide constructs

for inferring conditions and ordering constraints from domain expert

knowledge. As a result, first multiple methods must be specified for

refining tasks. Second, when applying the foreach or iterate constructs to

generate an appropriate number of actions to match the specific

components within a design, conditions resulting from the relationships

between components cannot be inferred.

Limitations of existing devices - construction industry

• Redundancy. The absence of conditional ordering constraints and

conditions force domain descriptions which contain multiple methods for

achieving tasks. It is common to find redundancy between these methods

in terms of the same actions, ordering constraints, conditions, and effects

being repeated a number of times.

• Semantic distance. The absence of constructs for deriving conditional

ordering constraints and conditions combined with the distance between

the criteria within a domain for selecting methods and the filter condition

constructs lead to a significant semantic gap between domain and task

refinement representation.

The limitations with model-based planning identified are summarised below. Both

limitations arise from the absence of the concepts of action conditions and effects

within the technology.

• Automatic establishment of conditions. Model-based planners may

only infer dependency information between components which are

explicitly related through domain specific relationships. It is not possible

to specify an action conditions, leaving the selection of establishing

action to the planning system.

• Detection and resolution of action interactions. Without action

conditions, effects, and a question and answering algorithm it is not

possible to detect and therefore resolve interactions between actions of

the form of action effects being deleted before the consuming action may

use them.

The limitations with classical and model-based technologies either identified or

confirmed through the construction industry encoding provide the following

precise rationale for integrating the two technologies.

Model-based planning is designed to exploit domain expert knowledge outside the

space of a partial-order state based world model. The technology's representation

maps closely to the results from current object based methodologies. In contrast,

the representation supported by classical task refinement planners is difficult to

map to the reasoning demanded by industrial domains for both determining the

actions required within a plan and the ordering constraints between those actions.

Classical planners do, however, provide a powerful question and answering

facility for both establishing and maintaining conditions over a plan.

An integrated architecture may exploit the representation and reasoning

mechanism provided by model-based planning for determining actions and

ordering constraints within a plan. A task refinement component may then be used

to combine these constraints into a consistent plan.

205

Limitations of existing devices - construction industry

Blank

206

Development of an integrated architecture

7. Development of an integrated architecture
Together we stand. Divided we fall

Proverb

7.1 I ntroduction

Chapters 4 and 6 identified complementary strengths between the capabilities of

model-based and classical planning technologies. This chapter describes an

integrated architecture which exploits each technology's relative capabilities. An

evaluation of the resultant architecture is detailed in Chapter 8.

The integrated architecture is composed of five components: a set of domain

modelling constructs, a model-based planner, a model-based - task refinement

planner interface, and a task refinement planner. This chapter describes each

component before their functionality is described thorough an example problem

from the construction domain (elicited in Chapter 5).

207

Development of an integrated architecture

7.2 Overview of the proposed integrated architecture

208

The proposed integrated architecture is depicted in Figure 7- 1 below.

Model I Model-Based planner
interface

-
Domain Model
{ set of constructs } .. � .,j .. 'II , ... "

Model-Based planner I HTN
Engine interface

Nodes ...-{ actions and ordering
constraints }

� ,
Critics

(represent and maintain � detailed constraints }

Model-Based Planner
{ actions and dependency

synthesis algorithms}

....

......

I
.....

....
HTN Engine

{ action expansion and
critic invocation }

Figure 7-1, Proposed integrated architecture

I

The domain model provides a set of constructs for representing domain specific

knowledge. The model-based planner applies the knowledge specified in the

model to generate a set of actions and dependency constraints. The HTN Engine

combines the action and dependency knowledge from the model-based planner to

create a complete plan. HTN critics are invoked to ensure the establishment and

maintenance of conditions and effects over the plan.

The proposed architecture exploits the expressive power of model-based planning

for determining the actions and ordering constraints required by a plan. The HTN

engine's refinement process and critics assemble the action and dependency

information from the model-based planner into a completed plan. This architecture

addresses the relative strengths identified in the previous chapters of this thesis.

An important design decision was the isolation of the model-based and HTN

planning components via the MBP I HTN engine interface. This design permits the

architecture to be used as an integrated MBP I HTN planner, a HTN planner with

access to both MBP generated schemas and traditionally encoded schemas, or a

HTN planner with access only to traditionally encoded schemas. The three modes

facilitate experimentation with different methods of generating or encoding

schemata for a HTN engine and identification of the different domain features that

affect the utility of each mechanism. This facility is exploited within Chapter 8

when addressing the Pacifica domain.

Development of an integrated architecture

7.3 Domai n model l ing constructs

This section describes the set of constructs for modelling a domain. The

implementation of an inference engine to apply the constructs is described in

section 7.4. This section concludes with the encoding of an example problem from

the construction industry domain elicited in Chapter 5 .

7.3.1 Concepts and actions

Model-based planning (MBP) is based on the axiom that an activity may be

modelled as a union between a concept, an action, and a number of resources

(Marshall 1988, pp 37). For example, the action print feasibility study may be

described as the union of the object feasibility study, the action print, and the

resources printer and paper. The MBP definition of an activity within this chapter

is simplified by ignoring the issue of resources. The issues surrounding the

inclusion of resources within the modelling scheme is described within the further

work section of Chapter 9.

Within the object-oriented paradigm, the union of objects and actions to form the

components of an activity may be modelled as a relationship between a class

ACTION and a class OBJECT. Classes provide the template from which actual

instances may be created. Figure 7-2, below, depicts the relation action between

class ACTION and class OBJECT and an instance of this structure.

OBJECT action ACTION

lllstance

action ·

· 1 feasibility-studyl t----"='-''-"----t a-prmt-act10n-

Figure 7-2, Object-oriented representation of objects and actions

Object-oriented modelling supports a specialised relation between classes termed

inheritance. Inheritance permits a domain to be specified in terms of

specialisations. Thus, commonalties between objects and actions may be identified

and represented together, whilst differences may be explicitly modelled as

specialisations of generic concepts. An example action and object hierarchy is

depicted below in Figure 7-3 . Inheritance relationships are identified with a

triangle notation.

209

Development of an integrated architecture

2 1 0

MODEL

OBJECT

BORE-PILE DRIVEN-PILE LAY-PILE

acti011 [·)
____ P1

_
· ie_1_7 _ _;--------1 lay-pile-action4

Figure 7-3, Example action and ob,ject hierarchy exploiting inheritance

Inheritance is a directional relationship. The point of the triangle notation

identifies the superclass of an inheritance relationship, whilst the triangle' s bottom

identifies the subclass. Knowledge specified on the superclass is copied to the

subclass. In Figure 7-3 above, class MODEL is the superclass of all of the other

classes in the figure i.e. a subclass inherits not only from its immediate superclass,

but all the superclasses of its superclasses etc.

In Figure 7-2, knowledge common to both types of pile is specified within class

PILE. Knowledge specific to either bore or driven piles will be specified on the

respective class. For example, both driven and bore piles require their position to

be set out. This knowledge will be specified on class PILE and inherited by both

subclasses. Only bore piles deposit quantities of earth on the surface and require

infrastructure to remove this earth. The infrastructure knowledge for removing

earth is specified only on class BORE-PILE.

The organisation of knowledge facilitated by inheritance simplifies the task of

maintaining a knowledge base. By modelling knowledge at the most general level

possible, modifications can be made in one place, but effect a number of other

classes. In the example above, editing general pile knowledge within class PILE

will update both the BORE-PILE class and the DRIVEN-PILE class.

Development of an integrated architecture

7.3.2 Action levels

MBP offers two categories of actions with the aim of synthesising plans for

different types of audiences: abstract and primitive. Figure 7-4, below, presents an

object instance diagram with a number of abstract and primitive actions

associated.

pilel 7 abstract action lay-pile

primitive action set-out-pos

primitive action lay-pile-mat

primitive action drive-pile

Figure 7-4, Abstract and primitive actions

Within existing MBP implementations, planning is performed in one of two

modes: abstract or primitive (Marshall 1988). In abstract mode, the planner will

only instantiate an object's abstract actions, conversely in primitive mode, the

planner will only instantiate an object's primitive actions. From the example in

Figure 7-4, in abstract mode, the planner will produce a plan which included a lay

pile action. In primitive mode, the system would include the required members of

the set: set out position, lay pile mat and drive pile.

This implementation of action levelling is flawed. Plans synthesised at the abstract

level will not consider the potential constraints between primitive actions. For

example, two abstract actions abstract1 and abstract2 may be left unordered

relative to each other. If planning had proceeded to the primitive level, however,

an ordering constraint may have been identified. Thus at one level of abstraction

the planner would not find ordering constraints, whilst at another it may. A more

considered planning process should plan to the lowest level of detail available, and

an aggregation of that plan produced for different audience levels. Winstanley and

Hoshi (1993) demonstrate how to present plans with abstract actions maintaining

the detailed constraints of the lower level actions they represent.

Within the MBP component of the integrated architecture, primitive actions are

viewed as refinements of an object' s abstract actions. This modelling correlates to

the NOAH classical planning system (Sacerdoti 1 977). Action levelling is

included to allow constraints to be placed and actions at different levels of

abstraction. Constraints placed upon an abstract action must be maintained by that

abstract actions refinements.

21 1

Development of an integrated architecture

7.3.3 Domain model structure

2 1 2

The MBP paradigm provides the following generic model for structuring domain

descriptions:

primitive
action

OBJECT

action

Figure 7-5, Original MBP generic project model
(Marshall 1988, pp 48)

Since the model was originally drawn, object-oriented notations have been refined.

Figure 7-6, below, presents the original MBP model with the constraints on the

structure of the model made explicit through current object-oriented modelling

notation.

MODEL

CONCEPT ACTION

abstract action primitive

�---'-� _-_---� -----L;.,.__ ____ _, Action

sub sub sub

Figure 7-6, Domain model pattern

Class MODEL is abstract, and will therefore never be instantiated. The class

serves two purposes. Primarily, it types all classes used to model a domain as

being of type MODEL. It is therefore possible to write operators which work over

the whole model. Secondly, attributes and operations common to all model

elements may be specified in one location.

The abstract class CONCEPT supports the operations and attributes common to all

classes which may be used to model the objects within a domain. The class

contains an attribute permitting actions to be attached to objects through the

abstract action relationship.

Development of an integrated architecture

Classes PROJECT, COMPOSITE-OBJECT, and PRIMITIVE-OBJECT may be

instantiated. Class PROJECT makes explicit a special type of class within MBP

which defines the whole project to be constructed. This class may not be the

subcomponent of any other class. Class COMPOSITE-OBJECT may be

decomposed into other instances of class COMPOSITE-OBJECT and class

PRIMITIVE-OBJECT. Instances of class PRIMITIVE-OBJECT may not have

subcomponents.

Each of the classes within the model is defined in a table below.

Abstract Class MODEL

Description Parent of all model elements. The class defines each model element
as being of type model and supports the implementation constructs
for automatically generating instance names.

Attribute Init. Val Descriotion
Default Name user define Default name prefix for instances of a

class
Naming Convention auto I user Indicates that when an instance is

required if the system should define the
name or if the user should be consulted

Next Instance Number 0 Concatenated with default name to create
a unique name.

Method Param. Description
Generate Name none If naming convention is set to auto the

method combines the default name
attribute and the next instance number
attribute to generate a new and unique
name. If naming convention is set to user,
the user is prompted for the name of an
instance.

Table 1, Class MODEL

Abstract Class CONCEPT, subclass of MODEL

Description I Provides the constructs general to all classes which model objects in
a domain.

Attribute lnit. Val Description
Abstract action user define Action which describes the artefact
Method Pa ram Descriotion
[Generate Dependency] none Deferred method which must be written

by the user for each class to determine
dependency between actions

Constraints

One action only may be related through the abstract action relation

Table 2, Class CONCEPT

21 3

Development of an integrated architecture

Class PROJECT, subclass of class CONCEPT

Description I The instance of this class represents the specific problem within an
aoolication domain for which a plan is to be synthesised.

Attribute I Init. Val I Descriotion
Sub I user I List of sub conceots

Constraints

All subcomponents of the project must be reachable from this class via the Sub

relation. A model must contain one and only one instance of class project
Table 3, Class PROJECT

Class COMPOSITE-OBJECT, subclass of class CONCEPT

Descriotion I Objects which may be decomposed into other objects
Attribute Init. Val Description
Super user list of concepts of which this class is a

sub concept
Sub user sub concepts of this class

Constraints

Instance of this class may not be related to an instance of class project through the sub

relation. No object related as an sub concept may be related as a super concept of this

class.
Table 4, Class COMPOSITE-OBJECT

Class PRIMITIVE-OBJECT subclass of CONCEPT

Description I Defines ob'ects which mav not have subcomponents
Attribute Init. Val Descriotion
Primitive action user List of primitive actions associated with

this concept
Super user List of the super concepts of this concept.

Table 5, Class PRIMITIVE-OBJECT

Class A CTIONS, subclass of MODEL

Description I Describes an action within a domain
Attribute Init. Val Description
Object system Defined by the system when an instance

of class action is attached to a concept
Main effects user The effects which make up the purpose of

this action
Side effects user The effects for which this action would

not be used, but do occur as a result of
applying this action.

Preconditions user List of aggregate conditions which must
be met before this action may be annlied.

Achieve conditions user List of conditions for the HTN planning
engine to make true.

Sub system List of actions which are sub may be
viewed as sub concepts of this action

Super system List of actions of which this action is a
sub action

Table 6, Class A CTION

21 4

Development of an integrated architecture

7.3.4 Domain specific relationships

7 .3.5 Facets

Subclasses of PROJECT, COMPOSITE-OBJECT, and PRIMITNE-OBJECT may

have domain specific relationships attached. The pattern for specifying such

relationships is depicted in Figure 7-7 below.

CLASS Role! Rolc2 CLASS

relationship name

Figure 7-7, Generic relationship template

To create the supported relationship, the domain writer must take the following

steps. First, identify the two roles within the relationship. In the case of support,

the roles are supportee and supporter. The class participating as the supportee will

require an attribute defined supported by, whilst the supporter class will have the

attribute supports.

Each attribute within a class is composed of three facets1 :

• Value: The actual value of the attribute

• Default: A default value for the attribute

• H_Needed: Specifies the inference mechanisms which must be invoked

to infer the value of the attribute.

Attributes are queried with two types of request: return (attribute, specific facet)

or return (attribute). The specific query returns the value in the facet requested, or

unknown if the facet is undefined. In the case of the if _needed facet, the

appropriate inference mechanism is invoked to derive the value (see section 7 .3.6

for a detailed description). The second query searches the three facets of an

attribute in a defined order until a value can be obtained or inferred. The value

facet is examined first and the value returned if defined. If the value facet is

undefined, the default facet is examined and returned if defined. If the value and

the default facets are undefined, the if_needed facet inference is activated to

derive the attributes value.

When activated, the if_needed facet updates the value facet of an attribute under

the rationale that the most recently inferred value is the most accurate.

1This modelling is based upon the RBFS (Rule Based Frame System) (Barber,

Marshall, & Boardman 1987)

21 5

Development of an integrated architecture

7 .3.6 Instantiation directives and inference packages

Collectively instantiation directives and inference packages provide the

mechanism for attaching inference knowledge to the if_needed facet of an

attribute. Inference packages encapsulate reasoning mechanisms, whilst

instantiation directives both define the interface to inference packages and the

how the results of the package will be processed. The MBP provides a set of

predefined instantiation directives. It is the responsibility of the domain writer to

provide inference packages. The domain writer may add new instantiation

directives; however, modifications of this type are considered changes to the MBP

inference engine. The writing of instantiation directives is therefore described

within the description of the inference engine (section 7.4 . 1 .2).

The following sub sections define the set of instantiation directives supported by

the model-based planner and the constraints each directive places upon the

inference packages it may invoke and process. Each instantiation directive may be

attached only to specified class attribute pairs. Hence, the presentations of

directives below groups the directives under the heading of the class attribute pairs

to which they may be applied.

7.3.6.1 CONCEPT.abstract-actions and PRIMITIVE-OBJECT.primitive­

actions

Must (<?cardinality, ?action-class-name>)

2 1 6

Directive must specifies that a number of instances o f the class defined by the

?action-class-name parameter must be created and linked to the instance to which

the directive is attached. The number of instances of class ?action-class-name

generated is dependent upon the ?cardinality parameter which may range from a

(one) to infinity
2
. The following model fragment illustrates the use of the must

directive.

class BEAM
abstract action : value = 0

beam l : BEAM

default = 0
if_needed = must(a, LAY)

The query return-value (beam], abstract action) will result in one instance of the

class LAY being instantiated, and the value facet of beam] being updated to equal

the name of that instance.

2 As a MBP is implemented on a physical and therefore finite machine, the number

of instances permitted is limited by the physical resources of that machine. The

notion of a plan containing an infinite number of steps leads to some interesting

issues - particularly execution time.

Development of an integrated architecture

Infer (<?cardinality, ?action-class-name, ?inference-package, ?optional-parameters>)

Directive infer specifies that a number of instances of the class denoted by the

?action-class-name parameter may be created and linked to the instance of the

class to which the directive is attached. The criteria for determining if the

instances are or are not required is the result of the ?inference-package parameter.

The infer directive constrains its associated inference packages to return true or

false. Where true indicates that the action class should be associated. The

following model fragment illustrates the use of the infer directive and the

inference package mechanism which must be attached.

class BEAM
primitive-action :value = 0

default = 0

bearn l : BEAM

if_needed = infer (a, STRIKE-FORMWORK,
infer_strike_formwork, null)

inference package infer-strike-formwork
goal strike-formwork
backward-chain
rule! cost 0

if beam.formwork-type = custom then
return true

end rule!

rule2 cost 0
if beam.formwork-type = prefabricated then

return false
end rule2

The query return value (beaml, primitive-action) will result in one instance of

class strike formwork being instantiated and linked to instance beaml if an only if

infer _strikeJormwork returns true.

21 7

Development of an integrated architecture

7.3.6.2 ACT/ON.main-effects and ACT/ON.side-effects

action-must (?effect-text)

21 8

Directive action-must specifies that the parameter ?effect-text must be added to the

effect slot of any instance of the class to which it is attached. The ? effect-text

parameter may contain a number of variables which the action-must directives

instantiates. These variables are detailed below:

• ?object is instantiated to the name of the object instance to which the action

is associated.

• ?attribute-name is instantiated the value of the attribute corresponding to

?attribute-name on the object instance to which the action is associated.

• ?relationship-name is instantiated to the name of the object instance to

which the object the action is associated with is related through

?relationship-name. This parameter may only be used if the relationship is

constrained to be one to one.

The example below demonstrates the use of this directive. Examples of the

variable instantiations may be found within the Pacifica domain encoding in

Chapter 9.

class LAY
related-object: value =0
main-effects:value = 0

default = 0
lf_needed = action-must(laid ?object = true)

lay l : LAY
relmcd-objcct: value = beam I

The query return (layl, main-effects) will result the value facet of lay] 's main­

effect attribute being set to laid beaml = true.

Development of an integrated architecture

action-infer (?effect-text, ?inference-package, ?optional-parameters)

Directive action-infer specifies that the parameter ?effect-text may be added to the

effect slot of the instance of the class to which it is attached. Determining if an

effect is or is not required is achieved through the inference package identified by

the ?inference-package parameter. The directive constrains inference packages to

return true and false. The ? effect-text parameter is associated if and only if the

inference package returns true. The example below illustrators the use of this

directive.

class LAY
related-object: value =0
rnain-effects:value = 0

default = 0

Jay ! : LAY

if_needed = action-infer (vibration at ?object = high,
infer_ vibration_effect)

relnted-object: value = pile I

The query return (lay I, main-effects) will result in the value facet of layl 's main­

effects attribute being set to vibration at pile] = high if and only if the inference

package infer _vibration_effect determines that the laying of pilel will cause

excess vibration.

7.3.6.3 ACTION.preconditions

aggregate-condition (?condition)

The Aggregate condition directive updates the value facet of the attribute to which

it is attached with a list of conditions which must hold before the single ?condition

parameter may be considered satisfied. For example, the condition dry building

will require a set of conditions to hold. Membership of this set is dependent upon

the components in specific instance of a problem. If a building includes a large

concrete floor, the effect floor = dry will form part of the dry building condition.

If the building does not contain a large concrete floor then this effect is not

required.

The domain writer must provide a method which returns the list of conditions

which together constitute the aggregate condition.

21 9

Development of an integrated architecture

7 .3 . 7 Dependency assessment

Each subclass of class CONCEPT must have a determine dependency method

written. The method may contain two types of dependency assessment knowledge:

relationship dependency and, in the case of primitive objects only, primitive

dependency. The relationship dependency mechanism determines the ordering

constraints which must be added between actions as a result of the objects to

which they are related through a domain specific relationship. The primitive

dependency mechanism determines the ordering constraints which should be

added between a primitive object's primitive action set.

In the context of a MBP domain model, a method is an unit of procedural code

which is executed sequentially. The domain writer may therefore write procedural

code to determine the dependency between actions or access other forms of

inference mechanism. A number of dependency directives are supplied which the

domain writer may insert into a determine dependency method. Each directive is

described below.

Link-abstract-action-with-main-effects (?relationship)

Let A be the instance to which the directive has been attached. Invoking the

directive will identify the set B which is composed of the objects related to A by

the relationship parameter ? relationship. The directive then generates the set X

composed of the abstract actions of set B . The abstract action of A is then made

dependent upon the actions in set X. The main-effects of set X are appended to the

precondition attribute of the abstract action of A.

Link-abstract-action-without-effects (relationship)

This directive performs the same operation as the directive link-abstract-action­

with-main-effects (?relationship) with the exception of copying the effects of set X

to the abstract action of A. The directive does not copy effects.

lnfer-link-abstract-action-with-main-effects(?relationship, ?inference-package)

This directive performs the same operation as the directive link-abstract-action­

with-main-effects (?relationship) with the exception of determining the

membership of set B . The directive applies the inference package specified by the

parameter ?inference-package to determine if each of the objects related to A by

the relationship parameter ?relationship should be included within set B.

Infer-link-abstract-action-without-effects (?relationship, ?inference package)

220

This directive performs the same operation as the directive infer-link-abstract­

action-with-main-effects with the exception of copying the effects of set X to the

abstract action of A. The directive does not copy effects.

Development of an integrated architecture

Primitive-dependency (?primitive-action-head, ?primitive-action-tail)

This directive may be applied only to a primitive objects primitive action attribute.

The directive adds a dependency relationship {head < tail } . Where head

corresponds to the parameter ?primitive-action-head and tail to the parameter

?primitive-action-tail.

Infer-primitive-dependency (?primitive-action-head, ?primitive-action-tail, ?inference­

package)

This directive may be applied only to a primitive objects primitive action attribute.

The directive may add a dependency relationship {head < tail} . Where head

corresponds to the parameter ?primitive-action-head and tail to the parameter

?primitive-action-tail. A relationship is added if and only if the inference package

parameter ?inference-package returns true.

221

Development of an integrated architecture

7 .3.8 Encoding an example domain

This section demonstrates application of the domain modelling constructs

described above through encoding an example problem from the construction

industry.

7 .3.8.1 Step 1 : encode the KADS model of expertise

222

The KADS model of expertise, detailed within Chapter 5, identified a number of

classes within the construction domain related through the aggregation

relationship. Each class in the KADS model may be translated into a class in the

model-based representation. Aggregation relationships are translated into sub and

super component attributes of classes as appropriate.

class BUILDING
subclass of PROJECT
sub {FOUNDATIONS, ROOF)

class ROOF
subclass of COMPOSITE-OBJECT
super BUILDING
sub { STEELWORK, ROOF-DECK, ROOF-COVERING}

class FOUNDATIONS
subclass of COMPOSITE-OBJECT
super BUILDING
sub (BEAM, PILE}

class STEELWORK
subclass of PRIMITIVE-OBJECT
super ROOF

class ROOF-DECK
subclass of PRIMITIVE-OBJECT
super ROOF

class ROOF-COVERING
subclass of PRIMITIVE-OBJECT
super ROOF

class BEAM
subclass of PRIMITIVE-OBJECT
super FOUNDATIONS
formwork type prefabricated I custom

class PILE
subclass of PRIMITIVE OBJECT
super FOUNDATIONS

Figure 7-8, Translation from KADS model to MBP classes

Development of an integrated architecture

7.3.8.2 Step 2: attach relationships

The second phase of the domain modelling captures domain specific relationships.

Each relationship in the KADS domain model is translated into an attribute on the

classes which may participate in the relationship. Figure 7-9 below develops

Figure 7-8 to include domain specific relationships (balded).

class BUILDING
subclass of PROJECT
sub { FOUNDATIONS, ROOF}

class ROOF
subclass of COMPOSITE OBJECTS
super BUILDING
sub [STEELWORK, ROOF-DECK, ROOF-COVERING}

class FOUNDATIONS
subclass of COMPOSITE-OBJECTS
super BUILDING
sub { BEAM, PILE}

class STEELWORK
subclass of
super
supports
supported by

class ROOF-DECK

PRIMITIVE-OBJECT
ROOF
{ROOF-DECK}
{BEAM}

subclass of PRIMITIVE-OBJECT
super ROOF
supports {ROOF-COVERING}
supported by {STEELWORK}

class ROOF-COVERING
subclass of PRIMITIVE-OBJECT
super ROOF
supported by {ROOF-DECK}

class BEAM
subclass of PRIMITIVE-OBJECT
super FOUNDATIONS
fonnwork type prefabricated I custom
supported by {PILE}
supports {STEEL WORK}

class PILE
subclass of PRIMITIVE-OBJECT
super FOUNDATIONS
supports {BEAM}

Figure 7-9, MBP classes with domain specific relationships encoded

223

Development of an integrated architecture

7.3.8.3 Step 3 : attach abstract and primitive actions

224

Step 3 attaches abstract and primitive actions to each subclass of concept within

the model. Figure 7-10 below extends Figure 7-8 to include abstract and primitive

actions.

class BUILDING
subclass of
sub
abstract action:

class ROOF

PROJECT
{ FOUNDATIONS, ROOF}
if_needed must(a, build)

subclass of COMPOSITE-OBJECTS
super BUILDING
sub { STEELWORK, ROOF DECK, ROOF COVERING }
abstract action: if_needed must(a, erect)

class FOUNDATIONS
subclass of COMPOSITE-OBJECTS
super BUILDING
sub [BEAM, PILE}
abstract action: if_needed must(a, lay)

class STEELWORK
subclass of
super
supports
abstract action:
primitive actions:

class ROOF-DECK

PRIMITIVE-OBJECT
ROOF
{ROOF-DECK}
if_needed must(a, erect)
if_needed must(a, primitive erect)

subclass of PRIMITIVE-OBJECT
super ROOF
supports {ROOF-COVERING}
supported by { STEELWORK}
abstract action: if_needed must(a, lay)
primitive actions: if_needed must(a, primitive lay)

class ROOF-COVERING
subclass of PRIMITIVE-OBJECT
super ROOF

(ROOF-DECK} supported by
abstract action: if_needed must(a, lay)
primitive actions: if_needed must(a, primitive lay)

class BEAM
subclass of
super
formwork type
supported by
abstract action:
primitive action:

class PILE
subclass of
sub
supports
abstract action:

PRIMITIVE-OBJECT
FOUNDATION
prefabricated I custom
[PILE}
if_needed must(a, lay)
if_needed must(a, setoutposition) must(a, excavate beam)
must(a, blind bottom) must(a, reinforcement cages)
must (a, formwork) must(a, clean out)
must(a, concrete) must(a, cure concrete)
must(a, vibrate concrete) infer(a, mould oil, DETERMINE
MOULD OIL) infer(a, strike formwork, DETERMINE
STRIKE FORMWORK)

PRIMITIVE-OBJECT
FOUNDATION
{ BEAM }
if_needed must(a, lay)

primitive actions: if_needed must(a, lay pile mat), must(a, drive pile),
must(a, prep;1re ground)

Figure 7-10, Attachment of abstract and primitive actions to classes in the
MBP domain model

Development of an integrated architecture

7 .3.8.4 Step 4: write action classes

An action class must be written for each action which may be associated with a

subclass of class CONCEPT. Figure 7- 1 1 defines the action classes required by

Figure 7-10.

class BUILD
subclass of ACTIONS
object (}
main effects action must(?object = built)
side effects { }
achieve { }
preconditions { }

class BUILD-BUILDING
subclass of BUILD
object (BUILDING}

class ERECT
subclass of ACTIONS
object {)
main effects action must(?object = erected)
side effects { }
achieve { }
preconditions { }

class ERECT-ROOF
subclass of ERECT
object {ROOF}

class ERECT -STEELWORK
subclass of ERECT
object { STEELWORK}

class LAY
subclass of ACTIONS
object { }
main effects action must(?object = laid)
side effects (}
achieve { }
preconditions { }

class LAY-FOUNDATIONS
subclass of LAY
object {FOUNDATIONS}
precondition aggregate condition (site-safe}

class LAY-ROOF-DECK
subclass of LAY
object {ROOF-DECK)

class LAY-ROOF-COVERING
subclass of LAY
object {ROOF-COVERING}

class LAY-PILE
subclass of LAY
object {PILE)

class LAY-BEAM
subclass of BEAM
object {BEAM}

class SET-OUT-POSITION
subclass of ACTION
main effects action must (?object position = set out)

Figure 7-11, Action classes

225

Development of an integrated architecture

7.3.8.5 Step 5: write inference packages

226

Figure 7-12 defines the inference packages to determine the need for the actions

from the directive infer in Figure 7-10.

inference package-determine-mould-oil
goal mould oil
backward chain
rule 1
ifformwork type of beam = custom then

true
end rule
rule 2
if formwork type of beam = prefabricated then

false
end rule

inference package determlne-formwork
goal formwork
backward chain
rule 1
if formwork type of beam = custom then

true
end rule
rule 2
if formwork type of beam = prefabricated then

false
end rule

Figure 7-12, Inference packages

Development of an integrated architecture

7.3.8.6 Step 6: write methods for determining dependency

Each subclass of concept requires a determine dependency method to be written.

