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Abstract 

Abstract 

• Context and Objective: Whilst offering a number of desirable features, classical planners have yet 
to achieve wide spread application to "industrial" applications. Model-Based Planners, in contrast, 
have been successfully applied to a number of "industrial" problems. This thesis examines both 
technologies to justify, design, and evaluate an integrated architecture that exploits their relative 
strengths. 

• Research Infrastructure: To provide the infrastructure for considering an integrated architecture, 
a KADS model of construction industry planning knowledge and a classical planning workbench 
are developed. The workbench is built around a principled object oriented design derived from the 
0-Plan system. This effort permits experimentation with classical planner components and 
provides the classical element of the final integrated architecture. The KADS model set is 
constructed through a combination of interviews with practitioners and observations at a 
construction site. The set details the role of planning within the construction process and the 
domain expertise applied in the planning task. This understanding of "industrial" application 
requirements is used to identify the complementary strengths between classical and model based 
planning and evaluate the integrated architecture. 

• Complementary Strengths: Encoding the KADS model of construction expertise and 
enhancements to existing benchmark domain descriptions identified that MBP can represent and 
reason with domain knowledge that classical task refinement planners must resort to their 
precondition achievement function to achieve. Specifically, MBP can effectively represent and 
reason with expert knowledge for determining when actions should be included within a plan and 
derive dependency constraints from relationships between domain concepts. Classical planning 
offers the concepts of action preconditions and effects absent in MBP. These concepts facilitate the 
establishment and protection of causal links between actions 

• Integrated Architecture: The integrated architecture exploits MBP constructs to represent and 
reason with domain expert knowledge. The actions and dependency constraints synthesised are 
compiled into task refinement schemas. A task refinement planner is then applied to combine the 
schemas into a complete and interaction free plan. 

• Evaluation: The integrated architecture is evaluated from four perspectives. First, considering the 
complementary strengths that motivated the architecture identifies the facet(s) that address each 
issue. Second, a military evacuation scenario (Pacifica) is encoded within the formalism and a plan 
synthesised to test the generality of the architecture. Third, comments from automated planning 
experts obtained from publication of the architecture are examined and answered. Forth, 
construction industry experts' comments on the industrial potential of the architecture are 
discussed. 

· 

• Conclusion and Further Work: The integrated architecture successfully combines the expressive 
MBP representation and reasoning with the causal link establishment and maintenance of classical 
planning. Further work motivated by the integrated architecture lies in a number of directions: the 
integration of the domain knowledge from MBP within existing classical explanation techniques, 
further study of human inference and task knowledge, and tool support for building MBP domain 
models. 
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1. Introduction 
If you ever get close to human behaviour be 

ready to get confused . . . .  

Bjork (1965 - ) 

1 .1 .  Background to the problem 

Introduction 

"Artificial Intelligence (AI) is a field aiming to achieve functionality in computers 

which, when exhibited by humans, is described as having indicated intelligence" 

(Brooks 1991) .  Planning is such a functionality and has therefore been studied by 

AI researchers since the field's  inception in the nineteen fifties. 

Informally, planning requires a functionality that can analyse an agent's 

environment and then develop a strategy that modifies that environment in 

accordance with the agent' s goal(s) (Ginsberg 1993). This strategy is typically in 

the form of a set of actions combined with constraints on the order of their 

execution. 

AI planning research has been based upon the hypothesis that planning 

applications, although diverse, share many common facets. It is therefore possible 

to build general-purpose planning systems that can process the specification of an 

application domain and then generate solutions to planning problems in that 

domain. This work is known as domain-independent planning. 

Planning is an inherently complex problem. In order to provide an addressable 

subset of issues, the central focus of domain-independent research has made a 

number of simplifying assumptions known as the classical assumptions. 

Automated planning systems developed under these assumptions are termed 

classical planners. Whilst the development of classical planners has formed the 

core of automated planning research, the technology has not yet reached its 

industrial potential. 

Model-based planning is characterised by the generation of plans from a central 

domain model of an organisation's  products or services. The technology has 

developed independently from classical planning through an effort concerned with 

providing implemented applications for industrial clients. Whilst model-based 

planning has achieved successful commercial application, the technology's 

independence from classical planning has prohibited a cross fertilisation of ideas 

between the two approaches. This thesis examines both technologies, and 

develops an integrated architecture that exploits their relative strengths. 

1 



Introduction 

1 .2.  Ai ms and objectives 

The aim of this thesis is: 

• to develop the industrial aptitude of automated planning by combining 

classical and model-based technologies into a unified architecture which 

exploits each technology's strengths. 

To achieve this aim, this thesis addresses the following objectives: 

1 . Identification of the complementary strengths and limitations of classical 

and model-based technologies. 

2. Design and implementation of an integrated planning architecture which 

exploits the complementary strengths. 

3. Evaluation of the resultant architecture against the rationale for its 

construction. 

1 .3. Summary of achievements (contribution to knowledge) 

2 

In terms of approach, the architecture developed in this thesis demonstrates the 

potential for collaboration between planning in the space of a static object­

oriented domain model and planning in the space of an evolving partially-ordered 

state-based domain model. The object space exploits an expressive formalism for 

representing and reasoning with domain experts' knowledge. The state space 

facilitates the establishment of action conditions with action effects and the 

maintenance of these relationships by detecting and resolving interactions. 

In terms of implementation, the integrated architecture details how task refinement 

schemata may be compiled from the object-based domain-modelling scheme of 

model-based planning. 

The integrated architecture is summarised in Figure 1 - 1  below. The domain model 

provides object-oriented constructs for representing domain-specific knowledge. 

The model-based planner applies knowledge encoded in these constructs to 

determine actions and ordering constraints. The model-based/ HTN interface 

compiles the resultant structures into HTN schemata. The HTN-engine then 

assembles the schemata to create a complete plan. HTN critics are invoked to 

ensure the establishment and maintenance of conditions and effects over the plan. 



Model I Model-Based planner 
interface 

� 
Domain Model 

... .. l..11 " {set of constructs} .. r l"'I , 
-

Model-Based planner I HTN 
Engine interface 

Nodes 4---{actions and ordering 
constraints) 

" , 
Critics 

{represent and maintain f-detailed constraints } 

Introduction 

Model-Based Planner 
{actions and dependency 

synthesis algorithms} 

.... 

.. 

I I 
.... 

.... 
IITN Engine 

{action expansion and 
critic invocation } 

Figure 1-1 Overview of the integrated architecture 

3 



Introduction 

1.4. Approach and contents outl i ne 

4 

Chapter 2. overviews classical and model-based planning technologies, 

emphasising the devices supported for specifying application domain 

specific knowledge. The chapter draws conclusions on the possibility of 

transferring ideas between the technologies, and the areas in which this 

transfer is likely. 

Chapter 3. defines the need for a planning workbench to support the aims 

of this thesis, and details its implementation. Two appendices support the 

description with details of the algorithms implemented (Appendix A), 

and the test specification used to verify the workbench's correctness 

(Appendix B). 

Chapter 4. builds upon the possible transfer of ideas proposed in Chapter 2 

by identifying specific limitations with the technologies' representational 

devices. The limitations are identified through experiments within 

application domains detailed in the automated planning literature. This 

experimentation is supported by the research workbench described in 

Chapter 3 .  

Chapter 5. describes the elicitation of planning knowledge used by human 

experts within the construction industry. 

Chapter 6. verifies and extends the set of limitations with classical and 

model-based planning technologies identified in Chapter 4 through a set 

of encodings of the construction domain elicited in Chapter 5. From the 

issues identified, a precise rationale for integrating classical and model­

based planners is developed. 

Chapter 7. describes an integrated architecture which exploits the relative 

capabilities of classical and model-based planning. 

Chapter 8. evaluates the integrated architecture against the rationale for its 

development identified in Chapter 4 and Chapter 6, and assesses its 

commercial utility. 

Chapter 9. summarises the research presented within this thesis, draws 

conclusions as to its success, and defines areas for further investigation. 



Introduction 

1 .5. Prerequisite knowledge 

The reader is assumed to have the basic understanding of Artificial Intelligence 

that would be obtained by reading the introductory chapters of an Artificial 

Intelligence textbook. Examples of such texts include (Luger & Stubblefield 1993 , 

Ginsberg 1 993, Pratt 1994) 

The reader is assumed to have the basic understanding of object-oriented design 

that would be obtained by reading the introductory chapter of an object orientation 

textbook such as (Wirfs-Brock, Wilkerson, & Wiener 1990). The commercial 

reader may wish to consider (Rumbaugh et. al. 1991 )  or (Booch 1991) .  The more 

formal reader may wish to consider (Cook & Daniels 1 994) 

Whilst automated planning theory is described from first principles, the reader 

would benefit from reading this thesis in combination with the excellent Readings 

in Planning Volume (Allen, Hendler, & Tate 1990). The volume contains many of 

the papers that define the foundations of planning theory referenced in this thesis. 

1 .6. Published work 

The following publications resulted directly from the research presented in this 

thesis: (Jarvis & Winstanley 1 996a, Jarvis & Winstanley 1 996b). 

This section is included in accordance with The University of Brighton's research 

degree regulations. 

5 
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Al planning technologies 

2. Al planning technologies 
Each generation imagines itself to be more 

intelligent than the one that went before it, and wiser 

than the one that comes after it. 

George Orwell (1903-1950) 

2.1 I ntroduction 

This chapter overviews classical and model-based planning technologies, 

emphasising the devices supported for specifying application domain specific 

knowledge. The chapter draws conclusions on the possibility of transferring ideas 

between the technologies, and the areas in which this transfer is likely. 

Classical planning systems are described in two stages. Section 2.3 covers the 

foundations of classical planning theory. Section 2.4 describes work that extends 

the foundation theory to provide techniques that are closer to the requirements of 

industrial planning applications. The overview concludes by bringing together 

views on the applicability of the two predominant classical planning techniques to 

industrial problems. 

The overview begins with the definition of the problem used by early classical 

planning researchers. This definition is expanded in section 2.4. 1 to provide a 

framework closer to the requirements of industrial applications. With classical and 

model-based technologies defined, the rationale for considering the transfer of 

ideas between the technologies is presented. 

7 



Al planning technologies 

2.2 Initial definition of the planning problem 

8 

Figure 2-1 presents Kambhampati' s  definition of planning in terms of a dynamical 

system (Kambhampati 1996). The figure is useful for determining the facets of the 

planning problem that a domain independent planning system must consider. 

:: 
Intelligent Agent 

nns L1 of the � with goals r L1 instructs A t 0 Info 
s tate of E execute actions 

inE 
' 

Perceptual systems Actuator systems 
p A 

es the state t ofE Environment Executes 

E , actions in E 

Perce iv 

Figure 2-1, Planning in terms of a dynamical system 

The agent ..1 wishes to control the environment E in accordance with its own 

goal(s) r. The agent may perceive the state of E through its perceptual systems P, 

and it may effect changes on E through its actuator systems A. A plan is therefore 

a set of actions which when executed by A, modifies E in accordance with r. 

To solve the planning problem, a domain-independent planning system must 

provide methods for addressing the following issues: 

1 .  Representation of an agent' s goals r. 
2. Representation of the state of the environment E. 

3. Representation of effects on E of the actions executable by A. 

4. Provision of an algorithm to identify the subset of actions available to A 

which will manipulate E to achieve r. 

Issues 1 ,  2, and 3 provide the requirement for a domain independent planning 

system's representational devices. Issue 4 specifies the requirement of a domain 

independent planning algorithm. 



Al planning technologies 

2.3 Foundations of classical planning 

Within classical planning, the more expressive a language for representing the 

state of the world, the goal(s) of an agent, and the actions executable by an agent's 

actuators, the harder the task of writing a planning system to work with that 

language (Weld 1994 ). Consider the issue of representing actions with effects that 

vary depending upon the situation in which they are applied. An example action of 

this type is release-car-foot-brake. This action will produce the effect that a car is 

free to move if that car's hand brake is not engaged. If the car's hand brake is 

engaged, the action will have the effect of the car being secured only by it' s hand 

brake. Compared to the case where an action's effects do not depend upon an 

action's context, with conditional effects the planning system must additionally 

determine the situation of the action's application and identify effects that are then 

applicable. 

This is a common issue within artificial intelligence, and is known as the balance 

of epistemological and heuristic adequacy (balancing the ability to represent and 

reason about a problem with efficiency) (McCarthy & Hayes 1969). Classical 

planning problems are defined as problems which conform to a number of 

simplifying assumptions (Wilkins 1988, p 3); the aim being to provide problems 

which require a restricted epistemology that is heuristically adequate. Classical 

planners are domain independent systems, usually implemented on computer 

hardware, which address the set of classical planning problems (Wilkins 1 988, 

p8). 

Classical planning's limiting assumptions are as follows (based upon (Weld 

1994)): 

• Atomic Time: Execution of an action by an agent' s  actuators is 

indivisible and uninterruptible. Hence, actions maybe modelled as atomic 

transformation functions, changing the world state instantaneously. An 

effect of this assumption is that actions cannot be executed 

simultaneously, i.e. they must be supplied to the actuators one at a time. 

• Deterministic Effects: The effect of an agent' s  actuators executing any 

action is a deterministic function of the action and the state of the world 

when the action is executed. This assumption prohibits the specification 

of probabilistic actions, such as tossing a coin. 

• Omniscience: The agent has complete knowledge of the world and the 

effects on world state of the actions executable by an agent's actuators. 

The assumption implies that the agent's perceptual systems can 

accurately perceive all facts within the world, and that the agent 

possesses complete knowledge of the effects of its actuators upon that 

world. 

9 
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• Sole cause of change: The world state changes only through the 

execution of actions by an agent' s  actuators or through predefined events 

(e.g. a bank opening at 09:00). Hence, no other agents unpredictably 

affect the world state and the world state cannot change on its own. 

The classical assumptions collectively define a world that changes instantly, 

predictably, deterministically, and within the complete control of the agent 

performing the planning function. The 'real world' does not meet these 

constraints, but it is possible to formulate complex experimental worlds that do 

conform to them, and then to develop powerful planners to address these 

problems. 

The following subsections review the main classical planning technologies: 

precondition achievement planning, and task refinement planning. Precondition 

achievement planning is further decomposed into plan space and state space 

planning. Each technology is briefly defined, before the methods available for 

specifying application domain-specific knowledge are examined. This section 

concludes by comparing and contrasting the representational devices identified, 

and within the context of current thinking, identifying the technique which best 

meets requirements of industrial planning problems. 
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2.3.1 Precondition achievement planning 

The first and arguably the most influential planner, STRIPS (the Stanford 

Research Institute Problem Solver), was developed by Fikes and Nilsson in the 

late nineteen sixties (Fikes and Nilsson 1971 ) .  STRIPS casts the planning problem 

as a search through the space of possible world states, and is therefore classed as a 

state space planner. The overview of precondition achievement planners will 

commence with this class of planner, before moving to the more sophisticated plan 

space class. 

2.3.1.1 State space precondition achievement planning 

In state space planning, the initial world state (the way the environment is now) 

and the goal world state (the way the agent wishes the environment to be) of a 

problem are represented by logical sentences, and actions are described as state 

manipulation functions. From this formalisation, planning becomes the search of 

possible state transformations that start from the initial world state, and terminate 

when a path is found which reaches the goal world state. 

There are two components to a STRIPS style planner; the state based planning 

algorithm and the STRIPS representation of actions. The latter providing the 

representational devices for making application domain specific knowledge 

available to the planning algorithm. 

Fikes and Nilsson place the following requirements upon an action representation 

language: 

. . .  we must state the preconditions under which it [the action] is applicable 

and the effects on a world model schema. 

(Fikes and Nilsson 1971) 

If we define the world as being in a finite1 state at any given moment in time, we 

can specify the preconditions of an operator as conditions which must hold in the 

world state, and effects as the way in which this state changes as a result of an 

operator' s  application. STRIPS achieves this function through operator 

specifications consisting of three fields, the first field specifying an action's 

preconditions and the second and third specifying an action's effects. An example 

STRIPS operator is depicted in Figure 2-2. 

1 I.e. the number of facts holding in a world state is not infinite. 

1 1  
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Operator Push (?Object, ?From, '!fo) 
Preconditions: At-Robot (?From) 

At (?Object, ?From) 
Effects: Add: At (?Object, '!fo) 

At-Robot ('!fo) 
Del: At-Robot(?From) 

At (?Object, ?From) 

Figure 2-2, Example STRIPS operator, 
from (Fikes and Nilsson 1971) 

The push operator describes an action, executed by a robot, which moves an 

object ( ?Object) from a location ( ?From) to a second location ( ?To). The 

preconditions specify that before the action can be executed, the robot and the 

object to be moved must be at the start location ( ?From). The operator's  effects 

are sub divided into two fields: Add and Del, abbreviations for Add List and 

Delete List respectively. The Add List statements are added to the world model as 

a result of the action's execution. Hence, execution will result in the object 

( ?Object) being at the goal location ( ?To) and the robot, having carried the object, 

also being at the goal location. The Delete List specifies statements that should be 

removed from the world as a result of the operator's  execution. In the robot 

example, the object is no longer at its start location ( ?From) and, as the robot has 

moved with the object, the robot is also no longer at the start location. 

The STRIPS representation provides a declarative mechanism for specifying an 

action for use in a planning system. This representation is seminal in planning 

research, and has underpinned much work since. 

The second component to a STRIPS style planner is the planning algorithm. An 

example state based algorithm, published by Weld (Weld 1 994), is specified in 

Figure 2-3 below. The algorithm is invoked with the parameters plan-ss (Initial­

State, Goal-State, Set-Of-Actions,[]), where Set-Of-Actions is the set of actions 

available to the planning agent for execution by its actuators, and [] is an empty 

list. 

Plan-ss (world-state, goal-list, set-of-actions, plan) 
1. If world-state satisfies each conjunct in goal-state 
2. then return plan 
3. else let Act = choose from set-of-actions an action whose 
precondition is satisfied by world-state. 
4. if no such choice was possible then 
5. return failure 
6. else let S = the result of simulating the execution of Act 

in the world state and return plan (S, goal-state, set-of-actions, concatenate 
(plan, Act) 

Figure 2-3, Simple state space planning algorithm 
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Step 1 defines the planner's success criteria. If all the statements in the goal-list 

(the goal state on first invocation) hold in the world state, then planning is 

complete and step 2 returns the plan. Thus, if on the first invocation all the 

conjuncts in goal state hold in the world state, the plan returned will consist of an 

empty list because no actions are required as no change to the world state is 

needed - the goal state holds in the initial state. Step 3 selects an action from the 

set of actions available, based on the action's preconditions holding in the current 

world state
2
. If more than one action is applicable, we can assume the planner 

records the choice point to permit backtracking. If no such choice was possible 

(step 5), the algorithm has reached a dead end in its search space, and should 

return to the previous back track point. Step 6 simulates the execution of the 

action selected, producing a new world state. The new world state consists of the 

previous world state in addition to the facts in the selected actions add list, 

differenced with the facts in the actions delete list. 

The plan-ss algorithm will consider all the possible actions that may be executed 

from a state. It will therefore find a plan if one exists and is hence considered 

complete. Completeness is at the expense of time, as no predictions may be made 

on how long it will take to find a plan for a given problem (Weld 1 994). 

It is important to note that whilst the concept of state space planning is generic, a 

variety of methods have been developed to efficiently navigate the search space. 

The algorithm plan-ss is known as progression, as it synthesises a plan starting 

from the initial state and works towards the goal state. An alternative, regression 

(Waldinger 1 977), plans by searching from the goal state backwards towards the 

initial state. STRIPS itself employed the search strategy of means-end-analysis, a 

technique originating in the theorem prover GPS (Newell & Simon 1961). These 

techniques direct the search space considered by the planner, and have proved 

more effective in a number of laboratory domains than progression. 

2It is this behaviour which leads to the term precondition achievement planning. 

Both state space and plan space planners aim to ensure the preconditions of 

operators are satisfied. 

1 3  
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Summary of the representational devices supported by state space 

planners 

State space precondition achievement planners utilise a state-based model for 

specifying actions, agent's goals, and describing the world. Each category is 

summarised in the table below. 

Agent's Goals Specified as a set of logical statements that the planner 

must work to achieve. The agent's goals are collectively 

known as the goal world state. 

World State Represented as a set of logical sentences, which together 

specify the world at some moment in time. The state of the 

world at the start of planning is defined as the initial world 

state. 

Actions Defined as state manipulation functions. Actions have 

preconditions and effects. Preconditions specify the 

statements that must be true in the world state before an 

action can be executed. Effects specify the changes in the 

world state which result from an action's execution. The 

representation is known as the STRIPS representation. 

In addition to the declarative knowledge representation techniques identified 

above, the domain writer may modify the domain independent planning algorithm 

to optimise it for the application domain under consideration. It is common 

practice for a domain writer to examine the execution of a planner on a test 

problem set, analyse the resultant search space, and then modify the algorithm and 

the action representation (Drummond 1 994). The options available will be 

discussed in depth in the next section, 2.3 . 1 .2 
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The NOAH planning system (Sacerdoti 1975b) introduced several concepts 

utilised by modern planners in both the precondition achievement category and the 

task refinement category. One change initiated by NOAH was the reformulation of 

planning from the search through world states, to the search through plan space. In 

the plan space, nodes represent a partially specified plan, and the edges denote 

plan refinement operations such as the addition of an action to a plan. This space 

facilitated the development of more powerful planning algorithms. For example, 

the space permits actions to be added to a plan at any point, in contrast to the 

single insertion points offered in state space planning. 

A second innovation of NOAH was partial-order planning, which lead to the least 

commitment paradigm3 prevalent in state-of-the-art systems today. The innovation 

notes that a plan should only have ordering constraints added when there is a clear 

justification for them. In the total order approach found in state-space planning, 

ordering constraints are intertwined with the order in which actions are added to a 

plan. The Sussman Anomaly (Sussman 1974) provides a motivating problem that 

demonstrates the problems with the total order approach. The planner is provided 

with two goals on (block], block2) and on (block2 block3 ). If the planner attempts 

to realise the first goal before the second, it will find it can no longer move block 2 

onto block 3, as block I is on top of block 2, preventing it from moving. The 

planner must then undo its first goal in order to achieve the second, before again 

achieving the first goal. By detecting that moving block I onto block 2 would 

delete the preconditions of the move block 2 onto block 3 action, an appropriate 

ordering constraint may be added; therefore, removing the redundant action. 

To achieve partial order planning we must refine our definition of a plan and a 

planning algorithm. Partial order planning considers a plan as a three tuple <A, 0, 

L>, where A is the set of actions in a plan, 0 is a set of constraints over the 

execution order of A, and L forms a set of causal links (Weld 1994). 

Consider the specification of A =  {Action" Action2, Actions3 } and 0 specified to 

be (Action1 < Action2, Action1 < Action 3).  This representation constrains Action1 

to occur before Action2, and Action1 to occur before Action3 . These constraints 

are said to be consistent, as at least one valid ordering exists. The semantics of the 

constraints are that Action2 and Action3 may be executed in any order relative to 

each other. 

3 
The least commitment paradigm was also motivated by the MOLGEN planning 

system (Stefik 1981) .  In the context of biological experiment design, MOLGEN 

demonstrated the effectiveness of gradually constraining a variable's instantiation 

as opposed to immediately committing to an instantiation. 

1 5  
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Least commitment planning requires the capability to trace past decisions and the 

reasons behind these decisions; if a planner makes a ladder available it is for a 

reason, and removing the ladder before it is needed would invalidate a plan. 

Sacerdoti identified this issue and included the Table of Multiple Effects in his 

NOAH system. The table recorded an entry for each expression that was asserted 

or denied by more than one node within a plan. A conflict was recognised when an 

expression that is asserted at some node is denied at a node that is not the asserting 

node's goal. Information recorded about why decisions have been taken during 

planning is referred to as a plan's  Teleology (Sussman 1974). 

Tate later devised the Causal Link within his Nonlin system (Tate 1 977) to address 

a limitation of the table of multiple effects. The table of multiple effects considers 

effects at the node level. Consequently, it maintains all the effects from a 

producing node to its goal node. Typically, only a subset of the effects should be 

maintained. Causal Links provide a teleology structure with three fields: a pointer 

to a producer action Ap, a pointer to a consumer action Ac, and a proposition Q 

which is an effect of AP and a precondition of Ac. Such links are represented 

mathematically as: 

Ap � Ac 

Causal links are used to detect when a new action introduced to a plan interferes 

with past decisions. Such an action is known as a threat. Mathematically A1 

threatens Ap � Ac when 0 u (Ap < Ai< Ac) is consistent, and Ai has an 

effect -,Q. 

The concept of threat detection and removal was first implemented by Sacerdoti 

and refined by Tate within the Question and Answering component of Nonlin 

(Tate 1 977). The famous Modal Truth Criterion (Chapman 1 987) formalised the 

notation of threats and their removal through the construction of the formal 

TWEAK planner. The concept of plan critics and plan debugging originated with 

HACKER (Sussman 1974). 

For ease of representation, plan space planning specifies planning problems as null 

plans. A null plan has two actions A=(A0, Aoc), one ordering constraint 0 = (Ao < 

Aoc), and no causal links, L= (). Action0 is the start action of the plan and has no 

preconditions, its effects are used to specify the world's  initial state. Actionoc has 

no effects, but its preconditions specify the goals of the planning problem. 
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The planning algorithm below (plan-ps) is a simple regressive algorithm, 

developed by Weld (Weld 1994). The algorithm searches null plans, making 

nondeterministic choices until all the conjuncts of every action's preconditions 

have been supported by a causal link, and all threatened links have been protected 

from possible interference. Plan-ps 's first argument is a plan structure and the 

second is an agenda of goals that need to be supported by links. Initially each item 

on the agenda is a pair <Q actio�>, i.e. the preconditions of action�, the goals of 

the plan. 

Plan-ps (<A,0,L>,Agenda, Set Of Actions Available) 

I .  If Agenda is empty, return <A,0,L> 

2. Let <Q, Actionneedcd> be a pair on the agenda 

3. Let Actiona<ldcd = Chose an action that adds Q (either a 

newly instantiated action from Set Of Actions Available or an action already 

in A that can be ordered consistently prior to Actionnecded· If no such choice is 

possible then return failure. 

Let L' = L u  { Actionadded � Actionnee<led} ,  and let 

O' = 0 U { Actionadded < Actionnecded } .  If Actionadded is 

Newly instantiated, then A' = A u  {Actionadded} and 

O' = 0 u ( Action0 < Actionadded < Action�} .  Otherwise, let 

A' = A  

4. Let agenda' = agenda - { <Q, Actionnee<led } 

If Action,dded is newly instantiated, then for each conjunct 

in, Q;, of its precondition, add <Qi> Actionadded> to agenda' 

5. For every action A1 that might threaten a causal link 
R 

Ar � A,;, add a consistent ordering constraint, either 

a) add A1 < Ar to O' 

b) add Ac < A1 to O' 

if neither constraint is consistent, then return failure. 

6. Plan-ps(<A' ,O' ,L'>,agenda' ,Set Of Actions Available) 

Figure 2-4, Simple plan space algorithm 

Step 1 specifies the planning algorithm's success criteria. If the agenda is empty, 

all the goals of the plan have been achieved. Step 2 selects an outstanding item for 

achievement. Step 3 selects a new action that adds the effect Q just selected from 

the agenda. Alternatively an action already existing in the plan, before A and 

asserting the effect Q, may be used to establish Q. The agenda item satisfied is 

removed from the agenda. If a new action has been instantiated, its preconditions 

are added to the agenda. Step 5, the causal link protection stage, moves actions 

that threaten other actions either before or after the range under protection. If 

either technique resolves the conflict, the plan is consistent and the algorithm is 

recursively called to solve the next agenda item. 

1 7  
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The plan-ps algorithm contains several decision points: the selection of an entry 

from the agenda, the selection of an existing condition (if possible) to satisfy the 

agenda item selected against instantiating a new action, the choice of a new action 

from the set of possible actions, and the selection of a method to resolve a conflict. 

A more succinct decision is the choice of when to resolve the conflicts, the plan-ps 

algorithm hard codes the resolution of all conflicts created by a new action before 

considering the next agenda item. 

Decision making strategies have been studied by a number of authors. To provide 

an insight into the decision-making strategies available, the work of Poet and 

Smith is summarised below. 

Poet and Smith (Poet & Smith 1993)4 identify several strategies for removing 

threats in partial order plan space planners. The separable delay technique notes 

that many of the threats that occur during planning are ephemeral (short-lived). As 

planning continues, new actions or variable bindings cause threats to be resolved 

without intervention from the planner. The separable delay strategy therefore 

waits until a threat has become definite i.e. all variable bindings have been 

completed. The delay unforced threats strategy waits until only one threat 

resolution option remains. Thus, if a threat could be resolved in plan-ps by both 

promotion and demotion, the planner would wait until only one of these methods 

would achieve a valid plan i.e. not introducing a new threat itself. Delay 

resolvable threats ignores a threat until it becomes impossible to resolve, and 

discards the partial plan. Delay threats to the end waits until planning is complete 

before attempting to resolve threats. 

Joslin and Pollack (Joslin & Pollack 1994)5 modify Poet and Smith's delay 

unforced threat strategy to one named least cost flaw repair, and apply it to both 

the selection of items from the agenda and selection of which flaws to repair. 

Flaws are ranked against the number of possible ways of resolving them. The 

strategy covers the contingency of all forced flaws being resolved and planning 

being complete except for a set of unforced flaws (flaws with a cost > 1) .  Least 

cost flaw repair processes each flaw (open condition or threat) in ascending cost 

order. 

4A number of other authors have considered this issue (Yang & Chan 1994; 

Minton, Bresina & Drummond 1 991 ;  Barret & Weld 1994b) 
5 The authors later develop a technique criticising the class of decision 

postponements listed above, and introduce an active decision postponement 

technique (Joslin & Pollack 1995). 
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Summarising representational devices supported by plan space planners 

Plan space planners enhance our understanding of the planning problem by 

refining the general-purpose planning algorithm. The recasting of planning as a 

search through the state of possible plans facilitates the introduction of non-linear 

planning, plan teleology, and threat handling. This reformulation of planning to 

the search through plan-space results in no enhancement to the declarative domain 

knowledge available to a domain writer; the STRIPS action representation remains 

unchanged. 

As in state based planning, the domain writer has two methods available to specify 

domain specific knowledge: a declarative action description language, and 

algorithmic optimisation options. The declarative knowledge available to a plan 

space planner is defined in the table below. 

Agent' s Goals Specified as a set of logical statements that the planner 

must work to achieve. The agents' goals are collectively 

known as the goal world state. In plan-space planning the 

goal world state is specified as preconditions on a final 

dummy action. 

World State Represented as a set of logical sentences that together 

specify the world at some moment in time. The state of the 

world at the start of planning is defined as the initial world 

state. In plan space planning the initial state is specified as 

effects of an initial dummy action. 

Actions Defined as state manipulation functions. Actions have 

preconditions and effects. Preconditions specify the 

statements that must be true in the world state before an 

action can be executed. Effects specify the changes in the 

world state which result from an action's execution. The 

representation is known as the STRIPS representation. 

The algorithmic optimisation option permits the domain writer to make domain 

specific knowledge available to a planner through modifications to the planning 

algorithm. Plan space planners offer more modification options to a domain writer 

than state space planners. Specifically, state-space planners offer two decisions 

point for optimisation: the selection between the open conditions, and the selection 

between the applicable actions to achieve the condition selected. Plan space 

planning extends this set of decisions to include: the selection between the set of 

open conflicts in a plan, the selection between the set of methods to resolve a 

given conflict, and the decision to resolve conflicts or continue planning. 

1 9  
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A number of decision-making strategies were described in the preceding text 

(separable delay, delay unforced threats, etc.). The method employed by domain 

writers for deciding between algorithmic optimisation options is one of 

experimentation. The domain writer encodes a domain in the declarative action 

representation language, then experiments with this representation on a number of 

example problems in the domain under consideration. "Bottlenecks" in the 

execution are identified, i.e. points at which the planner is exploring a large 

number of options whilst attempting to make a decision. The available decision 

making strategies are interchanged until a reduction in the identified bottleneck is 

achieved. 

Drummond states that precondition achievement planning' s applicability to real 

problems is hindered by the technique's  search space (Drummond 1994). He notes 

that the technique's  lack of effective search control prohibits the application of 

precondition achievement planners to real world domains. Drummond has 

identified a problem in the relationship between a domain and the allocation of 

algorithmic optimisation techniques. For example, there is no answer to the 

question of what features of a domain lead to the delay removable threats 

technique being more applicable than separable delay. Precondition achievement 

planners offer little advice to the domain writer; the decision must be based upon 

experimentation. 

This argument will be considered in more depth when comparing precondition 

achievement and task refinement planning technologies in the next section. 
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2.3.2 Task refinement planning 

Task refinement or Hierarchical Task Network Planners (HTN) (Tate 1 977) were 

initially motivated by Tate's desire to combine AI planning techniques with 

Operations Research. Tate noted that the Operations Research discipline provided 

techniques for analysing plan networks, but offered no comment on their 

construction (Tate 1977). As a result of this heritage, there are many similarities 

between task refinement and precondition achievement planners, but also some 

significant differences. A comparison between the techniques is provided in 

section 2.3.3.  This section aims to introduce the basic task refinement 

representation and planning algorithm. 

Task refinement planning is the search for plans that accomplish task networks 

(Ero!, Hendler & Nau 1 993; Kambhampati 1 994). The process of task refinement 

will be introduced through a simplified definition of task networks; therefore, for 

the moment, accept the following definitions. 

• primitive tasks describe the actions available to the actuators of the agent 

for which we are planning. 

• non-primitive tasks describe tasks that the planning process must 

accomplish. Non-primitive tasks are themselves composed of other non­

primitive and I or primitive tasks, collectively defined as sub tasks -

relative to the defining non-primitive task. A non-primitive task may 

place ordering constraints upon its sub tasks. 

• plan executability is achieved when all the steps in a plan are mapped to 

primitive tasks. 

Planning problems are supplied to a task refinement planner in the form of a non­

primitive task network (a primitive task network is a completed plan, and would 

therefore require no action by the planner). Considering a concrete example, to 

generate a plan for decorating a house, the following task would be supplied to a 

task refinement planner (Figure 2-5): 

task decorate; 
nodes 1 action { decorate) ;  

end task decorate;. 

Figure 2-5, Initial task network for the decorate problem 
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The initial task specification results in a plan with a single task: decorate. 

Decorate is non-primitive (defined by the prefix "action") and therefore requires 

further refinement. To refine the decorate task, the planner will search its domain 

library for a task network indexed as a refinement of decorate. Several task 

networks may share the same index, collectively referred to as methods. In the 

decorate example, one method may decorate a house with wall paper and a second 

with paint. Once the set of methods for achieving the decorate task has been 

identified, the planner selects one method from the set for use in the plan (the 

options available to guide this selection will be discussed latter). Figure 2-6 

depicts two methods (decorate 1 and decorate 2) which may be used to achieve 

the decorate task. Decorate 1 is intended for a building with a basement, whilst 

decorate 2 is intended for a building without a basement. 

schema decorate- I ;  
expands { decorate} ; 
nodes l action {fasten plaster} ,  

2 action { pour basement floor} ,  
3 action { lay finished flooring} , 
4 action {finish carpentry} ,  
5 action ( sand and varnish floors } ,  
6 .  action {paint} ;  

orderings: 2� 3 ,  3 �  4, 4� 5 ,  l �  3 ,  6� 5 ;  
end schema decorate-I ; 

schema decorate-2; 
expands {decorate} ;  
nodes 1 action { fasten plaster} ,  

2 action { lay finished flooring} ,  
3 action {finish carpentry} ,  
4 action { sand and varnish floors } ,  
5 action { paint} ;  

orderings: l �  2, 2� 3 ,  3� 4, l �  2, 5� 4; 
end schema decorate-2; 

Figure 2-6, Two methods for achieving the decorate task, 
based upon an example given in (Tate 1977) 

Assuming the planner selects the decorate-] method, the initial decorate task will 

be refined to (i.e. removed and replaced by) the decorate-] method. Figure 2-7 

depicts the initial plan and the results of the first refinement. 



Al planning technologies 

basement floor 

fasten plaster 

The plan resulting from the initial 
problem definition 

decorate 

The plan resulting from the refinement of 
decorate with method decorate 1 

lay finish. floor carpentry 

paint 

sand, varnish 

Figure 2-7, Initial refinement of the decorate task. 

Each of the tasks resulting from the initial refinement of the decorate task are non­

primitive, as each task has the prefix "action". Hence, the planner proceeds by 

searching for methods in its domain library that will achieve each of the new tasks 

(fasten plaster, pour basement floor . . .  paint), and selecting appropriate 

refinements. If the paint task has one method applicable for its refinement (Figure 

2-8), the task network in Figure 2-7 will be refined to the network depicted in 

Figure 2-9. Note how the ordering constraints imposed on paint are maintained by 

the task's refinement. 

schema paint; 
expands {paint} ;  
nodes 1 primitive { paint walls ) ,  

2 primitive {paint door frames } ,  
3 primitive { paint doors } ;  

orderings: 1 -t  2; 
end schema painL; 

Figure 2-8, Refinement for the paint task 

basement floor lay finish. floor carpentry sand, varnish 

fasten plaster r··········-.. ··-·······-;:;::·:��:···· .. ···-·········�:;:�·;;�:�:·-··-······· ····· .. --1 
: I i I 
I : 
: I j paint doors � L. ............... -.... " ....... ................... . . ............................ _. __ ..... .................................. . . .... ..! 

Figure 2-9, Plan resulting from the refinement of the paint task 
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The refinement process repeats until each task in the a plan may not be further 

refined, i.e. all tasks are primitive tasks. The process of task refinement is 

described more formally in the algorithm below (Figure 2-1 0) which originates in 

(Ero!, Hendler & Nau 1993). 

Plan-tn (Initial Task) 
1 .  If P contains only primitive tasks, then resolve the conflicts 

in P and return the result. 
If the conflicts cannot be resolved, return failure 

2. Choose a non-primitive task t in P 
3. Choose an expansion for t 
4. Replace t with the expansion 
5 .  Use critics to find the interactions among the tasks in P 

and suggest ways to handle them 
6. Apply one of the ways suggested in step 5 
7. Go to step 1 .  

Figure 2-10, Simple task refinement planning algorithm 

On the algorithm' s first invocation, step 1 considers the initial task. If all tasks in 

the plan are primitive, planning is considered complete. Step 2 selects a non­

primitive task from the initial task specification; hence, it is possible to describe 

problems that initially consist of more than one task. Step 3 identifies methods 

which maybe used to refine the task selected, and selects one to use as a 

refinement. Step 4 performs the refinement by replacing the task selected for 

refinement with the selected method for accomplishing it. Step 5 and 6 critique the 

plan for inconsistencies in the constraints explained below. Step 7 recursively calls 

the algorithm. Any non-primitive tasks added during the previous invocation of 

the algorithm will be considered at step 2 for refinement. 

As with precondition achievement planning algorithms, the task refinement 

algorithm in Figure 2-1 0  offers several decision points: should all tasks be refined 

before constraints are checked or, as in the algorithm above, should the process of 

task refinement and constraint maintenance be interleaved? If a set of tasks require 

refinement, which of these tasks should be considered first. Tsuneto et. al. identify 

the choice points in task refinement planning and analyse the options available for 

making these choices (Tsuneto et. al. 1996). The options correlate with Poet and 

Smith's  work in precondition achievement planning (Poet & Smith 1 993). 
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To date, this description has described non-primitive task networks as structures 

containing a set of other non-primitive and or primitive task networks and ordering 

constraints between these sub tasks. The domain writer may specify additionally 

knowledge in the following categories: conditions, effects, and variable binding 

constraints. Each category is described in turn below. 

Conditions may be typed to permit the domain writer to define how each should be 

established and maintained. The variety and meaning of condition types vary from 

one specific planning system to another. For the purpose of this review, the types 

in the Nonlin system will be examined. Nonlin was the first task refinement 

planner6; therefore, the condition types available in today's state of the art systems 

may be traced to those provided in Nonlin. 

Nonlin supports achievable goals and three condition types: supervised, 

unsupervised, and use-when (Tate 1 976). Achievable goals permit Nonlin to 

include tasks in its network for to purpose of satisfying the condition the goal 

prefixes. This is the only construct that permits Nonlin to include tasks for 

satisfying a condition. The supervised condition type permits the specification of 

the only goal node from which a condition may be satisfied7• 

Unsupervised conditions may be established only by adding ordering constraints 

to a plan. A planner will not add actions to a plan for the purpose of establish 

conditions of this type. In Nonlin, the system waits until planning is complete 

before attempting to match each unsupervised condition with a contributor. If 

contributors cannot be found, Nonlin backtracks by trying different refinements 

for tasks. 

Use-when conditions provide a mechanism for selecting between the set of 

methods available for achieving a task. For example, if a decorate schema is only 

applicable to a house with a basement, a use-when condition of "building has a 

basement = true" would be added. Once the set of methods for refining a task is 

identified, the members whose use-when conditions do not hold in the current 

world state are pruned. A task refinement planner will not attempt to satisfy a use­

when condition, hence, the planner will not attempt to construct a basement for 

decorating a house. 

6Nonlin draws upon concepts originating in Sacerdoti' s  NOAH system. However, 

Nonlin was the first planning system to implement task refinement planning as 

found in today's planning systems. 
7 The achievable goal concept has been replaced within the 0-Plan system with 

the condition type achieve. In 0-Plan Supervised conditions may be satisfied 

within a schema either by the deliberate inclusion of an effect or by the direct 

inclusion (at a more detailed level of decomposition) of an action known to 

achieve the necessary effect. 

25 
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Effects are similar to those in precondition achievement planning. They describe 

how the world state changes as a result of an action's  execution. As tasks may be 

organised into a hierarchy, effects may be organised into different levels of 

abstraction. 

Variables may have co-designation constraints placed upon them. 

With the additional constraints specified, a complete definition of primitive and 

non-primitive tasks may be presented. 

• primitive tasks describe the actions available to the actuators of the agent 

for which we are planning. They may assert effects and conditions upon 

the world. 

• non-primitive tasks describe tasks which the planning process must 

accomplish. Non-primitive tasks are themselves composed of other non­

primitive and or primitive tasks, collectively defined as sub tasks -

relative to the defining non-primitive task. A non-primitive task may 

assert the following constraints: orderings between its sub tasks, typed 

conditions, and variable binding constraints. 

Task refinement planning is the only technique which, to date, has successfully 

been applied to "real world" planning problems (Kambhampati 1 995). In 

comparison with precondition achievement planning, there is a lack of formal 

understanding of task refinement planning. Until recently, many authors have 

dismissed task refinement as an efficiency hack. However, Erol and Kambhampati 

have recently made progress towards developing a formal understanding of task 

refinement planning. 
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2.3.2.1 Summary of the representational devices supported by task 

refinement planners 

Task refinement planning offers a number of constructs to the domain writer for 

declaring knowledge about actions in a domain. Each is summarised in the table 

below: 

Agent's Goals Planning problems are specified as one or more non-primitive 

tasks which the planner must refine. Ordering constraints 

between these tasks may be specified by the domain writer. 

World State Represented as a set of logical sentences, which together 

specify the world at some moment in time. The state of the 

world at the start of planning is defined as the initial world 

state. 

Actions A domain is partitioned into a set of tasks, with a number of 

methods for achieving each task. The tasks may be arranged 

into a hierarchy, with each level representing a different level 

of abstraction. Preconditions may be typed as achievable goals, 

supervised, unsupervised, or use-when. Condition types inform 

the planner how to satisfy and maintain conditions, therefore 

reducing the planner's  search space. Effects of actions may be 

specified as in precondition achievement planning, as literals 

which change in the world state. The hierarchy of task 

specifications permit effects to be introduced at different levels 

of abstraction. 

The domain writer may modify a task refinement planner's decision-making 

strategies in a number of ways. The options available are similar to those in 

precondition achievement planning. This point is expanded in section 2.3.3 .2. 

27 
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2.3.3 Summary of the views on which classical planning technology 
best meets the requirements of industrial planning problems 

Sections 2.3 . l  and 2.3.2 identified two devices supported by both precondition 

achievement and task refinement technologies for providing application domain 

specific knowledge to a general-purpose planning system. First, declarative action 

representations allow the domain writer to declare knowledge about the actions 

and the objects in a domain. Second, algorithm optimisation techniques permit the 

domain writer to adjust a general-purpose planning algorithm to optimise the 

algorithm's  performance for a specific application domain. 

Both methods are summarised below, and conclusions drawn as to which 

technology, precondition achievement or task refinement, best services the 

representational requirements of industrial planning problems. 

2.3.3.1 Declarative action representations compared 

28 

Both state space and plan space approaches to precondition achievement planning 

support the declarative STRIPS action representation language. Within the 

STRIPS formalism, the world is modelled as being in a finite state at any moment 

in time. Actions are defined in terms of preconditions and effects, where 

preconditions define the conditions which must hold in the world state before an 

action can be executed, and effects specify the logical statements added to and 

deleted from the world's state as a result of the action's execution. 

As in precondition achievement planning, task refinement planners use a state­

based model as the underlying action description technology. The primary 

differences lie in the way action knowledge is organised and the type prefixes that 

may be added to conditions. Actions are organised into a hierarchy of tasks, where 

each task may define its sub tasks, ordering constraints between those sub tasks, 

conditions, effects, and variable binding constraints. 

The differences between the declarative action representations of precondition 

achievement and task refinement planning lead to the question: "which 

representation is more expressive8?" 

8In terms of features which are relevant to capturing domain specific knowledge in 

the context of solving the planning problem. 
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From task refinement planning's conception in the nineteen seventies to the late 

nineteen eighties, no formal analysis of the task decomposition was undertaken 

(Barrett & Weld 1994b; Kambhampati 1994; Erol & Hendler & Nau 1994b). 

Formal research focused on precondition achievement planning, neglecting task 

refinement (Chapman 1 987; Pednault 1988; McAllester & Rosenblitt 1 991) .  

Recently (the early nineteen nineties), researchers have started formally analysing 

the implications of task refinement. Work in this area has been undertaken by 

(Yang 1990; Erol & Hendler & Nau 1994a, 1994b; Kambhampati 1 994, 1 995; 

Barrett & Weld 1994). 

Erol et. al. ( 1994b) use Baader's definition of the expressivity of knowledge 

representation languages to compare precondition achievement and task 

refinement planning. Baader defines expressivity as follows. If a language L1 can 

be expressed in a second language Li, then for any set of sentences in Li. there 

must be a corresponding set in Li (Baader 1 990). Erol et. al. demonstrate through 

a formalisation of task refinement and precondition achievement planning that the 

precondition achievement representation can be expressed in a task refinement 

formalism (Erol, Hendler & Nau 1994b). The authors then demonstrate that the 

inverse is not possible, i.e. all sentences in a task refinement formalism cannot be 

represented in a precondition achievement formalism. Therefore, under Baader's 

definition of language expressivity, precondition achievement formalisms are less 

expressive than task refinement formalisms. Erol et. al. ( 1994b) conclude that 

precondition achievement planning is a special case of task refinement planning. 

This analysis does not comment on the relevance of task refinements greater 

expressivity in the context of capturing domain specific knowledge for a planning 

system. 

Kambhampati (Kambhampati 1 995) derives a formal framework that is similar to 

Erol et. al.; however, he uses the framework to examine informal claims made 

about task refinement' s advantages by a number of researchers in the context of 

planning. Kambhampati' s  analysis is summarised below: 

29 
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It is often claimed that task refinement planners allow the domain writer to effect 

more control over solutions than precondition achievement planning, as the 

domain writer may rule out certain classes of solution through task specification. 

For example, by specifying the task "build a house" rather than the goal "have a 

house", the planner does not explore the options of purchasing a house or moving 

an existing house to a new location. Kambhampati questions if the same 

functionality may be achieved in precondition achievement planning. Barret and 

Weld (Barret and Weld 1994a) offer such a comparison and conclude that whilst 

many of the problem specification advantages can be achieved in precondition 

achievement planners, task refinement planning is the more expressive. 

Task refinement planners encode large plan fragments with pre-packaged causal 

structure, hence, the planner does not have to work to create these plan fragments. 

Kambhampati concludes that this advantage depends upon the level of interaction 

between customised plans. Hence task refinement planners rely on addressing a 

class of problem where the domain maybe structured into a relatively interaction 

free task specifications. 

Goal specification is arguably richer in task refinement planning as it is possible to 

specify intermediate goals. For example, a round trip cannot be specified using 

goals of attainment as the goal state and initial state are the same. Task refinement 

planning permits the problem to be specified as two ordered tasks "travel to 

Jocationl < travel back to original location" . Kambhampati notes that problems of 

this type may be specified in precondition achievement planning by inserting a 

dummy action. However, it is not possible in precondition achievement planning 

to enforce restrictions on different parts of the plan. For example, enforcing the 

constraint that the round trip should use the same mode of transportation on both 

legs. A solution in precondition achievement planning would require modification 

to the domain model, where task refinement systems allow a new high level 

operator to be added, leaving the remainder of the domain model unmodified. 

Kambhampati concludes that problem specification is simpler in task refinement 

planning. 

Task refinement planning is the only planning technique to be applied successfully 

in real world problems. Kambhampati asks if this is necessarily so. Drummond 

(Drummond 1994) argues that this practical success is no accident, attributing the 

success to task refinements ability to make pertinent domain knowledge available 

to a planning system. This is an unresolved point of contention. 

Figure 2-11, Kambhampati's analysis of task refinement planning's 
expressivity 
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Current formal views agree that task refinement planning offers more features to a 

domain writer than precondition achievement planning. Erol's mechanistic 

analysis of the techniques demonstrates that these features lead task refinement 

planning to be the more expressive technology. Kambhampati' s  reasoned 

examination of task refinement's additional features indicates that the approach 

has two types of benefit. First, some features of the industrial application domains 

may be represented more simply in task refinement planning. Second, task 

refinement planning can represent features of industrial application domains that 

cannot be realised in any other technique. 

McDermott provides a summary of the relationships between task refinement and 

precondition achievement planning (below). 

" . . .  The truth is that {precondition] and {refinement] planners are not 

competing. The spaces searched by [refinement] planners are quite different 

to those searched by [precondition] ones. A [refinement] planner pastes 

together big canned plans, postponing decision about how those plans will 

interact. That approach makes no sense unless each of the plans is written 

in a robust way that will allow it to succeed when other things are 

happening. That gives the planner the freedom to ignore most interactions. 

In other words, the planner is not avoiding interactions by means other than 

search; instead, it is presupposing that plans have been written so that fatal 

interactions are improbable. This presupposition is false in the blocks 

world, where all the difficulties are due to intricate combinatorics in 

stringing together tiny pieces of plan. " (McDermott 1991) 

McDermott' s arguments are supported by Drabble and Tate 's  description of the 

target applications for their 0-Plan task refinement planner (Drabble & Tate 

1994). The authors provide a taxonomy of problems which ranges from the 

resource intensive scheduling problems to the interaction intensive puzzles, such 

as blocks world. 0-Plan's target applications are defined as residing in the centre 

of this continuum. The authors claim that many industrial applications of planning 

technology lie in this area. 

Combining the arguments above with the pragmatic observation that task 

refinement planners have been applied more successfully to industrial problems, 

one must conclude that the representational devices supported by task refinement 

planning are the most effective classical offering for addressing industrial 

problems. 
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2.3.3.2 Optimisation of planning algorithms compared 
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The table below demonstrates that the decision points within task refinement and 

precondition achievement planning are comparable. 

Precondition choice Task refinement choice point 

Selecting an item from the set Selecting the next task from the set of 

of items on the agenda for non-primitive tasks in a network for 

achievement refinement 

Selecting an action from the Selecting a task from the set of methods 

set of actions available which available which refine that task 

achieves the current goal 

Should all conflicts be refined Should conflicts be addressed before the 

before the next goal is next task is refined, or should the planner 

addressed, or should the wait until planning is complete 

planner wait until planning is 

complete 

Of the possible ways to Of the possible ways to resolve a 

resolve a conflict, which conflict, which should be implemented. 

should be implemented 

Each of the decisions in the table above can be made using one of a number of 

strategies. Each strategy offers a different trade off between the time taken to 

compute the cost of each option available to the quick, but unsophisticated, 

random choice. Task refinement planning, however, provides a number of 

constructs in its declarative domain representation formalism for influencing each 

decision point. The mapping between decision point and construct is depicted in 

the table below. 
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Task refinement choice point Declarative construct 

Selecting a task network to Effects may be typed to differentiate 

establish an effect. between the effects for which an operator 

should be included in a plan from the side 

effects of an operator. 

Selecting a task from the set of Filter conditions define the criteria which 

methods available which must hold before a method is applicable. 

refine that task The construct permits candidate methods 

for inclusion in a plan to be discounted. 

Should conflicts be addressed Condition typing constrains the order in 

before the next task is refined, which conditions should be addressed. 

or should the planner wait 

until planning is complete 

Of the possible ways to Condition typing constrains the method 

resolve a conflict, which employed to establish each condition. 

should be implemented. 

In contrast to precondition achievement planning, task refinement planning 

provides a domain writer with devices for controlling the execution of the domain­

independent planning algorithm' s execution. 

33 
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2.3.3.3 Conclusion 

34 

Precondition achievement is the most general classical planning technology. The 

precondition - effect representation places no assumptions upon the structure of 

the domains to which it is applicable, leaving the complexity of planning to the 

domain-independent planning algorithm. The technique' s  industrial aptitude is 

limited, however, by the large search space the planning algorithm must consider 

and the lack of domain independent heuristics for reducing that space. 

Task refinement planning offers a formalism that permits the structure of a domain 

to be exploited, hence, addressing partially the prohibitive search of precondition 

achievement planning. Task refinement's additional features place certain 

assumptions upon the application domains to which it is applied. Specifically, that 

the application domain can be encoded as a set of task networks with limited 

interactions. 

The assumption placed upon application domains by task refinement techniques 

has held in a number of industrial applications. Hence, combined with the 

inclusion of precondition achievement functionality in task refinement planning, if 

one wishes to consider an industrial planning domain, task refinement technology 

should be considered first. 
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2.4 Extending the classical framework9 

The classical assumptions have provided a manageable subset of real world issues 

for planning researchers to address. However, the techniques developed within 

this framework are limited in their application as "real world" domains do not 

conform to the classical assumptions. In recent years, the ARPA10 I Rome 

Laboratory Planning Initiative (ARPI) (Tate 1996b) has provided the largest 

single funding source for AI planning research, and has therefore effected a major 

influence on the direction in which the field has progressed. The initiative 

summarises its participants' perception of the status of planning research at its 

conception (in the late nineteen eighties) in the quotation below: 

The AI planning community believes that it has many of the constituent 

theories in place, but what has yet to be demonstrated is what is important 

and what is not 1 1 . reported in (Fowler et. al. 1996). 

Erol, an ARPI participant, confirms this view with the following comment: 

The current state of the art in planning research has not yet reached a level 

to accommodate the demands of the planning applications. Developing fast, 

reliable planning systems that work well in planning applications is still a 

great challenge for planning researchers. 

(Erol 1 995, pp 1 24) 

The ARPI initiative has aimed to move planning technology closer to the demands 

of industrial problems by biasing its funding towards research with an industrial 

focus, hence, encouraging planning researchers to relax the classical assumptions 

and identify and develop what Fowler reports as the important theories. 

To provide a framework for the presentation of state of the art planning research, 

the definition of the planning problem in Figure 2- 1 is extended in Figure 2- 12 to 

provide a more general definition. State of the art research is then briefly 

summarised against this framework, before conclusions are drawn as to how 

current work is developing the domain knowledge available to planning systems. 

9 This title is inspired by a chapter title in (Allen, Hendler & Tate, 1 990). 
10 

The Advanced Research Project Agency (ARPA) has recently been renamed the 

Defence Advanced Research Project Agency (DARPA). 
1 1This quotation is cited in (Fowler et. al. 1996), but is described as originating in 

an unpublished technical report. Hence, the citation is attributed to Fowler et. al. 
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2.4.1 General definition of the planning problem 
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To provide a framework for the analysis of integrated planning systems, the 

definition of a dynamical system in Figure 2-1 is extended in Figure 2-12  below. 

The intelligent agent /1 has a set of goals r that indicate desires on the state of the 

environment E. The agent possess two subsystems for reasoning about the actions 

its actuator systems may take: a planning system and a reactive system. The 

planning system provides the long term strategic reasoning of the agent, whilst the 

reactive system supports immediate behaviour (in a robot this would equate to 

swerving to avoid an obstacle12).  

Intelligent Agent /1 f"''''''''' ''"''"'"'" __ .... , .................. -....................................................... ,_ ......................................................................... ,_, .................................... --.1 

i I 
I Goals r ! 
l Intelface between agent's j 
· goals and the agent's • j plw111i11g sub system I I Planning system I 
! l I "::.:::: :.�:;�:, I 
i ; I Informs planning and Reactive system ! 

reactive sub systems of the i l state of E l 
t Pla11 for actuator systems wl 
l execute. I I Perceptual systems Actuator systems J 
i p A l 
t ................... .... ......... .. -.... ___ ......... ······················-·�--· .. ·-··-.. ��···· ..... --.. ·--...... . ...... ....... ,. .................................... _ .. _ ... ,_,, ................................. . . .......... J 

Environment 
E 

Executes actions in E 

Figure 2-12, Generic planning architecture 

The following summary of state of the art planning research will draw upon this 

definition of planning to set the work described into the context of the overall­

planning problem. 

12 The need for a reactive and a planning component is a contentious issue. Brooks 

(Brooks 1985; 199 1 a; 199 1  b) argues intelligent robots require only reactive 

behaviour. Whilst Ginsberg (Ginsberg 1989) argues that it is impossible to encode 

every situation an agent may find itself in, therefore planning functionality is 

required. 
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2.4.2 Overview of current research directions 

2.4.2.1 Relationships between planning, acting, and reacting 

If the assumption of complete world knowledge is relaxed, during plan execution 

an agent may discover its initial understanding of the world was incorrect or 

incomplete (Beetz & McDermott 1 996). This scenario poses the question of when 

to stop executing a plan as a result of discovering new knowledge, metaphorically 

taking a step back to consider the option of replanning as opposed to continuing 

the execution of the existing plan. A related concern is when to plan and when to 

react. 

The relationships between planning, acting, reacting, and replanning have formed 

a major thread in AI planning research. The majority of such work has been driven 

by robotics applications where there is a great emphasis on the need to react and 

re-plan (Wilkins & Myers 1995). The robot work is typified by McDermott's 

reactive planning language (RPL) (McDermott 1992; Beetz & McDermott 1 996). 

RPL originally provided a language for specifying how a robot should respond to 

sensory input in order to accomplish its tasks. Beetz and McDermott' s recent work 

extends RPL to allow a robot to make decisions about when to replan, how to 

continue a task when waiting for a plan, and how to integrate new plans into the 

plan a robot is currently executing. 

Task refinement researchers identified the need to consider the relationship 

between a planner and its execution whilst addressing a military logistics domain 

(Wilkins & Desimone 1994). The work has resulted in the SIPE-2 (Wilkins 1 988) 

task refinement planner being integrated with the Procedural Reasoning System 

(PRS) (Georgeff & Ingrand 1989) reactive system, creating the CYPRESS system 

(Wilkins & Myers 1 995). Similar research has been undertaken on the 0-Plan 

project in the context of a military evacuation domain (Tate 1993a). The essence 

of this research is defining the communication between a planner and an execution 

system. With particular emphasis on how a execution system may integrate a new 

plan fragment into its existing plan, and the decision of when a plan must be 

terminated and replanning initiated. Other research in this area is briefly 

summarised below: 

• Classical planning implicitly assumes a planner output provides 

instructions for a single agent. Work by (Coddington & Aylett 1996) 

addresses the issue of planning to co-ordinating many robots. Related to 

this issue, is planning for environments in which an agent is competing 

with other agents (Fuchs 1996). 

• Blythe is working in domains where the environment changes 

independently of the agent the planner controls (Blythe 1996). Blythe is 

working with the management of oil spills, where the weather may 

change, moving the spill into a different direction. 
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2.4.2.2 Developing the expressive power of planning languages 

Planners require languages that can express knowledge about actions. Work in this 

area has proceeded in task refinement and precondition achievement planning. 

Advancements within each technology are summarised below. 

Precondition achievement planning 

38 

In the early nineteen nineties, precondition achievement planning could be divided 

into two camps. In the first group, formally complete partial-order planners could 

reason with a restricted form of the STRIPS representation. E.g. TWEAK 

(Chapman 1 987), SNLP (McAllester & Rosenblitt 1991) .  In the second group, 

formally complete planners could reason with relatively expressive formalisms, 

but could work only with totally-ordered plans. E.g. Pedestal (McDermott 1991) .  

