
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Tesis Doctoral

Architecture for Planning and
Execution of Missions with Fleets of
Unmanned Vehicles

Autor: Jorge Juan Muñoz Morera
Directores: Jesús Iván Maza Alcaníz

Aníbal Ollero Baturone

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería
Universidad de Sevilla

Sevilla, 2019

Tesis Doctoral

Architecture for Planning and Execution of Missions with
Fleets of Unmanned Vehicles

Autor:

Jorge Juan Muñoz Morera

Directores:

Jesús Iván Maza Alcaníz
Profesor Titular de Universidad

Aníbal Ollero Baturone
Catedrático de Universidad

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

2019

Tesis Doctoral: Architecture for Planning and Execution of Missions with Fleets of
Unmanned Vehicles

Autor: Jorge Juan Muñoz Morera
Directores: Jesús Iván Maza Alcaníz, Aníbal Ollero Baturone

El tribunal nombrado para juzgar la Tesis arriba indicada, compuesto por los siguientes
doctores:

Presidente:

Vocales:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

A mis padres Alfonso y Carmen

Agradecimientos

Esta tesis doctoral es fruto de todo el trabajo realizado a lo largo de los 5 años que
ha durado. Durante todo este tiempo he tenido que compaginarla no sólo con mi

propio trabajo, sino también con mi vida personal. Hacer una tesis es difícil no sólo por
el esfuerzo necesario durante la investigación, sino también por el tiempo dedicado. Es
inevitable pasar menos tiempo con aquellos a los que quieres, y eso ha sido especialmente
duro para mí.
Por todo lo anterior, quiero agradecer todo el apoyo recibido a mi familia, puesto que

ellos han sido los que me han animado a finalizar mis estudios. En especial, agradecerle
a mis padres Alfonso y Carmen por haber estado presente en los momentos mas duros
y dar la talla siempre. Espero poder devolverles todo lo que me han dado algún día y de
alguna forma. También a mi hermana Sandra, por ser mi confidente, escuchar todos y
cada uno de mis problemas y ayudarme a contar hasta diez cuando ha sido necesario. Y
por supuesto a mis sobrinos, por alegrarme el alma con solo mirarlos.

También tengo que agradecer a los profesores IvánMaza y Aníbal Ollero, por permitirme
entrar en el Grupo de Robótica, Visión y Control y aprender todo lo que significa y rodea
al mundo de la investigación y la docencia.

No quiero olvidarme de agradecer a mi compañero en CATEC Antonio Jiménez Bellido,
puesto que fué él quién me permitió entrar por primera vez en el mundo de los vehículos
aéreos allá en el año 2012, cuando aún no sabía ni que existían, descubriendo una línea de
trabajo poco común para un ingeniero informático. Agradecimientos a él y también a mi
antiguo compañero Luis Díaz, puesto que actuaron como tutores durante mi primer paso
por el centro y me enseñaron mucho. También a Antidio Viguria, por haberse acordado
de mí y confiar en mis cualidades para la segunda etapa. Y por supuesto, gracias también
a mis compañeros actuales de Altran.

Finalmente, agradecerle a Inma su paciencia conmigo y sobre todo, su compañía. Porque
gracias a personas como ella la vida es un poquito más fácil.

Jorge Juan Muñoz Morera
Investigador en Altran Defence and Space

Sevilla, 2018

III

Acknowledgements

This Thesis is the result of all the work done through five years of duration. During all
this time I had to combine my Ph.D. studies not only with my job, but also with my

personal life. Doing a Thesis is hard not only for the needed effort but also for the time
spent. It is unavoidable to share less time with those you love, and this has been specially
hard for me.

For all the above, I would like to thank the received support to my family, because they
encouraged me to finish my studies. Specially, to my parents Alfonso and Carmen for
being with me in the hard moments and making the grade always. I hope I can return them
all their love someday and somehow. Thanks to my sister Sandra, for being my confident,
hearing all my problems and helping me count to ten when needed. And of course to my
nephews, for gladding my soul.