Figure 7-13 specifies the determine dependency methods required by the

construction domain model.

class BUILDING
method detennine-dependency

{
null

class ROOF-DECK
supports { ROOF-COVERING}
supported by { STEELWORK}
method detennine dependency

[
link-abstract-action-with-main-effects (supported_by)

class ROOF-COVERING
supported by {ROOF-DECK }
method detennine dependency

{
link-abstract-action-with-main-effects (supported_by)

class BEAM
formwork type prefabricated I custom
supported by {PILE}
method determine dependency

{

class PILE

link-abstract-action-with-main-effects (supported-by)
primitive-dependency (SET-OUT-POSITTON, PREPARE-GROUND)
primitive-dependency (PREPARE-GROUND, EXCAVATE-BEAM)
primitive-dependency (EXCAVATE-BEAM, BLIND-BOTTOM)
primitive-dependency (BLIND-BOTTOM, FORMWORK)
primitive-dependency (FORMWORK, CLEAN-OUT)
primitive-dependency (MOULD-OIL, CLEAN-OUT)
primitive-dependency (CLEAN-OUT, REINFORCEMENT-CAGES)

supports { BEAM }
method determine dependency

[
primitive-dependency (PREP ARE-GROUND, LAY-PILE-MAT)
primitivr.-dependency (LAY-PILE-MAT, DRIVE-PILE)

Figure 7-13, Methods for determining dependency

227

Development of an integrated architecture

7 .3 .8. 7 Step 7: add instances for a specific problem

228

Steps one to six defined the generic action and dependency knowledge of the

construction problem elicited in Chapter 5. Step 7 instantiates all subclasses of

class CONCEPT to represent specific instances and relationships in a building's

design.

instance supennarket
instance of class BUILDING
sub { the-foundations, the-roof }

instance the roof
instance of class
sub
sub

instance foundations

ROOF
supermarket
{ roof-steelwork, the-roof-deck, the-roof-covering }

instance o f class FOUNDATIONS
sub supermarket
sub {beam! , pile! , pile2)

instance roof steelwork
instance of class STEELWORK

sub the-roof

supports {the roof deck)
instance the roof deck

instance of class ROOF-DECK
sub the-roof
supports { the-roof-covering)
supported by {roof-steelwork)

instance the roof covering
instance of class ROOF-COVERING
sub the-roof
supported by { the-roof-deck)

instance beaml
instance of class BEAM
sub the-foundation
formwork type
supported by

instance pilel
instance of class
sub
supports

instance pile2

custom
{ pile ! , pile2)

PILE
the-foundation
{beam!)

instance of class PILE
sub the foundation
s11 pports { beam I)

Figure 7-14, Instances representing the restaurant extension

Development of an integrated architecture

7 .4 Model-based planner

The model-based planner component processes a domain model specified using

the constructs in section 7.3 to synthesise actions, conditions, effects, and

dependency constraints.

The MBP component is divided into two sets of algorithms: planner support

functions, and planning algorithms. The support functions process the facets of

attributes invoking and processing instantiation directives and inference packages.

The planning algorithms navigate a domain model, utilising the planner support

functions, to generate the actions, conditions, effects, and dependency constraints

required.

Planner support functions are described before the planning functions below as the

planning functions are implemented in terms of the support functions. After both

sets of functions have been introduced, an example execution over the domain

model specified in section 7 .3 is described.

7.4.1 Planner support functions

Planner support functions may be decomposed into two sets: facet functions, and

instantiation directive and inference package handlers. Each set is described

below.

7 .4.1 .1 Facet functions

Facets functions process the three facet attribute structure. The following table

describes the functions, their parameters, and their operation.3

Function parameters description
o_get instance, returns the value or inferred value of a

attribute, specific instance's attribute facet.
facet.

o_get_ v _d_f instance, following the precedence value, default,
attribute. if_needed, this function returns the value

of an attribute.
o_put instance, updates the specific facet of an attribute to

attribute, include the value parameter.
facet,
value.

o_clear instance, clears all data from the specified instance,
attribute, attribute, facet triple.
facet.

3These functions are based upon the Rule-Based Frame System (RBFS) (Barber

et. al. 1987). Function prefixes have been changed fromf_ to o_ to reflect the use

of object-oriented technology within the domain modelling.

229

Development of an integrated architecture

A fragment of pseudo code demonstrating the processing of an if_needed facet

within both o__get and o__get_v_dJis depicted below:

if facet = if_needed then

Identify directive
Result = Invoke directive
if result not equal to unknown or result equal to already-processed then

o_put(self, attribute, value, result)
end if
return result.

Figure 7-15, if_needed facet processing pseudo code

It is important to note that querying the if_needed facet of an attribute will update

the value facet if a result is obtained. The inferred value will be the most up to

date value for an attribute, thus, it should over write any the existing value facet.

The exception to this case is if an instantiation directive returns already­

processed. This result permits the domain writer the option the to write

instantiation directives which instantiate and update the value facet of an attribute

if the default mechanism is not appropriate. The domain writer must, however,

ensure that the value facet of an attribute is updated to equal the most recently

referred value.

7.4.1 .2 Processing instantiation directives and inference packages

230

The processing of instantiation directives and inference packages is initiated by

either an o__get_v_dJor an o__get request for an attribute's if_needed facet. Figure

7-15 presents the pseudo code for the directive handler module of the MBP.

Figure 7- 1 6, below, places this algorithm into context with the instantiation

directive and inference package components of the MBP.

D
e

e
r

m
I
n
e

t ,

I I ! I ; I
i i i i ! j
I i

1 1

, 1
i i ! I

t I ' I I i I J I '

I I
Inference Package

Interface

Directive Interface (MBP)
Facet function: o_get_v_d_f, o_get

i
Directive an er

Parameter <directi ve>(<parameters>)

m
u n

f
e

f'""'""l f"'''""''l
! i l !
I I I ! I I ! I
i q b
l_ ; ,!

Copy directive results to value facet of
atLdbute

Figure 7-16, Instantiation and inference package processing architecture

Development of an integrated architecture

The directive interface consists of the two facet functions o_get and o_get_v _dJ.

If either function is invoked for an if _needed facet of an attribute, the directive

handler module is invoked. All directives conform to the syntax

<directive>(<parameters>). The directive handler identifies the specific directive

stored in an attribute and invokes that directive. In Figure 7- 16, directives are

represented as rectangular sub modules of the directive handler model. The

directives must and infer are included in the figure together with two dotted

rectangles - indicating that more directives may be added to the architecture.

New directives may be supplied by a domain writer as both part of the MBP and

as domain specific directives stored on the class which requires them. This

architecture allows the domain writer to identify new domain independent

directives and integrate them into the MBP, or to encode domain specific

directives within the domain model. Domain specific and domain independent

constructs are thus kept separate. Figure 7-17, below, presents the directive search

routine which first searches the MBP for an instantiation directive, before

searching the class on which the attribute to which the if_needed facet is attached.

if method on MBP
call directive handler

if method on calling class
call directive handler

else
error, undefined directive

end if

Figure 7-17, Directive search routine

During processing, instantiation directives may utilise the inference package

interface, depicted in Figure 7-16 as resting behind the instantiation directives.

The inference package interface allows instantiation directives to invoke inference

packages written for a specific domain.

231

Development of an integrated architecture

7.4.2 Planning functions

Planning functions apply the planner support functions described in section 7.4. 1

to synthesise the actions and dependency constraints required by a plan. Each

planning function is introduced below, before the overall planning algorithm is

described.

7.4.2.1 Action synthesis

232

Each instance of a subclass of class CONCEPT within a domain model will have

an abstract action attribute and instances of class PRIMITIVE-OBJECT will have

in addition a primitive action attribute. By querying the value of these attributes

using o__get_v_dJ, the action instances which need to be associated with each

instance in a domain model will be synthesised via instantiation directives and

inference packages. The action synthesis algorithm applies the o __get_v _dJ query

to each primitive and abstract action attribute within a domain model. Figure 7-18 ,

below, presents the action synthesis algorithm.

generate actions (item: COMPONEN1)
o__get_v_d_f(item, abstract-action)
for each action: o__get_ v _d_f(action, main-effects)

o__get_ v _d_f(action, side-effects)
if item is of type PRIMITIVE-OBJECT then

else

o__get_ v _d_f(item, primitive-actions)
for each action: o_get_ v _d_f(action, main-effects)

o_get_ v _d_f(action, side-effects)

for each sub item, n or item
generate actions (n)

end if

Figure 7-18, Action synthesis algorithm

The algorithm is initiated with the name of the single instance of class PROJECT

within a domain model. The abstract action attribute is queried, before the

algorithm is applied recursively to each instance in the domain model related

through the sub relation with the project instance. The path taken through a

domain model by the algorithm is depicted in Figure 7-19 below.

Q
4 11 5 1 1 6 f; 7

Path = 1 ,2,4,5,3,6,7

Figure 7-19, Action synthesis model transversal order

Development of an integrated architecture

The order of model traversal in not significant at present. The only constraint upon

the algorithm is that every instance of a subclass of concept is processed by the

algorithm. Issues surrounding the order of model transversal are discussed in the

further work section within Chapter 9.

7 .4.2 .2 Updating the hierarchy of actions

The action synthesis algorithm results in a number of model elements associated

with actions. The action hierarchy update algorithm processes each of the actions

within a model to add sub and super relationships. Abstract actions are linked with

their related objects super components abstract action under the super

relationship. Primitive actions are related to their related components abstract

action through the super component relationship. Figure 7-20, below, presents the

input and output of this process.

object abstract action! action!

object object
abstract action2 l

�
primitive action3 l action3

primitive
action4 action4

Figure 7 -20, Action hierarchy

The action hierarchy update algorithm is detailed in Figure 7-21 below.

update-hierarchy (object: CONCEPD
for all actions

if action.object is not of type PROJECT and is not of type PRIMITIVE-OBJECT then
action.sub = action.object. super.abstract-action
action.object. sub.abstract-action = action.sub

if action is a primitive action then
action.sub =action.object. abstract
action.object. abstract.sub = action

end if

Figure 7-21, Action hierarchy update algorithm

233

Development of an integrated architecture

7 .4.2.3 Activity generation

MBP defines an activity as the union of an object and an action. The activity

generation algorithm recurses each action within a model and generates an activity

which records the name of the action and the object associated with it. Figure 7-

22, below, presents the activity generation algorithm.

generate-activities (object: COMPONENT)
for all actions

create a new instance of class activity
new activity.action = action
new uc1ivi ty.objec1 = action. object

Figure 7-22, Activity synthesis algorithm

The activity data structures resulting from this process are utilised by the

dependency synthesis algorithms and the HTN planner interface described in

sections 7 .4.2.4 and 7.5 respectively.

7 .4.2.4 Dependency synthesis

Dependency synthesis derives the dependency constraints between activities

through two stages: relationship and primitive dependency and aggregate

dependency. Each process is described below.

7 .4.2.4.l Relationship and primitive dependency

234

Each subclass of class CONCEPT must have a method determine dependency

written. The relationship and primitive dependency algorithm traverses the model

activating this method for each instance. The dependency synthesis algorithm is

defined in Figure 7-23 below

generate dependency over model (Item : component)
send message(item : generate-dependency)
if item is not primitive then

for each sub item, n
generate-dependency (n)

end for
end if

Figure 7-23, Dependency synthesis algorithm

Development of an integrated architecture

7 .4.2.4.2 Aggregate dependency
Aggregate dependency is invoked by applying the o_get_v_dJquery to each

instance of class ACTION within the domain model. This algorithm is specified

below.

for all instances of clas� ACTION
o_geLv_d_f (action, precondMon)

7.4.2.5 Complete MBP planning algorithm

The MBP algorithm applies the activity synthesis, action hierarchy update, activity

synthesis and dependency synthesis algorithms defined above.

MBP _plan(project : PROJECT)
generate-object-actions (project)
update-hierarchy(project)
generate-activities(project)
gcncmte-dependcncy(project)

Figure 7-24, Complete MBP algorithm

235

Development of an integrated architecture

7.4.3 Applying the MBP algorithm

236

This section presents the execution trace of the MBP algorithms described above

produced when synthesising a plan for the domain description produced in section

7 .3 .8 . The text has been formatted for clarity.

user >Invoke MBP
---- MBP v4 invoked ---
one instance of class project = supermarket
planning for supermarket
generate actions (supermarket)

o_get_ v _d_f(supennarket.abslract-action) returns build
:because: must(a, build) directive

supermarket is not primitive
processing . ubcomponents of supemmrkc1
for all subcomponents of supem1arke1 over set = { the-foundations, the-roof]

looping for the{oundations
generate-actions (the-foundations)

o_get_ v _d_f(the-foundation.abstract-action) returns lay
:because of rnust(a, lay) directive
the-foundations is not primitive
for all subcomponents of the-foundations over set = {beam !, pile I, pile2]
looping for beam]
o_get_v_d_J(beaml.abstract-action) return lay
:because of must(a lay) directive
beaml is a primitive-object
o_get_ v _d_f(bearnl .primitive-action) returns
[set-out-position, excavate-beam, blind-bottom, lay-reinforcement­
cages, fonnwork, clean-out, cure-concrete, vibrate-concrete]
:because of must directive:
{ mould-oil}
because of infer directive and inference package
DETERMINE MOULD OIL returned true
{ strike-fonnwork }
: because of infer directive and inference package
DETERMINE STRIKE FORMWORK returned true
processing of beam l complete
looping for pile 1

o_get_ v _d_f(pile I .abstract-action) return lay
:because of directive must(a, lay)
pile! is a primitive object
o_get_ v_d_f(pilel .primitive-actions) returns
{lay-pile-mat, drive-pile, prepare-ground]
:because of directive must:
processing of pile I complete

looping for pile2
o_get_ v _d_f(pile2.abstract-action) return lay
:because of directive must(a, lay)
pile2 is a primitive-object
o_get_ v _d_f(pile2.primitive-actions) returns
{lay-pile-mat, drive-pile, prepare-ground }
:because of directive must:
processing of pile2 complete
processing of the-foundations complete

looping for the roof
generate actions(the-roof)

o_get_ v _d_f(the-roof.abstract-action) return erect
:because of directive must(a, erect)
the roof is not primitive
for all subcomponents of the-roof over set = { the-roof-deck, the­

roof-steelwork, the-roof-covering}
looping for the-roof-deck

o_get_ v _d_f(the-roof-deck, abstract-action) return lay
: because of direct must (a, lay)
the-roof-deck is primitive
o_get_v_d_f(the-roof-deck, primitive-action) return primitive lay
:because of directive must(a, primitive lay)

Development of an integrated architecture

processing of the roof-deck-complete
looping for the roof-steelwork
o_get_ v _d_f(the-roof-steelwork, abstract-action) return erect
: because of direct must (a, erect)
the-roof-steelwork is primitive
o_get_ v _d_f(the-roof-steelwork, primitive-action) return primitive-erect
:because of directive must(a, primitive-lay)
processing of the-roof-steelwork complete
looping for the-roof-covering
o_get_ v _d_f(the-roof-covering, abstract-action) return lay
: because of direct must (a, lay)
the-roof-steelwork is primitive
o_get_v_d_f(the-roof-steelwork, primitive-action) return primitive lay
:because of directive must(a, primitive lay)
processing of the-roof-covering complete
finished subcomponents of the-roof
finished processing of the-roof
finished processing of the-supennarket

generation of actions completed

Action synthesis results in a set of actions associated with the instances of class

concept in a model. These instances are detailed below. Modifications to the

instances by the action synthesis algorithm are bolded.

---- MBP Instances of class concepts list
instance supennarket

instance of class
sub
abstract action:

instance the-roof
instance of class
super
sub
abstract action

instance the-foundations
instance of class
super
sub
abstract action:

instance steelwork
instance of class
super
supports
abstract action

primitive actions

instance beam 1
instance of class
super
fonnwork type
supported by
abstract action

primitive action

BUILDING
{ the foundations, the roof}
value a build action 1
if_needed rnust(a, build)

ROOF
supermarket
{ roof steelwork, the roof deck, the roof covering]
value a erect action 1
if_needed rnust(a, erect)

FOUNDATIONS
supermarket
{ beam) , pile l , pile2]
value a lay actionl
if_needed: must(a, lay)

STEELWORK
the roof
(the roof deck I
value an erect action 1
if_needed must(a, erect)
value a primitive erect action 1
if_needed rnust(a, primitive erect)

BEAM
the-foundations
custom
(pile]
value a lay action 2
if_needed must(a, lay)
value a set out position action 1, a excavate beam action 1
a blind bottom action 1, a reinforcement cage action 1
a formwork action 1, a clean out action 1, a concrete action 1
a cure concrete action!, a vibrate concrete action 1
a mould oil action 1, a strike formwork action 1
if_needed must(a, setoutposition) must(a, excavate beam)
must(a, blind bottom) must(a, reinforcement cages)
must (a, formwork) rnust(a, clean out)
must(a, concrete) must(a, cure concrete)
must(a, vibrate concrete)
infor(n. mould oil, DETERMINE MOULD OIL)

237

Development of an integrated architecture

238

infer a, strike formwork, DETERMINE STRIKE FORM WORK)

The attachment of actions to subclasses of class concept results in the instantiation

of new actions. A subset of the new actions is listed below. The object to which

each action instance is related is bolded.

--- MBP action instances

instance lay I
instance of class lay
object the foundations
main effects the foundations laid = true
sub { }
super { }

instance lay2
instance of class lay
object pilel
main effects pile I = laid
sub { }
super { }

instance lay pile mat I
instance of class lay pile mat
object pile 1
main effects pile mat = laid
sub { }
super { }

instance drive pile
instance of class drive
object pile 1
main effect pile! = driven
sub { }
super { }

instance prepare ground
instance of class prepare ground
object pile 1
main effect ground pile 1 = prepared
sub { }
super { }

--- MBP end of action instance trance

With action synthesis complete, the MBP algorithm invokes the update action

hierarchy algorithm to set the sub and super relationships of each action. A trace

of this process is presented below. The updated actions are output immediately

after the algorithm trace.

Development of an integrated architecture

--- MBP Updating action hierarchy
Updating action hierarchy

for all actions in model set
processing action lay pile!

lay pile! is an abstract action
lay pile ! . object = pile!
pile 1. super component = the foundations
the foundations. abstract action = lay
making lay pile! a sub action of lay foundations

processing action set out position pile
set out position pile! is a primitive action
pile ! . abstract action = lay pile!
making set out position pile! a sub action of lay pile!

--- MBP actin hierarchy updated, instance trace

instance lay!
instance of class lay
object the foundations
main effects the foundations laid = true
sub { build supermarket)
Sub { lay pile! , lay beam 1 , lay beam2)

instance lay2
instance of class lay
object pilel
main effects pile I = laid
sub { lay foundations)
Sub { set out position, lay pile mat etc.}

instance lay pile mat!
instance of class lay pile mat
object pile 1
main effects pile mat = laid
sub{ lay pile !)
Sub {null)

With activity synthesis complete and actions ordered into a hierarchy, activities

may be synthesised.

--- MBP generate activities
for all actions

action lay!
generate instance of class activity :activity!
activity! . action = lay (layl .action)
activity ! . object = pile l(layl .object)

-- MBP activity trace

acityl
object pile!
action lay

239

Development of an integrated architecture

240

With activity generation complete, the MBP invokes the generate dependency

algorithm for each instance of class concept within the domain model.

--- MBP generating dependency
for all objects

processing object supermarket
generate dependency returns null

processing object the foundations
generate dependency returns null

processing object the roof
generate dependency returns null

processing object beaml
link abstract action with main effects (supported by)
beam! abstract action = lay I
lay ! . activity = activity6
Supported by set = {pile ! , pile2 }
supported by abstract action set = { lay2, lay3 }
supported by activity set = { activity4, activy5 }
link { activty4, activty5 } before activity 6
primitive dependency (set out position, prepare ground)
beam! .set out position. activity = activity 56
beam I .prepare ground activity = activity 44

link activity 56 before activity 44

-- MBP trace of activities with dependency assigned.

activity!
object pile!
actin lay
dependant upon = null
dependant upon me = activity2,

activity2
object beam!
actin lay
dependant upon = activity!
dependent upon me = activity3 --- object lay roof steelwork

The second phase of dependency synthesis considers the aggregate conditions

within the model. Only the instance of class ACTION lay foundations contains an

aggregate condition: aggregate condition (safe-site). A trace of the MBP

processing this action is depicted below.

--- MBP processing aggregate conditions
processing preconditions lay the foundations

aggregate condition = safe site.
activating inference package safe site
returns true and list { site fencing erected, school safety lecture given}
appending condition list to precondition value facet of lay the foundations

--- MBP trace of actions effected by aggregate conditions
action lay the foundations
precondition: value site fencing = erected, school safety lecture = given
if_needed aggregate condition (safe site)

--- MBP v4 complete 13 :09:23

With aggregate dependency determined, the MBP process is complete.

Development of an integrated architecture

7.5 HTN planner i nterface

The MBP generates actions and dependency constraints based upon the properties

of components and the relationships between components. HTN planning

combines task networks containing action and dependency knowledge to form a

complete and consistent plan with condition and effect constraints established and

maintained. This section describes how the results of the MBP process may be

complied into task networks and passed to a HTN planner. The description first

identifies the point at which the two technologies may be integrated, before

detailing the task network compilation algorithms. The description concludes with

a trace of the HTN planner interface processing the results of the MBP process

generated in section 7 .4.

7.5.1 Interface point

A planning problem is specified to a HTN planner through a non-primitive task.

This task is then refined until a plan is synthesised containing only primitive

actions and no action interactions (see Chapter 2 and Chapter 3 for a detailed

description of HTN planning). HTN planners identify refinements for tasks

through requests to a schema library. These requests are of the form expand

{pattern}. Where pattern is of the formfunction argl .. argn. For example, expand

{build house}. At this point the interface may compile task networks from the

results of the MBP process into a format accepted by a HTN planner.

The integrated architecture places a control flag within the schema library which

the planning system user may set to determine if the library is run in traditional

mode, model-based mode, or in a combination of both modes. This approach

permits the HTN planner component of the integrated architecture to be executed

with schema selection performed unmodified, from the results of the MBP, or

from a combination of both sources. Figure 7-25 , below, depicts the interface

mode selection algorithm.

mode flag : Static I Dynamic I Mixed

expand I pattern)
if mode flag = Dynamic

return list of schemas from model
else if flag set to Static

return list of schemas from library
else If flag set to Mixed

return list of schemas from model and schema library
end if

Figure 7-25, Interface mode selection algorithm

The rationale for providing different interface execution modes is described in

Chapter 8 and critiqued in Chapter 9

241

Development of an integrated architecture

7.5.2 Task-Definition

The definition of the problem a HTN planner is to achieve is traditionally supplied

through a task definition file. The problem definition of the results of the MBP

processing may be defined as the concatenation of the abstract action of the

instance a model' s project CLASS and the name of that project CLASS instance.

For example, in description synthesised in section 7 .4.3, the task definition would

be build the-supermarket. A Task-Definition algorithm is provided to

automatically synthesise this definition. The task definition template instantiated

by the Task-Definition algorithm is depicted in Figure 7-26 below.

task "project. abstract action" # "project";
nodes I start,

2 finish,
3 action {project.abstract-action project] ;

orderings l -->3,3-->2;
end schema;

Figure 7-26, Task definition template

7.5.3 Integrated task expand algorithm

242

The integrated architecture' s task expand algorithm intercepts requests from the

HTN planner component of the integrated architecture to provide candidate

schemas for expanding a task. The algorithm compiles the hierarchical task

network to satisfy requests from the knowledge structures synthesised from the

MBP component. The algorithm is defined in Figure 7-27 below.

The HTN-expand algorithm accepts two parameters from a HTN expand request:

function and argument. The algorithm constrains function to be an instance of

class ACTION and argument to be an instance of either class PROJECT, or class

COMPOSITE-OBJECT, or class PRIMITIVE-OBJECT. The constraints ensure the

semantics of the expand request action object are maintained.

The function parameter is further constrained to be related to the argument

parameter through an abstract-action relation. This constraint first ensures that the

action is to be applied to the object, and second that the algorithm does not

attempt to expand a primitive-action.

If the parameters are consistent, the algorithm first creates a new schema with a

name generated by concatenating the function and argument parameters. The

expands field of the new schema is also set equal to this concatenation, thus,

defining the task for which the new schema is an suitable refinement.

Development of an integrated architecture

HTN-expand (function, argument)

; ; ; f)flrmneter constraints
argument Instance of class PROJECT or instance of class COMPOSITE-OBJECT or

instance of class PRIMITIVE-OBJECT
function instance of class ACTION related to argument through the abstract-action

relation.
;;; algorithm
new-schema-name = function #' '# argument
new-schema-name.expands = new-schema-name

; ; ; sy1111te.fis 1111des
if argument is an instance of class PROJECT or COMPOSITE-OBJECT then

let object-list = subcomponents of function
new- chema-namc.nodes = the abstract actions of object-list # the names of
the objects within object-list

else if argument is an instMce of class PRIM IT E-OBJECT then
new- chema-name.nodcs = the primitive action. a sociutcd with argument # argument

end if

; ; ; process main effects and side-effects
for each action added to new-schema-name.nodes

add main-effects to new-schema.only_use_for_effects including "at ?node-number"
where ?node-number = position of current new-schema-name.nodes in list add side­
effects to new-schema.effects including "at ?node-number"
where ?node-number = position of current new-schema-name.nodes in list

end loop

; ; ;process conditions
for each action added to new-schema-name.nodes

copy oil ction. prec nditi n into n w- chemn-nomc.conditions
if prccomlition i. as n result of nn orderi ng consm1int berween . et ions

make the condition supervised if producing , ction i within new­
schema-name.nodes and add an ordering constraint to the schema
otherwise make condition an encapsulation-busting condition

end if
end loop

end HT -expand.