Since partial order planning is  preferable to total order approaches (Minton et  al 

1 991 )13 , planning researchers have aimed to produce a formally complete, partial­

order planner that would support an expressive action representation. 

Pednault's Action Description Language (ADL) is an expressive planning 

language, designed to integrate the advantages of the STRIPS representation and 

the situation calculus (Pednault 1 989). Pednault effectively reformulated the 

situation calculus into action schemas akin to those in the STRIPS representation. 

This reformulation resulted in a formalism more expressive than STRIPS yet 

computationally less demanding than full first order logic. McDermott's Pedestal 

planner was the first implementation of this language (McDermott 199 1 ). Pedestal 

used a total order plan representation, and McDermott argued the total order 

approach was the only way to realise ADL. UCPOP (Penberthy & Weld 1 992) 

provides the first partial-order implementation of a significant subset of ADL. 

More specifically, UCPOP can represent actions with conditional effects, 

universally quantified preconditions and effects, and universally quantified goals. 

UCPOP has been proved both formally sound and complete. 

13 (Minton, Bresina & Drummond 1994) demonstrate that the search space of a 

partial-order planner is never larger than a total order planner. In some cases, it is 

exponentially smaller. Hence partial order planning is generally more efficient 

than total order planning. 
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UCPOP has provided an expressive and sound base upon which researchers may 

develop planning technologies. The planner is currently in use in approximately 

one hundred institutions (Weld 1996). A common research paradigm is 

demonstrated by Weld & Etzioni (Weld & Etzioni 1 994). The World Wide Web 

provides planners with a real world domain with which they may interact with 

sensors (e.g. gopher) and actuators (e.g. ftp). Weld & Etzioni noted the 

importance of safety in this domain. For example, a planner should be prevented 

from producing a plan which deletes the files on a disk in order to optimise the 

amount of free space. Weld & Etzioni add the concept of safety and tidiness to the 

action representation of UCPOP and successfully addressed these issues. This 

research paradigm may be summarised as, apply a planner to a new domain, 

identify requirements the planner cannot represent, modify the planner to represent 

the new requirements. 

Other examples of work based on UCPOP are summarised below: 

• XII Integrates UCPOP with an execution environment (Golden, Etzioni 

& Weld 1 994) 

• BURDIAN modifies UCPOP to represent actions with probabilistic 

effects. (Kushmerick, Hanks & Weld 1995) 

• PYRRHUS balances the cost of a plan against the degree of goal 

satisfaction. (Haddaway & Hanks 1992) 

It is important to note planners other than UCPOP are being utilised within the 

"apply and develop" paradigm. Most notably PRODIGY (Minton et al 1989). 

There is evidence to suggest more projects are moving towards UCPOP (e.g. 

(Knoblock 1996)). 
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Task refinement planning 
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The task refinement paradigm is being developed through two practically oriented 

projects: SIPE-2 (Wilkins 1 988) and O-Plan14 (Currie & Tate 1991) .  

0-Plan aims to provide a generic planning architecture which permits the "plug 

and play" of individual components (Tate 1993b). The rationale is, to allow the 

system's optimisation for specific domains. Much of O-Plan's developments are 

covered in other sections of this review (2.4.2. 1 ,  2.4.2.3, 2.4.2.4). The expressive 

power of 0-Plan's domain representation language (the task formalism) has been 

enhanced in the following ways: 

• Resource Types. Vere demonstrated that N onlin may be extended to 

allow specification of goals with relation to time and events (Vere 1 983). 

Work on the 0-Plan project has developed a rich model of resources to 

aid search control. 

• Refinement of Nonlin's task formalism. The 0-Plan project has refined 

the original task formalism implemented in Nonlin. Notably the 

semantics of condition types have been clarified (Tate & Drabble & 

Dalton 1994) and a full specification of the task formalism published 

(TFMANUAL). 

14 0-Plan is in its second incarnation and until recently was referred to as O-Plan2. 

The team has reverted to the 0-Plan name to prevent confusion with 

implementation versions. (Private correspondence with Brian Drabble, formerly 

AIAI Edinburgh, UK). 



Al planning technologies 

2.4.2.3 Relationship between an agent and its planning subsystem 

The interface between an agent's goals and its planning component is a significant 

issue in applications where a human user must interact with a software system. 

This scenario has led to the development of the mixed initiative planning 

paradigm. 

0-Plan implements mixed initiative planning with user and planner co-operating to 

solve a problem with the planner asking questions of the user and the user placing 

tasks onto the planner's agenda (Tate 1 994). The 0-Plan scenario has been 

applied to military logistics planning (Tate, Drabble & Kirby 1994b) 

The TRAINS-95 system concentrates on the communication media between 

planner and human (Ferguson, Allen & Miller 1996). TRAINS-95 uses speech 

recognition, graphical representations of domain concepts and natural language 

understanding to enter into a natural dialogue with the human user. Tate reports 

work that is combining the planning strengths of 0-Plan with the user interaction 

features of the TRAINS project (Tate 1997). 

2.4.2.4 Plan quality 

As planners address real world domains, the resultant plans increase in 

complexity. It is difficult for humans to inspect such plans. Two complementary 

techniques have been developed to support this analysis. 

Simulation systems allow a planner's execution environment to be simulated. 

MESS (Multiple Event Stream simulator) (Anderson & Cohen 1 996) provides a 

domain independent simulation environment allowing streams of events to be 

supplied to a planner and the resultant plans analysed. 

A number of valid plans may be produced to solve a single problem. Typically 

such plans vary in the number and type of resources used and the execution time 

of the plan. Each valid plan for a problem is referred to as a possible course of 

action (COA). Swartout and Gil provide a course of action evaluator that ranks the 

different courses of action according to domain specific criteria (Swartout & Gil 

1 996). The COA evaluator is combined with the EXPECT Knowledge acquisition 

tool to allow us to quickly build plan ranking criteria. 

In (Drabble, Gil & Tate 1995) the EXPECT system is applied to a military 

domain, where plans are evaluated against the number of sea ports, air ports, 

flights per hour, and other domain specific criteria. This type of analysis integrates 

with the mixed initiative planning paradigm. In the military scenario, the user may 

select a course of action and ask the planning system to modify it under certain 

criteria. For example, reduce the number of aircraft resources required. 
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2.4.2.5 Developing planner knowledge bases 
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The construction, debugging, verification, and maintenance of planning 

knowledge bases has until recently been neglected. Chien provides a set of tools to 

support these tasks (Chien 1996). Specifically, Chien's tools tackle the problems 

of incorrect plan generation and the failure to generate a plan. 

Wang addresses the construction of knowledge bases through a learn by doing 

paradigm in the OBSERVER system (Wang 1 994; 1996). OBSERVER learns 

operators from sample problem solutions. 
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2.5 Model-based planning 

Model-based planning systems (Marshall et al. 1 987, Winstanley et al. 1990, 

Winstanley & Hoshi 1 993) were developed during the late nineteen eighties and 

early nineties in a collaboration between The University of Brighton, UK, 

Stanford University, USA, Rediffusion Simulation Ltd, UK, and Babcock 

Woodall-Duckham Ltd, UK. The work addressed the design to implementation 

process of large scale, high technology products. 

Model-based planning systems form part of a larger configuration and planning 

system. The configuration subsystem questions a designer with the factors 

affecting component choice. An example of this dialogue from the PIPPA 

(Marshall 1988) system working in the flight simulator domain is depicted in 

Figure 2- 1 3  below. The configuration system applied rules of the form depicted in 

Figure 2-14 to select the components for a specific product. 

Is the simulator to be situated in an unusual or hostile environment?[yes, no, maybe] 
user> yes 
Is the site subject to temperature extremes?[yes, no] 
user >yes 
Enter the name of the cooling technique which is to be used [oil, gas] 
user >oil 
How far away from the cooling system will the simulator be in meters 
user >35 
Conclusion: the simulator will require a HTU cooling unit with a booster pump due to 
the distance between the cooling system and the simulator. 

Figure 2-13, Example configuration dialogue between the PIPPA 
configuration sub system and a flight simulator designer 

(from (Marshall 1988, pp 33)) If the environmental conditions of the simulator site are temperature hostile 
then the piping material of the plumbing is stainless_steel 
If the environmental conditions of the simulator site are humid 
then the piping material of the plumbing is rubber. 

Figure 2-14, Sample configuration rule set from the PIPPA configuration sub 
system (From (Marshall 1988, pp34)) 

The model of a product resulting from this configuration process is depicted in 

Figure 2-1 5  below. The mechanical_system and hydraulic_comp ovals represent 

classes of component. Whilst the acuator _1 , upper _eye_end, lower _eye_end, and 

jack_] represent actual components. The arrows between ovals indicate 

relationships. The is_a label indicates an inheritance relationship; properties are 

copied from the class at the start of the arrow to the class at the arrow's point. The 

instance label indicates that the component at the arrow's point is an instance of 

the class at the arrows start. The sub label indicates that the component at the 

arrow' s point is a sub component of the component at the arrows start. 
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Figure 2-15, Model resulting from the configuration process 

The model synthesised by the configuration process details the components of a 

specific product together with their attributes and interrelationships. The 

developers of the technique hypothesised that these structures may be used to 

automate the generation a plan for constructing the product configured (Marshall 

1988), thus, developing the MBP technique outlined below. As the emphasis of 

the research from which MBP was developed was automated configuration, the 

planning function is not described in detail. Hence, the description of the 

technique below details only the essence of MBP and not the detailed algorithms 

required too achieve the functionality. Part of the contribution of the integrated 

architecture developed in Chapter 7 is the specification of the implementation 

details of MBP. 

procure 

order 

actuator_! upper_eye_end 

must 

install 

Figure 2-16, Action attachment and dependency relationships 

Figure 2-1 6  depicts the fragment of the flight simulator configuration in Figure 2-

1 5  with action and dependency relationships modelled. The class hydraulic_comp 

is related too two actions procure and order through the relationship infer. This 

structure specifies that if an instance of the class hydraulic_comp is present within 

a design, then the MBP must determine if the related actions are required. 

The actuator _l component is an instance of the class hydraulic_comp and 

therefore inherits the procure and order actions. In addition to the inherited 
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actions, the component is related to an install action through the must relationship. 

This relationship implies that if an actuator _1 component is present in a design, an 

install action will always be required. The procure and install actions related to 

the upper _eye_end component are related through the must relationships, hence, 

they must always be included within a plan for a product which contains an 

upper _eye_end. 

The MBP assesses each component within a product to determine the actions that 

should be associated and therefore included within a plan to construct the product. 

In the case of the must relationship, actions are automatically added to the plan. 

With the infer directive production-rules written by the domain modeller are 

invoked to determine if the action attached should be associated. Two example 

rule-sets are depicted in Figure 2-17 below. 

rule-set infer-procure-for-hydraulic-comp 
rule- I 
if ?hydraulic-comp.stock-status = in-stock then 

generate procure action 
end-rule 

end-rule-set 

rule-set infer-order-for-hydraulic-comp 
rule- I 
if ?hydraulic-comp.stock-status = out-of-stock then 

generate order action 
end-rule 

end-rule-set 

Figure 2-17, example rule-set for infer relationship 

The rule-sets will include a procure action if the hydraulic_comp is in-stock or a 

order action if the component is out of stock. The actions synthesised by a MBP 

for the model instance in Figure 2- 1 6  are depicted below. 

procure actuator_! 
install actuator_! 
procure upper_eye_end 
install upper_eye_end 

With action synthesis complete, the MBP considers the dependency relationships 

between actions. Two types of dependency knowledge may be specified. First, the 

domain writer may specify production-rules for ordering a components own 

actions. Within the actuator-I component the domain writer would specify that if 

either a procure or order action is required, the action must be ordered before the 

install action. The actions above are depicted below after the assessment of 

ordering constraints local to each component. 
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procure actuator_! : pre { 0 }  
install actuator_ I : pre {procure actuator_! } 

procure upper_eye_end : pre { 0 }  
install upper_eye_end : pre {procure upper_eye_end} 

The second dependency assessment mechanism considers the relationships 

between components. In Figure 2- 16 the upper _eye_end component is attached to 

the actuator _1 component. The domain writer may attach production-rules to this 

relationship that determine the ordering constraints which should be added to the 

actions of the components related through the relationship. In the attached to case, 

the rules specify that the install action of the actuator _1 component must be 

completed before the install action of the upper _eye_end component. The actions 

and ordering constraints above are reproduced below with the ordering constraints 

resulting from the relationship dependency process included (in bold). 

procure actuator_! : pre { 0 }  
install actuator_! : pre (procure actuator_! } 

procure upper_eye_end : pre { 0 }  
install upper_eye_end : pre {procure upper_eye_end, install actuator_! } 

The resultant plan is depicted graphically below: 

procure actuator_! 

install actuator_! Install upper_eye_end 

procure upper_eye_end 

Whilst MBP successfully determines the actions and ordering constraints based 

upon domain knowledge encoded in production-rules, the technique does not 

consider action preconditions and effects. MBP can not, therefore, detect and 

resolve action interactions. For example, the procure acutator _1 action may delete 

the effects of the procure upper _eye_end action. Hence, the actions should be 

ordered so the actuator _1 action is completed before the upper _eye_end action. 

Without the modelling of action preconditions and effects and the inclusion of an 

action interaction detection and resolution strategy it is not possible to detect 

issues of this type. 
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2.6 Summary and concl usions 

The development of classical systems has formed the predominate direction in 

automated planning research. Classical work has accepted a number of simplifying 

assumptions about the requirements of planning applications. Specifically, that the 

world changes instantly, predictably, deterministically, and within the complete 

control of the agent performing the planning function. 

By controlling the complexity of the planning problems considered, classical 

research has developed a number of powerful technologies that address important 

facets of planning applications. Precondition achievement planning is based upon 

an action representation of preconditions and effects. Plans are constructed by 

searching the set of actions available in an application domain, and combining 

actions with effects that achieve the goals of the planning problem with actions 

which ensure the preconditions of all operators are satisfied in a path leading from 

the initial world state to the goal world state. Task refinement planning structures a 

domain into a number of partial plan fragments or task networks arranged into a 

hierarchy of abstraction levels. The task refinement process is the assembly of 

these partial plan fragments into a complete and interaction free plan. 

Precondition achievement planning is the most general planning technology, 

placing no constraints on the type of application domain to which it is applied. 

However, the technology's large search space and lack of domain independent 

search control heuristics has limited its application in industrial domains. Whilst 

task refinement planning makes the assumption that a domain may be partitioned 

into a number of relatively interaction free fragments, this assumption has held in a 

number of industrial application domains. Hence, the ability of task refinement 

planning to exploit the structure of a domain has proved an important factor in the 

technology's industrial success. 

Current automated planning research is developing classical planning techniques 

towards applications that do not conform to the limiting classical assumptions. The 

ARPA I Rome Laboratory Planning Initiative (ARPI) has provided the largest 

single funding source in recent years, hence, its bias towards real world domains 

has been seminal in moving automated planning research as a whole into this 

direction. Current research is addressing issues ranging from the integration of 

planning, acting, and replanning, through to developing the expressive power of 

action representations and the tools required to debug and verify planning 

applications. 
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The techniques employed by model-based planners differ from classical planning 

as the technologies have been developed independently. Model-based planning is 

centred upon a frame-based domain model of a company's products. Planning is 

effected in the space of components and relationships within such models. In 

contrast to classical planning, the interactions between the conditions and effects 

of actions are not considered. The technology is focused upon capturing the 

domain specific knowledge used by application domain experts when planning. 

Model-based planning has been successfully applied to a number of industrial 

planning application domains. Hence, pragmatically the technique is worthy of 

further consideration. Its independence from the research effort applied to 

classical technology, however, has prohibited the cross fertilisation of concepts 

between the two technologies. 

The status of classical plan work towards the end of the ARPI project is 

summarised by Stillman and Bonsissone as: 

ARP! researchers have made significant progress in the development of 

enabling technologies . . . . Crisis action planning still presents a challenging 

set of problems. 

(Stillman & Bonsissone 1996, pp 21 )  

One member of this challenging set was identified at the AAAI workshop on the 

comparative analysis of planning systems in 1994: 

Although encoding expert knowledge is at the heart of HTN planning, there 

remains a considerable gap to bridge in using expert planning knowledge in 

our systems 

(reported by Wilkins 1 994, pp 69) 

Model-based technologies have demonstrated through application an ability to 

capture and reason with expert planning knowledge. Hence, considering the 

integration of classical techniques with model-based techniques offers potential 

benefits to automated planning as whole. 

In conclusion, classical planning technology in the form of task refinement 

planning provides a promising industrial technology. Task refinement planning, 

however, has not reached its full industrial potential. Whilst the current substantial 

research effort is considering many important facets of task refinement planning, 

the previous independence of model-based research is prohibiting the inclusions of 

the technique's ideas. Pragmatically, model-based planning has achieved industrial 

application success, therefore, the probability of a beneficial cross-fertilisation of 

ideas is high. 
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3. Developing a research workbench 
Nothing ever becomes real till it is experienced -

even a proverb is no proverb to you till your life has 

illustrated it. 

John Keats (1 795-1 821 ) 

3.1 I ntroduction 

The Chambers Dictionary1 defines a workbench as "a bench, often purpose-built, 

at which a craftsman, mechanic, etc. works ".  This chapter defines the need for a 

planning workbench to support the aims of this thesis, and details its 

implementation. Two appendices support the description with details of the 

algorithms implemented (Appendix A), and the test specifications used to verify 

the workbench' s  correctness (Appendix B). 

In this chapter, only the classical component of the research workbench is 

described. A model-based planner is constructed within Chapter 7 as part of the 

integrated architecture's  development. 

3.2 Need for a research workbench 

AI planning research is centred upon demonstrable planner prototypes. 

Historically, a number of early planning research efforts resulted in an 

implemented prototype system, e.g. STRIPS (Fikes & Nilsson 1 97 1), ABSTRIPS 

(Sacerdoti 1 975a), NOAH (Sacerdoti 1975b), HACKER (Sussman 1 974), 

WARPLAN (Waldinger 1977), NONLIN (Tate 1977), TWEAK (Chapman 1987), 

DEVISER (Vere 1983). Today, a major thread of research is either developing a 

demonstrable system, e.g. UCPOP (Barrett & Weld 1992), 0-Plan (Currie & Tate 

1 99 1 ), SIPE (Wilkins 1988), PRODIGY (Minton et. al. 1 989), SNLP (Pednault 

1988) or enhancing an existing system. This central thread of planning research 

leads to the question: "why are demonstrable planner prototypes so important?" 

To answer this question, consider the following definitions of AI in general: 

"AI is . . .  aiming to achieve functionality in computers, which when 
exhibited by humans, is described as having indicated intelligence." 
(Brooks 1 991) .  

"Al may be defined as the branch of computer science that is concerned 

with the automation of intelligent behaviour. " (Luger & Stubblefield 
1993). 

" . . .  the enterprise of programming computers to reason. " (Pratt 1 994) 

"Al is a subdivision of computer science devoted to creating computer 
software and hardware that attempt to produce results such as those 
produced by people " (Turban 1992) 

The importance of implemented prototypes in AI as a whole is intrinsically linked 

with the engineering goal of the field. First, prototypes demonstrate the 

1 The Chambers Dictionary. Copyright ( c) 1 994 by Larousse pie 
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executability of concepts - indicating how close the field has come to reaching its 

goals. Second, prototypes provide the laboratory for experimentation, analysis and 

comparison - the methodology for moving the field closer to its goals. 

The motivation for constructing a research workbench as part of the research 

reported in this thesis is two fold. First, the process of experimenting with a 

planner prototype is an effective way to become familiar with the issues 

fundamental to planning systems. Second, the resultant workbench will provide an 

executing model of planning concepts to support the experimentation from which 

the integrated architecture proposed in the conclusion to Chapter 2 may be 

developed. 
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3.3 Realisation approach 

Two considerations influenced the approach to realising a workbench. First, the 

aim of this thesis is to integrate classical and model-based planning technologies. 

Classical planners require logic reasoning components, whilst model-based 

planning requires rule-based and object-oriented mechanisms. Second, the 

research workbench must support rapid and incremental development. 

Specifically, the workbench must permit new planning concepts to be integrated as 

they are developed, either as part of the research project or by other researchers. 

Two approaches to realising a research workbench were considered: obtaining and 

modifying an existing planning system, or developing a new planning system 

based upon details in the planning literature. Table 3-1 ,  below, summarises the 

systems available at the time the decision was taken (February 1995). Systems that 

have since become available are presented as shaded entries at the bottom of the 

table for completeness. The 0-Plan system was not publicly available, and its 

predecessor Nonlin is a commercial product. SIPE, PRODIGY, and UM-NONLIN 

formed the set of systems that may be used as the basis of workbench. 

Planning System Availability Pragmatics 

System Requirements. 

Nonlin LISP Freely available from 

(University of web site 

Maryland) 

Nonlin POP2 Purchase from No financial resources 

(Original) University of available to purchase 

Edinburgh the system. 

0-Plan LISP Distributed only to From July 1 997 freely 

members of the ARPI available for research 

initiative. use. 

PRODIGY LISP Freely available form 

web site. 

SIPE LISP Freely available from Requires Sun 

Sun workstation web site hardware. 

UCPOP LISP Freely available 

C++ (soon to be 

available) 

Table 3-1, Summary of the prototype AI Planning systems available in 
February 1995 
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Basing the workbench on an existing planning system offered one key advantage. 

The results of this thesis may be published as based upon a known planning 

system. However, three considerations outweighed this advantage. 

First, integrating classical and model-based planning requires an environment that 

can support both logic based systems and object-oriented rule-based systems. 

Second, using an existing system does not demand the same level of understanding 

of planning theory as the development of a planning system. Third, the integration 

was performed with an industrial collaborator which, as in many industrial 

environments, was based around an IBM-PC compatible infrastructure. 

The combination of modelling tool requirements, anticipated experience which 

may be gained, and the infrastructure of commercial environments led to the 

decision to develop a new workbench on IBM-PC compatible hardware using 

lntellicorps KAPPA-PC. The points leading to the selection of KAPPA-PC are 

summarised in the table below. 

• Object-oriented modelling tools. 

• Powerful rule-based system integrated into the object-oriented modelling 

scheme. 

• Excellent developers interface, and debugging tools. 

• Potential for integration with existing PC applications through DDE. 

• Integration with C and C++ programming languages 

• Compiled applications may be distributed freely and executed under any 

Microsoft Windows compatible environment. 

With the approach and environment established, existing planning systems were 

studied to find the detailed knowledge necessary to implement a planning system. 

The 0-Plan system was chosen as the basis for the workbench as the system 

provides the most clearly defined architecture in the planning literature. 

Specifically, the architecture defines the modules from which a planner must 

provide, interfaces between these modules, and details of what function each 

module must perform. 
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3.4 Developing the Classical Workbench 

This subsection outlines the design and implementation of the classical 

workbench. Full descriptions of the underlying algorithms are presented in 

Appendix A. To introduce the underlying design philosophy behind the 

workbench implementation, the 0-Plan system is described first. 

3.4.1 Overview of 0-Plan 

The 0-Plan system provides four components: 

• A domain independent representation formalism (the Task Formalism) 

which provides mechanisms for specifying the resources, actions, 

procedures, entities, and relationships within a specific domain. The 

constructs are domain independent, i.e. they are designed to be 

applicable in any planning domain 

• A domain independent task specification formalism, also part of the Task 

Formalism, provides the constructs for specifying the objective of a 

planning problem and the actual entities available to solve that problem. 

The constructs are domain independent. 

• A domain independent planning engine applies knowledge about a 

domain encoded in the Task Formalism to solve a specific task. 

• A logical model or <1-N-OV A> provides a conceptual model 

underpinning the three concepts above. 

The <1-N-OVA> model defines a plan as a set of constraints which together limit 

the behaviour of agents to that which is desired (Tate 1995; 1996). By providing a 

description of a plan's  components, the model aims to make it possible for a plan 

to be manipulated in systems other than the activity planner within which it was 

generated. For example, a plan may be passed to an execution agent for execution, 

or another (possibly more specialised) planning system for further refinement. 

Within the development of the workbench, <1-N-OV A> is viewed as a 

specification for the data types manipulated by a planner. The 0-Plan planning 

engine (Currie & Tate 1991) may then be classified as an implementation of the 

functionality required to process the constraints specified in <1-N-OVA>. The 

domain specification and task specification formalisms are viewed as the 

constructs for supplying the 0-Plan engine with problem definitions and domain 

specific knowledge detailing the options available to solve those problems. 

The <1-N-OV A> model is described below, before the different software modules 

of the 0-Plan system are introduced. 

Tate defines a plan as "a set of constraints which together limit the behaviour that 

is desired when the plan is executed"(Tate 1996). These constraints are organised 

into three sets: Implied, Node, and detail constraints (Ordering, Variable and, 

Auxiliary). 
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Implied constraints
2 

represent pending or future constraints that will be added to a 

plan as a result of handling unsatisfied requirements. In precondition achievement 

planning, the implied constraints represent the conditions yet to be satisfied, and 

interactions yet to be resolved. In task refinement planning, the implied constraints 

represent the set of non-primitive tasks to be refined, and interactions yet to be 

resolved. Implied constraints may therefore be viewed as a planner's  "to-do list". 

When this list is empty, the planner's  task is considered complete. <1-N-OVA> 

extends this model to permit Implied constraints which cannot be processed by a 

specific generative planner. These constraints may be left unresolved and passed, 

with the detailed constraints, to a second system for processing. 

Plan entities relate to the actions within a plan, and provide the contextual 

information for the detailed constraints. 

Detailed constraints are divided into three categories. Ordering constraints 

represent temporal relations between nodes. Variable constraints represent co­

designation and non co-designation constraints between variables. Auxiliary 

constraints include conditions, time, resources, authority, and other application 

specific knowledge types. 

The 0-Plan system implements a demonstration planning scenario with three 

agents: a task assignment agent, a planning agent, and a execution agent. The task 

assigner specifies the task or goal of a plan (i.e. the initial issues). Once task 

specification is complete, the planner agent is invoked to synthesise a plan to 

achieve the plan's  goals. The completed plan is passed to the execution agent for 

execution. In the event of execution problems, the execution agent may pass a plan 

back to the planner with failures represented as issues. If the goals of the plan are 

no longer maintainable, the plan maybe passed back to the task assigner. This 

scenario has proved effective in real world domains. 

For the purpose of developing a research workbench, only the planner agent of the 

0-Plan system was considered. The planner agent is described in a number of 

reports and papers, and its relationship with <1-N-OVA> is described in (Tate 

1 993a). The main components of the 0-Plan planner agent are briefly described 

below. Familiarity with the system was obtained from a number of sources: 

experimentation with the University of Maryland's  Nonlin implementation, 0-Plan 

technical reports, experimentation with 0-Plan over the World Wide Web, and 

conversations with Dr Brian Drabble at AIAI (in person and via electronic mail). 

2also referred to as Flaws or Issues or The Agenda. 
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• The Associated Data Structure (ADS): The ADS maintains the 

relationship between plan entities (activities in a planner) and the 

ordering constraints within a plan. The structure provides the contextual 

information to which more detailed constraints such as conditions, 

effects, time, resources etc. may be attached. 

• Knowledge Sources: Knowledge sources encapsulate the plan 

modification operations (or planning knowledge) of 0-Plan. This 

modularization facilitates experimentation with different 

implementations of a knowledge source, and concurrent execution of 

different knowledge sources. 

• Constraint Managers: Maintain and support detailed plan constraints. 

Each constraint type supported within 0-Plan has a dedicated constraint 

manager. The set currently implemented includes: the time point network 

manager, the TOME I GOST
3 

Manager, the Resource Utilisation 

Manager, the Plan State Variable Manager, and the Authority Manager4. 

Collectively, constraint managers support the system's knowledge 

sources in maintaining plan information. 

• Other Support Modules: Other support modules provide a variety of 

support utilities to the system. The current implementation includes plan 

visualisation tools, instrumentation tools and event handlers. These 

components and the constraint managers are collectively referred to as 

the system's support modules. 

• Controller: The controller is responsible for selecting outstanding flaws 

or issues within a plan, and managing their allocation to knowledge 

sources. A flexible allocation scheme is encoded, allowing the order of 

flaw selection and the mapping of flaws to knowledge sources to be 

configured to the requirements of a specific domain. 

Collectively, 0-Plan and <1-N-OVA> provides the data structures and software 

code specifications for an AI planning system. 

3 The Table of Multiple Effects (TOME) and The Goal Structure (GOST) data 

structures originate in NOAH (Sacerdoti 1975b) and Nonlin (Tate 1 977) 

respectively. The structures provide a representation for the underlying condition 

achievement procedure used in 0-Plan (c.f. Chapman's Modal Truth Criteria 

(Chapman 1 987)) 
4 Designed but not implemented as of August 1 997 
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3.4.2 Implementing the N (Nodes) and O (Orderings) 

Within <I-N-OVA>, the node constraints provide the contextual information for 

the detailed constraints. Issue constraints are processed by modifying the node and 

detailed constraints. Thus, in terms of implementation, the node constraints 

provide the most independent part of the model and were therefore implemented 

and tested first. 

The node constraints within <1-N-OV A> model plan entities; in a planner plan 

entities correspond to activities. 0-Plan represents these constraints in a data 

structure named the Associated Data Structure (ADS) layer. Whilst the <I-N­

OVA> model conceptually separates plan entities from their ordering constraints, 

the ADS is designed to relate them. The structure is confirmed in the following 

passage from the 0-Plan architecture guide. 

The Associated Data Structure (ADS) provides the contextual information 

used to attach meaning to the contents of the Time Point Network, and the 

data defining the emerging plan. The main elements of the plan are activity, 

dummy and event nodes with ordering information in the form of links as 

necessary to define the partial order relationships between those elements. 

(Tate, Drabble & Dalton 1994b) 

The implementation of the ADS within the workbench provides a passive data 

structure for storing plan context information and the functionality to modify and 

query this information. The ADS is implemented in three parts: the class PLAN­

NODE, which represents the individual plan nodes, the class LINK, representing 

the links between nodes, and the class ADS-MANAGER which is responsible for 

maintaining and answering queries concerning the set of plan nodes and links 

within a specific plan. Each component is described in turn before their 

interrelationships are defined. 

Class PLAN-NODE 
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Class PLAN-NODE records information about an individual activity in a plan. It is 

derived from the ALLNODES data structure in the original Nonlin system (Tate 

1976, Page 1 9), the author' s  understanding of O-Plan, and the University of 

Maryland's  Nonlin implementation. 

The attributes of class PLAN-NODE are described in the table below. The class 

contains no functionality. 
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Attribute Description 

Predecessors List of plan node instances which are predecessors of this node. 

The list contains at least the immediate predecessors. 

Successors List of plan node instances which are successors of this node. The 

list contains at least the immediate successors 

Start Time point Name of an instance of time point which relates to the start of this 

activity. 

End Time point Name of an instance of time point which relates to the end of this 

activity. 

Max. Duration The maximum duration of this node. 

Min. Duration The minimum duration of this node. 

Type Activity I Primitive I Dummy. 

Parent For use within Task refinement planning only. The name of a plan 

node instance which was replaced by this node during refinement. 

Pattern The pattern of this node. In the form Function argl . .argN. 

Table 3-2, Attributes of PLAN-NODE 

0-Plan's ADS separates the predecessor, successor, start time, and finish time 

attributes whilst the workbench's PLAN-NODE class integrates them. The 0-Plan 

structure enables the efficient implementation of Operation Research/ PERT type 

algorithms. Efficiency is not the goal of the workbench, hence, redundant and 

duplicate data is permitted to enable inspection of plans different perspectives. For 

details of the 0-Plan ADS implementation see Drabble & Kirby ( 1990). 

To support timed delays between activities a link data structure was created. A 

link represents the relationship activity A <  activity B .  The start of this link is 

recorded as the end time point of activity A. The end of this link is recorded as the 

start time of activityB. Each link records its minimum and maximum duration. 

Feature Description 

Start time point Finish of first plan node. 

Finish time point Start of second plan node. 

Min. duration Minimum duration of the link. 

Max. duration Maximum duration of the link. 

Table 3-3, Attributes of LINK 
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Class ADS-MANAGER 
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Class ADS-MANAGER is responsible for maintaining the set of plan nodes and 

links within a plan. The class ADS MANAGER's attributes are described in the 

table below. 

Attributes Description 

Nodes list List of nodes managed - nodes which are not in this 

list are not part of the plan. 

Link list List of links managed - links which are not in this 

list are not part of the plan. 

Table 3-4, Attributes of class ADS-MANAGER 

The methods implemented within the class are described in the table below. 

Method Description 

Add Node (Pattern, Max. Dur., Creates a new node within the ADS. 

Min Dur.) 

Add link (Nodel Node2, Min Add the constraint Nodel < Node2 to the ADS. 

Dur., Max. Dur.) 

Return link Name (nodel ,  node2) Returns the name of the link between two nodes. 

Return nodes code (pattern) Takes a pattern and returns the node code of the first 

node found containing the pattern. 

Set node type (node, type) Allows a node to be set as primitive, action or 

dummy. 

Before (NodeX, Node Y) Returns true if NodeX occurs before NodeY in the 

plan network. 

After (NodeX, NodeY) Returns true if NodeX occurs after Node Y in the 

plan network. 

Parallel (NodeX, NodeY) Returns true if NodeX is in parallel to NodeY in the 

plan network. 

Reset Destroys all information within the ADS, returning 

a null plan. 

Table 3-5, Methods of ADS-MANAGER 
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Querying a plan network to determine how plan entities are related (before, after, 

in parallel) is a frequent task performed by an AI planner. Fox and Long (1996) 

describe the efficient algorithm used in their AbNLP (Fox & Long 1995) system. 

Fox and Long criticise the method employed in many existing planners of 

dynamically calculating the relationship between plan nodes when answering 

graph queries. This approach is computationally expensive because the contextual 

information must be recalculated each time it is required. Fox and Long implement 

an algorithm which maintains the contextual information, updating it only when 

new constraints are added to the graph. This approach is more efficient because in 

general, a plan is queried more often than it is updated. The full algorithm is 

reproduced from (Fox & Long 1 996) in Appendix A. 

The overall ADS structure is presented in the object diagram below(Figure 3-1). 

LINK 

ADS-MANAGER � Start time point 
end time point 

Add Node 
minimum duration 

Add Link Managed by maximum duration 

Return Nodes Code 
Set Node Type 

Managed by Reset 
Before 
After PLAN-NODE _ Succes sors 

... I In Parallel 
Start Time point � 
End Time point � 

Predec 
maximum Duration 

essors 

Minimum Duration Parent 
Type I Pattern 

-
Child 

Figure 3-1, Object diagram of ADS system 

An instance of class ADS-MANAGER manages all the instances of class LINK and 

class PLAN-NODE within a plan. Other components of the planner may not 

modify instances of class LINK or class PLAN-NODE directly, but must direct 

their requests through the ADS-MANAGER. An instance of the planner workbench 

will contain one instance of the ADS-MANAGER. The one to many cardinality of 

the "managed by" relationships constrain each PLAN-NODE and PLAN-LINK 

instance to be related to one instance of class ADS-MANAGER only. It is therefore 

impossible for a plan node or link to be a member of more than one plan. 
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3.4.3 Implementing the VA (Variables and Auxiliary) 

This subsection describes how the variable and auxiliary constraints are 

implemented in the workbench, and the construction of plan critics to maintain 

these constraints. 

3.4.3.1 Plan variable relationship critic 

Class VARIABLE 

60 

The plan variable relationship critic' s  role is similar to the Plan State 

Variable Manager's  in the 0-Plan system. In the plan representation languages 

used in task refinement planners, variables are not wild cards as in predicate logic, 

but descriptions of possible instantiations which become further constrained as 

planning progresses (Wilkins 1988). Variables are declared as being of a specific 

type, and are therefore constrained to instantiations which are members of this 

type. The type definitions correspond to enumerated types in procedural 

programming languages such as ADA and Pascal. 

Each plan state variable is represented by the following attributes. 

Attributes Description 

Value The actual value of the variable, if instantiated, otherwise it 

is set to "none". 

Type Type variable is constrained to be an instance of. 

Constraints A list of co-designation and non-co-designation constraints. 

These constraints may reference other variables or objects 

of the variables type. 

Table 3-6, Attributes of class VARIABLE 
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Class PLAN-VARIABLE-RELATIONSHIP-CRITIC 

Class PLAN-VARIABLE-RELATIONSHIP-CRITIC is responsible for creating and 

maintaining plan state variables. 

Method Description 

Create Variable (Type) Creates a new variable of type specified in the 

parameter Type, and returns the name of the 

new variable. 

What Is This(Entity) Replies if Entity i s  a variable, an object or a 

type. 

Is instantiated(V ariable) Returns true if the variable has been 

instantiated, false otherwise. 

Check co-designation constancy Returns true if the co-designation and non co-

(Variable) designation constraints on Variable are 

consistent. 

Necessarily Co-designate (argument! Returns true if two statements are the same 

argument2) objects, are instantiated to the same objects, or 

are constrained to be instantiated to the same 

objects, with the same constraints. 

Possibly co-designate (argument! Returns true if two statements unify. i.e. it is 

argument2) consistent to assume they have the same 

instantiation. 

Table 3-7, Methods of CLASS-PLAN-VARIABLE-RELATIONSHIP­
CRITIC 

The full algorithms for the necessary and possibly co-designation methods are 

provided in Appendix A. The algorithms are based on the definitions given in 

(Wilkins 1 988, p 72). The architecture of the critique is presented in Figure 3-2 

below. 

PLAN-VARIABLE-
RELATIONSHIP-

CRITIC TYPE 

Resc.:1 r Possible Values 
Create New Type Muna�cd Bv 

Add instance of type 
create variable Instance of 
K:odcsignation 
consistency VARIABLE 
Possibly co-designate Managed By L Necessari ly co- Value 
designate Constraints 
Is instantiated 

Figure 3-2, Object diagram of plan variable relationship critique system 
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3.4.3.2 Conditions and effects manager 

Class CONDITION 

Class EFFECT 
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The conditions and effects manager records the conditions and effects associated 

with plan nodes (via their time points), and provides the functionality to query and 

maintain the consistency of these constraints. 

Class CONDITION records the individual conditions in a plan. An entry's  

contextual information is supported through links to time points. Collectively, the 

instances of class CONDITION make up the Goal Structure of a plan. 

Attribute Description 

Type Condition type: supervised, unsupervised, achieve, only_use_if, 

only_use_for_query. 

Function e.g. on(block l block2). 

Value e.g. on I true I red I unset 

Time point Time point at which the condition must hold. 

Achieved Current status: holds, does not hold, may possibly hold with new 

constraints. 

Constraints Represent the constraints which maybe added to make the condition 

hold. 

Contributor Time point which contributes to this condition holding. 

Table 3-8, Attributes of CONDITION 

Class EFFECT records the individual effects within a plan. Collectively, the 

instances of class EFFECT make up the Table of Multiple Effects of a plan. 

Attribute Description 

Type only_use_for_effects or effects 

Function e.g. on (blockl block2) 

Value e.g. True, False, Off, On, Red 

Time Point Time point at which effect occurs. 

Table 3-9, Attributes of EFFECT 
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Class CONDITION-AND-EFFECT-MANAGER 

Class CONDITION-AND-EFFECT-MANAGER supports the creation of 

conditions and effects, and provides routines to ensure their consistency. 

The condition and effect manager includes the Question and Answering 

functionality of the workbench. The question and answering algorithm responds to 

question of the type "does statement p hold value v at node n within a plan". The 

critique responds yes, no, or maybe. The maybe response includes a set of 

constraints (variable bindings and links) which could be added to a plan to make 

statement p hold value v at node n. The implementation is based upon the details 

in (Tate 1976) and reverse engineering of the University of Maryland's  Nonlin 

code. The full algorithm is provided in appendix A. 

Method Description 

Add Condition (function, type, at Creates a condition. 

time point) 

Add Effect (function, type, at time Creates an effect. 

point) 

QA (P V N) Responds yes if statement P holds value V at 

node N. Returns No if the statement definitely 

does not hold, or may be if it is possible to make 

the statement hold. 

Table 3-10, methods of class CONDITION-AND-EFFECT-MANAGER 

The architecture of the condition and effect manager is depicted in Figure 3-3 

below. 

EFFECT 

--4 Type 
function 

CONDITION-AND Value 
EFFECT-MANAGER Time Point 

Managed By 

Add condition 
Add Effect 
QA Managed By CONDITION 

rrypc 
'-4 !Function 

Value 
Achieved 
Con tmints 
Contributor 

Figure 3-3, Condition and effect manager system 
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3.4.3.3 Resource and Time Critics 

Time critic 

Resources 
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Time and resource critics were not implemented in the workbench. The 

considerations made for their inclusion at a latter date are described below. 

Two time points are generated for each activity in a plan to represent each 

individual activity's start and finish times. Links are provided between activities to 

allow delays to be specified. Bell and Tate's ( 1985) constraint maintenance 

algorithm is implemented to maintain the time information during plan updates. 

Vere's  (1983) paper describes the algorithms used within the DEVISER system to 

specify temporal goals using the time point representation implemented. These 

algorithms have not been implemented in the workbench. 

No resource considerations have been implemented. Conformity to the 0-Plan 

architecture will facilitate the inclusion of a Resource Utilisation Manager and 

resources attached to time points at a latter date. Algorithms published in (Drabble 

& Tate 1994) were identified as a potential way of using the resource information 

to guide search within the workbench. 
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3.4.4 Implementing the I (Issues) 

The Issues component of the <1-N-OVA> model represents the outstanding "to-do 

list" or agenda of a plan. 0-Plan provides a sophisticated mechanism for selecting 

the next issue to address from the set of outstanding issues. Plan modification 

operators (e.g. expand a non-primitive task, ensure conditions of a specific type 

are satisfied) are encapsulated into knowledge sources, which are in turn 

decomposed into stages. This architecture permits concurrent processing of issues, 

and a reasoned allocation to be made between the set of outstanding issues and the 

set of available knowledge sources. Knowledge source stages partition the 

execution of a knowledge source most commonly into read and write phases. This 

partitioning allows concurrent reading and writing process to be managed, thus 

ensuring plan integrity. 

Within the workbench, the controller and knowledge sources are integrated into 

one component, the HTN engine. This architecture is not as flexible as the 

equivalent 0-Plan implementation. The issues surrounding the optimal selection 

and processing of outstanding flaws are not essential to the aims of this thesis. 

The class' s  methods are described in the table below. 

Method Description 

Set Task Allows the user to select a task from the set of 

tasks available in the schema library. 

HTN Plan (task file, schema file) The task refinement planning algorithm. 

Expand Task(task, schema) Replaces a non-primitive task with a task network 

defined in the parameter schema. 

Select Method (set of schemas) Selects a method to replace a non-primitive task, 

from the set of methods available. 

Export plan (filename) Exports the contents of the ADS into a format 

accepted by Microsoft Project. 

Table 3-11, Methods of class HTN-ENGINE 

The HTN Plan algorithm is specified below in Figure 3-4. The algorithm defines 

how the components of the workbench are controlled to achieve the planning 

function. A detailed description of the algorithm is provided immediately after 

Figure 3-4. 
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1 .  Read problem definition and task formalism schemas 

2. Append non-primitive tasks from task definition to the task queue 

3 .  Append achieve conditions from task definition to the task queue 

4. While the task queue is not empty loop 

5 .  Select a task for  processing (either at random, FIFO, or  ask user) 

6.  if selected task is a non-primitive task then 

7. -- task reduction procedure 

8. Ask schema library for methods to achieve selected task 

9.  remove methods whose only_use_if conditions do not 

1 0. hold 

1 1 .  if no methods available then 

12 .  return to select a task for processing 

1 3 .  end i f  - - n o  methods available 

1 4. select a method from the set remaining (either at random 

or ask user) 

1 5 .  expand the selected task with the selected method 

1 6. else -- it must be an achieve task 

1 7 .  if it is possible to add links to  make condition true then 

1 8. add links 

19.  else 

20. ask schema library for schema to make condition 

true 

2 1 .  i f  not methods available then 

22. return to select a task for processing 

23. end if -- no methods available 

24. implement schema immediately before task 

25. which requires condition 

26. end if -- it is possible to add links . . .  

27. end if -- selected task is a non-primitive task 

28. call plan state variable critic 

29. loop until critic replies yes to all variables or user quits 

30. loop 

3 1 .  allow user to correct problems 

32. end loop - PSVM critic 

33 .  call conditions and effects critique 

34. loop until critic replies yes to all conditions or user quits 

35. loop 

36.  allow user to correct problems 

37. end loop - conditions and effects critique 

38. end loop -- while task the task queue is not empty 

39. Call PSVC to check unsupervised conditions. 

Figure 3-4, HTN planning algorithm 
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The HTN engine is invoked with the parameters "task file" and "schema file". 

Both parameters refer to physical files on the workbenches hardware platform in 

ASCII format. The task file contains the set of initial tasks provided by the domain 

writer, specified in the Task Formalism syntax. The schema file contains the set of 

non-primitive and primitive task networks specified by the domain writer, 

specified in the Task Formalism syntax. 

Line 1 (of the algorithm in Figure 3-4) instructs the schema library to load and 

compile the tasks and task networks specified in the task and schema files into the 

schema library' s  internal data structures. The user is requested to select a task 

from the set available to form the objective of the planning process. The HTN 

engine constructs the initial plan from the task specification. 

Line 2 appends all non-primitive tasks in the task definition to the planners task 

queue. 

Line 3 appends all conditions of type achieve in the initial definition to the task 

queue. Achieve conditions may be satisfied in two ways: inclusion of links to 

make the condition hold, or the introduction of new plan structure to attain the 

condition. 

Line 4 provides the main planning loop's termination criteria. The loop terminates 

when the task queue is empty. I.e. there are no non-primitive tasks in the network 

and all achieve conditions have been satisfied. 

Line 5 selects a task from the set of outstanding tasks on the task queue. Three 

methods have been implemented to guide this decision: random, user select or 

FIFO. The random method selects a task at random. The user method provides the 

user with the set of outstanding tasks, and asks the user to select the next task for 

attainment. FIFO (First In First Out) models the method used in the original 

Nonlin system. Tasks are appended to the end of a queue as they are identified. 

The planner always selects the first task in this queue for processing next. A 

system parameter set before planning commences defines which task selection 

method is used. The task selected at this stage will be referred to as the selected 

tasks. 

Line 6 guards the task refinement path. Only outstanding tasks which are of the 

type non-primitive task may proceed to the processing functions described in lines 

7 - 15 inclusive. 
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Line 8 <member of taskrefinementl makes a request to the schema library for methods 

which are indexed as refinements of the selected task. The schema library returns 

the set of schemas (possibly null) which match the selected task. 

Line 9 (member of task refinement) removes members of the set of schemas returned in Line 

8 whose only _use_if filter conditions do not currently hold in the world state. The 

HTN engine invokes the condition and effect critics question and answering 

method to achieve this function. Methods whose only_use_if conditions do not 

attract a yes response are discarded. 

Line 1 1  <member or task refinement) guards the possible case of no methods being 

applicable to refine the selected task. 

Line 12  <member of task refinementl handles the case of no available methods for 

processing the selected task. The line returns control to line 5, with the constraint 

that the next selected task must not equal the current selected task. 

Line 14 (member of task refinement) selects a method from the set of methods available, at 

random or by questioning the user, for inclusion into the plan. 

Line 1 5  <member of task refinement) replaces the selected task with the method selected at 

line 14.  

Line 1 6  is the start of the case where the selected task is an achieve condition. 

Line 17 <member o f  achieve condition attainment) queries the condition and effect manager's  

question and answering method to determine if  the condition specified in the 

selected task is already achieved in the network. 

Line 1 8  <member of achieve condition attainment) if the question and answering method returns 

yes at Line 17,  this line adds a causal link from one of the possible contributors to 

the selected task. This process is comparable to goal phantomisation in the 

original N onlin system. 

Line 20 <member of achieve condition atminmentl if it is not possible to make the condition 

specified in selected task true, this line asks the schema library to return possible 

schemas for achieving the condition. 

Line 22 (member of achieve condition atminmentl if no schemas are available for achieving the 

condition, this line returns processing to line 6, with the constraint that the next 

selected task is not equal to the current selected task. 
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Line 24 (member of achieve condition attainment) expands one of the schemas available to 

introduce the effect required by the selected task. The schema is placed 

immediately before the existing task which requires the condition. 

The remaining processing is general to both achieve condition attainment and task 

refinement flaw processing strategies. 

Line 28 instructs the plan state variable critic to inspect the variables within the 

plan. 

Line 29 enters the correction loop of the plan state variable critic. The loop 

terminates either at the users request (the plan may contain inconsistencies) or 

automatically when all flaws have been processed. 

Line 3 1  displays problems with the plan state variables to the user. The user is 

invited to add binding constraints to resolve these problems. 

Line 33 instructs the plan condition and effect critic to inspect all the conditions 

within the plan of type achieve, supervised, and only_use_for_query. 

Line 34 handles the case of the condition and effect critic identifies unsatisfied 

conditions, the system enters a correction loop. The loop terminates at either the 

user 's  request (the plan may still contain interactions) or automatically when all 

interactions have been resolved. 

Line 36 allows the user to correct interactions by adding variable binding 

constraints and links to the plan. 

Line 38 marks the limit of the main planning algorithm. The line returns control to 

Line 4 of the program. 

Line 39 instructs the condition and effect manager to check unsupervised 

conditions within the plan. The critic may add links to achieve unsupervised 

conditions. 
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The HTN planning algorithm processes two different types of issue: non-primitive 

tasks and achieve conditions. This functionality allows the workbench to simulate 

both precondition achievement and task refinement behaviour. Thus, addressing 

the research constraint raised in Chapter 2 which specifies that the workbench 

must not be constrained to a particular planning technology. 

During the execution of the workbench, an authority relationship is maintained 

between the HTN Engine and other components of the system. The ADS and plan 

critics may not modify the plan state. Their interfaces are defined to return 

constraints which may possibly be added to a plan to resolve conflicts. The 

components collectively form planning support tools, with the central decision 

making being made by the HTN algorithm. This authority models the relationships 

between 0-Plan's components and has the advantage of centralising the planner's 

decision making. Hence, different decision making strategies may be 

experimented with by modifying one unit of the planning system. 

The HTN-ENGINE class is supported by a SCHEMA-LIBRARY class, which is 

responsible for reading, maintaining and querying domain knowledge supplied to 

the planner. Its methods are described in the table below. 

Method Description 

Read TF File Reads a domain description in the Task Formalism format. The 

schemas and tasks are stored internally for querying. 

Return schemas returns the list of schemas which may be deployed to introduce 

which match the effect to the plan. 

(effect) 

Return Schemas Returns the list of schemas which may be deployed to refine the 

which match task described in the parameter pattern. 

(pattern) 

Table 3-12, Methods of class SCHEMA-LIBRARY 
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3.4.5 Overall  workbench architecture 

Figure 3-5, below, presents the component classes of the class WORKBENCH. 

HTN-ENGINE 

ADS-MANAGER 

PLAN-VARIABLE­
RELATIONSillP· 

CRITIC 

CONDITION-AND­
EFFECT-CRITIC 

SCHEMA-LIBRARY 

WORKBENCH 

Initialise 
Composed of 

Figure 3-5, Components of the WORKBENCH class 

The completed workbench architecture is presented in Figure 3-6 below . 

SCHEMA-LIBRARY ueries .....---
H
-

T
-

N
--E-N_G_l_N_E_., Populates r--

A
-

D
_

S
_·_MA

_
N
_

A
_

G
_

E
_

R
___, 

Manages Manages Manages 

SCHEMA LINK PLAN-NODE 

Queries 

CONDITION 

Queries 

Manages CONDITION-AND 
EFFECT-MANAGER1------- EFFECT 

Manages 

Queries 

PLAN-VARIABLE Mann es 
TYPES 

RELATIONSillP-
CRITIC Instances 

Manages VARIABLE 

Figure 3-6, Workbench system architecture 

Requires 

Asserts 

This separation of data structures and plan processing functionality facilitates the 

future development of the workbench. It is possible to replace the 0-Plan inspired 

functionality, whilst leaving the underlying data structures unchanged. 
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3.5 Implementation detai ls 
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The workbench is  implemented in  Intellicorps Kappa-PC version 2 .3 .  This section 

provides several screen shots to demonstrate the implementation and its user 

interface. 

Figure 3-7 (below) presents the classes implemented within the workbench. The 

solid lines indicate an inheritance relationship, whilst the dotted lines indicate an 

instance of a class. Note the inclusion of a TPNM ( l )(time point network 

manager) and a RUM (2) (resource utilisation manager) to permit the extension of 

the system. The plan depicted is representing a partial solution to the Sussman 

Anomaly (Sussman 1974). Note the instances of the classes type, movable_objects 

(3), and objects which have been compiled from the domain representation. 
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Figure 3-7, Screen shot of the classes implemented in the workbench 
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The screen shot below (Figure 3-8) expands the TGM (TOME and GOST 

manager) class in Figure 3-7. to present the classes methods. The QA method is 

open, revealing a portion of the implemented code. 
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Figure 3-8, TGM class 
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Figure 3-9 below depicts the user driven interface to the ADS. The interface 

allows the user to hand code plans without reference to the HTN engine. The 

interface is split into several windows. The goals and effects of the plan are shown 

in the two windows at the bottom. The top left window displays the evolving plan 

and includes the plan modification options open to the user. The top right window 

is allowing the user to enter a new activity into the plan. This interface was 

implemented to allow testing of the constraint managers and associated data 

structure, independently of the HTN engine. 
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Figure 3-9, Workbench's user interface 
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3.5.1 Workbench testing 

The workbench was tested against two domains from the planning literature: 

blocks world (Winograd 197 1) and Tate's  house building domain (Tate 1977). 

Both domains were encoded using the Task Formalism descriptions from the 0-

Plan Task Formalism manual. Results were compared against those produced by 

UM-Nonlin and those reported in (Tate 1 976) from the original Nonlin. 

Example test cases are provided in Appendix B .  
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3.6 Summary and conclusions 
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This chapter identified the role of prototypes in Automated Planning as 

laboratories to support the field's advancement and demonstrators of the field's 

current concepts. Within the context of the aims of this thesis, a workbench would 

form the apparatus for developing the integrated classical and model-based 

architecture. 

A new workbench was developed in an environment which would support logic, 

object-oriented, and rule-based constructs within the IBM-PC infrastructure of the 

collaborating organisation. 

The planning systems which technically influenced the workbench are depicted in 

Figure 3-10 below. SIP� 
Possible and Necessary 

Codesignation 

Nonlin /Question and Answering, Control 
algorithm, Network Linking 

1-N-OVA The Classical Workbench UM Nonlin 
Data structure organisation 

Management of Partial Order. / 
plan network '7 

AbNLP 0-Plan 

Coding techniques 

Architecture and Task 
Formalism 

Figure 3-10, Workbench's relationships with existing planner prototypes 

In conclusion, the workbench constructed in this chapter is not an automated 

planning system. The key decision points in the planning process are made by the 

workbench's user. This strategy makes the operation of the system transparent to 

its user; hence, allowing the user to view the mechanics of an AI planning system. 

The development of the workbench has achieved its aims. First, constructing the 

workbench has demonstrated to the author the issues encountered when 

implementing a planning system. Second, it provides a test bed in which a new 

integrated architecture may be developed and evaluated. 



4. 

Limitations of existing devices - planning literature 

Limitations of existing representational devices -
experiments within the planning literature 

I do not know what I may appear to the world, 

but to myself I seem to have been only like a boy 

playing on the sea-shore, and diverting myself in 

now and then finding smoother pebble or prettier 

shell than ordinary, whilst the great ocean of truth lay 

all undiscovered before me. 

Isaac Newton ( 1642-1 727) 

4.1 I ntroduction 

This chapter builds upon the potential for collaboration between classical and 

model-based technologies identified in Chapter 2 by identifying specific 

limitations with each technology's  representational devices. The limitations are 

identified through experiments within domains detailed in the automated planning 

literature. This experimentation is supported by the workbench described in 

Chapter 3. 

Specifically, this chapter aims to identify limitations with the representational 

devices supported by both classical and model-based planning technologies. 

Domains from the planning literature are analysed to identify the expert 

knowledge underlying the current encodings. This underlying knowledge is then 

modified to include realistic facets of each domain not originally considered. The 

ability of classical and model-based technologies to represent each modification is 

assessed. 

Before commencing the analysis, the analysis method is described and justified. 

The method requires an understanding of domains previously considered by 

planning researchers, hence, an overview of a representative set of these domains 

is presented. Appendix C supports the overview with the full domain 

specifications from which it is derived. 
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4.2 Analysis method 
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To describe and justify the method used in this chapter to identify limitations with 

existing technologies, it is necessary to consider the aim of automated planning as 

a field, and the methods previously employed in its advancement. 

Automated planning's  aim is to formulate a theory which can simulate1 planning 

behaviour. To develop this theory, the facets of planning behaviour must be 

understood. This transition from behaviour to theory is represented in Figure 4-1 

below. The figure depicts the domains of planning theory and planning behaviour 

with the arrow indicating the transition from the understanding of the facets of 

behaviour into theory. This transition currently results in the algorithms and 

domain independent knowledge representation formalisms of planning systems. 

The question pertinent to this chapter is, "How is this transition achieved?" 

1------ Automated Planning Theory 

Figure 4-1, Transition from planning behaviour to planning theory 

The examination of example problems has been a key method employed in 

previous work. Ginsberg describes the role of examples in AI in the following 

passage. 

The role of examples in AI is to test our theories, and it is the responsibility 

of individual researchers to conduct an honest search for examples to test 

their theories . . .  It really is like physics in the sixteenth century; the principal 

difference is that our experiments are introspective instead of material. 

(Ginsberg 1993, p 14) 

Ginsberg's  observation obscures a significant benefit of working with examples in 

AI planning. Whilst the use of examples tests the applicability of automated 

planning theory, ultimately such tests highlight the incompleteness of that theory, 

and are therefore a driving force in the task of understanding the requirements of 

planning behaviour. Ginsberg's comparison between AI and sixteenth century 

physics is pertinent. Automated planning is a relatively young discipline and has 

yet to establish a significant set of theories upon which research may be built. 

Hence, it is the process of examining examples that identifies the limitations of the 

existing theories of planning behaviour. 

The research method of formulate example, formulate theory, and formulate 

counter example is depicted in Figure 4-2 below. 

1 The use of simulate as opposed to emulate is deliberate. The automated planning 

field does not claim to replicate the actual cognitive processes within humans 

(Wilkins 1988). 
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Modify planning 
theory 

Test planning theory Formulate example 
against examples !9-------1 or counter example 

Figure 4-2, Methodology of example and counter example 

The methodology of example and counter example is applied in this chapter to 

identify limitations with existing representational devices. A number of domain 

definitions in the planning literature are examined to identify the knowledge from 

which the encoding is derived. With the underlying knowledge identified, the 

domain description is enhanced to include facets not addressed in the current 

representation. The ability of existing representational devices to capture these 

changes in specification and the planning engine's  ability to reason with the new 

knowledge is then analysed. 

The next section selects a number of domains from the automated planning 

literature as the motivating examples for study. With the domains for examination 

selected, the following sections apply the analysis method described above. 
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4.3 Overview of a representative set of the domains 
considered in the planning l iterature 

This section summarises a representative set of domains to which automated 

planners have been applied. The domains considered are all publicly available; 

either through the World Wide Web or referenced publications. This qualification 

excludes some applications of planning technology as commercial applications are 

proprietary. Hence, it is not possible to obtain them for evaluation. 

It is important to note the complexity of modelling application domains in 

planning formalisms. Chien ( 1996) states that the complexity of this activity is a 

prohibiting factor when applying automated planning techniques to industrial 

planning problems. The issues surrounding this task are discussed in Chapter 5 

which describes the elicitation of knowledge from the construction industry. 

4.3.1 Blocks world 
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The blocks world originates in (Winograd 1 971 )  and has provided a motivating 

problem in planning research (e.g. goal protection (Manna & Waldinger 1974) 

and action interactions (Sussman 1 974)). 

rn 
1 

x 
A 
D T 
2 3 4 5 

Figure 4-3, Two versions of the blocks world domain 

6 

The blocks world consists of a number of blocks and a table (Figure 4-3). The 

table may be infinite (left side of Figure 4-3) or divided into a number of finite 

positions (right side of Figure 4-3). The latter modelling adds the complexity of 

considering where blocks should be placed on the table. Domain knowledge 

pertinent to planning maybe summarised as follows: 

The world consists of a number of blocks, together with a table. The 

table may hold any number of blocks (assume the simpler 

modell ing\ A block may be moved if it is not obstructed by another 

block. Only one block may be moved at any given time. The table 

cannot be moved. 

The UCPOP representation of the blocks world's  puton operator (Barrett & Weld 

1992) is depicted in Figure 4-4 below. 