I have to thanks professors Iván Maza and Anibal Ollero for letting me in the Robotics,
Vision and Control Group and learn all that surrounds the field of research and teaching.

I do not want to forget my companion in CATEC Antonio Jiménez Bellido, because
he brought me the opportunity to enter the field of unmanned aerial vehicles for the first
time in 2012, when I still did not know they existed, opening an uncommon work line for
a computer science engineer. Thanks to him and also to my old companion Luis Díaz,
because both acted as my tutors during my first stage at CATEC and I learned a lot from
them. Thanks also to Antidio Viguria for remembering me and trusting in my qualities for
the second stage. And of course, thanks to all my current colleagues in Altran.
Finally, I would like to thank Inma for her patience and especially, for her company.

Because people like her make the life a little bit easier.

Jorge Juan Muñoz Morera
Researcher in Altran Aerospace and Defence

Seville, 2018

V

Resumen

Esta tesis presenta contribuciones en el campo de la planificación automática y la
programación de tareas, la rama de la inteligencia artificial que se ocupa de la

realización de estrategias o secuencias de acciones típicamente para su ejecución por
parte de vehículos no tripulados, robots autónomos y/o agentes inteligentes. Cuando se
intenta alcanzar un objetivo determinado, la cooperación puede ser un aspecto clave. La
complejidad de algunas tareas requiere la cooperación entre varios agentes. Mas aún,
incluso si una tarea es lo suficientemente simple para ser llevada a cabo por un único
agente, puede usarse la cooperación para reducir el coste total de la misma. Para realizar
tareas complejas que requieren interacción física con el mundo real, los vehículos no
tripulados pueden ser usados como agentes. En los últimos años se han creado y utilizado
una gran diversidad de plataformas no tripuladas, principalmente vehículos que pueden
ser dirigidos sin un humano a bordo, tanto en misiones civiles como militares.
En esta tesis se aborda la aplicación de planificación simbólica de redes jerárquicas

de tareas (HTN planning, por sus siglas en inglés) en la resolución de problemas de
enrutamiento de vehículos (VRP, por sus siglas en inglés) [18], en dominios que implican
múltiples vehículos no tripulados de capacidades heterogéneas que deben cooperar para
alcanzar una serie de objetivos específicos.
La planificación con redes jerárquicas de tareas describe dominios utilizando una

descripción que descompone conjuntos de tareas en subconjuntos más pequeños de
subtareas gradualmente, hasta obtener tareas del más bajo nivel que no pueden ser
descompuestas y se consideran directamente ejecutables. Esta jerarquía es similar al modo
en que los humanos razonan sobre los problemas, descomponiéndolos en subproblemas
según el contexto, y por lo tanto suelen ser fáciles de comprender y diseñar.
Los problemas de enrutamiento de vehículos son una generalización del problema del

viajante (TSP, por sus siglas en inglés). La resolución del problema del viajante consiste
en encontrar la ruta más corta posible que permite visitar una lista de ciudades, partiendo
y acabando en la misma ciudad. Su generalización, el problema de enrutamiento de
vehículos, consiste en encontrar el conjunto de rutas de longitud mínima que permite
cubrir todas las ciudades con un determinado número de vehículos. Ambos problemas
cuentan con una fuerte componente combinatoria para su resolución, especialmente en el

VII

VIII Resumen

caso del VRP, por lo que su presencia en dominios que van a ser tratados con un planificador
HTN clásico supone un gran reto.