Figure 7-27, HTN-expand algorithm

The generation of nodes may take one of two paths. First, if the argument

parameter corresponds to a instance of class PROJECT or class COMPOSITE­

OBJECT then the nodes of the new schema become equal to the abstract action of

each sub component of the argument parameter combined with the name of each

sub component. Second, if the argument parameter corresponds to an instance of

class PRIMITIVE-OBJECT then the nodes of the new schema become equal to the

primitive actions of the argument parameter combined with the name of the

argument parameter.

Effects are instantiated in the new schema by copying over the main-effects and

side-effects of the actions included within the new schema into the

only_useJor _effects and effects fields respectively.

243

Development of an integrated architecture

244

Condition compilation is divided into a number of stages. First, the preconditions

of each action included within the node field of the new schema are copied into

the schema's conditions field. Each precondition is then processed to determine its

type. If a precondition results from an ordering relationship between activities in

data structures generated by the MBP, the producing and consuming action of the

condition are known. However, the producing action may not be a member of the

current schema, hence, a supervised condition may not be placed. If the producing

action is a member of the current schema a supervised condition and an ordering

constraint is added to the new schema to complete processing of the condition. If,

however, the producing action is not a member of the current schema, the

condition is typed as an encapsulation-buster. This condition type indicates that

the producing and consuming action are known, but the constraint cannot be added

to a HTN plan until both the producing and consuming actions have been inserted

into the plan. The processing of encapsulation-buster conditions is detailed in

section 7.5.4 below.

Figure 7-28 below presents a trace of the HTN-expand algorithm executing over

the domain description produced by the MBP in section 7.4.3.

HTN-planner interface invoked
generating task

project = supermarket
project.abstract-action = build
generating task defini lion schema

:task build-supermarket-task-definition
nodes 1 start,

2 end,
3 action (build supermarket);

orderings J -->3,3-->2;
:end task;;; build-supermarket

HTN Planner invoked with task build-supermarket.
issues { action {build supermarket} }
picked issue { action (build supermarket}
request HTN-expand (build supermarket)
new-schema-name = build-supermarket
supermarket is an instance of class PROJECT
new-schema-name.nodes = [l] action { Jay foundations }

[2] action (erect roof}
new-scherna.only_use_for_effects = foundations laid at [l)

roof erected at [2]
no orderings
no conditions
return schema

:schema build-supermarket
expands {build supermarket}
nodes 1 .action {lay foundations}, ;;; from Sub of supermarket

2 .action{ erect roof}; ;;; from Sub of supermarket
effects foundations = Laid at [1]

roof =erected at [2]
end schema;;; build-supermarket

HTN planner applying schema build-supermarket
issues = { action { lay foundations } . action { erect roof)
picked issue { action {lay foundations })

Figure 7-28, Trace of the HTN-expand algorithm produced within the
construction domain

Development of an integrated architecture

7.5.4 Processing encapsulation-buster conditions

The encapsulation-buster condition type is included within the integrated

architecture to relax the encapsulation constraint upon schemas. Within traditional

HTN planning, a condition of type supervised may only be placed between actions

which appear within the same schema. By following this constraint, HTN planners

ensure that a schema does not make assumptions about the other actions which

will be included within a plan. The unsupervised condition type permits a

condition to be specified where its establishment may come from an action

inserted by another schema, however, the condition type does not specify the

specific action from which establishment will be achieved. Identifying the action

from which a unsupervised condition will be established is left to the HTN

planning engine.

In the context of the integrated architecture, the MBP component may identify

ordering relations between actions which when compiled into task networks will

not reside in the same schema. If the integrated architecture is executed in

integrated mode only, then it is possible to guarantee that both actions will be

included within a plan. Using an unsupervised condition type would therefore

place an unnecessary overhead upon the HTN component of the architecture. The

encapsulation-buster condition type is included to address this case.

The HTN-expand algorithm specified in Figure 7-27 above details the criteria

under which an encapsulation-buster condition is placed. Conditions of this type

are of the form {producing action name, consuming action name, conditions}. For

example, { lay-pile-action7, erect-steelwork-action3, pile7 = laid]. When a

schema is received by a HTN planner containing encapsulation-buster conditions,

each encapsulation-buster condition is added to the encapsulation-buster-queue.

When expansion of the schema is completed, the consuming action is guaranteed

to be present within the plan as the schema containing the encapsulation-buster

condition will always contain this action. Immediately after expanding the schema,

the task refinement engine is modified to examine each member of the

encapsulation-buster-queue.

If the producing action is present within the plan, the condition may be

implemented by adding an ordering constraint between the producing action and

consuming action and a supervised condition between the two actions

corresponding to the conditions field within the condition. The encapsulation­

buster condition is then removed from the queue.

If the producing action is not present within the plan, the condition cannot be

processed. The condition is left on the queue, and the consuming action marked as

suspended. This suspension prevents further refinement of the consuming action

before the encapsulation-buster condition upon it has been recorded.

245

Development of an integrated architecture

7 .6 Implementation status

246

The integrated architecture described within the chapter has been implemented in

Intellicorps KAPPA-PC. The implementation utilises the HTN workbench

described in Chapter 3 .

7.7 Summary and conclusions

Development of an integrated architecture

This chapter presented an integrated architecture developed to exploit the relative

capabilities of classical and model-based planning technologies. The architecture

is composed of five components: a set of model-based domain modelling

constructs, a domain model - model-based planner interface, a model-based

planner, a model-based planner - HTN planner interface, and a HTN planner.

The model-based domain modelling constructs provide the mechanism for

modelling a specific application domain in terms of object, actions, and

interrelationships between objects. The model - model-based planner interface

defines the constraints upon the modelling constructs expected by the model-based

planner component. The model-based planner processes an application domain

representation to synthesise the actions, conditions, effects, and dependency

constraints required by a plan. The model-based planner - HTN planner interface

compiles the results of the model-based planning process into a format which may

be input to a HTN planner. The HTN planner assembles the results of the model­

based planning process into a complete plan, detecting and resolving action

interactions.

In conclusion, this chapter has presented an architecture which may be

implemented to synthesise plans utilising model-based and classical planning

techniques. However, the ability of this architecture to address the complementary

strengths and limitations between the technologies identified in Chapter 4 and

Chapter 6 has not been assessed. This chapter is complemented by Chapter 8

which seeks to answer this question in addition to assessing the architecture's

commercial applicability.

247

Development of an integrated architecture

Blank

248

Evaluating the integrated architecture

8. Evaluating the integrated architecture

There is nothing either good or bad, but thinking

makes it so.

William Shakespeare (1 564-1 61 6)

8.1 I ntroduction

Chapter 7 defined a new planning architecture designed to exploit the capabilities

of classical HTN and model-based technologies. This chapter evaluates this

integrated architecture against the rationale for its development identified in

Chapter 4 and Chapter 6, and assess its corrunercial utility. Specifically, this

chapter evaluates the architecture from each of the following perspectives:

• Strengths and limitations. The limitations identified with HTN and

model-based planning in Chapter 4 and Chapter 6 are examined, and the

facet(s) of the integrated architecture which address each issue identified.

• Literature examples. A representation of the Pacifica military

evacuation domain (surrunarised within Appendix C) is derived to

evaluate the generality of the integrated architecture.

• Automated planning expert. Reviews from automated planning experts

obtained through conference submissions and publications are

surrunarised and answered.

• Industrial planning expert. The comments received from people

involved in the generation and use of plans within the Llewellyn Group

of Companies are summarised and answered to provide an industrial

perspective on the integrated architecture.

Each evaluation perspective is applied in turn below. The chapter concludes by

summarising the utility of the integrated architecture in the context of the

perspectives above.

249

Evaluating the integrated architecture

8.2 Strengths and l imitations perspective

Chapter 4 and Chapter 6 identified a number of complementary strengths between

classical and model-based planning technologies. The strengths and limitations

evaluation perspective considers each limitation and identifies the facet(s) of the

integrated architecture which addresses it.

8.2.1 Expressiveness - HTN planning

8.2. 1 .1 Variable nodes

250

The need to vary the number of nodes within task networks to adapt to specific

problems was identified within the construction and military evacuation domains

analysed in Chapters 4 and 6. Within the integrated architecture, the function of

generating schemas with an appropriate number of nodes for a given problem is

achieved through the aggregation and abstract action constructs. The instance

diagram below (Figure 8 - 1) represents a component with a variable number of

subcomponents. Each subcomponent has one abstract action associated. The task

network compilation process responds to requests of the form expand

{component.abstract-action component] by returning the concatenation of each of

the components subcomponents' name and abstract action. The task network

resulting from such a request on Figure 8-1 is depicted in Figure 8-2.

component

subcomponent1 subcomponent2 subcomponent0

Figure 8-1, Aggregation relation

schema component.abstract-action # component;
expands {component.abstract-action component } ;
nodes 1 . action { subcornponent 1 .abstract-action subcomponent1 1 ,

2. action { sub-cornpoenent2.abstract-action subcomponent2 1 ,

n . action { sub-compoenent0.absract-action subcomponent01;
end schema;

Figure 8-2, Schema compiled from the objects in Figure 8-1

Evaluating the integrated architecture

The 0-Plan task refinement planner provides two constructs to support the type of

functionality described above: foreach, and iterate. The syntax of the Jo reach

construct is depicted in Figure 8-3 below.

N foreach action(action-name ?parameter)
for ?parameter over {set }

Figure 8-3, Task formalismforeach construct

The Jo reach construct generates a task network containing a node action-name

?parameter for each member of the set specified in the for over line. The term

?parameter is instantiated at each node to the element of set it is included for. For

example, if the set is defined as { member!> member2, member3), the construct will

generate a schema with the three nodes: action-name memberb action-name

member2, and action-name member3• The iterate construct differs fromforeach

only in the ordering constraints placed between the nodes. Action are left

unordered with respect to each other in the Jo reach case, and are ordered

sequentially as they are generated in the iterate case.

Figure 8-4, below, encodes an approximation of the integrated architectures

variable node function using 0-Plan'sforeach construct.

l . schema integrated-architecture-simulate;
2. expands (generic-action ?object);
3 . N for each action (generic-action ?new-object)
4. for ?new-object over { ?object sub } ;
5. end schema;

Figure 8-4, Task formalism approximation of the integrated architecture's

variable nodes function

The schema integrated-architecture-simulate refines tasks of the form generic­

action ?object by generating a node for each subcomponent of the parameter

?object. To demonstrate the schema's function, consider the fragment of the

construction domain specified in Figure 8-5, below. The fragment is specified in a

planner's always context (i.e. , facts which do not change during planning). The

term the-supermarket is an instance of the class PROJECT with a single attribute

sub. The sub attribute lists the instances which are subcomponents of the­

supermarket (assume that each member of the set sub is defined as being of class

COMPOSITE-OBJECT or PRIMITIVE-OBJECT).

initially the-supermarket : PROJECT
sub che-. upermarkct { the-foundations, the-roof, the-windows-and-doors }

Figure 8-5, Example of sub retaliation in the construction domain

251

Evaluating the integrated architecture

252

If a HTN planner is given the initial task of generic-action the-supermarket, the

schema integrated-architecture-simulate will match with this task through the

expands construct on line 2. The Jo reach statement on line 3 will generate a new

generic-action ?new-object node for each subcomponent of the-supermarket. The

resultant schema is depicted in Figure 8-6 below.

schema integrated-architecture-simulate;
expands (generic-action the-supermarket);
nodes 1 action { generic-action the-foundations } ,

2 action { generic-action the-roof} ,
3 action { generic-action the-windows-and-doors } ;

end-schema;

Figure 8-6, Result of applying schema integrated-architecture-simulate to the

construction problem

The integrated-architecture-simulate encoding contains a number of limiting

issues. First, the action name generic-action, as opposed to ideal action name (i.e.

lay in the case of the-foundations, erect in the case of the-roof, and install in the

case of the-windows- and-doors), results from the restriction upon the foreach

construct that the construct may work over one action name only. Theforeach

construct cannot vary the action names it generates by taking into account the type

of the object which it is considering. If the construct was modified to take this

factor into account, the resultant actions would not match the integrated­

architecture-simulate expansion criteria of generic-action ?object. Hence, the new

actions generated by integrated-architecture-simulate would not be applicable for

further refinement by the schema.

The second limiting issue with integrated-architecture-simulate is the termination

criteria of the construct. This issue and the first generic-action problem may be

demonstrated through a generic example. Consider the type and component

specifications in Figure 8-7 below. Five domain objects are defined (x, y, z, a, b).

The domain objects are related though the subcomponent relation so that y and z

are subcomponents of x, and a and b are subcomponents of y. Component z has no

subcomponents. Each component is of a different type (TYPEb . . . , TYPE5). The

action name which would ideally prefix each component depends upon the

component's type. This ideal name will be referred to as TYPEN.ideal-action­

name. In a specific example, objects of type FOUNDATIONS should be prefixed

with the action name lay, whilst objects of type WINDOW-AND-DOORS should

be prefixed with the action name install.

Evaluating the integrated architecture

x: TYPE1, y: TYPE2, z: TYP�, a: TYPE4, b: TYPE5

x.sub = {y, z }
y.sub = { a, b}

Figure 8-7, Generic problem specification

For the problem specified in Figure 8-7, a HTN planner would be initialised with

the following initial task.

initial task definition = action {generic-name x }

Component x is the project level component (i.e. it is not the subcomponent of any

other component), and generic-name x will match against the integrated­

architecture-simulate schema' s expands criteria. The initial task becomes the only

item on the HTN planner's agenda. The action name generic-name as opposed to

TYPE1. ideal-action-name must be used so that the HTN expansion routine will

match the task's name with the integrated-architecture-simulate schema. The

processing of this first task is depicted in Figure 8-8, below.

agenda = (action { generic-name x })
pick agenda item action{ generic-name x }
request schema which matches selected agenda item.
result is integrated-architecture-simulate with parameter ?parameter instantiated to x

N for each action (generic-action ?parameter)
for ?parameter over { x.sub }

applying integrated-architecture-simulate results in the following schema

schema integrated-architecture-simulate
nodes I . action {generic-name y } ,

2 . action { generic-name z } ;
end schema;

Figure 8-8, Applying integrated-architecture-simulate to component x

Applying integrated-architecture-simulate to concept x results in two new agenda

items. The processing of one of the new items is depicted below:

agenda = (action { generic-name y } , action { generic-name z})
pick flaw action{ generic-name y }
request schema which matches selected flaw.
result is integrated-architecture-simulate with parameter ?parameter instantiated to y

N for each action (generic-action ?parameter)
for ?parameter over { y.sub }

applying integrated-architecture-simulate results in the following nodes
I . action { generic-name a}
2. action { generic-name b }

Figure 8-9, Applying integrated-architecture-simulate to component y

This process will continue until the planner reaches components which do not

have subcomponents. Figure 8-10, below, depicts the case of component z which

has no subcomponents.

253

Evaluating the integrated architecture

254

agenda = (action { generic-name z } , action { generic-name a } ,
action { generic-name b)

pick flaw action { generic-name z }
request schema which matches selected flaw.
result is integrated-architecture-simulate with parameter ?parameter instantiated to y

N for each action (generic-action ?parameter)
for ?parameter over (z.sub}
applying integrated-architecture-simulate results in the following nodes

NULL

Figure 8-10, Applying integrated-architecture-simulate to component z

As component z has no subcomponents, the integrated-architecture-simulate

schema produces no new nodes for component z. The result is a schema will the

nodes set to null. Hence, it is not possible to write an encoding in an existing HTN

formalism which simulates the model-based planning algorithm. The need to

include actions based upon the type of a set member not possible. It is not possible

to write a generic schema which terminates when a component with no

subcomponents is reached.

A trace of the model-based planner solving the same problem is depicted below.

Note that the action names generated take into account the type of component over

which they are working and that it terminates on the primitive level components,

i.e. components with no subcomponents.

task = x
generate x.abstract-action-name
generate x.abstract-action-name.effects
for each sub of x and then for each sub of sub - terminating when hit a primitive

generate y.sub.abstract-action-name
generate y.sub.abstract-action-name.effects
generate z.sub.abstract-action-name
generate z.sub.abstract-action-name.effects
generate z.sub.primitive-action-name
generate z. sub. primitive-action-name.effects
generate a.sub.abstract-action-name
generate a.sub.abstract-action-name.effects
generate a.sub.primitive-action-name
generate a.sub.primitive-action-name.effects
generate b.sub.abstract-action-name
generate b.sub.abstract-action-name.effects
generate b.sub.primitive-action-name
generate b.sub.primitive-action-name.effects

end

In conclusion, the integrated architecture exploits the subcomponent relation

within a domain to generate the actions which account for both the number of

components in a specific problem instance and the type of those components. An

equivalent functionality cannot be produced in current implementations of HTN

planning. As described above, HTN planners cannot consider the action name

which should be associated with a domain concept, nor can action synthesis

terminate when components without subcomponents are reached.

Evaluating the integrated architecture

8.2.1 .2 Conditional nodes

The variable node mechanism generates abstract actions accounting for the

variable number of components and their types within a problem instance. The

conditional nodes mechanism generates the actions required by instances of class

PRIMITIVE-OBJECT within a problem instance. This distinction between variable

and condition node reasoning may be illustrated through the domain model

depicted in Figure 8-1 1 , below.

project-concept f-----1 abstract-action

abstract-action abstract-action abstract-action

sub-concept sub-concept

sub-concept sub-concept

abstract-action abstract-action abstract-action

primitive-action -
set

primitive-action­
set

primitive-action­
set

Figure 8-11, Position of conditional node reasoning with the domain model

The variable node reasoning navigates through the model generating the abstract

actions and, when a primitive object is reached, activating the conditional node

reasoning for the primitive action sets within a model. The conditional node

reasoning, activated by the variable node reasoning process, determines which

members of the set of possible primitive actions associated with a component will

be instantiated.

Conditional node reasoning was motivated by two observations. First, that it is not

practical to encode all possible methods for achieving a task. Second, that the

syntax of filter conditions is difficult to map to the knowledge within a domain for

determining an action's inclusion. Both these limitations are justifiable within the

context of a formalism designed to manage the computational complexity

encountered whilst working over a partially-ordered partially instantiated plan.

The integrated architecture, however, exploits the planning which may be

achieved within the space of a static domain model. A more expressive formalism

may therefore be used.

255

Evaluating the integrated architecture

256

The existing HTN encoding approach results in a number of actions sets or

methods, with each set' s applicability specified by a number of filter conditions.

The integrated architecture specifies a single set of actions for achieving each

object within a domain. Each action may be associated with knowledge for

determining if it should be associated with a specific object. The possible set of

actions for achieving the BEAM class is depicted in Figure 8-12 below.

class BEAM
primitive-actions: if-needed (

must (a, SET-OUT-POSITION)
must (a, EXCAVATE-BEAM)
must (a, BLIND-BOTTOM)

infer(a, MOULD-OIL, determine-mould-oil)
infer(a, STRIKE-FORMWORK, detennine-strike-formwork)

j

Figure 8-12, class BEAM's primitive action specification

Set membership for a specific instance is determined through the instantiation

directives must and infer which prefix each action in the possible set Infer invokes

a inference package to determine an actions inclusion. Must is a special case of the

infer directive which always determines that an action should be associated. Figure

8 - 13 summarises the mechanisms which the infer directive may utilise. The infer

directive is implemented through a instantiation directive handler. The handler

parses the directive's parameters (the text in brackets following the directive

name), identifies the action class to which it implies (STRIKE-FORMWORK in the

figure below), and the inference package which should be invoked to determine

the actions relevance (infer-strike-formwork in the figure below).

Infer (a, STRIKE-FORMWORK, infer-strike-formwork)

Partial-order not used

instantiation
directive handler

external knowledge sources

Figure 8-13, Inference directive

domain model

Evaluating the integrated architecture

Instantiation directives process the results of an inference package. In the case of

infer, the directive will instantiate an instance of the action class specified in the

parameter if and only if the inference package returns true. If the inference

package returns false, no action is taken.

Figure 8- 1 3 depicts the constraints upon an inference package's reasoning. The

inference package may consult knowledge about a domain encoded in the domain

model (attribute, instances etc.), and may connect to external data-bases and other

knowledge sources. The mechanism is constrained not to derive any information

from a partially instantiated partial-order plan.

An equivalent HTN encoding may be achieved using the following framework.

The possible set of actions which may be associated with a concept may be written

as a single schema. Actions which would be prefixed with the must directive are

written as primitive actions (i.e. actions with no further refinement). Actions which

would be prefixed with the infer directive are written as non-primitive actions (i.e.

action which require further refinement). The HTN representation of the model­

based BEAM action set is depicted in Figure 8- 1 4 below.

schema emulate-BEAM-primitive-actions;
vars ?beam : BEAM;
expands {lay ?beam } ;
nodes 1 primitive

2 primitive
3 primitive
4 action
5 action

end schema;

{set-out-position ?beam} ,
{ excavate ?beam},
{ blind-bottom ?beam},
{mould-oil ?beam} ,
{ strike-formwork ?beam};

Figure 8-14, HTN conditional nodes functionality - stage 1

Each of the non-primitive actions is provided with two refinements. The first

refinement represents the case of when the action should be included, and the

second when the action should not be included. Figure 8-15 presents the two

methods for refining the mould-oil ?beam task within Figure 8-14.

schema mould-oil-yes;
vars ?beam : BEAM;
expands {mould-oil ?beam};
nodes 1 primitive {pour-mould-oil ?beam};
only _use_if ?beam formwork = custom;

end schema;

Schema mould-oil-no;
vars ?beam: BEAM;
expands {mould-oil ?beam};
nodes l dummy;
only_use_if ?beam formwork = prefabricated;

end schema;

Figure 8-15, HTN conditional nodes functionality - stage 2

The encoding of knowledge for determining if an action should be included within

a plan is achieved in HTN planning through filter conditions. The syntax of filter

conditions was demonstrated within Chapter 4 to be difficult to map to the domain

257

Evaluating the integrated architecture

258

knowledge found within industrial problems. Planners such as UCPOP and 0-

Plan, however, provide mechanisms for linking to external knowledge sources in a

way similar to the inference package mechanism supported by the integrated

architecture. UCPOP provides a mechanism known as facts and the 0-Plan system

a compute conditions mechanism. Each mechanism is defined below, before a

comparison with the integrated architecture is provided.

The generic structure of a UCPOP fact (Barrett et. al. 1994, pp 1 1) is depicted

below. The * notation implies repetition i.e., the <variable-name> parameter may

be repeated one or more times.

(define (fact (<predicate-name> <variable-name>*))
<function b dy:>)

Facts permit the evaluation of predicates to be implemented via a user defined

procedure; in the current UCPOP implementation, these procedures must be

implemented within the Lisp language. Considering an example fact, the predicate

less-than may be defined with two variables ?x and ?y. The function body may

then be implemented with the Lisp function (< ?x ?y). Hence, predicates of the

form less-than(3 4) will be evaluated using the Lisp language function as opposed

to the Modal Truth Criteria' s backward search through a plan. Facts may return

predicate undefined, insufficient information to evaluate predicate or predicate

defined The first response indicates that it is not possible to evaluate the predicate,

the second response that the predicate should be considered latter when more

information is available. The third response indicates that the predicate has been

successfully evaluated. A number of variable binding constraints may also be

returned, and the planner permitted to nondeterministically chose constraints to

add to a plan variable in order to establish the fact.

The 0-Plan system provides compute conditions (Tate, Drabble, & Dalton 1 994b,

pp40) for linking domain descriptions to external sources of inference. An

example compute condition from the Pacifica (Reece et. al. 1993) domain is

depicted below (A full description of the Pacifica domain is provided in Appendix

C).

(define transport (capacity e_left e_safe) ; --> c_safe c_left
(let ((take (min e_safe capacity)))
(list (+ e_left take)

(- e_safe take))))

Evaluating the integrated architecture

The example compute condition above will take statements of the form transport

(?capacity, ?evacuees left, ?evacuees safe). An example instantiation would be

transport (50, 1 00,0). The Lisp function uses the capacity argument, in the

example 50, to determine how many people may be evacuated. The number of

people evacuated and the number remaining is then returned. In the example

above, (50, 50) will be returned as 50 people may be evacuated, leaving 50 people

still to be evacuated.

To date, the use of facts and compute conditions within demonstration domains

definitions centres upon mathematical functions. These constructs, however,

permit inference routines to be written for determining more complex domain

facts. In the context of the beam laying example in Figure 8-15, a compute

condition { mould oil ? beam } which returns true or false may be written. The

condition could invoke rule-based reasoning to determine if a mould oil action was

required for a specific beam. An only_use_if filter conditions may then be written,

selecting between a mould oil action or a null action depending upon the compute

conditions result. Reasoning of this complexity was implemented in Nonlin (Tate

1 977) by making a three dimensional reasoning system available to the planner

through the compute condition construct.

In conclusion, the fact and computer condition mechanisms supported by existing

HTN planners may be used to implement the criteria for determining action

inclusion via external knowledge sources. These constructs are comparable to the

infer instantiation directive within the integrated architecture. However, task

refinement planners do not provide the complementary mechanisms supported by

the integrated architecture for determining the conditions, effects, and ordering

constraints which result from the specific actions instantiated. It is the conditional

nodes mechanism in combination with constructs for performing this assessment

which leads to the integrated architecture being an advance on HTN only planning

systems.

259

Evaluating the integrated architecture

8.2.1 .3 Conditional effects

260

Within the integrated architecture, conditional effects are achieved through two

mechanisms. Implicitly, if an action
.
is instantiated its effects will be considered for

inclusion within a plan. Explicitly, if an action is instantiated, its effects are

attached to actions using a similar mechanism to the attachment of actions to

objects. Figure 8-16, below, depicts a fragment of a domain model with action

assessment completed.

super-concept

sub-concept

set

Figure 8-16, Position of effects within the domain model

The model-based planning algorithm recurses through the model instantiating

abstract actions automatically, and primitive actions depending upon the results of

inference packages. Each action (either abstract or primitive) has its main-effects

and side-effects attributes assessed immediately upon instantiation. Effects are

attached to attribute slots through two directives: action-must, and action-infer. In

the latter case, inference packages will be invoked to determine if an effect should

be attached to a specific action instance. In the earlier case, the effect is

automatically attached.

Taking the first case of effect inclusion via the association with action, consider

the example within Figure 8-17, below. The first schema, schema-a, would be

produced by the model-based planner from a building's design containing one

room with the attribute rooml.decoration set equal to tile. Hence, the schema

contains one effect, room] tiled. The second schema, schema-b, would be

produced where, in addition to room one, a second room was specified with the

attribute room2.decoration set equal to tile. The schema contains the additional

effect room2 tiled as a result of this design change.

schema-a;
nodes 1 . action { tile-room 1 } ;

only _use_for_effects
rooml = tiled;

end schema;

Evaluating the integrated architecture

schema-b;
nodes 1 . action { tile-rooml } ,

2. action {tile-room2};
only _use_for_effects
rooml = tiled,

room2 = tiled;
end schema;

Figure 8-17, Example of effect inclusion through association with actions

Consider the case of the action class TILE being extended to include the effect

action infer (a, hazard ?object = ?inference result, infer _ceiling_hazard). The

infer _ceiling_hazrd inference package contains reasoning to determine if working

on a specific ceiling will cause a hazard and the type of that hazard. Using this

mechanism, effects of the type defined in schema-c below may be derived. The

schema contains the effect hazard-room] = asbestos as a result of the inference

package finding asbestos within room] 's construction.

schema-c;
nodes 1 . action { tile room I } ,

2. action { tile room2 } ;
only _use_for_effects

room 1 tiled,
room2 tiled;

effects
hazard rooml asbestos;

end schema;

HTN and precondition planning systems provided two mechanisms for achieving

conditional effects: operator specification, and domain rules or axioms. Each

mechanism is described below, before the relationship with the integrated

architecture's mechanisms is introduced.