2 The inclusion of positions effectively adds blocks the problem which cannot be 

moved. Specifically, the planner may move blocks to a position on the table, but 

may not move that position. This consideration is not essential to the aims of this 

chapter, therefore the simpler representation is described. 
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I .  (define (operator puton) 
2. :parameters (?X ?Y ?Z) 
3. :preconditions ( and (on ?X ?Z) (clear ?X) (clear ?y) 
4. (neq ?X ?Y) (neq ?X ?Z) (neq ?X ?Y) 
5. (neq ?X Table)) 
6. :effect ( and (on ?X ?Y) (not (on ?X ?Z)) 
7. (when (neq ?Z Table) (clear ?Z)) 
8.  (when (neq ?Y Table) (not (clear ?Y))))) 

Figure 4-4, UCPOP blocks world operator specification 

Line 1 and line 2 name the operator and define its parameters. The parameters 

hold the following semantics: 

• ?X : the block to be moved. 

• ?Y : the location the block (?X) is to be moved to. 

• ?Z : the location upon which the block (?X) is currently positioned. 

The operator may be read as put a block ( ?X) onto location ( ?Y) from its current 

location ( ?Z). 

The operators preconditions represent two categories of knowledge. Line 3 

stipulates that this operator may only be applied if the block to be moved is clear 

(i.e. no block is on top of it) and the location the block is to be moved to is also 

clear. Lines 4 and 5 capture relationship knowledge between the operators 

parameters. The neq ?X ?Y constraint stipulates that the block to be moved cannot 

be the same as the location the block is to be moved to. The neq ?X ?Z constraint 

stipulates that the blocks initial location must not equal its destination location. 

The neq ?X ? Y  constraint stipulates that the block to be moved must not be the 

same as the destination location. The neq ?X Table constraint stipulates that the 

table cannot be moved. 

Operator Puton's effects are split into two groups. The effects described on Line 6 

always occur as a result of applying the operator. They specify that the block has 

moved from the initial location ((not (on ?X ?Z))), and that the block is at the goal 

location ((on ?X ?Y)). Lines 7 and 8 specify the conditional effects of the operator. 

If the destination location of the block ( ?Z) is not the table, then the effect that the 

destination location is no longer clear is asserted ((when (neq ?Z Table) (clear 

?Z))). If the initial location of the block was not the table, the effect that the initial 

location is clear is asserted ((when (neq ?Y Table) (not (clear ? Y))). 

Consider the representation of the blocks world taken from the 0-Plan system 

(Tate, Drabble, & Dalton 1994b) in Figure 4-5 below. 
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1 .  always { cleartop The Table} ;  
2 .  types objects = {BlockA BlockB BlockC TheTable), 
3. movable_objects = {BlockA BlockB BlockC} ;  

4 .  schema puton; 
5 .  vars ?x = ?{ type movable_objects ) 
6. ?y = ?{ type objects} 
7. ?z = ? { type objects } 

8. var. relations 
9. ?x l=?y, ?yl= ?z, ?xl=? Z 
I 0. expands { puton ?x ?y) 
1 1 . only_use_for_effects 
1 2. { on ?x ?y} 
1 3 .  {cleartop ?y} 
14. { on ?x ?z) 
1 5 .  { cleartop ?z} 
16.  conditions 
1 7 .  only_use_for_query 
1 8. achieve 
19 .  achieve 
20.end-schema 

true 
false 
false 
true 

{ on ?x ?z} 
( cleartop ?y) 
{ cleartop ?x} 

Figure 4-5, 0-Plan representation of the blocks world 

Lines 2 and 3 group the domain entities into two sets, movable objects and 

objects. The movable object set is a subset of the objects set. The allocation of 

domain entities to sets captures the knowledge that the table cannot be moved. 

The vars section describes the parameters used within the operator. The 

parameters hold the following semantics: 

• ?X : the block to be moved. 

• ?Y : the location the block (?X) is to be moved to. 

• ?Z : the location upon which the block (?X) is currently positioned 

The type constraints upon the variable ?x prevent the object to be moved being 

instantiated to the table, as it is not a member of movable_objects. 

The var relations specify the co-designation and non co-designation constraints 

between the variables. The ?x I= ?y constraint stipulates that the block to be 

moved must not equal the location to which the block is to be moved to. The ?yl= 

?z constraint stipulates that the location the block is to be moved to must not equal 

the blocks current location. The ?xl= ? z constraint stipulates that the block to be 

moved must not equal the location to which the block is to be moved to. 
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The only_useJor _effects section defines the effects of the operator for which this 

operator maybe used to achieve. The inclusion of an "effects" section would 

describe side effects of the action. In the puton example there are no instances of 

effects. The main effects of the action are as follows: {on ?x ?y} = true states that 

the block is now located at the destination location. {cleartop ?y} = false states the 

destination location of the block is no longer clear. {on ?x ?z} = false states that 

the block is no longer on its initial location. { cleartop ?z} = true states that the 

initial location of the block is now clear. 

The conditions section defines the conditions of the operator. The 

only_useJor _query prefix denotes variable binding conditions, whilst the achieve 

prefix denotes conditions the planner may add new plan structures to achieve. 

only _use Jar _query {on ?x ?z} places a condition that before the operators 

execution, ?z must be bound to the object upon which ?x is located. This condition 

maybe rebound at any time to ensure its maintenance. The achieve { cleartop ?y} 

and achieve { cleartop ?x} conditions specify that the location the block is to be 

moved to, and the block to be moved, respectively must be clear. 

The 0-Plan representation encodes the knowledge that the table is infinite through 

the always { cleartop The Table} at line 1 .  If the puton operator is instantiated with 

the destination TheTable, the effect cleartop TheTable = false will be overridden 

by the always constraint. 

The representations differ slightly in structure due to the different planning 

knowledge encoded in the UCPOP and 0-Plan systems. Negating these 

differences in representation, both formalisms capture and employ the same 

knowledge about the blocks world. Both formalisms capture all domain 

knowledge pertinent to planning. 

The essence of blocks world planning problems is identifying and sequencing the 

movement of blocks to achieve their rearrangement. The successful sequencing of 

the blocks movement relies on the ability to detect and resolve interactions 

between actions. 
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4.3.2 Office world 
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The Office World originates in the defining STRIPS planning system paper (Fikes 

& Nilsson 197 1) .  The domain reflects the STRIPS systems initial target domain of 

robot planning tasks. The world is depicted in Figure 4-6 below. 
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Door 4 

Door 3 

Door 2 

Door l 

Figure 4-6, The Office world (Fikes & Nilsson 1971), 
reproduced from (Allen, Hendler & Tate 1990, p 95) 

The operators available in the domain are depicted in Figure 4-7 below. The 

domain consists of a number of interconnected rooms. The rooms contain boxes 

and light switches. To operate a light switch the robot must be standing on a box, 

and the box must be located next to the light switch. The robot is free to move 

boxes around rooms, and from room to room. The constraints on the movement of 

boxes are that the rooms are connected. For example, the robot cannot move a box 

from Room 1 to Room 4, without first going through room 5 .  

Example tasks within the domain include locating boxes in  specific rooms and 

switching on lights. 

The office world requires the generation and sequencing of actions to achieve 

tasks. The domain requires the planner to include actions which achieve the 

intermediate steps of actions. 
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I .  gotol(m) : robot goes to co-ordinate location m 
2. preconditions: 
3. (onfloor) " (3 x) [in room (robot, x) A locinroom(m, x)] 
4. de! list: 
5 .  atrobot(s), nexto(robot, s) 
6. add list: 
7. atrobot(m) 

8. goto2(m) : robot goes next to item m 
9. preconditions: 
10 :  (onfloor) A { (3x)[in room (robot, x) A in room (m, x)] v 

(3x)( 3y) [in room( robot, x) A connects(m, x, y)] } 
1 1 .  de! list: 
1 2. at robot (s), next to (robot, s) 
13. add list: 
1 4. next to (robot, m) 

1 5 .  pushto(m, n) : robot pushes object m next to item n 
1 6 .  preconditions: 
17 .  pushable(m) " onfloor A next to (robot, m) A { (3x) 

[in room (m, x) A in room (n, x )] v (3x, 3y)[ in room 
(m, x) " connects (n, x, y)] } 

1 8 .  de! list: 
19 .  a t  robot (s), next to  (robot, s )  next to  (s, m), at  (m, s) 
20. next to (m, s) 
2 1 .  add list: 
22. next to (m, n), next to (n, m), next to (robot, m) 

23 . turnonlight(m) : robot turns on light switch m 
preconditions: 

( (3n) [type (n, box) A on(robot, n) A nexto(n, m) " 
type (m, lightswitch)] } 

del list: status (m, off) 
add list: status (m, on) 

24.climeonbox(m) : robot climbs up on box m 

25. climeoffbox(m) : moot climbs off of box m 

26. gothrudoor (k, I, m) : robot goes through door k from room I into room m 

Figure 4-7, Fragment of STRIPS world operator specification 
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4.3.3 Briefcase domain 
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The briefcase world originates in (Pednault 1988) and demonstrates the need for 

both universal quantification and conditional effects in domain operator 

descriptions. Planning knowledge pertinent to the domain is described in the 

paragraph below. 

An object may only be put in a brief case if it is at the same location 

as the brief case. When objects are taken out of the briefcase they 

are located at the current location of the briefcase. If a brief case 

moves, all objects inside the briefcase moves. 

The operators available in the briefcase domain are described below (Figure 4-8). 

l. define (operator rnove-b) 
2. :parameters (?rn ?I) 
3 .  :precondition (and (at B ?rn) (neq ?rn ?I)) 
4. :effects (and (at b ?I) (not(at B ?rn))) 
S.  (forall (?z) 
6. ( when (and (in ?z) (new ?z B)) 
7. ( and (at ?z ?l) (not (at ?z ?rn))) 

8. define (operator put-in) 
9. : parameters(?x ?I) 
10. :preconditions (neq ?z B) 
1 1 . :effect (when (and (at ?x ?I) (at B ?I)) 
1 2. (in ?x)) 

1 3 .  define (operator take-out) 
1 4. :parameters (?x) 
IS :  :preconditions (neq ?x B) 
16 .  :effect (not (in ?x)) 

Figure 4-8, Briefcase domain representation (UCPOP) 

The move-b operator specifies the relocation of the briefcase from place ?m to 

place ?l. The action' s preconditions are similar to those in the blocks world. The 

briefcase B must not equal to location from which the briefcase is being moved. 

The destination location ?l must not equal the initial location ?m. The effects 

demonstrate the use of universal quantification in an operators effects. The forall 

( ?z) component specifies that for all the entities ?z which are in the briefcase, the 

location of the set ?z moves to location ? l with the briefcase. 



Limitations of existing devices - planning l iterature 

The put-in operator describes the action of putting objects into the briefcase. The 

conditional effect when at (?x ?l) and at(?b ?l) specifies that the object being put 

into the briefcase must be at the same location as the briefcase for the effect (in 

?x) to be asserted. 

A typical planning task within the domain would involve the movement of objects 

to a variety of locations, using the briefcase as the method of transport. 

The briefcase domain demonstrates the need for universal quantification and 

conditional effects in domain operators. The planning complexity is similar to the 

blocks world and the office world domains. 
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4.3.4 Tate's house building domain 
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The house building domain originated as a test domain within the Nonlin project 

(Tate 1976). It is currently used to demonstrate the Task Formalism domain 

representation language and the operation of the 0-Plan system. 

The design of the house considered in the domain from which a construction plan 

is generated is depicted in Figure 4-9 below. 
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Down Pipes 

Electrical Work 

Concrete 
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Wall paper 

Wooden Frame 

Path and 
Landscape. 

grade for slab 

Figure 4-9, Graphical representation of the house 
in Tate's house building domain 

A proportion of the domain's planning knowledge is described in the text below. 

The bui lding is made up of a number of interrelated components. The 

planning task is to assemble these components to achieve the 

construction of the house. The house has two major components: the 

foundations, and the walls and roof. The foundations are further 

decomposed into a number of sub-components: the location the slabs 

are to be laid, the reinforcement rods, and the concrete slabs. The 

walls and roof are further decomposed into a number of sub­

components: the wooden frame, the exterior sheathing, the insulation, 

the sheetrock and plaster, the gutters and down spouts, the shingle 

for the roof, the brickwork. 

The foundations must be completed before work commences on the 

walls and roof because they support the walls and roof. The rough 

plumbing and wiring must be installed before the outside walls are 

insulated because the insulation encloses the rough plumbing. 
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A fragment of the domain representation is depicted in Figure 4-10  below. The 

modelling of the problem is analysed immediately after this figure. 

task build_large_house; 
nodes I start, 

2 finish, 
3 action (build house I ;  

orderings I ---> 3, 3 ---> 2 ;  
end_ task; 

schema build; 
expands {build house} ;  
nodes I action ( obtain building permit ) ,  

2 action ( Jay foundations }, 
3 action ( build walls and roof}, 
4 action {joinery }, 
5 action {decorate and fit), 
6 action ( install services ) ,  
7 action { landscape) ,  
8 action ( close out house} ; 

orderings I ---> 2, 2 ---> 3, 2 ---> 4, 2 ---> 5, 
2 ---> 6, 2 ---> 7, 3 ---> 8; 

conditions unsupervised {wooden frame and roof erected} at 5; 
end_schema; 

schema lay_foundations; 
expands ( lay foundations } ;  
nodes I action (clear lot and grade for slab } ,  

2 action { place concrete forms reinforcement rods and sewer lines } ,  
3 action ( pour slab } ;  

orderings I ---> 2, 2 ---> 3 ;  
effects (foundations laid} ;  

end_schema; 

schema build_ walls_and_roof; 
expands ( build walls and roof};  
nodes 1 action (erect wooden frame including roof} , 

2 action {fasten exterior sheathing) ,  
3 action { insulate outside walls } ,  
4 action { sheetrock and plaster inside walls } ,  
5 action ( place insulation i n  attic) ,  
6 action { attach gutters and downspouts } ,  
7 action ( shingle roof) ,  
8 action ( lay brickwork exterior walls plus inside fireplace} ;  

orderings 1 ---> 2 ,  2 ---> 3,  3 ---> 4, 4 ---> 5, 5 ---> 6, 1 ---> 7, 
7 ---> 3,  2 ---> 8, 8 ---> 5 ;  

conditions unsupervised ( foundations laid} a t  I ,  
unsupervised {rough plumbing installed } a t  3 ,  
unsupervised ( rough wiring installed} at 3 ,  
unsupervised { exterior trim complete} at 8 ;  

end_schema; 

Figure 4-10, Fragment of house building domain representation 
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The house building domain is modelled at a number of abstraction levels. The first 

abstraction level is represented by the schema build. The schema partitions the 

house building task into a number of sub tasks. 

1 .  obtain building permit 

2. lay foundations 

3 .  build walls and roof 

4. joinery 

5 .  decorate and fit 

6. install services. 

Each task represented at this level may have a set of methods available for its 

refinement. In this example domain, only one method is available for the 

refinement of each task. The use of modelling levels permits constraints to be 

placed at different levels of abstraction. For example, the ordering constraint 1 -­
> 2 is stipulating that the building permit must always be obtained before the 

foundations are laid. Hence, all the sub tasks of lay foundations will be ordered 

after the sub tasks of obtainin building permit. The planning system does not have 

to deduce this constraint, it must only maintain it. 

The unsupervised condtion wooden frame and roof erected at 5 stipulates that the 

sub tasks of decorate and fit require the wooden frame and roof to be errected 

before they commence. The use of the unsupervised condtion type constrains the 

planner to make this condtion hold through ordering constraints only. It is 

assumed that at atleast one other point in the plan this condtion will be made true. 

The second modelling level describes the methods available for attaining each of 

the tasks described at the first modelling level. One method is avialble for refining 

the build walls and roof action; hence, refining this task will result in the 

following tasks being added to the plan: 

1 .  erect wooden frame including roof 

2. fasten exterior sheathing 

3 .  insulate outside walls 

4. sheetrock and plaster inside walls 

5 .  place insulation in attic 

6. attach gutters and downspouts 

7. shingle roof 

8. lay brickwork exterior walls plus inside fireplace 

As with the first modelling level, the second level may place constraints upon 

tasks which all refinements of the constrained tasks must maintain. E.g. the 

ordering constraint 1 --> 7 captures the constraint that the roof must be laid before 

the roof covering is installed. 

The second modelling level contains a number of unsupervised conditions. The 

use the unsupervised condition type indicates that the schemas at this modelling 
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level are aware of a number of conditions required for their attainment, but are 

unaware of the task or tasks which obtain them. 

Effects, like conditions, are modelled at different levels of abstraction. At the 

second modelling level the lay_foundations action asserts that the effect 

foundations laid. This is a high level effect, describing the aggregation of effects 

resulting from the tasks possible refinements. 
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4.3.5 Pacifica 
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Pacifica (Reece et. al 1993) is an imaginary evacuation scenario developed by the 

Artificial Intelligence Applications Institute at Edinburgh University to provide a 

test domain for transportation logistics problems. The domain is summarised in the 

text below. 

The evacuation problem consists of three tasks: the deployment of 

evacuation equipment, effecting the evacuation of outlying areas to a 

central point, the evacuation of people and evacuation equipment 

from the central point to a safe location. 

The deployment of evacuation equipment involves the loading of air 

and ground transports onto cargo aircraft. The cargo aircraft must fly 

to location to be evacuated before the evacuation equipment may be 

unloaded. The aircraft must take off from runways one at a time. 

Evacuation equipment and cargo aircraft must be in the same 

physical location before loading may commence. 

Effecting the evacuation requires the deployment of ground and air 

transports to move the people to be evacuated to a central point. A 

finite number of air and ground transports are avai lable. An air or  

ground transport cannot perform two trips simultaneously. 

After the people to be evacuated have been located at a central point, 

the evacuation equipment and people are loaded onto transport 

ai rcraft and removed from evacuation location. 

An example Pacifica task definition (Operation Columbus) is depicted in Figure 

4-1 1  below. The task definition is broken down into three sections, reflecting the 

structure of the domain described above. Tasks 3 and 4 specify the location of 

evacuation equipment. Tasks 5, 6, and 7 specify the evacuation of the area. Tasks 

8, 9 and 10 specify the return of evacuees and evacuation equipment to safety. 

In addition to specifying the component tasks of Operation Columbus, the task 

definitions specifies the current location and status of the area in which the 

operation is going to be undertaken. The location of evacuation resources and 

cargo planes is specified in the task definitions effects (e.g. location_gt GTl = 

Honolulu at 1, at C141 Honolulu at 1) .  The task definition also specifies the 

initial runway status at both Delta and Honolulu as clear, and the capacity of the 

transport air craft and trucks (gt_capacity 25, at_capacity 35). 
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task operation_columbus 
nodes sequential 

I start, 
parallel 

3 action (transport_ground_transports Honolulu Delta) 
4 action (transport_helicopters Honolulu Delta) 

end_parallel 
parallel 

5 action (evacuate Abyss 50) 
action (evacuate Barnacle 100) 
action (evacuate Calypso 20) 

6 
7 

parallel 
8 action (fly_passengers Delta Honolulu) 
9 action (transport_ground_transports Delta Honolulu) 
10 action (transport_helicopters Delta Honolulu) 

end_parallel 
2 finish 

end_sequenctial; 
effects 

(location_gt GT l) = Honolulu at 1 
(location_gt GT2) = Honolulu at 1 
(in_use_for GT! )  -= in_ transit at I 
(in_use_for GT2) = in_transit at 1 
(location_at AT!) =  Honolulu at I 
(in_use_for A TI) = in_ transit at 1 
(apportioned_forces GT) at 1 
(apportioned_forces AT) at 1 
(at Cl41)  = Honolulu at 1 
(at C5) = Honolulu at I 
(at KCl O) = Honolulu at 1 
(at B707) = Delta at I 
(runway_status_at Delta) = clear at 1 
(runway_status_at Honolulu) = clear at 1 
(gt_capacity 25) at I 
(at_capacity 35) at 1 

cnd_task; 
Figure 4-11, Operation Columbus task definition 

The encoding of the domain exploits task refinement behaviour for completing the 

tasks 3, 4, 8, 9, and 10, and precondition achievement behaviour is exploited to 

complete the tasks 5, 6, and 7. One task from each attainment method is described 

in detail below. The schema "transport ground transport Honolulu Delta " is used 

as an example of the methods employed in tasks 3, 4, 8, 9, and 1 0. The schema 

Evacuate abyss 50 is used as an example of the method employed in tasks 5 ,6, and 

7.  
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Schema transport ground transports 
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schema transport_ground_transports 
expands { transport_ground_transports ?from ?to } 
vars?from = ?{ type air_base} 

?to = ?{type air_base }  
nodes 

1 action ( load ground_ transports } 
2 action ( take_off_from ?from} 
3 action { fly_to ?to} 
4 action{ land_at ?to} 
5 action (unload ground_ transports ] 

orderings 1->2, 2->3,3->4,4-5 
conditions 

achieve {at c5 } = ?from at 1 
unsupervised { location_gt GTI } = ?from at 1 
unsupervised { location_gt GT2 } = ?from at 1 
unsupervised ( runway_status_at ?from) = clear at begin_ of 2 
supervised {runway_status_at ?from) = inuse at end_of 2 from begin of 2 
unsupervised {runway_status at ?to} = clear at begin_of 4 
supervised { runway_status_at ?to} = in_ use at end_ of 4 from begin of 4 

effects 
(at c5) = ?to at 5 
( location_gt GTI } = ?to at 5 
( location_gt GT2 } = ?to at 5 
{ in_use_for GTI ) = available at 5 
{ in_use_for GT2} = available at 5 
{ runway_status_at ?from} = in_ use at begin_ of 2 
{ runway_status at ?from} = clear at end of 2 
{ runway _ststus al ?to} = in_ use at begin of 4 
( runway_status at ?from) = clear at end_of 4 

end_schema 

The schema encodes the task of locating the ground transports required for an 

evacuation operation. The parameters ?from and ?to specify the initial location 

from which transportation is to begin and the location from which evacuation is to 

commence respectively. The typing of these parameters as air base prevents 

missions being considered which fly to or from a location which is not an air base. 

The schema decomposes the task of locating the ground transports into the sub 

tasks load ground transports, take off from the initial location, fly to the location 

to be evacuated, land at the location to be evacuated and unload ground 

transports at the destination location. These actions are ordered in the sequence 

load, take off, fly to, land at, unload. 

The conditions achieve at C5 at 1 permits the planning system to generate plan 

components which move the cargo plane to the ?from location. The unsupervised 

constraints of loacation_GTJ = ?from and location_GT2 ?from records the 

assumption that the ground transports will be located at the ?from location by 

another part of the plan. The unsupervised runway status = clear constraints 

record the knowledge that the planner should make no attempt to clear a runway. 

The planner must order the take off and land tasks when the runway is clear. The 

supervised runway constraints record when the sub tasks of the schema change the 

status of the runway. 
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The schema's effects specify that the cargo plane and its cargo of ground 

transports will be located at the evacuation location when the actions of the 

schema have been executed. 

Schema evacuate city 

schema evacuate_city 
expands {evacuate city ?city ?number) 
vars ?city = ?{ type city} 

?number = ? { satisfies numberp) 
conditions 

achieve { evac_status ?city) = ( 0 ?number} ;  
end_schema; 

The schema evacuate city provides an expansion for tasks of the form evacuate 

city ?city ?number. The expansion adds a single condition to a plan, evac_status 

?city = 0 ?number, typed as achieve. The achieve typing permits the planner to 

add new plan structure whilst attempting to make the condition it prefixes hold . 

Two schemes within the domain description possibly achieve the evac_status 

condition: schema Road_Transport and schema Air_ Transport. Assume the 

planner chooses the schema Air _Transport. 

schema Air_ Transport 
only_use_for _effects {evac_staus ?from} = {e_left e_safe}; 
vars 

?from 
?to 
?at 
?e_left 
?e_safe 
?c_left 
?c_safe 
?capacity 
?take 

=?{type city} 
=?{type air_base} 
=? ( type airtransport} 
=?{type numberp } 
=?{type numberp } 
=?{type numberp } 
=?{type numberp ) 
=?{ type numberp ) 
=?{ type numberp } 

nodes 
I action {fly ?take in ?gt from ?from} 
2 dummy 

conditions 
only_use_if { apportioned_forces AT) 
only_use_if { evacuate_to ?to} 
only_use_if {gt_capacity ?capacity} 
compute { ?capacity ?e_left ?e_safe} = { ?c_left ?c_safe) 
compute { - ?e_safe ?c_safe) = ?take 
achieve { evac_status ?from} = ( ?c_left ?c_safe) at 2 
unsupervised { location_gt ?AT} = ?to at begin_of I 
unsupervised { in_use_for ?at) = available at begin_of l 
supervised { in_use_for ?at} = ?from at end_ of I from begin_ of l 

effects 
{ in_use_for ?at} = ?from at begin_ of l 
{ in_use_for ?at) = available at end_of l 

end_schema 

The processing of instantiating the schema's  parameters subtracts the number of 

people one air transport may carry, and asserts a new condition of achieve 

evac_status city {?previous number safe + ?capacity of at, ?previous number 

evacuees in danger - ?capacity of at}. Hence, new achieve conditions are added to 

the plan until sufficient trips to an outlying city are entered into the plan to 

evacuate all evacuees from a city. 
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4.3.6 Flight simulator construction 
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The PIPPA (Marshall 1988) Model-Based planning system has been applied to the 

domain of flight simulator construction (Marshal, Boardman & Murray 1987). The 

text below summarises a fragment of the flight simulators construction domain' s  

knowledge. 

The fl ight simulator industry regulations requires that a feasibility 

study is completed before a bid for a contract may be initiated. A 

feasibil ity study is made up of at most three documents: An 

engineering report, a cost break down, and a structured design.  

An engineering report is requ ired only i f  a flight simulator of similar 

specification has not been build by the company before, or the bid is 

taking place under US air traffic regulations. In the latter case, the 

structured design for a previous project must be retrieved and 

updated to match the project currently under consideration. If a new 

engineering report is written,  or an old report modified, the new 

document must be approved by an internal engineering committee. 

The PIPPA representation of the domain is depicted in Figure 4-12 below. 

Assessment Knowledge 

Draft 

Document 
Approve 

Retrieve 
Are types of 

Engineering report Structured Design 

Is made up of 

Feasibility study 

Figure 4-12, Fragment of the PIPPA flight simulator domain representation 
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The PIPPA model-based representation is centred around the concepts in the 

domain. In the flight simulator domain, the abstract concept document captures the 

knowledge that a document may have three actions associated: draft, approve, and 

retrieve. The assessment knowledge box provides a knowledge marker, indicating 

that knowledge relating to a specific document type must be inserted to indicate 

when each of the set of actions should be associated with a specific document. 

Engineering reports, cost break downs, and structured designs are represented as 

specialisation' s  of the concept document (through the triangle connection in the 

notation). Each of these specialisations inherit the features of the generic 

document concept. The feasibility study concept is specified as being possibly 

made up of the three sub concepts of document. 

The feasibility concept contains the knowledge for assessing the need for 

engineering reports, cost break down and structured design in the form of a rule­

based system. An example rule set is depicted below (Figure 4- 13).  

rule #I requirement for engineering report 

if not built similar simulator or standard body = US then 
i nclude a engineering report 

end rule 

rule #2 decide if built a similar simulator before 
if database contains same specs or user identifies similarities then 

built similar simulator = true 

end rule 

Figure 4-13, PIPPA representation of the need for a engineering report 

The engineering report concept contains the knowledge for assessing which of the 

three actions are required to produce it. An example rule set is depicted below 

(Figure 4-14 ) .  

rule #3 requirement for draft action o n  a n  engineering report in a feasibility study 
if standard body = US and built similar simulator then 

retrieve previous engineering report 
approve previous engineering report 

end rule 

rule #3 not previous built a similar simulator 

if not build similar simulator then 

draft engineering report 

approve engineering report. 

end rule 

Figure 4-14, PIPPA action assessment knowledge 

Planning proceeds by identifying the actions attached to each component and 

adding them to the plan. 
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4.4 Selecting a set of domai ns from the planning l iterature 

This section examines the current debate within the automated planning 

concerning the application domains from which further analysis is likely to 

advance the field. Central to this argument is the future utility of "real world" as 

opposed to "toy" domains as the motivating examples in planning research. A 

framework is constructed from this debate to identify domains with a potential 

utility in experiments to identify limitations with existing representational devices. 

The resultant framework is then applied to the domains summarised in Appendix 

C. 

4.4.1  Framework for classifying the potential future util ity of specific 

domains 

The planning literature contains three perspectives for classifying domains and 

proposing which offers the greatest utility. Each perspective is summarised below, 

before a unified framework is constructed. 

4.4.1 .1 Economical perspective 
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Drummond ( 1994) proposes a thesis that precondition achievement planning may 

be a formulation without significant application. To support this proposition, 

Drummond provides the following comment on the current domains to which 

precondition achievement planning has been applied: 

Of course, one can construct endless toy domains where the operators are 

specifically formulated so as to facilitate the direct and immediate 

construction of a solution plan, but such toy domains do not pass our test 

for economic viability. (Drummond 1994, pp 3) 

Drummond provides the following test for determining the economic viability of a 

specific domain: 

• Who is the person that wants the problem solved? Call this person the 

problem 's owner. 

• Does the owner really want a fully automatic solution ? Or would they 

prefer some sort of decision support system - they make the decisions, 

the system tracks the details. 

• If the owner really wants an automatic solution, how much are they 

willing to pay for the required system ?  

• Are there people who are already good at solving the problem, or is it a 

problem without an existing manual solution ? 

(Drummond 1994, pp 2) 
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Whilst Drummond does not explicitly criticise the use of "toy" domains, he 

proposes that research should concentrate on better understanding the planning 

techniques which have succeeded in economically viable applications. He is 

implicitly assuming the aim of automated planning is to create problem solving 

tools which may be applied to commercial problems. Drummond's  

recommendation of focusing on planning technologies which have demonstrated 

an industrial aptitude must suggest working within domains which pass his test for 

economic viability. 

4.4.1 .2 Phi losophical perspective 

Brooks proposes that AI research should at each stage "build complete intelligent 

systems that we let loose in the real world with real sensing and real actions" 

(Brooks 199 1 a), and that those agents should be "embodied as mobile robots" 

(Brooks 199 l b). Etzioni ( 1993) justifies the use of softbots in AI research by 

accepting the arguments behind Brooks first proposition and refuting the 

reasoning behind the second. 

Brooks provides an engineering methodology argument to justify the use of real 

domains and therefore robots as the basis of AI research. As part of this argument, 

he observes the following danger of working within "toy" domains. 

with a simplified world . . .  it is very easy to accidentally build a sub module of 

the system which happens to rely on some of those simplified properties . . .  

the disease spreads and the complete system depends in a subtle way on the 

simplified world. (Brooks 1 99 l a) 

Etzioni applies Brooks' criticism of simplified worlds to justify the use of softbots 

through the argument that the domains to which softbots are applied have not been 

engineered by softbot designers, and therefore are not in danger of the 

simplification disease. 

In summary, the philosophical perspective recommends that the domains 

considered in planning research should not be engineered by planning system 

designers. By working with "real world" domains, research will avoid developing 

systems which are dependant upon the simplifications made in "toy" domains. 
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4.4.1 .3 Metric perspective 

1 00 

Andrews et. al. (1995) provide the following justification for designing a realistic 

bench mark and development problem for planning systems . 

. . .  a number of toy domains have been devised to assist in the analysis and 

evaluation of planning systems and techniques. The most well known 

examples are "Blocks World" and "Towers of Hanoi ". As planning systems 

grow in sophistication and capabilities, however, there is a clear need for 

planning benchmarks with matching complexity to evaluate those new 

features and capabilities. 

Andrews et. al. are observing that planning systems have grown in complexity, but 

the common bench marking domains have not developed in parallel with the 

technologies they measure. The implication is that the capabilities of the current 

planning theory is already beyond the minimum requirements of "toy" domains. 

The authors go on to define the "matching complexity" of domains through a 

comparison of their UM Translog domain with the domain upon which it is based 

(CMU Transport Logistics (Veloso 1992)) 

UM Trans log is an order of magnitude larger in size (41 actions versus 6), 

number of features and types of interactions. It provides a rich set of 

entities, attributes, actions and conditions which can be used to specify 

complex planning problems with a variety of plan interactions. The 

detailed set of operators provides long plans (40 steps) with many possible 

solutions to the same problem, and thus this domain can also be used to 

evaluate the solution quality of planning systems. 

The metrics perspective argues that the domains used to test and develop planning 

systems should match the capability of those systems. The perspective identifies a 

set of axes upon which domains may vary, and indicates the position of useful 

domains upon those axes. 
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4.4.1 .4 Selection framework 

The past utility of domains formulated by planning system designers was 

demonstrated in Chapter 2 of this thesis. By focusing on specific aspects of the 

planning problem, powerful techniques such as the STRIPS action representations 

(Fikes and Nilsson 197 1) and the question and answering procedure over partial­

order networks (Tate 1977) have been developed. As the three perspectives above 

demonstrate, classical planning systems have already developed features capable 

of addressing more realistic domains, and working continually within simplified 

domains carries the risk of developing systems which are dependent upon those 

simplifications. 

The two sets of criteria presented in Figure 4-15  below summarise the current 

thinking within the three perspectives for identifying a domain's type and 

determining the potential utility of that domain in future planning research. 

Type Criteria 
1 .  Is there an identifiable person, other than an AI planning system designer, 
who wants the problem solved? 

Utility Criteria 
2. Is there sufficient domain knowledge available to solve the problem? 
3 .  Is  there a significant number of entities and attributes in the 

domain? 
4. Are the plans of a significant length? 
5 .  Are there multiple solutions t o  the problem? 

Figure 4-15, Domain evaluation framework 

The type criteria is derived from Drummond's economic perspective and Brooks' 

philosophical perspective. The type criteria differentiates between "toy" and "real 

world" domains. The utility criteria are derived from Drummond' s  economic 

perspective and Andrews et. al . 's  metric perspective. Collectively, the utility 

criteria provide a test for determining if a specific domain is of sufficient 

complexity to facilitate future planning research. 

The inclusion of the type criteria to differentiate "real world" and "toy" domains 

is not intended to suggest "toy" domains should not be considered by future 

research. The intention is that if a domain is classed as a "toy" yet of a high utility, 

it should be carefully considered to ensure resultant work is not unintentionally 

based upon the simplified facets of the domain. 

The following section applies this evaluation framework to the planning domains 

summarised in Appendix C to identify a set of domains which may be studied with 

a high probability of identifying limitations with existing representational devices. 
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4.4.2 Applying the framework to the domains considered in planning 
l iterature 

This section applies the unified framework developed in section 4.4. 1 .4 to the 

domains summarised in Appendix C. All of the domains considered are published; 

full references are provided within the summaries in Appendix C. 

4.4.2.1 Blocks world 

Criteria Result 

1 It is not possible to envisage a person prepared to pay for solutions to 

problems in this domain. 

2 Yes. The domain may be reproduced in a typical office environment 

and the domain' s  knowledge elicited without the need for a domain 

expert. 

3 The domain contains a small number of entities (blocks and a table) .  

The blocks have simple attributes (clear or obstructed). 

4 Plans produced are typically quite small (5 or 6 actions) 

5 Yes. There are typically several orders in which blocks may be 

moved, however, there is a limited set of criteria for evaluating 

solutions (e.g. the length of plans). 

4.4.2.2 Office world 

Criteria Result 

1 Yes, there is a demand for systems which can accomplish tasks in an 

office environment. E.g. delivering mail, and cleaning. 

2 Knowledge about the actions available in an office domain are easily 

elicited without the need for a domain expert. 

3 If the domain is expanded to include a real office environment the 

problem would contain a significant number of entities and attributes. 

If the domain is expanded to include a real office environment the 

4 plans required would be of a significant length. 

If the domain is expanded to include a real office environment there 

would be multiple ways of achieving tasks. 

5 
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4.4.2.3 Briefcase domain 

Criteria Result 

1 It is not possible to define a person who would be prepared to pay for 

solutions in this domain. 

2 Yes, the domain is accessible to any person without the need for a 

specific domain expert. 

3 No. The domain is limited to several objects and a briefcase. 

4 The plans are typically short (2 to 1 0  actions) 

5 Multiple solutions are possible but the criteria for differentiating 

between them are limited to plan length. 

4.4.2.4 Tate's house building domain 

Criteria Result 

1 Yes. There are a large number of construction organisations which 

may be prepared to pay for a system which plans in this domain. 

2 People are available who are currently very good at solving problems 

in this domain. However, the domain is not immediately assessable to 

a researcher. A domain expert is required. 

3 There are a large number of entities in the domain, each with a large 

set of attributes. 

4 The plans have the potential to be very long. 

5 Yes, solution may vary on several dimensions. E.g. resources used, 

time to construct etc. 

4.4.2.5 Pacifica 

Criteria Result 

1 Yes. Military organisations have identified the need to plan more 

rapidly during operations. 

2 There are people available who are good at solving problems in this 

domain. The complexity of the domain requires a domain expert for 

knowledge elicitation. 

3 There is a large number of entities with a large set of attributes. 

4 The plans may be of a significant length. 

5 Solutions may vary against several criteria. E.g. time, cost, resources 

utilisation, probability of success etc. 
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4.4.2.6 Flight simulator construction 

Criteria Results 

1 Yes. Organisations constructing flight simulators have identified a 

need to improve the speed of their planning process. 

2 People are available who are good at solving the problem. The 

complexity of the domain requires a domain expert for knowledge 

acquisition. 

3 There are a large number of entities with a large set of attributes. 

4 The plans may be of a significant length. 

5 Plan solutions may vary against several criteria. E.g. time, cost, 

resource utilisation etc. 
-
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4.4.2. 7 Conclusion 

The domain evaluation framework defined in section 4.4.1 categorises the type of 

each domain summarised in Appendix C as follows. 

"real world" domains under the type criteria 

• Tate's House Building Domain 

• Pacifica 

• Flight Simulator Construction 

"toy" domains under the type criteria 

• Blocks world 

• Briefcase domain 

• Office world 

The framework assigns the following utility classifications to the same domains. 

High utility domains under the utility criteria 

• Tate's  House Building Domain 

• Pacifica 

• Flight Simulator Construction 

Low utility domains under the utility criteria 

• Blocks world 

• Briefcase domain 

• Office world 

None of the domains classified as being of a high utility are also classed as toy 

domains. Therefore, no special scrutiny is required of the high utility domains 

before considering their use in further research. 

The following sections (4.5 and 4.6) evaluate the representational devices 

supported by classical and model-based planners respectively. Classical planners 

are evaluated against Tate's House Building domain and the Pacifica domain. 

Model-based planners are evaluated against the flight simulator domain. 
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4.5 Experiments with classical planning 

This section describes experiments based upon encodings of Tate's House 

Building domain and the Pacifica Evacuation domain in the 0-Plan system's  Task 

Formalism notation. 0-Plan was selected as the system provides a state of the art 

implementation of task refinement planning. The experimentation identifies the 

domain knowledge underlying each domain, and then expands each domain 

definition to include facets not currently represented. The ability of classical 

planners to represent and reason with each enhancement is examined. 

4.5.1 Tate's house building domain 

This subsection identifies the components of a building's design and their 

interrelationships as the domain knowledge from which Tate's  House Building 

domain representation (as defined in Appendix C) is derived. The Task 

Formalism's ability to support variations in a building's design is then assessed. 

4.5.1 . 1  Identifying the domain knowledge from which Tate's house 

bui lding encoding is derived 
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Tate's  House Building representation encodes a specific building's design. An 

overview of the design derived from the encoding is depicted in Figure 4-1 6  

below. A detailed fragment of this design is depicted i n  Figure 4-17. The process 

from which these figures were derived is described after Figure 4-17 .  

Brick 
work 

Gutters and 
Down Pipes 

Electrical Work 

Paths anu-,�=:::::=:::::=:::::� 
Landscape. 

Drains 

Concrete � 
Foundations. 

Wall paper 

Wooden Frame 

Kitchen 

grade for slab 

Figure 4-16, Design of the house encoded within Tate's house building 
domain representation 
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Exterior Sheathing - � Sheetrock and plaster 

Insulation 

rk r Brick WO Wall paper 

Finished Electrical Work 

Fram .� Rough Wiring 

Foundation co mponent 

Figure 4-17, Detailed fragment of the house design encoded in Tate's 
house building problem 

• The building's frame is supported by the foundation component. This 

knowledge is encoded in the schemas "build" and 

"build_walls_and_roof'. The schema "build" contains the ordering 

constraint "2-->3", where action 2 is "lay foundations" and action 3 is 

"build walls and roof'. The schema "build_ walls_and_roof' asserts the 

condition "unsupervised { foundations laid } at 1 ", where action 1 is 

"erect wooden frame including roof'. 

• The exterior sheathing is attached to the frame component. This 

knowledge is encoded in the schema "build_ walls_and_roof' through the 

constraint " 1-->2", where action l is "erect wooden frame including 

roof' and action 2 is "fasten exterior sheathing". 

• The insulation component is attached to the frame and exterior sheathing 

components. This knowledge is encoded in the schema 

"build_walls_and_roof' through the constraint "2-->3". Where action 2 

is "fasten exterior sheathing" and action 3 is "insulate outside walls" 

• The brickwork component encloses the exterior sheathing and the outside 

face of the frame. This enclose exterior sheeting knowledge is encoded in 

the schema "build_ walls_and_roof' through the constraint "2-->8". 

Where action 2 is "fastening exterior sheathing" and action 8 is "lay 

brickwork exterior walls plus inside fireplace". The enclose outside face 

of the frame knowledge is encoded in the constraint "1--> 2". Where 

action 1 is "erect frame and roof' and action 2 is "fastening exterior 

sheeting". 
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• The sheetrock and plaster component encloses the insulation 

component3. This relationship is encoded in the schema 

"build_walls_and_roof' through the constraint "3-->4". Where action 3 

is "insulate outside walls" and action 4 is "sheetrock and plaster inside 

walls". 

• The sheetrock and plaster component is attached to the inside walls. This 

relationship is encoded in the schema "build_ walls_and_roof' through 

the constraints " 1 -->2", "2-->3", "3-->4". 

• The rough wiring is attached to the wooden frame. This relationship is 

encoded in the schema "electrical_services" through the constraint 

"wooden frame and roof erected at l ". Where action 1 is "install rough 

wiring". 

• The finished electrical components are attached to the rough wiring and 

damage and protrude though the wallpaper. This constraint is encoded 

in schema electrical_services. The attached relationship is captured by 

the ordering " 1-->2". And the damage and protrude through the 

constraint "selected surfaces wallpapered at 2". 

The components in the fragment of the building considered are summarised in the box 

below. 

foundations, frame, brickwork, insulation, exterior sheathing, sheetrock and 

plaster, wallpaper, finished electrical work, rough wiring. 

The interrelationships between the components of the building fragment are 

summarised in the box below. 

frame supported by foundations 

exterior sheathing 

insulation 

attached to frame 

brickwork 

sheetrock and plaster 

sheetrock and plaster 

rough wiring 

finished electrical work 

finished electrical work 

supported by frame and exterior sheathing 

encloses exterior sheathing 

encloses insulation 

attached to the inside walls 

attached to the wooden frame 

protrudes wall paper 

damages wall paper 

3 It is assumed the insulation is injected through the inside walls into the cavity 

created by the frame and exterior sheathing. 
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From the analysis above, it is valid to conclude that Tate's house building domain's 

encoding is derived from a building' s  design. With the source of the description 

identified, the following sections experiment with the ability of classical planning to 

represent and reason with enhancements to this description. 

The house building experimentation defines a hypothetical planning application based 

upon a construction company which provides a house design which may vary 

according to a customer' s  requirements and the area in which it is to be built. The 

ability of task refinement planning too support this type of application is tested. The 

experimentation commences by encoding a schema to capture the generic structure of 

a building. The ability of classical planners to represent the knowledge required to 

produce a design from this schema based upon a specific design is then considered. 
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4.5.1 .2 Representing the general tasks required to build a house 

1 1 0  

The generic design of the building provided by the hypothetical construction 

company may be mapped onto the following Task Formalism schema. 

schema generic_build; 
expands {build house} ;  
nodes 1 action { obtain_permission_to_build},  

2 action { lay_foundations } ,  
3 action { build_structure} ,  
4 action { carpentry) ,  
5 action ( decorate_and_fit},  
6 action { install_services} ,  
7 action { landscape} ;  

orderings 
1-->2, 2-->3, 2-->4, 2-->5, 2-->6, 2-->7; 

end schl!ma; 
Figure 4-18, Representation of the generic house design's actions 

Schema generic_build captures the tasks that must be performed for all houses 

constructed by the building company. The schema is stating that all houses require 

the tasks obtain_permission_to_build, layJoundations, build_structure, 

carpentry, decorate_and_fit, install_services, and landscape. The ordering 

constraints state that obtain permission to build must always be completed before 

any other activity and that layJoundations occurs immediately after permission to 

build is obtained and before any other task. The ordering of the remaining tasks is 

not constrained. 

The task refinement representation proves capable of capturing the generic 

structure of the house. The following sub sections examine the issues encountered 

when modelling the more specific levels of abstraction. Semantically, the 

generic_build schema is stating a building will always contain the set of tasks it 

specifies. It is the responsibility of the lower level tasks to evaluate precisely how 

each task will be translated into appropriately ordered primitive actions and what 

those primitive actions should be. 



Limitations of existing devices - planning literature 

4.5. 1.3 Encoding the task obtain permission to build 
Schema generic_build states that a plan to construct a specific building requires 

actions to obtain permission before building may commence. This section 

considers the issues encountered when encoding this refinement. The encoding is 

divided into three cases. Case one considers a single condition (location) affecting 

the actions required to obtain permission to build. Case two extends case one to 

consider a number of conditions (historical significance, mining work, footpaths, 

and sewage) affecting the actions required to obtain permission to build. Case 

three examines the expressiveness of the filter condition construct supported by 

task refinement planners as a result of the constructs importance identified in cases 

one and two. 

Case 1 :  Single condition 

Assume that permission to build is obtained under the following regulations: 

1 .  If the location of the construction is rural then planning pennission is required 
from the local authority. 

2. If the location of the construction is urban then planning pennission is required 
from the local authority and a safety document must be submitted and approved 
by the local authority. 

3. Planning pennission cannot be drafted without obtaining an approved safety 
document in an urban area. 

Figure 4-19, Regulations constraining building permission 
- single condition case 

The regulations may be formalised into two methods; one applicable to an urban 

area, and one to a rural area. This structure is expressed in the figure below. 

to obtain permission to build 
if location == urban then 

refine using method obtain_permission_to_build_urban 
else if location == rural then 

refine using method obtain_permission_to_build_rural 
end if 

From the formalisation above, the permission regulations may be translated into 

the two task networks depicted below. Schema 

obtain__permission_to_build_urban encodes the case when building is performed 

within an urban area. Schema obtain__permission_to_build_rural encodes the case 

when building is performed within a rural area. The urban case includes two 

actions in addition to the rural case: draft safety schedule and submit safety 

schedule. 

1 1 1  
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schema obtain_permission_to_build_urban; 
expands ( obtain permission to build I ;  
nodes l action ( draft safety schedule} ,  

2 action {submit safety schedule} ,  
3 action { draft planning permission } ,  
4 action {submit planning permission } ;  

orderings 
1 -->2, 2-->3, 3-->4; 

conditions 
only _use_if area_ type = urban; 

only_use_for_effects 
permission to build obtained = true; 

end_schema; 

schema obtain_permission_to_build_rural; 
expands ( obtain permission to build } ;  
nodes I action ( draft planning permission} ,  

2 action ( submit planning permission} ;  
orderings 

1-->2; 
conditions 

only _use_if area_ type = rural; 
only _use_for_effects 

permission to build obtained = true; 
end_schema; 

Figure 4-20, Urban and rural refinements for schema 
obtain __permission _to _build 

Selection of the appropriate method for obtaining permission to build is achieved 

through the area_type condition that may take the values urban or rural. The 

bolded only_use_if filter condition in each schema specifies the value of the 

area_type condition under which each method is appropriate. When refining the 

task obtain__permission_to_build the planner will identify both methods as 

candidate refinements. The planner will then discount the method whose 

only_use_if condition does not hold within the current plan state. Hence, the 

_rural version will be used if area_type is set to rural, and the _urban version will 

be used if the area_type is to urban. 

This encoding is depicted graphically in Figure 4-21 below. The generic_build 

schema is assigned the modelling level zero, and the schema's two possible 

refinements level one. Only one of the schemas at level one will be selected as the 

refinement. Hence, within the figure, task refinement moves downwards selecting 

one available path at each level. r··t;��i .. 0 ................. ....... . . . . ..... ........................... -.... ·:��=: . ... :::�;��=·��� .......... ......................................... _. ... .. _ ...... ,._ .. _I 
! obtain permission to build i I i I i 
�·--··--····• ..... '''""'······················ ....................... -.............. -... _ . ., ........... ,. .................. ......... .................. ................................................ �·····-····· .......... -

! Level l I 
i I 
j ! chema 

! I btain ermission_to_build_rural ! 
I i . ! Only_usc_Jf location = urbnn ! Only_use_if location = rural i l... ........ _. . ............... -.................. _ ........ .... . . . .......................... -..... _ .. ...l .... _ ...................... _ ... _ ..... -................................................................. J 

Figure 4-21 ,  Grapbica) representation of the rural and urban encoding 



Limitations of existing devices - planning literature 

Generically, the task refinement formalism is representing application domain 

knowledge of the form: 

to achieve task t 
If condition = value, then 

refine using method-a 
else if condition = value0 then 

refine using method-n 
end if 

The encoding method used to map application domain knowledge of this form into 

task networks is depicted in Figure 4-22 below. Each method for refining a task is 

mapped to a task network, and the conditions under which each method is 

applicable are distinguished by filter conditions. 
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Figure 4-22, Encoding single conditions in the task formalism 

This mapping from domain knowledge into a task refinement notation raises a 

number of issues. First, if a method is encoded for each value a condition may 

take, as the number of values a condition may take increases, so does the number 

of methods which must be written. The two methods written for the obtain 

permission to build task contain two common actions (draft planning permission 

and submit planning permission). If this knowledge changes, both schemas will 

require editing. Therefore, as the number of methods encoded increases so does 

the probability of redundancy in the form of the same action specified in a number 

of methods. As redundancy grows, so does the maintenance requirement of a 

domain's  specification. 

Second, the mechanism for determining the applicability of methods is limited by 

the expressiveness of the filter condition construct. This issue is considered further 

in the in case three. The remainder of this case considers only the redundancy 

issue. 

1 1 3  
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A possible method for addressing the redundancy issue is to identify the actions 

dependent on and independent from the filter conditions. In the construction 

example, the regulations constraining permission to build always demand planning 

permission actions, only the safety schedule actions are dependent upon the 

location of construction. It is therefore possible to write a schema 

generic_obtain_permission with two sub tasks: planning permission and safety 

schedule. As planning permission is always required, only one refinement without 

filter conditions must be written. The safety schedule task, however, requires two 

possible refinements. The first with a filter condition location = rural and the 

second with the filter condition location = urban. The first method will contain 

one dummy action as no safety schedule actions are required in a rural area. The 

second method will contain the two safety schedule actions as a safety schedule is 

required in an urban area. 

Figure 4-23 below depicts this encoding. Modelling level two contains the two 

methods for refining the safety schedule task and the single method for refining 

the planning permission task. The notation separates these sets within a modelling 

level with a partial dot dash line. 

, .... . . . . ......... __ ......... ................................. . ............................................. -.............................. _ ..... -................ _ ............................................ -... . , 
I. Level 0 chema eneric build ! . - I I ! i obtain_permission_to_build i : I 1 .... ... .... ......................................... ---·····---······-···· ····················· .. ·-····-............................................................. ,_ .................. _ .......................... ·lj 
i Level l 
i I I I ' ! I � I .1 ............... -...................................................................... ....................... , .... ·-- ················""""''''''''''''''''''''""'''''""'""' "''" ''''"'''""-·······� 
: Level 2 j I ! j i 
I
i chcmn safcly_schedule_urban f,;;. chcmn safet _schcdulc_r11ra/ 11'; 

Only_use_if location = urban Only_use_if location = rural 

l dnift snfoty schedule i dummy l j submit safety schedule ! I I _____ _____ _ _ __________ L______ _____ I 
I Schema planning_permission I I draft planning permission ! I submit planning permission I I , 
................. Figo·r'4!·1:t::23···Attju-sllng·l�lii!C>ding.lo'iSotimrthi!'1'telfe1Itt�nn··i'Rtlo'fis· ......... -....... i 
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The encoding method presented in Figure 4-23 successfully determines the actions 

which are required in a given situation whilst addressing the redundancy issue. 

However, the conditional ordering constraint within the regulations has not yet 

been considered. Note that line three of the regulations in Figure 4-1 9  states that a 

safety schedule must be completed before a planning application is approved. 

Within the encoding above, the domain writer may place a supervised condition 

combined with an ordering constraint between the planning permission and safety 

schedule tasks at modelling level one. The condition would be of the form 

supervised safety schedule submitted at 1 from [2] (assuming planning permission 

is node 1 and safety schedule node 2). With this constraint added to the 

representation, two plans are possible. First, null --> planning permission. 

Second, safety schedule --> planning permission. In the first case, the planner will 

work unnecessarily to maintain the null action before the planning permission 

action. This encoding therefore addresses the redundancy issue but at the expense 

of possibly unnecessary ordering constraints for the planner to maintain. 

When restricted to the task refinement process, the domain writer cannot use the 

unsupervised condition type at modelling level two to order the safety and 

planning tasks only in the case when a safety schedule action is required . 

Supervised conditions may place a precondition constraint only, I.e. the action 

producing the condition prefixed by the unsupervised type is ordered before the 

action requiring the condition. Thus, it is not possible for the safety schedule task 

to constrain the planning permission tasks to follow itself - unsupervised 

conditions work backwards only over a plan. 

The single condition case leads to the following conclusion. As the number of 

values a condition affecting the actions in a plan increases, the number of methods 

which have to be written increases, and the probability of redundancy between 

methods will also increase. Whilst it is possible to separate the actions dependant 

upon a condition from those which are not, such an encoding complicates the 

specification of ordering constraints. Hence, even in the case where a number of 

actions may be independent of domain conditions, if ordering constraints between 

the dependant actions are required, the domain writer must include the 

independent actions within the dependant action' s methods. 

1 1 5  
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Case One considered only a single condition affecting the selection between 

refinements of a task. This case considers the issues encountered when multiple 

conditions affect the selection of a task's  refinement. For the purpose of this 

investigation, assume that the original regulations constraining obtaining 

permission to build in Figure 4-19 are replaced with the following: 

1 .  If the location is of historical significance then pennission must be sought from the 
National Historical Department of the government. 

2. If the area contains old mining work then a search must be performed at the local mining 
companies records office to ensure the location is stable. 

3 .  If the location i s  crossed b y  a public foot path then legal advice must b e  sought to ensure 
no infringement on public rights of way. 

4. If the location contains major serves (water, gas, sewage) then approval must be obtained 
from the local service providers. 

Figure 4-24, Regulations constraining building permission - multiple 
conditions case 

These regulations may be formalised into the following conditions: 

historical = true or false 
mining area = true or false 
public footpath = true or false 
5ewnge = true or false 

Figure 4-25, below, presents an encoding of these regulations following the 

framework developed in Case One above. Each condition is converted into a sub 

task of the schema obtain_permission__generic at modelling level one. A 

refinement is then provided at modelling level two for the actions dependant upon 

each condition. 

The encoding described in Figure 4-25 assumes that the actions require no 

ordering constraints. If ordering knowledge is required, the level one schema 

obtain_permission__generic may place ordering constraints and supervised 

conditions between its four sub tasks. These constraints and conditions must, 

however, hold for all possible refinements. For example, if historical significance 

must always be performed before the services task, an ordering constraint 1 -->4 

(assume historical significance is assigned the label 1 and services the label 4) and 

a supervised condition supervised historical significance checked at 4 from [ 1] 

may be placed. This constraint and condition will be maintained by all possible 

refinements of the tasks specified. 

If, however, the relationship between the tasks historical significance and services 

is not constant, i.e. it varies depending upon the value of conditions in a specific 

problem instance, the supervised condition and ordering constraint mechanism 

may not be used. The schemas defined at modelling level two may not place 

constraints directly on actions in other schemas. For example, schema 

historical_significance_true may not place a supervised constraint on an action 

introduced by schema services_true. Each schema is a unit of encapsulation and 

supervised conditions and ordering constraints may only be placed within that 

unit. 
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Figure 4-25, Encoding of the multiple conditions case 

If the domain regulations are modified to make the actions and ordering 

constraints required to obtain permission to build different for each combination 

of values the conditions may take, a method would be required for each 

combination. As identified in case one, when the number of methods specified 

increases, so does the probability of redundancy between method specifications. 

The observations above concur with the conclusions of case one. Multiple 

conditions increase the number of method specifications which may potentially be 

required from equal to the number of values a condition may take in the single 

case, to the product of the number of values each of the conditions may take in the 

multiple case. 

1 1 7  
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Case 3: Expressiveness of filter conditions 
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Encoding task decorate identified filter conditions as the mechanism provided by 

task refinement formalisms for specifying the applicability of different methods 

for achieving a task. This case considers the expressiveness of filter conditions. 

A task's filter conditions are conjunctive i.e. all filter conditions must hold for a 

task to be applicable. Consider the following generic knowledge structure 

containing the logical OR connective. 

to achieve task t 
if condition = value1 or condition = value2 then 

refine using method-a 
else if condition = value3 then 

refine using method-b 
end if 

The method-a is applicable if condition is equal to value1 or value2• This 

knowledge may be encoded by splitting each side of the OR connective into 

different tasks. As demonstrated in the figure below, if during refinement 

condition is equal to valuei, then schema filter I will be selected and then method­

a. If condition is equal to value2 then schemafilter2 will be selected and then 

method-a. 

l_ ....................... . . --........... -.... -................................ ,,. __ ,,, ... : ...................................................... _ .................................................................. 1 
Level 0 chema high level task : 

l 
- - ! 

! ! I �* t l I . I I rr:;;·��i .. 1 .................... _ ........ -r .............. ............ -.... - ... -.... r ........................................... __ ............ _···-·--·-........................ , 
I chema.filterJ j chcmn 11ter2 I chemn metlrod_b i I ; I I I Only_use_if value1 l nly_use_if value2 I nly_use_if condition = value3 ., I I I . i I i � ............................................ -.. .., ....................... -.................... , ............ , ........... -... --..... --........ _ .... --...... ___ , ___ ....... ) jLevel 2 j ! ' I Schema method a I 
i i I I I i 
I � 
: I I Figure 4-26, Mapping of the logical OR connective into task networks 
" ••H-•ooooooooooooooooooooooo•••••••••••--io••ooooooooooo-•o.,.•o •o ••••••.0.0•••00000000000000000000000000- -

The logical OR connective may therefore be achieved with a combination of filter 

conditions and the schema selection process. 
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Consider the following nested if - then - else knowledge. 

I .  if (condion1 = value1 and condtion2 =value3) or (condtion1 = values) then 
2. if condtions = value6 and condition4 = value2 then 
3. refine using method-a 
4. else 
5. refine using method-b 

Figure 4-27 presents a initial attempt at encoding of this knowledge using a 

combination of the task selection process and filter conditions. The knowledge 

above specifies the conditions which must hold for a task T to be refined to 

method-a or method-b. Line one of the conditions is mapped to the two schemas at 

modelling level one. Bothfilterl andfilter2 contain the same non-primitive task 

T2. Both schemasfilter3 and method-b are possible refinements of T2. Schema 

filter3 will be selected only if its filter conditions hold. lfjilter3 is selected 

method-a will be used to refine task T2 and therefore T. 

!"""'"'' "" '··· · · .. ····· ........................................................ , ....................................................... _ .. _,_ ................... .......... ----·-·----") 
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I 
, 

Only_use_if condtions = value6 I I Ooly_ow_;r ooodtio"< " ,,i,., I 
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Figure 4-27, Nested if · then - else encoding in a task refinement formalism 
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This first attempt at encoding does not match the requirements of the domain 

knowledge. The knowledge specifies that method-b should be used if and only if 

condtion5 does not equal value6 and condtion4 does not equal value2. When the 

task refinement planning engine seeks an expansion to T2 at modelling level one, 

both schemas filter3 and method-b will be considered. Filter3 will be selected if 

and only if its filter conditions hold. If the filter conditions of schemafilter3 do 

hold there can be no guarantee the planner will not select method-b. Task 

refinement planners (in the general case) non-deterministically select a method 

from the applicable set available. To correctly achieve the semantics of the if-then­

else construct, a filter condition must be added to method-b stating that it may only 

be used when the filter conditions of schemafilter3 does not hold. The modified 

method-b is depicted in Figure 4-28. 

chema method- b 

Only_use_if condtions = --,value6 
nly_use_iF condtion4 = --,value2 

Figure 4-28, Modification to method-b to complete the if-then-else encoding 

The need for additional filter conditions to achieve the else part of an if-then-else 

statement adds to the maintenance overhead of a domain's encoding. If the if 

clause requires modification, the else clause's  filter conditions will also require 

modification. 