Para la aplicación de un planificador HTN en la resolución de problemas de enrutamiento
de vehículos desarrollamos dos métodos. En el primero de ellos presentamos un sistema
de optimización de soluciones basado en puntuaciones, que nos permite una nueva forma
de conexión entre un software especializado en la resolución del VRP con el planificador
HTN. Llamamos a este modo de conexión el método desacoplado, puesto que resolvemos
la componente combinatoria del problema de enrutamiento de vehículos mediante un
solucionador específico que se comunica con el planificador HTN y le suministra la
información necesaria para continuar con la descomposición de tareas. El segundo método
consiste en mejorar el planificador HTN utilizado para que sea capaz de resolver el
problema de enrutamiento de vehículos de la mejor forma posible sin tener que depender
de módulos de software externos. Llamamos a este modo el método acoplado. Con
este motivo hemos desarrollado un nuevo planificador HTN que utiliza un algoritmo de
búsqueda distinto del que se utiliza normalmente en planificadores de este tipo.
Esta tesis presenta nuevas contribuciones en el campo de la planificación con redes

jerárquicas de tareas para la resolución de problemas de enrutamiento de vehículos. Se
aplica una nueva forma de conexión entre dos planificadores independientes basada en
un sistema de cálculo de puntuaciones que les permite colaborar en la optimización de
soluciones, y se presenta un nuevo planificador HTN con un algoritmo de búsqueda distinto
al comúnmente utilizado. Se muestra la aplicación de estos dos métodos en misiones
civiles dentro del entorno de los Proyectos ARCAS y AEROARMS financiados por la
Comisión Europea y se presentan extensos resultados de simulación para comprobar la
validez de los dos métodos propuestos.

Abstract

This thesis presents contributions in the field of automated planning and scheduling,
the branch of artificial intelligence that concerns the realization of strategies or

action sequences typically for execution by unmanned vehicles, autonomous robots and/or
intelligent agents. When trying to achieve certain goal, cooperation may be a key aspect.
The complexity of some tasks requires the cooperation among several agents. Moreover,
even if the task is simple enough to be carried out by a single agent, cooperation can be
used to decrease the overall cost of the operation. To perform complex tasks that require
physical interaction with the real world, unmanned vehicles can be used as agents. In the
last years a great variety of unmanned platforms, mainly vehicles that can be driven without
a human on board, have been developed and used both in civil and military missions.
This thesis deals with the application of Hierarchical Task Network (HTN) planning

in the resolution of vehicle routing problems (VRP) [18] in domains involving multiple
heterogeneous unmanned vehicles that must cooperate to achieve specific goals.
HTN planning describes problem domains using a description that decomposes set of

tasks into subsets of smaller tasks and so on, obtaining low-level tasks that cannot be
further decomposed and are supposed to be executable. The hierarchy resembles the way
the humans reason about problems by decomposing them into sub-problems depending
on the context and therefore tend to be easy to understand and design.

Vehicle routing problems are a generalization of the travelling salesman problem (TSP).
The TSP consists on finding the shortest path that connects all the cities from a list, starting
and ending on the same city. The VRP consists on finding the set of minimal routes that
cover all cities by using a specific number of vehicles. Both problems have a combinatorial
nature, specially the VRP, that makes it very difficult to use a HTN planner in domains
where these problems are present.

Two approaches to use a HTN planner in domains involving the VRP have been tested.
The first approach consists on a score-based optimization system that allows us to apply a
new way of connecting a software specialized in the resolution of the VRP with the HTN
planner. We call this the decoupled approach, as we tackle the combinatorial nature of the
VRP by using a specialized solver that communicates with the HTN planner and provides
all the required information to do the task decomposition. The second approach consists

IX

X Abstract

on improving and enhancing the HTN planner to be capable of solving the VRP without
needing the use of an external software. We call this the coupled approach. For this reason,
a new HTN planner that uses a different search algorithm from these commonly used in
that type of planners has been developed and is presented in this work.

This thesis presents new contributions in the field of hierarchical task network planning
for the resolution of vehicle routing problem domains. A new way of connecting two
independent planning systems based on a score calculation system that lets them cooperate
in the optimization of the solutions is applied, and a new HTN planner that uses a different
search algorithm from that usually used in other HTN planners is presented. These two
methods are applied in civil missions in the framework of the ARCAS and AEROARMS
Projects funded by the European Commission. Extensive simulation results are presented
to test the validity of the two approaches.