The precondition achievement planner UCPOP supports conditional effects in

operator specifications. Figure 8- 18 presents an example UCPOP action with

conditional effects. The operator has the semantics move item ?z from location ?x

to location ?y. The italicised effects on ?z ?y . . . clear ?x are not conditional, the

effects will always be asserted as a result of the operator to which they being

inserted into a plan. Specifically, the object to be moved ?z will always be on the

designated location ?y and it will no longer be at the initial location ?x. The initial

location ?x will therefore always become clear.

(define (operator move)
:parameters (?x ?y ?z)

:effect (and (on ?z ?y) (not (on ?z ?x)) (clear ?x)

when (:F?y tahle) (not (clear ?y)))

Figure 8-18, Example UCPOP action with conditional effects

261

Evaluating the integrated architecture

262

The bolded effect is conditional. The first clause when((:;e?y table) is the condition

under which this effect becomes applicable. If this condition holds, the effect (not

(clear ?y) will be asserted. The semantics in this example are that if ?y, the

destination location, is a table then it will remain clear because a table will (under

the assumptions in this encoding) support an infinite number of blocks. If,

however, ?y is not the table, then ?y, the destination location of the object ?x, will

no longer be clear.

The second mechanism for providing conditional effects is known as domain rules

in the SIPE and O-Plan1 systems and axioms in the UCPOP system. Within this

discussion domain rules and axioms will be referred to as domain rules. Domain

rules differ from operator specified conditional effects in that the latter are

attached to specific operators. Domain rules are written independently of

operators. When an action is included in a plan, the planning engine (both HTN

and precondition achievement) examines the world state. Domain rules are written

with trigger mechanisms which, when matched against the world state, cause the

effect attached to the rule to be asserted. Consider the domain rule is-above in

Figure 8-19 taken from the UCPOP system. The context clause specifies that if an

object ?x is on another object ?y, then this axiom is applicable. If the context

statement holds as a result of a new action's inclusion within a plan, the implies

part of the axiom is asserted as an additional effect of that new action. In the

example below, the on ?x ?y condition results in the new fact above ?x ?y fact

being asserted.

axiom is-above
:context (on ?x ?y)
: implies (above ?x ?y)

Figure 8-19, Example of the UCPOP Axiom construct

Domain rules introduce a number of issues to planning. For example, ensuring

deductive closure and resolving contradicting effects. The SIPE system contains

mechanisms for handling these issues whilst maintaining heuristic adequacy. See

(Wilkins 1988, pp 90) for a detailed discussion of the issues surrounding the

implementation of domain rules and the methods available for resolving these

issues.

1 Domain rules are not currently implemented in the 0-Plan system.

Evaluating the integrated architecture

In conclusion, the integrated architecture provides complementary effect

assessment mechanisms to those provided by classical planning systems. The need

for both quantified and conditional effects is well established within classical

literature. The integrated architecture exploits the effect assessment which can be

achieved through static domain knowledge, whilst classical planning supports the

reasoning required to assess effects over an evolving world model. The integrated

architecture combines the conditional and variable node reasoning to provide

quantified effects and a domain's structure to ensure effects are compiled into the

appropriate task refinement schemas.

8.2.1 .4 Conditional dependency constraints - relationships

Dependency constraints between actions are synthesised within the integrated

architecture through relationships and aggregate conditions. This subsection

evaluates relationship dependency. Aggregate dependency is covered in section

8.2. 1 .5 .

Relationship dependency is assessed from the relationships between instances in a

domain model. Figure 8-20, below, depicts an instance, instancew related to two

other instances, instanceb and instance0 through the relationship relationship,.

rclaOonship, instanceb

instance.

instancec
relationship,

Figure 8-20, Example of domain specific relationships between model

instances

Relationship dependency is assessed via the four constructs summarised below:

1 . For All I: instance related to self through relationship" link self.abstract­

action as dependent upon I.abstract-action. The I.abstract action.main­

effects are copied into the precondition attribute of self.abstract-action.

2. For All I: instance related to self through relationship" link

self.abstract-action as dependent upon I.abstract-action.

3 . For Some I: instance related to self through relationship, which match

criteria C, link self.abstract- action as dependent upon I.abstract-action.

Copy I.abstract-action.main-effects into the precondition attribute of

self.abstract-action.

4. For Some [:instance related to self through relationship, which match

criteria C, link self.abstract-action as dependent upon I.abstract-action.

263

Evaluating the integrated architecture

264

Figure 8-2 1 , below, depicts a model of an abstract problem instance (concept"'

conceptb, conceptv, conceptk). The instances are structured through the

subcomponent relation. The abstract and primitive actions of the instances sub

conceptv and sub conceptk are depicted. Conceptk is related to conceptv through

the relationship relationship,. The results of applying each of the relationship

constructs above to conceptv in

Figure 8-21 are summarised below.

conceptk

nbs1ract-actionk

effectsk

concept,

relationship,

activityk 1--------------1 activityv
�--� dependent upon because of relationship,

Figure 8-21, Data structures participating in the relationship dependency

synthesis process

Applying relationship construct 1 to conceptv with the parameter relationship, will

first construct the set of concepts related to conceptv through relationship,. In the

figure above, this set will include only conceptk. Construct 1 will link the activity

associated with conceptv, activityv, to be dependent upon the activity associated

with conceptk. The main-effects of abstract action*' effects*' will be copied into the

precondition attribute of activityv.

Construct 2 will perform the same function as construct 1 with the exception of the

copying of effects. Only a dependency relationship will be recorded between

activities activityk and activityv.

Construct 3 differs from construct 1 as inference packages will be used for

determining the elements of the set of concepts related to conceptv through

relationship relationship, which will be set as predecessors. Inference packages

are invoked to determine which elements will be made dependent. Once the subset

is identified, the construct proceeds as construct 1 .

Construct 4 performs the same function as construct 3 with the exception o f the

copying of effects. Only ordering constraints are recorded between activities

which pass the inference packages assessment criteria.

Evaluating the integrated architecture

When relationship dependency is completed, the results are applied during the

compilation of task networks. Ordering constraints and supervised conditions are

added to resultant task networks as appropriate.

Traditional planning systems provide quantified preconditions and disjunctive

preconditions. Each of these constructs is summarised below before being

compared with the integrated architecture' s relationship dependency functionality.

An example disjunctive precondition from the UCPOP system is depicted below.

The precondition semantics are that this operator may be used if either on ?x ?y

holds or under ?x ?y holds. If a planner wishes to make the operator applicable by

achieving its preconditions, the planner may nondeterministically choose which of

the preconditions to achieve.

j :prec ndit ion (or (on ?x ?y) (under ?x .y))

UCPOP permits quantification in preconditions. The example operator below

defines the preconditions of an operating system's remove directory command.

:operator (delete ?directory)
:precondition fora!! (in ?file ?directory)

(deleted ?file)

Both the MS-DOS and UNIX operating systems will remove a directory if and

only if the directory contains no files. The delete ?directory operator contains a

universally quantified precondition which generates a condition deleted ?file for

each of the files recorded as in ?file ? directory.

Consider a new operating system command really-delete. The command deletes a

directory and any files it contained, with the exception of system files. The

UCPOP representation of this function is depicted below.

:operator (really-delete ?directory)
:precondition forall (in ?file ?directory)

where (not system ?file)
(deleted ?file)

The really-delete operator creates an operator with a precondition set to all the

non system files within a directory. The operator is providing existential

quantification.

265

Evaluating the integrated architecture

266

In conclusion, the integrated architecture provides a specialised form of quantified

conditions which maps to the relationships between concepts in an application

domain. The combination of conditional node, variable node, and conditional

effect reasoning permits conditions to be placed between actions as a result of

relationships between the components to which the actions related, and for this

knowledge to be compiled into appropriate condition types within task refinement

schemas. The encapsulation-buster condition type permits the causal structure of

dependency constraints to be specified across the encapsulation unit of the

schema, thus removing the need for a task refinement planner to establish a

number of conditions.

Evaluating the integrated architecture

8.2.1 .5 Conditions - aggregate

The integrated architecture's aggregate condition function permits conditions to be

specified in terms of the sub conditions which constitute them. Deriving the sub

conditions is achieved through inference packages. Considering an example, the

condition site secure in the construction industry domain will the sub conditions 3

meter fence erected and school safety lecture given in one situation and the

conditions 2 meter fence erected in a second.

The integrated architecture makes the requirement of aggregate conditions explicit

and provides an effective mechanism for their implementation.

8.2.1 .6 Expressiveness argument conclusion

When considered in isolation, the new facets of the integrated architecture may

either be achieved or almost achieved in existing classical planning technologies.

It is, however, the ability of the new architecture to provide conditional nodes,

variable nodes, quantified and conditional effects, and quantified and conditional

conditions in a coherent form to synthesis task networks which distinguishes it

form existing technologies.

267

Evaluating the integrated architecture

8.2.2 Expressiveness - model-based planning

268

Traditional model-based planning systems do not incorporate the concept of

conditions and effects. Without these concepts and a question and answering

algorithm, it is not possil;>le to either infer ordering constraints based upon the

producer - consumer relationship between action effects and conditions nor detect

and resolve interactions between these pairs.

The integrated architecture incorporates action conditions and effects within the

MBP representation formalism and utilises traditional task refinement algorithms

to both establish and maintain the causal structure of a plan.

Evaluating the integrated architecture

8.2.3 Redundancy

Redundancy was identified in Chapters 4 and Chapter 6 between the encodings of

multiple methods for performing a task, and similar methods for performing

different tasks. The redundancy issue is addressed by the integrated architecture

through two mechanisms.

First, the constructs described in the section 8 .2. 1 replace the method of statically

encoding task networks. Each instance within a domain has its abstract actions,

primitive actions, effects, conditions, and ordering constraints inferred. These

constructs are then compiled to form task networks which meet specifically the

needs of each concept instance. Thus, removing the need to specify multiple

methods for performing a task. Methods are instead dynamically compiled to meet

the requirements of a specific problem instance.

Second, the use of the inheritance relation within the object-oriented domain

modelling scheme permits knowledge to be organised into a hierarchy. Consider

the classes in Figure 8-22 below. Knowledge encoded within CLASSA is inherited

by all the other classes in the figure. The knowledge from both CLASS A and

CLASS8 is inherited by CLASS0. Hence, actions, attributes and dependency

knowledge defined within CLASSA is utilised by all the other classes in the figure.

Thus changes to CLASSA are reflected in the remainder of the system.

CLASS A

CLASS B CLASS C

CLASS D

Figure 8-22, Class hierarchy

Inheritance permits a domain to be specified as a number of specialisations, with

each class inheriting facets of its parent, and adding new facets unique to itself.

In conclusion, the domain rules and conditional effects within classical planning

systems address in part the redundancy issue. The integrated architecture

compliments these constructs by providing mechanisms to model a domain in

terms of specialisations and for synthesising task networks to meet the

requirements of a specific problem instance.

269

Evaluating the integrated architecture

8.2.4 Semantic distance

270

Erol notes that the writing of domain specifications is " . . . the most neglected

aspect of planning, and there is not an established software-engineering

methodology to guide this job." (Erol 1 995, pp91). Yet Chien notes that " . . . the

amount of effort required to construct, debug, verify and maintain the planning

knowledge base" (Chien 1 996) is a major factor in deciding whether AI planning

techniques are applicable to real-world applications.

Current work in this area is either providing tools for debugging and verifying

planning knowledge bases (e.g. (Chien 1996)) or is providing conceptual links

between planning formalisms and software - business engineering methodologies.

An example of the latter work is the connection between the <1-N-OV A> model of

plans as a set of constraints and the IDEF business process methodology (Tate

1 996).

The KADS knowledge-based system development methodology and the OMT

(Rumbaugh et. al. 1 991), Booch (Booch 1991) , and Syntropy (Cook & Daniels

1994)object-oriented methodologies are centred upon the concepts of objects,

classes, inheritance, aggregation, and relationships. The methodologies provide a

set of guidelines and techniques for identifying the constructs within a domain,

notations for representing them, and tools for managing reviewing and validating

results.

The integrated architecture is centred around the same constructs as KADS and

object-oriented methodologies. The technique therefore provides constructs which

map closely to existing elicitation and modelling methodologies and tools. This

view is supported by McCluskey (McCluskey & Porteous 1995 ; 1 996a; 1996b;

McCluskey, Kitchin, & Porteous, 1 996, Kitchen & McCluskey 1 996). McCluskey

compiles a precondition achievement action representation from the state chart

notations supported by object-oriented methodologies under the rationale that such

methodologies provide a tool supported representation which maps closely to

domain experts' knowledge.

Evaluating the integrated architecture

8.3 Literatu re examples perspective

The literature examples perspective aims to demonstrate the generality of the

integrated architecture. The architecture' s development and testing prior to this

chapter has been centred within the construction domain.

Drabble and Tate (1994) define a continuum of applications ranging from resource

intensive problems like job shop scheduling and condition and effect intensive

problems such as blocks world. The authors position their 0-Plan system midway

on this continuum where, the authors claim, a significant number of real world

applications rest.

The Pacifica (Reece et. al 1 993) military evacuation domain is used within this

section to demonstrate the generality of the integrated architect as the domain

provides an example ranging from the middle to the condition and effective

intensive points on Drabble and Tate's continuum.

271

Evaluating the integrated architecture

8.3.1 Pacifica

The Pacifica domain (Reece et. al. 1993) is described in Appendix C. The domain

centres upon the non-combatant military evacuation of a geographical area.

The encoding of the Pacifica domain in the model-based formalism is divided into

two stages. First, section 8 .3 . 1 . 1 defines the mapping of the overall structure of the

domain. Second, sections 8 .3 . 1 .2 and 8 .3 . 1 .3 step through in detail the

representation and planning of two central phases of an evacuation mission.

8.3.1 .1 Mapping the structure of pacifica to the model-based formalism

272

Pacifica contains the following decision points:

• Number of air and ground transports available to a mission.

• Number of cargo craft available to a mission.

• Assignment of air and ground transports to cargo craft.

• Arrangement of loading, take off, landing, and unloading of cargo

aircraft.

• Assignment of air and ground transports to outlying cities for effecting

the evacuation

• Reloading of air and ground transport onto cargo craft for returning to

safety after the mission.

• Returning evacuees to safety.

The encoding of Pacifica described in this chapter makes the following

assumptions about the information supplied to the planning system by the system's

user.

• The number of ground transports, air transports, and cargo aircraft

available for a specific evacuation mission is specified.

• The assignment of air and ground transports to cargo aircraft is specified.

• The number of people to be evacuated from each city is defined.

An example problem definition is depicted in Figure 8-23 below.

Evaluating the integrated architecture

;; ground, air, and cargo transports available for mission.
gtl , gt2, gt3: GROUND_ TRANSPORT
atl , at2, at3: AJR_TRANSPORT
c 1 30, cl40 : CARGO_AIRCRAFf
city A, cityB :CITY
;; assignment of cargo to cargo transports
c1 30.carries = atl , at2, at3
c140.carries = gt l , gt2, gt3

;; cities to be evacuated and the number of evacuees in each city
cityA.Numbe!OfEvacuees = 1 0
cicyB.Numbe!OfEvacuees = 1 1

Figure 8-23, Initial Pacifica problem definition

Figure 8-24, below, presents the first level domain model of the domain. The

EVACUATION-OPERATION class is related to three sub classes: LOCATE­

EQUIPMENT, EVACUATE-CITIES, and RETURN-EQUIPMENT. Class

EVACUATION-OPERATION represents the project to be accomplished - the

evacuation mission. The project' s three subcomponents correspond to the three

phases of an evacuation operation: the movement of evacuation equipment to the

location to be evacuated, effecting the evacuation, and returning the evacuation

equipment and evacuees to safety.

EV ACUA TlON-OPERA TION

LOCATE-EQUIPMENT EVACUATE-CITIES RETURN-EQUIPMENT

Figure 8-24, First level model of the pacifica domain

Class LOCATE-EQUIPMENT is related through the aggregation relationship to

the classes GROUND-TRANSPORTS-IN, AIR-TRANSPORTS-IN and CARGO­

AIRCRAFT-IN. This structure is depicted in Figure 8-25 below. This arrangement

captures the structure of the domain i.e. , the location of equipment is composed of

the location of air, ground, and cargo transports. The multiplicity balls specify that

an instance of class LOCATE-EQUIPMENT may be related to zero or more

instances of each of the transport classes.

LOCATE-EQUIPMENT

GROUND-TRANSPORTS-IN AIR-TRANSPORTS-IN CARGO-AIRCRAFT-IN

carries
carries

Figure 8-25, Refinement of class LOCATE-EQUIPMENT

273

Evaluating the integrated architecture

274

The carries relationship specifies that an instance of class CARGO-AIRCRAFT-IN

may be related to zero or more instance of the classes GROUND-TRANSPORT-IN

and AIR-TRANSPORT-IN through a carries relationship. The relationship has the

semantics that a cargo aircraft carries a number of air and ground transports.

The refinement of class RETURN-EQUIPMENT follows the same pattern; hence,

the representation is not derived here.

Figure 8-26, below, depicts the refinement of class EVACUATE-CITIES. The task

of evacuating cities is represented as being related to zero or more cities via the

aggregation relationship.

EVACUATE-CITIES

CITY

Figure 8-26, Refinement of class EVA CUA TE-CITIES

With the structure of the domain captured, the second phase of the modelling

considers the action which must be attached to each class. The detailed

representation and planning applied to classes LOCATE-EQUIPMENT and

EVACUATE-CITIES is described in the two sub sections below.

Evaluating the integrated architecture

8.3.1 .2 Representation and planning of the LOCA TE-EQUIPMENT class

This section defines the action required by class LOCATE-EQUIPMENT and its

subcomponents. Within the domain definition complete, a trace of the integrated

architecture solving a specific evacuation mission (Operation-Vanson Figure 8-27)

is presented.

After deriving the initial domain structure, the second phase of the encoding

demands the attachment of actions to classes. Class LOCATE-EQUIPMENT is

depicted below with a single abstract action locate-equipment attached. This

action represents the role of the instances of the class in a model.

class LOCATE-EQUIPMENT
abstract action: must(a, locate-equipment)

Class AIR-TRANSPORT-IN action's are depicted below. The primitive actions

capture the requirement of loading and unloading air transports from the cargo

aircraft which carries them to the evacuation location. Class GROUND­

TRANSPORT-IN contains the same action set.

class AIR-TRANSPORT-IN
carried-by CARGO-AIRCRAFf-IN
abstract action : must (a, locate)
primitive action: must (a, load onto ?carried-by)

must (a, unload from ?carried-by)

Class CARGO-AIRCRAFT-IN actions are depicted below. The primitive actions

capture the requirement of taking off, flying to, and landing at the location to be

evacuated (an attribute of class EVACUATION-OPERATION).

class CARGO-AIRCRAFf-IN
carries: AIR-TRANSPORT-IN, GROUND-TRANSPORT-IN
abstract action : must(a, locate)
primitive action: must (a, take-off ?self.initial-lo ation)

must(a, Uy-to ?EV C ATION-OPERATION.evac-location)
must (a, land-at ?EVACUATION-OPERATION.evac-localion)

Classes LOCATE-EQUIPMENT has the single primitive actions locate attached

to describe the overall task the class represents.

275

Evaluating the integrated architecture

Operation-Vans on:
EVACUATION-OPERATION

Jocate-equipment-for-Operation-V anson: evacuate-cities-for-Operation-Vanson: retum-equipment-for-Operation-V ans on:
LOCATE-EQUIPMENT EVACUATE-CITIES RETURN-EQUIPMENT

atl_in: gtl_Jn: cl40_Jn: atl_out: gtl_out: cl40_out:
AIR-TRANSPORT-IN GROUND-TRANSPORT-IN CARGO-TRANSPORT-IN AIR-TRANSPORT-OUT GROUND-TRANSPORT-OUT CARGO-TRANSPORT-OUT

carries
carries

city A:
CITY

Figure 8-27, Initial instance model for operation Vanson

276

Evaluating the integrated architecture

The third phase of the encoding requires the writing of a determine-dependency

method for each class. Class CARGO-AIRCRAFT-IN requires the following

determine-dependency method. The method links the instance of action class

TAKE-OFF associated and instance of the cargo class to be before the instance of

the action class FLY-TO.

class CARGO-AIRCRAFf-IN
method : determine-dependency

{

) ;

link-primitive (take-off, fly-to);
link-primitive (fly-to, land-at);

The following determine-dependency method is written for classes AIR­

TRANSPORT-IN and GROUND-TRANSPORT-IN. The method links the load

action of each transport to before the take-off action of the cargo-craft which

carries the transport. The unloading of each transport is constrained to take place

after the cargo aircraft has landed at the destination.

class AIR-TRANSPORT-IN
method : determine-dependency

{

l :

link-with-effects (self.load-onto, carried-by, take-off)
link-with-effects (self.unload-from, carried-by, land-at)

A textual representation of the Operation-Vanson mission definition whose

parameters are depicted in Figure 8-23 is presented below:

instance Operation-Vanson
instance of class EVACUATION-OPERATION
evac-location : pacifica
sub : locate-equipment-for-Operation-Vanson, evacuate-cities-for-operation­

V anson, return-equipment-for-Operation-Vanson

instance locate-equipment-for-Operation-Vanson
instance of class LOCATE-EQUIPMENT
sub : : atl _In, gtl_In, In c l40_In.

The trace of the integrated planner solving the location of equipment for the

Vanson mission is depicted below.

277

Evaluating the integrated architecture

278

user> Invoke MBP
---- MBP V4 Invoked ---
one instance of class project = Operation-Vanson
planning for Operation-Vanson
Generate actions(Operation-Vanson)

o__get_ v _d_f(Operation-Vanson.abstract action) return effect
:because: must(a, effect) directive

Operation-Vanson is not primitive
proces. ing ubcomponents of Operation-Vanson
for all ubcomponeots of Operation· Vanson over set = { locate-equipment-for-operation­

Vanson, evacuate-cities-for-Operation-Vanson, retum-equipment-for-
Operation-V anson }

looping for locate-equipment-for-Operation-Vanson
Generate actions (locate-equipment-for-Operation-Vans on)

o__get_ v _d_f(locate-equipment-for-Operation-Vanson.abstract action) returns
locate
:because: must(a, locate) directive

locate-equipment-for-Operation-Vanson is not primitive
for all subcomponents of locate-equipment-for-Operation-Vanson over set =
{ atl_In, gtl_In, cl 40_In,)
looping for atl _ln

Generate actions(atl_In}
o_get_ v _d_f(atl_ln.abstract-action) returns locate
:because: must(a, locate) directive

atl_In is primitive
o__get_ v_d_f(atl_ln.primtive-actions) returns { load-onto-cl 30, unload-

from-cl 30)
:because: of directives must (a, load-onto ?carried-by) where ?carried-by
evaluated to c 1 30, must(a, unload-from ?carried-by) where ?carried-by
evaluated to c 1 30

processing of atl _in complete
looping for gtl _in

processing of gtlin complete
looping for Cl 50_/n

Generate actions (C l 50_In)
o__get_v_d_f(Gl50_In.abstract action) returns locate
:because: must(a, locate) directive

C l 50_In is primitive
o_get_v_d_f(Cl 50_In.primitve actions) returns { take-off-from US­
Air-base-1 , fly-to PACIFICA, land-at PACIFICA)
:because: must(a, take-off-from ?self.initial-location) where ?self.initial­
location evaluated to US-Air-base-I . . .

processing of C!50_in complete
processing of locate-equipment-for-Operation-Vanson complete

-- DEBUG MESSAGE> MBP instructed to IGNORE remaining subcomponents of Operation­
Vanson

Figure 8-28, Trace of the MBP component solving operation Vanson

The results of the MBP planning process in Figure 8-28 are presented textually in

Figure 8-29 and graphically in Figure 8-30 below.

The textual representation includes the effects attached to each action. The

graphical representation permits the abstract action, primitive action, and activity

structure to be observed.

Evaluating the integrated architecture

--- MBP action instances

instance effect 1
instance of class EFFECT
object: Operation-Vanson
main. Effect: Operation-Vanson = completed
sub (locate! }

instance locate!
instance of class LOCATE-EVACUATION-EQUIPMENT
object: locate-equipment-for-Operation-Vanson
main. effects: equipment = located
super: {effect ! }
sub: { locate2, locate3 , locate4}

instance locate2
instance of class LOCATE-AIR-TRANSPORT
object: atl _In
main. effects: atl_In = located
super { locate!)
sub { load-ontoc1 30- l , unload-from-cl 30- l }

instance load-onto-c I 30- 1
instance of class LOAD-AIR-TRANSPORT-ONTO-CARGO
object: atl_In
main. effects atl_in = loaded
super { locate2}

instance unload-from-c 1 30- 1
instance of class UNLOAD-AIR-TRANSPORT-FROM-CARGO
object atl _In
main. effects atl _ln = unloaded
super { locate2)

instance locate 4
instance of class LOCATE-CARGO-AIRCRAFf
object c130
main. effects c l 30 = located
super { locate! }
sub {take-off-from-IS-air-base- I , fly-to-Pacifica- 1 , land-at-Pacifica-

1 }
instance take-off-from-US-air-base- I - I

instance of class CARGO-AIRCRAFf-TAKE-OFF
object c l 30
main. effects c l30 = airborne, runway US-air-base! clear
conditions runway US-air-base- I clear
super { locate4}

instance fly-to-Pacifica-1
instance of class CARGO-FLY-TO
object c l 30
main. effects c l 30 location = pacifica air space
super { locate 4 }

instance land-at-Pacifica-1
instance of class CARGO-LAND-AT
object: c l 30
main. effects c l 30 location = pacifica runway
conditions pacifica runway = clear
super { locate 4 }

Figure 8-29, Actions synthesised with conditions and effects

279

�

Evaluating the integrated architecture

I I

r locate2

�

I
Activitv6 H load-onto-c l 30-1
ATl_in

I Activity] n effect Operation-
Vanson

effect! l r Operation-Vanson:

1 ab. action l EVACUATION-OPERATION

<>
Activity2

_ locate locate-equ.ipment-for-'l
Operation-Vanson

I r locate-equipment-for-Operation-Vans on: J t evacuate-cities-for-Operation-Vanson: [locate! l
WCAIB-EQUIPMENT EVACUAIB-CITIES

l I ab. action

Activity3
loca1.e2 ATI_in

l ab. action

l

l
<

ATI in: l
AIR-TRANSPORT-IN

[GTI In:]
GROUND-TRANSPORT-IN

J I ab. action

Activicv4 I locate3 H locate3 GTI_in

prim action

l Activicy5 I

r locate4 c 140 _in fl [c140 In: 1 I locate4
CARGO-TRANSPORT-IN j ab. action 1

carries

carries

I I prim. action

J

J

load-onto-cl 30-1 J-- take-off-from-US- I
Airbase-I J

prim action
Activity8

Activitv 7 [unload-from-cl30-1 J-- -{ l I
load-onto-c 130-2 H load-onto-c1 30-2 }-- fly-to-Pacifica-1 ,__...,

unload-from-e l 30- 1 I J
ATl_in

Activitv9 I----{ unload-from-cl30-2 J- ---{ land-at-Pacifica-1]
__, unload-from-cl 30-2

Figure 8-30, Graphical representation of actions and activities synthesised

280

J

Activityl O
take-off-from-use- ...
airbase-I c 140-ln

Activity I I
fly-to-Pacifica-1 ... I c l40-ln

Activicyl 2
land-at-Pacifica- l ...

c l40-ln

Evaluating the integrated architecture

With action synthesis complete, the MBP invokes the dependency synthesis phase.