In conclusion, filter conditions and the task refinement process may be combined 

to capture conditions in the form nested if-then-else structures for specifying 

methods applicability. However, the syntax of the encoding is distant from the 

original if-then-else knowledge structure. 
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4.5. 1.4 Encoding task decorate 
Assume that the decorate task must take into account the number of rooms in a 

specific design and the final wall coverings selected for each room. The variable 

number of rooms issue may be addressed using a combination of the type ROOM 

and instances of this type may be used to specify the actual number of rooms in a 

specific design. An example encoding is depicted below: 

{front-room, home-office] type ROOM; 

To specify the final wall covering of a room, a condition may be written in a 

planner's  always context (i .e. facts which do not change during the planning 

process). An example specification is depicted below. 

front-room final-surface-covering = wallpaper, 
home-office linal-surfuce-covcring .:: paint; 

A decorate schema must account for both the variable number of rooms within a 

design and the variations in wall coverings. The Task Formalism provides the 

constructsforeach and iterate for addressing this type of requirement. An example 

of each (taken from the Task Formalism manual from an example transporting 

aircraft to grid locations) is depicted below. 

N iterate action { fly_to ?way_point) 
for ?way _point over ( { I 00 50} { 200 60} { 150 40)) 

N foreach action {counter_problem ?problem ) 
for ?problem over (issue_! issuc_2) 

Figure 4-29, Exampleforeach and iterate constructs (from (Tate, Drabble, & 
Dalton 1994b, pp51)) 

The iterate construct will generate a set of totally ordered actions of the form 

fly_to ?way__point for each member of the set specified by the over element. In the 

example above, the construct will generate the following schema. 

Nodes N action { fly_to ( 1 00 50) ,  
X action { fly_to ( 200 60] .  
Y action { fly_to { l 50, 40} ;  

orderings 
N -·>X. X-->Y: 

The foreach construct differs from the iterate construct only by the ordering 

constraints placed on the actions generated. foreach permits all the actions in the 

schema generated to be executed in parallel. Iterate adds sequential constraints 

between the actions generated. 

1 21 
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Using theforeach and iterate constructs in combination with thefinal-surface­

covering condition permits schemas of the type depicted below to be written. The 

schema will generate a paint action for each room which is a member of the set 

final-surface-covering = paint and a wallpaper action for each room which is a 

member of the setfinal-surface-covering = wallpaper. 

schema decorate; 
N foreach action {paint ?room) 

for ?room over (set of rooms defined as type painted); 

N foreach action {wallpaper ?room} 
for ?room over (set of rooms defined as type wallpaper) ;  

only_use_for_effects 
rooms decorated = true; 

end schema 

In the specific house building example above, this schema will be instantiated as 

follows. The encoding assumes the methods detailing the actions for painting and 

wallpapering a room are specified at a lower modelling level. 

schema decorate_specific_house; 
nodes 1 { paint home-study ) .  

2 (wallpaper front-room } ;  

only _use_for_effects 
rooms decorated = true. 

end_schema; 

This encoding method is successful when the actions within a domain do not 

interact. To demonstrate this point, consider the following addition to the 

decoration specification. Electrical work (i.e. wiring and power points) may be 

hidden below the final wall covering or be placed above the final wall covering. 

The requirements of each room may be formalised as follows: 

front-room electrical-work = hidden 
hoim�·study electrical-work = exposed 

The domain knowledge governing the relationships between final wall covering 

and rough electrical work is specified in the following text. 

1 .  If the electrical work is hidden, then the rough electrical work must be installed before the 
final wall covering is applied. 

2. If the electrical work is exposed, then the final wall covering must be applied before the 
rough electrical work is installed. 
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The Task Formalism representation of this situation is depicted below. Two 

schemas are written for both the paint and electrical work tasks. One schema for 

each value electrical-work may take. In the hidden case, an unsupervised 

condition is added to the paint task indicating that the electrical work should be 

ordered before the paint task. In the exposed case, an unsupervised condition is 

added to the electrical work task indicating that the paint task should be completed 

before the electrical task. 

schema paintl ;  
expands {paint ?room} ;  
nodes 

I primitive {paint ?room) ;  
conditions 

only_use_if ?room electrical work = hidden, 
unsupervised ?room electrical-work completed at I ;  

end_schema; 

schema paint2; 
expands (paint ?room) ;  
nodes 

I primitive [paint ?room} ;  
conditions 

only_use_if ?room electrical-work = exposed; 
end_schema; 

schema electricall ; 
expands { wire up ?room ) ;  
conditions 

only_use_if ?room electrical-work = exposed, 
unsupervised painting ?room completed at l ;  

end_schema; 

schema electrical2; 
expands {wire up ?room) ;  
only_use_if ?room electrical-work = hidden; 

end_schema; 

This encoding raises the following issues. First, knowledge describing the 

relationship between decoration and electrical work is distributed between four 

schemas. Second, ordering constraints are specified through the unsupervised 

condition type; the condition types move responsibility for identifying the action 

that supports a condition from the domain writer to the planning system's  engine. 

Distributing the knowledge about the relationship between decoration and 

electrical work makes domain writing and maintenance more error prone. The 

domain writer must consider and potentially edit four schemas if the ordering 

relationship changes. The use of an unsupervised condition type places the 

responsibility on the planning engine for identifying the action which achieves the 

condition it prefixes and adding ordering constraints to a plan to establish the 

constraint. If the relationship between them could be specified within the task 

decorate, a supervised condition may be used, hence, informing the planning of 

the producing action for the condition. 

1 23 
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Both the issues identified above result from the encapsulation unit of the schema. 

Consider the schema decorate_extended below. The bolded construct at the 

bottom of the schema is not supported by task refinement formalisms but 

demonstrates the encapsulation argument. The semantics of the construct are that 

after the Jo reach constructs have generated the appropriate paint and wallpaper 

actions, the bolded condition recurses over each of these actions and adds ordering 

constraints dependant upon the state of the wiring condition for a room. 

schema decorate_extended; 
N foreach action {paint ?room} 

for ?room over (set of rooms defined as type painted); 

N foreach action {wallpaper ?room} 
for ?room over (set of rooms defined as type wallpaper} ;  

only_use_for_effects 
rooms decorated = true; 

conditions 
for all {wallpaper ?room} and {paint ?room} actions 

if {wiring ?room} = exposed then order {decorate ?room} before {paint room} 
or {wallpaper ?room}, 

if {wiring ?room} = hidden then order {install wiring ?room} before {paint 
?room} or {wallpaper ?room}; 

end-schema 

Specifying the ordering knowledge at this modelling level has two advantages. 

First, the knowledge is specified in a single a schema. Thus, both the processes of 

understanding and maintaining a domain description are simplified. Second, the 

supervised condition type may be used as all actions affected by the knowledge 

are described within a single schema. Hence, the planning engine does not need to 

work to establish the conditions. 

In conclusion, the issues identified in section 4.5 . 1 .3 Encoding the task obtain 

permission to build are confirmed when encoding the task decorate. The decorate 

task adds the complexity of a variable number of actions dependent upon the 

number of objects within a specific domain problem. The foreach and iterate 

constructs support a variable number of actions, but there are no constructs to 

introduce variations in conditions and effects within a schema. To utilise all the 

constructs supported by task refinement planning, a domain writer must provide a 

schema for each combination of entities within a domain. In the decorate case this 

would equate to one schema for the case of one painted and one wallpapered 

room, one schema for the case of two painted and one wallpapered rooms etc. 



4.5.2 Pacifica 

Limitations of existing devices - planning literature 

This section first identifies the domain knowledge underlying the Pacifica domain 

(Reece et. al. 1993). The definition identified is then enhanced to include facets of 

the problem not currently represented, and limitations with the representational 

devices supported by classical planners are identified. 

Appendix C summarises the Pacifica domain. 

4.5.2.1 Identifying the domain knowledge in the Pacifica problem 

The Pacifica task Operation Columbus is divided into three sub tasks: the 

deployment of evacuation equipment, the utilisation of that equipment to evacuate 

an island to a central point, and the return of the evacuation equipment and 

evacuees to a safe location. The knowledge behind the encoding of each task is 

identified in turn below. 

Phase one of Operation Columbus deploys a number of ground transports (GT's) 

and air transports (AT's) from a military base in a friendly location to the location 

which is to be evacuated. Two schemas transport_ground_transports and 

transport_helicopters (specified in Appendix C) are provided to describe the 

methods for achieving these two elements of Operation Columbus. Each schema 

records knowledge about the number of transport types which are to be located 

and the cargo craft which will effect their deployment. 

Phase two of Operation Columbus utilises the ground and air transports positioned 

in phase one to evacuate a number of cities to a central point. Two schemas road 

transport and air transport are provided to describe the methods for achieving the 

evacuation of a city via the two transport methods available. Both schemas contain 

knowledge about the steps required to physically move a transport vehicle to a 

location, load that vehicle, and return it to the central evacuation point. The 

schemas detail how many people may be evacuated by each trip of a transport 

vehicle and the calculation of the number of people remaining at the evacuation 

location after the transport vehicle 's  capacity has been reached. 

Phase three of Operation Columbus loads the evacuation equipment and evacuees 

onto appropriate transport aircraft and returns both equipment and people to a safe 

location. The schemas transport ground transports and transport helicopters 

(specified in appendix C) are used again in addition to the fly passengers schemas. 

The fly passengers schema encodes knowledge about the loading and flying of a 

transport air craft 

With the knowledge behind the Pacifica domain identified, the following sections 

consider the expansion of each stage of Operation Columbus and assess the Task 

Formalisms ability to represent and reason which such modifications. 
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4.5.2.2 Phase 1 - locating evacuation equipment 
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Figure 4-30, below, presents the encoding of transport__ground_transports 

produced by (Reece et. al. 1 993). The current representation contains two limiting 

issues. 

First, the bolded lines highlight the encoding of the number of ground transports 

and air transports available to a mission. The current encoding is static, i.e. the 

schemas explicitly encode the ground and air transports within a mission and the 

cargo aircraft which carry them to the evacuation site. If the number of air or 

ground transports available to a specific mission was to vary, both schemas would 

require modification. Modification would also be required if the relationship 

between the air and ground transports and the cargo aircraft was to change. 

Second, the schemas contain similar actions, conditions, and effects as the process 

of transporting air transports and ground transports is similar. Specifically, lines 6 

to 1 1  and 39 to 44 duplicate the same load, take off, fly to, and land actions. Lines 

16 to 19, 26 to 29 and 48 to 51, 53 to 59. duplicate the conditions required by the 

take off and land actions from a runway. Lines 13 to 19 and 46 to 50 duplicate the 

conditions on the location of cargo equipment and the cargo equipment's  cargo 

before loading may commence. If knowledge affecting any of these areas was to 

change, both schemas would require modification. 

The current representation of the task of locating evacuation equipment is both 

inflexible and contains redundancy between schemas. This section examines the 

ability of task refinement representations to address these issues. 

Assume that the number of ground transport and air transports available varies 

between missions. For example, one mission may have two ground transports and 

four air transports available, whilst another ten ground transports and zero air 

transports. The number of cargo transports available to a specific mission may also 

vary. An example specification is depicted below. 

GT! ,  GT2, GT3: GROUND-TRANSPORTS 
ATl, AT2, AT3, AT4: AIR-TRANSPORTS 
C l 40, CISO: CARGO-TRANSPORTS 

Assume that the relationship between transport vehicles and cargo aircraft is 

specified as follows: 

Cl40 carries GTl ,  GT2, GT3 
C ! SO carries AT I ,  AT2, AT3, AT4 

Note GT = Ground Transport and A T =  Air Transport 
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I .  schemn lrnnspon ground transpons: 

2. expands I transport_ground_transports ?from ?to } ;  
3 .  vars ?from = ? {  type air_base ) ,  
4. ?to = ? I type air_base} ;  
5 .  nodes 
6. I action { load ground_transports ) ,  
7 .  2 action { take_off_from ?from) , 
8 .  3 action ( fly_to ?to ) ,  
9 .  4 action{land_at ?to ) ,  
I 0.  5 action { unload ground_ transports } ;  
I I .orderings 1 ->2, 2->3,3->4,4-5; 
1 2.conditions 
13 .  achieve { at c5 ) = ?from at  I ,  
14. unsupervised {location_gt GTl }  = ?from at 1, 
1 5 .  unsupervised {location_gt GT2} = ?from a t  1 ,  
16. unsupervised { rnnway_srntus_at . from} = clear at begin_of 2, 
1 7 .  supervi. e d  I runwa _smtus_at ?from ) = i n  use at end_ o f  2 from begin o f  2, 
1 8 .  unsupervised (runway_status a t  ?to} = clear at bcgin_of 4, 
1 9 .  supervised [ runway_stntus_at ?to) = in_use at end_of 4 from begin of 4; 
20.effects 
2 1 .  { at c5 ) = ?to at 5 ,  
22. {location_gt GTl} = ?to at 5, 
23. {location_gt GT2} = ?to at 5, 
24. {in_use_for GTl} = available at 5, 
25. {in_use_for GT2} = available at 5, 
26. { runway_status_at ?from) = in_use at begin_of 2, 
27. { runway_status at ?from) = clear at end of 2, 
28. (runway_slstus at ?to) = in_ use at begin of 4, 
29. { runway_status at ?from) = clear at end_of 4; 
30.end_schema; 
3 1 .  
32" chcma trnnsnon helicopters: 
33. 
34.expands ( transport_helicopters ?From ?to ) ; 
35 .  
36.vars 
37. 
38 .nodes 

?from 
?to 

= ?[ type air_base),  
= ? { type air_base) ;  

39. I action ( load air_transports ) ,  
40. 2 action { take_off_from ?from) ,  
4 1 .  3 action (fly_to ?to ) ,  
42. 4 action { land_at ?to ) .  
43 . 5 action { unload air_transports ) ;  
44.orderings 1 ->2, 2->3,3->4,4-5; 
45 .conditions 
46. achieve { at c l 4l ) = ?from at I ,  
47. unsupervised {location_at ATl }  = ?from at 1, 
48. unsupervi ed {runway_s1atus_:11 ?from ) = clear tll begin_ of 2, 
49. supervised ( runway _status_nl 'lfrom ) = inuse at end_ of 2 from begin of 2, 
50. unsupervised { runwny _status at ?to} = clear at begin_ or 4, 
5 1 .  supervised [ runwny_status_at ?to} = in_use at .:nd_of 4 from begin of 4; 
52.effects 
53 .  {at c\40 )  = ?to at  5, 
54. {location_gt ATl} = ?to at 5, 
55 .  {in_use_for ATl} = available at  5, 
56. {runway_status_at ?from} = in_use at begin_of 2, 
57. (runway_status at ?from ) = clear at end of 2, 
58 .  {runway_ststus at  ?to} = in_use at  begin of 4, 
59. { runway_status at ?from} = clear at end_of 4; 
60.cnd_schemu; 

Figure 4-30, Original encoding of schema transport_ground_transports and 
transport_helicopters 
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The first stage of a domain description capable of varying the number of cargo 

aircraft, the number of air and ground transports, and the relationship between 

cargo and cargo aircraft is depicted below. Schema 

load_and_locate_cargoJor _mission specifies the task of achieving the first phase 

of Operation Columbus. 

schema load_and_locate_cargo_for_mission; 
expands [ load_and_locate_cargo_for_mission ?from ?to } ;  
nodes 

N for each action { load_and_locate ?transport ?from ?to} 
for ?transport over {set of cargo transports } ;  

end schema; 

The schema loops over each instance of the type CARGO _TRANSPORT, 

generating a load_and_locate action. The schema below details the results of 

load_and_locate_cargoJor _mission if applied to the sample initial domain 

description above with a ?from location of UK and ?to location of Pacifica. 

schema load_and_locate_cargo_for_rnission ;;instantiated 
expands { load_and_locate_cargo_for_rnission UK Pacifica} ;  
nodes 1 action { load_and_locate c140 UK Pacifica}. 

2 action [ load_and_locate c130 UK Pacifica } ;  
end schema; 

Schema load_and_locate_cargoJor _mission generates a load_and_locate task 

for each of mission's transports. Load_and_locate has the responsibility of loading 

cargo onto a cargo craft and transporting the cargo craft from the ?from location 

an to the ?to location. The expansion for this task, schema load_and_locate, is 

depicted below. 

schema load_and_locate; 
expands [load_and_locate ?cargo ?from ?to } ;  
nodes 1 .  action { load ?cargo } ,  

2. action { takeoff ?cargo ?from}, 
3 .  action { fly_to ?cargo ?to } ,  
4 .  action { land_at ?cargo ?to } .  
5 .  action { unload ?cargo};  

orderings 1 -->2, 2-->3, 3-->4, 4-->5; 
conditions 

achieve { at ?cargo } = ?from at I ,  
unsupervised {runway_status_at ?from } = clear at begin_of 2, 
supervised {runway_status_at ?from} = inuse at end_of 2 from begin of 2, 
unsupervised { runway_status at ?to) = clear at begin_of 4, 
supervised {runway __ status_at ?to} = in_use at end_of 4 from begin of 4; 

end schema: 
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The take off, fly to, and land at actions are expanded as in previous encoding. 

Only load task is different, and therefore specified below. 

schema load_cargo_onto_transport; 
expands ( load ?cargo } ;  
nodes N for each action ( load_onto ?cargo ?transport} 

for ?cargo over { set of transports defined as carried by ?transport ) ;  
end schema; 

The schema generates a load_onto action for each transport (air or ground) 

associated with a cargo aircraft through a carried-by relationship. The two 

instantiations of this schema which will be generated are depicted below. 

schema load_cargo_onto_transport ;; instantiated; 
expands ( load ?cargo } ;  
nodes I action ( load GT! CJ40}, 

2 action ( load GT2 C l40},  
3 action ( load GT3 C140 } ;  

end schema; 

schema load_cargo_onto_transport ;; instantiated; 
expands {load ?cargo} ;  
nodes I action [ load AT! C l 30} ,  

2 action [ load AT2 C l 30 } ;  
end schema; 

This encoding is presented graphically in Figure 4-3 1 below. Level zero 

corresponds to the mission task definition. The first phase of level zero refines to 

the level one schema load_and_locate_cargoJor _mission. Level one generates a 

load_and_locate task for each cargo aircraft within a domain (indicated by the * 

notation used within the figure). load_and_locate contains the actions to load the 

cargo onto a cargo transport and the to physically move the cargo transport from 

its initial location to the evacuation location. The load sub task generates a load 

action for each of the cargo items to be loaded onto a cargo craft. 

The encoding below works because there is no interaction between the 

load_and_locate tasks of for each cargo transport and the loading of cargo onto 

cargo transports. All the ordering constraints required within the domain may be 

specified at modelling level two 

In conclusion, the Pacifica domain demonstrates the effectiveness of task 

refinement planning' s representational devices within domains which may be 

formulated into methods which do not interact. 
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4.5.2.3 Phase 2 - evacuating the cities 

The current representation utilises precondition achievement behaviour to search 

the possible combinations of transport types against the number of evacuees in 

each city to be evacuated. The representation may therefore adjust itself to a 

variable number of transports and evacuees. 

4.5.2.4 Phase 3 - returning evacuees and equipment 
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The issues surrounding the returning of evacuation equipment and evacuees are 

identical to those identified in section 4.5.2.2 Phase 1 - locating evacuation 

equipment. 
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4.6 Evaluating model-based planners 

This section examines the encoding of the flight simulator construction domain in 

a model-based planner (MBP) formalism. The domain definition is enhanced and 

the MBP's ability to represent and reason with the enhancements is examined. The 

flight simulator construction domain is summarised within Appendix C. 

4.6.1 Flight simulator construction 

Figure 4-32 presents a fragment of the MBP representation of the flight simulator 

domain (Marshall 1988). The figure is a class diagram which specifies the 

structure a specific flight simulator instance will follow. The FLIGHT­

SIMULATOR class may be decomposed via the sub relation into a number of 

instances of class COMPONENT. Each instance of class COMPONENT will be 

further decomposed through the sub relations into a instance of class 

DOCUMENTATION. An instance of class DOCUMENTATION may have three 

actions associated through the i.action relationship. The relation i.action indicates 

that inference is required to determine if each action in the set should be 

associated with an instance of class COMPONENT's documentation. The 

specification of this assessment knowledge will be discussed latter. 

required for used to calculate 

Figure 4-32, Fragment of the MBP representation of the flight simulator 
domain 
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A specific instance of a flight simulator is depicted below. 

sub Visual System's 
documentation 

Figure 4-33, A flight simulator instance 

During the planning process, the MBP algorithm will recurse through this model 

assessing the actions associated with each component through the i.action 

relationship. Within Figure 4-33, only the instances of class DOCUMENTATION, 

Visual System's document, have potential actions. In the case of class 

DOCUMENTATION, the domain writer provides production rules for deterring if 

an instance of the classes ENGINEERING-REPORT, STRUCTURED-DESIGN, or 

COST-BREAKDOWN are required for a specific component. A fragment of this 

rule set is depicted below: 

rule-base visual system documentation 
if the-visual-system is bought-in AND visual-system.supplier NOT BAA approved then 
require ENGINEERING-REPORT 
require STRUCTURED-DESIGN 
require COST-BREAKDOWN 

end if 
if the-visual-system is stock-item AND BAA-approved-component then 

require COST-BREAKDOWN 
end if 

The MBP invokes this rule-set to determine which actions should be associated 

with a specific component. Figure 4-34 below depicts the flight simulator instance 

with action assessment completed. 

sub 
Visual System 

req11iredf11r u.rt:d to calculq� 
Figure 4-34, Completed instance diagram 1or a specmc simulator 
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A similar production rule mechanism may be attached to the relationships between 

actions. For example, a structured design may only require an engineering report if 

the component to which it is attached is a non standard component. Figure 4-34 

includes the relationships between actions generated by this knowledge. 

Dependency constraints may be synthesised within MBP between components 

which are explicitly related. The technology does not incorporate condition and 

effect reasoning. Hence, it is not possible to specify that an action requires 

management approval for bidding = given without explicitly stating the action 

which will provide that condition. Without condition and effect reasoning, MBP 

cannot establish causal structures and protect them for interactions between 

actions. 

In summary, MBP supports rule-based reasoning for determining the action and 

ordering constraints which should be associated with a specific product. The 

absence of condition and effect reasoning within the technology, however, 

prohibits the detection of action interactions and the specification of an action's 

preconditions without explicitly stating the action or actions which will achieve 

them. 
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4. 7 Summary and conclusion 
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When restricted to task refinement, HTN planning' s representational devices 

encode a domain into a number of partial plan fragments or methods for achieving 

tasks. Several methods may be encoded for achieving each task, and the 

applicability of each method determined through the filter condition construct. 

Encoding the decorate and obtain_permission_to_build extensions to Tate's 

House Building domain identified a number of issues with this method - filter 

condition mechanism: 

• As the number of conditions affecting the selection of a method 

increases, so does the number of methods that must be specified for 

achieving a task. 

• In the case of a single condition affecting the selection of a method, in 

the worst case, the domain writer must provide a method for each value 

the condition may take. 

• If a number of conditions affect the selection of a method, in the worst 

case, the domain writer must provide a method for each combination of 

values the conditions may take. 

• Separating the actions dependant upon a condition form those actions 

independent within a method into different task networks is effective 

providing the ordering constraints between the actions are not also 

dependant upon the conditions. Introducing new modelling levels 

prohibits the use of supervised condition type and ordering constraints 

due the encapsulation constraints upon task networks. 

Encoding the decorate task highlighted a specific problem which occurs when 

using the foreach and iterate constructs in domain descriptions with a variable 

number of entities. The absence of conditional ordering and condition constructs 

prohibits the inclusion of ordering constraints and conditions with each action 

generated by the foreach and iterate constructs. Hence, the domain writer is forced 

to write these constraints at lower modelling levels with the associated 

encapsulation constraints on the constructs that may be used. This issue is 

particularly important in the case of a domain with a variable number of entities, 

as writing methods for all possible combinations of entities is unfeasible. 

The analysis of the expressiveness of filter conditions lead to the following 

conclusions. 

• It is possible to use filter conditions in collaboration with the task 

refinement process to achieve the logical OR connective and nested if­

then-else structures. 

• The syntax of such an encoding is distant from the construct the domain 

writer wishes to encode. Thus, increasing the cognitive overhead of the 

encoding process and the understanding a domain description. 
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• The else clause of a if-then-else must have the negation of the if 

statements condition specified as task selection is non-deterministic. This 

redundant specification increases the maintenance overhead of a 

domain's  description. 

Encoding the Pacifica domain demonstrated the effectiveness of task refinement 

planning in domains where the tasks may be encoded as relatively interaction free 

units. 

The limitations identified above may be addressed if the task refinement technique 

is used in conjunction with the precondition achievement functionality supported 

by task refinement planners. However, the use of precondition achievement in the 

examples from which the limitations are derived would require a planner to search 

for actions and ordering constraints for which domain knowledge is available to 

determine. It is the ability of task refinement planning to represent this knowledge 

which is being criticised. 

Turning to MBP, the flight simulator encoding highlighted the expressive power 

of MBP formalisms at capturing domain knowledge that maps into production 

rules. However, the absence of condition and effect reasoning enforces ordering 

constraints to be specified only if the producing and consuming action are known. 

It is not possible to specify action preconditions, leaving their establishment to the 

MBP. 

This analysis leads to the following conclusions. First, the limitations of task 

refinement formalisms are justified within the context of the computational 

complexity of partially ordered and instantiated plans. In such a context, 

determining the truth of a statement is computationally expensive. Thus, task 

refinement developers have limited the expressiveness of the constructs their 

formalisms support to prevent domain writers specifying computationally 

intractable domain descriptions. However, all the conditions upon which the cases 

above depend upon do not change during the planning process and therefore are 

not subject to the computational complexities of determining truth. Hence, more 

expressive formalisms may be used. 

MBP planning operates only in the space of domain facts that do not change 

during the planning process. Hence, the technology has developed a highly 

expressive formalism that maps closely to application domain knowledge. 

MBP contains no mechanisms for establishing and maintaining causal structures in 

a plan. 

The rationale for integrating classical and model-based technologies developed in 

Chapter 2 may be refined as a result of these conclusions. Task refinement 

planning is designed to address the computational complexities inherent when 

determining truth over a partial-order plan. MBP is designed to exploit domain 
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experts' knowledge within the computationally inexpensive space of facts outside 

of the evolving world state within a partial-order plan. 

An integrated architecture would permit the expressive MBP formalisms to be 

deployed for generating the actions and ordering constraints obtainable from an 

expert' s knowledge of a domain. Classical planning techniques may then be used 

to establish and maintain causal structures. 

This type of integration is supported by Nau, Gupta and Regli (1995). 

Since AI planning researchers are usually more interested in general 

conceptual problems than domain-dependent details, the AI approach to 

manufacturing planning has typically been to create an abstract problem 

representation that omits unimportant details, and look for some way to 

solve the abstract problem. From the point of view of manufacturing 

engineers, these "unimportant details " often are very important parts of the 

problem to be solved . . . .  Manufacturing planning researchers typically want 

to solve a particular manufacturing problem and present their research . . .  

without discussing how the approach might generalise to other planning 

domains. 

(Nau, Gupta and Regli 1 995) 

The analysis presented in this chapter is based upon the author's generation of 

counter examples from existing domain representations. To confirm and identify 

other issues encountered in application domains, Chapter 5 elicits the planning 

knowledge utilised by experts in the construction industry. Chapter 6 then 

considers the task of encoding this knowledge within task refinement and model­

based formalisms. 
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5. Elicitation of planning knowledge from the 
construction industry 

An expert is one who knows more and more about 

less and less. 

Nicholas Murray Butler (1862-1947) 

5.1 Introduction 

Chapter 4 identified the benefits of basing planning research within industrial 

planning domains. This chapter describes the elicitation of planning knowledge 

from the construction industry; a domain not previously extensively studied by 

classical researchers. The resultant knowledge is used within Chapter 6 to verify 

and extend the limitations identified in Chapter 4 within an industrial context. 

Within this chapter, knowledge elicitation is defined as a compound task 

consisting of knowledge acquisition and knowledge modelling, where knowledge 

acquisition is the task of identifying domain knowledge from experts, 

documentation etc. Knowledge modelling is the task of combining the elicited 

knowledge to produce a model of a domain. 

Whilst the primary aim of the research presented in this chapter was the actual 

elicitation of construction knowledge, the key secondary aim was that this 

elicitation should be independent of the aims of this thesis. The results will, 

therefore, provide a generic model of construction planning knowledge which is 

not skewed towards the overall aims of this thesis. 

Knowledge acquisition was effected through a set of interviews, observations of 

experts planning, and observations of the use of plans on a construction site. 

Knowledge modelling was achieved through the KADS methodology. This 

chapter initially discusses the reasoning behind the acquisition and modelling 

approach and the selection of the collaborator. The discussion then moves to 

describe and present the resultant KADS models. 
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5.2 Selecting an appl ication domain and a col laborating 
organisation 

The construction domain has had a limited history within classical planning 

literature. Publications have centred upon Tate's House Building Domain (Tate 

197 6) as a demonstration of the capabilities of task refinement planning systems 

(Kartam, Levitt & Wilkins 1991 ). Therefore, unlike the military evacuation and 

logistics domain at the centre of ARPI, construction planning has not been 

exhaustively investigated. Further investigation may identify new generic concepts 

that may be applied to other planning domains. 

The Llewellyn Group of Companies was selected as an industrial collaborator for 

two reasons. First, the organisation is an established construction company with 

experience of a variety of projects. Second, the organisation was prepared to 

commit the time and resources necessary for the elicitation process. 

Profile of the Llewellyn Group of Companies 
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The Llewellyn Group of Companies provides a comprehensive range of 

construction services. Recent refurbishment projects range from the eight million­

pound modernisation of tower blocks in central London through to the protection 

of an ageing water intake jetty for Scottish Nuclear Fuels on the Firth of Clyde. 

Design and build projects range from a leisure centre in Berkshire to a 

multimillion-pound divisional police headquarters in Surrey. Recent customers 

include: British Telecom, J Sainsbury, Inland Revenue, Kent County Council, 

Sussex NHS trust, and The Employment Service. 

The group is based in the south of England at Eastbourne, Brighton, Hastings, 

London, and Milton Keynes employing around 800 people (excluding labour and 

material sub contractors). 
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5.3 Selecting the knowledge elicitation approach 

The knowledge acquisition bottleneck (Feigenbaum 1980) was identified by early 

knowledge-based system development projects (Parsaye & Chignell 1988).  

Overwhelmed by the complexity of domain knowledge and the difficulties 

encountered when trying to elicit it, early expert system developers identified the 

need for tools and methods to support knowledge acquisition. 

CommonKADS1(Schreiber 1992) was conceived in 1983 with the aim of 

providing a comprehensive methodology for developing expert systems. A 

succession of further research projects have developed CommonKADS into a 

mature tool-supported methodology which aims to become the commercial 

standard within Europe (KADS Consortium 1997). 

By following the leading commercial methodology, the two aims of the knowledge 

acquisition phase may be addressed. First, industrially proven knowledge 

modelling techniques can be utilised. Second, by following an independent 

methodology, the resultant knowledge model will not be skewed towards the aims 

of this research project. 

An additional benefit of KADS is that by using a standard notation, the resultant 

model may be communicated to a large audience. KADS has recently been used to 

describe the generic planning knowledge encoded in domain independent planning 

algorithms (Valente 1 995 ; Barros, Valente & Benjamins 1 996; Kingston, Shadbolt 

& Tate 1 996, Benjamins, Barros & Valente 1 996). 

1KADS was originally an acronym for the "Knowledge Analysis and 

Documentation System." This definition was latter modified to "Knowledge 

Analysis and Design Support." Today KADS it is used as a proper noun. 
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5.4 Overview of the KADS methodology 
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This overview is based upon the defining KADS methodology text (Schreiber & 

Wielinga & Breuker 1 993). 

KADS decomposes the knowledge acquisition process into three tasks: elicitation, 

interpretation, and formalisation. Elicitation is the process of identifying 

knowledge from domain sources (experts, documentation etc.). The interpretation 

phase moves the elicited knowledge into a conceptual framework. Formalisation 

moves the knowledge from the conceptual framework into a form suitable for use 

by a computer program. 

Knowledge acquisition techniques are not defined within KADS. The authors of 

the methodology assume such techniques are well documented and understood 

elsewhere. The methodology, however, does indicate where the products of 

various acquisition techniques feed into the model set (Wielinga, Schreiber, & 

Breuker 1993 pp 42-43). KADS focus is on the interpretation and formalisation 

activities, basing the methodology on two principles: multiple models and 

knowledge-level modelling. Multiple models provide a mechanism for addressing 

complex systems. Each of the models concentrates on specific aspects of a system 

whilst ignoring others. Collectively, the different models capture all facets of the 

system under consideration. This approach is common throughout software 

engineering e.g. (DeMarco, 1982). Knowledge level modelling is motivated by 

Newell (Newell 1982). The rationale being a desire to model knowledge from the 

perspective of why a system performs an action, independently from how this 

functionality will be realised in rules, frames, logic etc. 

The principle of multiple models is realised in KADS through the set of 

interrelated models. Knowledge level modelling is achieved within a specific 

model in the KADS set; the model of expertise. Each member of the KADS model 

set is introduced below. 

• Organisational Model captures the socio-economical environment of a 

KBS.  The model results in a description of the functions, tasks and 

bottlenecks within the organisation under consideration. The model 

predicts how the KBS will influence the organisation and the people 

working in it. 

• Application Model defines what problem the KBS should solve within 

the organisation and what the function of the system will be in that 

organisation. The model captures external constraints, relevant for the 

development of an application. Examples being the speed and efficiency 

of such a system, the hardware, and software available. 

• Task Model specifies how the function of the system, defined in the 

application model, is achieved through the tasks the system must 

perform. 
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• Model of Co-operation identifies the human-machine relationships 

required by the tasks in the task model. The model differentiates the 

functionality executed by humans from that realised by the machine. 

• Model of Expertise forms the central activity in KBS construction. The 

model specifies the problem solving behaviour of a target KBS through 

extensive categorisation of the knowledge required to generate this 

behaviour. Knowledge levels are introduced to separate control from 

domain concepts. 

• Design Model describes the computational and representational 

techniques required too realise the artefact specified in the previous 

models. It is at this point KADS moves from the logical, implementation 

independent perspective, to the implementation dependent view. 

In summary, KADS provides a set of models for capturing the facets of a system 

relevant to constructing a knowledge-based system. A set of guidelines and 

assessment criteria facilitate the construction of the model set. 
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5.5 KADS models of the construction domain 

This section describes how the knowledge elicitation process was achieved, 

detailing how knowledge was acquired, and the construction of the KADS model 

set. Before the models are described, the subset of the KADS methodology 

applied to construction problem is described and justified. 

5.5.1 Subset of KADS applied to the construction domain 
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KADS is designed to support the development of a knowledge-based system for a 

specific application. The aim of this chapter is to identify and model the planning 

knowledge within the construction domain. Hence, not all the steps and models 

within KADS were applied. This sub section presents the rationale for including 

and excluding specific models to achieve the aims of this chapter. 

The KADS methodology provides the organisational and application models to aid 

a domain modeller in understanding an organisation's business process, social 

factors, and the inputs and outputs of the planning process. Two factors lead to the 

decision to develop both models. First, understanding the overall construction 

business was considered an essential precursor to developing the model of 

construction domain's planning knowledge. The models will provide the structure 

of the domain and its terminology. Second, the models will provide the application 

requirements of the planning process, defining its inputs and outputs. This 

understanding will form the basis for assessing the ability of classical and model­

based planning techniques to address industrial applications. 

The task model identifies the high level tasks performed during an organisation's  

existing planning process. The model was constructed to isolate expert planning 

"functionality", hence, providing a framework to stimulate discussion. For 

example, the model led to questions of the type "what knowledge is important 

within task A, but is not used in any other task". 

A model of co-operation was not constructed. The inputs and outputs to a planning 

application in construction planning are identified by the application model. By 

definition, an automated planning algorithm will require no user involvement 

during the planning process. 
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The KADS model of expertise consists of four layers: strategic, task, inference, 

and domain knowledge. The domain knowledge layer captures the concepts, 

concept-properties, and relationships used by human experts when performing the 

task, in this case planning, that is being considered. The inference and task layers 

model the inferences and ordering of those inferences used by human experts 

receptively. The reconfiguration of task structures under particular problem 

solving domains is modelled by the strategic layer. 

The domain knowledge layer provides the input to an automated planning system; 

hence, the model is essential to the aims of this thesis. It was not felt appropriate 

to model the three remaining layers. Although aspects of the task layer were 

modelled in conjunction with domain knowledge acquisition. The purpose of the 

elicitation described in the chapter is to provide a vehicle to motivate and evaluate 

the integration of classical and model-based planning. The further work section 

within Chapter 9 discusses the important research direction of building a model of 

human problem solving within the construction industry and the comparing 

existing planning technologies with this requirement. 
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5.5.2 Overview of the construction cases studied and the knowledge 

acquisition approach 

This section overviews the two construction cases studied and the knowledge 

acquisition process applied to them. 

5.5.2.1 Case 1: extension to a supermarket to provide a restaurant facility 
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The first case considered was an extension to an existing supermarket to provide a 

new restaurant facility. The project was completed at the time elicitation started. 

Hence, it was possible to fully evaluate the building's design, the plans used in the 

construction, and photographs of different phases in the construction. 

Figure 5-1  depicts the situation before the construction commenced. The 

supermarket has an unused sub unit backing onto a planting bed. The project's aim 

was to convert this space into a restaurant facility, exploiting the existing wall and 

roof structures. 

Existing Roof 

r····-···--···-···•··-········1 
I i .. , j Planting Bed I 

Unused .;;·. ! J Sub Unit !... .................................... _ 

Existing Store 

Figure 5-1, Initial supermarket building2• 

[ 
I 

New restaurant facility 

Existing S tore 

= 

Figure 5-2, Final state of the building 

2 The diagram is not to scale. Approximate area displayed is 300 x 300 m. 
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Figure 5-2 depicts the final building structure. The original unused sub unit and 

planting bed form the area of the new restaurant facility. The bolded walls were 

constructed and the new area decorated. 

Knowledge acquisition of the case commenced by studying the set of design 

diagrams describing the modifications to the building and the plan followed during 

that construction. The design diagrams detailed the components of the new 

restaurant facility and their interconnections. The material was studied before the 

first meeting with the collaborating organisation. Without previous knowledge of 

the construction domain, it was possible only to relate activities with components. 

To determine why the activities were required and the reasons leading to the 

ordering constraints required questioning of domain experts. 

The initial contact with domain experts concentrated on the overall construction 

process through interviews. Questioning covered the process from a customer 

approaching the organisation to a completed building being delivered to that 

customer. This elicitation phase lead to the construction and reviewing of the 

organisation model. 

With the organisation model defined, questioning centred upon the planning 

function within the overall constructing process. The results isolated the planning 

function to produce the organisational model. Domain experts were used to formal 

notations (from design notations used in the domain) and readily adapted to 

understanding and critiquing both the organisational and applications models. 

With the context established, elicitation moved to considering the tasks performed 

during planning. The task model provided a notation to record this knowledge, and 

as with the organisation and application models, provided a central focus for 

discussions. 

Construction of the domain knowledge layer of the expertise model was structured 

from the task model. Experts were asked to define the concepts and relationships 

used in each task. This approach facilitated the gradual modelling of domain 

knowledge - allowing domain experts to concentrate on each task in turn. Experts 

at times had difficulty in verbalising their knowledge replying, for example, to 

questions of the form "why is activity I ordered before activity2" with "It just has 

to be done that way." This issue was addressed by phrasing questions as "what 

effect would moving activity2 before activity I have." This approach proved 

successful. 
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5.5.2.2 Case 2: construction of retirement flats 
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Elicitation commenced on a project to construct a five-story block of flats as 

building was about to commence. This case enabled the author to observe a 

working construction site, offering the opportunity to question the construction 

workers and managers as planning decisions were being made. 

The model set elicited in case one was based upon interviews and hypothetical 

problem solving exercises. To verify the integrity of the models this second case 

used weekly visits to an actual construction site. As the design of the flats differed 

from the design of the supermarket extension (e.g. trench foundations as opposed 

to piles and beams), the generality of knowledge elicited during the first case study 

could be tested. 

Observing and discussing the use of plans on-site refined the organisation and 

application models. This was a natural refinement, the expertise of individuals 

working in the earlier phases of the construction process on latter phases was not 

as current as those actually working within those phases. The overall structure was 

found to be correct, just subtle changes in detail were required. 

The expertise model was reinforced by actually observing the constraints 

described during the interviews in case one. For example, one could see the 

physical size of plant equipment (cranes, mechanical-diggers etc.) and the need to 

sequence activities around their ability to access different parts of the site. The 

consequences of omissions in planning detail could also be observed. For 

example, the damaged caused by plant equipment moving over drainage pipes 

which would have been avoided had the drains be laid after the plant had 

completed its work in that area. 
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5.5.3 Organisational model 

The organisational model was elicited through a combination of structured 

interviews at various levels within the Llewellyn organisation and observations of 

experts planning. One of the organisation's directors provided strategic 

organisational knowledge, whilst those involved in the planning of projects 

supplied detailed planning-specific knowledge. Site managers, the users of the 

plans, identified how the results of the planning phases are used, problems 

highlighted, and replanning initiated. 

The organisational model is presented in Figure 5-3. The figure shows the main 

processes, data stores, and external entities in the organisation. The figure is 

biased to the planning functions within the organisation and omits non-essential 

detail. 

The model encapsulates three different scenarios: 

• Design and Build. A dialogue between Llewellyn and the customer 

establishes the requirements for a construction project (the analysis 

process). From this, a detailed design is produced (the design process). 

The detailed design is combined with product knowledge to prepare a 

high level plan (the construction planning process). The plan is used to 

prepare materials and plant equipment schedules (the material and plant 

ordering process). Once construction begins, the plan is refined into daily 

and or weekly plans, depending upon the phase the project has reached. 

Generally the more trades active on a site, the lower the granularity of 

planning. More trades result in more interactions between activities; 

hence, trades must be carefully co-ordinated to ensure efficient working. 
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Detailed Building 
Design 

Component Knowledge 

Detailed component 
Knowledge 

Suppliers 14141-----r 

Daily Plan 

Weekly Plan 

Design Requirements 

Design 
Requirements 

Design 

Analysis 

Detailed Building 
Desi n 

Building Design 

Detailed design 
knowledge 

High Level Work Plan 

Weekly plan 

Figure 5-3, Llewellyn organisational model 
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• Build. A customer may provide a detailed building design, requiring the 

Lewellyn group to construct it. This phase starts at the construction 

planning process and proceeds from that point as in design and build 

case. 

• Bid. Bidding runs through the analysis, design, and construction 

planning phases. The resultant building design and construction plan are 

used to produce cost estimates for realising the project. The customer 

may or may not accept the bid for reasons of cost or time scales 

(typically the construction process would be too long). Bidding is 

therefore a gamble; more time spent designing and planning to produce 

accurate and competitive estimates, balanced against the risk of losing 

the bid and the investment in producing it. 

The three scenarios presented above represent the typical activities the 

organisation encounters. There are many different variations; for example a build 

project may revert to a design and build, if the customer's design proves 

impractical (the site may be found unsuitable for the foundation construction 

techniques envisaged after ground tests are completed). 

Issues relating planning to the organisations goals are listed below. 

1 .  Time taken to produce a high level working plan from a buildings 

design. Producing the high level construction plan is a slow and costly 

process, requiring input from highly skilled practitioners from several 

disciplines. Much emphasis was placed from all involved in the process 

on the need for experienced people. It is the combination of experience, 

skill, and collaborative working requirements which make planning a 

costly and time consuming process. 

2. Knowledge archiving. The practitioners involved in the planning 

process are a valuable resource to an organisation. There were 

indications that a project would not be considered if people with previous 

experience of the techniques demanded were not available. Concern was 

expressed at the organisation's strategic level of the effects of key people 

leaving the organisation. A way of archiving knowledge was desired. 
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3. Cost of Planning. The cost of planning was highlighted in issue 1 but 

becomes a major issue in bidding. Time spent planning is not guaranteed 

to be recouped, as the project may not be awarded. However, if planning 

is not sufficiently detailed, a bid may be won, only to find the cost of 

construction is greater than the income generated. There is a major desire 

in the organisation to optimise the planning function to increase its speed 

and accuracy, while reducing the costs. 

4. Level of detail in plans. The high level work plan typically considers the 

building at a high level of abstraction. This is a cost saving practice, as 

the lower level of detail considered in the planning the phase, the greater 

the time required to produce a plan. The need for constant on-site 

planning reflects the limitations of ignoring much of the building's  detail 

at this early stage. Planning to a lower level of abstraction during the 

construction planning process is desirable. 

The points identified above indicate a need for improvements to the planning 

support available to the construction industry. Socio-economical factors complete 

the organisational model, and are presented below: 

1 .  Perception of information technology. Llewellyn use computer aided 

design software to support the design process, and office automation 

technology (spread sheets, databases, word processors) for 

administration support. Parts of the organisation use no information 

technology (IT), for example no computers are available on construction 

sites and a high percentage of design work is carried out on paper. The 

organisation' s perception is therefore polarised from everyday 

experience of IT, through to little awareness of IT. 

2. Automation concerns. People involved in both the development and the 

execution of plans were concerned that automated planning technology 

would impose constraints upon their working practices. For example, 

imposing tightly-controlled schedules which may lead to robotic type 

working conditions. The need for highly configurable tools was stated by 

all levels within the organisation. 

3. Disbelief. A number of human planners felt automated planning was 

simply impossible. The number of constraints considered by humans was 

felt to be beyond the storage capacity of computer technology. The need 

to convince people of the feasibility of automated planning before 

securing their support for the knowledge elicitation process was 

identified. 

4. Explanation. A plan with a supporting rationale was considered 

essential by all levels within the organisation. 
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5.5.4 Application model 

Component Knowledge 

Detailed component 
Knowledge 

Building Design 

Detailed design 
knowledge 

High Level Work Plan 

Figure 5-4, Application Model 

The application model refines the organisational model (section 5.5.3) by 

identifying the processes to be addressed by a KBS .  The construction planning 

and on site planning processes provide the planning functions of the organisation, 

hence, the processes have been extracted from the organisational data flow (Figure 

5-3) together with their input and outputs to produce the application model (Figure 

5-4). 

The construction planning task takes as its input a building's design and 

component construction knowledge and produces as its output a plan to realise the 

design. The resultant high level work plan is used to guide the construction. The 

on site planning process refines the high level work plan to the level of granularity 

required by the site manager. Problems with the high level plan may be 

encountered on site. The site manager modifies the high level work plan to reflect 

this. 
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The construction planning process takes two inputs: component knowledge and a 

building design. The building design is presented as drawings output from a 

computer aided design tool. Component knowledge is located in engineers ' 

experience and component manuals from manufacturers. 

The construction planning process produces one output: a high level working 

plan. The plan is normally implemented on a presentation and analysis tool (e.g. 

Microsoft Project™) and can be viewed, for example, as GANTT and PERT 

charts. 

On site planning takes a paper copy of the high level work plan in GANTT chart 

format. The process is carried out using pencil and paper. Daily and weekly plans 

are produced on paper, utilising the techniques developed by individual site 

managers. The process may be described as ad hoe, but is highly effective. S ite 

managers develop a mental model of the project they are working on and use 

model to identify problems. 
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5.5.5 Task model 

The task model refines the process identified in the application model to specify 

how the function is achieved through a number of tasks. 

Figure 5-5 presents the task model derived from observing human planners. Each 

task is described below: 

• Specify Problem The human planners spend time examining a building's  

design to familiarise themselves with it. 

• Identify Activities Components are viewed at different levels of 

granularity, and the humans define activities which need to be completed 

for the building to be constructed. 

• Identify Ordering Constraints The interrelationships between 

components are examined to define the ordering relationships between 

activities. 

• Resource Needs. By examining the overall set of activities, resources are 

selected. 

• Review plan. Several different disciplines examine the plan and identify 

problems and discuss methods for resolving them. 

The process above is initially sequential, before moving to a phase where the 

human planners move from one task to another as issues arise. 

Identify 
Orderings 

Figure 5-5, Task model of construction planning 
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5.5.6 Model of expertise 

The model of expertise is the most important in the KADS model set; it is the 

model which differentiates the development of knowledge based systems from 

traditional information systems. Constructing the previous models developed an 

understanding of the operation of the company, its terminology, how the planning 

functions integrate into the business, and the requirements of an automated 

planning system in this organisation. The goal of the model of expertise is to 

specify the problem solving expertise required to solve the process identified in 

the application model: construction planning. 

The model of expertise is broken down into four interrelated sub models: domain 

knowledge, inference knowledge, task knowledge, and strategic knowledge. The 

separation allows different types of domain expertise to be identified and related. 

For the purpose of identifying the domain knowledge utilised in construction 

planning, only the domain knowledge sub-model is constructed. 

5.5.6.1 Domain knowledge sub-model 
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The domain knowledge model provides the conceptualisation of a domain, for a 

particular application, in the form of a domain theory. Domain knowledge is 

partitioned into four categories: concepts, properties, relation between concepts, 

relation between property expression, and structure. The first three categories are 

derived in turn below. The structure category is not presented within this chapter, 

but is presented in Chapter 6. The structure category combines the concepts, 

properties, and relations between concepts into one diagram. 
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5.5.6.1 .1 Domain concepts 

Domain concepts are the central objects in the domain knowledge and may be 

compared with entities in an Entity Relationship diagram (Chen 1 976) and objects 

in an Object Model (Rumbaugh et. al., 199 1 ). The first task in constructing the 

domain knowledge sub-model is to identify the domain concepts. 

Llewellyn supplied a set of diagrams which together described the components of 

a building's design. Construction is a mature engineering discipline, hence, its 

notations are precise and unambiguous. The design documents were 

complemented with a plan for the construction of the building depicted. The 

domain experts were asked to describe each diagram and questions were posed to 

identify the planning knowledge applied. Figure 5-6 and Figure 5-7 present 

fragments of the diagrams provided. Figure 5-8 depicts a fragment of the 

construction plan. Table 5-1  presents a transcription of the expert's description of 

Figure 5-6, Figure 5-7 and Figure 5-8. 

0 0 
3 4 

eaml 

Beam2 

Figure 5-6, Fragment of the Pile and Beam layout diagram 

Slab 2 

Beaml 

Figure 5-7, Fragment of Beam, Slab and Wall Details Diagram 

Lay Pile Mat Drive Pile Place Beam 1 Start Wa11 4 Lay slab 2 

Figure 5-8, Fragment of the construction plan 
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Name Transcripti0n of experts comments 

[CHQ.94.2 The two ground beams, beam] and beam2 support the force of the 

1 79.04], walls above them. Pile 3 and Pile4 support the weight of the beams. 

(Figure 5-6 Piles are laid using a piling machine. The machine needs a pile mat 

above) to stop it sinking into the ground. Once the pile mat is in place, the 

pile is driven into the ground . . . .  

(CHQ.94.2. Beam] is supporting the weight of wall 4 and slab2. The beam must 

1 76.02], be laid before the wall and slab. Some of the Wall must be built 

(Figure 5-7 before the slab, hence removing the need for formwork at the wall 

above) end of the slab . . . . 

[CHQ .94. The pile mat must be placed before the pile can be driven. Otherwise 

3 . 1 78.04] the piling rig will sink into the ground. Piles are laid before beams 

(Figure 5- because they support the beams. The wall is started before the slab 

8 above) because the slab rests on the beam and against the wall. Hence, 

working this way removes the need for formwork on the slab, as the 

wall acts as the formwork. 

Table 5-1, Domain experts comments on the design fragments and the plan 

Words in Table 5- 1  highlighted in italics indicate potential concepts or 

relationships. From the comments on Figure 5-6, the following concepts were 

identified: beam], beam2, beams, pile3, pile4, piling-machine, and pile-mat. Each 

was recorded as a candidate concept using the KADS domain description language 

(Schreiber & Wielinga & Breuker 1993, pp 7 1-91) :  

concept beam concept beam] 
concept lay-beam concept lay-beam! 

The process of reviewing each design diagram with an expert was repeated until 

the concepts in the specific building were identified. 

5.5.6.1 .2 Properties 
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The concepts identified in section 5 .5 .6. 1 . 1  may have properties associated with 

them. Properties are defined through their name and a description of the values it 

may take. Each concept was examined and properties identified. Physical 

properties (size, weight, etc.) were simple to identify, they are recorded on the 

building's  design drawings. The beam, beam] , lay-beam, lay-beam] concepts 

identified in section 5 .5 .6. 1 . 1  are refined below to include their properties. 
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concept beams 
properties: 

concept beam] 

length: integer mm 
height: integer mm 
width: integer mm 

properties: 
length: 5040 
height: 1000 
width: 2000 

concept lay-beam 
properties: 

dependent upon: actions 

concept lay-beam] 
properties: 

dependent upon: Pile3 and Pile4 being laid. 
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5.5.6.1 .3 Relations between concepts 

KADS notes that the most common relations between concepts are the sub-class 

relation and the part-of relation. These relationships are presented first, followed 

by the domain specific relationships identified. 

Sub-class relationships 
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Within the modelling phase, identifying the sub-class relationship served two 

purposes. First, to differentiate between instances and generic knowledge. Second, 

to identify generic knowledge common between two or more types of concept. 

The beam] concept identified in the previous section is an instance of the 

candidate concept beam, as beam] has all the properties of beam but specific 

values for each property. The concept beam and instance beam] are presented 

below. Note the addition of the instance-of field in the description of the instance 

beaml . The field records the concept from which the instance is derived. Note 

once a concept is confirmed as a concept, its name is depicted in uppercase. 

concept BEAM 
properties: 

instance beam] 

length: integer mm 
height: integer mm 
width: integer mm 
stress:  compression, tension 

instance-of beam 
properties: 

length: 5040 
height: 1 000 
width: 2000 
stress:  compression 

The sub class relationship allowed concepts to be organised into hierarchies, 

capturing the common knowledge between two or more concept. The example 

below demonstrates how this principle was applied to piles. The generic PILE 

concept captures the purpose of piles and general domain properties. The more 

specific BORE-PILE and DRIVEN-PILE capture knowledge specific to these 

types. Instances of concept BORE-PILE differ from instances of DRIVEN-PILE 

by the method used to place them into the ground. BORE-PILE instances are 

screwed into the ground, where DRIVEN-PILE instances are hammered into 

position. Placing BORE-PILE instances results in quantities of soil being 

deposited on the surface. A plan must therefore include actions to remove this 

waste. Organising concepts into hierarchies facilitated the discovery of this type of 

knowledge. 
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concept PILES 

knowledge elicitation 
description Piles are used in areas where the ground is too soft to 
support a building' s weight directly. By driving a pile into the ground, 
the force of the building is distributed over a large area. 

domain properties Piles need to have their position accurately set out 
and a pile mat to be laid before they maybe placed. 

sub-type-of OBJECTS 

concept BORE-PILES 
knowledge elicitation 
description A type of pile, placed with a screwing action. Bore piles 

move earth onto the surface, planning must take into account the 
removal of this waste. 

domain properties 
sub-type-of PILES 

concept DRIVEN-PILES 
knowledge elicitation 
description Hammered into the ground 
domain properties 
sub-type-of PILES 

The aggregation (part-of) relationship allowed the domain experts' grouping of 

concepts to be identified. During planning, experts reason at different levels of 

concept aggregation. For example, activities are created and sequenced at the level 

of "the foundations" at early points of the planning process, but later refined to the 

constituent components of the foundations. 

Below is the KADS representation of the specific foundations instance occurring 

in a building. The-foundations are shown to have several sub components (pilel . . .  

beam5). A graphical representation is given in Figure 5-9. 

instance the-foundations 

pilel 

instance of: FOUNDATIONS 
implementation: I_Sub Value < pile] pile2 pile3 pile4 pile5 pile6 pile7 
pile8 beam] beam2 beam3 beam4 beam5 > 

the supermarket 

the foundations 

-----------.. r···················..J-·····-···· ....... , -----------
pile2 i i beams 

------- .................................................. � -------

Figure 5-9, Part-of component structure 
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Domain specific relationships 
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Whilst the part-of and sub-class relation elicited the structure of the domain's 

knowledge, domain specific relations were found essential to the planning task. 

Human planners utilised the interrelationships between components when deciding 

the ordering constraints between activities. The example supported-by relationship 

is specified below. 

relation supported-by 
inverse: supports 
argument-1 :Object 

role 
cardinality min 1 ;  max l ;  

argument-2: Object 
role 
cardinality min O; max infinity; 

semantics: argument- I is physically supported by argument-2 
luplcs: examples. beaml is supported-by pile3 

A second set of relationships were identified between actions and components. 

Generically, experts described components as having associated actions. For 

example, the statement "a pile requires a pile mat to be laicf' would translate to 

the following relation. 

concept P !LE [has an actionj concept LAY-PILE-MAT 

The "has an action" relationship was extended to include the "possibly has an 

action" relationship. This latter case captures the knowledge that some actions are 

associated with components only if certain criteria are satisfied. 

Experts additionally described actions at different levels of abstraction. This 

levelling resulted in a collective name for the actions which install a component. 

The term is then used as a high level construct for placing constraints upon all the 

constituent actions. 

The above framework was modelled by relating components to actions through 

abstract or compound action relationships. Each action which may be associated 

with a concept was further subdivided into "must" or "infer" relationships, 

indicating that some actions "must" always be assisted with a component. Whilst 

others need inference ("infer") to determine if they should be included within a 

plan. 
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5.5.6.1 .4 Relations between property expressions 

Expressions are defined within KADS as statements about the values of the 

properties of concepts. An example relationship between property expressions 

provided by Wielinga, Schreiber and Breuker (1993) is that the concept 

amplifier's power-button property being set to pressed causes the amplifier's 

power property to be equal to on. 

Five types of relation between property expressions were identified in the 

construction domain. Each is described below. 

Relationships between a component and actions 

Experts associate each component with a set of possible actions for constructing it. 

For example, the concept BEAM is associated with the possible action set SET­

OUT-POSITION, EXCAVATE-BEAM, BLIND-BOTTOM, LAY-FORMWORK, 

POUR-CONCRETE, CURE-CONCRETE, VIBRATE CONCRETE, LAY-MOULD-

0/L, and STRIKE-FORMWORK. 

Which members of the potential action set which will be associated with an actual 

instance of a component is dependant upon the properties of that component and 

other component instances. For example, the formwork-type property of concept 

BEAM causes a LAY-MOULD-OIL action and a STRIKE-FORMWORK action to 

be associated if and only if the formwork-type property of beam is equal to 

custom. 

Dependency relationships between a component's actions 

The actual set of actions associated with a component are sequenced according to 

the values taken by properties of the component to which they are related. For 

example, an instance of the concept BEAM will order its LAY-MOULD-OIL action 

before its POUR-CONCRETE action if the beam's property formwork-type is set 

to custom. 

Dependency relationships between actions from component relations 

The actions associated with components are made dependant upon actions 

associated with other components as a result of the relationships between 

components. For example, the actions associated with an instance of concept 

BEAM will be made dependant upon the actions associated with a instance of the 

concept PILE if as supported-by relationship exists between the PILE and BEAM 

instances. 
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Aggregate conditions 
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Aggregate conditions are conditions which hold before an action may be executed 

but the action set which achieves each aggregate conditions is dependant upon the 

other components within a specific design. For example, the installation of 

electrical work requires the condition dry building to hold. The actions which 

combine to constitute a dry building are variable. If for example a building 

contains a concrete floor, the dry building condition will only hold after the floor 

has dried. If, however, the floor is of some other construction they completion of 

the floor will have no effect of the dry building condition. 
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5.6 Summary and conclusions 

The construction domain has a limited history within classical planning research. 

Publications have centred upon Tate's House Building Domain as a demonstration 

of the capabilities of task refinement planning systems. Therefore, unlike the 

military evacuation and logistics domains studied by ARPI researchers, further 

investigation may identify new generic concepts which may be applied to other 

domains. 

The knowledge elicitation described in this chapter applied a combination of 

structured interviews, observations, and domain document analysis to acquire the 

underlying domain knowledge. Knowledge modelling was effected through a 

subset of the KADS methodology's  model set. Organisational and application 

models were constructed to develop an understanding of the construction industry 

business process and to provide the context in which a commercially placed 

planning system must operate. A task model was constructed to identify how 

human planners partition the planning process, facilitating questioning. The 

domain knowledge level of the model of expertise was constructed to identify the 

concepts and relationships within the construction domain which underlay the 

planning process. 