Contents

Resumen VII
Abstract IX
Nomenclature XV

1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Outline and Main Contributions 3

1.2.1 Summary of Publications 5
1.3 Framework 6

2 Automated Planning Background 11
2.1 Plan Search Algorithms 12
2.2 Planning Software 14
2.3 Ways to Integrate Symbolic and Geometric Reasoning 15

2.3.1 Symbolic layer calls the geometric layer 16
2.3.2 Geometric layer calls the symbolic layer 18
2.3.3 Sample in the compound state 19

2.4 Conclusions 19

3 Hierarchical Task Network Planning 21
3.1 Introduction 22
3.2 HTN Formalism 25

3.2.1 Mathematical Model 25
3.2.2 Search Space 27
3.2.3 Plan-Based HTN Planning 27
3.2.4 State-Based HTN Planning 28

3.3 JSHOP2 HTN Planner 29
3.3.1 Planning Domain Definition Language: The Origin 29
3.3.2 JSHOP2 Overview 31
3.3.3 Elements of a Domain Description 32

XI

XII Contents

Tasks 32
Operators 32
Methods 33
Axioms 33
External Function Calls 33

3.3.4 JSHOP2 Algorithm 33
3.3.5 Multi-Timeline Preprocessing 34

3.4 Conclusion 35

4 Decoupled Geometric and Symbolic Reasoning 37
4.1 Introduction 37
4.2 Problem Statement 40
4.3 Geometric Planner 42

4.3.1 Overview 42
4.3.2 Moves 44
4.3.3 Solver Phases 48

Construction Heuristics 48
Metaheuristics 48
Exhaustive Search 49

4.3.4 Score Calculation 49
4.3.5 Geometric Domain 50

4.4 Symbolic Planner 50
4.4.1 PDDL Domain Definition 50

Restrictions 50
Types, Predicates and Functions 51
Durative Actions 54

4.4.2 Problem Description 64
4.4.3 SHOP2 Problem Domain 65

High-level Method Definition 66
Submethods Definition 70
Operators Definition 73

4.5 Connecting the Geometric and Symbolic Planners 82
4.6 Use Case: Testing the Architecture 85
4.7 Simulation Results 89
4.8 Conclusions 96

5 Coupled Geometric and Symbolic Reasoning 99
5.1 Replacing the Depth-first search: Motivations and Expected Behaviour 100
5.2 SHOP*: the A*-based HTN Planner 103
5.3 Use Case: Testing the Optimality of SHOP* 110

5.3.1 Problem Statement 110
5.3.2 SHOP* Problem Domain 111
5.3.3 Solving a Specific Case 115

5.4 Simulation Results 118

Contents XIII

5.5 Conclusions 126

6 Conclusions and Future Developments 127
6.1 Conclusions 127

6.1.1 Decoupled Approach 128
6.1.2 Coupled Approach 128

6.2 Future Developments 129

List of Figures 131
List of Tables 133
List of Codes 135
Bibliography 141
Index 151
Glossary 151

Nomenclature

M Mission definition for a domain
T Set of tasks that compose a mission
H Set of home locations of the aerial vehicles
L Set of stock parts locations or locations where the tasks have

to be done
L ′ Set of locations where the parts have to be assembled
V Set of vertices of a graph
E Set of edges of a graph
G(V,E) Graph composed of V vertices and E edges
GN(V,E) Graph with N number of vertices
Pi Set of preconditions for the i-th task
Rk Route for the k-th aerial vehicle
cri,r j

Non-negative travel time between vertex ri and r j
R Set of routes for the aerial vehicles
C(Rk) Cost for the route of the k-th aerial vehicle
g(n) Cost for getting from the start node to the n-th node
h(n) Heuristic cost function or cost for getting from the n-th node

to the closest goal node
f (n) Sum of g(n) and h(n)

XV

1 Introduction

This thesis presents contributions in the applications of unmanned aerial vehicles
to civilian missions. More precisely, the goal of this thesis is the application of

Hierarchical Task Network (HTN) planning in the resolution of vehicle routing problems
(VRP) [18] in domains involving unmanned vehicles that must cooperate to achieve specific
goals.
This chapter presents the motivation and main objectives of the research carried out.