A trace of this process is presented in Figure 8-3 1 below.

--- MBP generating dependency
for all objects

processing object Operation-Vanson
generate dependency returns null

processing object locate-equipment-for-Operation-Vanson
generate dependency returns null

processing object atl_In
link-with-effects (self.load-onto, carried-by, take-oft) results in

self.load-onto = load-onto-c 130- 1 ,
carried-by = c l40_in
take-off= take-off-from-US-Airbase!
linking load-onto-c 1 30-1 before take-off-from-US-airbase-I

results Acitivty9 dependent upon activity6
link-with-effects (self.unload-from, carried-by, land-at)

self.unload-from = unload-from-cl30-1
carried-by = c140-in
land-at = land-at-Pacifica- 1
linking land-at-Pacifica-1 before unload-from-cl30-1

results Activity 7 Dependent upon Activity I 1
processing object gtl_ln

processing object c140_in

end generate dependency
--- Generation of relationship dependency complete
--- No aggregate dependency conditions.
--- MBPV 4 complete.

Figure 8-31, Dependency synthesis in the pacifica domain

With dependency synthesis complete, the integrated planner initiates the HTN

component of the architecture. A trace of this process is presented in Figure 8-32

below.

281

Evaluating the integrated architecture

282

HTN-Planner interface invoked
generating task

project = Operation-Vanson
project.abstract action = effect I
generating task network

; task effectl-opeation-Vanson
nodes 1. start

2. end
3. action {effect Operation-Vanson}

orderings 1-->3, 3-->2;
; end task ;;; effectl -Operation-Vanson

HTN Planner Invoked
issues = {action {effect Operation-Vanson) }
picked issue: action { effect Operation-Vanson}
Request integrated-architecture-expand { effect Operation-Vanson }
new-schema-name = effect-Operation-Vanson
returns schema

; schema effectl-opeation-Colubmus
nodes 1 . action{ loacatel locate-equipment-for-operation­

Vanson}
; only_useJor _effects

equipment located at 1
; end schema;

issues = action { loactel locate-equipment-for-Operation-Vanson}
picked issues action { locate! locate-equipment-for-Operation-Vanson}
Request integrated-architecture-expand (Joate l Jocate-equipment-for-operation­
Vanson}
new-schema-name = locate 1 -locate-equipment-for-opeation-colburns
returns schema

; schema locate 1-locate-equipment-for-operation-columbus
nodes 1. action {locate2 atl_In}

2. action {locate3 gtl_ln}
3. locate4 {cl40_in}

; only_useJor _effects
atl _ln located at I
gt2_In located al 2
cl 40 _in located at 3

issues = action { locate2 atl_ln } , action {locate3 gtl _ln } , action { locate3
c l 40_ln)
picked issues action { locate2 at l _In)
Request integrated-architecture-expand (llocate2 at !_In }
new-schema-name = Locate2 at l -In
returns schema

; schema late2-atl-In
nodes 1 . action {load-onto-cl30-l atl_ln}

2. action {unload-from-cl30 atl_In}
orderings 1 -->2
only _useJor _effects

atl_ln load at I
atl_ln unload at 1

conditions
supervised atl loaded at 2 from 1

e11ca(l.W1la1ion buster la11d-at-pacifica-l cl 40 at 2

Figure 8-32, Trace of the HTN phase of planning operation Vanson

The encoding above successfully synthesises the actions, conditions, ordering

constraints, and effects required by the locate equipment phase of operation

Vanson

Evaluating the integrated architecture

8.3.1 .3 Representing and planning for class EVACUA TE-CITIES
The EVACUATE-CITIES class represents the cities to be evacuated. The class is

related through the sub relation to class CITY. Figure 8-33, below, presents an

instance of the cities to be evacuated within a specific Pacifica operation.

Operation-Vanson-cities-to­
evacuate: EVACUATE-CITIES

cityA: CITY

Figure 8-33, Instance diagram of the cities to be evacuated within a Pacifica

operation

The actions attached to the classes EVACUATE-CITIES and CITY are depicted

below.

class EVACUATE-CITIES
abstract action : must(a, evacuate-all)

end class

class CITY
abstract action: must(a, evacuate ?self.no-people-to-evacuate}
primitive action :null;

end class

CITY has no primitive actions defined as the integrated planner produces only the

appropriate number of evacuation actions. The assignment of evacuation

equipment to cities is performed using the traditional HTN approach. The schema

resulting from the instance diagram in Figure 8-33 is depicted below.

schema evacuate-all-Operation-Vanson-cities-to-evacuate
expands { evacuate-all Operation-Vanson-cities-to-evacuate }
nodes I . action { evacuate 50 city A}
end schema.

This function demonstrates the strength of the integrated architecture. The

assignment of cargo aircraft etc. is performed in the new way. The evaluation of

the number of cities to be evacuated takes advantage of the variable node

reasoning within the integrated architecture. The precondition achievement search

of refining the cities to be evacuated is obtained in the traditional way.

283

Evaluating the integrated architecture

8.4 Automated planning expert perspective

The expert evaluation perspective obtained comments from automated planning

experts via conference paper submissions and presentations. The publications

relating to this section are (Jarvis and Winstanley 1996a; 1996b). In addition to

the successful submissions, papers were submitted to Third International

Conference on Automated Planning Systems (AIPS-96) and the 15th National

Conference on Artificial Intelligence (AAAI-97). The comments received from

these conferences' blind reviews are included within this evaluation.

The automated planning expert evaluation is presented under three headings

below: originality, expressiveness concerns, and semantic gap concerns.

8.4.1 Originality

Whilst this thesis has worked to determine the position of the integrated

architecture within existing planning theory, the author was concerned that other

work in the area of this thesis had not been identified. Comments received from

the AAAI-97 blind review summarised the integrated architecture as "very

original " and that it may " . . . lead to interesting application frameworks".

The originality comments correlate with the discussion within this thesis to

reinforce the conclusion that the integrated architecture is a new contribution to

planning theory.

8.4.2 Expressiveness argument concerns

284

Expressiveness argument concerns centre around two related points. First, that a

simple domain representation as supported by precondition achievement planning

is desirable. Second, that the integrated approach moves much of the complexity

of planning away from the domain independent planning engine and into the

domain theory.

Precondition achievement planning aims to provide a simple declarative action

representation and a powerful domain independent planning algorithm which will

identify and order the actions required by any problem solvable with the action set

represented. Within this framework, the problem solving capability is

implemented within the domain independent planning algorithm. The task of

encoding a new domain becomes one of identifying and declaring primitive

actions only.

Evaluating the integrated architecture

The precondition achievement approach is desirable from both the software

engineering and functionality perspectives. First, applying the technology to new

domains requires only primitive actions to be identified. Second, the resultant

encoding will solve any problem, however unforeseen, which can be solved with a

sequence of the actions specified.

Whilst precondition achievement planning has desirable properties, the technology

is proving difficult to realise. The sustained effort applied to the technology since

the 1 960's have failed to address completely the prohibitive search space

encountered when attempting to realise precondition achievement planning on

realistic problems. Whilst much progress has been made in this area (see Chapter

2), at the time of writing the application of precondition achievement planning has

been limited to either small toy domains engineered by planning system designers

or industrial domains with a small number of actions (of the order of five to ten).

The industrial success of task refinement planning has resulted from the provision

of constructs which permit a domain writer to specify action hierarchies and casual

structure. These constructs both increase the effort required to write a domain

description and may sacrifice completeness. The latter restriction occurs because

the planning engine will follow the constraints on condition establishment

specified by the domain writer, hence, all possible actions, orderings and variable

bindings will not be considered.

The integrated architecture is a logical progression from the task refinement

approach. A domain writer may not only specify action hierarchies and causal

structure, but also the knowledge from which these structures are generated.

In answer to the expressiveness concerns, precondition achievement planning has

not yet reached its industrial potential. Whilst it has desirable properties, if one

wishes to implement an automated planning application today, one must consider

either a task refinement only planner or an integrated MBP and task refinement

planner.

285

Evaluating the integrated architecture

8.4.3 Semantic gap

286

Planning experts raised two points relating to the semantic gap between

application domain knowledge and representation formalism. First, would domain

experts prefer to encode their knowledge within the MBP formalism used in the

integrated architecture or traditional task refinement schemata? Second, is the

isolation of the HTN engine's inference structure from the domain writer

simplifying the writing of domain descriptions or simply making the connection

more opaque?

Taking the first question, without performing experiments to compare experts

writing descriptions in both task refinement and integrated formalisms, it is not

possible to provide a definitive answer to this question. However, the planning

community provides little assistance in the form of methods for writing domain

descriptions. The constructs supported by the integrated architecture map directly

to those supported by object-oriented based methodologies. Thus, one may

conclude that the integrated architecture is closer to tool supported methodologies

than current classical formalisms.

In answer to the second question, the compilation of conditions from domain

relationships does isolate the domain writer from the condition type mechanism

utilised by the task refinement component of the integrated architecture. This

isolation is desirable if the new constructs map closely to the knowledge within

applications domains, reducing the need for the domain writer to understand the

mechanisms of the planning engine. It is not, however, possible to evaluate this

conclusion without further experimentation.

Evaluating the integrated architecture

8.5 Industrial planning expert perspective

Construction industry planning experts expressed two concerns: the domain

modelling effort, and the ability to update and maintain a completed plan.

The planning experts noted the time and effort demanded by the elicitation phase

required to capture a fragment of the knowledge utilised within a relatively small

construction project. Extrapolating this effort to all the possible components used

within construction projects, the knowledge elicitation overhead would prohibit a

single organisation implementing an automated planning system.

If automated planning is to be implemented in the construction industry, an

industry wide approach is required to spread the modelling overhead. This issue is

expanded in the further work section within Chapter 9.

With the ability to automate the synthesis of plans established, the experts'

concern moved from the feasibility of automated planning to the issues of

updating and maintenance of plans. A multi million pound construction project

would require a full-time planning expert. At a cost of approximately £80,000 per

year, the expert is not a significant cost to the project. It is the ability of this expert

to identify and cost issues arising from design changes which effect the

profitability of a project. For example, a customer may change the type of door

used within a hotel building after the project has commenced. Such a change may

affect the order in which other activities may completed resulting in a increase in

construction cost. The human planner must identify and justify these costs to the

customer to a standard where the customer will agree to meet the extra costs or

reverse the design change.

The research reported in this thesis has been concerned with plan synthesis. The

expert's requirements identify that plan synthesis must be integrated with the

complete process under which planning is performed. This issue is expanded in

the further work section within Chapter 9.

287

Evaluating the integrated architecture

8.6 Summary and concl usions

288

The integrated architecture developed in Chapter 7 was motivated by a number of

complementary strengths between classical and model-based planning

technologies. The strengths and limitations perspective identified the facet(s) of

the integrated architecture which address each of these limitations. Exploiting the

expressive mechanisms which may be applied to a static domain model, the

integrated architecture synthesis the actions, conditions, effects, and ordering

constraints required by a specific problem instance. The results of this process are

combined and maintained by a traditional task refinement planning system.

Applying the integrated architecture to the Pacifica domain formed the literature

evaluation perspective. The perspective demonstrated the generality of the

architecture and the benefits of providing a mixed mode integrated - task

refinement capability. Whilst planning the location of evacuation equipment

within the Pacifica domain, the architecture was able to exploit both the structure

of the domain and the expressive inference mechanisms of the integrated

architecture. When solving the search based evacuation of outlying cities, the

precondition achievement functionality of the task refinement planner was

exploited

The automated planning expert evaluation raised two issues. First, it motivated a

comparison between the integrated approach and precondition achievement

planning. Second, it identified the need for further work to examine experts'

encoding preferences.

Taking the first case, precondition achievement planning' s aim is to provide the

desirable capability of a declarative action representation combined with a domain

independent planning algorithm which can solve any problem realisable with a

domain' s actions. The search space which must be navigated to achieve such a

functionality has not yet, however, been adequately addressed. Whilst the

integrated architecture requires domain dependant inference routines to be written,

the architecture does exploit the domain independent question and answering

algorithms supported by classical planning. The writing of domain dependant

inference routines is a necessary overhead if one wishes to implement an industrial

planning application within existing planning theory.

Evaluating the integrated architecture

Taking the second case, it is not possible to definitively answer the question of

domain experts' encoding preferences without experimentation. Such a study

would require observations of experts encoding their domain knowledge within

task refinement and integrated formalisms. However, the constructs supported by

the integrated architecture map closely to those supported by current object­

oriented methodologies. Thus, the integrated architecture provides a

representation which is closer to tool supported methodologies than existing task

refinement planners.

In conclusion, the integrated architecture provides a new approach to automated

planning which combines the relative strengths of classical and model-based

technologies. The compilation of task networks from a domain model permits

expressive constructs to be exploited, addressing the expressiveness, redundancy,

and semantic distance issues identified in Chapter 4 and Chapter 6. The assembly

of task networks into a complete plan permits the powerful condition and effect

reasoning mechanisms of task refinement planning to be exploited to ensure a

consistent plan with condition and effect constraints established and maintained.

289

Evaluating the integrated architecture

Blank

290

Summary, conclusion, and further work

9. Summary, conclusion, and further work
This is not the end. It is not even the beginning of

the end. But it is, perhaps, the end of the beginning.

Winston Churchill (1 874 - 1 965)

9.1 Summary

Precondition achievement planning aims to provide a declarative action

representation, encapsulating planning knowledge in a domain independent

planning algorithm. The computational complexity in providing this function has

yet to be addressed; limiting the technology to the research laboratory.

Task refinement planning permits a domain to be structured into a hierarchy of

actions with constraints on the methods of establishing and maintaining

conditions. Whilst increasing the effort of writing domain descriptions and losing

completeness, the technology addresses in part the computational complexities of

planning, allowing task refinement planners to be applied to industrial problems.

Model-based planning has been developed in isolation by an effort concerned with

implementing industrial planning applications. Whilst the technology has achieved

industrial success, its independence from classical planning has prohibited a cross

fertilisation of ideas.

Model-based planning may benefit from classical planning' s conditions, effects,

and associated question and answering function for establishing and maintaining a

plan's causal structure. Task refinement planning may benefit from model-based

planning' s constructs for capturing and reasoning with a domain expert' s planning

knowledge.

The integrated architecture exploits model-based planning's reasoning to

synthesise the actions, conditions, effects, and ordering constraints required by a

problem. The results of this reasoning are compiled into task networks for

assembly by a task refinement planner into a complete and consistent plan.

Whilst the architecture's applicability is limited to domains structured around the

subcomponent relation, in such cases, it provides a more effective technique than

either technology applied in isolation.

291

Summary, conclusion, and further work

9.2 Concl usion

292

A universal domain-independent planning algorithm is a desirable functionality.

NASA's autonomous exploration goals are a case-in-point of the most demanding

software control applications. NASA plans to send " . . . spacecraft where we

cannot see, let them search beyond the horizan, accept that we cannot control

them while they are there, and rely on them to tell the tale " (reported in Williams

1 996, pp 279). Williams notes that the number of issues that software controlling

such spacecraft must entertain are too large to implement explicitly. The control

software must be capable of reasoning with the set of actions available to the

spacecraft to generate appropriate courses of action in any situation. Precondition

achievement planning's aim is to provide this functionality; however, it has yet to

fully address the complexity of the problem.

Precondition achievement planning adds actions and ordering constraints to a plan

to establish action preconditions and goal conditions with action effects. Task

refinement planning allows a domain to be structured into a set of plan fragments

which are assembled to form a plan, making domain specific knowledge available

to a domain independent algorithm.

This thesis demonstrates that it is not feasible to encode a complex domain into

plan fragments. The integrated architecture provides an alternative to the

precondition achievement approach of synthesising actions based solely on

establishing conditions. By viewing task networks as the result of a planning

phase, actions, conditions, effects, and ordering constraints may be synthesised

from a central domain model. As this reasoning is in a space where determining

the truth of conditions is computationally inexpensive, an expressive formalism

which maps closely to a domain expert's knowledge may be used. By exploiting

task refinement mechanisms, the results of the compilation phase may be

assembled into a complete and consistent plan.

In terms of implementation detail, this thesis describes how task networks can be

compiled from a static domain model structured around objects and the

subcomponent relationship. In terms of approach, this thesis demonstrates the

planning function which can be achieved in the space of a static domain model,

and that the results of this reasoning may be combined using classical techniques.

Whilst precondition achievement planning is a desirable functionality, it has not

yet developed to meet the demands of commercial applications. The integrated

architecture provides an industrial architecture for addressing specific planning

applications.

Summary, conclusion, and further work

9.3 Further work

This section describes research directions motivated by the integrated architecture.

9.3.1 Analysis of the integrated architecture as a problem solving

method

Knowledge Engineers have noted that the frame and rule constructs used to

implement knowledge based systems do not provide a sufficient abstraction when

addressing complex domains. The motivation for the integrated architecture

detailed in Chapters 4 and 6 adds weight to the argument that task refinement

constructs suffer the same limitation.

Chandrasekaran (1 983) advocates the use of domain independent problem solving

methods (PSM) as a more suitable abstraction. PSMs specify different ways in

which a problem solver makes use of inferences from a knowledge base. If a

developer has a library of such methods available, they may identify an

appropriate method and then use it to structure the knowledge base development.

Protete II (Eriksson et. al. 1 995) is a meta-tool for supporting a developer in

taking their analysis of a function a knowledge based system is to discharge and

matching that analysis with an appropriate method from a library of PSMs. Protete

II assists in the case of several methods being appropriate to achieve a task by

indicating the conditions under which each is appropriate. Selection criteria range

from the availability of expertise to computation time and space requirements.

Further work is suggested to consider the integrated architecture as a problem

solving method alongside the propose critique modify classification of classical

only planners developed by Valente (Valente 1995). This work requires the

formalisation and development of criteria leading to the selection between

methods and their implementation within a tool similar to Protete II.

A useful extension would be the study of construction planning and planning

domains in general to test the generality of the integrated architecture as a

planning problem solving method. This work could continue the construction of

the KADS model set presented in chapter 5 to define the task and inference layers

of the expertise model. This analysis may identify new structures which can be

mapped onto classical planners through a process similar to the compilation phase

of the MBP. A major contribution would be the identification of the facets which

lead to each methods applicability in preference to others.

293

Summary, conclusion, and further work

294

This is an important further development of the integrated architecture. The

distance between human knowledge and a task refinement formalism is at present

to great. By providing structured domain encodings methods akin too those

offered by the architecture the domain modeller is provided with constructs which

map more closely to the domain under consideration.

Summary, conclusion, and further work

9.3.2 Tool support for model construction

It is well understood that communication between a knowledge engineer and

experts is difficult. The knowledge engineer initially lacks the domain knowledge

to ask optimal questions and the expert often finds it difficult to inspect and

communicate their own knowledge. These issues were encountered during the

engineering of the construction domain described in Chapter 5

To address this issue it has been suggested that experts play a greater role in the

encoding of knowledge directly into computers, hence, removing the need in part

to communicate with knowledge engineers. The OPAL tool (Musen et al. 1987)

developed to aid expert knowledge editing for the ONCOCIN (Shortliffe et. al.

1981) cancer treatment expert system is an example of this work. In OP AL experts

are not expected to understand the constructs used to internally encode knowledge.

Instead the user is provide with a tool based on the structure of the cancer

treatment domain itself. The expert may the edited directly the system's knowledge

base.

Two related tools inspired by OP AL are described below as suggested further

work to support the development of knowledge bases for the integrated

architecture.

Domain structuring tool

The MBP modelling constructs are structured according the well defined rules.

For example, a model may contain only one PROJECT class and only classes of

type PRIMITIVE may have both abstract and primitive actions associated. A

domain structuring tool may be implemented to both prompt and assist a

knowledge engineer when encoding a domain within the MBP constructs.

File Edit 0 >lions

D Project D
Aggre

, - - - - ..,
I I
i_ _ _ _ J
Prim

r --.. 1
i Building i
t J

Beam

TO DO
Attribllles Building
Atuibuccs Beam
Ah Action Benm

ERROR proj�l cannot be
1111\de a Sllbtomponcnl of

another:: cinss

uggestlons: IV.fake beam a primitive object as it hns no subcomponents?

Figure 9-1, Suggested structuring tool interface

295

Summary, conclusion, and further work

Figure 9-1 depicts a suggested interface to a structuring tool and demonstrates a

number of the possible support features. On the left of the figure is a palette of

available modelling constructs. The knowledge engineer may select from the

palette and create the model in the centre of the figure. The right side depicts a to­

do list indicating the detail the domain modeller must complete. In the example

defining the attributes of the classes and the abstract actions of class BEAM are

shown as outstanding. At the bottom of the figure a suggestion bar offers advice to

the domain modeller. Within the model a sample error message is depicted

indicating the modeller has violated a modelling constraint. In this instance, the

modeller has linked the PROJECT class as a subcomponent of another class, thus,

invalidating the model.

Whilst the tool offers support for constructing a valid model, its constructs are

oriented towards the underlying representation and not the domain under

consideration. The second domain refinement tool is suggested below for use by

domain experts after a knowledge engineer has initially structured a domain.

Domain refinement tool

296

The proposed domain-structuring tool supports the knowledge engineer in

generating the initiation structure of an application domain. The domain

refinement tool is suggested to allow domain experts to enter detailed domain

knowledge. This second tool is motivated by the concepts introduced in OPAL.

There are two stages envisaged to developing such a tool for a specific domain.

First, identifying the mapping from an "experts" domain model to the MBP

constructs. For example, identifying how domain experts model the association

between component classes and actions would lead to the development of capture

tool permitting experts to directly enter knowledge of this type. This process may

be repeated for each of the knowledge types required by the MBP. The initial

domain structure composed with the structuring tool may aid the process.

Specifically, defining the high level classes within a domain will aid the

understanding of the domain vocabulary and specify the classes which may be

refined further and the default attributes, relationships, and knowledge which will

be required by new classes.

The suggested second stage defines how the individual knowledge capture tools

defined in the first stage may be combined into a complete tool. Example issues

include the order in which questions are asked and the level of freedom the expert

is permitted in selecting knowledge types to enter. An important consideration is

the interleaving between planning and knowledge capture. Once a critical mass of

knowledge has been encoded, planning may then proceed with the system

prompting experts for knowledge about new, possibly more specialised and

therefore less common, entities.

Summary, conclusion, and further work

The result is envisaged as a support tool, derived by the underlying MBP

constructs and a knowledge engineer's structuring of a domain that allows domain

experts to enter detailed domain knowledge. The need for such a tool was

highlighted by the construction industry expert evaluation in Chapter 8. Experts

were concerned at the cost of capturing the vast quantify of knowledge within the

industry. Tool support would allow a number of experts, possibly from different

organisations, to collectively build a domain model with each contributing

knowledge from their specific areas of expertise.

297

Summary, conclusion, and further work

9.3.3 Explanation

298

Current explanation tools may exploit the structures generated by task refinement

planners to explain the rational behind a plan. Further work is suggested to make

available the MBP structures to such tools.

The structures generated by task refinement planners are centred on condition

establishment from action effects (GOST), expansion history of an action (i.e. the

higher level tasks from which it was included), and the filter condition selection

mechanism. From this set, it is possible to present a plan rational in the form

below:

• Action install bolt-sink-to-wall was included as part of the plumbing

task.

• The Plumbing-I method was used to achieve the plumbing task as the

methods only_use_if condition EEC-Standard-to-plumbing equalled

applied.

• Action move plant from basement was included to protect the

precondition of action pour basement floor named basement-floor-area

clear.

• Action move plant from basement was ordered after action dig­

basement-structure as the action is required by the construct-basement­

infrastructure task.

MBP utilises rule-based reasoning for determining the need for actions and

relationships between components and rule-based reasoning for ordering

constraints between actions. These mechanisms encode and reason with domain

expert knowledge. With the careful recording of the reasoning processes it would

be possible to argument the task refinement explanation with this knowledge.

This suggested direction would require the study of existing techniques for

exploiting the results of rule-based reasoning for explanation.

Summary, conclusion, and further work

9.3.4 Contin ued use of industrial planning applications within planning

research

The Defence Advanced Research Project Agency I Rome Laboratory Planning

Initiative (ARPI) is focusing automated planning research on the demands of

industrial planning applications. This work is examining and addressing the issues

of why plans are created, how they areas used, updated, and maintained.

The collaboration with an industrial organisation as part of the research reported

in this thesis highlighted this integration with an organisation's business process as

an essential attribute of industrial automated planning applications. Automated

planning research has developed powerful plan synthesis and plan representation

technologies. Integration of these technologies with industrial planning tools (e.g.

Microsoft Project), databases, and tools (e.g. AutoCAD) is essential for their

acceptance into industry. The Optimum-AIV system (Tate 1 996c) is an example of

work of this type. The system integrates technology based upon the 0-Plan system

with Matra Marconi Space's planning process for production of vehicle equipment

bays for the European Space Agencies' Arian-4 launcher.

299

Summary, conclusion, and further work

9.3.5 Detailed issues

9.3.5.1 Model-based planning algorithm

The model-based planning algorithm completes action synthesis before assessing

dependency constraints. In each process, the model is traversed in a depth first

path. Actions must be synthesised before dependency constraints are considered as

the constraints are placed between actions. If an object's dependency is assessed

before the action synthesis process is complete, the actions of the objects upon

which the object is dependent are not guaranteed to have been generated.

The depth first transversal of the model ensures that each object is processed. In

the current implementation any transversal order is permitted - providing the

constraint of processing each object in the model is maintained.

Further research should consider the potential for a non sequential process. For

example, there may be benefits from assessing all the actions and dependency

constraints at a modelling level before moving to the next. The lower modelling

level may then consider the actions and constraints placed at the higher level. Such

an approach would allow rules of the form "if self.supercomponent.

abstract-action is dependent upon an action of another type, then include action

A". This approach permits actions and ordering constraints to be inferred based on

other actions and orderings within a plan without considering the complexities of

partial-order planning.

9.3.6 Resources

300

The model-based paradigm associates resources with actions through a similar

mechanism as actions to objects. The development of the integrated architecture

simplified the issues to be addressed by ignoring the issue of resources.

Further work should consider a new phase to the model-based planning algorithm

for the association of resources with actions, and the integration of these structures

with the task network compilation algorithm.

References

1 0. References
Anderson. S. , & Cohen. P . , 1996, On-line planning simulation, In Proceedings of

The Third International Conference on Artificial Intelligence Planning Systems,

Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

Andrews. S . , Kettler. B . , Erol. K., & Hendler. J., 1995, UM Translog: A Planning

Domain for the Development and Benchmarking of Planning Systems, Technical

report CS TR-3487, Department of Computer Science, University of Maryland,

Maryland, USA.

Allen. J., Hendler. J., & Tate. A., 1990 (eds.) Readings in Planning, Morgan­

Kaufman Publishers, Palo Alto, California, USA, ISBN 1 -55 860- 1 30-9

B aader. F., 1 990, A formal definition for expressive power of knowledge

representation languages. In Proceedings of the 9Lh European Conference on

Artificial Intelligence, Stockholm, Sweden.

B arber. T., Marshall. G., & B oardman. J., 1 987, A Philosophy and Architecture

for a Rule-Based Frame System: RBFS, International Journal of Artificial

Intelligence in Engineering.

B arrett. A., Golden. K., Penberthy. S . , & Weld. D. , 1 994, UCPOP User's Manual

(Version 2.0), Technical Report 93-09-06, Department of Computer Science and

Engineering, University of Washington, Seattle, USA.

Barrett. A., & Weld. D. , 1992, UCPOP: A Sound, Complete, Partial Order

Planner for ADL, In Proceedings of KR92, 103-1 14, Cambridge, MA.

B arrett. A., & Weld. D . , 1994a, Task-Decomposition via Plan Parsing, In

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),

Seattle, USA

Barrett. A., & Weld. D. , 1994b, Partial-order planning: Evaluating possible

efficiency gains, Artificial Intelligence, vol. 67 no. 1 , pp 7 1-1 12.