The organisational model identified the position of planning within the overall 

construction process as commencing after a building's design has been finalised 

and before actual construction commences. The current human centred planning 

process is limited by the time the process takes, and the high level of skill and 

experience required by human planners. Any commercially fielded automated 

planning system must, however, address a number of socio-economical factors. 

Specifically, the level of current IT expertise in the industry, the concerns about 

automation leading to robotic working conditions, disbelief at the capability of 

machines to undertake what is perceived as a complex task, and the need for 

explanation from an automated system. 

The model of expertise identified the components of a building and their 

interrelationships as the domain knowledge underlying construction planning. 

Domain experts associate actions with components depending upon the values of a 

specific instance' s  properties. Dependency assessment is achieved from three 

types of domain knowledge. The actions required to construct a component are 

ordered dependant upon the values of a specific instances properties. The set of 

actions relating to a component are ordered because of the interrelationships 

between components. Aggregate conditions are satisfied depending upon the type 

of components which exist in a specific design. 
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Blank 
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6. Limitations of existing representational devices -
experiments within the construction industry 

In order to draw a limit to thinking, we should have to 

be able to think both sides of this limit. 

Ludwig Wittgenstein (1889-1951)  

6.1 I ntroduction 

This chapter verifies and extends the set of limitations with classical and model­

based planning technologies identified in Chapter 4 through a set of encodings of 

the construction domain elicited in Chapter 5. From the issues identified, a precise 

rationale for integrating classical and model-based planning is developed. 

The classical encoding is divided into two cases: the specific and the generic. The 

specific case tests the ability of classical planning to represent a specific instance 

of a building' s design. The generic case identifies the issues encountered when 

providing an encoding of generic planning knowledge which may be applied to a 

number of specific designs. The model-based encoding considers only the generic 

case. From the limitations identified, a precise rationale is constructed for 

integrating classical and model-based planning technologies. 
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6.2 Classical planning 

This section identifies the issues encountered when encoding the construction 

domain in a task refinement formalism. Two cases are provided. The first 

considers only a specific building's design, and the second a domain description 

which may be applied to a number of specific designs. 

Before presenting the two encoding cases, the framework followed for translating 

the KADS model of expertise of the construction domain into a task refinement 

formalism is described. 

6.2.1 Task formalism method 
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The KADS model of expertise describes the domain knowledge used by human 

planners in the construction industry. This section considers the methods available 

to support the translation of this model into a task refinement formalism. 

Ero! ( 1 995, pp91 )  summaries the status of the current methods for advising the 

process of writing planning domains as follows: 

" . . .  it is the most neglected aspect of planning, and there is not an established 

software-engineering methodology to guide this job. " 

Whilst Erol's comments are valid, the Task Formalism Manual (Tate, Drabble, & 

Dalton 1994b 1995) provides some considered steps, collectively known as the 

Task Formalism Method (TFM), to guide the writing of domain descriptions. The 

authors, however, place the following qualification on the maturity of their 

method: 

"We rather grandly call this the Task Formalism Method (TFM) to reflect 

our desire to gather experience of writing TF to improve the method itself. 

(Tate, Drabble, & Dalton 1994, p 59) 

Whilst the task of encoding domains is not yet supported by intensively researched 

methods, the TFM does encapsulate practical experience. Hence, it is a worthy 

guiding framework. Each stage of the TFM is briefly outlined below together with 

details of how it was applied to the KADS model of expertise. 
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6.2.1 .1  TFM step 1 : scope of the domain and initial analysis 

Like any data analysis task, it  is important to plan carefully how a domain 

description is to be provided in TF to 0-Plan. It is all too easy to let a 

domain description grow in a haphazard and inconsistent way . . .  It is useful 

to view one user role in writing a domain description in TF as being that of 

Domain Expert. This user will decide on the scope of the domain and 

introduce the top level description. It is then possible to "fill-in " the details 

by considering other information given to describe a domain in TF as being 

provided by one or more Domain Specialist. 

(Tate, Drabble, & Dalton 1994b, pp 59) 

Figure 6-1, TFM step 1 

Figure 6- 1 presents the first stage of the TFM. This step calls for a considered 

approach to the analysis of a domain. Specifically, it recommends the selection of 

a single domain expert from whom an outline "skeleton" of a domain may be 

elicited. Other domain specialists may then be called upon to add detail to this 

skeleton. Thus, the skeleton provides a structure to a domain within which other 

expert' s knowledge may be positioned. 

In the context of the construction domain, the "considered approach" criteria was 

satisfied through the application of the KADS methodology. KADS provides a 

considered and structured approach to analysing a domain. The "structure domain 

and then refine" criteria was also satisfied through the application of KADS. The 

first stage of constructing an organisation model resulted in a strategic overview of 

the domain. The organisational model was then refined into application, task, and 

expertise models by eliciting knowledge from other domain experts at a 

progressively lower level within the organisation. At each organisational level, 

experts comments' were positioned into the overall picture derived from the 

strategic expert. When knowledge elicited at a low level in the domain did not fit 

into the strategic framework, the high level expert was consulted. The process 

either identified a flaw in the understanding of overall domain structure or a flaw 

in the low level knowledge. 
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6.2.1 .2 TFM step 2:  action expansion or goal achievement 
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Two different approaches are possible to model domains. A hierarchical 

action expansion approach is primarily supported by 0-Plan. However, it is 

also possible to state required conditions on the state of the world at certain 

points - a goal achievement approach . . .  The approaches can be mixed in 

any way convenient to model the domain. However, it is useful to consider 

which is to be the main approach during the initial domain modelling 

exercise. 

(Tate, Drabble, & Dalton 1994b, pp 59) 

Figure 6-2, TFM step 2 

The second stage of the TFM (Figure 6-2) recommends an early commitment to 

the primary method of attainment (task refinement or precondition achievement). 

Both precondition achievement and action expansion are described in detail within 

Chapter 2. 

The decision to base the domain modelling around precondition achievement or 

task refinement was based on two early observations. First, domain experts spoke 

in terms of methods for achieving the construction of each component. For 

example, experts made statements of the form "in order to build the foundations 

you must in this case carry out the following actions". Second, the potential size of 

a precondition achievement solution's search space was considered prohibitively 

large. 

Whilst action expansion was selected, the decision was considered reversible if a 

encoding from this perspective proved unfeasible. However, in the case of the 

construction industry, the decision proved correct. This observation concurs with, 

and therefore supports, Drummond's ( 1994) argument that industrial domains map 

naturally to task refinement as opposed to precondition achievement 

representations. 
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6.2.1 .3 TFM step 3: levels of modell ing 

Step 3 (Figure 6-3) of the TFM provides guidance for writing the actual schemas. 

The stage provides two key recommendations. First, that the process should 

proceed by encoding schemas at a high level, before gradually moving down 

towards the lower levels and ultimately the primitive schemas. Second, that 

conditions and effects be attributed to modelling levels. The resultant levels may 

then be used in conjunction with modelling heuristics to ensure consistency 

between the set of condition types available and the effects within a domain 

description. 

It is all too easy to introduce actions, events, effects and resources and state 

conditions or use resources at different levels, making the modelling 

awkward and unnatural. This is sometimes referred to as "hierarchical 

promiscuity " or "level promiscuity ". This will almost certainly lead to the 

inability to make effective use of search restriction domain information such 

as condition and resource types. 

Actions and the effects they introduce are at a particular domain 

modelling level. Higher levels are more abstract, lower levels more detailed. 

In some cases certain (external) types of conditions can only be stated on 

effects introduced at a domain modelling level which is at a higher or the 

same modelling level as the condition. 

In anything other than trivial domains, it is essential to have a plan based 

on an initial analysis of the structure of the problem to decide on what 

actions, events, effects and resources will be modelled at progressively more 

detailed levels. 

I. Identify the main actions (or events) that will appear at the top of a task 

or plan. This is the task or top level. 

2. Gradually worked down through progressively lower levels of detail and 

try to identify the more detailed actions (and events) to be introduced. It 

is best if each level introduced has some real meaning to those involved 

in planning in the real world. Giving a name to each level is a good 

discipline to ensure that the modelling levels will be useful. 

3. It is useful to decide on what statement about the world (in the form of 

effects) will be introduced and manipulated at the various levels by the 

actions (and events) at each level. 

4. It is only after these steps have been taken that the conditions required 

for each actin (or event ) need to considered. It is then possible to ensure 

that these are introduced at a level at or below the level in which the 

relevant effects are introduced. Type information to restrict the usage of 

conditions to those that are meaningful in the domain can now be added 

readily. (Tate, Drabble, & Dalton 1 994b pp 59-60) 

Figure 6-3, TFM step 3 
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The purpose of assigning conditions and effects to distinct modelling levels is to 

address the problem of hierarchical promiscuity (Wilkins 1988, pp 49 - 57). 

Problems surrounding hierarchical promiscuity are described by Collins & Pryor 

(1992; 1 994). Tate, Drabble and Dalton ( 1994a) suggest that adherence to 

modelling levels will resolve the issues raised by Collins & Pryor. 

To address the hierarchical promiscuity issue, the set of criteria defining the 

relationships between condition types and effects within (Tate, Drabble, & Dalton 

1994a) will be followed. 
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6.2.2 Case 1 - encoding a specific design in a task refinement 

formalism 

6.2.2.1 Introduction 

The aim of this case is to test the ability of task refinement planning to represent 

and reason with the planning knowledge within a specific building's design. This 

case considers the supermarket extension design as depicted in Figure 6-5 below. 

This specific case has limited commercial utility. The construction domain 

application model, defined in Chapter 5, requires a planning system which can 

produce plans for a variety of designs. However, this case verifies the ability of 

task refinement formalisms to represent a building' s  design: a necessary capability 

to demonstrate before considering the problem of reasoning with different designs 

is considered. 

This case is similar to Tate's House Building Domain (Tate 1976) in scope and 

therefore serves to verify that experiment in addition to providing the author with 

experience of encoding domains in a task refinement formalism. 

6.2.2.2 Encoding the actions 

Figure 6-5 below presents the components of the specific supermarket extension 

project detailed in Chapter 5. A subset of the relationships between components 

are depicted as dotted lines. The encoding problem is to represent in a task 

refinement formalism the schemas necessary to produce a plan for constructing 

this building. 

The first stage of the TFM (defined in Figure 6-3) is to identify the main planning 

task. A user of the construction planning system will wish the planner to achieve 

the task build supermarket_extension. This initial task is encoded below in Figure 

6-4. The task definition specifies a plan with two dummy nodes (start, finish ) 

denoting the initial and final points of the plan. The non-primitive action build 

supermarket_extension specifies the task which the planner must achieve. 

task build_supermarket_extension; 
nodes 1 start, 

2 action { build supermarket_extension) .  
3 finish; 

orderings 1 -->2, 2-->3 ; 
end-task; 

Figure 6-4, Task definition for build_supermarket_extension 
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plant-steelwork 

Supports 

Next To 

Under 
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the-ground-slabs 

Encloses 

Figure 6-5, Instance model of the supermarket extension 

Abbreviations 
= External Wall 

m= Beam 
= Window 
= Door 

e = Demolish External 
all 

= Ground Slab 
· = Demolish Internal 
all 
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With the problem definition complete, the next encoding stage is the provision of 

a schema for refining the build supermarket_extension task. This schema is 

depicted in Figure 6-6 below. The schema contains a node for each of the 

components which are immediate subcomponents of the supermarket instance in 

Figure 6-5 . 

schema build_supermarket_extension; 
expands {build superrnarket_extension} ;  
nodes 1 action {install plant_room} ,  

2 action {lay foundations } ,  
3 action {build external_ walls } .  
4 action {lay ground_slabs} ,  
5 action {lay roof} , 
6 action {install windows_and_doors ] ,  
7 action { install services] ;  

orderings 4--> l ;  
end-schema; 

Figure 6-6, Encoding the schema build_supermarket_extension 

The single ordering constraint within the schema (4-->l)  encodes the knowledge 

that the plant room is composed of heavy electrical equipment (boilers, air 

conditioning etc.). Hence, the areas construction must not commence until the 

building' s  floor is in position, therefore, permitting the delivery of the heavy 

equipment. 

Figure 6-7 below presents the subset of the building for which schemas will be 

written in the remainder of this section. The lay roof node within the schema in 

Figure 6-6 requires an expansion which includes actions for constructing the 

subcomponents of the-roof component in Figure 6-7. Specifically, the laying of 

the roof steelwork, the roof deck, and the roof covering. A schema meeting this 

requirement is depicted in Figure 6-8 below. 

steelwork 

the-supermarket 

Supports Supports 
Figure 6-7, Fragment of the building's design 
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schema lay _roof; 
expands {lay roof} ; 
nodes 1 action {erect steelwork} .  

2 action { lay roof_deck} ,  
3 action {lay roof_covering } ;  

orderings 1-->2, 2-->3; 
end-schema; 

Figure 6-8, schema lay _roof 

The relationships between the steelwork the roof-deck and the roof-covering are 

translated into the ordering constraints 1-->2, and 2-->3. This encoding 

demonstrates the transition from relationships in the domain to ordering 

constraints in a task refinement formalism. 

This encoding process may be repeated for the remaining subcomponents of the­

supermarket. 
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6.2.2.3 Encoding the conditions and effects 

With the encoding of schemas completed, the TFM advises that next a domain's 

effects and then conditions be considered. The TFM suggests that a domain is first 

structured into a number of levels. Figure 6-9 below divides a fragment of the 

restaurant extension into levels (the thick horizontal lines). The assignment of 

levels is based upon the different types of component within the domain. The 

project level component describes the single concept which makes up a project. 

The project component may have subcomponents but will not itself be a 

subcomponent of any other component. The aggregate component level consists of 

the immediate subcomponents of the project level. Components at this level may 

have subcomponents. Finally, the primitive component level is made up of 

components which have no subcomponents. This level represents the lowest level 

of abstraction within the construction domain. 

the-supermarket 
Project Level 

Encloses Primitive Component Level 

Figure 6-9, Modelling levels attached to the supermarket building 

With the domain partitioned into levels, the encoding of effects and then 

conditions may commence. Actions at the project level result in the single effect 

supermarket extension = complete. The aggregate component level produces the 

effects resulting from the construction of each aggregate component. From the 

figure above, the effects foundations = laid, roof = laid, and external walls = 

built may be assigned. The primitive component level introduces the effects 

associated with the completion of the lowest level components within the building. 

In the figure above, the effects will include beam2 = laid, beam3 = laid, the roof 

steelwork = in_position, etc. 
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With effects defined and assigned to levels, the encoding of conditions may 

commence. Tate, Drabble, & Dalton ( 1994) provide guidance on the relationships 

between condition types and the level of effects upon which they may be placed. 

Supervised conditions may only be placed upon effects at the same or lower 

modelling level. Hence, the lay roof action at the aggregate level may assert the 

supervised conditions the_roof_steelwork = in_position between the primitive 

level lay roof_deck action and lay roof_steelwork action. Unsupervised conditions 

must be placed on effects at the same or higher modelling level. Therefore, the 

primitive level component lay roof_steelwork may place the unsupervised 

condition beam] = laid which results from the primitive level lay beam action 

The completed schemata are depicted in Figure 6-10  below. 

schema build_supermarket_extension; 
expands {build supermarket_ extension} ;  
nodes 1 action { install plant_room} ,  

2 action {lay foundations } ,  
3 action { build external_ walls } ,  
4 action { lay ground_slabs } ,  
5 action { lay roof) , 
6 action ( install windows_and_doors } ,  
7 action (install services } ;  

orderings 4--> 1 ;  
conditions 

supervised {ground_slabs laid} at 1 from [4]; 
only _use_for _effects 

plant_room = built at 1 ,  
foundations = laid at 2, 
external_ walls = built at 3, 
ground_slabs = laid at 4, 
roof = laid at 5, 
windows_and_doors = installed at 6, 
services = installed at 7;  

end-schema; 

schema lay_roof; 
expands (lay roof} ;  
nodes I action {erect steelwork} ,  

2 action { lay roof_deck} ,  
3 action { lay roof_covering } ;  

orderings 1 -->2, 2-->3; 

conditions 
supervised {steelwork erected} at 2 from [1], 
supervised {roof_deck laid} at 3 from [2], 
unsupervised {bearn2 laid} at 1, 
unsupervised {beam3 laid} at 1, 
unsupervised {beamS laid} at l; 

only _use_for _effects 
steelwork = erected at 1, 
roof_deck = laid at 2, 
roof_covering = laid at 3; 

end-schema; 

Figure 6-10, Completed specific case schemata 
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6.2.2.4 Case 1 - conclusion 

The encoding above demonstrates that it is possible to represent a specific 

building's  design within a task refinement formalism. By following the stages of 

the TFM it is feasible to encode a KADS model of expertise into schemata. Once 

combined through the task refinement process, the schemata above will define a 

plan for constructing the restaurant facility. 

Whilst the case demonstrates the expressiveness of a task refinement formalism 

within the context of a specific design, the commercial utility of such a system is 

limited. The application model developed in Chapter 5 demands a system which 

can generate plans for a number designs. Case 2, below, considers the issues 

encountered when producing such an system. 
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6.2.3 Case 2 - a generic encoding 

The aim of this second case is  to test the ability of task refinement formalisms to 

capture generic construct.ion planning knowledge which may be applied to a 

number of designs. The case meets the requirements of the application model in 

Chapter 5 .  

6.2.3.1 Overview of the problem and the encoding approach 
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The previous case (section 6.2.2) encoded knowledge of the form depicted in 

Figure 6- 1 1  below. This figure is an instance diagram, with each rounded box 

representing a specific component within a specific building. In the case of the 

figure below, the specific building is the supermarket restaurant extension elicited 

in Chapter 5. Case one demonstrated that task refinement formalisms are capable 

of capturing this specific case. 

the-supermarket 

the-foundations 

Supports Supports 

Figure 6-11, fragment of the supermarket extension instance diagram 

Figure 6-1 2  provides a generic representation of construction knowledge which 

may be instantiated for different buildings. The figure is composed of rectangles, 

each representing a class of component. The diagram is stating that a building may 

be made up of one instance of two components: a foundation and a roof. The class 

FOUNDATIONS may be further decomposed into any number of instances of the 

classes BEAM and PILE. Instances of the PILE class may be supported by any 

number of instances from the BEAM class. Note that the relationships within 

Figure 6-12  specify the type of relationships which may exist. For example, the 

diagram is stating that a relationship may exist between instances of the class 

ROOF-STEEL-WORK and the class ROOF-DECK, but not between the classes 

ROOF-STEELWORK and ROOF-COVERING. 
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BUILDING 

FOUNDATIONS 

STEELWORK ROOF-DECK ROOF-COVERING 

Supports Supports 

Supports 

Figure 6-12, Generic model of construction planning knowledge 

The generic case requires the capability of specifying generic construction 

planning knowledge of the form depicted in Figure 6-12. The following sections 

detail the issues encountered when providing a representation within a task 

refinement formalism which meets the requirements of the generic case. 

The encoding approach follows the TFM guidelines described in the overview at 

the start of this chapter. First, the main task a planner is to achieve is encoded. 

From this initial task, a number of refinements are written to generate the actions 

required by a specific building. With action synthesis considered, the encoding 

address the issues surrounding conditions, effects, and ordering constraints. 

Before considering the synthesis of actions, the representation of specific designs 

is considered. 
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6.2.3.2 Specifying a specific design in  a task refinement formalism 
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This section identifies how a specific design may be specified within a task 

refinement formalism. 

Classes (e.g. FOUNDATIONS, EXTERNAL-WALLS) may be translated into types 

and instances of classes into instances of those types. An example of this 

translation is depicted below. 

types PROJECT 
FOUNDATIONS 
PILE 

:= supermarket_extension, 
the_foundations, 
pile! ,  pile2, 

ROOF _COVERING :: lhe_roof_covering; 

In the fragment above, the class FOUNDATIONS within Figure 6-1 2  has been 

translated into the type FOUNDATIONS. The instance of the class 

FOUNDATIONS (depicted in Figure 6-1 1), theJoundations, has been translated 

into a instance of the type FOUNDATIONS. 

The properties of instances may be translated into initially statements. A task 

refinement planner's compiler will note that no actions in the domain's library 

modify these facts, hence, the statements may be queried without reference to the 

question and answering system. The computational cost of checking these 

conditions is therefore inexpensive. The value of a specific instance of class 

BEAM's formwork type is depicted below. 

Initially formwork_lype bearnl ::: custom; 

The structural relation subcomponent may be translated into a property of a 

instance. The example below defines the subcomponents of the instance building 

to be theJoundations and the_roof 

Initially sub upermarket_extension = ( the_foundations, thc_roof} ; 

Domain specific relationships between instances may be translated in the same 

way as the sub relationship. The example below specifies that the instance beam] 

is supported_by the instances pilel and pile2 . 

I Initially supported_by beaml := ( pi le I ,  pile2 ] ;  

Using the above encoding it is possible to specify a number of specific designs 

within a task refinement formalism. 
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6.2.3.3 Specifying the overal l  task the planner is to achieve 

The user of a construction planning system would wish to specify the task build 

?building, where the variable parameter ?building corresponds to the name of the 

project to be constructed. Figure 6-13  presents the encoding of the task 

specification for the supermarket extension project. The definition initiates a plan 

with start as the first dummy node, finish as the last dummy node, and a single 

non-primitive task build supermarket_extension. The term supermarket_extension 

must match to the term defined as being of type PROJECT in the design specified 

within the domain' s initially statements (see section 6.2.3 .2). 

task build_supermarket_extension; 
nodes 1 start, 

2 action {build supermarket_extension} ,  
3 finish; 

ordering 
1 -->2,2-->3; 

end-task; 

Figure 6-13, Generic case initial task definition 

The design specification and initial task specification should form the only design 

dependant parts of the generic encoding. With the ability to specify a design and 

initiate a HTN planning system to plan on that design established, the following 

sections consider the encoding of schemas for producing the relevant actions, 

conditions, effects, and ordering constraints. 
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6.2.3.4 Specifying the project level to the aggregate component level 
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Figure 6-9 in the specific case assigned the modelling levels project, aggregate 

component, and primitive component to a specific design. The same levels may be 

assigned to the generic case as depicted in Figure 6- 14 below. This section 

considers the problem of specifying a refinement to the initial task specification 

which generates the actions required by an instance of BUILDING. 

BUILDING 
Project Level 

FOUNDATIONS 

Aggregate Component Level 

STEELWORK ROOF-DECK ROOF-COVERlNG 

Supports Supports 
Primitive Component Level 

Supports 

Figure 6-14, Generic model with modelling levels assigned 

An instance of the class BUILDING will have a set of subcomponents defined. 

Figure 6-14 specifies what classes these subcomponents may be instances of, 

specifically, a single instance of class ROOF and a single instance of the class 

FOUNDATIONS. An instance of class BUILDING may be related to one or both 

of these classes with instance names defined by the domain writer. 

The following build_building schema uses the foreach construct to generate a 

install ?component action for each subcomponent of a specific building. The build 

?a_building expands pattern will match against the initial task definition defined 

above. 

schema build_building; 
vars ?a_building BUILDING; 
expands {build ?a_building} ;  
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ? a_ building} ;  
end-schema; 

Figure 6-15, Schema build_building 

If a specific building is defined as having the following subcomponents: 

Initial! . .  ub_supermarkeLextcnsion = ( the_foundations, the_roof} ; 
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The build_building schema will be instantiated as follows: 

schema build_building ; ; ;instantiated 
vars ?a_building BUILDING; 
expands {build supermarket_extension} ;  
nodes 1 action {install the_foundations}, 

2 action {install the_roof} ; 
end-schema; 

The build_building schema successfully accounts for number and names of 

components within a specific design. 
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6.2.3.5 Specifying the refinements within the aggregate component 
level 
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The example within Figure 6-14 contains only one level of components at the 

aggregate component level. The classes FOUNDATIONS and ROOF are 

composed of primitive components. Within a building, it is common to have 

components which refine through several levels of aggregate components before 

the primitive level is reached. Consider the example in Figure 6- 16  below. The 

figure is stating that a building may have a subcomponent WALLS which is in turn 

decomposed into INTERNAL-WALLS and EXTERNAL-WALLS. 

BUILDING 

WALLS 

INTERNAL 
WALLS 

INTERNAL 
WALL 

EXTERNAL 
WALLS 

EXTERNAL 
WALL 

Project Level 

Aggregate Component Level 

Primitive component Level 

Figure 6-16, Example of multi levelled aggregate components 

The project to aggregate component level encoding mechanism described in 

section 6.2.3.4 will produce a task install the_walls if and only if an instance of 

the class BUILDING is defined as having a subcomponent which is an instance of 

class WALLS. The task of the aggregate to aggregate level encoding is to expand 

the install the_walls task to account for instances of classes INTERNAL-WALLS 

and EXTERNAL-WALLS. 

The aggregate to aggregate component level encoding may be achieved using the 

same Jo reach construct method as in the project to aggregate component level 

encoding schema. The install_walls schema below will generate an install 

?a_set_of_walls task for each instance of classes INTERNAL-WALLS and 

EXTERNAL-WALLS defined as subcomponents of an instance of class WALLS. 

schema install_ walls; 
vars ?a_set_of_walls : WALLS; 
expands {install ?a_set_of_walls } ;  
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ?a_set_of_ walls } ;  
end-schema; 

Assuming a specific design includes the instances the_internal_walls and 

the_external_walls defined as subcomponents of an instance of class BUILDING, 

the following schema will be instantiated. 
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schema install_ walls ;;;;;instantiated 
vars the_walls : WALLS; 
expands (install the_ walls} ;  
nodes 1 action {install the_internal_ walls} ,  

2 action {install the_ external_ walls } ;  
end-schema; 

The encoding above successfully generates an appropriate number of actions when 

moving between layers of the aggregate component level. 
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6.2.3.6 Specifying the refinement from the aggregate component level 
to the primitive component level 
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The sections above describe how an a task refinement planner may successfully 

capture the refinements from the project level to the aggregate component level 

and from aggregate component level to aggregate component level. This section 

considers the penultimate refinement from aggregate component level to primitive 

component level. As demonstrated in Figure 6- 17, this transition may be achieved 

using the same foreach mechanism as in the previous model levels. 

schema lay_foundations; 
var ?a_set_of_foundations : FOUNDATIONS ;  
expands { install ?a_set_of_foundations } ; 
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ?a_set_of_foundations } ; 

end-schema; 

Figure 6-17, Example transition from aggregate to primitive level 

components 

If the layJoundations schema is applied to a instance of class FOUNDATIONS 

which is related to the subcomponents beam], beam2, pile], and pile2, the schema 

will be instantiated as follows: 

schema lay_foundations;; instantiated 
var the_foundations : FOUNDATIONS; 
expands { install the_foundations } ;  
nodes 1 action { install beaml } , 

2 action {install beam2} ,  
4 action {install pile 1 } ,  
5 action { install pile2 } ;  

end-schema; 

Task refinement formalisms may successfully capture the transition from 

aggregate to primitive level components. 
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6.2.3.7 Specifying the refinements at the primitive component level 
The encoding described in the sections above traverses a building's design from 

the task level to the primitive component level accounting for the variable number 

of components which may exist in a specific design. The primitive component 

level encoding must account for the actual actions required to construct each 

primitive component. For example, the schema in Figure 6- 17  will produce a 

number of lay pile and lay beam tasks which must each be refined to include 

within a plan the actions required to construct them. This section considers the 

issues surrounding such an encoding. 

Taking the refinement of a lay beam task, there are a number of possible 

refinements, two methods from this set are depicted below. The applicability of 

the methods is distinguished by the type of formwork used within a beam. If a 

beam has prefabricated formwork the first method must be employed. If the beam 

has custom formwork then the second method is employed. This distinction is 

made through the bolded only_use_if filter conditions. 

schema lay_beam_prefabricated_fonnwork; 
vars ?beam : beam; 
expands (lay ?beam); 
nodes 1 action (set_out_position ?beam), 

2 action (lay_formwork ?beam), 
3 action (lay_steelwork ?beam), 
4 action (pour_concrete ?beam); 

only _use_if ?beam formwork = prefabricated; 
end-schema; 

schema lay _beam_custom_formwork; 
vars ?beam : beam; 
expands (lay ?beam); 
nodes 1 action (set_out_position ?beam), 

2 action (lay_formwork ?beam), 
3 action (lay_steelwork ?beam), 
4 action (pour_concrete ?beam), 
5 action (strike_formwork ?beam); 

only _use_if ?beam formwork = custom; 
end-schema; 

The primitive component level encounters the same encoding issues described 

within the encoding of the task obtain permission to build in Chapter 4. Chapter 4 

considered the case of a single condition, multiple conditions effecting the 

selection of methods for achieving a task, and the expressiveness of filter 

conditions. The construction industry problem verifies the conclusions reached 

within that chapter. The extensions to Tate's  House Building domain are realistic. 
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6.2.3.8 Encoding effects 
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The encoding method above will generate the appropriate actions for a design. 

This section considers the issues encountered when adding action effects to this 

encoding. 

Consider the building design depicted in Figure 6-14 and the first level refinement 

schema build_building in Figure 6- 15 .  The build_building schema generates the 

actions required to construct a building and may therefore be assigned the effect 

?a_building construction = completed, where ?a_building is a variable term 

which is instantiated to the name of a specific building. The build_building 

schema with this effect attached is depicted below. 

schema build_building; 
vars ?a_building BUILDING; 
expands {build ?a_building} ;  
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ?a_building) ;  
only _use_for _effects 

?a_building construction = completed; 
end-schema; 

It is not possible to include effects within the build_building schema which are 

dependant upon the actions it generates. For example, over a specific design the 

schema may generate the actions install the-foundations, and install the-roof. Task 

refinement formalisms do not support constructs to permit the effect foundations 

= laid, and roof = built to be synthesised within the build_building schema. These 

effects must be asserted by the relative expansions of build_building (see schema 

layJoundations below). 

schema lay_foundations 
vars ?a_foundation : FOUNDATIONS; 
expands { install ?a_foundation ) ;  
nodes N for each action {install ?component) for 

?component over { set of subcomponents of ?a_foundation ) ;  
only _use_for _effects 

?a_foundation = laid; 
end-schema; 

The same encoding mechanisms may be used to successfully encode action effects 

from project level through to primitive level components. 
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6.2.3.9 Generating conditions from relationships 

Relationships between components are the main cause of ordering constraints 

between actions in the construction domain. Figure 6-1 8  presents a fragment of an 

object model depicting the possible relationships between components. The figure 

is, for example, stating that an instance of the class STEELWORK may be related 

to a number of instances of the class PILE through the supports relationship. 

FOUNDATIONS 

STEELWORK ROOF-DECK ROOF-COVERING 

supports supports 

supports 

Figure 6-18, Example of relationships between components 

Using the design fragment in Figure 6- 18 ,  the following subsections consider three 

cases of relationships causing ordering constraints or conditions between actions. 

The first case considers a number of related components which share the same 

immediate super component. The second case considers a number of related 

components which do not share the same immediate super component. Finally, the 

third case considers relationships which do not automatically imply ordering 

constraints between actions. 
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6.2.3.9.1 
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Related components which share the same immediate super 

component 

Consider the PILE and BEAM classes in Figure 6-1 8  above. The figure is stating 

that instances of class PILE and class BEAM may be related through a supports 

relationship. The semantics of this relationship are that the PILE instance is 

physically supporting the weight of the BEAM instance. Hence, the PILE instance 

must be constructed before the BEAM instance. 

Actions for specific PILE and BEAM instances are first introduced at the 

aggregate component level to primitive component level stages of an encoding. 

Figure 6-17 above encodes these actions and is therefore reproduced below. 

schema lay_foundations; 
var ?a_set_of_foundations : FOUNDATIONS;  
expands { install ?a_set_of_foundations } ; 
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ?a_set_of_foundations} ;  
end-schema; 

Figure 6-19, Reproduction of Figure 6-17 - schema layJoundations 

The schema will work over each subcomponent of an instance of the class 

FOUNDATION generating an install action. Assume that a design contains an 

instance of class FOUNDATIONS named the-foundations, an instance of class 

PILE named pilel, and an instance of class BEAM named beaml. The 

subcomponents of the-foundations are pilel and beam} and pilel is supporting 

beaml . Over this design, schema layJoundations will be instantiated as follows: 

schema lay_foundations ;; instantiated 
vars the-foundations :FOUNDATIONS; 
expands [ install the-foundations } ;  
nodes l actions { install pile l } ,  

2 actions { install beam I } ; 
end-schema; 

With schema layJoundations instantiated, it is desirable to add a supervised 

conditions supported with an ordering constraint to capture the fact that the install 

pilel action should be completed before the install beam} action because of the 

supports relationship between the two instances. A supervised condition of the 

form pile 1 laid at 2 from 1 and the ordering constraint 1 --> 2 would permit the 

HTN planner to maintain this constraint without need to discover how to establish 

it. 

However, task refinement formalisms do not provide constructs for adding 

conditions and ordering constraints dependent upon the actions generated by a 

foreach or iterate construct. Consider the lay-foundations-ideal schema below, 

where the balded lines indicate the type of construct required. 
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schema lay _foundations_ideal; 
var ?a_set_of_foundations : FOUNDATIONS; 
expands { install ?a_set_of_foundations } ;  
nodes N for each action { install ?component} for 

?component over { set of subcomponents of ?a_set_of_foundations } ;  
;;;if ?component is of the type BEAM and i t  is related t o  any 
;; ;instances of the type PILE through a supports relationship, then 
;;;include an ordering constraint "all instances of class PILE related 

;;;  --> ?component" 
only_use_for_effects 

foundations laid = true; 
end-schema; 

As it is not possible to include a supervised condition within the layJoundations 

schema, the next option is to consider an unsupervised condition within the 

refinement of a lay beam schema. Consider the following 

lay_beam_prefabricatedJormwork schema. 

schema lay _beam_prefabricated_formwork 

vars ?beam : beam; 
expands (lay ?beam); 
nodes l .action (set_out_position ?beam), 

2.action (lay_formwork ?beam), 
3.action (lay_steelwork ?beam), 
4.action (pour_concrete ?beam); 

only_use_if ?beam formwork = prefabricated; 
;;;if ?beam is related to any instances of the type PILE through a 
;;;supports relationship, then include an ordering constraint "all 

; ; ; ;instances of class PILE related --> ?component" 
end-schema; 

The bolded lines indicate the type of construct required but not supported by task 

refinement formalisms for adding an unsupervised ordering constraint to a lay 

beam schema if and only if the beam within the schema is supported by a pile. 

The above schemas demonstrate that it is not possible to include ordering and 

condition constraints within task refinement schemas which are dependant upon 

the ordering constraints between a design's  components 
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6.2.3.9.2 Related components which do not share the same immediate super 
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component 

Consider the PILE and STEELWORK classes in Figure 6-17  above. Instances of 

class STEELWORK may be supported by instances of class PILE. Semantically 

the weight of the PILE instance is physically supporting the weight of the 

STEELWORK instance. This case differs from the PILE and BEAM relationship as 

the PILE and STEELWORK classes do not share the same immediate super 

component. Class PILE is a subcomponent of class FOUNDATIONS and class 

STEELWORK a subcomponent of class ROOF. As the classes do not share the 

same immediate super component, the encoding described in the sections above 

will introduce the lay pile and lay steelwork action in different schemas. 

The encapsulation constraint on supervised conditions prohibits the constructs use 

on actions which do not appear within the same schema. Hence, it not possible to 

place a supervised condition between lay pile and lay steelwork actions. The 

remaining condition types available to a domain writer are unsupervised and 

achieve. 

schema build_external_ walls 
vars ?entity external_ walls 
expands install ?entity 

N for each action { install ?type) for 
?install over (set of items declared as sub of foundations) 

; ; ;if install is related to a beam through a supported by 
;; ;relationship then include the following condition 

;; ;unsupervised beam related through = laid at current 
;;;  action 

only _use_for_effects 
external walls built = true; 

end-schema; 

There is currently no construct within the Task Formalism to support this type of 

reasoning. Therefore, conditions depending upon relationships cannot be 

implemented. 
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6.2.3.9.3 Case when a relationship between components does not 

automatically imply dependency constraints 

Consider the case of a drain being related to a beam by an on top of relationship. 

The semantics are that the drain runs below the intended location of a beam. If the 

beam is laid first, a tunnel must then be dug under the beam to allow the drain to 

be placed. If the drain is laid first, the beam may be laid over the drain. Hence, it 

is simpler to lay a drain before any beam which is related to it through an on top of 

relationship. 

A drain may not always be laid before the beam it passes under. For example, the 

beam may require mechanical devices to support its positioning. If the drain is laid 

first there is a danger of the mechanical devices damaging the drain. Thus, 

inference is required to determine if an on top of relationship between a drain and 

a beam results in a dependency relationship. There is currently no mechanism in 

the task formalism to support this reasoning. 
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6.2.3.1 0  Generating aggregate conditions 
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Aggregate conditions are conditions which may be referred to as a single concept, 

e.g. building = dry, but require a variable number of other conditions to hold 

before they are satisfied. Consider the example of the condition dry building. If a 

building includes a concrete floor, the building will not be dry until the floor is 

dry. Thus, the condition building = dry will require floor = dry. However, if the 

building does not contain a concrete floor the building = dry condition will not 

require any reference to afloor = dry condition. 

A current implementation of an aggregate condition is specified below. The two 

schemas are taken from the 0-Plan test set's three little pigs domain. 

task build_cheap_secure_house; 
nodes 1 start, 

2 finish, 
3 action {build house) ,  

4 action { check security) ;  
orderings 1 ---> 3 ,  3 ---> 4, 4 ---> 2; 
resources consumes {resource money) = 0 . .  500 pounds overall; 

end-task; 

schema security_checker; 
expands {check security} ;  
local_vars ?material = ? { type material} ;  
conditions unsupervised { proof_against wolf ?material } ,  

unsupervised {material wall } = ?material, 
unsupervised { wolf_proof door} ,  
unsupervised { wolf_proof windows } ;  

end-schema; 

The build_cheap_secure_house task generates two non-primitive tasks: build 

house and check security. The security check is performed after the house building 

actions and must be satisfied before planning may be completed. The security 

checker schema' s semantics are as follows. For a building to be wolf proof, the 

material used in the houses walls construction must be wolf proof and the doors 

and windows must be wolf proof. 

The encoding of a security checker may be applied to the dry building condition. 
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schema dry _building_checker; 
expands {check dry _building } ;  
conditions 
unsupervised { concrete floor} = dry, 

unsupervised {windows and doors } = fitted; 
only _use_if building contains a subcomponent concrete .floor. 

end-schema; 

schema dry _building_checker; 
expands {check dry _building } ;  
conditions 

unsupervised {windows and doors } = fitted; 
only_use_if building does not contain a subcomponent concrete floor. 

end-schema; 

The different cases which constitute a dry building are encoded as separate 

schemas. Which definition of dry building to apply is determined by the 

only_use_iffilter condition. Any schema requiring a dry building may therefore 

include a check dry_building task and order it before the actions which require the 

condition. 

This checker schema solution to the aggregate condition issue results in a schema 

required for each case of what may constitute a dry building. Thus, redundancy is 

too easily encoded causing a high maintenance overhead. 
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6.3 Model-based planning 

6.3.1 Scope 

This section considers the encoding of the generic construction planning 

knowledge and the translation from a specific design into a plan. The scope is 

identical to the generic case considered in the task refinement encoding described 

in section 6.2.3. 

6.3.2 Encoding specific and generic knowledge 
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Model-based planning is centred around a frame based modelling scheme which 

may be mapped directly onto the KADS model of expertise. Figure 6-20 presents 

a fragment of generic construction planning knowledge encoded in a model-based 

formalism. Whist model-based planning uses a different notation to the KADS 

model of expertise, the mapping of concepts and relationships is direct. 

PILES 

Supports 

Figure 6-20, Model-based representation of the construction domain 

A specific design may be encoded by attaching components to classes. For 

example, a design which contained two piles will be represented by attaching two 

instances (pilel and pile2) the PILE class in Figure 6-20. 

The following sub sections detail how the model-based representation above may 

be used to generate actions and ordering constraints. 
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6.3.3 Generating a variable number of actions 

Consider the fragment of the supermarket extension encoded in the model-based 

formalism in Figure 6-21 below. 

� 
the-walls 

Figure 6-21, Specific building design encoded in the Model-Based 

representation 

The model-based planning algorithm exploits the subcomponent relationships 

ensuring each object is visited and actions generated. Hence, the planner 

automatically adjusts the number of actions included within a plan to the number 

of components in a specific building. 
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6.3.4 Generating different methods 

200 

Model-based formalisms permit actions to be associated with components under 

two directives: must, and infer. Must implies that the action will always be 

associated with a component. Infer implies that some inference is required. 

Consider the encoding of a beam's actions below. 

BEAM.actions = must(a, set_out_position), 
must (a, lay_formwork), 
must (a, lay_steelwork), 
must (a, pour_concrete), 
infer (a, strike_formwork, INPER_S1RIKE_FORMWORK) 
infer (a, pUJnp_area, INPER_PUMP _AREA) 

The first 4 actions (set_out_position to pour _concrete) must all be included in a 

plan which includes a beam. The strikeJormwork and pump_area require 

inference to determine if they are required. The capitalised statement immediately 

after the names of these actions in the encoding above indicates the inference 

mechanism which should be invoked to determine the action's  relevance. An 

example of the inference identified as INFER_STRIKE_FORMWORK is encoded 

below. 

INPER_S1RIKE_FORMWORK 
goal strike_formwork 
Backward chain 
rule 1 
if beam. form work type = custom then 

true 
end rule 
rule 2 
if beam. formwork type = prefabricated then 

false 
end rule 

The two rules in the rule set encode the knowledge that a strike formwork action is 

only required if a beam is made with custom formwork. Thus, it is possible to 

generate actions for constructing a components depending upon the properties of a 

component. 
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6.3.5 Generating dependency from relationships 

The model-based formalism permits actions to be ordered according to the 

relationships between instances. Figure 6-22 below depicts a beam related to a pile 

through a supported by relationship. The semantics of the relationship are that the 

pile is supported by the beam, hence, the beam should be constructed after the 

pile. The box next to the supported by relationship represents the reasoning which 

may be invoked to determine dependency between the components participating in 

the relationship.  The contents of the greyed box are specified below the figure. 

Beam! Pile! 

Supported by 

Infer Dependency from beam and 
pile support relationship 

Figure 6-22, Model-based relationship example 

BEAM.generate dependency 
forall X, where X is supported by self 

make the actions of X dependent upon the actions of self. 
end forall 

The inference attached to the relationship causes the construction action of the 

beam to be deponent upon the pile. Thus, it is possible to generate dependency 

between actions which is dependent upon the relationships between components in 

a design. 
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6.3.6 Generating conditions and effects 
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Model-based planners have not, to date, implemented the concept of action 

conditions and effects. Dependency constraints may only be reasoned over 

components which are related through domain specific relationships (e.g. 

supported by). 

The absence of action conditions and effects leads to a number of limitations. 

First, dependency knowledge must be specified in terms of the producing and 

consuming actions. It is not possible to state an action requires a condition, 

leaving the selection of producing action to the planning engine. Second, model­

based planners cannot identify action interactions and take steps to remove such 

plan flaws. Action iterations occur when an action deletes the effect of a second 

action before a third action which requires the deleted effect. Such a functionality 

requires action conditions and effects combined with a question and answering 

system (as developed by (Tate 1977)). 
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6.4 Sum mary and concl usions 

This chapter identified a number of limiting issues encountered when encoding the 

construction domain in both classical and model-based planning technologies. 

Considering the approach to the classical encoding, whilst the process has not 

been extensively researched, the Task Formalism Method (TFM) provided an 

effective interface between the KADS model of expertise developed in Chapter 5 

and task refinement schemas. The approach of first writing actions at the highest 

level of abstraction before progressively moving to lower levels of abstraction 

mapped onto the top down structure of the KADS model set. Writing action 

effects and then conditions after the action hierarchy has been constructed, 

combined with the use of modelling levels and the associated levelling constraints 

on condition types, allowed a considered representation to be developed which 

avoided the problem of hierarchical promiscuity. 

The first classical case considered the problem of specifying the representation 

required by a specific design. This scope is identical to Tate's House Building 

domain. The case confirmed that a task refinement formalism may successfully 

capture a specific design, and provided the author with experience of task 

refinement encoding. The commercial utility of such an encoding is, however, 

limited. The application model presented in Chapter 5 demands an encoding 

which will accept a number of building designs and then synthesis plans based 

upon the specific components and relationships within each design. 

The second classical case considered the requirements of a commercial 

construction planning application. The case identified that design details may be 

specified within a planner's  always context (facts which do not change during 

planning), translating classes from the KADS model into types and instances of 

classes into instances of types. The subcomponent relationship, domain specific 

relationships, and properties may be converted into logical statements. 

The foreach construct may be exploited to navigate through the design specified 

in a planner's  always context generating actions according to the number and type 

of components. This encoding identified two limitations. 
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First, the issues identified in Chapter 4 surrounding the need to specify multiple 

methods for achieving tasks distinguished by filter conditions was encountered 

and confirmed. Methods within the construction domain were found to be 

dependant upon multiple conditions. The limitations of the task refinement 

formalisms forced multiple methods to be specified with the associated 

redundancy and therefore maintenance problems. 

Second, the foreach construct is not supported with a conditional effect and 

condition mechanisms. Hence, it is not possible to generate actions and then infer 

the ordering and supervised or unsupervised conditions which must exist between 

them. The problem is compounded by the encapsulation constraint between 

schemas. Even assuming the existence of a conditional condition construct, it 

would be possible only to generate supervised conditions between components 

which share the same immediate supercomponent, as actions relating to both 

components will be generated within the same schema. If two components do not 

share the same immediate supercomponent they will be generated within different 

schemas, hence, as the supervised condition construct may only be placed within a 

schema, the construct may not be used in this case. 

Considering the model-based case, only the commercial application requirement 

was assessed. The constructs within the KADS model of expertise of the 

construction problem mapped directly onto to model-based representation. Model­

based planning provided facilities for generating actions appropriate to the number 

and type of components in a specific design. The absence of action conditions, 

effects, and ordering constraints prevent model-based planners from inferring 

ordering constraints other than those where both the producing and consuming 

action are specified. Without conditions, effects, and a question and answering 

algorithm model-based planners cannot detect and resolve interactions between 

actions. 

In conclusion, the generic construction industry case identified limitations with 

both classical and model-based technologies. The classical limitations are 

summarised under the following three headings: 

• Expressiveness. Task refinement formalisms do not provide constructs 

for inferring conditions and ordering constraints from domain expert 

knowledge. As a result, first multiple methods must be specified for 

refining tasks. Second, when applying the foreach or iterate constructs to 

generate an appropriate number of actions to match the specific 

components within a design, conditions resulting from the relationships 

between components cannot be inferred. 
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• Redundancy. The absence of conditional ordering constraints and 

conditions force domain descriptions which contain multiple methods for 

achieving tasks. It is common to find redundancy between these methods 

in terms of the same actions, ordering constraints, conditions, and effects 

being repeated a number of times. 

• Semantic distance. The absence of constructs for deriving conditional 

ordering constraints and conditions combined with the distance between 

the criteria within a domain for selecting methods and the filter condition 

constructs lead to a significant semantic gap between domain and task 

refinement representation. 

The limitations with model-based planning identified are summarised below. Both 

limitations arise from the absence of the concepts of action conditions and effects 

within the technology. 

• Automatic establishment of conditions. Model-based planners may 

only infer dependency information between components which are 

explicitly related through domain specific relationships. It is not possible 

to specify an action conditions, leaving the selection of establishing 

action to the planning system. 

• Detection and resolution of action interactions. Without action 

conditions, effects, and a question and answering algorithm it is not 

possible to detect and therefore resolve interactions between actions of 

the form of action effects being deleted before the consuming action may 

use them. 

The limitations with classical and model-based technologies either identified or 

confirmed through the construction industry encoding provide the following 

precise rationale for integrating the two technologies. 

Model-based planning is designed to exploit domain expert knowledge outside the 

space of a partial-order state based world model. The technology's  representation 

maps closely to the results from current object based methodologies. In contrast, 

the representation supported by classical task refinement planners is difficult to 

map to the reasoning demanded by industrial domains for both determining the 

actions required within a plan and the ordering constraints between those actions. 

Classical planners do, however, provide a powerful question and answering 

facility for both establishing and maintaining conditions over a plan. 

An integrated architecture may exploit the representation and reasoning 

mechanism provided by model-based planning for determining actions and 

ordering constraints within a plan. A task refinement component may then be used 

to combine these constraints into a consistent plan. 
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7. Development of an integrated architecture 
Together we stand. Divided we fall 

Proverb 

7.1 I ntroduction 

Chapters 4 and 6 identified complementary strengths between the capabilities of 

model-based and classical planning technologies. This chapter describes an 

integrated architecture which exploits each technology's relative capabilities. An 

evaluation of the resultant architecture is detailed in Chapter 8. 

The integrated architecture is composed of five components: a set of domain 

modelling constructs, a model-based planner, a model-based - task refinement 

planner interface, and a task refinement planner. This chapter describes each 

component before their functionality is described thorough an example problem 

from the construction domain (elicited in Chapter 5). 
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7.2 Overview of the proposed integrated architecture 
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The proposed integrated architecture is depicted in Figure 7- 1 below. 

Model I Model-Based planner 
interface 

-
Domain Model 
{ set of constructs } .. � .,j .. 'II , ... " 

---

Model-Based planner I HTN 
Engine interface 

Nodes ...-{ actions and ordering 
constraints } 

� , 
Critics 

( represent and maintain � detailed constraints } 

Model-Based Planner 
{ actions and dependency 

synthesis algorithms} 

.... 

...... 

I 
..... 

.... 
HTN Engine 

{ action expansion and 
critic invocation } 

Figure 7-1, Proposed integrated architecture 

I 

The domain model provides a set of constructs for representing domain specific 

knowledge. The model-based planner applies the knowledge specified in the 

model to generate a set of actions and dependency constraints. The HTN Engine 

combines the action and dependency knowledge from the model-based planner to 

create a complete plan. HTN critics are invoked to ensure the establishment and 

maintenance of conditions and effects over the plan. 

The proposed architecture exploits the expressive power of model-based planning 

for determining the actions and ordering constraints required by a plan. The HTN 

engine's refinement process and critics assemble the action and dependency 

information from the model-based planner into a completed plan. This architecture 

addresses the relative strengths identified in the previous chapters of this thesis. 

An important design decision was the isolation of the model-based and HTN 

planning components via the MBP I HTN engine interface. This design permits the 

architecture to be used as an integrated MBP I HTN planner, a HTN planner with 

access to both MBP generated schemas and traditionally encoded schemas, or a 

HTN planner with access only to traditionally encoded schemas. The three modes 

facilitate experimentation with different methods of generating or encoding 

schemata for a HTN engine and identification of the different domain features that 

affect the utility of each mechanism. This facility is exploited within Chapter 8 

when addressing the Pacifica domain. 
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7.3 Domai n model l ing constructs 

This section describes the set of constructs for modelling a domain. The 

implementation of an inference engine to apply the constructs is described in 

section 7.4. This section concludes with the encoding of an example problem from 

the construction industry domain elicited in Chapter 5 .  

7.3.1 Concepts and actions 

Model-based planning (MBP) is based on the axiom that an activity may be 

modelled as a union between a concept, an action, and a number of resources 

(Marshall 1988, pp 37). For example, the action print feasibility study may be 

described as the union of the object feasibility study, the action print, and the 

resources printer and paper. The MBP definition of an activity within this chapter 

is simplified by ignoring the issue of resources. The issues surrounding the 

inclusion of resources within the modelling scheme is described within the further 

work section of Chapter 9. 

Within the object-oriented paradigm, the union of objects and actions to form the 

components of an activity may be modelled as a relationship between a class 

ACTION and a class OBJECT. Classes provide the template from which actual 

instances may be created. Figure 7-2, below, depicts the relation action between 

class ACTION and class OBJECT and an instance of this structure. 

OBJECT action ACTION 

lllstance 

action · 

· 1 feasibility-studyl t----"='-''-"----t a-prmt-act10n-

Figure 7-2, Object-oriented representation of objects and actions 

Object-oriented modelling supports a specialised relation between classes termed 

inheritance. Inheritance permits a domain to be specified in terms of 

specialisations. Thus, commonalties between objects and actions may be identified 

and represented together, whilst differences may be explicitly modelled as 

specialisations of generic concepts. An example action and object hierarchy is 

depicted below in Figure 7-3 . Inheritance relationships are identified with a 

triangle notation. 
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2 1 0  

MODEL 

OBJECT 

BORE-PILE DRIVEN-PILE LAY-PILE 

acti011 [ · ) 
____ P1

_
· ie_1_7 _ _;--------1 lay-pile-action4 

Figure 7-3, Example action and ob,ject hierarchy exploiting inheritance 

Inheritance is a directional relationship. The point of the triangle notation 

identifies the superclass of an inheritance relationship, whilst the triangle' s  bottom 

identifies the subclass. Knowledge specified on the superclass is copied to the 

subclass. In Figure 7-3 above, class MODEL is the superclass of all of the other 

classes in the figure i.e. a subclass inherits not only from its immediate superclass, 

but all the superclasses of its superclasses etc. 

In Figure 7-2, knowledge common to both types of pile is specified within class 

PILE. Knowledge specific to either bore or driven piles will be specified on the 

respective class. For example, both driven and bore piles require their position to 

be set out. This knowledge will be specified on class PILE and inherited by both 

subclasses. Only bore piles deposit quantities of earth on the surface and require 

infrastructure to remove this earth. The infrastructure knowledge for removing 

earth is specified only on class BORE-PILE. 

The organisation of knowledge facilitated by inheritance simplifies the task of 

maintaining a knowledge base. By modelling knowledge at the most general level 

possible, modifications can be made in one place, but effect a number of other 

classes. In the example above, editing general pile knowledge within class PILE 

will update both the BORE-PILE class and the DRIVEN-PILE class. 
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7.3.2 Action levels 

MBP offers two categories of actions with the aim of synthesising plans for 

different types of audiences: abstract and primitive. Figure 7-4, below, presents an 

object instance diagram with a number of abstract and primitive actions 

associated. 

pilel 7 abstract action lay-pile 

primitive action set-out-pos 

primitive action lay-pile-mat 

primitive action drive-pile 

Figure 7-4, Abstract and primitive actions 

Within existing MBP implementations, planning is performed in one of two 

modes: abstract or primitive (Marshall 1988).  In abstract mode, the planner will 

only instantiate an object's abstract actions, conversely in primitive mode, the 

planner will only instantiate an object's primitive actions. From the example in 

Figure 7-4, in abstract mode, the planner will produce a plan which included a lay 

pile action. In primitive mode, the system would include the required members of 

the set: set out position, lay pile mat and drive pile. 

This implementation of action levelling is flawed. Plans synthesised at the abstract 

level will not consider the potential constraints between primitive actions. For 

example, two abstract actions abstract1 and abstract2 may be left unordered 

relative to each other. If planning had proceeded to the primitive level, however, 

an ordering constraint may have been identified. Thus at one level of abstraction 

the planner would not find ordering constraints, whilst at another it may. A more 

considered planning process should plan to the lowest level of detail available, and 

an aggregation of that plan produced for different audience levels. Winstanley and 

Hoshi ( 1993) demonstrate how to present plans with abstract actions maintaining 

the detailed constraints of the lower level actions they represent. 

Within the MBP component of the integrated architecture, primitive actions are 

viewed as refinements of an object' s abstract actions. This modelling correlates to 

the NOAH classical planning system (Sacerdoti 1 977). Action levelling is 

included to allow constraints to be placed and actions at different levels of 

abstraction. Constraints placed upon an abstract action must be maintained by that 

abstract actions refinements. 
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7.3.3 Domain model structure 

2 1 2  

The MBP paradigm provides the following generic model for structuring domain 

descriptions: 

primitive 
action 

OBJECT 

action 

Figure 7-5, Original MBP generic project model 
(Marshall 1988, pp 48) 

Since the model was originally drawn, object-oriented notations have been refined. 

Figure 7-6, below, presents the original MBP model with the constraints on the 

structure of the model made explicit through current object-oriented modelling 

notation. 

MODEL 

CONCEPT ACTION 

abstract action primitive 

�---'-� _-_---� -----L;.,.__ ____ _, Action 

sub sub sub 

Figure 7-6, Domain model pattern 

Class MODEL is abstract, and will therefore never be instantiated. The class 

serves two purposes. Primarily, it types all classes used to model a domain as 

being of type MODEL. It is therefore possible to write operators which work over 

the whole model. Secondly, attributes and operations common to all model 

elements may be specified in one location. 

The abstract class CONCEPT supports the operations and attributes common to all 

classes which may be used to model the objects within a domain. The class 

contains an attribute permitting actions to be attached to objects through the 

abstract action relationship. 
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Classes PROJECT, COMPOSITE-OBJECT, and PRIMITIVE-OBJECT may be 

instantiated. Class PROJECT makes explicit a special type of class within MBP 

which defines the whole project to be constructed. This class may not be the 

subcomponent of any other class. Class COMPOSITE-OBJECT may be 

decomposed into other instances of class COMPOSITE-OBJECT and class 

PRIMITIVE-OBJECT. Instances of class PRIMITIVE-OBJECT may not have 

subcomponents. 

Each of the classes within the model is defined in a table below. 

Abstract Class MODEL 

Description Parent of all model elements. The class defines each model element 
as being of type model and supports the implementation constructs 
for automatically generating instance names. 

Attribute Init. Val Descriotion 
Default Name user define Default name prefix for instances of a 

class 
Naming Convention auto I user Indicates that when an instance is 

required if the system should define the 
name or if the user should be consulted 

Next Instance Number 0 Concatenated with default name to create 
a unique name. 

Method Param. Description 
Generate Name none If naming convention is set to auto the 

method combines the default name 
attribute and the next instance number 
attribute to generate a new and unique 
name. If naming convention is set to user, 
the user is prompted for the name of an 
instance. 

Table 1, Class MODEL 

Abstract Class CONCEPT, subclass of MODEL 

Description I Provides the constructs general to all classes which model objects in 
a domain. 

Attribute lnit. Val Description 
Abstract action user define Action which describes the artefact 
Method Pa ram Descriotion 
[Generate Dependency] none Deferred method which must be written 

by the user for each class to determine 
dependency between actions 

Constraints 

One action only may be related through the abstract action relation 

Table 2, Class CONCEPT 
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Class PROJECT, subclass of class CONCEPT 

Description I The instance of this class represents the specific problem within an 
aoolication domain for which a plan is to be synthesised. 

Attribute I Init. Val I Descriotion 
Sub I user I List of sub conceots 

Constraints 

All subcomponents of the project must be reachable from this class via the Sub 

relation. A model must contain one and only one instance of class project 
Table 3, Class PROJECT 

Class COMPOSITE-OBJECT, subclass of class CONCEPT 

Descriotion I Objects which may be decomposed into other objects 
Attribute Init. Val Description 
Super user list of concepts of which this class is a 

sub concept 
Sub user sub concepts of this class 

Constraints 

Instance of this class may not be related to an instance of class project through the sub 

relation. No object related as an sub concept may be related as a super concept of this 

class. 
Table 4, Class COMPOSITE-OBJECT 

Class PRIMITIVE-OBJECT subclass of CONCEPT 

Description I Defines ob'ects which mav not have subcomponents 
Attribute Init. Val Descriotion 
Primitive action user List of primitive actions associated with 

this concept 
Super user List of the super concepts of this concept. 

Table 5, Class PRIMITIVE-OBJECT 

Class A CTIONS, subclass of MODEL 

Description I Describes an action within a domain 
Attribute Init. Val Description 
Object system Defined by the system when an instance 

of class action is attached to a concept 
Main effects user The effects which make up the purpose of 

this action 
Side effects user The effects for which this action would 

not be used, but do occur as a result of 
applying this action. 

Preconditions user List of aggregate conditions which must 
be met before this action may be annlied. 

Achieve conditions user List of conditions for the HTN planning 
engine to make true. 

Sub system List of actions which are sub may be 
viewed as sub concepts of this action 

Super system List of actions of which this action is a 
sub action 

Table 6, Class A CTION 
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7.3.4 Domain specific relationships 

7 .3.5 Facets 

Subclasses of PROJECT, COMPOSITE-OBJECT, and PRIMITNE-OBJECT may 

have domain specific relationships attached. The pattern for specifying such 

relationships is depicted in Figure 7-7 below. 

CLASS Role! Rolc2 CLASS 

relationship name 

Figure 7-7, Generic relationship template 

To create the supported relationship, the domain writer must take the following 

steps. First, identify the two roles within the relationship. In the case of support, 

the roles are supportee and supporter. The class participating as the supportee will 

require an attribute defined supported by, whilst the supporter class will have the 

attribute supports. 