Then, the outline and main contributions are presented. Finally, the chapter ends describing
the framework in which the work has been developed.

1.1 Motivation and Objectives

To perform complex tasks that go beyond the execution of software and that requires
physical interaction with the real world, unmanned vehicles can be used as agents. Tasks
such as data and image acquisition of areas, map building, target tracking, infrastructure
inspection or even human interaction and aiding, among many others, require the agents to
have the capability to interact with the world, not only by moving or sensing along the scene
where the action takes place but also by modifying and adapting it with the purpose of
achieving their goals. To completely reduce the execution costs of their tasks it is desirable
to avoid the needs of having a human operator that drives the behaviour or movements
of the vehicles, or at least to reduce as much as possible its interaction. In the last years
this has been accomplished by the development of a great variety of unmanned platforms,
mainly vehicles that can be driven without a human on board. Unmanned vehicles can
either be remotely controlled or remotely guided but the ones for our interest are the
autonomous vehicles, which are capable of sensing their environment and navigating on
their own. From here on we refer to these autonomous vehicles simply as unmanned
vehicles.

Unmanned Aerial Vehicles (UAVs) are self-propelled air vehicles capable of conducting
autonomous operations. UAVs have been used in military applications and, in general, for
classified purposes. Nowadays it is clear that UAVs have a wide range of civil applications.

1

2 Chapter 1. Introduction

Ground vehicles still have limitations to reach the locations that humans specify, both
indoor and outdoor. This, along with the needs to act as fast as possible, impose large
restrictions to the use of ground vehicles. The higher mobility andmaneuverability of UAVs
with respect to ground vehicles makes them a natural approach for tasks like information
gathering or even the deployment of instrumentation, among many others. Many advances
have been developed in positioning and navigation systems and the on-board sensorial and
computational capabilities have been greatly improved. Although the research done on
this thesis can be applied to any kind of unmanned vehicles, due to their high versatility
we will center our attention on unmanned aerial vehicles.

When trying to achieve a certain goal, cooperation may be a key aspect. The complexity
of some tasks often requires cooperation among several agents. Moreover, even if the
task is simple enough to be carried out by a single agent, cooperation can be used to
decrease the overall cost. Cooperation among multiple unmanned vehicles may be needed
depending on the complexity of the tasks. For example:

• When it is necessary to operate simultaneously in different locations.

• When the target area is very large.

• When there are payload limitations for the unmanned vehicles to execute the mission.

• When there are restrictions related with the energy consumption of the unmanned
vehicles.

Restrictions related with energy consumption, weight, payload or size play an important
role in the design of unmanned vehicles, specially those of low cost, lightweight and small
dimensions. For this reason, the use of multiple cooperative unmanned vehicles is the
most suitable and versatile approach for many applications.
In addition, unmanned vehicles need to exhibit intelligent behaviour in order to be

able to cooperate. Reasoning about the near future is needed to reach such intelligence.
The reasoning process is called planning and, in the artificial intelligence community, it
has been divided in smaller problems: plan the next actions with task planning, plan the
motions of the vehicles with motion planning, plan the pose of the end effectors with grasp
planning, and many other forms of planning.
One of the goals of this thesis is to study symbolic planning in domains involving the

Vehicle Routing Problem (VRP). The main objective of this work is to address the use of
a HTN planner to solve a problem that has a combinatorial nature such as the VRP. As
we want to center our attention mainly in the symbolic level, motion planning is not a
key aspect of our research, although the literature has been studied to learn the different
possibilities and techniques for connecting symbolic planners with motion planners. The
geometric component in this thesis has been modelled at a high level of abstraction, using
cartesian coordinate systems for locations, graphs with costs for navigation maps, euclidean
distances and so on.
Among the different possibilities for the symbolic planning field we have chosen