Barros. L., Valente. A., & Benjarnins. R. , 1996, Modelling Planning Tasks, In

Proceedings of The Third International Conference on Artificial Intelligence

Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

Beetz. M. , & McDermott. D., 1996, Local Planning of Ongoing Activities, In

Proceedings of The Third International Conference on Artificial Intelligence

Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

301

References

302

Bell. C., & Tate. A., 1985, Using Temporal constraints to Restrict Search in a

Planner. , Technical report, AIAI-TR-5, Artificial Intelligence Applications

Institute, University of Edinburgh, UK.

Benjamins. R., Barros. L., & Valente. A., 1996, Constructing Planners Through

Problem Solving Methods, In Proceedings of the 1 Oth Knowledge Acquisition for

Knowledge-Based Systems Workshop (KA W 96), Gains . B & Musen. M. editors,

Banff.

Blythe. J . , 1 996, Event-Based Decompositions for Reasoning about External

Change in Planners, In Proceedings of The Third International Conference on

Artificial Intelligence Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN

0-929280-97-0.

Booch. G., 199 1 , Object-oriented Design with Applications, The Benjamin/

Cummings Publishing Company, California, USA, ISBN 0-8053-009 1 -0

Brooks. R., 1985, A Robust Layered Control System for a Mobile Robot, A.I.

Memo No. 864, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Massachusetts, USA.

Brooks. R. , 199 1 , Intelligence Without Reason, A.I. Memo No. 1 293, Artificial

Intelligence Laboratory, Massachusetts Institute of Technology, Massachusetts,

USA.

Brooks. R., 199 1 , Intelligence without representation, Artificial Intelligence, 47,

pp 1 39- 1 60.

Chandrasekaran. B. , 1983, Towards a taxonomy of problem-solving types, A/­

Magazine, Vol. 4, part 4, pp 9-17.

Chapman. D, 1 987, Planning for conjunctive goals, Artificial Intelligence, 32, pp

333-378 .

Chen. P . , 1 976, The entity relationship model - toward a unified view of data,

TODS 1 : 1 , 1 976.

Chien. S . , 1996, Static and Completion Analysis for Planning Knowledge B ase

Development and Verification. In Proceedings of The Third International

Conference on Artificial Intelligence Planning Systems, Edinburgh, Scotland,

AAAI Press, ISBN 0-929280-97-0.

Coddington. A., & Aylett. R. , 1996, Plan generation for multiple autonomous

agents: an evaluation, In Proceedings of the 15�' Workshop of the UK Planning

and Scheduling Special Interest Group, Liverpool John Moores University,

Liverpool, UK.

References

Collins. G. , & Pryor. L., 1992, Achieving the functionality of filter conditions in a

partial order planner, In Proceedings of the l Oth National conference on Artificial

Intelligence (AAAI-92), San Jose, California, USA, pp 375-380.

Collins. G., & Pryor. L., 1994, On the misuse of filter conditions: a critical

analysis, in B ackstrom. C., & Sandewall. E. , eds., Current Trends in AI Planning,

IOS press, pp 1 05-1 1 6, Netherlands, ISBN 90 5 199 153 3 .

Cook. S. , & Daniels. J . , 1994, Designing Object System: Object-Oriented

Modelling with Syntropy, Prentice Hall International, Hertfordshire, UK, ISBN 0-

13-203860-9

Currie. K., & Tate. A., 199 1 , 0-Plan: the Open Planning Architecture, Artificial

Intelligence, vol. 5 1 , part 1 , North-Holland.

Dalton. J . , 1 993, "A simple house-building domain with resources, a.k.a. house 5",

[available from] http://www.aiai. ed.ac.uk/-oplan!demonstrations [accessed 2nd

April 1 997] .

DeMarco. T., 1 982, Controlling Software Projects, Yourdon Press, New York,

USA.

Drabble. B . , & Kirby. R., 199 1 , Associating A.I. Planner Entities with an

underlying Time Point Network, In Proceedings of the lst European Workshop on

Planning, Sankt Augustin, Germany.

Drabble. B . , & Tate. A., 1994, The Use of Optimistic and Pessimistic Resource

Profiles to Inform Search in an Activity Based Planner, In Proceedings of the

Second International Conference on Artificial Intelligence Planning Systems,

Chicago, USA.

Drabble. B . , Gil. Y. , & Tate. A., 1995, Yes, But why is that plan better ?, In

Proceedings of the International Conference on Artificial Intelligence in the

Petroleum Industry, Lillehammer, Norway.

Drummond. M., 1994, On Precondition Achievement and the Computational

Economic of Automatic Planning, in Backstrom. C., & Sandewall. E., eds. ,

Current Trends in AI Planning, IOS press, pp 6- 13 , Netherlands, ISBN 90 5 1 99

153 3 .

Erol. K. , Hendler. J . , & Nau. D. , 1993, Semantics for Hierarchical Task-Network

Planning, Technical Report, CS-TR-3239, Computer Science Department,

University of Maryland, Maryland, USA.

303

References

304

Erol. K., Hendler. J., & Nau. D., 1 994a, UMCP: A Sound and Complete

Procedure for Hierarchical Task-Network Planning, In Proceedings of the Second

International conference on Artificial Intelligence Planning Systems, Chicago,

USA.

Erol. K., Hendler. J., & Nau. D., 1994b, Task Refinement Planning: Complexity

and Expressivity, In Proceedings of the l21h National Conference on Artificial

Intelligence (AAAI-94), Seattle, USA.

Erol. K., 1995, Hierarchical Task Network Planning: Formalisation, Analysis, and

Implementation, PhD Thesis, University of Maryland, USA.

Eriksson . H., Shahar. Y., Tu. S . , Puerta. A., Musen. M., 1995 , Task modelling

with reusable problem-solving methods, Artificial Intelligence, 79, pp 293-326,

Elsevier.

Etzioni. 0., 1 990, Why PRODIGY/EBL Works, in proceedings of the 8 1h National

Conference on Artificial Intelligence (AAAI-90), Boston, Massachusetts, USA.

Etzioni. 0., 1 993, Intelligence without Robots (A Reply to Brooks), Al Magazine,

Winter, 1993.

Feigenbaum, E. , 1 980, Knowledge Engineering: The Applied Side of Artificial

Intelligence. , Memo HPP-80-21 , Artificial Intelligence Laboratory, Stanford

University, California, USA.

Ferguson. G. , Allen. J., & Miller. B . , 1 996, TRAINS-95, Towards a Mixed­

Initiative Planning Assistant, In Proceedings of The Third International

Conference on Artificial Intelligence Planning Systems, Edinburgh, Scotland,

AAA! Press, ISBN 0-929280-97-0.

Fikes. R., & Nilsson. N., 197 1 , STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving, Artificial Intelligence, Vol. 5 , No. 2, North­

Holland publishing Co., Amsterdam, Netherlands.

Fowler. N., Cross. S . , Garvey. T. , & Hoffman. M. , 1996, The ARPA-Rome

Laboratory Knowledge-Based Planning and Scheduling Initiative (ARPI), Ed.

Tate. A., Advanced Planning Technology, Technological Achievements of the

APRA/Rome Laboratory Planning Initiative, AAAI Press, California, USA, ISBN

0-929280-98-9

Fox. M. , & Long. D. , 1 995, Hierarchical Planning using Abstraction, In

Proceedings of the ICC on Control Theory and Applications, IEE.

Fox. M., & Long. D. , 1996, An Efficient Algorithm for Managing Partial Orders

in Planning. , In Proceedings of the 1 51h Workshop of the UK Planning and

References

Scheduling Special Interest Group, Liverpool John Moores University, Liverpool,

UK. Vol. 2, pp 1 60 - 170.

Fuchs. F. , 1996, Multi-Agent Collaboration in Competitive Scenarios, In

Proceedings of the 15th Workshop of the UK Planning and Scheduling Special

Interest Group, Liverpool John Moores University, Liverpool, UK.

Georgeff. M., 1987, Planning, The Annual Review of Computer Science, Vol. 2.,

Annual Reviews Inc.

Georgeff. M., & lngrand. F, 1 989, Decision making in an embedded reasoning

system, In Proceedings of the 1 1 th International Joint Conference on Artificial

Intelligence.

Ginsberg. M., 1989, Universal planning: an (almost) Universally bad idea, Al

magazine, part 10, pp 40-44.

Ginsberg. M., 1993, Essentials of Artificial Intelligence, Morgan Kaufmann

publishers, San Francisco, California, USA. ISBN 1 -55860-334-4.

Golden. K., Etzioni. 0., & Weld. D., 1 994, Omnipotence without omniscience:

Sensor management in planning, In Proceedings of the 12th National Conference

on Artificial Intelligence (AAAl-94), Seattle, USA.

Goodwin. R., 1996, Using Loops in Decision-Theoretic Refinement Planners, In

Proceedings of The Third International Conference on Artificial Intelligence

Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

Haddaway. P, & Hanks. S., 1992, Representations for Decision Theoretic

Planning: Utility Functions for Deadline Goals, In Proceeding of the 3rd

International Conference on the Principles of Knowledge Representation and

Reasoning, pp 7 1 -82, California, USA, Morgan Kaufman.

Jarvis . P. , & Winstanley. G., 1996a, Dynamically assessed and reasoned task

(DART) networks, in proceedings of the Sixteenth Annual Technical Conference

of the British Computer Society Specialist Group on Expert Systems, Cambridge,

UK, ISBN 1 899621 15 6

Jarvis. P. , & Winstanley. G., 1996b, Objects and Objectives: the merging of object

and planning technologies, in proceedings of the 1 5th Workshop of the UK

Planning and Scheduling Special Interest Group, Liverpool, UK.

Joslin. D. , & Pollack. M., 1994, Least-Cost Flaw Repair: A Plan Refinement

Strategy for Partial-Order Planning, In Proceedings of the 12th National

Conference on Artificial Intelligence (AAAI-94), USA.

305

References

306

Joslin. D. , & Pollack. M., 1995, Passive and Active Decision Postponement in

Plan Generation, in proceedings of the 13 th European Workshop on Planning,

Assisi, Italy.

KADS Consortium, 1997, Rationale of the KADS - II project approach, available

from http://www.swi. psy. uva.nl/projects/ComonKADS/

description/subsection3. l . l .html [accessed 1 5th June 1997]

Kambhampati. S . , 1 994, Comparing Partial Order Planning and Task Reduction

Planning: A preliminary report, In Proceedings of the 1 21h National Conference on

Artificial Intelligence (AAAI-94), Seattle, USA, working notes of the workshop

on Comparative Analysis of Planning Systems.

Kambhampati. S. , 1 995, A Comparative Analysis of Partial Order Planning and

Task Reduction Planning, SIGART Bulletin, Vol. 6, No. l

Kambhampati . S . , 1996, Refinement Planning: Status and Prospects, In

Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-96),

Portland, Oregon, USA.

Kartam. N., Levitt. R., & Wilkins. D., 1 99 1 , Extending Artificial Intelligence

Techniques for Hierarchical Planning, ASCE Journal of Computing in Civil

Engineering.

Kingston. J, Shadbolt. N. , & Tate. A., 1996, CommonKADS Models for

Knowledge Based Planning, In Proceedings of the 1 4th National Conference on

Artificial Intelligence (AAAI-96), Portland, Oregon, USA.

Kitchin. D. , & McCluskey. T., 1 996, Object-centred planning, In Proceedings of

the 1 5th Workshop of the UK Planning and Scheduling Special Interest Group,

Liverpool John Moores University, pp 198-210.

Knoblock. C., 1 996, Building a Planner for Information Gathering: A Report from

the Trenches, In Proceedings of The Third International Conference on Artificial

Intelligence Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-

929280-97-0.

Kushmerick. N., Hanks. S . , Weld. D, 1995 , An algorithm for probabilistic

planning, Artificial intelligence, 76, pp 239-286

Luger. G., & Stubblefiled. W., 1 993, Artificial Intelligence, Structures and

Strategies for Complex Problem Solving, 2nd edition, The Benjamin I Cummings

Publishing Company Inc. , California, USA, ISBN 0-8053-4780-1

Manna. Z., & Waldinger. R. , 1974, Knowledge and reasoning in program

synthesis, Artificial Intelligence, Vol. 6, part. 2, 175-208.

References

Marshall . G., Boardman. J., & Murray. P. , 1987, Project formulation and bidding

in the flight simulation industry using Knowledge-based techniques, In

Proceedings of the Royal Aeronautical Society International Conference on the

Acquisition and Use of Flight Simulation Technology in Aviation Training, 1987.

Marshall. G., 1 988, PIPPA: The professional intelligent project planning assistant,

PhD thesis, The University of Brighton.

McAllester. D., & Rosenblitt. D. , 199 1 , Systematic non-linear planning. In

Proceeding of the 9th National Conference on Artificial Intelligence, Anaheim,

California, USA. pp 634-639.

McCarthy. J., & Hayes. P., 1969, Some Philosophical Problems From the

Standpoint of Artificial Intelligence, Machine intelligence 4, Edinburgh University

Press, Scotland, UK.

McCluskey. T. , & Porteous. J . , 1995, On Extracting Goal Structure from Planning

Domain Specifications, In Proceedings of the 1 4th Workshop of the UK Planning

and Scheduling Special Interest Group, Wivenhoe House Conference Centre,

Essex University, 22 - 23rd November.

McCluskey. T. , & Porteous. J . , 1 996a, Engineering and Compiling Planning

Domain Models to Promote Validity and Efficiency, Technical Report RR9606,

School of Computing and Maths, University of Huddersfield.

McCluskey. T & Porteous. J., 1 996b, Planning Speed-up via Domain Model

Compilation. , Ghallab. M., & Milani. A. (eds.), New Directions in AI Planning, pp

233-244, IOS Press.

McCluskey. T. , Kitchin. D., & Porteous. J . , 1996, Object-Centred Planning:

Lifting Classical Planning from the Literal level to the Object Level . In

Proceedings of the 8th IEEE International Conference on Tools with Artificial

Intelligence.

McDermott. D., 1 99 1 , Regression Planning, International Journal of Intelligent

Systems, vol. 6, pp 357-41 6.

McDermott. D. , 1 992, Transformational Planning of Reactive Behaviour,

Technical Report, CSD-RR-94 1 , Yale University, Department of Computer

Science, USA.

Minton. S., Bresina, J., & Drummond. M. ,199 1 , Commitment strategies in

planning: a comparative analysis, In Proceedings of the International Joint

Conference on Artificial Intelligence (IJACl-91) , pp259-265

307

References

308

Minton. S . , Knoblock. C, Kuokka D, Gill. Y. , Joseph. R., & Carbonell. J, 1989,

PRODIGY 2.0: the manual and tutorial, technical report, CMU-CS -89- 146,

School of Computer Science, Carnegie Mellon University, USA.

Minton. S., Bresina. J . , & Drummond. M., 1 994, Total-Order and Partial-Order

Planning: A Comparative Analysis, Journal of Artificial Intelligence Research,

vol. 2, pp 227 - 262.

Musen. M., Fagan. L, Combs. D., & Shortliffe. E., 1987, Use of a domain model

to drive an interactive knowledge-editing tool, International Journal of Man­

Machine Studies, Vol 26, pp 105-1 2 1 .

Nau. D . , Gupta. S . , & Regli. W . , 1995, AI Planning Versus Manufacturing­

Operation Planning: A Case Study, IJCAI-95.

Newell. A., & Simon. H., 196 1 , GPS, A Program That Simulates Human Thought,

Lernende Automaten, Munich, Germany.

Newell. A., Simon. H. , 1 976, Computer science as empirical enquiry: symbols and

search., Communications of the ACM, 19:3 : 1 1 3- 126

Newell. A., 1 982, The Knowledge Level., Artificial Intelligence, 1 8, pp 87-127

0-Plan Team, 1 994, O-Plan2 ver 2.2 Architecture Guide ver 2.2, Technical

Report, Artificial Intelligence Applications Institute, University of Edinburgh,

Scotland.

Parsaye, K. & Chignell. M., 1988, Expert Systems for Experts, John Wiley,

Canada, ISBN 0-47 1-60721-5.

Pednault. E. , 1988, Synthesising Plans that Contain Actions with Context­

Dependent Effects, Computational Intelligence, vol. 4, part 4, pp 356-372.

Pednault. E., 1 989, Adi: Exploring the middle ground between STRIPS and the

Situation Calculus, In Proceedings of the First Knowledge Representation

Conference, San Mateo, California, USA, Morgan Kaufman.

Penberthy. J. , & Weld. D. , 1 992, UCPOP: A sound, complete, partial order

planner for ADL, In Proceedings of the 3rd international conference on principles

of knowledge representation and reasoning, pp 103- 1 04.

Poet. M. & Smith. D . , 1992, Conditional Non-linear Planning, In Proceedings of

the First International Conference on Artificial Intelligence Planning Systems Los

Altos, CA, Morgan Kaufmann, p 1 89 197

References

Poet. M., & Smith. D. , 1993, Threat-Removal Strategies for Partial-Order

Planning, In Proceedings of the 1 1 th National Conference on Artificial Intelligence

(AAAI-93), Washington DC, USA. pp 492-499.

Pratt. I . , 1 994, Artificial Intelligence, Macmillian Press, London, UK, ISBN 0-

333-59755-9

Reece. G., Tate. A., Brown. D., Hoffman. M., & Burnard. R., 1 993, The PRECiS

Environment, In Proceedings of the l l 1h National conference on Artificial

Intelligence (AAAI-93), Washington, D.C, USA, ARPA-RL planning initiative

workshop.

Rumbaugh. J., Blaha. M., Premerlani. W., Eddy. F., Lorensen. W., 1 99 1 , Object­

Oriented Modelling and Design, Prentice-Hall International, New Jersey, USA.

ISBN 0- 1 3-630054-5.

Sacerdoti. E., 1 975a, Planning in a Hierarchy of Abstraction Spaces, vol. 5, no 2,

Artificial Intelligence, North Holland Publishers, Netherlands.

Sacerdoti. E. , 1975b, The Non-linear Nature of Plans, In Proceedings of the

Fourth International Joint Conference on Artificial Intelligence, pp 206-214,

California, USA, International Joint Conference of Artificial Intelligence.

Schreiber. G, 1 992, The KADS approach to knowledge engineering, editorial

special issue, Knowledge Acquisition, vol. 4, part 1 , pp 1 -4.

Schreiber. G., Wielinga. B., & Breuker. J . , 1993, KADS A Principled Approach to

Knowledge-Based system development, Academic Press, London, UK, ISBN 0-

1 2-629040-7 .

Searle. J . , 1 980, Minds, brains and programs. The Behavioural and Brain Science,

3, pp 417-424

Shortliffe. E., Scott. A. , B ischoff. M., Van Melle. W. , & Jacobs. C., 198 1 ,

ONCOCIN: An expert system for oncology protocol management, In Proceedings

of the Seventh International Joint conference on Artificial Intelligence,

Vancouver, British Columbia, pp 876-88 1

Steel . S . , 1996, Deductive actions, and their application to plan construction: an

outline, In Proceedings of the 151h Workshop of the UK Planning and Scheduling

Special Interest Group, Liverpool John Moores University, Liverpool, UK.

Stefik. M. , 198 1 , Planning with Constraints - MOLGEN: Part I, Artificial

Intelligence, vol. 16 , No.2, North-Holland publishing co.

309

References

31 0

Stillman. J. , & Bonsissone. P. , 1 996, Technology Development in the ARPAJRL

Planning Initiative, ed. Tate. A., Advanced Planning Technology, Technological

Achievements of the ARP A/Rome Laboratory Planning Initiative, AAAI press,

California, USA, ISBN 0-929280-98-9

Sussman. G., 1 974, The Virtuous Nature of Bugs, In Proceedings of the First

Conference of the Society for the Study of AI and Simulation Behaviour, Sussex

University, Brighton, UK,

Swartout. W., & Gil. Y. , 1 996, EXPECT: A user-centred environment for the

development and adaptation of knowledge-based planning aids. In Tate. A. (ed.),

Advanced Planning Technology: Technological Achievements of the ARP N

Rome Laboratory Planning Initiative, AAAI press, USA, ISBN 0-929280-98-9.

Tate. A., 1 976, Project Planning Using A Hierarchic Non-linear Planner,

Department of Artificial Intelligence Research Report No. 25, Artificial

Intelligence Library, University of Edinburgh, 80 South Bridge, Edinburgh, EHl

lHN, Scotland, UK.

Tate. A., 1 977, Generating Project Networks, In Proceedings of the International

Joint Conferences on Artificial Intelligence, pp 888-893.

Tate. A., Hendler. J. ,& Drummond. M., 1 990, A Review of AI Planning

Techniques, in Allen. J. , Hendler. J . , Tate. A. , (eds.), Readings in Planning,

Morgan Kaufmann Publishers Inc. , California, USA, ISBN 1 -55860-1 30-9, pp 26

- 49.

Tate. A., 1 993a, Authority Management - Coordination between Task Assignment,

Planning and Execution, In Proceedings of the International Joint Conference on

Artificial Intelligence workshop on Knowledge-based Production Planning,

Scheduling and Control.

Tate. A., 1 993b, The Emergence of "Standard" Planning and Scheduling system

components -Open planning and Scheduling Architectures", Second European

Worksop on planning, Vadstena, Sweden, Published in Backstrom. C., &

Sandewall. E. , eds., Current Trends in AI Planning, IOS press, pp 6- 1 3 ,

Netherlands, ISBN 9 0 5 1 99 153 3 .

Tate. A , 1 994, Mixed Initiative Planning i n O-Plan2, I n Proceedings o f ARPI

Workshop, Tucson, Arizona, Morgan Kaufmann, USA

Tate. A., Drabble. B . , & Dalton. J. , 1 994a, The Use of Condition Types to Restrict

Search in an AI Planner, In Proceedings of the 1 2th National Conference on

Artificial Intelligence (AAAI-94), Seattle, USA.

References

Tate. A. , Drabble. B . , & Dalton. J . , 1994b, 0-Plan Version 2.2 Task Formalism

Manual, 0-Plan Project documentation, AIAI, University of Edinburgh.

Tate. A. , Drabble. B . , Kirby. R. , 1994b, O-Plan2: an Open Architecture for

Command, Planning and Control, in Intelligent Scheduling, (eds. M. Zweben and

M .S .Fox) Morgan Kaufmann, USA.

Tate. A., 1 995 , Representing plans as a Set of Constraints - the <I-N-OVA>

Model - A framework for Comparative Analysis, ACM SIGART Bulletin, vol. 6,

No. 1, January.

Tate. A., 1996, Representing plans as a Set of Constraints - the <I-N-OV A>

Model, In Proceedings of The Third International Conference on Artificial

Intelligence Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-

929280-97-0.

Tate. A., 1996b, Editor, Advance Planning Technology, Technological

Achievements of the APRA/Rome Laboratory Planning Initiative, AAAI Press,

California, USA, ISBN 0-929280-98-9

Tate. A., 1996c, Responsive planning and scheduling using AI planning

techniques - Optimum-AIV, IEEE Expert Intelligent Systems & Their

Applications, Vol. 1 1 , No. 6, December, pp 4 - 12, IEEE.

Tate. A. , 1 997, Mixed Initiative Interaction in 0-Plan, In Proceedings of

Computational Models for Mixed Initiative Interactions, AAAI Spring

Symposium, USA.

Tsuneto. R., Ero!. K., Hendler. J., & Nau. D., 1996, Commitment Strategies in

Hierarchical Task Network Planning, In Proceedings of the 14th National

Conference on Artificial Intelligence (AAAI-96), USA.

Turban. E., 1992, Expert Systems and Applied Artificial Intelligence, Macmillian

Publishing Company, New York, USA, ISBN 0-02-421 665-8

Valente. A., 1995, Knowledge level analysis of planning systems, SIGART

Bulletin, vol. 6, no 1, pp 33-4 1 .

Veloso. M., 1992, Learning by analogical reasoning i n general problem solving,

PhD thesis, Carnegie Mellon University, School of Computer Science, USA.

Vere. S. , 1983, Planning in Time: Windows and Durations for Activities and

Goals. Pattern Analysis and Machine intelligence, vol. 5, pp 246-247, IEEE.

Waldinger. R., 1 977, Achieving Several Goals Simultaneously, Machine

Intelligence 8, Ellis Horwood Limited, Chichester, UK.

31 1

References

31 2

Wang. X., 1 994, Learning by observation and practice: an incremental approach

for planning operator acquisition. In Proceedings of the l21h National Conference

on Artificial Intelligence (AAAI-94), Seattle, USA

Wang. X, 1996, Planning While Learning Operators, In Proceedings of The Third

International Conference on Artificial Intelligence Planning Systems, Edinburgh,

Scotland, AAAI Press, ISBN 0-929280-97-0.

Weld. D., 1 994, An Introduction to Least Commitment Planning, Artificial

Intelligence Magazine, Winter, pp 27 -61 , USA.

Weld. D. , & Etzioni. 0., 1994, The First Law of Robotics (a call to arms), In

Proceedings of the l21h National Conference on Artificial Intelligence (AAAI-94),

Seattle, USA.

Weld. D. , 1996, Planning-Based Control of Software Agents, In Proceedings of

The Third International Conference on Artificial Intelligence Planning Systems,

Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

Wielinga. B . , Schreiber. G., & Breuker. J., 1993, Modelling Expertise, in KADS a

principled Approach to Knowledge-Based System Development, Schreiber. G. ,

Wielinga. B. , Breuker. J., (eds.) Academic Press, London, UK, ISBN-0-12-

629040-7, pp 21 -46.

Wilkins. D., 1988, Practical Planning: Extending the Classical AI planning

paradigm, Morgan Kaufmann, California, USA, ISBN 0-934613-93-X

Wilkins. D., 1 990, Can Al planners solve practical problems?, Computational

Intelligence, vol. 6, no. 4, pp 232-246.

Wilkins. D., 1 994, Comparative Analysis of AI Planning Systems, A Report on the

AAAI Workshop, AI Magazine, Winter 1994, pp 69-70

Wilkins. D. , & Desimone, 1994, Applying an AI Planner to Military Operations

Planning, in Zweben. M., & Fox. M. (eds.), Intelligent Scheduling, Morgan­

Kaufmann Publishing, San Mateo, California, USA.

Wilkins. D. , & Myers. K., 1995, A Common Knowledge Representation for Plan

Generation and Reactive Execution. Journal of Logic and Computation, vol. 4,

part 6.

Williams. B., 1 996, Model-Based Autonomous Systems in the New Millennium,

In Proceedings of The Third International Conference on Artificial Intelligence

Planning Systems, Edinburgh, Scotland, AAAI Press, ISBN 0-929280-97-0.

References

Winograd, T., 1 97 1 , Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language, AI TR-1 7 (MAC TR-84), MIT-AI­

Laboratory, Massachusetts Institute of Technology, Massachusetts, USA.

Winograd. T., and Flores. F., 1986, Understanding Computers and Cognition,

Norwood, NJ, Ablex

Winstanley. G., Boardman. J. , Kellett. J . , 1990, An intelligent planning assistant in

the manufacture of flight simulators, In Proceedings of the ACME Research

Conference, University of Birmingham, UK, September.

Winstanley. G. , and Hoshi. K., 1 993, Activity Aggregation in Model-Based AI

Planning Systems, AI in Engineering Design and Manufacture, Vol. 7 . No. 3, pp

209-228, Academic Press.

Wirfs-Brock. R. , Wilkerson. B . , & Wiener. L., 1990, Design Object-Oriented

Software, Prentice Hall, New Jersey, USA, ISBN 0-1 3-629825-7 .

Wolverton. M. , & Washington. R., 1996, Segmenting Reactions to improve the

Behaviour of a Planning I Reacting Agent., In Proceedings of The Third

International Conference on Artificial Intelligence Planning Systems, Edinburgh,

Scotland, AAAI Press, ISBN 0-929280-97-0.