Each attribute within a class is composed of three facets1 : 

• Value: The actual value of the attribute 

• Default: A default value for the attribute 

• H_Needed: Specifies the inference mechanisms which must be invoked 

to infer the value of the attribute. 

Attributes are queried with two types of request: return (attribute, specific facet) 

or return (attribute). The specific query returns the value in the facet requested, or 

unknown if the facet is undefined. In the case of the if _needed facet, the 

appropriate inference mechanism is invoked to derive the value (see section 7 .3.6 

for a detailed description). The second query searches the three facets of an 

attribute in a defined order until a value can be obtained or inferred. The value 

facet is examined first and the value returned if defined. If the value facet is 

undefined, the default facet is examined and returned if defined. If the value and 

the default facets are undefined, the if_needed facet inference is activated to 

derive the attributes value. 

When activated, the if_needed facet updates the value facet of an attribute under 

the rationale that the most recently inferred value is the most accurate. 

1This modelling is based upon the RBFS (Rule Based Frame System) (Barber, 

Marshall, & Boardman 1987) 
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7 .3.6 Instantiation directives and inference packages 

Collectively instantiation directives and inference packages provide the 

mechanism for attaching inference knowledge to the if_needed facet of an 

attribute. Inference packages encapsulate reasoning mechanisms, whilst 

instantiation directives both define the interface to inference packages and the 

how the results of the package will be processed. The MBP provides a set of 

predefined instantiation directives. It is the responsibility of the domain writer to 

provide inference packages. The domain writer may add new instantiation 

directives; however, modifications of this type are considered changes to the MBP 

inference engine. The writing of instantiation directives is therefore described 

within the description of the inference engine (section 7.4 . 1 .2). 

The following sub sections define the set of instantiation directives supported by 

the model-based planner and the constraints each directive places upon the 

inference packages it may invoke and process. Each instantiation directive may be 

attached only to specified class attribute pairs. Hence, the presentations of 

directives below groups the directives under the heading of the class attribute pairs 

to which they may be applied. 

7.3.6.1  CONCEPT.abstract-actions and PRIMITIVE-OBJECT.primitive­

actions 

Must (<?cardinality, ?action-class-name>) 

2 1 6  

Directive must specifies that a number of instances o f  the class defined by the 

?action-class-name parameter must be created and linked to the instance to which 

the directive is attached. The number of instances of class ?action-class-name 

generated is dependent upon the ?cardinality parameter which may range from a 

(one) to infinity
2
. The following model fragment illustrates the use of the must 

directive. 

class BEAM 
abstract action : value = 0 

beam l :  BEAM 

default = 0 
if_needed = must( a, LAY) 

The query return-value (beam], abstract action) will result in one instance of the 

class LAY being instantiated, and the value facet of beam] being updated to equal 

the name of that instance. 

2 As a MBP is implemented on a physical and therefore finite machine, the number 

of instances permitted is limited by the physical resources of that machine. The 

notion of a plan containing an infinite number of steps leads to some interesting 

issues - particularly execution time. 
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Infer (<?cardinality, ?action-class-name, ?inference-package, ?optional-parameters>) 

Directive infer specifies that a number of instances of the class denoted by the 

?action-class-name parameter may be created and linked to the instance of the 

class to which the directive is attached. The criteria for determining if the 

instances are or are not required is the result of the ?inference-package parameter. 

The infer directive constrains its associated inference packages to return true or 

false. Where true indicates that the action class should be associated. The 

following model fragment illustrates the use of the infer directive and the 

inference package mechanism which must be attached. 

class BEAM 
primitive-action :value = 0 

default = 0 

bearn l :  BEAM 

if_needed = infer (a, STRIKE-FORMWORK, 
infer_strike_formwork, null) 

inference package infer-strike-formwork 
goal strike-formwork 
backward-chain 
rule! cost 0 

if beam.formwork-type = custom then 
return true 

end rule! 

rule2 cost 0 
if beam.formwork-type = prefabricated then 

return false 
end rule2 

The query return value (beaml, primitive-action) will result in one instance of 

class strike formwork being instantiated and linked to instance beaml if an only if 

infer _strikeJormwork returns true. 
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7.3.6.2 ACT/ON.main-effects and ACT/ON.side-effects 

action-must (?effect-text) 

21 8 

Directive action-must specifies that the parameter ?effect-text must be added to the 

effect slot of any instance of the class to which it is attached. The ? effect-text 

parameter may contain a number of variables which the action-must directives 

instantiates. These variables are detailed below: 

• ?object is instantiated to the name of the object instance to which the action 

is associated. 

• ?attribute-name is instantiated the value of the attribute corresponding to 

?attribute-name on the object instance to which the action is associated. 

• ?relationship-name is instantiated to the name of the object instance to 

which the object the action is associated with is related through 

?relationship-name. This parameter may only be used if the relationship is 

constrained to be one to one. 

The example below demonstrates the use of this directive. Examples of the 

variable instantiations may be found within the Pacifica domain encoding in 

Chapter 9. 

class LAY 
related-object: value =0 
main-effects:value = 0 

default = 0 
lf_needed = action-must(laid ?object = true) 

lay l : LAY 
relmcd-objcct: value = beam I 

The query return (layl, main-effects) will result the value facet of lay] 's main­

effect attribute being set to laid beaml = true. 
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action-infer (?effect-text, ?inference-package, ?optional-parameters) 

Directive action-infer specifies that the parameter ?effect-text may be added to the 

effect slot of the instance of the class to which it is attached. Determining if an 

effect is or is not required is achieved through the inference package identified by 

the ?inference-package parameter. The directive constrains inference packages to 

return true and false. The ? effect-text parameter is associated if and only if the 

inference package returns true. The example below illustrators the use of this 

directive. 

class LAY 
related-object: value =0 
rnain-effects:value = 0 

default = 0 

Jay ! :  LAY 

if_needed = action-infer (vibration at ?object = high, 
infer_ vibration_effect) 

relnted-object: value = pile I 

The query return (lay I, main-effects) will result in the value facet of layl 's main­

effects attribute being set to vibration at pile] = high if and only if the inference 

package infer _vibration_effect determines that the laying of pilel will cause 

excess vibration. 

7.3.6.3 ACTION.preconditions 

aggregate-condition (?condition) 

The Aggregate condition directive updates the value facet of the attribute to which 

it is attached with a list of conditions which must hold before the single ?condition 

parameter may be considered satisfied. For example, the condition dry building 

will require a set of conditions to hold. Membership of this set is dependent upon 

the components in specific instance of a problem. If a building includes a large 

concrete floor, the effect floor = dry will form part of the dry building condition. 

If the building does not contain a large concrete floor then this effect is not 

required. 

The domain writer must provide a method which returns the list of conditions 

which together constitute the aggregate condition. 
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7 .3 . 7 Dependency assessment 

Each subclass of class CONCEPT must have a determine dependency method 

written. The method may contain two types of dependency assessment knowledge: 

relationship dependency and, in the case of primitive objects only, primitive 

dependency. The relationship dependency mechanism determines the ordering 

constraints which must be added between actions as a result of the objects to 

which they are related through a domain specific relationship. The primitive 

dependency mechanism determines the ordering constraints which should be 

added between a primitive object's primitive action set. 

In the context of a MBP domain model, a method is an unit of procedural code 

which is executed sequentially. The domain writer may therefore write procedural 

code to determine the dependency between actions or access other forms of 

inference mechanism. A number of dependency directives are supplied which the 

domain writer may insert into a determine dependency method. Each directive is 

described below. 

Link-abstract-action-with-main-effects (?relationship) 

Let A be the instance to which the directive has been attached. Invoking the 

directive will identify the set B which is composed of the objects related to A by 

the relationship parameter ? relationship. The directive then generates the set X 

composed of the abstract actions of set B .  The abstract action of A is then made 

dependent upon the actions in set X. The main-effects of set X are appended to the 

precondition attribute of the abstract action of A. 

Link-abstract-action-without-effects (relationship) 

This directive performs the same operation as the directive link-abstract-action­

with-main-effects ( ?relationship) with the exception of copying the effects of set X 

to the abstract action of A. The directive does not copy effects. 

lnfer-link-abstract-action-with-main-effects(?relationship, ?inference-package) 

This directive performs the same operation as the directive link-abstract-action­

with-main-effects (?relationship) with the exception of determining the 

membership of set B .  The directive applies the inference package specified by the 

parameter ?inference-package to determine if each of the objects related to A by 

the relationship parameter ?relationship should be included within set B.  

Infer-link-abstract-action-without-effects (?relationship, ?inference package) 

220 

This directive performs the same operation as the directive infer-link-abstract­

action-with-main-effects with the exception of copying the effects of set X to the 

abstract action of A. The directive does not copy effects. 
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Primitive-dependency (?primitive-action-head, ?primitive-action-tail) 

This directive may be applied only to a primitive objects primitive action attribute. 

The directive adds a dependency relationship {head < tail } .  Where head 

corresponds to the parameter ?primitive-action-head and tail to the parameter 

?primitive-action-tail. 

Infer-primitive-dependency (?primitive-action-head, ?primitive-action-tail, ?inference­

package) 

This directive may be applied only to a primitive objects primitive action attribute. 

The directive may add a dependency relationship {head < tail} .  Where head 

corresponds to the parameter ?primitive-action-head and tail to the parameter 

?primitive-action-tail. A relationship is added if and only if the inference package 

parameter ?inference-package returns true. 
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7 .3.8 Encoding an example domain 

This section demonstrates application of the domain modelling constructs 

described above through encoding an example problem from the construction 

industry. 

7 .3.8.1 Step 1 : encode the KADS model of expertise 

222 

The KADS model of expertise, detailed within Chapter 5, identified a number of 

classes within the construction domain related through the aggregation 

relationship. Each class in the KADS model may be translated into a class in the 

model-based representation. Aggregation relationships are translated into sub and 

super component attributes of classes as appropriate. 

class BUILDING 
subclass of PROJECT 
sub {FOUNDATIONS, ROOF) 

class ROOF 
subclass of COMPOSITE-OBJECT 
super BUILDING 
sub { STEELWORK, ROOF-DECK, ROOF-COVERING} 

class FOUNDATIONS 
subclass of COMPOSITE-OBJECT 
super BUILDING 
sub (BEAM, PILE} 

class STEELWORK 
subclass of PRIMITIVE-OBJECT 
super ROOF 

class ROOF-DECK 
subclass of PRIMITIVE-OBJECT 
super ROOF 

class ROOF-COVERING 
subclass of PRIMITIVE-OBJECT 
super ROOF 

class BEAM 
subclass of PRIMITIVE-OBJECT 
super FOUNDATIONS 
formwork type prefabricated I custom 

class PILE 
subclass of PRIMITIVE OBJECT 
super FOUNDATIONS 

Figure 7-8, Translation from KADS model to MBP classes 
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7.3.8.2 Step 2: attach relationships 

The second phase of the domain modelling captures domain specific relationships. 

Each relationship in the KADS domain model is translated into an attribute on the 

classes which may participate in the relationship. Figure 7-9 below develops 

Figure 7-8 to include domain specific relationships (balded). 

class BUILDING 
subclass of PROJECT 
sub { FOUNDATIONS, ROOF} 

class ROOF 
subclass of COMPOSITE OBJECTS 
super BUILDING 
sub [ STEELWORK, ROOF-DECK, ROOF-COVERING} 

class FOUNDATIONS 
subclass of COMPOSITE-OBJECTS 
super BUILDING 
sub { BEAM, PILE} 

class STEELWORK 
subclass of 
super 
supports 
supported by 

class ROOF-DECK 

PRIMITIVE-OBJECT 
ROOF 
{ROOF-DECK} 
{BEAM} 

subclass of PRIMITIVE-OBJECT 
super ROOF 
supports {ROOF-COVERING} 
supported by {STEELWORK} 

class ROOF-COVERING 
subclass of PRIMITIVE-OBJECT 
super ROOF 
supported by {ROOF-DECK} 

class BEAM 
subclass of PRIMITIVE-OBJECT 
super FOUNDATIONS 
fonnwork type prefabricated I custom 
supported by {PILE} 
supports {STEEL WORK} 

class PILE 
subclass of PRIMITIVE-OBJECT 
super FOUNDATIONS 
supports {BEAM} 

Figure 7-9, MBP classes with domain specific relationships encoded 
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7.3.8.3 Step 3 :  attach abstract and primitive actions 

224 

Step 3 attaches abstract and primitive actions to each subclass of concept within 

the model. Figure 7-10 below extends Figure 7-8 to include abstract and primitive 

actions. 

class BUILDING 
subclass of 
sub 
abstract action: 

class ROOF 

PROJECT 
{ FOUNDATIONS, ROOF} 
if_needed must(a, build) 

subclass of COMPOSITE-OBJECTS 
super BUILDING 
sub { STEELWORK, ROOF DECK, ROOF COVERING } 
abstract action: if_needed must(a, erect) 

class FOUNDATIONS 
subclass of COMPOSITE-OBJECTS 
super BUILDING 
sub [BEAM, PILE} 
abstract action: if_needed must(a, lay) 

class STEELWORK 
subclass of 
super 
supports 
abstract action: 
primitive actions: 

class ROOF-DECK 

PRIMITIVE-OBJECT 
ROOF 
{ROOF-DECK} 
if_needed must(a, erect) 
if_needed must(a, primitive erect) 

subclass of PRIMITIVE-OBJECT 
super ROOF 
supports {ROOF-COVERING} 
supported by { STEELWORK} 
abstract action: if_needed must(a, lay) 
primitive actions: if_needed must(a, primitive lay) 

class ROOF-COVERING 
subclass of PRIMITIVE-OBJECT 
super ROOF 

(ROOF-DECK} supported by 
abstract action: if_needed must(a, lay) 
primitive actions: if_needed must(a, primitive lay) 

class BEAM 
subclass of 
super 
formwork type 
supported by 
abstract action: 
primitive action: 

class PILE 
subclass of 
sub 
supports 
abstract action: 

PRIMITIVE-OBJECT 
FOUNDATION 
prefabricated I custom 
[PILE} 
if_needed must(a, lay) 
if_needed must(a, setoutposition) must(a, excavate beam) 
must(a, blind bottom) must(a, reinforcement cages) 
must (a, formwork) must(a, clean out) 
must(a, concrete) must(a, cure concrete) 
must(a, vibrate concrete) infer(a, mould oil, DETERMINE 
MOULD OIL) infer(a, strike formwork, DETERMINE 
STRIKE FORMWORK) 

PRIMITIVE-OBJECT 
FOUNDATION 
{ BEAM } 
if_needed must(a, lay) 

primitive actions: if_needed must(a, lay pile mat), must(a, drive pile), 
must(a, prep;1re ground) 

Figure 7-10, Attachment of abstract and primitive actions to classes in the 
MBP domain model 
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7 .3.8.4 Step 4: write action classes 

An action class must be written for each action which may be associated with a 

subclass of class CONCEPT. Figure 7- 1 1  defines the action classes required by 

Figure 7-10.  

class BUILD 
subclass of ACTIONS 
object ( }  
main effects action must(?object = built) 
side effects { } 
achieve { }  
preconditions { }  

class BUILD-BUILDING 
subclass of BUILD 
object ( BUILDING} 

class ERECT 
subclass of ACTIONS 
object { )  
main effects action must(?object = erected) 
side effects { } 
achieve { }  
preconditions { } 

class ERECT-ROOF 
subclass of ERECT 
object {ROOF} 

class ERECT -STEELWORK 
subclass of ERECT 
object { STEELWORK} 

class LAY 
subclass of ACTIONS 
object { }  
main effects action must(?object = laid) 
side effects ( } 
achieve { }  
preconditions { }  

class LAY-FOUNDATIONS 
subclass of LAY 
object {FOUNDATIONS} 
precondition aggregate condition ( site-safe} 

class LAY-ROOF-DECK 
subclass of LAY 
object {ROOF-DECK)  

class LAY-ROOF-COVERING 
subclass of LAY 
object {ROOF-COVERING} 

class LAY-PILE 
subclass of LAY 
object {PILE) 

class LAY-BEAM 
subclass of BEAM 
object {BEAM} 

class SET-OUT-POSITION 
subclass of ACTION 
main effects action must (?object position = set out) 

Figure 7-11, Action classes 
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7.3.8.5 Step 5: write inference packages 

226 

Figure 7-12 defines the inference packages to determine the need for the actions 

from the directive infer in Figure 7-10. 

inference package-determine-mould-oil 
goal mould oil 
backward chain 
rule 1 
ifformwork type of beam = custom then 

true 
end rule 
rule 2 
if formwork type of beam = prefabricated then 

false 
end rule 

inference package determlne-formwork 
goal formwork 
backward chain 
rule 1 
if formwork type of beam = custom then 

true 
end rule 
rule 2 
if formwork type of beam = prefabricated then 

false 
end rule 

Figure 7-12, Inference packages 
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7.3.8.6 Step 6: write methods for determining dependency 

Each subclass of concept requires a determine dependency method to be written. 

Figure 7-13 specifies the determine dependency methods required by the 

construction domain model. 

class BUILDING 
method detennine-dependency 

{ 
null 

class ROOF-DECK 
supports { ROOF-COVERING} 
supported by { STEELWORK} 
method detennine dependency 

[ 
link-abstract-action-with-main-effects (supported_by) 

class ROOF-COVERING 
supported by {ROOF-DECK }  
method detennine dependency 

{ 
link-abstract-action-with-main-effects (supported_by) 

class BEAM 
formwork type prefabricated I custom 
supported by {PILE} 
method determine dependency 

{ 

class PILE 

link-abstract-action-with-main-effects (supported-by) 
primitive-dependency (SET-OUT-POSITTON, PREPARE-GROUND) 
primitive-dependency (PREPARE-GROUND, EXCAVATE-BEAM) 
primitive-dependency (EXCAVATE-BEAM, BLIND-BOTTOM) 
primitive-dependency (BLIND-BOTTOM, FORMWORK) 
primitive-dependency (FORMWORK, CLEAN-OUT) 
primitive-dependency (MOULD-OIL, CLEAN-OUT) 
primitive-dependency (CLEAN-OUT, REINFORCEMENT-CAGES) 

supports { BEAM } 
method determine dependency 

[ 
primitive-dependency (PREP ARE-GROUND, LAY-PILE-MAT) 
primitivr.-dependency (LAY-PILE-MAT, DRIVE-PILE) 

Figure 7-13, Methods for determining dependency 
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7 .3 .8. 7 Step 7: add instances for a specific problem 

228 

Steps one to six defined the generic action and dependency knowledge of the 

construction problem elicited in Chapter 5. Step 7 instantiates all subclasses of 

class CONCEPT to represent specific instances and relationships in a building's 

design. 

instance supennarket 
instance of class BUILDING 
sub { the-foundations, the-roof } 

instance the roof 
instance of class 
sub 
sub 

instance foundations 

ROOF 
supermarket 
{ roof-steelwork, the-roof-deck, the-roof-covering }  

instance o f  class FOUNDATIONS 
sub supermarket 
sub {beam! ,  pile! ,  pile2) 

instance roof steelwork 
instance of class STEELWORK 

sub the-roof 

supports {the roof deck) 
instance the roof deck 

instance of class ROOF-DECK 
sub the-roof 
supports { the-roof-covering) 
supported by {roof-steelwork) 

instance the roof covering 
instance of class ROOF-COVERING 
sub the-roof 
supported by { the-roof-deck) 

instance beaml 
instance of class BEAM 
sub the-foundation 
formwork type 
supported by 

instance pilel 
instance of class 
sub 
supports 

instance pile2 

custom 
{ pile ! ,  pile2 ) 

PILE 
the-foundation 
{beam! ) 

instance of class PILE 
sub the foundation 
s11 pports { beam I ) 

Figure 7-14, Instances representing the restaurant extension 
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7 .4 Model-based planner 

The model-based planner component processes a domain model specified using 

the constructs in section 7.3 to synthesise actions, conditions, effects, and 

dependency constraints. 

The MBP component is divided into two sets of algorithms: planner support 

functions, and planning algorithms. The support functions process the facets of 

attributes invoking and processing instantiation directives and inference packages. 

The planning algorithms navigate a domain model, utilising the planner support 

functions, to generate the actions, conditions, effects, and dependency constraints 

required. 

Planner support functions are described before the planning functions below as the 

planning functions are implemented in terms of the support functions. After both 

sets of functions have been introduced, an example execution over the domain 

model specified in section 7 .3 is described. 

7.4.1 Planner support functions 

Planner support functions may be decomposed into two sets: facet functions, and 

instantiation directive and inference package handlers. Each set is described 

below. 

7 .4.1 .1 Facet functions 

Facets functions process the three facet attribute structure. The following table 

describes the functions, their parameters, and their operation.3 

Function parameters description 
o_get instance, returns the value or inferred value of a 

attribute, specific instance's  attribute facet. 
facet. 

o_get_ v _d_f instance, following the precedence value, default, 
attribute. if_needed, this function returns the value 

of an attribute. 
o_put instance, updates the specific facet of an attribute to 

attribute, include the value parameter. 
facet, 
value. 

o_clear instance, clears all data from the specified instance, 
attribute, attribute, facet triple. 
facet. 

3These functions are based upon the Rule-Based Frame System (RBFS) (Barber 

et. al. 1987). Function prefixes have been changed fromf_ to o_ to reflect the use 

of object-oriented technology within the domain modelling. 
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A fragment of pseudo code demonstrating the processing of an if_needed facet 

within both o__get and o__get_v_dJis depicted below: 

if facet = if_needed then 

Identify directive 
Result = Invoke directive 
if result not equal to unknown or result equal to already-processed then 

o_put(self, attribute, value, result) 
end if 
return result. 

Figure 7-15, if_needed facet processing pseudo code 

It is important to note that querying the if_needed facet of an attribute will update 

the value facet if a result is obtained. The inferred value will be the most up to 

date value for an attribute, thus, it should over write any the existing value facet. 

The exception to this case is if an instantiation directive returns already­

processed. This result permits the domain writer the option the to write 

instantiation directives which instantiate and update the value facet of an attribute 

if the default mechanism is not appropriate. The domain writer must, however, 

ensure that the value facet of an attribute is updated to equal the most recently 

referred value. 

7.4.1 .2 Processing instantiation directives and inference packages 
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The processing of instantiation directives and inference packages is initiated by 

either an o__get_v_dJor an o__get request for an attribute's  if_needed facet. Figure 

7-15 presents the pseudo code for the directive handler module of the MBP. 

Figure 7- 1 6, below, places this algorithm into context with the instantiation 

directive and inference package components of the MBP. 
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Figure 7-16, Instantiation and inference package processing architecture 
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The directive interface consists of the two facet functions o_get and o_get_v _dJ. 

If either function is invoked for an if _needed facet of an attribute, the directive 

handler module is invoked. All directives conform to the syntax 

<directive>( <parameters>). The directive handler identifies the specific directive 

stored in an attribute and invokes that directive. In Figure 7- 16, directives are 

represented as rectangular sub modules of the directive handler model. The 

directives must and infer are included in the figure together with two dotted 

rectangles - indicating that more directives may be added to the architecture. 

New directives may be supplied by a domain writer as both part of the MBP and 

as domain specific directives stored on the class which requires them. This 

architecture allows the domain writer to identify new domain independent 

directives and integrate them into the MBP, or to encode domain specific 

directives within the domain model. Domain specific and domain independent 

constructs are thus kept separate. Figure 7-17, below, presents the directive search 

routine which first searches the MBP for an instantiation directive, before 

searching the class on which the attribute to which the if_needed facet is attached. 

if method on MBP 
call directive handler 

if method on calling class 
call directive handler 

else 
error, undefined directive 

end if 

Figure 7-17, Directive search routine 

During processing, instantiation directives may utilise the inference package 

interface, depicted in Figure 7-16 as resting behind the instantiation directives. 

The inference package interface allows instantiation directives to invoke inference 

packages written for a specific domain. 
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7.4.2 Planning functions 

Planning functions apply the planner support functions described in section 7.4. 1 

to synthesise the actions and dependency constraints required by a plan. Each 

planning function is introduced below, before the overall planning algorithm is 

described. 

7.4.2.1 Action synthesis 
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Each instance of a subclass of class CONCEPT within a domain model will have 

an abstract action attribute and instances of class PRIMITIVE-OBJECT will have 

in addition a primitive action attribute. By querying the value of these attributes 

using o__get_v_dJ, the action instances which need to be associated with each 

instance in a domain model will be synthesised via instantiation directives and 

inference packages. The action synthesis algorithm applies the o __get_v _dJ query 

to each primitive and abstract action attribute within a domain model. Figure 7-18 ,  

below, presents the action synthesis algorithm. 

generate actions (item: COMPONEN1) 
o__get_v_d_f(item, abstract-action) 
for each action: o__get_ v _d_f(action, main-effects) 

o__get_ v _d_f(action, side-effects) 
if item is of type PRIMITIVE-OBJECT then 

else 

o__get_ v _d_f(item, primitive-actions) 
for each action: o_get_ v _d_f(action, main-effects) 

o_get_ v _d_f(action, side-effects) 

for each sub item, n or item 
generate actions (n) 

end if 

Figure 7-18, Action synthesis algorithm 

The algorithm is initiated with the name of the single instance of class PROJECT 

within a domain model. The abstract action attribute is queried, before the 

algorithm is applied recursively to each instance in the domain model related 

through the sub relation with the project instance. The path taken through a 

domain model by the algorithm is depicted in Figure 7-19 below. 

Q 
4 11 5 1 1  6 f; 7 

Path = 1 ,2,4,5,3,6,7 

Figure 7-19, Action synthesis model transversal order 
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The order of model traversal in not significant at present. The only constraint upon 

the algorithm is that every instance of a subclass of concept is processed by the 

algorithm. Issues surrounding the order of model transversal are discussed in the 

further work section within Chapter 9. 

7 .4.2 .2 Updating the hierarchy of actions 

The action synthesis algorithm results in a number of model elements associated 

with actions. The action hierarchy update algorithm processes each of the actions 

within a model to add sub and super relationships. Abstract actions are linked with 

their related objects super components abstract action under the super 

relationship. Primitive actions are related to their related components abstract 

action through the super component relationship. Figure 7-20, below, presents the 

input and output of this process. 

object abstract action! action! 

object object 
abstract action2 l 

� 
primitive action3 l action3 

primitive 
action4 action4 

Figure 7 -20, Action hierarchy 

The action hierarchy update algorithm is detailed in Figure 7-21 below. 

update-hierarchy (object: CONCEPD 
for all actions 

if action.object is not of type PROJECT and is not of type PRIMITIVE-OBJECT then 
action.sub = action.object. super.abstract-action 
action.object. sub.abstract-action = action.sub 

if action is a primitive action then 
action.sub =action.object. abstract 
action.object. abstract.sub = action 

end if 

Figure 7-21, Action hierarchy update algorithm 
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7 .4.2.3 Activity generation 

MBP defines an activity as the union of an object and an action. The activity 

generation algorithm recurses each action within a model and generates an activity 

which records the name of the action and the object associated with it. Figure 7-

22, below, presents the activity generation algorithm. 

generate-activities (object: COMPONENT) 
for all actions 

create a new instance of class activity 
new activity.action = action 
new uc1ivi ty.objec1 = action. object 

Figure 7-22, Activity synthesis algorithm 

The activity data structures resulting from this process are utilised by the 

dependency synthesis algorithms and the HTN planner interface described in 

sections 7 .4.2.4 and 7.5 respectively. 

7 .4.2.4 Dependency synthesis 

Dependency synthesis derives the dependency constraints between activities 

through two stages: relationship and primitive dependency and aggregate 

dependency. Each process is described below. 

7 .4.2.4.l Relationship and primitive dependency 
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Each subclass of class CONCEPT must have a method determine dependency 

written. The relationship and primitive dependency algorithm traverses the model 

activating this method for each instance. The dependency synthesis algorithm is 

defined in Figure 7-23 below 

generate dependency over model (Item : component) 
send message(item : generate-dependency) 
if item is not primitive then 

for each sub item, n 
generate-dependency (n) 

end for 
end if 

Figure 7-23, Dependency synthesis algorithm 
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7 .4.2.4.2 Aggregate dependency 
Aggregate dependency is invoked by applying the o_get_v_dJquery to each 

instance of class ACTION within the domain model. This algorithm is specified 

below. 

for all instances of clas� ACTION 
o_geLv_d_f (action, precondMon) 

7.4.2.5 Complete MBP planning algorithm 

The MBP algorithm applies the activity synthesis, action hierarchy update, activity 

synthesis and dependency synthesis algorithms defined above. 

MBP _plan(project : PROJECT) 
generate-object-actions (project) 
update-hierarchy(project) 
generate-activities(project) 
gcncmte-dependcncy(project) 

Figure 7-24, Complete MBP algorithm 
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7.4.3 Applying the MBP algorithm 

236 

This section presents the execution trace of the MBP algorithms described above 

produced when synthesising a plan for the domain description produced in section 

7 .3 .8 .  The text has been formatted for clarity. 

user >Invoke MBP 
---- MBP v4 invoked ---
one instance of class project = supermarket 
planning for supermarket 
generate actions (supermarket) 

o_get_ v _d_f(supennarket.abslract-action) returns build 
:because: must(a, build) directive 

supermarket is not primitive 
processing . ubcomponents of supemmrkc1 
for all subcomponents of supem1arke1 over set = { the-foundations, the-roof] 

looping for the{oundations 
generate-actions (the-foundations) 

o_get_ v _d_f(the-foundation.abstract-action) returns lay 
:because of rnust(a, lay) directive 
the-foundations is not primitive 
for all subcomponents of the-foundations over set = {beam !,  pile I, pile2 ] 
looping for beam] 
o_get_v_d_J(beaml.abstract-action) return lay 
:because of must( a lay) directive 
beaml is a primitive-object 
o_get_ v _d_f(bearnl .primitive-action) returns 
[ set-out-position, excavate-beam, blind-bottom, lay-reinforcement­
cages, fonnwork, clean-out, cure-concrete, vibrate-concrete] 
:because of must directive: 
{ mould-oil} 
because of infer directive and inference package 
DETERMINE MOULD OIL returned true 
{ strike-fonnwork } 
: because of infer directive and inference package 
DETERMINE STRIKE FORMWORK returned true 
processing of beam l complete 
looping for pile 1 

o_get_ v _d_f(pile I .abstract-action) return lay 
:because of directive must(a, lay) 
pile! is a primitive object 
o_get_ v_d_f(pilel .primitive-actions) returns 
{lay-pile-mat, drive-pile, prepare-ground] 
:because of directive must: 
processing of pile I complete 

looping for pile2 
o_get_ v _d_f(pile2.abstract-action) return lay 
:because of directive must(a, lay) 
pile2 is a primitive-object 
o_get_ v _d_f(pile2.primitive-actions) returns 
{lay-pile-mat, drive-pile, prepare-ground } 
:because of directive must: 
processing of pile2 complete 
processing of the-foundations complete 

looping for the roof 
generate actions(the-roof) 

o_get_ v _d_f(the-roof.abstract-action) return erect 
:because of directive must( a, erect) 
the roof is not primitive 
for all subcomponents of the-roof over set = { the-roof-deck, the­

roof-steelwork, the-roof-covering} 
looping for the-roof-deck 

o_get_ v _d_f(the-roof-deck, abstract-action) return lay 
: because of direct must (a, lay) 
the-roof-deck is primitive 
o_get_v_d_f(the-roof-deck, primitive-action) return primitive lay 
:because of directive must(a, primitive lay) 
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processing of the roof-deck-complete 
looping for the roof-steelwork 
o_get_ v _d_f(the-roof-steelwork, abstract-action) return erect 
: because of direct must (a, erect) 
the-roof-steelwork is primitive 
o_get_ v _d_f(the-roof-steelwork, primitive-action) return primitive-erect 
:because of directive must(a, primitive-lay) 
processing of the-roof-steelwork complete 
looping for the-roof-covering 
o_get_ v _d_f(the-roof-covering, abstract-action) return lay 
: because of direct must (a, lay) 
the-roof-steelwork is primitive 
o_get_v_d_f(the-roof-steelwork, primitive-action) return primitive lay 
:because of directive must( a, primitive lay) 
processing of the-roof-covering complete 
finished subcomponents of the-roof 
finished processing of the-roof 
finished processing of the-supennarket 

generation of actions completed 

Action synthesis results in a set of actions associated with the instances of class 

concept in a model. These instances are detailed below. Modifications to the 

instances by the action synthesis algorithm are bolded. 

---- MBP Instances of class concepts list 
instance supennarket 

instance of class 
sub 
abstract action: 

instance the-roof 
instance of class 
super 
sub 
abstract action 

instance the-foundations 
instance of class 
super 
sub 
abstract action: 

instance steelwork 
instance of class 
super 
supports 
abstract action 

primitive actions 

instance beam 1 
instance of class 
super 
fonnwork type 
supported by 
abstract action 

primitive action 

BUILDING 
{ the foundations, the roof} 
value a build action 1 
if_needed rnust(a, build) 

ROOF 
supermarket 
{ roof steelwork, the roof deck, the roof covering] 
value a erect action 1 
if_needed rnust(a, erect) 

FOUNDATIONS 
supermarket 
{ beam ) ,  pile l ,  pile2] 
value a lay actionl 
if_needed: must(a, lay) 

STEELWORK 
the roof 
( the roof deck I 
value an erect action 1 
if_needed must(a, erect) 
value a primitive erect action 1 
if_needed rnust(a, primitive erect) 

BEAM 
the-foundations 
custom 
( pile] 
value a lay action 2 
if_needed must(a, lay) 
value a set out position action 1, a excavate beam action 1 
a blind bottom action 1, a reinforcement cage action 1 
a formwork action 1, a clean out action 1, a concrete action 1 
a cure concrete action!, a vibrate concrete action 1 
a mould oil action 1, a strike formwork action 1 
if_needed must(a, setoutposition) must(a, excavate beam) 
must(a, blind bottom) must(a, reinforcement cages) 
must (a, formwork) rnust(a, clean out) 
must(a, concrete) must(a, cure concrete) 
must(a, vibrate concrete) 
infor(n. mould oil, DETERMINE MOULD OIL) 
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infer a, strike formwork, DETERMINE STRIKE FORM WORK) 

The attachment of actions to subclasses of class concept results in the instantiation 

of new actions. A subset of the new actions is listed below. The object to which 

each action instance is related is bolded. 

--- MBP action instances 

instance lay I 
instance of class lay 
object the foundations 
main effects the foundations laid = true 
sub { } 
super { }  

instance lay2 
instance of class lay 
object pilel 
main effects pile I = laid 
sub { }  
super { }  

instance lay pile mat I 
instance of class lay pile mat 
object pile 1 
main effects pile mat = laid 
sub { } 
super { } 

instance drive pile 
instance of class drive 
object pile 1 
main effect pile! = driven 
sub { }  
super { } 

instance prepare ground 
instance of class prepare ground 
object pile 1 
main effect ground pile 1 = prepared 
sub { }  
super { }  

--- MBP end of action instance trance 

With action synthesis complete, the MBP algorithm invokes the update action 

hierarchy algorithm to set the sub and super relationships of each action. A trace 

of this process is presented below. The updated actions are output immediately 

after the algorithm trace. 
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--- MBP Updating action hierarchy 
Updating action hierarchy 

for all actions in model set 
processing action lay pile! 

lay pile! is an abstract action 
lay pile ! .  object = pile! 
pile 1. super component = the foundations 
the foundations. abstract action = lay 
making lay pile! a sub action of lay foundations 

processing action set out position pile 
set out position pile! is a primitive action 
pile ! .  abstract action = lay pile! 
making set out position pile! a sub action of lay pile! 

--- MBP actin hierarchy updated, instance trace 

instance lay! 
instance of class lay 
object the foundations 
main effects the foundations laid = true 
sub { build supermarket) 
Sub { lay pile! ,  lay beam 1 ,  lay beam2) 

instance lay2 
instance of class lay 
object pilel 
main effects pile I = laid 
sub { lay foundations) 
Sub { set out position, lay pile mat etc.} 

instance lay pile mat! 
instance of class lay pile mat 
object pile 1 
main effects pile mat = laid 
sub{ lay pile ! ) 
Sub {null) 

With activity synthesis complete and actions ordered into a hierarchy, activities 

may be synthesised. 

--- MBP generate activities 
for all actions 

action lay! 
generate instance of class activity :activity! 
activity! .  action = lay (layl .action) 
activity ! .  object = pile l(layl .object) 

-- MBP activity trace 

acityl 
object pile! 
action lay 
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With activity generation complete, the MBP invokes the generate dependency 

algorithm for each instance of class concept within the domain model. 

--- MBP generating dependency 
for all objects 

processing object supermarket 
generate dependency returns null 

processing object the foundations 
generate dependency returns null 

processing object the roof 
generate dependency returns null 

processing object beaml 
link abstract action with main effects (supported by) 
beam! abstract action = lay I 
lay ! .  activity = activity6 
Supported by set = {pile ! ,  pile2 } 
supported by abstract action set = { lay2, lay3 } 
supported by activity set = { activity4, activy5 } 
link { activty4, activty5 } before activity 6 
primitive dependency (set out position, prepare ground) 
beam! .set out position. activity = activity 56 
beam I .prepare ground activity = activity 44 

link activity 56 before activity 44 

-- MBP trace of activities with dependency assigned. 

activity! 
object pile! 
actin lay 
dependant upon = null 
dependant upon me = activity2, 

activity2 
object beam! 
actin lay 
dependant upon = activity! 
dependent upon me = activity3 --- object lay roof steelwork 

The second phase of dependency synthesis considers the aggregate conditions 

within the model. Only the instance of class ACTION lay foundations contains an 

aggregate condition: aggregate condition (safe-site). A trace of the MBP 

processing this action is depicted below. 

--- MBP processing aggregate conditions 
processing preconditions lay the foundations 

aggregate condition = safe site. 
activating inference package safe site 
returns true and list { site fencing erected, school safety lecture given} 
appending condition list to precondition value facet of lay the foundations 

--- MBP trace of actions effected by aggregate conditions 
action lay the foundations 
precondition: value site fencing = erected, school safety lecture = given 
if_needed aggregate condition (safe site) 

--- MBP v4 complete 13 :09:23 

With aggregate dependency determined, the MBP process is complete. 
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7.5 HTN planner i nterface 

The MBP generates actions and dependency constraints based upon the properties 

of components and the relationships between components. HTN planning 

combines task networks containing action and dependency knowledge to form a 

complete and consistent plan with condition and effect constraints established and 

maintained. This section describes how the results of the MBP process may be 

complied into task networks and passed to a HTN planner. The description first 

identifies the point at which the two technologies may be integrated, before 

detailing the task network compilation algorithms. The description concludes with 

a trace of the HTN planner interface processing the results of the MBP process 

generated in section 7 .4. 

7.5.1  Interface point 

A planning problem is specified to a HTN planner through a non-primitive task. 

This task is then refined until a plan is synthesised containing only primitive 

actions and no action interactions (see Chapter 2 and Chapter 3 for a detailed 

description of HTN planning). HTN planners identify refinements for tasks 

through requests to a schema library. These requests are of the form expand 

{pattern}. Where pattern is of the formfunction argl .. argn. For example, expand 

{build house}. At this point the interface may compile task networks from the 

results of the MBP process into a format accepted by a HTN planner. 

The integrated architecture places a control flag within the schema library which 

the planning system user may set to determine if the library is run in traditional 

mode, model-based mode, or in a combination of both modes. This approach 

permits the HTN planner component of the integrated architecture to be executed 

with schema selection performed unmodified, from the results of the MBP, or 

from a combination of both sources. Figure 7-25 , below, depicts the interface 

mode selection algorithm. 

mode flag : Static I Dynamic I Mixed 

expand I pattern) 
if mode flag = Dynamic 

return list of schemas from model 
else if flag set to Static 

return list of schemas from library 
else If flag set to Mixed 

return list of schemas from model and schema library 
end if 

Figure 7-25, Interface mode selection algorithm 

The rationale for providing different interface execution modes is described in 

Chapter 8 and critiqued in Chapter 9 
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7.5.2 Task-Definition 

The definition of the problem a HTN planner is to achieve is traditionally supplied 

through a task definition file. The problem definition of the results of the MBP 

processing may be defined as the concatenation of the abstract action of the 

instance a model' s  project CLASS and the name of that project CLASS instance. 

For example, in description synthesised in section 7 .4.3, the task definition would 

be build the-supermarket. A Task-Definition algorithm is provided to 

automatically synthesise this definition. The task definition template instantiated 

by the Task-Definition algorithm is depicted in Figure 7-26 below. 

task "project. abstract action" # "project"; 
nodes I start, 

2 finish, 
3 action {project.abstract-action project ] ;  

orderings l -->3,3-->2; 
end schema; 

Figure 7-26, Task definition template 

7.5.3 Integrated task expand algorithm 
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The integrated architecture' s  task expand algorithm intercepts requests from the 

HTN planner component of the integrated architecture to provide candidate 

schemas for expanding a task. The algorithm compiles the hierarchical task 

network to satisfy requests from the knowledge structures synthesised from the 

MBP component. The algorithm is defined in Figure 7-27 below. 

The HTN-expand algorithm accepts two parameters from a HTN expand request: 

function and argument. The algorithm constrains function to be an instance of 

class ACTION and argument to be an instance of either class PROJECT, or class 

COMPOSITE-OBJECT, or class PRIMITIVE-OBJECT. The constraints ensure the 

semantics of the expand request action object are maintained. 

The function parameter is further constrained to be related to the argument 

parameter through an abstract-action relation. This constraint first ensures that the 

action is to be applied to the object, and second that the algorithm does not 

attempt to expand a primitive-action. 

If the parameters are consistent, the algorithm first creates a new schema with a 

name generated by concatenating the function and argument parameters. The 

expands field of the new schema is also set equal to this concatenation, thus, 

defining the task for which the new schema is an suitable refinement. 
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HTN-expand (function, argument) 

; ; ;  f)flrmneter constraints 
argument Instance of class PROJECT or instance of class COMPOSITE-OBJECT or 

instance of class PRIMITIVE-OBJECT 
function instance of class ACTION related to argument through the abstract-action 

relation. 
;;; algorithm 
new-schema-name = function #' '# argument 
new-schema-name.expands = new-schema-name 

; ; ;  sy1111te.fis 1111des 
if argument is an instance of class PROJECT or COMPOSITE-OBJECT then 

let object-list = subcomponents of function 
new- chema-namc.nodes = the abstract actions of object-list # the names of 
the objects within object-list 

else if argument is an instMce of class PRIM IT E-OBJECT then 
new- chema-name.nodcs = the primitive action. a sociutcd with argument # argument 

end if 

; ; ;  process main effects and side-effects 
for each action added to new-schema-name.nodes 

add main-effects to new-schema.only_use_for_effects including "at ?node-number" 
where ?node-number = position of current new-schema-name.nodes in list add side­
effects to new-schema.effects including "at ?node-number" 
where ?node-number = position of current new-schema-name.nodes in list 

end loop 

; ; ;process conditions 
for each action added to new-schema-name.nodes 

copy oil ction. prec nditi n into n w- chemn-nomc.conditions 
if prccomlition i. as n result of nn orderi ng consm1int berween . et ions 

make the condition supervised if producing , ction i within new­
schema-name.nodes and add an ordering constraint to the schema 
otherwise make condition an encapsulation-busting condition 

end if 
end loop 

end HT -expand. 

Figure 7-27, HTN-expand algorithm 

The generation of nodes may take one of two paths. First, if the argument 

parameter corresponds to a instance of class PROJECT or class COMPOSITE­

OBJECT then the nodes of the new schema become equal to the abstract action of 

each sub component of the argument parameter combined with the name of each 

sub component. Second, if the argument parameter corresponds to an instance of 

class PRIMITIVE-OBJECT then the nodes of the new schema become equal to the 

primitive actions of the argument parameter combined with the name of the 

argument parameter. 

Effects are instantiated in the new schema by copying over the main-effects and 

side-effects of the actions included within the new schema into the 

only_useJor _effects and effects fields respectively. 
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Condition compilation is divided into a number of stages. First, the preconditions 

of each action included within the node field of the new schema are copied into 

the schema's conditions field. Each precondition is then processed to determine its 

type. If a precondition results from an ordering relationship between activities in 

data structures generated by the MBP, the producing and consuming action of the 

condition are known. However, the producing action may not be a member of the 

current schema, hence, a supervised condition may not be placed. If the producing 

action is a member of the current schema a supervised condition and an ordering 

constraint is added to the new schema to complete processing of the condition. If, 

however, the producing action is not a member of the current schema, the 

condition is typed as an encapsulation-buster. This condition type indicates that 

the producing and consuming action are known, but the constraint cannot be added 

to a HTN plan until both the producing and consuming actions have been inserted 

into the plan. The processing of encapsulation-buster conditions is detailed in 

section 7.5.4 below. 

Figure 7-28 below presents a trace of the HTN-expand algorithm executing over 

the domain description produced by the MBP in section 7.4.3.  

HTN-planner interface invoked 
generating task 

project = supermarket 
project.abstract-action = build 
generating task defini lion schema 

:task build-supermarket-task-definition 
nodes 1 start, 

2 end, 
3 action (build supermarket); 

orderings J -->3,3-->2; 
:end task;;; build-supermarket 

HTN Planner invoked with task build-supermarket. 
issues { action {build supermarket} }  
picked issue { action (build supermarket} 
request HTN-expand (build supermarket) 
new-schema-name = build-supermarket 
supermarket is an instance of class PROJECT 
new-schema-name.nodes = [ l ]  action { Jay foundations } 

[2] action (erect roof} 
new-scherna.only_use_for_effects = foundations laid at [ l )  

roof erected at [2] 
no orderings 
no conditions 
return schema 

:schema build-supermarket 
expands {build supermarket} 
nodes 1 .action {lay foundations}, ;;; from Sub of supermarket 

2 .action{ erect roof}; ;;; from Sub of supermarket 
effects foundations = Laid at [ 1] 

roof =erected at  [2] 
end schema;;; build-supermarket 

HTN planner applying schema build-supermarket 
issues = { action { lay foundations } .  action { erect roof) 
picked issue { action {lay foundations } )  

Figure 7-28, Trace of the HTN-expand algorithm produced within the 
construction domain 
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7.5.4 Processing encapsulation-buster conditions 

The encapsulation-buster condition type is included within the integrated 

architecture to relax the encapsulation constraint upon schemas. Within traditional 

HTN planning, a condition of type supervised may only be placed between actions 

which appear within the same schema. By following this constraint, HTN planners 

ensure that a schema does not make assumptions about the other actions which 

will be included within a plan. The unsupervised condition type permits a 

condition to be specified where its establishment may come from an action 

inserted by another schema, however, the condition type does not specify the 

specific action from which establishment will be achieved. Identifying the action 

from which a unsupervised condition will be established is left to the HTN 

planning engine. 

In the context of the integrated architecture, the MBP component may identify 

ordering relations between actions which when compiled into task networks will 

not reside in the same schema. If the integrated architecture is executed in 

integrated mode only, then it is possible to guarantee that both actions will be 

included within a plan. Using an unsupervised condition type would therefore 

place an unnecessary overhead upon the HTN component of the architecture. The 

encapsulation-buster condition type is included to address this case. 

The HTN-expand algorithm specified in Figure 7-27 above details the criteria 

under which an encapsulation-buster condition is placed. Conditions of this type 

are of the form {producing action name, consuming action name, conditions}. For 

example, { lay-pile-action7, erect-steelwork-action3, pile7 = laid]. When a 

schema is received by a HTN planner containing encapsulation-buster conditions, 

each encapsulation-buster condition is added to the encapsulation-buster-queue. 

When expansion of the schema is completed, the consuming action is guaranteed 

to be present within the plan as the schema containing the encapsulation-buster 

condition will always contain this action. Immediately after expanding the schema, 

the task refinement engine is modified to examine each member of the 

encapsulation-buster-queue. 

If the producing action is present within the plan, the condition may be 

implemented by adding an ordering constraint between the producing action and 

consuming action and a supervised condition between the two actions 

corresponding to the conditions field within the condition. The encapsulation­

buster condition is then removed from the queue. 

If the producing action is not present within the plan, the condition cannot be 

processed. The condition is left on the queue, and the consuming action marked as 

suspended. This suspension prevents further refinement of the consuming action 

before the encapsulation-buster condition upon it has been recorded. 
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7 .6 Implementation status 
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The integrated architecture described within the chapter has been implemented in 

Intellicorps KAPPA-PC. The implementation utilises the HTN workbench 

described in Chapter 3 .  



7.7 Summary and conclusions 

Development of an integrated architecture 

This chapter presented an integrated architecture developed to exploit the relative 

capabilities of classical and model-based planning technologies. The architecture 

is composed of five components: a set of model-based domain modelling 

constructs, a domain model - model-based planner interface, a model-based 

planner, a model-based planner - HTN planner interface, and a HTN planner. 

The model-based domain modelling constructs provide the mechanism for 

modelling a specific application domain in terms of object, actions, and 

interrelationships between objects. The model - model-based planner interface 

defines the constraints upon the modelling constructs expected by the model-based 

planner component. The model-based planner processes an application domain 

representation to synthesise the actions, conditions, effects, and dependency 

constraints required by a plan. The model-based planner - HTN planner interface 

compiles the results of the model-based planning process into a format which may 

be input to a HTN planner. The HTN planner assembles the results of the model­

based planning process into a complete plan, detecting and resolving action 

interactions. 

In conclusion, this chapter has presented an architecture which may be 

implemented to synthesise plans utilising model-based and classical planning 

techniques. However, the ability of this architecture to address the complementary 

strengths and limitations between the technologies identified in Chapter 4 and 

Chapter 6 has not been assessed. This chapter is complemented by Chapter 8 

which seeks to answer this question in addition to assessing the architecture's  

commercial applicability. 
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Blank 
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8. Evaluating the integrated architecture 

There is nothing either good or bad, but thinking 

makes it so. 

William Shakespeare (1 564-1 61 6) 

8.1 I ntroduction 

Chapter 7 defined a new planning architecture designed to exploit the capabilities 

of classical HTN and model-based technologies. This chapter evaluates this 

integrated architecture against the rationale for its development identified in 

Chapter 4 and Chapter 6, and assess its corrunercial utility. Specifically, this 

chapter evaluates the architecture from each of the following perspectives: 

• Strengths and limitations. The limitations identified with HTN and 

model-based planning in Chapter 4 and Chapter 6 are examined, and the 

facet(s) of the integrated architecture which address each issue identified. 

• Literature examples. A representation of the Pacifica military 

evacuation domain (surrunarised within Appendix C) is derived to 

evaluate the generality of the integrated architecture. 

• Automated planning expert. Reviews from automated planning experts 

obtained through conference submissions and publications are 

surrunarised and answered. 

• Industrial planning expert. The comments received from people 

involved in the generation and use of plans within the Llewellyn Group 

of Companies are summarised and answered to provide an industrial 

perspective on the integrated architecture. 

Each evaluation perspective is applied in turn below. The chapter concludes by 

summarising the utility of the integrated architecture in the context of the 

perspectives above. 
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8.2 Strengths and l imitations perspective 

Chapter 4 and Chapter 6 identified a number of complementary strengths between 

classical and model-based planning technologies. The strengths and limitations 

evaluation perspective considers each limitation and identifies the facet(s) of the 

integrated architecture which addresses it. 

8.2.1 Expressiveness - HTN planning 

8.2. 1 .1 Variable nodes 

250 

The need to vary the number of nodes within task networks to adapt to specific 

problems was identified within the construction and military evacuation domains 

analysed in Chapters 4 and 6. Within the integrated architecture, the function of 

generating schemas with an appropriate number of nodes for a given problem is 

achieved through the aggregation and abstract action constructs. The instance 

diagram below (Figure 8 - 1 )  represents a component with a variable number of 

subcomponents. Each subcomponent has one abstract action associated. The task 

network compilation process responds to requests of the form expand 

{component.abstract-action component] by returning the concatenation of each of 

the components subcomponents' name and abstract action. The task network 

resulting from such a request on Figure 8-1  is depicted in Figure 8-2. 

component 

subcomponent1 subcomponent2 subcomponent0 

Figure 8-1, Aggregation relation 

schema component.abstract-action # component; 
expands {component.abstract-action component } ;  
nodes 1 .  action { subcornponent 1 .abstract-action subcomponent1 1 ,  

2. action { sub-cornpoenent2.abstract-action subcomponent2 1 ,  

n .  action { sub-compoenent0.absract-action subcomponent01; 
end schema; 

Figure 8-2, Schema compiled from the objects in Figure 8-1 
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The 0-Plan task refinement planner provides two constructs to support the type of 

functionality described above: foreach, and iterate. The syntax of the Jo reach 

construct is depicted in Figure 8-3 below. 

N foreach action(action-name ?parameter) 
for ?parameter over {set } 

Figure 8-3, Task formalismforeach construct 

The Jo reach construct generates a task network containing a node action-name 

?parameter for each member of the set specified in the for over line. The term 

?parameter is instantiated at each node to the element of set it is included for. For 

example, if the set is defined as { member!> member2, member3), the construct will 

generate a schema with the three nodes: action-name memberb action-name 

member2, and action-name member3• The iterate construct differs fromforeach 

only in the ordering constraints placed between the nodes. Action are left 

unordered with respect to each other in the Jo reach case, and are ordered 

sequentially as they are generated in the iterate case. 

Figure 8-4, below, encodes an approximation of the integrated architectures 

variable node function using 0-Plan'sforeach construct. 

l .  schema integrated-architecture-simulate; 
2. expands (generic-action ?object); 
3 .  N for each action (generic-action ?new-object) 
4. for ?new-object over { ?object sub } ;  
5. end schema; 

Figure 8-4, Task formalism approximation of the integrated architecture's 

variable nodes function 

The schema integrated-architecture-simulate refines tasks of the form generic­

action ?object by generating a node for each subcomponent of the parameter 

?object. To demonstrate the schema's function, consider the fragment of the 

construction domain specified in Figure 8-5, below. The fragment is specified in a 

planner's always context (i.e. ,  facts which do not change during planning). The 

term the-supermarket is an instance of the class PROJECT with a single attribute 

sub. The sub attribute lists the instances which are subcomponents of the­

supermarket (assume that each member of the set sub is defined as being of class 

COMPOSITE-OBJECT or PRIMITIVE-OBJECT). 

initially the-supermarket : PROJECT 
sub che-. upermarkct { the-foundations, the-roof, the-windows-and-doors } 

Figure 8-5, Example of sub retaliation in the construction domain 
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If a HTN planner is given the initial task of generic-action the-supermarket, the 

schema integrated-architecture-simulate will match with this task through the 

expands construct on line 2. The Jo reach statement on line 3 will generate a new 

generic-action ?new-object node for each subcomponent of the-supermarket. The 

resultant schema is depicted in Figure 8-6 below. 

schema integrated-architecture-simulate; 
expands (generic-action the-supermarket); 
nodes 1 action { generic-action the-foundations } ,  

2 action { generic-action the-roof} , 
3 action { generic-action the-windows-and-doors } ;  

end-schema; 

Figure 8-6, Result of applying schema integrated-architecture-simulate to the 

construction problem 

The integrated-architecture-simulate encoding contains a number of limiting 

issues. First, the action name generic-action, as opposed to ideal action name (i.e. 

lay in the case of the-foundations, erect in the case of the-roof, and install in the 

case of the-windows- and-doors), results from the restriction upon the foreach 

construct that the construct may work over one action name only. Theforeach 

construct cannot vary the action names it generates by taking into account the type 

of the object which it is considering. If the construct was modified to take this 

factor into account, the resultant actions would not match the integrated­

architecture-simulate expansion criteria of generic-action ?object. Hence, the new 

actions generated by integrated-architecture-simulate would not be applicable for 

further refinement by the schema. 

The second limiting issue with integrated-architecture-simulate is the termination 

criteria of the construct. This issue and the first generic-action problem may be 

demonstrated through a generic example. Consider the type and component 

specifications in Figure 8-7 below. Five domain objects are defined (x, y, z, a, b). 

The domain objects are related though the subcomponent relation so that y and z 

are subcomponents of x, and a and b are subcomponents of y. Component z has no 

subcomponents. Each component is of a different type (TYPEb . . .  , TYPE5). The 

action name which would ideally prefix each component depends upon the 

component's type. This ideal name will be referred to as TYPEN.ideal-action­

name. In a specific example, objects of type FOUNDATIONS should be prefixed 

with the action name lay, whilst objects of type WINDOW-AND-DOORS should 

be prefixed with the action name install. 
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x: TYPE1,  y: TYPE2, z: TYP�, a: TYPE4, b: TYPE5 

x.sub = {y,  z }  
y.sub = { a, b}  

Figure 8-7,  Generic problem specification 

For the problem specified in Figure 8-7, a HTN planner would be initialised with 

the following initial task. 

initial task definition = action {generic-name x }  

Component x is the project level component (i.e. it is not the subcomponent of any 

other component), and generic-name x will match against the integrated­

architecture-simulate schema' s expands criteria. The initial task becomes the only 

item on the HTN planner's agenda. The action name generic-name as opposed to 

TYPE1. ideal-action-name must be used so that the HTN expansion routine will 

match the task's  name with the integrated-architecture-simulate schema. The 

processing of this first task is depicted in Figure 8-8, below. 

agenda = (action { generic-name x } )  
pick agenda item action{ generic-name x }  
request schema which matches selected agenda item. 
result is integrated-architecture-simulate with parameter ?parameter instantiated to x 

N for each action (generic-action ?parameter) 
for ?parameter over { x.sub } 

applying integrated-architecture-simulate results in the following schema 

schema integrated-architecture-simulate 
nodes I .  action {generic-name y } ,  

2 .  action { generic-name z } ;  
end schema; 

Figure 8-8, Applying integrated-architecture-simulate to component x 

Applying integrated-architecture-simulate to concept x results in two new agenda 

items. The processing of one of the new items is depicted below: 

agenda = (action { generic-name y } ,  action { generic-name z} )  
pick flaw action{ generic-name y }  
request schema which matches selected flaw. 
result is integrated-architecture-simulate with parameter ?parameter instantiated to y 

N for each action (generic-action ?parameter) 
for ?parameter over { y.sub } 

applying integrated-architecture-simulate results in the following nodes 
I .  action { generic-name a} 
2. action { generic-name b }  

Figure 8-9, Applying integrated-architecture-simulate to component y 

This process will continue until the planner reaches components which do not 

have subcomponents. Figure 8-10, below, depicts the case of component z which 

has no subcomponents. 
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agenda =  (action { generic-name z } ,  action { generic-name a } ,  
action { generic-name b) 

pick flaw action { generic-name z }  
request schema which matches selected flaw. 
result is integrated-architecture-simulate with parameter ?parameter instantiated to y 

N for each action (generic-action ?parameter) 
for ?parameter over ( z.sub} 
applying integrated-architecture-simulate results in the following nodes 

NULL 

Figure 8-10, Applying integrated-architecture-simulate to component z 

As component z has no subcomponents, the integrated-architecture-simulate 

schema produces no new nodes for component z. The result is a schema will the 

nodes set to null. Hence, it is not possible to write an encoding in an existing HTN 

formalism which simulates the model-based planning algorithm. The need to 

include actions based upon the type of a set member not possible. It is not possible 

to write a generic schema which terminates when a component with no 

subcomponents is reached. 

A trace of the model-based planner solving the same problem is depicted below. 

Note that the action names generated take into account the type of component over 

which they are working and that it terminates on the primitive level components, 

i.e. components with no subcomponents. 

task = x 
generate x.abstract-action-name 
generate x.abstract-action-name.effects 
for each sub of x and then for each sub of sub - terminating when hit a primitive 

generate y.sub.abstract-action-name 
generate y.sub.abstract-action-name.effects 
generate z.sub.abstract-action-name 
generate z.sub.abstract-action-name.effects 
generate z.sub.primitive-action-name 
generate z. sub. primitive-action-name.effects 
generate a.sub.abstract-action-name 
generate a.sub.abstract-action-name.effects 
generate a.sub.primitive-action-name 
generate a.sub.primitive-action-name.effects 
generate b.sub.abstract-action-name 
generate b.sub.abstract-action-name.effects 
generate b.sub.primitive-action-name 
generate b.sub.primitive-action-name.effects 

end 

In conclusion, the integrated architecture exploits the subcomponent relation 

within a domain to generate the actions which account for both the number of 

components in a specific problem instance and the type of those components. An 

equivalent functionality cannot be produced in current implementations of HTN 

planning. As described above, HTN planners cannot consider the action name 

which should be associated with a domain concept, nor can action synthesis 

terminate when components without subcomponents are reached. 
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8.2.1 .2 Conditional nodes 

The variable node mechanism generates abstract actions accounting for the 

variable number of components and their types within a problem instance. The 

conditional nodes mechanism generates the actions required by instances of class 

PRIMITIVE-OBJECT within a problem instance. This distinction between variable 

and condition node reasoning may be illustrated through the domain model 

depicted in Figure 8-1 1 ,  below. 

project-concept f-----1 abstract-action 

abstract-action abstract-action abstract-action 

sub-concept sub-concept 

sub-concept sub-concept 

abstract-action abstract-action abstract-action 

primitive-action -
set 

primitive-action­
set 

primitive-action­
set 

Figure 8-11, Position of conditional node reasoning with the domain model 

The variable node reasoning navigates through the model generating the abstract 

actions and, when a primitive object is reached, activating the conditional node 

reasoning for the primitive action sets within a model. The conditional node 

reasoning, activated by the variable node reasoning process, determines which 

members of the set of possible primitive actions associated with a component will 

be instantiated. 