Hierarchical Task Network (HTN) planning. HTN planning describes problem domains
using a description that decomposes set of tasks into subsets of smaller tasks and so on,
until obtaining low-level tasks that cannot be further decomposed and are supposed to

1.2 Outline and Main Contributions 3

be executable. The hierarchy resembles the way the humans reason about problems by
decomposing them into sub-problems depending on the context and therefore tends to be
easy to understand and design. One of the main advantages of HTN planning is that it uses
domain-dependent knowledge to guide the search process. To solve a problem, a domain
expert has to design the decomposition tree for the task network and that tree will serve as
a heuristic for the search. In addition to this, its expressivity helps to understand the task
and the hierarchy decomposition even by people outside the planning field, which is very
valuable when different fields of expertise must cooperate.

One of the counterparts of HTN planning is its limitations when reasoning in domains
that have a combinatorial nature such as the VRP. The search process is guided by the
domain-dependent knowledge provided in the decomposition tree, but the algorithm of the
planner does not take part in the decision of which node of the search tree to expand, as this
is usually given by the proper decomposition tree. As a result, finding the optimal solution
in problems such as the VRP may not be possible, as at the present moment there is no
known heuristic to optimally find a solution for this problem. In these cases, the solutions
found by HTN planners depend on the order on which the search nodes are expanded.
Thus, it is needed to enhance the efficiency of the planners and to seek alternatives to
overcome these limitations.
In this thesis we formulate a way to enhance the performance of HTN planning in the

resolution of vehicle routing problems in domains involving unmanned vehicles. Two
approaches have been developed and tested. The first approach consists on a score-based
optimization system that allows us to apply a new way of connecting a software specialized
in the resolution of the VRP with the HTN planner. We call this the decoupled approach,
as we tackle the combinatorial nature of the VRP by using a specialized solver that
communicates with the HTN planner and provides all the required information to do the
task decomposition. The second approach consists on improving and enhancing the HTN
planner to be capable of solving the VRP without needing the use of an external software.
We call this the coupled approach. For this reason, a new HTN planner that uses a different
search algorithm from these commonly used in that type of planners has been developed
and is presented in this work.

One of the key objectives of this thesis was the application of the two approaches in civil
missions involving the use of unmanned vehicles in the context of vehicle routing problems.
The software implementation for the two approaches has been tested and validated in
simulations with autonomous vehicles in the framework of the ARCAS and AEROARMS
Projects funded by the European Commission. The structure of the thesis is presented in
the next section.

1.2 Outline and Main Contributions

Main contributions provided by this thesis are related to HTN planning in domains
that involve the vehicle routing problem. Particularly, the work presented in this thesis
tackles the performance of HTN planners for solving VRP-based domains, presenting two
approaches that extend the research previously done in this field and applying it for its use

4 Chapter 1. Introduction

in civil missions involving the use of unmanned vehicles in the context of vehicle routing
problems.
This thesis applies a decoupled approach based on a score optimization system to

integrate a symbolic HTN planner with a constraint satisfaction solver for VRP domains
involving assembly operations. The approach uses a bi-directional communication between
the VRP planner and the HTN planner, in a closed-loop that receives feedback from the
symbolic level to improve the search in the VRP solver, optimizing the solutions found.
The main contribution is a new way of connecting two independent planning systems
based on a score calculation system that lets them cooperate in the optimization of the
solutions found and its application in the context of structure assembly missions.

A coupled approach for solving VRP domains with a single HTN planner in the context
of structure inspection operations is also studied in this thesis and as a result, a new
HTN planner has been developed. Our main contribution here is the development and
implementation of a new heuristic-guided algorithm to drive the HTN planner search
towards the optimal solutions. This new algorithm is completely different from the depth-
search algorithm that is commonly used in other HTN planners.