Yang. Q., 1 990, Formalising Planning Knowledge for Hierarchical Planning.

Computational Intelligence, vol. 6, part 1 , pp 12-24.

Yang. Q., & Chan. A., 1 994, Delaying variable binding commitments in planning,

In Proceedings of the Second International conference on Artificial Intelligence

Planning Systems, Chicago, USA., pp 1 82-1 87

31 3

Append i x A
Workbench Algorithms

Appendix A - Workbench algorithms

A. Appendix A - Workbench algorithms
This appendix presents the pseudo code and, where appropriate, the background

theory behind in the algorithms implemented within the research workbench

described within Chapter 2.

A.1 Management of the partial order within the ADS manager

The algorithms specified in this subsection support the management of plan partial

orders within the workbench. The algorithms are implemented, without

modification, from the specifications in Fox and Long (1996). Before reproducing

the algorithms, Fox and Long's explanation of the theory behind the algorithms is

reproduced, and a set of definitions necessary to read the pseudo code provided.

Background theory

"The partial order representation is based on the observation that the subset

relation � is a partial ordering on sets and that any partial order can be

embedded in a partial ordering on sets. Given a partial order p = (S<), there is a

mapping, f S �JtS), such that for s and t in S, s < t if.If(s) cf(t). By careful

construction of the sets f(s), for each s in S, the cost of checking whether s < t is

kept to the cost of checking a subset relation between comparatively small number

of elements ."(Fox and Long 1996)

Definitions of terms

A-1

• Vertex: each activity in a plan is a vertex

• Plan Head: is a special vertex, which is before all other vertices in a

plan.

• Successor List: each vertex has a list of successors, which includes at

least the immediate successors.

• Predecessor List: each vertex has a list of predecessors, which includes

at least the immediate predecessors.

• Index: each vertex has an integer index.

• Set: each vertex has an associated set.

The successor list, predecessor list, index, and set of a vertex v will be referred to

as succs(v), preds(v), index(v), set(v) respectively.

The Algorithms

Appendix A - Workbench algorithms

Add Constraint(tl,t2)
if not(tl <= t2) then

if t2 <tl then

else
"error inconsistent constraints"

if tl is a new vertex then
create a new element for t l
add t I to succs(plan head)
if t2 is a new vertex then

create a new element for t2
add t l to preds(t2)
add t2 to succs(t2)
if plan head is newly bifurcating then

identify the existing vertex in succs
(plan head), s
propagate { s } from s
make t1 a key holder with set(t l):= { tl }
set(t2) = set(tl)

else i f root time i s already bifurcating then

else

end if
end if
index(t l) = l
index(t2) = 2

make tl a key holder with set(t l):={ t l }
Set(t2) := set(tl)

set(tl) = set(plan head)
set(t2) = set(root time)

else { t2 is an existing vertex }
add t2 to succs(tl)
add t l to preds(t2)
index(tl) = l

end if

offset = max(index(tl) - index(t2)+1 ,0)
propagate { t l } from t2 with offset
make t l a key holder with set(tl) = {tl }
if plan head is newly bifurcating then

end if

identify the existing vertex in succs(plan head), s
propagate { s } from S

else { t 1 is an existing vertex }
if t2 is a new vertex then

create a new element for t2
add t 1 to preds(t2)
add t2 to succs(t 1)
index(t2) = index(tl) + 1
if t l is newly bifurcating then

identify existing vertex in succs(tl),s
propagate { s} from s
make t2 a key holder with set(t2) = set(t2) union
set (tl)

else i f t l i s already bifurcating then

else

end if

make t2 a key holder with set(t2) = set(t2) union
set(t l)

set(t2) = set(tl)

else { t2 is an existing vertex}
add tl to preds(t2)
add t2 to succs(t l)
offset = max(index(tl)-index(t2) + 1 ,0)
i f t l is newly bifurcating then

ident ify the existing vertex in succs(t l),s

A-2

Appendix A - Workbench algorithms

A-3

else

end if
end if

propagate { s) from s
propagate { t2 } union set{t l } from t2 with offset

else if t 1 is already bifurcating then
propagate { t2 } union set(tl) from t2 with offset

propagate set(tl) from t2 with offset
end if

-- Remove Dead Edges (tl , t2).
-- This line of the algorithm is omitted to allow redundant edges within plans.
-- The line is invoked when exporting the plan to aid readability.
End add constraint.

Propagate set s from vertex v with offset o
if v is not a key holder then

temp set := set(v)
make v a key holder with set(v) = a copy of set (v)

end if
for each vertex w, in the partial order

if v < w then

end if
end loop

if w is a key holder then
set(w) = set(w) union S

else if v was bit a key holder and key(set(w)) = key(temp set) then
set(w) = set(v)
index(w) = index(w) + o

end if

set(v) = set(v) union S
index(v) = index(v) + o
end propagate.

Remove dead edges (tl, t2)
for each edge (s, e) in the partial order such that s < = t1 and t2 <= 2 and
(tl not equal S or t2 not equal e) loop

end loop

succs(s) = succs(s) I { e)
preds(e) = preds(e) / { s }
if s i s n o longer bifurcating then

flatten (e)

end if

if tl element of Succs(s) then
flatten(t l)

end if

end remove dead edges

flatten(t)
if t has no bifurcating immediate predecessors then

end if
end flatten

for each set, S, associated with a key holder do
s = s / { t}

end loop

Appendix A - Workbench algorithms

A.2 Plan state variable manager critic's algorithms

A.2.1 Check co-designation consistency algorithm

The following algorithm checks the co-designation and non co-designation

constraints on a variable within the plan state variable manager. It returns true if

the constraints are consistent, false otherwise. The algorithm was developed by the

author for the workbench, and has not been proved formally correct or complete.

Check co-designation Consistency (Variable)
If variable is instantiated then

else

If instantiation is consistent with type then
return true

else
return false, type - instantiation inconsistency

end if

for each constraint on the variable loop

if the current constraint is set to equal another variable then
if the variable current constraint is constrained
to equal is itself constraint not to equal the current variable

then

return false - inconsistent constraint
else

return true
end if

else If current constraint is set to not equal another variable then
if the variable current constraint is constrained not to
equal is constrained to equal the current variable then

return false -- inconsistent constraint
else

return true
end if

else
unknown constraint type error

end If
end loop -- for each constraint on the variable

end if -- variable is instantiated
end -- check co-designation consistency

A-4

Appendix A - Workbench algorithms

A.2.2 Necessarily codesignation algorithm

A-5

The following algorithm considers if two statements necessarily co-designate. It

takes two arguments of the form "function parameter 1 . . parameter n". The

algorithm is based on the definitions given in (Wilkins 1988, page 72).

Necessarily Co-designate (argument!, argument2)
If argumentl is identical to argument2 then

else
return true

Pass argument 1 and argument 2 to extract the function names and
the variables or objects within the statements. E.g. the argument
on blockl , block2 will result in "function = on" and a list of parameters
[blockl , block2]
If the function of argument! is not equal to the function of argument2 then

return false
else If the number of parameters in argument! and argument2 is not equal then

return false
else

end if

loop through each parameter, parameterN
if argument! .parameterN and argument2.parameterN are
objects then

if the objects are not equal then
return false

else
no problem with this parameter

end if
else if argumentl .parameterN and argument2.parameterN
are variables then

if they are the same variable or
constrained to equal the same thing,
with the same constraints then

no problem with this parameter
else

return false
end if

else if argument l . parameterN is a variable and
argument2.parameterN is an object then

end loop

if argument I . parameterN is set to equal
argument2.parameterN then

no problem with this parameter
else

return false
end if

else if argumentl .parameterN is an object and
argument2.parmeterN is a variable then

end if

if argument2.parameterN is set to equal
argument 1 . parameterN then

no problem with this parameter
else

return false
end if

if no problems found with any parameter then
return true

else
return false

end if

end -- necessarily co-desigoarion algorithm

Appendix A - Workbench algorithms

A.2.3 Possible co-designation algorithm

The following algorithm considers if two arguments possibly co-designate. The

algorithm is based on the definition in (Wilkins 1988 page 72).

Possible codesignation (argumentl argument2)

if argumentl equals argument2 then

else
return true

Pass argument 1 and argument 2 to extract the function names and
the variables or objects within the statements. E.g. the argument
on block 1 , block2 will result in "function = on" and a list of parameters
[block l , block2]
if argumentl .function not equal to argument2.function or the
number of parameters is different then

else

end if

return false

loop through each parameter,

end loop

if argumentl .parameterN = argument2.parameterN then
no problem with this parameter

else if argumentl .parameterN is a variable and
argument2.parameterN is an object or a variable then

if argumentl . parameterN is not constrained to
not equal the object in argument2 then

else

end if

return true if argument 1. Parameter has
a constraint added

return false

else if argument2.parameterN is a variable and
argument I . parameterN is an object or a variable then

end if

if argument2.parameterN is not constrained to
not equal the object in argumentl then

end if

return true if argumen2.parameterN has
a constraint added

end -possibly co-designale

A-6

Appendix A - Workbench algorithms

A.3 Condition and effect manager

A-7

The conditions and effect manager functionality is based upon the question and

answering system within the Nonlin system as reported in (Tate 1976).

The manager supports two types of question:-

1 . Does statement P have value V at node N in a plan network ? The system

responds yes, no, or maybe. The maybe response contains a set of

constraints which may be added to a plan to make statement P have value

V at node N. These may be links or variable binding constraints.

2. What links would have to be added to a network to make P have a value

V at node N. Queries of this type are only made as a result of maybe

being returned from question 1 .

Before introducing the question and answering critic, the following definitions

must be made.

• p-node. Is a node within a plan which gives statement p a value.

• pv-node. Is a node within a plan which gives statement p a value v

• p!v-node. is a node within a plan which gives statement p a value other

than v.

• critical node. A critical node for (P,N) is a node which gives a value to

statement p for the last time before node N. i.e. it could be made the

nearest predecessor of N which gives a value to p in some legal

linearization of the partially-ordered network of nodes. The critical nodes

for (P ,N) are

1 . the last p-node on each incoming branch. ignore p-nodes which

are also predecessors of any other critical nodes.

2. all p-nodes which are in parallel with n.

Appendix A - Workbench algorithms

QA(P, V, N)
Identify the following lists of nodes

vl. Critical pv-nodes which are predecessors of n
v!l. critical p !v-nodes which are predecessors of n
par-vl critical pv-nodes which are in parallel with n.
par-v!l critical p !v-nodes which are in parallel with n.

If at least one member of vl and no par-v!l nodes then

return YES

else if at least one member of par-v!l and no vl nodes.

return NO

else if it is possible to create VI and remove par-v! nodes with
variable bindings then

return maybe and constraints,

else consider adding new links

end if
end -- QA

return Maybe and result of calling the linking
call linking algorithm and return results

The algorithm differentiates between possible and necessary co-designation when

constructing the four lists at the top of the algorithm. If a condition possibly co­

designates with the statement P, and is critical, it is added to the critical lists

together with the constraints to make it necessarily co-designate.

A special case of this algorithm is invoked when handling plans with condition

types. Only conditions of type supervised, achieve, and only _use_for_query are

checked.

A-8

Appendix A - Workbench algorithms

A.4 HTN Engine Algorithm

A.4.1 Controller Algorithm

A-9

Read problem definition and task formalism schemas

2. Append non-primitive tasks from task definition to the task queue

3. Append achieve conditions from task definition to the task queue

4. While the task queue is not empty loop

5 . Select a task for processing (either at random, FIFO, or ask user)

6. if selected task is a non-primitive task then

7. -- task reduction procedure

8. Ask schema library for methods to achieve selected task

9. remove methods whose only_use_if conditions do not

1 0. hold

1 1 . if no methods available then

1 2. return to select a task for processing

1 3 . end i f - - n o methods available

14. select a method from the set remaining (either at random

or ask user)

1 S. expand the selected task with the selected method

1 6. else -- it must be an achieve task

17. if it is possible to add links to make condition true then

1 8 . add links

19 . else

20. ask schema library for schema to make condition

true

2 1 . i f not methods available then

22. return to select a task for processing

23. end if -- no methods available

24. implement schema immediately before task

25. which requires condition

26. end if -- it is possible to add links . . .

27. end if -- selected task is a non-primitive task

28. call plan state variable critic

29. loop until critic replies yes to all variables or user quits

30. loop

3 1 . allow user to correct problems

32. end loop - PSVM critic

33. call conditions and effects critique

34. loop until critic replies yes to all conditions or user quits

35. loop

36. allow user to correct problems

37. end loop - conditions and effects critique

38. end loop -- while task the task queue is not empty

39. Call PSVC to check unsupervised conditions.

Appendix A - Workbench algorithms

A.4.2 Expand node algorithm

expand node (node, schema name)

record the current predecessors and successors of node
remove node from the ADS
insert all the nodes from schema name into the ADS
Insert all the non-primitive new nodes into the task queue.
Add ordering constraints from scheme name
Add conditions from schema name
Add effects from schema name

If expansion has no single start node then
create a dummy node and make dummy the start node

end if

if new expansion has no single terminal node then

end if

create a dummy node and make dummy the terminal
node

Replace all entries in the ADS which refer to node with the
Expansions start node and terminal node.
Attach conditions from node to expansions start node
Attach effects from node to expansions terminal node

The expand node algorithm introduces dummy actions when an expansion does

not have a single start or finish node. This mechanism allow the conditions and

effects of the node being replaced to be attached to a definite point in the refined

task network.

A-1 0

Appendix A - Workbench algorithms

Blank

A-1 1

App endix B
Workbench Testing

Appendix B - Workbench testing

B. The Sussman Anomaly
The Sussman Anomaly is a classic benchmark problem in AI planning literature,

which demonstrates the issues encountered when addressing conjunctive goals.

Before expanding this point, the initial and goal states of the problem are

introduced . .

c
B
A

Initial State Goal State

The anomaly contains two conjunctive goals: { on (BlockB BlockA) A on (BlockC

BlockB) } . If a planner addresses the on(BlockC BlockB) goal first, the second

goal is no longer immediately obtainable, as BlockB is obstructed by BlockC, and

therefore cannot be moved onto BlockA. The planner must undo its solution to the

goal on(BlockC BlockB) before BlockB can be moved.

The anomaly was selected as a test case for the workbench as it demonstrates the

precondition achievement behaviour, and plan critic functions of the workbench.

The remainder of this section steps through the workbench's operation whilst

solving this problem.

8.1 Experi ment set up

B-1

The Sussman Anomaly was specified using the following task definition from the

0-Plan Task Formalism manual.

task stack_BlockA_BlockB_BlockC;

nodes

orderings 1 ->2;

conditions

effects

end_task;

2

start,

finish;

achieve { on BlockA BlockB } at 2,

{ on BlockB BlockC} at 2;

{ on BlockC BlockA} at I ,

{ on BlockA The Table} at 1 ,

{ on BlockB TheTable } at 1 ,

{ cleartop BlockC} at 1 ,

{ cleartop BlockB } at 1 ;

Appendix B - Workbench testing

The domain's action knowledge was supplied to the workbench through the

following task formalism file.

always {clear top The Table} ;

types objects = {BlockA BlockB BlockC TheTable},

movable_objects = (BlockA BlockB BlockC} ;

schema puton;

vars ?x = ?(type movable_ objects } ,

?y = ? (type objects } ,

?z = ?{ type objects } ;

var_relations

?x I= ?y, ?y I= ?z, ?x I= ?z;

expands { puton ?x ?y} ;

only_use_for_effects

(on ?x ?y}

{ cleartop ?y}

{on ?x ?z}

{ cleartop ?z}

conditions

= true,

= false,

= false,

= true;

only _use_for_query

achieve

achieve

end_schema;

(on ?x ?z}

(cleartop ?y}

{ cleartop ?x}

B-2

Appendix B - Workbench testing

B.2 Experiment Execution

Initialisation

Step 1

Step 2

B-3

The domain representation was passed to the schema library, and the HTN engine

initiated with the task stack_BlockA_BlockB_BlockC. In response to this

initialisation, the workbench generated the following plan.

PlnnHcad l-----------------------911' lnnEnd

• rrects
n B!ockC BlockA = true
n BlockA TheTable = true
n BlockB TheTable = true
lenrtop BlockC = true
leartop BlockB = true

onditions

chievc on BlockB
lockC = true

The HTN engine called the QA algorithm to determine if either of the conditions

on the activity PlanEnd was satisfied. The algorithm replied NO in both cases. The

HTN engine added on Block.A BlockB and on BlockB BlockC to the task queue as

conditions to be achieved.

With no outstanding non-primitive tasks for refinement, the HTN engine selected

the condition achieve on Block.A BlockB for resolution. The achieve condition

type permits the planner to include new tasks into a plan to satisfy the condition it

prefixes. The workbench selected the On Block.A BlockB condition for attainment.

The selection order is a result of the order of the conditions in the initial task

description; the workbench employees a first in first out data structure for storing

outstanding conditions.

The HTN engine issues a request to the schema library for tasks which will ma�e

the effect on Block.A BlockB true. The library returned the schema puton as it

contains the effect on ?x ?y = true. Pattern matching this effect against the

condition resulted in the following variable bindings.

?x = BlockA from pattern match

?y = B lockB from pattern match

?z= TheTable from the only_use_for_query condition. TheTable is

the only variable binding option to make this condition true.

The task added to establish an achieve condition are automatically linked

immediately before the requiring activity. The workbench produced the following

plan:

ondilions
chieve cleartop

BlockA = true
.chieve cleartop B.!ockB
true

nly_use_for_que.ry
n BlockA TheTable =

Appendix B - Workbench testing

• ffcct
n BlockA BlockB =

111.1e
·leartop BlockB = false
n BlockA TheTable =

false
lcarlop TheTable =

PlanHead 1-------m11,111on BlockA BlockB 1---------P,JnnEnd

• ff eels
n BlockC BlockA = true
n BlockA TheTable = true
n BlockB TheTable = true
lcnrtop BlockC = true
lenrtop BlockB = true

onditions
chieve on BlockA
lockB = true

chieve on BlockB
lockC = true

The HTN engine the applied the critics to the plan, with the following results.

Condition Must hold at Status Constraints

On BlockB BlockC = plan end !!!l Close world assumption

true

on BlockA BlockB = plan end yes from puton BlockA BlockB

true

on BlockA TheTable = puton BlockA yes from plan head

true BlockB

cleartop BlockA = true puton BlockA !!!l closed world assumption

BlockB

c\eartop BlockB = true puton BlockA yes from plan head

BlockB

The resulting plan contains two flaws (marked with a status no in the table): the

second condition on the goal state of the plan, and a precondition of the new task

added to the plan.

B-4

Appendix B - Workbench testing

Step 3

B-5

The achieve condition on BlockB BlockC is the next flaw in the queue, and was

therefore selected for processing next. The HTN engine issues a request to the

schema library for tasks which will make the effect on BlockB BlockC true. The

library returned the schema puton as it contains the effect on ?x ?y = true. Pattern

matching this effect against the condition resulted in the following variable

bindings.

?x = BlockB

?y = B lockC

?z = TheTable from the only_use_for_query condition. TheTable is the only

variable binding option to make this condition true.

The task added to establish an achieve condition are linked immediately before the

requiring activity. The workbench produced the following plan:

PlanHcad

omlltions
chieve cleartop BlockA

rue
nly_use_for_query
11 BlockA TheTable =

rue

uton BlockA BlockB

ff eels
11 BlockA BlockB =

me
lcartop BlockB = false
n BlockA TheTable =

false
leartop TheTable =

true

uton BlockB BlockC
• £feels
n BlockC BlockA = true
11 BlockA TheTable = true
n BlockB TheTable = true

·learlop BlockC = true
leartop BlockB = true

Condi lions
chicve cleartop BlockB
true

· chi eve cleartop B.lock
true

11ly_use_for_qucry
n BlockB TheTable =

true lrne

onditions
· chieve on BlockA
BlockB = true

chicve on BlockB
BlockC = true

The HTN engine then applied the critics to the plan with the following results.

Step 4

Appendix B - Workbench testing

Statement Must Hold At Status Constraints

on BlockB BlockC = at plan end yes from node puton BlockB

true BlockC

on BlockA BlockB = at plan end yes from node puton BlockA

true BlokcB

on BlockA TheTable at puton BlockA yes from plan head

= true BlockB

cleartop BlockA = at puton BlockA llil. Closed world asumption

true BlockB

cleartop BlockB = at puton BlockA yes from plan head

true BlockB

on B!ockB TheTable at puton BlockB yes from plan head

= true BlockC

cleartop BlockB = at puton BlockB llil. negation in parellel

true BlockC

cleartop BlockC = at puton BlockB yes achived by plan head

true BlockC

Both conditions on the plan's final state now hold. Two achieve conditions from

the tasks introduced to achieve these conditions now do not hold.

The achieve condition Clear BlockA = true at the task puton BlockA BlockB was

selected from the queue for processing. The HTN engine issued a request to the

schema library for tasks which asserts the effect cleartop BlockA =true. The

library returned the schema puton as it contains the effect cleartop ?z= true.

Pattern matching this effect against the condition resulted in the following variable

bindings.

x = BlockC, from the only_use_for_query condition.

y = ? unknown

z = B lockA

The HTN engine applied the expansion to the plan, immediately before the task

requiring the condition. The resultant plan was as follows:

B-6

Appendix B - Workbench testing

B-7

onditions
nly_use_for_query on
lockC BlockA = true
chieve cleartop Block
true

cbieve clear ?varl =
true

' ffcelS
n BlockC varl? = true
lcartop var l ? = false
n BlockC BlockA =

false
lcnrfop Block A = true

auditions
chievc clenrtop

BlockA = true
chieve cleartop BlockB
true

nl y _use_for_query
n BlockA TheTable =

me

uton BlockA BlockB

rue
lenrtop BlockB = false
n BlockA TheTable =

false
lcartop TheTable =

e

Plan Head uton Block C ?Varl

e
Jeartop BlockC = true
Jeartop BlockB = true

onditions
chi eve cleartop Bloc'
true

chieve cleartop Block
true

n ly_use�for_qucry
n BlockB TheTable =

IC

ulon BlockB BlockC

Effc Is

onditions
chieve on BlockA

BlockB = true
chieve on BlockB

BlockC = true

n BlockB BlockC =
true

leartop BlockC = false
n BlockB TheTable =

false
cnrtop TheTable =

The HTN engine applied the plan critics to this plan with the following result.

Appendix B - Workbench testing

Statement Must hold at status constraints

on BlockB BlockC = at plan end yes from node puton BlockB BlockC

true

on blockA BlockB = at plan end yes from node puton BlockA BlockB

true

on BlockA TheTable = at puton BlockA yes from plan head

true BlockB

cleartop BlockA = true at puton BlockA yes from puton BlockC ?varl

BlockB

cleartop BlockB = true at puton BlockA yes from plan head

BlockB

on BlockB TheTable = at puton BlockB yes from plan head

true BlockC

cleartop BlockB = true at puton BlockB !!Q negation in parellel

BlockC

cleartop BlockC = true at puton BlockB yes achived by plan head

BlockC

on B lockC B lockA = at puton BlockC ?varl yes from plan head

true

cleartop BlockC = true at puton BlockC yes from plan head

?varl

cleartop ?var 1 = true at puton BlockC ?varl maybe if ?varl = TheTable or BlockB

The condition cleartop ?var 1 is identified by the condition and effect critique as

attainable, with the addition of a variable binding constraint. The HTN engine

selected the TheTable instantiation as this would bind the condition to an always

fact. I.e. it cannot be made false by any effect within the plan.

With the binding made, the condition and effect manager was called to process the

plan. Only one condition remained open, the parallel interaction between the

cleartop BlockB condition at puton BlockB BlockC and Puton BlockA BlockB.

8-8

Appendix B - Workbench testing

Step 5

8-9

The user was invited to resolve the parallel interaction. This could be achieved by

linearising puton BlockB BlockC and puton Block.A BlockB. Placing puton Block.A

BlockB before puton BlockB BlockC introduced a new interaction, the cleartop

BlockB condition of puton Block.A BlockB was deleted. The alternative ordering

introduced no interactions. The completed plan is depicted below.

Conditions • ffccts nd itions • feds
nly_usc_for_qucl'y on n BlockC TheTable = chicvc cleartop n BlockA BlockB =

BlockC BlockA = true BlockA = true rue
chieve cleartop Block cbieve cleartop BlockB le:lrtop BlockB = false

true true n BlockA TheTable =
chieve cleartop n BlockC BlockA = nly_use_for_query
heTnble = true false n BlockA TheTable =

lcar1op BlockA = true true rue

Plo.nHoad Pu ton Block C TheTable Pinn End

Puron BlockB BlockC Pu1on BlockA BlockB
• rrccts
n BlockC BlockA =
rue
n BlockA TheTable =

me
n BlockB TheTable =

true
leartop BlockC = true
eartop BlockB = true

'ondltions
chieve cleartop Block
true

chieve cleartop Block
true

nly_use_for_qucry
11 BlockB TheTable =

• ffccts
11 BlockB BlockC =

trne
leartop BlockC = false
11 BlockB TheTable =

false
lcmtop TheTable =
rue

CondiUons
chieve on BlockA
JockB = true

chievc on BlockB
lockC = true

The final result of the question and answering process below indicates that all

conditions are now established.

Appendix B - Workbench testing

Statement Must hold at status constraints

on BockB BlockC = at plan end yes from node puton BlockB BlockC

true

on blockA BlockB = at plan end yes from node puton BlockA BlokcB

true

on BlockA TheTable = at puton BlockA yes from plan head

true BlockB

cleartop BlockA = true at puton BlockA yes from puton BlockC TheTable

BlockB

cleartop BlockB = true at puton BlockA yes from plan head

BlockB

on BlockB TheTable = at puton BlockB yes from plan head

true BlockC

cleartop BlockB = true at puton BlockB yes

BlockC

cleartop BlockC = true at puton BlockB yes achived by plan head

BlockC

on BlockC BlockA = at puton BlockC yes from plan head

true The Table

cleartop BlockC = true at puton BlockC yes from plan head

TheTable

cleartop TheTable = at puton BlockC yes

true The Table

With all conditions established, planning is complete.

B-1 0

Appendix B - Workbench testing

B.3 Tate's house building domai n

The house building domain originates in (Tate 1976) and is designed to

demonstrate the task refinement function of Nonlin and recently the 0-Plan

system. The domain was selected to test the workbench's task refinement

functionality.

Two sets of tests were undertaken. The first set without the plan critics operating,

and the second set with the critics operating. The first experiment verified the pure

task refinement function of the workbench. i.e. it can correctly replace a task with

its refinement. The second test set verified the complete workbench architecture.

This section reports the first experiment set.

B.4 Experiment set up

B-1 1

The build house task was specified using the following task definition. The

definition is taken directly from the 0-Plan test specifications on the World Wide

Web (url http://www.aiai.ed.ac. uk/cgi-bin/oplan/web-demo/show-tf/house-1 .tf

[accessed 1 1 Apr 1997)).

task build_house;
nodes

orderings
end_ task;

start,
2 finish,
3 action {build house } ;
1 ---> 3 , 3 ---> 2 ;

The definitions of the operators available in the domain were provided using the

following domain description taken directly from the 0-Plan World Wide Web

site (url http://www.aiai.ed.ac. uk/cgi-bin/oplan/web-demo/show-tf/house-1 .tf

[accessed 1 1 Apr 1997]) .