Conditional node reasoning was motivated by two observations. First, that it is not 

practical to encode all possible methods for achieving a task. Second, that the 

syntax of filter conditions is difficult to map to the knowledge within a domain for 

determining an action's inclusion. Both these limitations are justifiable within the 

context of a formalism designed to manage the computational complexity 

encountered whilst working over a partially-ordered partially instantiated plan. 

The integrated architecture, however, exploits the planning which may be 

achieved within the space of a static domain model. A more expressive formalism 

may therefore be used. 
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The existing HTN encoding approach results in a number of actions sets or 

methods, with each set' s applicability specified by a number of filter conditions. 

The integrated architecture specifies a single set of actions for achieving each 

object within a domain. Each action may be associated with knowledge for 

determining if it should be associated with a specific object. The possible set of 

actions for achieving the BEAM class is depicted in Figure 8-12 below. 

class BEAM 
primitive-actions: if-needed ( 

must (a, SET-OUT-POSITION) 
must (a, EXCAVATE-BEAM) 
must (a, BLIND-BOTTOM) 

infer(a, MOULD-OIL, determine-mould-oil) 
infer(a, STRIKE-FORMWORK, detennine-strike-formwork) 

j 

Figure 8-12, class BEAM's primitive action specification 

Set membership for a specific instance is determined through the instantiation 

directives must and infer which prefix each action in the possible set Infer invokes 

a inference package to determine an actions inclusion. Must is a special case of the 

infer directive which always determines that an action should be associated. Figure 

8 - 13  summarises the mechanisms which the infer directive may utilise. The infer 

directive is implemented through a instantiation directive handler. The handler 

parses the directive's parameters (the text in brackets following the directive 

name), identifies the action class to which it implies (STRIKE-FORMWORK in the 

figure below), and the inference package which should be invoked to determine 

the actions relevance (infer-strike-formwork in the figure below). 

Infer (a, STRIKE-FORMWORK, infer-strike-formwork) 

Partial-order not used 

instantiation 
directive handler 

external knowledge sources 

Figure 8-13, Inference directive 

domain model 
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Instantiation directives process the results of an inference package. In the case of 

infer, the directive will instantiate an instance of the action class specified in the 

parameter if and only if the inference package returns true. If the inference 

package returns false, no action is taken. 

Figure 8- 1 3  depicts the constraints upon an inference package's  reasoning. The 

inference package may consult knowledge about a domain encoded in the domain 

model (attribute, instances etc.), and may connect to external data-bases and other 

knowledge sources. The mechanism is constrained not to derive any information 

from a partially instantiated partial-order plan. 

An equivalent HTN encoding may be achieved using the following framework. 

The possible set of actions which may be associated with a concept may be written 

as a single schema. Actions which would be prefixed with the must directive are 

written as primitive actions (i.e. actions with no further refinement). Actions which 

would be prefixed with the infer directive are written as non-primitive actions (i.e. 

action which require further refinement). The HTN representation of the model­

based BEAM action set is depicted in Figure 8- 1 4  below. 

schema emulate-BEAM-primitive-actions; 
vars ?beam : BEAM; 
expands {lay ?beam } ;  
nodes 1 primitive 

2 primitive 
3 primitive 
4 action 
5 action 

end schema; 

{set-out-position ?beam} ,  
{ excavate ?beam},  
{ blind-bottom ?beam},  
{mould-oil ?beam} ,  
{ strike-formwork ?beam};  

Figure 8-14, HTN conditional nodes functionality - stage 1 

Each of the non-primitive actions is provided with two refinements. The first 

refinement represents the case of when the action should be included, and the 

second when the action should not be included. Figure 8-15 presents the two 

methods for refining the mould-oil ?beam task within Figure 8-14.  

schema mould-oil-yes; 
vars ?beam : BEAM; 
expands {mould-oil ?beam};  
nodes 1 primitive {pour-mould-oil ?beam};  
only _use_if ?beam formwork = custom; 

end schema; 

Schema mould-oil-no; 
vars ?beam: BEAM; 
expands {mould-oil ?beam};  
nodes l dummy; 
only_use_if ?beam formwork = prefabricated; 

end schema; 

Figure 8-15, HTN conditional nodes functionality - stage 2 

The encoding of knowledge for determining if an action should be included within 

a plan is achieved in HTN planning through filter conditions. The syntax of filter 

conditions was demonstrated within Chapter 4 to be difficult to map to the domain 
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knowledge found within industrial problems. Planners such as UCPOP and 0-

Plan, however, provide mechanisms for linking to external knowledge sources in a 

way similar to the inference package mechanism supported by the integrated 

architecture. UCPOP provides a mechanism known as facts and the 0-Plan system 

a compute conditions mechanism. Each mechanism is defined below, before a 

comparison with the integrated architecture is provided. 

The generic structure of a UCPOP fact (Barrett et. al. 1994, pp 1 1) is depicted 

below. The * notation implies repetition i.e., the <variable-name> parameter may 

be repeated one or more times. 

(define (fact (<predicate-name> <variable-name>*)) 
<function b dy:>) 

Facts permit the evaluation of predicates to be implemented via a user defined 

procedure; in the current UCPOP implementation, these procedures must be 

implemented within the Lisp language. Considering an example fact, the predicate 

less-than may be defined with two variables ?x and ?y. The function body may 

then be implemented with the Lisp function ( < ?x ?y ). Hence, predicates of the 

form less-than(3 4) will be evaluated using the Lisp language function as opposed 

to the Modal Truth Criteria' s backward search through a plan. Facts may return 

predicate undefined, insufficient information to evaluate predicate or predicate 

defined The first response indicates that it is not possible to evaluate the predicate, 

the second response that the predicate should be considered latter when more 

information is available. The third response indicates that the predicate has been 

successfully evaluated. A number of variable binding constraints may also be 

returned, and the planner permitted to nondeterministically chose constraints to 

add to a plan variable in order to establish the fact. 

The 0-Plan system provides compute conditions (Tate, Drabble, & Dalton 1 994b, 

pp40) for linking domain descriptions to external sources of inference. An 

example compute condition from the Pacifica (Reece et. al. 1993) domain is 

depicted below (A full description of the Pacifica domain is provided in Appendix 

C). 

(define transport (capacity e_left e_safe) ; --> c_safe c_left 
(let ((take (min e_safe capacity))) 
(list ( + e_left take) 

( - e_safe take)))) 
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The example compute condition above will take statements of the form transport 

(?capacity, ?evacuees left, ?evacuees safe). An example instantiation would be 

transport (50, 1 00,0). The Lisp function uses the capacity argument, in the 

example 50, to determine how many people may be evacuated. The number of 

people evacuated and the number remaining is then returned. In the example 

above, (50, 50) will be returned as 50 people may be evacuated, leaving 50 people 

still to be evacuated. 

To date, the use of facts and compute conditions within demonstration domains 

definitions centres upon mathematical functions. These constructs, however, 

permit inference routines to be written for determining more complex domain 

facts. In the context of the beam laying example in Figure 8-15,  a compute 

condition { mould oil ? beam } which returns true or false may be written. The 

condition could invoke rule-based reasoning to determine if a mould oil action was 

required for a specific beam. An only_use_if filter conditions may then be written, 

selecting between a mould oil action or a null action depending upon the compute 

conditions result. Reasoning of this complexity was implemented in Nonlin (Tate 

1 977) by making a three dimensional reasoning system available to the planner 

through the compute condition construct. 

In conclusion, the fact and computer condition mechanisms supported by existing 

HTN planners may be used to implement the criteria for determining action 

inclusion via external knowledge sources. These constructs are comparable to the 

infer instantiation directive within the integrated architecture. However, task 

refinement planners do not provide the complementary mechanisms supported by 

the integrated architecture for determining the conditions, effects, and ordering 

constraints which result from the specific actions instantiated. It is the conditional 

nodes mechanism in combination with constructs for performing this assessment 

which leads to the integrated architecture being an advance on HTN only planning 

systems. 
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8.2.1 .3 Conditional effects 
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Within the integrated architecture, conditional effects are achieved through two 

mechanisms. Implicitly, if an action
.
is instantiated its effects will be considered for 

inclusion within a plan. Explicitly, if an action is instantiated, its effects are 

attached to actions using a similar mechanism to the attachment of actions to 

objects. Figure 8-16, below, depicts a fragment of a domain model with action 

assessment completed. 

super-concept 

sub-concept 

set 

Figure 8-16, Position of effects within the domain model 

The model-based planning algorithm recurses through the model instantiating 

abstract actions automatically, and primitive actions depending upon the results of 

inference packages. Each action (either abstract or primitive) has its main-effects 

and side-effects attributes assessed immediately upon instantiation. Effects are 

attached to attribute slots through two directives: action-must, and action-infer. In 

the latter case, inference packages will be invoked to determine if an effect should 

be attached to a specific action instance. In the earlier case, the effect is 

automatically attached. 

Taking the first case of effect inclusion via the association with action, consider 

the example within Figure 8-17,  below. The first schema, schema-a, would be 

produced by the model-based planner from a building's design containing one 

room with the attribute rooml.decoration set equal to tile. Hence, the schema 

contains one effect, room] tiled. The second schema, schema-b, would be 

produced where, in addition to room one, a second room was specified with the 

attribute room2.decoration set equal to tile. The schema contains the additional 

effect room2 tiled as a result of this design change. 



schema-a; 
nodes 1 .  action { tile-room 1 } ; 

only _use_for_effects 
rooml = tiled; 

end schema; 
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schema-b; 
nodes 1 .  action { tile-rooml } , 

2. action {tile-room2}; 
only _use_for_effects 
rooml = tiled, 

room2 = tiled; 
end schema; 

Figure 8-17, Example of effect inclusion through association with actions 

Consider the case of the action class TILE being extended to include the effect 

action infer (a, hazard ?object = ?inference result, infer _ceiling_hazard). The 

infer _ceiling_hazrd inference package contains reasoning to determine if working 

on a specific ceiling will cause a hazard and the type of that hazard. Using this 

mechanism, effects of the type defined in schema-c below may be derived. The 

schema contains the effect hazard-room] = asbestos as a result of the inference 

package finding asbestos within room] 's construction. 

schema-c; 
nodes 1 .  action { tile room I } , 

2. action { tile room2 } ;  
only _use_for_effects 

room 1 tiled, 
room2 tiled; 

effects 
hazard rooml asbestos; 

end schema; 

HTN and precondition planning systems provided two mechanisms for achieving 

conditional effects: operator specification, and domain rules or axioms. Each 

mechanism is described below, before the relationship with the integrated 

architecture's  mechanisms is introduced. 

The precondition achievement planner UCPOP supports conditional effects in 

operator specifications. Figure 8- 18  presents an example UCPOP action with 

conditional effects. The operator has the semantics move item ?z from location ?x 

to location ?y. The italicised effects on ?z ?y . . .  clear ?x are not conditional, the 

effects will always be asserted as a result of the operator to which they being 

inserted into a plan. Specifically, the object to be moved ?z will always be on the 

designated location ?y and it will no longer be at the initial location ?x. The initial 

location ?x will therefore always become clear. 

(define (operator move) 
:parameters (?x ?y ?z) 

:effect (and (on ?z ?y) (not (on ?z ?x)) (clear ?x) 

when (:F?y tahle) (not (clear ?y))) 

Figure 8-18, Example UCPOP action with conditional effects 
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The bolded effect is conditional. The first clause when((:;e?y table) is the condition 

under which this effect becomes applicable. If this condition holds, the effect (not 

(clear ?y) will be asserted. The semantics in this example are that if ?y, the 

destination location, is a table then it will remain clear because a table will (under 

the assumptions in this encoding) support an infinite number of blocks. If, 

however, ?y is not the table, then ?y, the destination location of the object ?x, will 

no longer be clear. 

The second mechanism for providing conditional effects is known as domain rules 

in the SIPE and O-Plan1 systems and axioms in the UCPOP system. Within this 

discussion domain rules and axioms will be referred to as domain rules. Domain 

rules differ from operator specified conditional effects in that the latter are 

attached to specific operators. Domain rules are written independently of 

operators. When an action is included in a plan, the planning engine (both HTN 

and precondition achievement) examines the world state. Domain rules are written 

with trigger mechanisms which, when matched against the world state, cause the 

effect attached to the rule to be asserted. Consider the domain rule is-above in 

Figure 8-19 taken from the UCPOP system. The context clause specifies that if an 

object ?x is on another object ?y, then this axiom is applicable. If the context 

statement holds as a result of a new action's  inclusion within a plan, the implies 

part of the axiom is asserted as an additional effect of that new action. In the 

example below, the on ?x ?y condition results in the new fact above ?x ?y fact 

being asserted. 

axiom is-above 
:context (on ?x ?y) 
: implies (above ?x ?y) 

Figure 8-19, Example of the UCPOP Axiom construct 

Domain rules introduce a number of issues to planning. For example, ensuring 

deductive closure and resolving contradicting effects. The SIPE system contains 

mechanisms for handling these issues whilst maintaining heuristic adequacy. See 

(Wilkins 1988,  pp 90) for a detailed discussion of the issues surrounding the 

implementation of domain rules and the methods available for resolving these 

issues. 

1 Domain rules are not currently implemented in the 0-Plan system. 
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In conclusion, the integrated architecture provides complementary effect 

assessment mechanisms to those provided by classical planning systems. The need 

for both quantified and conditional effects is well established within classical 

literature. The integrated architecture exploits the effect assessment which can be 

achieved through static domain knowledge, whilst classical planning supports the 

reasoning required to assess effects over an evolving world model. The integrated 

architecture combines the conditional and variable node reasoning to provide 

quantified effects and a domain's structure to ensure effects are compiled into the 

appropriate task refinement schemas. 

8.2.1 .4 Conditional dependency constraints - relationships 

Dependency constraints between actions are synthesised within the integrated 

architecture through relationships and aggregate conditions. This subsection 

evaluates relationship dependency. Aggregate dependency is covered in section 

8.2. 1 .5 .  

Relationship dependency is  assessed from the relationships between instances in a 

domain model. Figure 8-20, below, depicts an instance, instancew related to two 

other instances, instanceb and instance0 through the relationship relationship,. 

rclaOonship, instanceb 

instance. 

instancec 
relationship, 

Figure 8-20, Example of domain specific relationships between model 

instances 

Relationship dependency is assessed via the four constructs summarised below: 

1 .  For All I: instance related to self through relationship" link self.abstract­

action as dependent upon I.abstract-action. The I.abstract action.main­

effects are copied into the precondition attribute of self.abstract-action. 

2. For All I: instance related to self through relationship" link 

self.abstract-action as dependent upon I.abstract-action. 

3 .  For Some I: instance related to self through relationship, which match 

criteria C, link self.abstract- action as dependent upon I.abstract-action. 

Copy I.abstract-action.main-effects into the precondition attribute of 

self.abstract-action. 

4. For Some [:instance related to self through relationship, which match 

criteria C, link self.abstract-action as dependent upon I.abstract-action. 
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Figure 8-2 1 ,  below, depicts a model of an abstract problem instance (concept"' 

conceptb, conceptv, conceptk). The instances are structured through the 

subcomponent relation. The abstract and primitive actions of the instances sub 

conceptv and sub conceptk are depicted. Conceptk is related to conceptv through 

the relationship relationship,. The results of applying each of the relationship 

constructs above to conceptv in 

Figure 8-21 are summarised below. 

conceptk 

nbs1ract-actionk 

effectsk 

concept, 

relationship, 

activityk 1--------------1 activityv 
�--� dependent upon because of relationship, 

Figure 8-21, Data structures participating in the relationship dependency 

synthesis process 

Applying relationship construct 1 to conceptv with the parameter relationship, will 

first construct the set of concepts related to conceptv through relationship,. In the 

figure above, this set will include only conceptk. Construct 1 will link the activity 

associated with conceptv, activityv, to be dependent upon the activity associated 

with conceptk. The main-effects of abstract action*' effects*' will be copied into the 

precondition attribute of activityv. 

Construct 2 will perform the same function as construct 1 with the exception of the 

copying of effects. Only a dependency relationship will be recorded between 

activities activityk and activityv. 

Construct 3 differs from construct 1 as inference packages will be used for 

determining the elements of the set of concepts related to conceptv through 

relationship relationship, which will be set as predecessors. Inference packages 

are invoked to determine which elements will be made dependent. Once the subset 

is identified, the construct proceeds as construct 1 .  

Construct 4 performs the same function as construct 3 with the exception o f  the 

copying of effects. Only ordering constraints are recorded between activities 

which pass the inference packages assessment criteria. 
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When relationship dependency is completed, the results are applied during the 

compilation of task networks. Ordering constraints and supervised conditions are 

added to resultant task networks as appropriate. 

Traditional planning systems provide quantified preconditions and disjunctive 

preconditions. Each of these constructs is summarised below before being 

compared with the integrated architecture' s  relationship dependency functionality. 

An example disjunctive precondition from the UCPOP system is depicted below. 

The precondition semantics are that this operator may be used if either on ?x ?y 

holds or under ?x ?y holds. If a planner wishes to make the operator applicable by 

achieving its preconditions, the planner may nondeterministically choose which of 

the preconditions to achieve. 

j :prec ndit ion (or (on ?x ?y) (under ?x .y)) 

UCPOP permits quantification in preconditions. The example operator below 

defines the preconditions of an operating system's remove directory command. 

:operator (delete ?directory) 
:precondition fora!! (in ?file ?directory) 

(deleted ?file) 

Both the MS-DOS and UNIX operating systems will remove a directory if and 

only if the directory contains no files. The delete ?directory operator contains a 

universally quantified precondition which generates a condition deleted ?file for 

each of the files recorded as in ?file ? directory. 

Consider a new operating system command really-delete. The command deletes a 

directory and any files it contained, with the exception of system files. The 

UCPOP representation of this function is depicted below. 

:operator (really-delete ?directory) 
:precondition forall (in ?file ?directory) 

where (not system ?file) 
(deleted ?file) 

The really-delete operator creates an operator with a precondition set to all the 

non system files within a directory. The operator is providing existential 

quantification. 
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In conclusion, the integrated architecture provides a specialised form of quantified 

conditions which maps to the relationships between concepts in an application 

domain. The combination of conditional node, variable node, and conditional 

effect reasoning permits conditions to be placed between actions as a result of 

relationships between the components to which the actions related, and for this 

knowledge to be compiled into appropriate condition types within task refinement 

schemas. The encapsulation-buster condition type permits the causal structure of 

dependency constraints to be specified across the encapsulation unit of the 

schema, thus removing the need for a task refinement planner to establish a 

number of conditions. 
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8.2.1 .5 Conditions - aggregate 

The integrated architecture's  aggregate condition function permits conditions to be 

specified in terms of the sub conditions which constitute them. Deriving the sub 

conditions is achieved through inference packages. Considering an example, the 

condition site secure in the construction industry domain will the sub conditions 3 

meter fence erected and school safety lecture given in one situation and the 

conditions 2 meter fence erected in a second. 

The integrated architecture makes the requirement of aggregate conditions explicit 

and provides an effective mechanism for their implementation. 

8.2.1 .6 Expressiveness argument conclusion 

When considered in isolation, the new facets of the integrated architecture may 

either be achieved or almost achieved in existing classical planning technologies. 

It is, however, the ability of the new architecture to provide conditional nodes, 

variable nodes, quantified and conditional effects, and quantified and conditional 

conditions in a coherent form to synthesis task networks which distinguishes it 

form existing technologies. 
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8.2.2 Expressiveness - model-based planning 
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Traditional model-based planning systems do not incorporate the concept of 

conditions and effects. Without these concepts and a question and answering 

algorithm, it is not possil;>le to either infer ordering constraints based upon the 

producer - consumer relationship between action effects and conditions nor detect 

and resolve interactions between these pairs. 

The integrated architecture incorporates action conditions and effects within the 

MBP representation formalism and utilises traditional task refinement algorithms 

to both establish and maintain the causal structure of a plan. 
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8.2.3 Redundancy 

Redundancy was identified in Chapters 4 and Chapter 6 between the encodings of 

multiple methods for performing a task, and similar methods for performing 

different tasks. The redundancy issue is addressed by the integrated architecture 

through two mechanisms. 

First, the constructs described in the section 8 .2. 1 replace the method of statically 

encoding task networks. Each instance within a domain has its abstract actions, 

primitive actions, effects, conditions, and ordering constraints inferred. These 

constructs are then compiled to form task networks which meet specifically the 

needs of each concept instance. Thus, removing the need to specify multiple 

methods for performing a task. Methods are instead dynamically compiled to meet 

the requirements of a specific problem instance. 

Second, the use of the inheritance relation within the object-oriented domain 

modelling scheme permits knowledge to be organised into a hierarchy. Consider 

the classes in Figure 8-22 below. Knowledge encoded within CLASSA is inherited 

by all the other classes in the figure. The knowledge from both CLASS A and 

CLASS8 is inherited by CLASS0. Hence, actions, attributes and dependency 

knowledge defined within CLASSA is utilised by all the other classes in the figure. 

Thus changes to CLASSA are reflected in the remainder of the system. 

CLASS A 

CLASS B CLASS C 

CLASS D 

Figure 8-22, Class hierarchy 

Inheritance permits a domain to be specified as a number of specialisations, with 

each class inheriting facets of its parent, and adding new facets unique to itself. 

In conclusion, the domain rules and conditional effects within classical planning 

systems address in part the redundancy issue. The integrated architecture 

compliments these constructs by providing mechanisms to model a domain in 

terms of specialisations and for synthesising task networks to meet the 

requirements of a specific problem instance. 
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8.2.4 Semantic distance 
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Erol notes that the writing of domain specifications is " . . .  the most neglected 

aspect of planning, and there is not an established software-engineering 

methodology to guide this job." (Erol 1 995, pp91 ). Yet Chien notes that " . . .  the 

amount of effort required to construct, debug, verify and maintain the planning 

knowledge base" (Chien 1 996) is a major factor in deciding whether AI planning 

techniques are applicable to real-world applications. 

Current work in this area is either providing tools for debugging and verifying 

planning knowledge bases (e.g. (Chien 1996)) or is providing conceptual links 

between planning formalisms and software - business engineering methodologies. 

An example of the latter work is the connection between the <1-N-OV A> model of 

plans as a set of constraints and the IDEF business process methodology (Tate 

1 996). 

The KADS knowledge-based system development methodology and the OMT 

(Rumbaugh et. al. 1 991), Booch (Booch 1991) ,  and Syntropy (Cook & Daniels 

1994)object-oriented methodologies are centred upon the concepts of objects, 

classes, inheritance, aggregation, and relationships. The methodologies provide a 

set of guidelines and techniques for identifying the constructs within a domain, 

notations for representing them, and tools for managing reviewing and validating 

results. 

The integrated architecture is centred around the same constructs as KADS and 

object-oriented methodologies. The technique therefore provides constructs which 

map closely to existing elicitation and modelling methodologies and tools. This 

view is supported by McCluskey (McCluskey & Porteous 1995 ; 1 996a; 1996b; 

McCluskey, Kitchin, & Porteous, 1 996, Kitchen & McCluskey 1 996). McCluskey 

compiles a precondition achievement action representation from the state chart 

notations supported by object-oriented methodologies under the rationale that such 

methodologies provide a tool supported representation which maps closely to 

domain experts' knowledge. 
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8.3 Literatu re examples perspective 

The literature examples perspective aims to demonstrate the generality of the 

integrated architecture. The architecture' s  development and testing prior to this 

chapter has been centred within the construction domain. 

Drabble and Tate ( 1994) define a continuum of applications ranging from resource 

intensive problems like job shop scheduling and condition and effect intensive 

problems such as blocks world. The authors position their 0-Plan system midway 

on this continuum where, the authors claim, a significant number of real world 

applications rest. 

The Pacifica (Reece et. al 1 993) military evacuation domain is used within this 

section to demonstrate the generality of the integrated architect as the domain 

provides an example ranging from the middle to the condition and effective 

intensive points on Drabble and Tate's  continuum. 
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8.3.1 Pacifica 

The Pacifica domain (Reece et. al. 1993) is described in Appendix C. The domain 

centres upon the non-combatant military evacuation of a geographical area. 

The encoding of the Pacifica domain in the model-based formalism is divided into 

two stages. First, section 8 .3 . 1 . 1  defines the mapping of the overall structure of the 

domain. Second, sections 8 .3 . 1 .2 and 8 .3 . 1 .3 step through in detail the 

representation and planning of two central phases of an evacuation mission. 

8.3.1 .1  Mapping the structure of pacifica to the model-based formalism 

272 

Pacifica contains the following decision points: 

• Number of air and ground transports available to a mission. 

• Number of cargo craft available to a mission. 

• Assignment of air and ground transports to cargo craft. 

• Arrangement of loading, take off, landing, and unloading of cargo 

aircraft. 

• Assignment of air and ground transports to outlying cities for effecting 

the evacuation 

• Reloading of air and ground transport onto cargo craft for returning to 

safety after the mission. 

• Returning evacuees to safety. 

The encoding of Pacifica described in this chapter makes the following 

assumptions about the information supplied to the planning system by the system's 

user. 

• The number of ground transports, air transports, and cargo aircraft 

available for a specific evacuation mission is specified. 

• The assignment of air and ground transports to cargo aircraft is specified. 

• The number of people to be evacuated from each city is defined. 

An example problem definition is depicted in Figure 8-23 below. 



Evaluating the integrated architecture 

;; ground, air, and cargo transports available for mission. 
gtl ,  gt2, gt3: GROUND_ TRANSPORT 
atl ,  at2, at3: AJR_TRANSPORT 
c 1 30, cl40 : CARGO_AIRCRAFf 
city A, cityB :CITY 
;; assignment of cargo to cargo transports 
c1 30.carries = atl ,  at2, at3 
c140.carries = gt l ,  gt2, gt3 

;; cities to be evacuated and the number of evacuees in each city 
cityA.Numbe!OfEvacuees = 1 0  
cicyB.Numbe!OfEvacuees = 1 1  

Figure 8-23, Initial Pacifica problem definition 

Figure 8-24, below, presents the first level domain model of the domain. The 

EVACUATION-OPERATION class is related to three sub classes: LOCATE­

EQUIPMENT, EVACUATE-CITIES, and RETURN-EQUIPMENT. Class 

EVACUATION-OPERATION represents the project to be accomplished - the 

evacuation mission. The project' s three subcomponents correspond to the three 

phases of an evacuation operation: the movement of evacuation equipment to the 

location to be evacuated, effecting the evacuation, and returning the evacuation 

equipment and evacuees to safety. 

EV ACUA TlON-OPERA TION 

LOCATE-EQUIPMENT EVACUATE-CITIES RETURN-EQUIPMENT 

Figure 8-24, First level model of the pacifica domain 

Class LOCATE-EQUIPMENT is related through the aggregation relationship to 

the classes GROUND-TRANSPORTS-IN, AIR-TRANSPORTS-IN and CARGO­

AIRCRAFT-IN. This structure is depicted in Figure 8-25 below. This arrangement 

captures the structure of the domain i.e. ,  the location of equipment is composed of 

the location of air, ground, and cargo transports. The multiplicity balls specify that 

an instance of class LOCATE-EQUIPMENT may be related to zero or more 

instances of each of the transport classes. 

LOCATE-EQUIPMENT 

GROUND-TRANSPORTS-IN AIR-TRANSPORTS-IN CARGO-AIRCRAFT-IN 

carries 
carries 

Figure 8-25, Refinement of class LOCATE-EQUIPMENT 
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The carries relationship specifies that an instance of class CARGO-AIRCRAFT-IN 

may be related to zero or more instance of the classes GROUND-TRANSPORT-IN 

and AIR-TRANSPORT-IN through a carries relationship. The relationship has the 

semantics that a cargo aircraft carries a number of air and ground transports. 

The refinement of class RETURN-EQUIPMENT follows the same pattern; hence, 

the representation is not derived here. 

Figure 8-26, below, depicts the refinement of class EVACUATE-CITIES. The task 

of evacuating cities is represented as being related to zero or more cities via the 

aggregation relationship. 

EVACUATE-CITIES 

CITY 

Figure 8-26, Refinement of class EVA CUA TE-CITIES 

With the structure of the domain captured, the second phase of the modelling 

considers the action which must be attached to each class. The detailed 

representation and planning applied to classes LOCATE-EQUIPMENT and 

EVACUATE-CITIES is described in the two sub sections below. 
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8.3.1 .2 Representation and planning of the LOCA TE-EQUIPMENT class 

This section defines the action required by class LOCATE-EQUIPMENT and its 

subcomponents. Within the domain definition complete, a trace of the integrated 

architecture solving a specific evacuation mission (Operation-Vanson Figure 8-27) 

is presented. 

After deriving the initial domain structure, the second phase of the encoding 

demands the attachment of actions to classes. Class LOCATE-EQUIPMENT is 

depicted below with a single abstract action locate-equipment attached. This 

action represents the role of the instances of the class in a model. 

class LOCATE-EQUIPMENT 
abstract action: must(a, locate-equipment ) 

Class AIR-TRANSPORT-IN action's  are depicted below. The primitive actions 

capture the requirement of loading and unloading air transports from the cargo 

aircraft which carries them to the evacuation location. Class GROUND­

TRANSPORT-IN contains the same action set. 

class AIR-TRANSPORT-IN 
carried-by CARGO-AIRCRAFf-IN 
abstract action : must (a, locate) 
primitive action: must (a, load onto ?carried-by) 

must (a, unload from ?carried-by) 

Class CARGO-AIRCRAFT-IN actions are depicted below. The primitive actions 

capture the requirement of taking off, flying to, and landing at the location to be 

evacuated (an attribute of class EVACUATION-OPERATION). 

class CARGO-AIRCRAFf-IN 
carries: AIR-TRANSPORT-IN, GROUND-TRANSPORT-IN 
abstract action : must(a, locate) 
primitive action: must (a, take-off ?self.initial-lo ation) 

must(a, Uy-to ?EV C ATION-OPERATION.evac-location) 
must (a, land-at ?EVACUATION-OPERATION.evac-localion) 

Classes LOCATE-EQUIPMENT has the single primitive actions locate attached 

to describe the overall task the class represents. 

275 



Evaluating the integrated architecture 

Operation-Vans on: 
EVACUATION-OPERATION 

Jocate-equipment-for-Operation-V anson: evacuate-cities-for-Operation-Vanson: retum-equipment-for-Operation-V ans on: 
LOCATE-EQUIPMENT EVACUATE-CITIES RETURN-EQUIPMENT 

atl_in: gtl_Jn: cl40_Jn: atl_out: gtl_out: cl40_out: 
AIR-TRANSPORT-IN GROUND-TRANSPORT-IN CARGO-TRANSPORT-IN AIR-TRANSPORT-OUT GROUND-TRANSPORT-OUT CARGO-TRANSPORT-OUT 

carries 
carries 

city A: 
CITY 

Figure 8-27, Initial instance model for operation Vanson 
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The third phase of the encoding requires the writing of a determine-dependency 

method for each class. Class CARGO-AIRCRAFT-IN requires the following 

determine-dependency method. The method links the instance of action class 

TAKE-OFF associated and instance of the cargo class to be before the instance of 

the action class FLY-TO. 

class CARGO-AIRCRAFf-IN 
method : determine-dependency 

{ 

) ; 

link-primitive (take-off, fly-to); 
link-primitive (fly-to, land-at); 

The following determine-dependency method is written for classes AIR­

TRANSPORT-IN and GROUND-TRANSPORT-IN. The method links the load 

action of each transport to before the take-off action of the cargo-craft which 

carries the transport. The unloading of each transport is constrained to take place 

after the cargo aircraft has landed at the destination. 

class AIR-TRANSPORT-IN 
method : determine-dependency 

{ 

l :  

link-with-effects (self.load-onto, carried-by, take-off) 
link-with-effects (self.unload-from, carried-by, land-at) 

A textual representation of the Operation-Vanson mission definition whose 

parameters are depicted in Figure 8-23 is presented below: 

instance Operation-Vanson 
instance of class EVACUATION-OPERATION 
evac-location : pacifica 
sub : locate-equipment-for-Operation-Vanson, evacuate-cities-for-operation­

V anson, return-equipment-for-Operation-Vanson 

instance locate-equipment-for-Operation-Vanson 
instance of class LOCATE-EQUIPMENT 
sub : : atl _In, gtl_In, In c l40_In. 

The trace of the integrated planner solving the location of equipment for the 

Vanson mission is depicted below. 
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user> Invoke MBP 
---- MBP V4 Invoked ---
one instance of class project = Operation-Vanson 
planning for Operation-Vanson 
Generate actions(Operation-Vanson) 

o__get_ v _d_f(Operation-Vanson.abstract action) return effect 
:because: must(a, effect) directive 

Operation-Vanson is not primitive 
proces. ing ubcomponents of Operation-Vanson 
for all ubcomponeots of Operation· Vanson over set = { locate-equipment-for-operation­

Vanson, evacuate-cities-for-Operation-Vanson, retum-equipment-for-
Operation-V anson } 

looping for locate-equipment-for-Operation-Vanson 
Generate actions (locate-equipment-for-Operation-Vans on) 

o__get_ v _d_f(locate-equipment-for-Operation-Vanson.abstract action) returns 
locate 
:because: must(a, locate) directive 

locate-equipment-for-Operation-Vanson is not primitive 
for all subcomponents of locate-equipment-for-Operation-Vanson over set = 
{ atl_In, gtl_In, cl 40_In, ) 
looping for atl _ln 

Generate actions(atl_In} 
o_get_ v _d_f(atl_ln.abstract-action) returns locate 
:because: must(a, locate) directive 

atl_In is primitive 
o__get_ v_d_f(atl_ln.primtive-actions) returns { load-onto-cl 30, unload-

from-cl 30) 
:because: of directives must (a, load-onto ?carried-by) where ?carried-by 
evaluated to c 1 30, must(a, unload-from ?carried-by) where ?carried-by 
evaluated to c 1 30 

processing of atl _in complete 
looping for gtl _in 

processing of gtlin complete 
looping for Cl 50_/n 

Generate actions (C l 50_In) 
o__get_v_d_f(Gl50_In.abstract action) returns locate 
:because: must(a, locate) directive 

C l  50_In is primitive 
o_get_v_d_f(Cl 50_In.primitve actions) returns { take-off-from US­
Air-base-1 ,  fly-to PACIFICA, land-at PACIFICA ) 
:because: must(a, take-off-from ?self.initial-location) where ?self.initial­
location evaluated to US-Air-base-I . . .  

processing of C!50_in complete 
processing of locate-equipment-for-Operation-Vanson complete 

-- DEBUG MESSAGE> MBP instructed to IGNORE remaining subcomponents of Operation­
Vanson 

Figure 8-28, Trace of the MBP component solving operation Vanson 

The results of the MBP planning process in Figure 8-28 are presented textually in 

Figure 8-29 and graphically in Figure 8-30 below. 

The textual representation includes the effects attached to each action. The 

graphical representation permits the abstract action, primitive action, and activity 

structure to be observed. 
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--- MBP action instances 

instance effect 1 
instance of class EFFECT 
object: Operation-Vanson 
main. Effect: Operation-Vanson = completed 
sub (locate! }  

instance locate! 
instance of class LOCATE-EVACUATION-EQUIPMENT 
object: locate-equipment-for-Operation-Vanson 
main. effects: equipment = located 
super: {effect ! }  
sub: { locate2, locate3 , locate4} 

instance locate2 
instance of class LOCATE-AIR-TRANSPORT 
object: atl _In 
main. effects: atl_In = located 
super { locate! ) 
sub { load-ontoc1 30- l ,  unload-from-cl 30- l } 

instance load-onto-c I 30- 1 
instance of class LOAD-AIR-TRANSPORT-ONTO-CARGO 
object: atl_In 
main. effects atl_in = loaded 
super { locate2} 

instance unload-from-c 1 30- 1 
instance of class UNLOAD-AIR-TRANSPORT-FROM-CARGO 
object atl _In 
main. effects atl _ln = unloaded 
super { locate2) 

instance locate 4 
instance of class LOCATE-CARGO-AIRCRAFf 
object c130 
main. effects c l 30 = located 
super { locate! } 
sub {take-off-from-IS-air-base- I ,  fly-to-Pacifica- 1 ,  land-at-Pacifica-

1 }  
instance take-off-from-US-air-base- I - I  

instance of class CARGO-AIRCRAFf-TAKE-OFF 
object c l 30 
main.  effects c l30  = airborne, runway US-air-base! clear 
conditions runway US-air-base- I clear 
super { locate4} 

instance fly-to-Pacifica-1 
instance of class CARGO-FLY-TO 
object c l 30 
main. effects c l 30 location = pacifica air space 
super { locate 4 }  

instance land-at-Pacifica-1 
instance of class CARGO-LAND-AT 
object: c l 30 
main. effects c l 30 location = pacifica runway 
conditions pacifica runway = clear 
super { locate 4 }  

Figure 8-29, Actions synthesised with conditions and effects 
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Figure 8-30, Graphical representation of actions and activities synthesised 
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With action synthesis complete, the MBP invokes the dependency synthesis phase. 

A trace of this process is presented in Figure 8-3 1 below. 

--- MBP generating dependency 
for all objects 

processing object Operation-Vanson 
generate dependency returns null 

processing object locate-equipment-for-Operation-Vanson 
generate dependency returns null 

processing object atl_In 
link-with-effects (self.load-onto, carried-by, take-oft) results in 

self.load-onto = load-onto-c 130- 1 ,  
carried-by = c l40_in 
take-off= take-off-from-US-Airbase! 
linking load-onto-c 1 30-1 before take-off-from-US-airbase-I 

results Acitivty9 dependent upon activity6 
link-with-effects (self.unload-from, carried-by, land-at) 

self.unload-from =  unload-from-cl30-1 
carried-by = c140-in 
land-at = land-at-Pacifica- 1 
linking land-at-Pacifica-1 before unload-from-cl30-1 

results Activity 7 Dependent upon Activity I 1 
processing object gtl_ln 

processing object c140_in 

end generate dependency 
--- Generation of relationship dependency complete 
--- No aggregate dependency conditions. 
--- MBPV 4 complete. 

Figure 8-31, Dependency synthesis in the pacifica domain 

With dependency synthesis complete, the integrated planner initiates the HTN 

component of the architecture. A trace of this process is presented in Figure 8-32 

below. 

281 



Evaluating the integrated architecture 

282 

HTN-Planner interface invoked 
generating task 

project = Operation-Vanson 
project.abstract action = effect I 
generating task network 

; task effectl-opeation-Vanson 
nodes 1. start 

2. end 
3. action {effect Operation-Vanson} 

orderings 1-->3, 3-->2; 
; end task ;;; effectl -Operation-Vanson 

HTN Planner Invoked 
issues = {action {effect Operation-Vanson) } 
picked issue: action { effect Operation-Vanson} 
Request integrated-architecture-expand { effect Operation-Vanson } 
new-schema-name = effect-Operation-Vanson 
returns schema 

; schema effectl-opeation-Colubmus 
nodes 1 .  action{ loacatel locate-equipment-for-operation­

Vanson} 
; only_useJor _effects 

equipment located at 1 
; end schema; 

issues = action { loactel locate-equipment-for-Operation-Vanson} 
picked issues action { locate! locate-equipment-for-Operation-Vanson} 
Request integrated-architecture-expand (Joate l Jocate-equipment-for-operation­
Vanson} 
new-schema-name = locate 1 -locate-equipment-for-opeation-colburns 
returns schema 

; schema locate 1-locate-equipment-for-operation-columbus 
nodes 1. action {locate2 atl_In} 

2. action {locate3 gtl_ln} 
3. locate4 {cl40_in} 

; only_useJor _effects 
atl _ln located at I 
gt2_In located al 2 
cl 40 _in located at 3 

issues = action { locate2 atl_ln } ,  action {locate3 gtl _ln } ,  action { locate3 
c l 40_ln ) 
picked issues action { locate2 at l _In )  
Request integrated-architecture-expand (llocate2 at !_In } 
new-schema-name = Locate2 at l -In 
returns schema 

; schema late2-atl-In 
nodes 1 .  action {load-onto-cl30-l atl_ln} 

2. action {unload-from-cl30 atl_In} 
orderings 1 -->2 
only _useJor _effects 

atl_ln load at I 
atl_ln unload at 1 

conditions 
supervised atl loaded at 2 from 1 

e11ca(l.W1la1ion buster la11d-at-pacifica-l cl 40 at 2 

Figure 8-32, Trace of the HTN phase of planning operation Vanson 

The encoding above successfully synthesises the actions, conditions, ordering 

constraints, and effects required by the locate equipment phase of operation 

Vanson 
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8.3.1 .3 Representing and planning for class EVACUA TE-CITIES 
The EVACUATE-CITIES class represents the cities to be evacuated. The class is 

related through the sub relation to class CITY. Figure 8-33, below, presents an 

instance of the cities to be evacuated within a specific Pacifica operation. 

Operation-Vanson-cities-to­
evacuate: EVACUATE-CITIES 

cityA: CITY 

Figure 8-33, Instance diagram of the cities to be evacuated within a Pacifica 

operation 

The actions attached to the classes EVACUATE-CITIES and CITY are depicted 

below. 

class EVACUATE-CITIES 
abstract action : must(a, evacuate-all) 

end class 

class CITY 
abstract action: must( a, evacuate ?self.no-people-to-evacuate} 
primitive action :null; 

end class 

CITY has no primitive actions defined as the integrated planner produces only the 

appropriate number of evacuation actions. The assignment of evacuation 

equipment to cities is performed using the traditional HTN approach. The schema 

resulting from the instance diagram in Figure 8-33 is depicted below. 

schema evacuate-all-Operation-Vanson-cities-to-evacuate 
expands { evacuate-all Operation-Vanson-cities-to-evacuate } 
nodes I .  action { evacuate 50 city A} 
end schema. 

This function demonstrates the strength of the integrated architecture. The 

assignment of cargo aircraft etc. is performed in the new way. The evaluation of 

the number of cities to be evacuated takes advantage of the variable node 

reasoning within the integrated architecture. The precondition achievement search 

of refining the cities to be evacuated is obtained in the traditional way. 

283 



Evaluating the integrated architecture 

8.4 Automated planning expert perspective 

The expert evaluation perspective obtained comments from automated planning 

experts via conference paper submissions and presentations. The publications 

relating to this section are (Jarvis and Winstanley 1996a; 1996b). In addition to 

the successful submissions, papers were submitted to Third International 

Conference on Automated Planning Systems (AIPS-96) and the 15th National 

Conference on Artificial Intelligence (AAAI-97). The comments received from 

these conferences' blind reviews are included within this evaluation. 

The automated planning expert evaluation is presented under three headings 

below: originality, expressiveness concerns, and semantic gap concerns. 

8.4.1 Originality 

Whilst this thesis has worked to determine the position of the integrated 

architecture within existing planning theory, the author was concerned that other 

work in the area of this thesis had not been identified. Comments received from 

the AAAI-97 blind review summarised the integrated architecture as "very 

original "  and that it may " . . .  lead to interesting application frameworks". 

The originality comments correlate with the discussion within this thesis to 

reinforce the conclusion that the integrated architecture is a new contribution to 

planning theory. 

8.4.2 Expressiveness argument concerns 

284 

Expressiveness argument concerns centre around two related points. First, that a 

simple domain representation as supported by precondition achievement planning 

is desirable. Second, that the integrated approach moves much of the complexity 

of planning away from the domain independent planning engine and into the 

domain theory. 

Precondition achievement planning aims to provide a simple declarative action 

representation and a powerful domain independent planning algorithm which will 

identify and order the actions required by any problem solvable with the action set 

represented. Within this framework, the problem solving capability is 

implemented within the domain independent planning algorithm. The task of 

encoding a new domain becomes one of identifying and declaring primitive 

actions only. 
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The precondition achievement approach is desirable from both the software 

engineering and functionality perspectives. First, applying the technology to new 

domains requires only primitive actions to be identified. Second, the resultant 

encoding will solve any problem, however unforeseen, which can be solved with a 

sequence of the actions specified. 

Whilst precondition achievement planning has desirable properties, the technology 

is proving difficult to realise. The sustained effort applied to the technology since 

the 1 960's have failed to address completely the prohibitive search space 

encountered when attempting to realise precondition achievement planning on 

realistic problems. Whilst much progress has been made in this area (see Chapter 

2), at the time of writing the application of precondition achievement planning has 

been limited to either small toy domains engineered by planning system designers 

or industrial domains with a small number of actions (of the order of five to ten). 

The industrial success of task refinement planning has resulted from the provision 

of constructs which permit a domain writer to specify action hierarchies and casual 

structure. These constructs both increase the effort required to write a domain 

description and may sacrifice completeness. The latter restriction occurs because 

the planning engine will follow the constraints on condition establishment 

specified by the domain writer, hence, all possible actions, orderings and variable 

bindings will not be considered. 

The integrated architecture is a logical progression from the task refinement 

approach. A domain writer may not only specify action hierarchies and causal 

structure, but also the knowledge from which these structures are generated. 

In answer to the expressiveness concerns, precondition achievement planning has 

not yet reached its industrial potential. Whilst it has desirable properties, if one 

wishes to implement an automated planning application today, one must consider 

either a task refinement only planner or an integrated MBP and task refinement 

planner. 
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8.4.3 Semantic gap 
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Planning experts raised two points relating to the semantic gap between 

application domain knowledge and representation formalism. First, would domain 

experts prefer to encode their knowledge within the MBP formalism used in the 

integrated architecture or traditional task refinement schemata? Second, is the 

isolation of the HTN engine's  inference structure from the domain writer 

simplifying the writing of domain descriptions or simply making the connection 

more opaque? 

Taking the first question, without performing experiments to compare experts 

writing descriptions in both task refinement and integrated formalisms, it is not 

possible to provide a definitive answer to this question. However, the planning 

community provides little assistance in the form of methods for writing domain 

descriptions. The constructs supported by the integrated architecture map directly 

to those supported by object-oriented based methodologies. Thus, one may 

conclude that the integrated architecture is closer to tool supported methodologies 

than current classical formalisms. 

In answer to the second question, the compilation of conditions from domain 

relationships does isolate the domain writer from the condition type mechanism 

utilised by the task refinement component of the integrated architecture. This 

isolation is desirable if the new constructs map closely to the knowledge within 

applications domains, reducing the need for the domain writer to understand the 

mechanisms of the planning engine. It is not, however, possible to evaluate this 

conclusion without further experimentation. 
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8.5 Industrial planning expert perspective 

Construction industry planning experts expressed two concerns: the domain 

modelling effort, and the ability to update and maintain a completed plan. 

The planning experts noted the time and effort demanded by the elicitation phase 

required to capture a fragment of the knowledge utilised within a relatively small 

construction project. Extrapolating this effort to all the possible components used 

within construction projects, the knowledge elicitation overhead would prohibit a 

single organisation implementing an automated planning system. 

If automated planning is to be implemented in the construction industry, an 

industry wide approach is required to spread the modelling overhead. This issue is 

expanded in the further work section within Chapter 9. 

With the ability to automate the synthesis of plans established, the experts' 

concern moved from the feasibility of automated planning to the issues of 

updating and maintenance of plans. A multi million pound construction project 

would require a full-time planning expert. At a cost of approximately £80,000 per 

year, the expert is not a significant cost to the project. It is the ability of this expert 

to identify and cost issues arising from design changes which effect the 

profitability of a project. For example, a customer may change the type of door 

used within a hotel building after the project has commenced. Such a change may 

affect the order in which other activities may completed resulting in a increase in 

construction cost. The human planner must identify and justify these costs to the 

customer to a standard where the customer will agree to meet the extra costs or 

reverse the design change. 

The research reported in this thesis has been concerned with plan synthesis. The 

expert's requirements identify that plan synthesis must be integrated with the 

complete process under which planning is performed. This issue is expanded in 

the further work section within Chapter 9. 
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8.6 Summary and concl usions 
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The integrated architecture developed in Chapter 7 was motivated by a number of 

complementary strengths between classical and model-based planning 

technologies. The strengths and limitations perspective identified the facet(s) of 

the integrated architecture which address each of these limitations. Exploiting the 

expressive mechanisms which may be applied to a static domain model, the 

integrated architecture synthesis the actions, conditions, effects, and ordering 

constraints required by a specific problem instance. The results of this process are 

combined and maintained by a traditional task refinement planning system. 

Applying the integrated architecture to the Pacifica domain formed the literature 

evaluation perspective. The perspective demonstrated the generality of the 

architecture and the benefits of providing a mixed mode integrated - task 

refinement capability. Whilst planning the location of evacuation equipment 

within the Pacifica domain, the architecture was able to exploit both the structure 

of the domain and the expressive inference mechanisms of the integrated 

architecture. When solving the search based evacuation of outlying cities, the 

precondition achievement functionality of the task refinement planner was 

exploited 

The automated planning expert evaluation raised two issues. First, it motivated a 

comparison between the integrated approach and precondition achievement 

planning. Second, it identified the need for further work to examine experts' 

encoding preferences. 

Taking the first case, precondition achievement planning' s aim is to provide the 

desirable capability of a declarative action representation combined with a domain 

independent planning algorithm which can solve any problem realisable with a 

domain' s  actions. The search space which must be navigated to achieve such a 

functionality has not yet, however, been adequately addressed. Whilst the 

integrated architecture requires domain dependant inference routines to be written, 

the architecture does exploit the domain independent question and answering 

algorithms supported by classical planning. The writing of domain dependant 

inference routines is a necessary overhead if one wishes to implement an industrial 

planning application within existing planning theory. 
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Taking the second case, it is not possible to definitively answer the question of 

domain experts' encoding preferences without experimentation. Such a study 

would require observations of experts encoding their domain knowledge within 

task refinement and integrated formalisms. However, the constructs supported by 

the integrated architecture map closely to those supported by current object­

oriented methodologies. Thus, the integrated architecture provides a 

representation which is closer to tool supported methodologies than existing task 

refinement planners. 

In conclusion, the integrated architecture provides a new approach to automated 

planning which combines the relative strengths of classical and model-based 

technologies. The compilation of task networks from a domain model permits 

expressive constructs to be exploited, addressing the expressiveness, redundancy, 

and semantic distance issues identified in Chapter 4 and Chapter 6. The assembly 

of task networks into a complete plan permits the powerful condition and effect 

reasoning mechanisms of task refinement planning to be exploited to ensure a 

consistent plan with condition and effect constraints established and maintained. 
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9. Summary, conclusion, and further work 
This is not the end. It is not even the beginning of 

the end. But it is, perhaps, the end of the beginning. 

Winston Churchill (1 874 - 1 965) 

9.1 Summary 

Precondition achievement planning aims to provide a declarative action 

representation, encapsulating planning knowledge in a domain independent 

planning algorithm. The computational complexity in providing this function has 

yet to be addressed; limiting the technology to the research laboratory. 

Task refinement planning permits a domain to be structured into a hierarchy of 

actions with constraints on the methods of establishing and maintaining 

conditions. Whilst increasing the effort of writing domain descriptions and losing 

completeness, the technology addresses in part the computational complexities of 

planning, allowing task refinement planners to be applied to industrial problems. 

Model-based planning has been developed in isolation by an effort concerned with 

implementing industrial planning applications. Whilst the technology has achieved 

industrial success, its independence from classical planning has prohibited a cross 

fertilisation of ideas. 

Model-based planning may benefit from classical planning' s  conditions, effects, 

and associated question and answering function for establishing and maintaining a 

plan's causal structure. Task refinement planning may benefit from model-based 

planning' s constructs for capturing and reasoning with a domain expert' s planning 

knowledge. 

The integrated architecture exploits model-based planning's  reasoning to 

synthesise the actions, conditions, effects, and ordering constraints required by a 

problem. The results of this reasoning are compiled into task networks for 

assembly by a task refinement planner into a complete and consistent plan. 

Whilst the architecture's  applicability is limited to domains structured around the 

subcomponent relation, in such cases, it provides a more effective technique than 

either technology applied in isolation. 
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9.2 Concl usion 
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A universal domain-independent planning algorithm is a desirable functionality. 

NASA's autonomous exploration goals are a case-in-point of the most demanding 

software control applications. NASA plans to send " . . .  spacecraft where we 

cannot see, let them search beyond the horizan, accept that we cannot control 

them while they are there, and rely on them to tell the tale " (reported in Williams 

1 996, pp 279). Williams notes that the number of issues that software controlling 

such spacecraft must entertain are too large to implement explicitly. The control 

software must be capable of reasoning with the set of actions available to the 

spacecraft to generate appropriate courses of action in any situation. Precondition 

achievement planning's  aim is to provide this functionality; however, it has yet to 

fully address the complexity of the problem. 

Precondition achievement planning adds actions and ordering constraints to a plan 

to establish action preconditions and goal conditions with action effects. Task 

refinement planning allows a domain to be structured into a set of plan fragments 

which are assembled to form a plan, making domain specific knowledge available 

to a domain independent algorithm. 

This thesis demonstrates that it is not feasible to encode a complex domain into 

plan fragments. The integrated architecture provides an alternative to the 

precondition achievement approach of synthesising actions based solely on 

establishing conditions. By viewing task networks as the result of a planning 

phase, actions, conditions, effects, and ordering constraints may be synthesised 

from a central domain model. As this reasoning is in a space where determining 

the truth of conditions is computationally inexpensive, an expressive formalism 

which maps closely to a domain expert's knowledge may be used. By exploiting 

task refinement mechanisms, the results of the compilation phase may be 

assembled into a complete and consistent plan. 

In terms of implementation detail, this thesis describes how task networks can be 

compiled from a static domain model structured around objects and the 

subcomponent relationship. In terms of approach, this thesis demonstrates the 

planning function which can be achieved in the space of a static domain model, 

and that the results of this reasoning may be combined using classical techniques. 

Whilst precondition achievement planning is a desirable functionality, it has not 

yet developed to meet the demands of commercial applications. The integrated 

architecture provides an industrial architecture for addressing specific planning 

applications. 
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9.3 Further work 

This section describes research directions motivated by the integrated architecture. 

9.3.1 Analysis of the integrated architecture as a problem solving 

method 

Knowledge Engineers have noted that the frame and rule constructs used to 

implement knowledge based systems do not provide a sufficient abstraction when 

addressing complex domains. The motivation for the integrated architecture 

detailed in Chapters 4 and 6 adds weight to the argument that task refinement 

constructs suffer the same limitation. 

Chandrasekaran ( 1 983) advocates the use of domain independent problem solving 

methods (PSM) as a more suitable abstraction. PSMs specify different ways in 

which a problem solver makes use of inferences from a knowledge base. If a 

developer has a library of such methods available, they may identify an 

appropriate method and then use it to structure the knowledge base development. 

Protete II (Eriksson et. al. 1 995) is a meta-tool for supporting a developer in 

taking their analysis of a function a knowledge based system is to discharge and 

matching that analysis with an appropriate method from a library of PSMs. Protete 

II assists in the case of several methods being appropriate to achieve a task by 

indicating the conditions under which each is appropriate. Selection criteria range 

from the availability of expertise to computation time and space requirements. 

Further work is suggested to consider the integrated architecture as a problem 

solving method alongside the propose critique modify classification of classical 

only planners developed by Valente (Valente 1995). This work requires the 

formalisation and development of criteria leading to the selection between 

methods and their implementation within a tool similar to Protete II. 

A useful extension would be the study of construction planning and planning 

domains in general to test the generality of the integrated architecture as a 

planning problem solving method. This work could continue the construction of 

the KADS model set presented in chapter 5 to define the task and inference layers 

of the expertise model. This analysis may identify new structures which can be 

mapped onto classical planners through a process similar to the compilation phase 

of the MBP. A major contribution would be the identification of the facets which 

lead to each methods applicability in preference to others. 

293 



Summary, conclusion, and further work 

294 

This is an important further development of the integrated architecture. The 

distance between human knowledge and a task refinement formalism is at present 

to great. By providing structured domain encodings methods akin too those 

offered by the architecture the domain modeller is provided with constructs which 

map more closely to the domain under consideration. 
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9.3.2 Tool support for model construction 

It is well understood that communication between a knowledge engineer and 

experts is difficult. The knowledge engineer initially lacks the domain knowledge 

to ask optimal questions and the expert often finds it difficult to inspect and 

communicate their own knowledge. These issues were encountered during the 

engineering of the construction domain described in Chapter 5 

To address this issue it has been suggested that experts play a greater role in the 

encoding of knowledge directly into computers, hence, removing the need in part 

to communicate with knowledge engineers. The OPAL tool (Musen et al. 1987) 

developed to aid expert knowledge editing for the ONCOCIN (Shortliffe et. al. 

1981)  cancer treatment expert system is an example of this work. In OP AL experts 

are not expected to understand the constructs used to internally encode knowledge. 

Instead the user is provide with a tool based on the structure of the cancer 

treatment domain itself. The expert may the edited directly the system's knowledge 

base. 

Two related tools inspired by OP AL are described below as suggested further 

work to support the development of knowledge bases for the integrated 

architecture. 

Domain structuring tool 

The MBP modelling constructs are structured according the well defined rules. 

For example, a model may contain only one PROJECT class and only classes of 

type PRIMITIVE may have both abstract and primitive actions associated. A 

domain structuring tool may be implemented to both prompt and assist a 

knowledge engineer when encoding a domain within the MBP constructs. 
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Figure 9-1, Suggested structuring tool interface 
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Figure 9-1 depicts a suggested interface to a structuring tool and demonstrates a 

number of the possible support features. On the left of the figure is a palette of 

available modelling constructs. The knowledge engineer may select from the 

palette and create the model in the centre of the figure. The right side depicts a to­

do list indicating the detail the domain modeller must complete. In the example 

defining the attributes of the classes and the abstract actions of class BEAM are 

shown as outstanding. At the bottom of the figure a suggestion bar offers advice to 

the domain modeller. Within the model a sample error message is depicted 

indicating the modeller has violated a modelling constraint. In this instance, the 

modeller has linked the PROJECT class as a subcomponent of another class, thus, 

invalidating the model. 

Whilst the tool offers support for constructing a valid model, its constructs are 

oriented towards the underlying representation and not the domain under 

consideration. The second domain refinement tool is suggested below for use by 

domain experts after a knowledge engineer has initially structured a domain. 

Domain refinement tool 
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The proposed domain-structuring tool supports the knowledge engineer in 

generating the initiation structure of an application domain. The domain 

refinement tool is suggested to allow domain experts to enter detailed domain 

knowledge. This second tool is motivated by the concepts introduced in OPAL. 

There are two stages envisaged to developing such a tool for a specific domain. 

First, identifying the mapping from an "experts" domain model to the MBP 

constructs. For example, identifying how domain experts model the association 

between component classes and actions would lead to the development of capture 

tool permitting experts to directly enter knowledge of this type. This process may 

be repeated for each of the knowledge types required by the MBP. The initial 

domain structure composed with the structuring tool may aid the process. 

Specifically, defining the high level classes within a domain will aid the 

understanding of the domain vocabulary and specify the classes which may be 

refined further and the default attributes, relationships, and knowledge which will 

be required by new classes. 

The suggested second stage defines how the individual knowledge capture tools 

defined in the first stage may be combined into a complete tool. Example issues 

include the order in which questions are asked and the level of freedom the expert 

is permitted in selecting knowledge types to enter. An important consideration is 

the interleaving between planning and knowledge capture. Once a critical mass of 

knowledge has been encoded, planning may then proceed with the system 

prompting experts for knowledge about new, possibly more specialised and 

therefore less common, entities. 
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The result is envisaged as a support tool, derived by the underlying MBP 

constructs and a knowledge engineer's structuring of a domain that allows domain 

experts to enter detailed domain knowledge. The need for such a tool was 

highlighted by the construction industry expert evaluation in Chapter 8. Experts 

were concerned at the cost of capturing the vast quantify of knowledge within the 

industry. Tool support would allow a number of experts, possibly from different 

organisations, to collectively build a domain model with each contributing 

knowledge from their specific areas of expertise. 
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9.3.3 Explanation 
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Current explanation tools may exploit the structures generated by task refinement 

planners to explain the rational behind a plan. Further work is suggested to make 

available the MBP structures to such tools. 

The structures generated by task refinement planners are centred on condition 

establishment from action effects (GOST), expansion history of an action (i.e. the 

higher level tasks from which it was included), and the filter condition selection 

mechanism. From this set, it is possible to present a plan rational in the form 

below: 

• Action install bolt-sink-to-wall was included as part of the plumbing 

task. 

• The Plumbing-I method was used to achieve the plumbing task as the 

methods only_use_if condition EEC-Standard-to-plumbing equalled 

applied. 

• Action move plant from basement was included to protect the 

precondition of action pour basement floor named basement-floor-area 

clear. 

• Action move plant from basement was ordered after action dig­

basement-structure as the action is required by the construct-basement­

infrastructure task. 

MBP utilises rule-based reasoning for determining the need for actions and 

relationships between components and rule-based reasoning for ordering 

constraints between actions. These mechanisms encode and reason with domain 

expert knowledge. With the careful recording of the reasoning processes it would 

be possible to argument the task refinement explanation with this knowledge. 

This suggested direction would require the study of existing techniques for 

exploiting the results of rule-based reasoning for explanation. 
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9.3.4 Contin ued use of industrial planning applications within planning 

research 

The Defence Advanced Research Project Agency I Rome Laboratory Planning 

Initiative (ARPI) is focusing automated planning research on the demands of 

industrial planning applications. This work is examining and addressing the issues 

of why plans are created, how they areas used, updated, and maintained. 

The collaboration with an industrial organisation as part of the research reported 

in this thesis highlighted this integration with an organisation's business process as 

an essential attribute of industrial automated planning applications. Automated 

planning research has developed powerful plan synthesis and plan representation 

technologies. Integration of these technologies with industrial planning tools (e.g. 

Microsoft Project), databases, and tools (e.g. AutoCAD) is essential for their 

acceptance into industry. The Optimum-AIV system (Tate 1 996c) is an example of 

work of this type. The system integrates technology based upon the 0-Plan system 

with Matra Marconi Space's planning process for production of vehicle equipment 

bays for the European Space Agencies' Arian-4 launcher. 
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9.3.5 Detailed issues 

9.3.5.1 Model-based planning algorithm 

The model-based planning algorithm completes action synthesis before assessing 

dependency constraints. In each process, the model is traversed in a depth first 

path. Actions must be synthesised before dependency constraints are considered as 

the constraints are placed between actions. If an object's dependency is assessed 

before the action synthesis process is complete, the actions of the objects upon 

which the object is dependent are not guaranteed to have been generated. 

The depth first transversal of the model ensures that each object is processed. In 

the current implementation any transversal order is permitted - providing the 

constraint of processing each object in the model is maintained. 

Further research should consider the potential for a non sequential process. For 

example, there may be benefits from assessing all the actions and dependency 

constraints at a modelling level before moving to the next. The lower modelling 

level may then consider the actions and constraints placed at the higher level. Such 

an approach would allow rules of the form "if self.supercomponent. 

abstract-action is dependent upon an action of another type, then include action 

A". This approach permits actions and ordering constraints to be inferred based on 

other actions and orderings within a plan without considering the complexities of 

partial-order planning. 

9.3.6 Resources 
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The model-based paradigm associates resources with actions through a similar 

mechanism as actions to objects. The development of the integrated architecture 

simplified the issues to be addressed by ignoring the issue of resources. 

Further work should consider a new phase to the model-based planning algorithm 

for the association of resources with actions, and the integration of these structures 

with the task network compilation algorithm. 
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A. Appendix A - Workbench algorithms 
This appendix presents the pseudo code and, where appropriate, the background 

theory behind in the algorithms implemented within the research workbench 

described within Chapter 2. 

A.1 Management of the partial order within  the ADS manager 

The algorithms specified in this subsection support the management of plan partial 

orders within the workbench. The algorithms are implemented, without 

modification, from the specifications in Fox and Long ( 1996). Before reproducing 

the algorithms, Fox and Long's explanation of the theory behind the algorithms is 

reproduced, and a set of definitions necessary to read the pseudo code provided. 

Background theory 

"The partial order representation is based on the observation that the subset 

relation � is a partial ordering on sets and that any partial order can be 

embedded in a partial ordering on sets. Given a partial order p = (S<), there is a 

mapping, f S �JtS), such that for s and t in S, s < t if.If( s) cf(t). By careful 

construction of the sets f( s ), for each s in S, the cost of checking whether s < t is 

kept to the cost of checking a subset relation between comparatively small number 

of elements ."(Fox and Long 1996) 

Definitions of terms 

A-1 

• Vertex: each activity in a plan is a vertex 

• Plan Head: is a special vertex, which is before all other vertices in a 

plan. 

• Successor List: each vertex has a list of successors, which includes at 

least the immediate successors. 

• Predecessor List: each vertex has a list of predecessors, which includes 

at least the immediate predecessors. 

• Index: each vertex has an integer index. 

• Set: each vertex has an associated set. 

The successor list, predecessor list, index, and set of a vertex v will be referred to 

as succs(v), preds(v), index(v), set(v) respectively. 
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Add Constraint(tl,t2) 
if not(tl <= t2) then 

if t2 <tl then 

else 
"error inconsistent constraints" 

if tl is a new vertex then 
create a new element for t l  
add t I to succs(plan head) 
if t2 is a new vertex then 

create a new element for t2 
add t l  to preds(t2) 
add t2 to succs(t2) 
if plan head is newly bifurcating then 

identify the existing vertex in succs 
(plan head), s 
propagate { s }  from s 
make t1 a key holder with set(t l):= { tl }  
set(t2) = set(tl )  

else i f  root time i s  already bifurcating then 

else 

end if 
end if 
index(t l )  = l 
index(t2) = 2 

make tl a key holder with set(t l):={ t l } 
Set(t2) := set(tl )  

set(tl )  = set(plan head) 
set(t2) = set(root time) 

else { t2 is an existing vertex } 
add t2 to succs(tl )  
add t l  to preds(t2) 
index(tl )  = l 

end if 

offset = max(index(tl) - index(t2)+1 ,0) 
propagate { t l } from t2 with offset 
make t l  a key holder with set(tl )  = {tl } 
if plan head is newly bifurcating then 

end if 

identify the existing vertex in succs(plan head), s 
propagate { s }  from S 

else { t 1  is an existing vertex } 
if t2 is a new vertex then 

create a new element for t2 
add t 1 to preds(t2) 
add t2 to succs( t 1 )  
index(t2) = index(tl )  + 1 
if t l  is newly bifurcating then 

identify existing vertex in  succs(tl ),s 
propagate { s} from s 
make t2 a key holder with set(t2) = set(t2) union 
set (tl )  

else i f  t l  i s  already bifurcating then 

else 

end if 

make t2 a key holder with set(t2) = set(t2) union 
set(t l )  

set(t2) = set(tl )  

else { t2 is an existing vertex} 
add tl to preds(t2) 
add t2 to succs(t l )  
offset = max(index(tl )-index(t2) + 1 ,0) 
i f t l  is newly bifurcating then 

ident ify the existing vertex in succs(t l ),s 
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else 

end if 
end if 

propagate { s) from s 
propagate { t2 }  union set{t l } from t2 with offset 

else if t 1 is already bifurcating then 
propagate { t2 }  union set(tl) from t2 with offset 

propagate set(tl )  from t2 with offset 
end if 

-- Remove Dead Edges (tl ,  t2). 
-- This line of the algorithm is omitted to allow redundant edges within plans. 
-- The line is invoked when exporting the plan to aid readability. 
End add constraint. 

Propagate set s from vertex v with offset o 
if v is not a key holder then 

temp set := set(v) 
make v a key holder with set(v) = a  copy of set (v) 

end if 
for each vertex w, in the partial order 

if v < w then 

end if 
end loop 

if w is a key holder then 
set(w) = set(w) union S 

else if v was bit a key holder and key(set(w)) = key( temp set) then 
set(w) = set(v) 
index(w) = index(w) + o 

end if 

set(v) = set(v) union S 
index(v) = index(v) + o 
end propagate. 

Remove dead edges (tl, t2) 
for each edge (s, e) in the partial order such that s < = t1 and t2 <= 2 and 
(tl not equal S or t2 not equal e) loop 

end loop 

succs(s) = succs(s) I { e )  
preds(e) = preds(e) / { s }  
if s i s  n o  longer bifurcating then 

flatten (e) 

end if 

if tl element of Succs(s) then 
flatten( t l )  

end if 

end remove dead edges 

flatten(t) 
if t has no bifurcating immediate predecessors then 

end if 
end flatten 

for each set, S, associated with a key holder do 
s = s / { t} 

end loop 
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A.2 Plan state variable manager critic's algorithms 

A.2.1 Check co-designation consistency algorithm 

The following algorithm checks the co-designation and non co-designation 

constraints on a variable within the plan state variable manager. It returns true if 

the constraints are consistent, false otherwise. The algorithm was developed by the 

author for the workbench, and has not been proved formally correct or complete. 

Check co-designation Consistency (Variable) 
If variable is instantiated then 

else 

If instantiation is consistent with type then 
return true 

else 
return false, type - instantiation inconsistency 

end if 

for each constraint on the variable loop 

if the current constraint is set to equal another variable then 
if the variable current constraint is constrained 
to equal is itself constraint not to equal the current variable 

then 

return false - inconsistent constraint 
else 

return true 
end if 

else If current constraint is set to not equal another variable then 
if the variable current constraint is constrained not to 
equal is constrained to equal the current variable then 

return false -- inconsistent constraint 
else 

return true 
end if 

else 
unknown constraint type error 

end If 
end loop -- for each constraint on the variable 

end if -- variable is instantiated 
end -- check co-designation consistency 
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A.2.2 Necessarily codesignation algorithm 

A-5 

The following algorithm considers if two statements necessarily co-designate. It 

takes two arguments of the form "function parameter 1 . .  parameter n". The 

algorithm is based on the definitions given in (Wilkins 1988,  page 72). 

Necessarily Co-designate (argument!, argument2) 
If argumentl is identical to argument2 then 

else 
return true 

Pass argument 1 and argument 2 to extract the function names and 
the variables or objects within the statements. E.g. the argument 
on blockl ,  block2 will result in "function = on" and a list of parameters 
[blockl ,  block2] 
If the function of argument! is not equal to the function of argument2 then 

return false 
else If the number of parameters in argument! and argument2 is not equal then 

return false 
else 

end if 

loop through each parameter, parameterN 
if argument! .parameterN and argument2.parameterN are 
objects then 

if the objects are not equal then 
return false 

else 
no problem with this parameter 

end if 
else if argumentl .parameterN and argument2.parameterN 
are variables then 

if they are the same variable or 
constrained to equal the same thing, 
with the same constraints then 

no problem with this parameter 
else 

return false 
end if 

else if argument l .  parameterN is a variable and 
argument2.parameterN is an object then 

end loop 

if argument I .  parameterN is set to equal 
argument2.parameterN then 

no problem with this parameter 
else 

return false 
end if 

else if argumentl .parameterN is an object and 
argument2.parmeterN is a variable then 

end if 

if argument2.parameterN is set to equal 
argument 1 .  parameterN then 

no problem with this parameter 
else 

return false 
end if 

if no problems found with any parameter then 
return true 

else 
return false 

end if 

end -- necessarily co-desigoarion algorithm 
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A.2.3 Possible co-designation algorithm 

The following algorithm considers if two arguments possibly co-designate. The 

algorithm is based on the definition in (Wilkins 1988 page 72). 

Possible codesignation (argumentl argument2) 

if argumentl equals argument2 then 

else 
return true 

Pass argument 1 and argument 2 to extract the function names and 
the variables or objects within the statements. E.g. the argument 
on block 1 ,  block2 will result in "function = on" and a list of parameters 
[block l ,  block2] 
if argumentl .function not equal to argument2.function or the 
number of parameters is different then 

else 

end if 

return false 

loop through each parameter, 

end loop 

if argumentl .parameterN = argument2.parameterN then 
no problem with this parameter 

else if argumentl .parameterN is a variable and 
argument2.parameterN is an object or a variable then 

if argumentl . parameterN is not constrained to 
not equal the object in argument2 then 

else 

end if 

return true if argument 1. Parameter has 
a constraint added 

return false 

else if argument2.parameterN is a variable and 
argument I .  parameterN is an object or a variable then 

end if 

if argument2.parameterN is not constrained to 
not equal the object in argumentl then 

end if 

return true if argumen2.parameterN has 
a constraint added 

end -possibly co-designale 
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A.3 Condition and effect manager 

A-7 

The conditions and effect manager functionality is based upon the question and 

answering system within the Nonlin system as reported in (Tate 1976). 

The manager supports two types of question:-

1 .  Does statement P have value V at node N in a plan network ? The system 

responds yes, no, or maybe. The maybe response contains a set of 

constraints which may be added to a plan to make statement P have value 

V at node N. These may be links or variable binding constraints. 

2. What links would have to be added to a network to make P have a value 

V at node N. Queries of this type are only made as a result of maybe 

being returned from question 1 .  

Before introducing the question and answering critic, the following definitions 

must be made. 

• p-node. Is a node within a plan which gives statement p a value. 

• pv-node. Is a node within a plan which gives statement p a value v 

• p!v-node. is a node within a plan which gives statement p a value other 

than v. 

• critical node. A critical node for (P,N) is a node which gives a value to 

statement p for the last time before node N. i.e. it could be made the 

nearest predecessor of N which gives a value to p in some legal 

linearization of the partially-ordered network of nodes. The critical nodes 

for (P ,N) are 

1 .  the last p-node on each incoming branch. ignore p-nodes which 

are also predecessors of any other critical nodes. 

2. all p-nodes which are in parallel with n. 
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QA(P, V, N) 
Identify the following lists of nodes 

vl. Critical pv-nodes which are predecessors of n 
v!l. critical p !v-nodes which are predecessors of n 
par-vl critical pv-nodes which are in parallel with n. 
par-v!l critical p !v-nodes which are in parallel with n. 

If at least one member of vl and no par-v!l nodes then 

return YES 

else if at least one member of par-v!l and no vl nodes. 

return NO 

else if it is possible to create VI and remove par-v! nodes with 
variable bindings then 

return maybe and constraints, 

else consider adding new links 

end if 
end -- QA 

return Maybe and result of calling the linking 
call linking algorithm and return results 

The algorithm differentiates between possible and necessary co-designation when 

constructing the four lists at the top of the algorithm. If a condition possibly co­

designates with the statement P, and is critical, it is added to the critical lists 

together with the constraints to make it necessarily co-designate. 

A special case of this algorithm is invoked when handling plans with condition 

types. Only conditions of type supervised, achieve, and only _use_for_query are 

checked. 
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A.4 HTN Engine Algorithm 

A.4.1 Controller Algorithm 

A-9 

Read problem definition and task formalism schemas 

2. Append non-primitive tasks from task definition to the task queue 

3.  Append achieve conditions from task definition to  the task queue 

4. While the task queue is not empty loop 

5 .  Select a task for processing (either at  random, FIFO, or ask user) 

6. if selected task is a non-primitive task then 

7. -- task reduction procedure 

8. Ask schema library for methods to achieve selected task 

9. remove methods whose only_use_if conditions do not 

1 0. hold 

1 1 .  if no methods available then 

1 2. return to select a task for processing 

1 3 .  end i f  - - n o  methods available 

14. select a method from the set remaining (either at random 

or ask user) 

1 S.  expand the selected task with the selected method 

1 6. else -- it must be an achieve task 

17. if it is possible to add links to make condition true then 

1 8 .  add links 

19 .  else 

20. ask schema library for schema to make condition 

true 

2 1 .  i f  not methods available then 

22. return to select a task for processing 

23. end if -- no methods available 

24. implement schema immediately before task 

25. which requires condition 

26. end if -- it is possible to add links . . .  

27. end if -- selected task is a non-primitive task 

28. call plan state variable critic 

29. loop until critic replies yes to all variables or user quits 

30. loop 

3 1 .  allow user to correct problems 

32. end loop - PSVM critic 

33.  call conditions and effects critique 

34. loop until critic replies yes to all conditions or user quits 

35.  loop 

36. allow user to correct problems 

37.  end loop - conditions and effects critique 

38.  end loop -- while task the task queue is not empty 

39. Call PSVC to check unsupervised conditions. 
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A.4.2 Expand node algorithm 

expand node (node, schema name) 

record the current predecessors and successors of node 
remove node from the ADS 
insert all the nodes from schema name into the ADS 
Insert all the non-primitive new nodes into the task queue. 
Add ordering constraints from scheme name 
Add conditions from schema name 
Add effects from schema name 

If expansion has no single start node then 
create a dummy node and make dummy the start node 

end if 

if new expansion has no single terminal node then 

end if 

create a dummy node and make dummy the terminal 
node 

Replace all entries in the ADS which refer to node with the 
Expansions start node and terminal node. 
Attach conditions from node to expansions start node 
Attach effects from node to expansions terminal node 

The expand node algorithm introduces dummy actions when an expansion does 

not have a single start or finish node. This mechanism allow the conditions and 

effects of the node being replaced to be attached to a definite point in the refined 

task network. 

A-1 0 
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B. The Sussman Anomaly 
The Sussman Anomaly is a classic benchmark problem in AI planning literature, 

which demonstrates the issues encountered when addressing conjunctive goals. 

Before expanding this point, the initial and goal states of the problem are 

introduced . .  

c 
B 
A 

Initial State Goal State 

The anomaly contains two conjunctive goals: { on (BlockB BlockA) A on (BlockC 

BlockB) } . If a planner addresses the on(BlockC BlockB) goal first, the second 

goal is no longer immediately obtainable, as BlockB is obstructed by BlockC, and 

therefore cannot be moved onto BlockA. The planner must undo its solution to the 

goal on(BlockC BlockB) before BlockB can be moved. 

The anomaly was selected as a test case for the workbench as it demonstrates the 

precondition achievement behaviour, and plan critic functions of the workbench. 

The remainder of this section steps through the workbench's  operation whilst 

solving this problem. 

8.1 Experi ment set up 

B-1 

The Sussman Anomaly was specified using the following task definition from the 

0-Plan Task Formalism manual. 

task stack_BlockA_BlockB_BlockC; 

nodes 

orderings 1 ->2; 

conditions 

effects 

end_task; 

2 

start, 

finish; 

achieve { on BlockA BlockB } at 2, 

{ on BlockB BlockC} at 2; 

{ on BlockC BlockA} at I ,  

{ on BlockA The Table} at 1 ,  

{ on BlockB TheTable } at 1 ,  

{ cleartop BlockC} at 1 ,  

{ cleartop BlockB } at 1 ;  
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The domain's action knowledge was supplied to the workbench through the 

following task formalism file. 

always {clear top The Table} ;  

types objects = {BlockA BlockB BlockC TheTable}, 

movable_objects = (BlockA BlockB BlockC} ;  

schema puton; 

vars ?x = ?( type movable_ objects } ,  

?y = ? ( type objects } ,  

?z = ?{ type objects } ;  

var_relations 

?x I= ?y, ?y I= ?z, ?x I= ?z; 

expands { puton ?x ?y} ;  

only_use_for_effects 

(on ?x ?y} 

{ cleartop ?y} 

{on ?x ?z} 

{ cleartop ?z} 

conditions 

= true, 

= false, 

= false, 

= true; 

only _use_for_query 

achieve 

achieve 

end_schema; 

(on ?x ?z} 

( cleartop ?y} 

{ cleartop ?x} 

B-2 
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B.2 Experiment Execution 

Initialisation 

Step 1 

Step 2 

B-3 

The domain representation was passed to the schema library, and the HTN engine 

initiated with the task stack_BlockA_BlockB_BlockC. In response to this 

initialisation, the workbench generated the following plan. 

PlnnHcad l-----------------------911' lnnEnd 

• rrects 
n B!ockC BlockA = true 
n BlockA TheTable = true 
n BlockB TheTable = true 
lenrtop BlockC = true 
leartop BlockB = true 

onditions 

chievc on BlockB 
lockC = true 

The HTN engine called the QA algorithm to determine if either of the conditions 

on the activity PlanEnd was satisfied. The algorithm replied NO in both cases. The 

HTN engine added on Block.A BlockB and on BlockB BlockC to the task queue as 

conditions to be achieved. 

With no outstanding non-primitive tasks for refinement, the HTN engine selected 

the condition achieve on Block.A BlockB for resolution. The achieve condition 

type permits the planner to include new tasks into a plan to satisfy the condition it 

prefixes. The workbench selected the On Block.A BlockB condition for attainment. 

The selection order is a result of the order of the conditions in the initial task 

description; the workbench employees a first in first out data structure for storing 

outstanding conditions. 

The HTN engine issues a request to the schema library for tasks which will ma�e 

the effect on Block.A BlockB true. The library returned the schema puton as it 

contains the effect on ?x ?y = true. Pattern matching this effect against the 

condition resulted in the following variable bindings. 

?x = BlockA from pattern match 

?y = B lockB from pattern match 

?z= TheTable from the only_use_for_query condition. TheTable is 

the only variable binding option to make this condition true. 

The task added to establish an achieve condition are automatically linked 

immediately before the requiring activity. The workbench produced the following 

plan: 



ondilions 
chieve cleartop 

BlockA = true 
.chieve cleartop B.!ockB 
true 

nly_use_for_que.ry 
n BlockA TheTable = 
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• ffcct 
n BlockA BlockB = 

111.1e 
·leartop BlockB = false 
n BlockA TheTable = 

false 
lcarlop TheTable = 

PlanHead 1-------m11,111on BlockA BlockB 1---------P,JnnEnd 

• ff  eels 
n BlockC BlockA = true 
n BlockA TheTable = true 
n BlockB TheTable = true 
lcnrtop BlockC = true 
lenrtop BlockB = true 

onditions 
chieve on BlockA 
lockB = true 

chieve on BlockB 
lockC = true 

The HTN engine the applied the critics to the plan, with the following results. 

Condition Must hold at Status Constraints 

On BlockB BlockC = plan end !!!l Close world assumption 

true 

on BlockA BlockB = plan end yes from puton BlockA BlockB 

true 

on BlockA TheTable = puton BlockA yes from plan head 

true BlockB 

cleartop BlockA = true puton BlockA !!!l closed world assumption 

BlockB 

c\eartop BlockB = true puton BlockA yes from plan head 

BlockB 

The resulting plan contains two flaws (marked with a status no in the table): the 

second condition on the goal state of the plan, and a precondition of the new task 

added to the plan. 

B-4 
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Step 3 

B-5 

The achieve condition on BlockB BlockC is the next flaw in the queue, and was 

therefore selected for processing next. The HTN engine issues a request to the 

schema library for tasks which will make the effect on BlockB BlockC true. The 

library returned the schema puton as it contains the effect on ?x ?y = true. Pattern 

matching this effect against the condition resulted in the following variable 

bindings. 

?x = BlockB 

?y = B lockC 

?z = TheTable from the only_use_for_query condition. TheTable is the only 

variable binding option to make this condition true. 

The task added to establish an achieve condition are linked immediately before the 

requiring activity. The workbench produced the following plan: 

PlanHcad 

omlltions 
chieve cleartop BlockA 

rue 
nly_use_for_query 
11 BlockA TheTable = 

rue 

uton BlockA BlockB 

ff eels 
11 BlockA BlockB = 

me 
lcartop BlockB = false 
n BlockA TheTable = 

false 
leartop TheTable = 

true 

uton BlockB BlockC 
• £feels 
n BlockC BlockA = true 
11 BlockA TheTable = true 
n BlockB TheTable = true 

·learlop BlockC = true 
leartop BlockB = true 

Condi lions 
chicve cleartop BlockB 
true 

· chi eve cleartop B.lock 
true 

11ly_use_for_qucry 
n BlockB TheTable = 

true lrne 

onditions 
· chieve on BlockA 
BlockB = true 

chicve on BlockB 
BlockC = true 

The HTN engine then applied the critics to the plan with the following results. 
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Statement Must Hold At Status Constraints 

on BlockB BlockC = at plan end yes from node puton BlockB 

true BlockC 

on BlockA BlockB = at plan end yes from node puton BlockA 

true BlokcB 

on BlockA TheTable at puton BlockA yes from plan head 

= true BlockB 

cleartop BlockA = at puton BlockA llil. Closed world asumption 

true BlockB 

cleartop BlockB = at puton BlockA yes from plan head 

true BlockB 

on B!ockB TheTable at puton BlockB yes from plan head 

= true BlockC 

cleartop BlockB = at puton BlockB llil. negation in parellel 

true BlockC 

cleartop BlockC = at puton BlockB yes achived by plan head 

true BlockC 

Both conditions on the plan's  final state now hold. Two achieve conditions from 

the tasks introduced to achieve these conditions now do not hold. 

The achieve condition Clear BlockA = true at the task puton BlockA BlockB was 

selected from the queue for processing. The HTN engine issued a request to the 

schema library for tasks which asserts the effect cleartop BlockA =true. The 

library returned the schema puton as it contains the effect cleartop ?z= true. 

Pattern matching this effect against the condition resulted in the following variable 

bindings. 

x = BlockC, from the only_use_for_query condition. 

y = ? unknown 

z = B lockA 

The HTN engine applied the expansion to the plan, immediately before the task 

requiring the condition. The resultant plan was as follows: 

B-6 
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onditions 
nly_use_for_query on 
lockC BlockA = true 
chieve cleartop Block 
true 

cbieve clear ?varl = 
true 

' ffcelS 
n BlockC varl? = true 
lcartop var l ?  = false 
n BlockC BlockA = 

false 
lcnrfop Block A = true 

auditions 
chievc clenrtop 

BlockA = true 
chieve cleartop BlockB 
true 

nl y _use_for_query 
n BlockA TheTable = 

me 

uton BlockA BlockB 

rue 
lenrtop BlockB = false 
n BlockA TheTable = 

false 
lcartop TheTable = 

e 

Plan Head uton Block C ?Varl 

e 
Jeartop BlockC = true 
Jeartop BlockB = true 

onditions 
chi eve cleartop Bloc' 
true 

chieve cleartop Block 
true 

n ly_use�for_qucry 
n BlockB TheTable = 

IC 

ulon BlockB BlockC 

Effc Is 

onditions 
chieve on BlockA 

BlockB = true 
chieve on BlockB 

BlockC = true 

n BlockB BlockC = 
true 

leartop BlockC = false 
n BlockB TheTable = 

false 
cnrtop TheTable = 

The HTN engine applied the plan critics to this plan with the following result. 
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Statement Must hold at status constraints 

on BlockB BlockC = at plan end yes from node puton BlockB BlockC 

true 

on blockA BlockB = at plan end yes from node puton BlockA BlockB 

true 

on BlockA TheTable = at puton BlockA yes from plan head 

true BlockB 

cleartop BlockA = true at puton BlockA yes from puton BlockC ?varl 

BlockB 

cleartop BlockB = true at puton BlockA yes from plan head 

BlockB 

on BlockB TheTable = at puton BlockB yes from plan head 

true BlockC 

cleartop BlockB = true at puton BlockB !!Q negation in parellel 

BlockC 

cleartop BlockC = true at puton BlockB yes achived by plan head 

BlockC 

on B lockC B lockA = at puton BlockC ?varl yes from plan head 

true 

cleartop BlockC = true at puton BlockC yes from plan head 

?varl 

cleartop ?var 1 = true at puton BlockC ?varl maybe if ?varl = TheTable or BlockB 

The condition cleartop ?var 1 is identified by the condition and effect critique as 

attainable, with the addition of a variable binding constraint. The HTN engine 

selected the TheTable instantiation as this would bind the condition to an always 

fact. I.e. it cannot be made false by any effect within the plan. 

With the binding made, the condition and effect manager was called to process the 

plan. Only one condition remained open, the parallel interaction between the 

cleartop BlockB condition at puton BlockB BlockC and Puton BlockA BlockB. 

8-8 
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Step 5 

8-9 

The user was invited to resolve the parallel interaction. This could be achieved by 

linearising puton BlockB BlockC and puton Block.A BlockB. Placing puton Block.A 

BlockB before puton BlockB BlockC introduced a new interaction, the cleartop 

BlockB condition of puton Block.A BlockB was deleted. The alternative ordering 

introduced no interactions. The completed plan is depicted below. 

Conditions • ffccts nd itions • feds 
nly_usc_for_qucl'y on n BlockC TheTable = chicvc cleartop n BlockA BlockB = 

BlockC BlockA = true BlockA = true rue 
chieve cleartop Block cbieve cleartop BlockB le:lrtop BlockB = false 

true true n BlockA TheTable = 
chieve cleartop n BlockC BlockA = nly_use_for_query 
heTnble = true false n BlockA TheTable = 

lcar1op BlockA = true true rue 

Plo.nHoad Pu ton Block C TheTable Pinn End 

Puron BlockB BlockC Pu1on BlockA BlockB 
• rrccts 
n BlockC BlockA = 
rue 
n BlockA TheTable = 

me 
n BlockB TheTable = 

true 
leartop BlockC = true 
eartop BlockB = true 

'ondltions 
chieve cleartop Block 
true 

chieve cleartop Block 
true 

nly_use_for_qucry 
11 BlockB TheTable = 

• ffccts 
11 BlockB BlockC = 

trne 
leartop BlockC = false 
11 BlockB TheTable = 

false 
lcmtop TheTable = 
rue 

CondiUons 
chieve on BlockA 
JockB = true 

chievc on BlockB 
lockC = true 

The final result of the question and answering process below indicates that all 

conditions are now established. 



Appendix B - Workbench testing 

Statement Must hold at status constraints 

on BockB BlockC = at plan end yes from node puton BlockB BlockC 

true 

on blockA BlockB = at plan end yes from node puton BlockA BlokcB 

true 

on BlockA TheTable = at puton BlockA yes from plan head 

true BlockB 

cleartop BlockA = true at puton BlockA yes from puton BlockC TheTable 

BlockB 

cleartop BlockB = true at puton BlockA yes from plan head 

BlockB 

on BlockB TheTable = at puton BlockB yes from plan head 

true BlockC 

cleartop BlockB = true at puton BlockB yes 

BlockC 

cleartop BlockC = true at puton BlockB yes achived by plan head 

BlockC 

on BlockC BlockA = at puton BlockC yes from plan head 

true The Table 

cleartop BlockC = true at puton BlockC yes from plan head 

TheTable 

cleartop TheTable = at puton BlockC yes 

true The Table 

With all conditions established, planning is complete. 

B-1 0 
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B.3 Tate's house building domai n 

The house building domain originates in (Tate 1976) and is designed to 

demonstrate the task refinement function of Nonlin and recently the 0-Plan 

system. The domain was selected to test the workbench's task refinement 

functionality. 

Two sets of tests were undertaken. The first set without the plan critics operating, 

and the second set with the critics operating. The first experiment verified the pure 

task refinement function of the workbench. i.e. it can correctly replace a task with 

its refinement. The second test set verified the complete workbench architecture. 

This section reports the first experiment set. 

B.4 Experiment set up 

B-1 1 

The build house task was specified using the following task definition. The 

definition is taken directly from the 0-Plan test specifications on the World Wide 

Web (url http://www.aiai.ed.ac. uk/cgi-bin/oplan/web-demo/show-tf/house-1 .tf 

[accessed 1 1  Apr 1997)).  

task build_house; 
nodes 

orderings 
end_ task; 

start, 
2 finish, 
3 action {build house } ;  
1 ---> 3 ,  3 ---> 2 ;  

The definitions of the operators available in the domain were provided using the 

following domain description taken directly from the 0-Plan World Wide Web 

site (url http://www.aiai.ed.ac. uk/cgi-bin/oplan/web-demo/show-tf/house-1 .tf 

[accessed 1 1  Apr 1997]) . 
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; ; ;  House Building Domain - with no schema choice 
" '  

; ; ;  BAT 5-Dec-76: Nonlin TF. 
; ; ;  KWC 9-Sep-85: Converted to 0-Plan l TF. 
; ; ;  BD 1 2-May-92: Converted to O-Plan2 TF. 

schema build; 
expands {build house) ;  ; ; ;  this expands the top level action 
nodes 1 action { excavate and pour footers } ,  ; ; ;  some are primitive 

2 action { pour concrete foundations ) , 

3 action (erect frame and roof } , 
4 action {lay brickwork } ,  
5 action {finish roofing and flashing } , 
6 action { fasten gutters and downs pouts } ,  
7 action { finish grading } ,  
8 action { pour walks and landscape } , 
9 action ( install services } ,  ; ; ;  some are not. 
10 action { decorate } ; 

orderings I ---> 2, 2 ---> 3, 3 ---> 4, 4 ---> 5,  
5 ---> 6, 6 ---> 7,  7 ---> 8; 

; ; ;  actions 9 & 10  are not ordered wrt other actions - they are in parallel 
conditions supervised { footers poured } at 2 from [ I ] , 

supervised { foundations laid } at 3 from [2], 
supervised { frame and roof erected } at 4 from [3], 
supervised {brickwork done } at 5 from [4], 
supervised { roofing finished } at 6 from [5],  
supervised { gutters etc fastened } at 7 from [6], 

unsupervised { storm drains laid } at 7, 
supervised { grading done } at 8 from [7); 

; ; ;  note the unsupervised condition - its satisfaction is outwith 
; ; ;  the control of this schema but must still be satisfied 

end_schema; 
schema service_l ;  

expands [ install services } ;  
only_use_for_effects { installed services 1 ) ;  
nodes 1 action [ install drains } , 

2 action ( lay storm drains } . 
3 action { install rough plumbing } , 
4 action { install finished plumbing } ,  
5 action { install rough wiring } ,  
6 action { finish electrical work } , 
7 action {install kitchen equipment} .  
8 action { install air conditioning } ; 

orderings 1 ---> 3, 3 ---> 4, 5 ---> 6, 3 ---> 7, 5 ---> 7;  
conditions supervised {drains installed } at 3 from [ I] ,  

supervised {rough plumbing installed } at 4 from [3] ,  
supervised ( rough wiring installed } at 6 from [5], 
supervised { rough plumbing installed } at 7 from [3], 
supervised { rough wiring installed } at 7 from [5] , 

unsupervised { foundations laid } at 1 ,  
unsupervised { foundations laid } at 2, 
unsupervised { frame and roof erected } at 5 ,  
unsupervised { frame and roof erected } at 8, 
unsupervised {basement floor laid } at 8, 
unsupervised { flooring finished } at 4, 
unsupervised { flooring finished } at 7, 
unsupervised {painted } at 6; 

; ; ;  As in the real world this sub-contractor relies heavily on others 
; ; ;  to prepare things beforehand - see the unsupervised conditions. 

end_schema; 

schema decor; 
expands { decorate} ;  
nodes I action I fasten plaster and plaster board \ .  

8-1 2  
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2 action { pour basement floor } ,  
3 action { lay finished flooring } ,  
4 action {finish carpentry } , 
5 action { sand and varnish floors } ,  
6 action {paint } ;  

orderings 2 ---> 3 ,  3 ---> 4 ,  4 ---> 5,  1 ---> 3, 6 ---> 5 ;  
conditions unsupervised {rough plumbing installed } a t  1 ,  

unsupervised {rough wiring installed } at 1 ,  
unsupervised { air conditioning installed } at 1 ,  
unsupervised {drains installed } at 2, 
unsupervised {plumbing finished } at 6, 
unsupervised {kitchen equipment installed } at 6, 

supervised {plastering finished } at 3 from [ l] ,  
supervised {basement floor laid } at 3 from [2], 
supervised { flooring finished } at 4 from [3], 
supervised { carpentry finished } at 5 from [ 4 ], 
supervised { painted } at 5 from [6]; 

end_schema; 
; ; ;  Now for completeness a list of primitive actions. Primitives are 
;; ;  defined as having no nodes list and must have an expands pattern. 
schema excavate; 

expands {excavate and pour footers} ;  
only _use_for_effects {footers poured} = true; 

end_schema; 
schema pour_concrete; 

expands {pour concrete foundations } ;  
only_use_for_effects {foundations laid} = true; 

end_schema; 
schema erect_frarne; 

expands {erect frame and roof} ;  
only_use_for_effects {frame and roof erected} = true; 

end_schema; 
schema brickwork; 

expands { lay brickwork } ;  
only_use_for_effects {brickwork done} = true; 

end_schema; 
schema finish_roofing; 

expands {finish roofing and flashing} ;  
only_use_for_effects {roofing finished} = true; 

end_schema; 
schema fasten_gutters; 

expands { fasten gutters and downspouts } ;  
only_use_for_effects (gutters etc fastened} = true; 

end_schema; 
schema finish_grading; 

expands {finish grading} ;  
only _use_for_effects { grading done} = true; 

end_schema; 
schema pour_ walks; 

expands {pour walks and landscape} ;  
only _use_for_effects { landscaping done} = true; 

end_schema; 
schema install_drains; 

expands { install drains } ;  
only_use_for_effects {drains installed} = true; 

end_schema; 
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schema lay _storm; 
expands { lay storm drains } ;  
only_use_for_effects { storm drains laid} = true; 

end_schema; 
schema rough_plumbing; 

expands { install rough plumbing } ;  
only _use_for_effects {rough plumbing installed} = true; 

end_schema; 
schema install_finished; 

expands { install finished plumbing} ;  
only_use_for_effects {plumbing finished} = true; 

end_schema; 
schema rough_ wiring; 

expands { install rough wiring} ;  
only_use_for_effects {rough wiring installed } = true; 

end_schema; 
schema finish_electrical; 

expands { finish electrical work } ;  
only_use_for_effects { electrical work finished} = true; 

end_schema; 
schema install_kitchen; 

expands { install kitchen equipment } ;  
only_use_for_effects {kitchen equipment installed} = true; 

end_schema; 
schema install_air; 

expands { install air conditioning } ;  
only_use_for_effects { air conditioning installed } = true; 

end_schema; 
schema fasten_plaster; 

expands {fasten plaster and plaster board } ;  
only_use_for_effects ( plastering finished } = true; 

end_schema; 
schema pour_basement; 

expands (pour basement floor } ;  
only_use_for_effects {basement floor laid } = true; 

end_schema; 
schema lay_flooring; 

expands {Jay finished flooring } ;  
only_use_for_effects {flooring finished} = true; 

end_schema; 
schema finish_garden; 

expands { finish garden} ;  
only_use_for_effects { garden finished} ;  

end_schema; 
schema finish_carpentry; 

expands {finish carpentry} ;  
only _use_for_effects { carpentry finished } = true; 

end_schema; 
schema sand; 

expands { sand and varnish floors } ;  
only_use_for_effects { floors finished} = true; 

end_schema; 
schema paint; 

expands { paint } ;  
only _use_for_effects { painted } = true; 

end_schema; 

B-1 4  
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B.5 Experiment Execution 

Initialisation 

Step 1 

B-1 5  

The domain representation was passed to the schema library, and the HTN engine 

initiated with the task "build_house". In response to this initialisation, the 

workbench generated the following plan . 

.__
P
_
la
_
n
_

h
_
e
_
ad
__,

------•I action build house ------+i•I plan end 

The planners task queue was set as follows: 

Task Queue 

action build house 

The planner has one outstanding task: build house. The schema library was 

requested to provide candidates schemas for achieving this task. One schema, 

build, was returned. As plan critics were not active, the schema' s only_use_if 

conditions were not checked. 

The planner replaced the build house task in the initial plan with the partial plan 

described in the schema build. The resultant plan is depicted below. 

action install services 

action Decorate 

The resultant task queue was as follows. The shaded box indicates the task 

removed during the expansion. The abbreviations in the plan above are attached to 

the full names of the tasks. 



Step 2 
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Task Queue 

action build house 

action pour concrete foundations (pet) 

action erect frame and roof (efr) 

action lay brickwork (lb) 

action finish roofing and flashing (frf) 
action fasten gutters and downspouts (fgs) 

action finish grading (fg) 

action pour walks and landscape (pwl) 

action install services 

action decorate 

The first seven tasks on the task queue refined immediately to primitive tasks. The 

task queue after processing was as follows: 

Task Queue 

action pour concrete foundations (pet) 

action erect frame and roof (efr) 

action lay brickwork (lb) 

action finish roofing and flashing (frf) 

action fasten gutters and downspouLS (fgs) 
action finish grading (fg) 

action pour walks and landscape (pwl) 

action install services 

action decorate 
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Step 3 

B-1 7 

The schema library returned one task for refining "install services". The install 

services task was replaced with this method, resulting in the following plan. 

action Decorate 

Task Queue 

action install services 

action decorate 

action install drains (id) 

action install rough plumbing (irp) 

action install finished plumbing (ifp) 

action install rough wiring (irw) 

action finish electrical work (few) 

action install kitchen (ike) 

action install air conditioning (iac) 



Step 4 

Step 5 
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The next task is decorate and this is what we get. 

The expansion resulted in the following task queue. 

Task Queue 

action decorate 

action install drains (id) 

action install rough plumbing (irp) 

action install finished plumbing (ifp) 
action install rough wiring (irw) 

action finish electrical work (few) 

action install kitchen (ike) 

action install air conditioning (iac) 

action fasten plaster and plaster board (fpb) 

action pour basement floor (pbf) 

action lay finish flooring (lff) 

action finish carpentry (fc) 
action sand and varnish floors (svf) 

action paint (p) 

All the tasks within the task network at the end of step 4 refine to primitive tasks. 

Planning may therefore be considered complete. 

8-1 8  
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Blank 
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C.1 Full  house building domain specification 

1 

; ; ;  House Building Domain - larger house building example 

; ; ;  BAT 5-Dec-76: Nonlin TF. 
;;;  KWC 9-Sep-85: Converted to 0-Plan l TF. 
; ; ;  BD 1 2-May-92: Converted to O-Plan2 TF. 
; ; ;  BAT 30-Nov-92: remove multiple landscape schema names 
;;;  BAT 30-Jun-93: task schema only_use_for_effect removed 

task build_large_house; 
nodes 1 start, 

2 finish, 
3 action { build house } ;  

orderings 1 ---> 3,  3 ---> 2; 
end_ task; 

schema build; 
expands { build house} ;  
nodes 1 action { obtain building permit} ,  

2 action { lay foundations } ,  
3 action {build walls and roof} ,  
4 action {joinery } ,  
5 action { decorate and fit}, 
6 action { install services } ,  
7 action {landscape } ,  
8 action {close o u t  house } ;  

orderings 1 ---> 2 ,  2 ---> 3, 2 ---> 4, 2 ---> 5, 
2 ---> 6, 2 ---> 7, 3 ---> 8;  

conditions unsupervised { wooden frame and roof erected ) at 5;  
end_schema; 

schema lay _foundations; 
eltpands ( lay foundations I ;  
n de I a 1ion ( clenr lot and grade for slab } ,  

2 accion ( place concrel<: forms reinforcement rods and sewer lines},  
3 action { pour slab } ;  

orderings 1 ---> 2 ,  2 ---> 3 ; 
effects { foundations laid } ;  

end_ schema; 

schema build_ walls_and_roof; 
CJ!.pands {build wail. and roof) :  
node 1 action {erect wooden frame including roof}, 

2 action { fasten exterior sheathing } ,  
3 action { insulate outside walls } ,  
4 action { sheetrock and plaster inside walls } ,  
5 action { place insulation in attic} ,  
6 action { attach gutters and downspouts } ,  
7 action { shingle roof}, 
8 action { lay brickwork exterior walls plus inside fireplace I ;  

orderings 1 ---> 2 ,  2 ---> 3, 3 ---> 4, 4 ---> 5 ,  5 ---> 6 ,  1 ---> 7, 
7 ---> 3, 2 ---> 8, 8 ---> 5;  

conditions unsupervised {foundations laid) at 1 ,  
unsupervised { rough plumbing installed } a t  3 ,  
unsupervised { rough wiring installed } at 3 ,  
unsupervised [ exterior trim complete} a t  8;  

cnd_sthemn: 
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schema joinery; 
e. pnnds {joinery } ; 
nodes I action {d rough carpentry including window and door frames) ,  

2 action l do finish cnrpel\try cabinets !rim mouldings panelling) .  
3 action {sand stain and varnish wood panelling and cabinets ) ,  
4 action { lay forrnica counter surfaces in kitchen) ;  

orderings 1 ---> 2, 2 --> 3 ,  3 - - -> 4; 
conditions unsupervised {e 1crior sheathing fastened) at 1 ,  

unsupervised (plastering done) at 2; 
end_schema; 

schema landscape; 
expands {landscape) ;  
n des 1 ac1ion {grade lay forms for walks and driveways ) ,  

2 action {pour walks and driveway) ,  
3 action {finish grading },  
4 action { landscape_yard) ;  

orderings 1 ---> 2, 2 ---> 3, 3 ---> 4; 
conditions unsupervised { brickwork laid)  at 1 ,  

unsupervised { interior and exterior cleaned ) at 3 ;  
end_schema; 

schema install_services; 
expands { install services) ;  
nodes 1 action {electrical services } ,  

2 action {plumbing services ) ,  
3 action {install kitchen appliances } ,  
4 action {heating and air conditioning} ;  

orderings 2 ---> 3 ;  
conditions unsupervised { interior painted) at 3; 

end_schema; 

schema electrical_services; 
expands {electrical services } ;  
nodes 1 action { install rough wiring} ,  

2 action { install electrical outlets switches lighting fixtures ),  
3 action { final hookup of electrical system ) ;  

orderings I -> 2 .  2 -> 3: 
conditions unsupervi,ed { wooden frame and roof en:c1cd ) at I ,  

unsupervised ( selected urfacu wnllpapered l at 2, 
unsupervi ed { ldtch"'n appliances insmlled } at 2, 
unsupervised { hot wnter heater installed ) at 2, 
unsupervised { fumnce :ind air conditioner installed) at 2; 

end_schema; 

schema plurnbing_services; 
expands (plumbing services } :  
nodes 1 action { i n  1all r ugh plumbing) ,  

2 action { install tubs and shower basins } ,  
3 action ( install remaining plumbing fixtures ) ,  
4 action { install hot water heater l ;  

orderings 1 ---> 2, 2 - >  3 ,  1 --> 4: 
conditions unsupervi cd { wooden frume and roof erected) at 1 ,  

unsupervised {plastering done) at 2, 
unsupervised (rough carpentry done) at 2, 
unsupervised { bathroom tiles laid) at 3, 
unsupervised { forrnica surfaces done) at 3; 

end_schema; 

2 
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schema heating_and_ac; 
expands { heating and air conditioning} ;  
nodes 1 action {install heating and cooling ducts },  

2 action {install furnace and air conditioner) ;  
orderings I ---> 2; 
conditions unsupervised {wooden frame and roof erected} at I ,  

unsupervised (rough wiring installed ) at 2; 
effects { heating and air conditioning installed} ;  

end_schema; 

schema decorate; 
expands {decorate and fit} ;  
nodes I action {lay bathroom tiles } .  

2 action {sand and paint interior walls and trim} , 
3 action {lay flooring wood and vinyl } ,  
4 action {wallpaper selected surfaces } ,  
5 action {complete exterior trim ) ,  
6 action {pnint exterior uim), 
7 action {clean u p  interior and exterior including yard } ,  
8 action { lay carpeting ) ,  
9 action {attach cabinet fixtures } ;  

orderings 5 ---> 6, 6 ---> 7, 7 ---> 8 ,  2 ---> 3, 3 ---> 7, 2 ---> 4, 
2 ---> 9; 

conditions unsupervised ( tubs and shower basins installed) at 1 ,  
unsupervised ( plumbing finished} at 2, 
unsupervi ed ( eiucrior sheathing a tened ) at 5. 
un upervised {guucrs nnd downspou1s attached ) at 6. 
un upervised [ hcati.ng nad air conditioning installed ) at 7; 

end_schema; 

schema obtain_permit; 
expands I obtain building permit) ;  
only_use_for_effects {got pem1it) = true; 

end_schema; 

schema clear_and_grade; 
expands {clear lot and grade for slab ) ;  
only _use_for_effects {lot cleared] = true; 

end_schema; 

schema place_forms; 
expands ( place concrete forms reinforcement rods and sewer lines ) ;  

end_schema; 

schema pour_slab; 
expands {pour slab] ; 

end_schema; 

schema erect_ wooden_frame; 
e11ponds ( erect wooden frame including roof} : 
only_use_for_effccts (wooden frame and roof erected) = true; 

end_schema; 

schema fasten_exterior_sheathing; 
c11pnnds I fostcn exicrior shend1 1ng ) ;  
only_u ·c_for_effccts {e 1crior heathing fastened} = true; 

end_schema; 

schema install_rough_plumbing; 
expnnds ( ins1all rough plumbing ) :  
only_usc_for_effocts {rough plumbing installed} = true; 

end_schema; 
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schema install_rough_ wiring; 
expands { install rough wiring} ;  
only_use_for_effects { rough wiring installed ) = true; 

end_schema; 

schema insulate_outside; 
expands { insulate outside walls} ;  

end_schema; 

schema plaster_inside; 
expands { sheetrock and plaster inside walls } ;  
only_use_for_effects { plastering done} = true; 

end_schema; 

s.chema rough_cnrpeniry; 
expands { do rough carpentry including window and door frames ] ;  
only_use_for_effects { rough carpentry done} = true; 

end_schema; 

schema linish_carpcntry: 
expands { do fini h carpentry cabinets trim mouldings panelling} ;  

end_schema; 

schema sand_and_vamish; 
expands { sand stain and varnish wood panelling and cabinets } ;  

end_schema; 

schema do_kitchen_surfaces; 
expands { lay forrnicn counter surfaces in kitchen} ;  
only_u e_for_effects I fonnica surfaces done} = true; 

end_schema; 

schema install_tubs; 
expand { install tubs nnd shower basin ] ; 
only_use_for_effccts { tubs nn<l shower basins installed} = true; 

end_schema; 

schema do_tiles; 
expands t lny bathroom tiles } ;  
only_u e_for_effecrs {bathroom tiles laid} = true; 

end_schema; 

schema install_remaining_plumbing; 
expands {install remaining plumbing fixtures } ;  
only_use_for_effects [ plumbing finished} = true; 

end_schema; 

schema sand_and_paint; 
expands { sand and paint interior walls and trim} ;  
only_use_for_effects {interior painted ) = true; 

end_schema; 

schema lay _flooring; 
expands {lay flooring wood and vinyl } ;  

end_schema; 

schema do_ wallpaper; 
expand [ wallpaper selected surface.�}: 
oniy_u ii3or_effccts {selected surfaces· wallpapered} = true; 

end_schema; 

schema install_kitchen; 
expands ( i nstall kitchen appliances ) ;  
onl _use_for_cffcct� {kitche11 ppliances installed] = true; 

end_schema; 

4 



Appendix C - Summary of literature domains 

5 

schema install_water_heater; 
expands {install hot water heater) ; 
only_use_for_effects { hot water heater installed ) = true; 

end_schema; 

schema install_heating; 
expands { install heating and cooling ducts} ;  

end_schema; 

schema install_fumace; 
expands ( in ml J  furnace and air conditioner);  
only_u e_C r_effccts { furnace and air conditioner installed) = true; 

end_schema; 

schema complete_trim; 
expands { complete exterior trim} ;  
only _use_for_effects { exterior trim complete) = true; 

end_schema; 

schema lay_brickwork; 
expands { lay brickwork exterior walls plus inside fireplace} ;  
only _use_for_effects {brickwork laid) = true; 

end_schema; 

schema single_roof; 
expands { shingle roof} ;  

end_schema; 

schema attach_gutters; 
oxpond. I attach gutters and downspouts } ;  
only_u e_for_cffects {gutters and downspouts attached } = true; 

end_schema; 

schema paint_exterior; 
expands { paint exterior trim};  

end_schema; 

schema place_insulation; 
expands { place insulation in attic } ;  

end_schema; 

schema lay_walks; 
expands { grade lay forms for walks and driveways } :  

end_schema; 

schema pour_ walks; 
expands { pour walks and driveway) ;  

end_schema; 

schema finish_grading; 
expands { finish grading} ;  

end_schema; 

schema landscape_yard; 
expands { landscape_yard) ;  

end_schema; 

schema install_switches; 
expands {install electrical outlets switches lighting fixtures} ;  

end_schema; 

schema final_hookup; 
expands { final hookup of electrical system) ;  

end_schema; 
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chemn clenn_up; 
expands (clean up inferior nnd exterior mduding yard } ;  
only_ose_for_effoc1 ( i111erior and ex1erior cleaned } = 1rue; 

end_schcmn: 

schcmn co.rpct: 
expand ( lay cnrpeting } :  

cnd_schemn; 

schema attach_cabinet_fixtures; 
expands {attach cabinet fixtures};  

end_schema; 

schema closc_out; 
expands { close out house}; 

end_schemn: 

6 
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Task Operation_Columbus 
nodes sequential 

I start, 
parallel 

3 action (transport__ground_transports Honolulu Delta) 
4 action (transport_helicopters Honolulu Delta) 

end_parallel 
parallel 

5 
6 
7 

parallel 

action (evacuate Abyss 50) 
a-;tion (evacuate B arnacle 100) 
action (evacuate Calypso 20) 

8 action (fly_passengers Delta Honolulu) 
9 action (t.ransport_ground_transports Delta Honolulu) 
1 0  action (transport_helicopters Delta Honolulu) 

end_parallel 
2 finish 

end_sequenctial; 
effects 

end_ task; 

(location__gt GTl) 
(location__gt GT2) 
(in_use_for GTl )  
(in_use_for GT2) 
(location_at A T I )  
(in_use_for AT!) 
(apportioned_forces GT) 
(apporti ned_forces AT) 
(nt C l 4 1 )  
(lit C.S) 
(at KCI O) 
(at B707) 
(runway_status_at Delta) 
(runway_status_at Honolulu) 
(gt_capacity 25) 
(:u_..:apacity 35) 

schema evacuate_ city 
expands {evacuate city ?city ?nu111her} 

= Honolulu at I 
= Honolulu at 1 
= in_transit at 1 
= in_transit at I 
= Honolulu at I 
= in_transit at 1 
at I 
at I 
= Honolulu at 1 

= Honolulu at I 
= Honolulu at 1 
= Delta at I 
= clear at 1 
= clear at I 

at I 
at I 

vars ?city = ? ( lypc city) 
?number = ?{ satisfies numberp) 

conditions 
achieve {evac_status ?city} = {O ?number}; 

end_schema; 
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schema Road_ Transport 
only_use_for_effects {evac_staus ?from} = {e_left e_safe}; 
vars ?from =?{ type city } 
?to =? { type air_base} 
?gt =? { type ground_transport} 
?e_left =?{type numberp} 
?e_safe =?{type numberp } 
?c_left =?{type numberp } 
?c_safe =?{ type numberp } 
?capacity =? ( type numberp } 
?take =?{ type numberp } 
nodes 

I action { drive ?take in ?gt from ?from} 
2 dummy 

conditions 
only_use_if { apportioned_forces GT} 
only_use_if { evacuate_to ?to} 
only_use_if (gt_Cllpacity ?cnpnclty) 
compute { ?cap:icity :'c_left ?e_.a c )  = ( ?c_left ?c_safe) 
compute f - ?e_ nfo ?c_ (lfe) = ?take 
achieve ( evoc_ · rntu '!from ) = { ?c_ lefl c_sa e) at 2 
unsupervi ed ( localion_gt ft } = ?to nt bc.:gin_of I 
unsupervised ( in_use_for ?g1} = available at begin_ of I 
supervised { in_u e_for ?gt } = ?fr(lm al end_of I from begin_ of l 

effects 
{ in_use_for ?gt} = ?from at begin_of I 
{ in_use_for ?gt) = available at end_ of 1 

end_schema 

Schema Air_ Tran pon 
only_u c_for_cffccts {evac_staus ?from} = {e_left e_safe}; 

vars ?from =? { type city} 

nodes 

?to =? { type air_base} 
?at =?{ type airtransport} 
?e_left =?{type numberp } 
?e_safe =?{ type numberp } 
?c_left =?{ type numberp } 
?c_safe =?{type numberp } 
?capacity =?{type numberp } 
?take =?{type numberp l 

1 action { fly ?take in ?gt from ?from} 
2 dummy 

conditions 
only_use_if {apportioned_forces AT} 
only_use_if { evacuate_ to ?to} 
only_use_if { gt_cnpocity ?cupncit } 
cornpu1c (' /capacity 7c_lcfl 7e_safo ) = { 'lc_ left ?c_safe) 
compute { - .e_ afe ?c_safe) = ?t, ke 
achieve I cvnc_. 1a1us ?from ) = { '!c_left ?c_safo) at 2 
un opervised ( locmion_gt ?AT) = '/IQ at bcgin_of I 
un upervised { in_use_for ?ut} = nvai lnble at begin_of 1 
supervised {in_11 e_for ?at ) = . from at nd_of I from begin_of l 

effects 
{in_use_for ?at} = ?from at begin_of l 

{in_use_for ?at) = >available at end_of I 
end_schema 

8 



Appendix C - Summary of literature domains 

9 

chemn tnm pon..ground_rrnnspons 
expands {transport >round_trnn ports '!from ?to} 
viics ?from = ?( type nir_b::ise I 
nodes 

?to = ? { type air_base) 

1 action ( load ground_ transports) 
2 action {take_off_from ?from )  
3 action {fly _to ?to) 
4 action{land_at ?to) 
5 action I unload ground_transports ) 

orderings 1 ->2, 2->3,3->4,4-5 
conditions 

achieve { at c5 ) = ?from at 1 
unsupervised { Jocation__gt GTI ) = ?from at 1 
un ·uperviscd ( locmion_.gt GT2) = from at I 
on upcrvised { runway_ t:llll _nt ?f m} = clear nt bcgln_of 2 

upervi ed { nmway_slnlu._nt from ) = muse at end_of 2 from begin of 2 
unsupervised ( rnnway_ tntu nt ?t ) = clear nl bcgin_of 4 
supervised { runwn.y_ tntus_nt ?ro) = i use 111 end_ of 4 from begin of 4 

effects 
{ at c5 ) = ?to at 5 
{ location__gt GTI ) = ?to at 5 
{ location__gt GT2) = ?to at 5 
{ in_use_for GTI )  = available at 5 
{ in_u e_for GT2 I = avnilnble at 5 
{ ninway_. tmus_nt ?fr m I = in_ use at begin_ of 2 
(runway _status at ?from) = clear at end of 2 
{ runway_ststus at ?to I = in_usc nt begin of 4 
{runway_status at ?from) :: clear at end_of 4 

end_schema 

schema transport_helicopters 
expands {transport_belicopters ?From ?to} 
vars ?from = ? ( type air_base ) 

nodes 

?to = ?{ type air_base) 

I action ( load air_transports ) 
2 action { take_off_from ?from) 

3 action [ fly_to ?to) 
4 action { Jand_at ?to) 
5 action {unload air_ transports ) 

orderings l ->2, 2->3,3->4,4-5 
conditions 

achieve {at c141 ) = ?from at 1 
unsupervised { location_at AT l }  = ?from al I 
un upervised { runwny_ tatus_at ·. from ) = clear al begin_of 2 

upenriscd ( runway_ tat11 _at from} = inusc at cnd_of 2 fro111 begin of 2 
un upervi cd ( runway_ llltu t ?to I = clear at begin_ of 4 
supervised { runway_ 11tu _at to I = in_ use at end_ of 4 from begin of 4 

effects 
{ at c 1 40 )  = ?to at 5 
( location__gt A TI ) = ?to at 5 
( in_use_for A TI ) = availnt;ile at 5 
( runway_. tatus_at ?from } = in_use at begin_of 2 
(runway _status at ?from) = clear at end of 2 
( runway_ststus at ?to) = in_use at begin of 4 
{runway_status at ?from) = clear at end_of 4 

end_ chcma 
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schema fly_passeogers. 
expands {fty_passengers ?from ?to} 
vm ?to = ?{type air_base} 

nodes 
?from = ?{type air_base} 

1 action {load Passengers} 
2 action {take_off_from ?from} 
3 action {fly _to ?to} 
4 action{land_at ?to} 
5 action {unload Passengers } 

orderings 1 ->2, 2->3,3->4,4-5 
conditions 

un upervised { locntion_g1 B707 ) = ?from at I 
un upervi ed { runway_ lntus_:ll . from ) = clear m begin_ of 2 
upervi ed I runway_sunus_al from ) = in use m end_of 2 from begin of 2 

un upcrvi ed { nmwny_smlus at . 10 ) = clear nt begin_of 4 
supervised ( runway_ uuu _n1 to l = in_ use al end_ of 4 from begin of 4 

effects 
{n1 B707 ) = 10 01 5 
{ nmway_stntu _al ?from} = in_use at begin_of 2 
{runway _status at ?from} = clear at end of 2 
{runway_ tstus at ?10) = in_ use t begin of 4 
{runway_statns at ?from } = clear at end_of 4 
{nationals out} = true at 5 

end_ chema 

1 0  



Appendix C - Summary of literature domains 

Blank 

1 1  



, .  


	20160607143400


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move right by 28.35 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     375
     156
    
     Fixed
     Right
     28.3465
     0.0000
            
                
         Both
         2
         AllDoc
         253
              

       CurrentAVDoc
          

     None
     17.0079
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     1
     368
     367
     368
      

   1
  

 HistoryList_V1
 qi2base