Appendix B - Workbench testing

; ; ; House Building Domain - with no schema choice
" '

; ; ; BAT 5-Dec-76: Nonlin TF.
; ; ; KWC 9-Sep-85: Converted to 0-Plan l TF.
; ; ; BD 1 2-May-92: Converted to O-Plan2 TF.

schema build;
expands {build house) ; ; ; ; this expands the top level action
nodes 1 action { excavate and pour footers } , ; ; ; some are primitive

2 action { pour concrete foundations) ,

3 action (erect frame and roof } ,
4 action {lay brickwork } ,
5 action {finish roofing and flashing } ,
6 action { fasten gutters and downs pouts } ,
7 action { finish grading } ,
8 action { pour walks and landscape } ,
9 action (install services } , ; ; ; some are not.
10 action { decorate } ;

orderings I ---> 2, 2 ---> 3, 3 ---> 4, 4 ---> 5,
5 ---> 6, 6 ---> 7, 7 ---> 8;

; ; ; actions 9 & 10 are not ordered wrt other actions - they are in parallel
conditions supervised { footers poured } at 2 from [I] ,

supervised { foundations laid } at 3 from [2],
supervised { frame and roof erected } at 4 from [3],
supervised {brickwork done } at 5 from [4],
supervised { roofing finished } at 6 from [5],
supervised { gutters etc fastened } at 7 from [6],

unsupervised { storm drains laid } at 7,
supervised { grading done } at 8 from [7);

; ; ; note the unsupervised condition - its satisfaction is outwith
; ; ; the control of this schema but must still be satisfied

end_schema;
schema service_l ;

expands [install services } ;
only_use_for_effects { installed services 1) ;
nodes 1 action [install drains } ,

2 action (lay storm drains } .
3 action { install rough plumbing } ,
4 action { install finished plumbing } ,
5 action { install rough wiring } ,
6 action { finish electrical work } ,
7 action {install kitchen equipment} .
8 action { install air conditioning } ;

orderings 1 ---> 3, 3 ---> 4, 5 ---> 6, 3 ---> 7, 5 ---> 7;
conditions supervised {drains installed } at 3 from [I] ,

supervised {rough plumbing installed } at 4 from [3] ,
supervised (rough wiring installed } at 6 from [5],
supervised { rough plumbing installed } at 7 from [3],
supervised { rough wiring installed } at 7 from [5] ,

unsupervised { foundations laid } at 1 ,
unsupervised { foundations laid } at 2,
unsupervised { frame and roof erected } at 5 ,
unsupervised { frame and roof erected } at 8,
unsupervised {basement floor laid } at 8,
unsupervised { flooring finished } at 4,
unsupervised { flooring finished } at 7,
unsupervised {painted } at 6;

; ; ; As in the real world this sub-contractor relies heavily on others
; ; ; to prepare things beforehand - see the unsupervised conditions.

end_schema;

schema decor;
expands { decorate} ;
nodes I action I fasten plaster and plaster board \ .

8-1 2

Appendix B - Workbench testing

B-1 3

2 action { pour basement floor } ,
3 action { lay finished flooring } ,
4 action {finish carpentry } ,
5 action { sand and varnish floors } ,
6 action {paint } ;

orderings 2 ---> 3 , 3 ---> 4 , 4 ---> 5, 1 ---> 3, 6 ---> 5 ;
conditions unsupervised {rough plumbing installed } a t 1 ,

unsupervised {rough wiring installed } at 1 ,
unsupervised { air conditioning installed } at 1 ,
unsupervised {drains installed } at 2,
unsupervised {plumbing finished } at 6,
unsupervised {kitchen equipment installed } at 6,

supervised {plastering finished } at 3 from [l] ,
supervised {basement floor laid } at 3 from [2],
supervised { flooring finished } at 4 from [3],
supervised { carpentry finished } at 5 from [4],
supervised { painted } at 5 from [6];

end_schema;
; ; ; Now for completeness a list of primitive actions. Primitives are
;; ; defined as having no nodes list and must have an expands pattern.
schema excavate;

expands {excavate and pour footers} ;
only _use_for_effects {footers poured} = true;

end_schema;
schema pour_concrete;

expands {pour concrete foundations } ;
only_use_for_effects {foundations laid} = true;

end_schema;
schema erect_frarne;

expands {erect frame and roof} ;
only_use_for_effects {frame and roof erected} = true;

end_schema;
schema brickwork;

expands { lay brickwork } ;
only_use_for_effects {brickwork done} = true;

end_schema;
schema finish_roofing;

expands {finish roofing and flashing} ;
only_use_for_effects {roofing finished} = true;

end_schema;
schema fasten_gutters;

expands { fasten gutters and downspouts } ;
only_use_for_effects (gutters etc fastened} = true;

end_schema;
schema finish_grading;

expands {finish grading} ;
only _use_for_effects { grading done} = true;

end_schema;
schema pour_ walks;

expands {pour walks and landscape} ;
only _use_for_effects { landscaping done} = true;

end_schema;
schema install_drains;

expands { install drains } ;
only_use_for_effects {drains installed} = true;

end_schema;

Appendix B - Workbench testing

schema lay _storm;
expands { lay storm drains } ;
only_use_for_effects { storm drains laid} = true;

end_schema;
schema rough_plumbing;

expands { install rough plumbing } ;
only _use_for_effects {rough plumbing installed} = true;

end_schema;
schema install_finished;

expands { install finished plumbing} ;
only_use_for_effects {plumbing finished} = true;

end_schema;
schema rough_ wiring;

expands { install rough wiring} ;
only_use_for_effects {rough wiring installed } = true;

end_schema;
schema finish_electrical;

expands { finish electrical work } ;
only_use_for_effects { electrical work finished} = true;

end_schema;
schema install_kitchen;

expands { install kitchen equipment } ;
only_use_for_effects {kitchen equipment installed} = true;

end_schema;
schema install_air;

expands { install air conditioning } ;
only_use_for_effects { air conditioning installed } = true;

end_schema;
schema fasten_plaster;

expands {fasten plaster and plaster board } ;
only_use_for_effects (plastering finished } = true;

end_schema;
schema pour_basement;

expands (pour basement floor } ;
only_use_for_effects {basement floor laid } = true;

end_schema;
schema lay_flooring;

expands {Jay finished flooring } ;
only_use_for_effects {flooring finished} = true;

end_schema;
schema finish_garden;

expands { finish garden} ;
only_use_for_effects { garden finished} ;

end_schema;
schema finish_carpentry;

expands {finish carpentry} ;
only _use_for_effects { carpentry finished } = true;

end_schema;
schema sand;

expands { sand and varnish floors } ;
only_use_for_effects { floors finished} = true;

end_schema;
schema paint;

expands { paint } ;
only _use_for_effects { painted } = true;

end_schema;

B-1 4

Appendix B - Workbench testing

B.5 Experiment Execution

Initialisation

Step 1

B-1 5

The domain representation was passed to the schema library, and the HTN engine

initiated with the task "build_house". In response to this initialisation, the

workbench generated the following plan .

.__
P
_
la
_
n
_

h
_
e
_
ad
__,

------•I action build house ------+i•I plan end

The planners task queue was set as follows:

Task Queue

action build house

The planner has one outstanding task: build house. The schema library was

requested to provide candidates schemas for achieving this task. One schema,

build, was returned. As plan critics were not active, the schema' s only_use_if

conditions were not checked.

The planner replaced the build house task in the initial plan with the partial plan

described in the schema build. The resultant plan is depicted below.

action install services

action Decorate

The resultant task queue was as follows. The shaded box indicates the task

removed during the expansion. The abbreviations in the plan above are attached to

the full names of the tasks.

Step 2

Appendix B - Workbench testing

Task Queue

action build house

action pour concrete foundations (pet)

action erect frame and roof (efr)

action lay brickwork (lb)

action finish roofing and flashing (frf)
action fasten gutters and downspouts (fgs)

action finish grading (fg)

action pour walks and landscape (pwl)

action install services

action decorate

The first seven tasks on the task queue refined immediately to primitive tasks. The

task queue after processing was as follows:

Task Queue

action pour concrete foundations (pet)

action erect frame and roof (efr)

action lay brickwork (lb)

action finish roofing and flashing (frf)

action fasten gutters and downspouLS (fgs)
action finish grading (fg)

action pour walks and landscape (pwl)

action install services

action decorate

8-1 6

Appendix B - Workbench testing

Step 3

B-1 7

The schema library returned one task for refining "install services". The install

services task was replaced with this method, resulting in the following plan.

action Decorate

Task Queue

action install services

action decorate

action install drains (id)

action install rough plumbing (irp)

action install finished plumbing (ifp)

action install rough wiring (irw)

action finish electrical work (few)

action install kitchen (ike)

action install air conditioning (iac)

Step 4

Step 5

Appendix B - Workbench testing

The next task is decorate and this is what we get.

The expansion resulted in the following task queue.

Task Queue

action decorate

action install drains (id)

action install rough plumbing (irp)

action install finished plumbing (ifp)
action install rough wiring (irw)

action finish electrical work (few)

action install kitchen (ike)

action install air conditioning (iac)

action fasten plaster and plaster board (fpb)

action pour basement floor (pbf)

action lay finish flooring (lff)

action finish carpentry (fc)
action sand and varnish floors (svf)

action paint (p)

All the tasks within the task network at the end of step 4 refine to primitive tasks.

Planning may therefore be considered complete.

8-1 8

Appendix B - Workbench testing

Blank

B-1 9

App endix C
Task Formalism domain specifications

Appendix C - Summary of literature domains

C.1 Full house building domain specification

1

; ; ; House Building Domain - larger house building example

; ; ; BAT 5-Dec-76: Nonlin TF.
;;; KWC 9-Sep-85: Converted to 0-Plan l TF.
; ; ; BD 1 2-May-92: Converted to O-Plan2 TF.
; ; ; BAT 30-Nov-92: remove multiple landscape schema names
;;; BAT 30-Jun-93: task schema only_use_for_effect removed

task build_large_house;
nodes 1 start,

2 finish,
3 action { build house } ;

orderings 1 ---> 3, 3 ---> 2;
end_ task;

schema build;
expands { build house} ;
nodes 1 action { obtain building permit} ,

2 action { lay foundations } ,
3 action {build walls and roof} ,
4 action {joinery } ,
5 action { decorate and fit},
6 action { install services } ,
7 action {landscape } ,
8 action {close o u t house } ;

orderings 1 ---> 2 , 2 ---> 3, 2 ---> 4, 2 ---> 5,
2 ---> 6, 2 ---> 7, 3 ---> 8;

conditions unsupervised { wooden frame and roof erected) at 5;
end_schema;

schema lay _foundations;
eltpands (lay foundations I ;
n de I a 1ion (clenr lot and grade for slab } ,

2 accion (place concrel<: forms reinforcement rods and sewer lines},
3 action { pour slab } ;

orderings 1 ---> 2 , 2 ---> 3 ;
effects { foundations laid } ;

end_ schema;

schema build_ walls_and_roof;
CJ!.pands {build wail. and roof) :
node 1 action {erect wooden frame including roof},

2 action { fasten exterior sheathing } ,
3 action { insulate outside walls } ,
4 action { sheetrock and plaster inside walls } ,
5 action { place insulation in attic} ,
6 action { attach gutters and downspouts } ,
7 action { shingle roof},
8 action { lay brickwork exterior walls plus inside fireplace I ;

orderings 1 ---> 2 , 2 ---> 3, 3 ---> 4, 4 ---> 5 , 5 ---> 6 , 1 ---> 7,
7 ---> 3, 2 ---> 8, 8 ---> 5;

conditions unsupervised {foundations laid) at 1 ,
unsupervised { rough plumbing installed } a t 3 ,
unsupervised { rough wiring installed } at 3 ,
unsupervised [exterior trim complete} a t 8;

cnd_sthemn:

Appendix C - Summary of literature domains

schema joinery;
e. pnnds {joinery } ;
nodes I action {d rough carpentry including window and door frames) ,

2 action l do finish cnrpel\try cabinets !rim mouldings panelling) .
3 action {sand stain and varnish wood panelling and cabinets) ,
4 action { lay forrnica counter surfaces in kitchen) ;

orderings 1 ---> 2, 2 --> 3 , 3 - - -> 4;
conditions unsupervised {e 1crior sheathing fastened) at 1 ,

unsupervised (plastering done) at 2;
end_schema;

schema landscape;
expands {landscape) ;
n des 1 ac1ion {grade lay forms for walks and driveways) ,

2 action {pour walks and driveway) ,
3 action {finish grading },
4 action { landscape_yard) ;

orderings 1 ---> 2, 2 ---> 3, 3 ---> 4;
conditions unsupervised { brickwork laid) at 1 ,

unsupervised { interior and exterior cleaned) at 3 ;
end_schema;

schema install_services;
expands { install services) ;
nodes 1 action {electrical services } ,

2 action {plumbing services) ,
3 action {install kitchen appliances } ,
4 action {heating and air conditioning} ;

orderings 2 ---> 3 ;
conditions unsupervised { interior painted) at 3;

end_schema;

schema electrical_services;
expands {electrical services } ;
nodes 1 action { install rough wiring} ,

2 action { install electrical outlets switches lighting fixtures),
3 action { final hookup of electrical system) ;

orderings I -> 2 . 2 -> 3:
conditions unsupervi,ed { wooden frame and roof en:c1cd) at I ,

unsupervised (selected urfacu wnllpapered l at 2,
unsupervi ed { ldtch"'n appliances insmlled } at 2,
unsupervised { hot wnter heater installed) at 2,
unsupervised { fumnce :ind air conditioner installed) at 2;

end_schema;

schema plurnbing_services;
expands (plumbing services } :
nodes 1 action { i n 1all r ugh plumbing) ,

2 action { install tubs and shower basins } ,
3 action (install remaining plumbing fixtures) ,
4 action { install hot water heater l ;

orderings 1 ---> 2, 2 - > 3 , 1 --> 4:
conditions unsupervi cd { wooden frume and roof erected) at 1 ,

unsupervised {plastering done) at 2,
unsupervised (rough carpentry done) at 2,
unsupervised { bathroom tiles laid) at 3,
unsupervised { forrnica surfaces done) at 3;

end_schema;

2

Appendix C - Summary of l iterature domains

3

schema heating_and_ac;
expands { heating and air conditioning} ;
nodes 1 action {install heating and cooling ducts },

2 action {install furnace and air conditioner) ;
orderings I ---> 2;
conditions unsupervised {wooden frame and roof erected} at I ,

unsupervised (rough wiring installed) at 2;
effects { heating and air conditioning installed} ;

end_schema;

schema decorate;
expands {decorate and fit} ;
nodes I action {lay bathroom tiles } .

2 action {sand and paint interior walls and trim} ,
3 action {lay flooring wood and vinyl } ,
4 action {wallpaper selected surfaces } ,
5 action {complete exterior trim) ,
6 action {pnint exterior uim),
7 action {clean u p interior and exterior including yard } ,
8 action { lay carpeting) ,
9 action {attach cabinet fixtures } ;

orderings 5 ---> 6, 6 ---> 7, 7 ---> 8 , 2 ---> 3, 3 ---> 7, 2 ---> 4,
2 ---> 9;

conditions unsupervised (tubs and shower basins installed) at 1 ,
unsupervised (plumbing finished} at 2,
unsupervi ed (eiucrior sheathing a tened) at 5.
un upervised {guucrs nnd downspou1s attached) at 6.
un upervised [hcati.ng nad air conditioning installed) at 7;

end_schema;

schema obtain_permit;
expands I obtain building permit) ;
only_use_for_effects {got pem1it) = true;

end_schema;

schema clear_and_grade;
expands {clear lot and grade for slab) ;
only _use_for_effects {lot cleared] = true;

end_schema;

schema place_forms;
expands (place concrete forms reinforcement rods and sewer lines) ;

end_schema;

schema pour_slab;
expands {pour slab] ;

end_schema;

schema erect_ wooden_frame;
e11ponds (erect wooden frame including roof} :
only_use_for_effccts (wooden frame and roof erected) = true;

end_schema;

schema fasten_exterior_sheathing;
c11pnnds I fostcn exicrior shend1 1ng) ;
only_u ·c_for_effccts {e 1crior heathing fastened} = true;

end_schema;

schema install_rough_plumbing;
expnnds (ins1all rough plumbing) :
only_usc_for_effocts {rough plumbing installed} = true;

end_schema;

Appendix C - Summary of literature domains

schema install_rough_ wiring;
expands { install rough wiring} ;
only_use_for_effects { rough wiring installed) = true;

end_schema;

schema insulate_outside;
expands { insulate outside walls} ;

end_schema;

schema plaster_inside;
expands { sheetrock and plaster inside walls } ;
only_use_for_effects { plastering done} = true;

end_schema;

s.chema rough_cnrpeniry;
expands { do rough carpentry including window and door frames] ;
only_use_for_effects { rough carpentry done} = true;

end_schema;

schema linish_carpcntry:
expands { do fini h carpentry cabinets trim mouldings panelling} ;

end_schema;

schema sand_and_vamish;
expands { sand stain and varnish wood panelling and cabinets } ;

end_schema;

schema do_kitchen_surfaces;
expands { lay forrnicn counter surfaces in kitchen} ;
only_u e_for_effects I fonnica surfaces done} = true;

end_schema;

schema install_tubs;
expand { install tubs nnd shower basin] ;
only_use_for_effccts { tubs nn<l shower basins installed} = true;

end_schema;

schema do_tiles;
expands t lny bathroom tiles } ;
only_u e_for_effecrs {bathroom tiles laid} = true;

end_schema;

schema install_remaining_plumbing;
expands {install remaining plumbing fixtures } ;
only_use_for_effects [plumbing finished} = true;

end_schema;

schema sand_and_paint;
expands { sand and paint interior walls and trim} ;
only_use_for_effects {interior painted) = true;

end_schema;

schema lay _flooring;
expands {lay flooring wood and vinyl } ;

end_schema;

schema do_ wallpaper;
expand [wallpaper selected surface.�}:
oniy_u ii3or_effccts {selected surfaces· wallpapered} = true;

end_schema;

schema install_kitchen;
expands (i nstall kitchen appliances) ;
onl _use_for_cffcct� {kitche11 ppliances installed] = true;

end_schema;

4

Appendix C - Summary of literature domains

5

schema install_water_heater;
expands {install hot water heater) ;
only_use_for_effects { hot water heater installed) = true;

end_schema;

schema install_heating;
expands { install heating and cooling ducts} ;

end_schema;

schema install_fumace;
expands (in ml J furnace and air conditioner);
only_u e_C r_effccts { furnace and air conditioner installed) = true;

end_schema;

schema complete_trim;
expands { complete exterior trim} ;
only _use_for_effects { exterior trim complete) = true;

end_schema;

schema lay_brickwork;
expands { lay brickwork exterior walls plus inside fireplace} ;
only _use_for_effects {brickwork laid) = true;

end_schema;

schema single_roof;
expands { shingle roof} ;

end_schema;

schema attach_gutters;
oxpond. I attach gutters and downspouts } ;
only_u e_for_cffects {gutters and downspouts attached } = true;

end_schema;

schema paint_exterior;
expands { paint exterior trim};

end_schema;

schema place_insulation;
expands { place insulation in attic } ;

end_schema;

schema lay_walks;
expands { grade lay forms for walks and driveways } :

end_schema;

schema pour_ walks;
expands { pour walks and driveway) ;

end_schema;

schema finish_grading;
expands { finish grading} ;

end_schema;

schema landscape_yard;
expands { landscape_yard) ;

end_schema;

schema install_switches;
expands {install electrical outlets switches lighting fixtures} ;

end_schema;

schema final_hookup;
expands { final hookup of electrical system) ;

end_schema;

Appendix C - Summary of literature domains

chemn clenn_up;
expands (clean up inferior nnd exterior mduding yard } ;
only_ose_for_effoc1 (i111erior and ex1erior cleaned } = 1rue;

end_schcmn:

schcmn co.rpct:
expand (lay cnrpeting } :

cnd_schemn;

schema attach_cabinet_fixtures;
expands {attach cabinet fixtures};

end_schema;

schema closc_out;
expands { close out house};

end_schemn:

6

Appendix C - Summary of literature domains

C.2 Full pacifica domain specification

7

Task Operation_Columbus
nodes sequential

I start,
parallel

3 action (transport__ground_transports Honolulu Delta)
4 action (transport_helicopters Honolulu Delta)

end_parallel
parallel

5
6
7

parallel

action (evacuate Abyss 50)
a-;tion (evacuate B arnacle 100)
action (evacuate Calypso 20)

8 action (fly_passengers Delta Honolulu)
9 action (t.ransport_ground_transports Delta Honolulu)
1 0 action (transport_helicopters Delta Honolulu)

end_parallel
2 finish

end_sequenctial;
effects

end_ task;

(location__gt GTl)
(location__gt GT2)
(in_use_for GTl)
(in_use_for GT2)
(location_at A T I)
(in_use_for AT!)
(apportioned_forces GT)
(apporti ned_forces AT)
(nt C l 4 1)
(lit C.S)
(at KCI O)
(at B707)
(runway_status_at Delta)
(runway_status_at Honolulu)
(gt_capacity 25)
(:u_..:apacity 35)

schema evacuate_ city
expands {evacuate city ?city ?nu111her}

= Honolulu at I
= Honolulu at 1
= in_transit at 1
= in_transit at I
= Honolulu at I
= in_transit at 1
at I
at I
= Honolulu at 1

= Honolulu at I
= Honolulu at 1
= Delta at I
= clear at 1
= clear at I

at I
at I

vars ?city = ? (lypc city)
?number = ?{ satisfies numberp)

conditions
achieve {evac_status ?city} = {O ?number};

end_schema;

Appendix C - Summary of literature domains

schema Road_ Transport
only_use_for_effects {evac_staus ?from} = {e_left e_safe};
vars ?from =?{ type city }
?to =? { type air_base}
?gt =? { type ground_transport}
?e_left =?{type numberp}
?e_safe =?{type numberp }
?c_left =?{type numberp }
?c_safe =?{ type numberp }
?capacity =? (type numberp }
?take =?{ type numberp }
nodes

I action { drive ?take in ?gt from ?from}
2 dummy

conditions
only_use_if { apportioned_forces GT}
only_use_if { evacuate_to ?to}
only_use_if (gt_Cllpacity ?cnpnclty)
compute { ?cap:icity :'c_left ?e_.a c) = (?c_left ?c_safe)
compute f - ?e_ nfo ?c_ (lfe) = ?take
achieve (evoc_ · rntu '!from) = { ?c_ lefl c_sa e) at 2
unsupervi ed (localion_gt ft } = ?to nt bc.:gin_of I
unsupervised (in_use_for ?g1} = available at begin_ of I
supervised { in_u e_for ?gt } = ?fr(lm al end_of I from begin_ of l

effects
{ in_use_for ?gt} = ?from at begin_of I
{ in_use_for ?gt) = available at end_ of 1

end_schema

Schema Air_ Tran pon
only_u c_for_cffccts {evac_staus ?from} = {e_left e_safe};

vars ?from =? { type city}

nodes

?to =? { type air_base}
?at =?{ type airtransport}
?e_left =?{type numberp }
?e_safe =?{ type numberp }
?c_left =?{ type numberp }
?c_safe =?{type numberp }
?capacity =?{type numberp }
?take =?{type numberp l

1 action { fly ?take in ?gt from ?from}
2 dummy

conditions
only_use_if {apportioned_forces AT}
only_use_if { evacuate_ to ?to}
only_use_if { gt_cnpocity ?cupncit }
cornpu1c (' /capacity 7c_lcfl 7e_safo) = { 'lc_ left ?c_safe)
compute { - .e_ afe ?c_safe) = ?t, ke
achieve I cvnc_. 1a1us ?from) = { '!c_left ?c_safo) at 2
un opervised (locmion_gt ?AT) = '/IQ at bcgin_of I
un upervised { in_use_for ?ut} = nvai lnble at begin_of 1
supervised {in_11 e_for ?at) = . from at nd_of I from begin_of l

effects
{in_use_for ?at} = ?from at begin_of l

{in_use_for ?at) = >available at end_of I
end_schema

8

Appendix C - Summary of literature domains

9

chemn tnm pon..ground_rrnnspons
expands {transport >round_trnn ports '!from ?to}
viics ?from = ?(type nir_b::ise I
nodes

?to = ? { type air_base)

1 action (load ground_ transports)
2 action {take_off_from ?from)
3 action {fly _to ?to)
4 action{land_at ?to)
5 action I unload ground_transports)

orderings 1 ->2, 2->3,3->4,4-5
conditions

achieve { at c5) = ?from at 1
unsupervised { Jocation__gt GTI) = ?from at 1
un ·uperviscd (locmion_.gt GT2) = from at I
on upcrvised { runway_ t:llll _nt ?f m} = clear nt bcgln_of 2

upervi ed { nmway_slnlu._nt from) = muse at end_of 2 from begin of 2
unsupervised (rnnway_ tntu nt ?t) = clear nl bcgin_of 4
supervised { runwn.y_ tntus_nt ?ro) = i use 111 end_ of 4 from begin of 4

effects
{ at c5) = ?to at 5
{ location__gt GTI) = ?to at 5
{ location__gt GT2) = ?to at 5
{ in_use_for GTI) = available at 5
{ in_u e_for GT2 I = avnilnble at 5
{ ninway_. tmus_nt ?fr m I = in_ use at begin_ of 2
(runway _status at ?from) = clear at end of 2
{ runway_ststus at ?to I = in_usc nt begin of 4
{runway_status at ?from) :: clear at end_of 4

end_schema

schema transport_helicopters
expands {transport_belicopters ?From ?to}
vars ?from = ? (type air_base)

nodes

?to = ?{ type air_base)

I action (load air_transports)
2 action { take_off_from ?from)

3 action [fly_to ?to)
4 action { Jand_at ?to)
5 action {unload air_ transports)

orderings l ->2, 2->3,3->4,4-5
conditions

achieve {at c141) = ?from at 1
unsupervised { location_at AT l } = ?from al I
un upervised { runwny_ tatus_at ·. from) = clear al begin_of 2

upenriscd (runway_ tat11 _at from} = inusc at cnd_of 2 fro111 begin of 2
un upervi cd (runway_ llltu t ?to I = clear at begin_ of 4
supervised { runway_ 11tu _at to I = in_ use at end_ of 4 from begin of 4

effects
{ at c 1 40) = ?to at 5
(location__gt A TI) = ?to at 5
(in_use_for A TI) = availnt;ile at 5
(runway_. tatus_at ?from } = in_use at begin_of 2
(runway _status at ?from) = clear at end of 2
(runway_ststus at ?to) = in_use at begin of 4
{runway_status at ?from) = clear at end_of 4

end_ chcma

Appendix C - Summary of literature domains

schema fly_passeogers.
expands {fty_passengers ?from ?to}
vm ?to = ?{type air_base}

nodes
?from = ?{type air_base}

1 action {load Passengers}
2 action {take_off_from ?from}
3 action {fly _to ?to}
4 action{land_at ?to}
5 action {unload Passengers }

orderings 1 ->2, 2->3,3->4,4-5
conditions

un upervised { locntion_g1 B707) = ?from at I
un upervi ed { runway_ lntus_:ll . from) = clear m begin_ of 2
upervi ed I runway_sunus_al from) = in use m end_of 2 from begin of 2

un upcrvi ed { nmwny_smlus at . 10) = clear nt begin_of 4
supervised (runway_ uuu _n1 to l = in_ use al end_ of 4 from begin of 4

effects
{n1 B707) = 10 01 5
{ nmway_stntu _al ?from} = in_use at begin_of 2
{runway _status at ?from} = clear at end of 2
{runway_ tstus at ?10) = in_ use t begin of 4
{runway_statns at ?from } = clear at end_of 4
{nationals out} = true at 5

end_ chema

1 0

Appendix C - Summary of literature domains

Blank

1 1

, .

	20160607143400

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 28.35 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 375
 156

 Fixed
 Right
 28.3465
 0.0000

 Both
 2
 AllDoc
 253

 CurrentAVDoc

 None
 17.0079
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1
 368
 367
 368

 1

 HistoryList_V1
 qi2base