The contents of the different chapters are summarized in the following paragraphs.
We start in Chapter 2 by presenting the different plan search algorithms that are more

commonly used to solve classical planning problems, followed by a review of developed
planning software. Then, the integration problem between different planning levels that
arises when trying to solve complex problems is presented. This is followed by a study
of related work, sorted by categories of approaches developed to solve the integration
between the different planning levels.

Chapter 3 explains the motivations of our decision to use HTN planning over other
valid task planning techniques and presents an overview of HTN planning. Then, we define
more precisely the HTN formalism used in this thesis. After that, we present the HTN
planner used in our research: JSHOP2 [94]. We start by explaining the Planning Domain
Definition Language (PDDL) on which JSHOP2 is based, then the different elements that
compose a JSHOP2 problem are explained, and finally the JSHOP2 planning algorithm is
presented.

The decoupled approach for our new score-based way of connecting the symbolic HTN
planner with a constraint satisfaction solver for VRP domains is presented in Chapter 4.
We present an overview of the solver used to address the VRP and which communicates
with the symbolic HTN planner: OptaPlanner [100]. Then we formalize the solved
problem, a variant of the Vehicle Routing Problem [18] that appears in the context of the
ARCAS Project. After that, the domains designed for both planners are explained and
the simulation results are presented. The contents of this chapter have resulted in several
publications, two journal papers[91, 88] and three conference papers[90, 89, 80], and
present a new way of connecting two independent planners based on a score calculation
systems that lets them collaborate in the solution optimization.
In Chapter 5 we describe a coupled approach to enhance the performance of a HTN

planner in the context of VRP domains involving structure inspection operations, presenting
a new developed HTN planner based on the replacement of the HTN depth-first search
algorithm of JSHOP2 by an heuristic search like the one used in the A* search algorithm.
First, the motivations and expectations for our new HTN algorithm are described. A brief

1.2 Outline and Main Contributions 5

overview of the A* algorithm and its properties, which inspired the development of our
new planner, is also presented. Then, the description of our new heuristic-guided SHOP*
HTN planner and its properties are given. In the context of the AEROARMS Project, an
use-case to test the optimality of our new planner is presented and a deeper study is done
by applying a benchmark and comparing the results with the original implementation
of the JSHOP2 planner and the decoupled approach used in the previous chapter. The
results of this chapter have been submitted to the Engineering Applications of Artificial
Intelligence Journal (EAAI) and is currently under review.

Finally,Chapter 6 summarizes the conclusions of the thesis and proposes some guidelines
for further research.

It is worth to mention that the work presented in this thesis has been mainly developed
in the framework of the ARCAS Project and AEROARMS Project funded by the European
Union (see Section 1.3), and the ARM-EXTEND State Project.

1.2.1 Summary of Publications

Part of this thesis has been published in the following journals, book chapter and international
conferences, including two journals indexed in the Journal Citation Reports (JCR) database:

• I. Maza, J. Muñoz-Morera, F. Caballero, E. Casado, V. Perez-Villar, and A. Ollero,
Architecture and tools for the generation of flight intent from mission intent for
a fleet of unmanned aerial systems, Unmanned Aircraft Systems (ICUAS), 2014
International Conference on, IEEE, May 2014, pp. 9–19.

• J. Muñoz-Morera (as speaker), I. Maza, C. J. Fernandez-Agüera, F. Caballero,
and A. Ollero, Assembly planning for the construction of structures with multiple
UAS equipped with robotic arms, Unmanned Aircraft Systems (ICUAS), 2015
International Conference on, IEEE, June 2015, pp. 1049–1058.

• J.Muñoz-Morera, I.Maza, F. Caballero, andA.Ollero, Architecture for the automatic
generation of plans for multiple UAS from a generic mission description, Journal of
Intelligent and Robotic Systems 84 (2016), no. 1, 493–509 (English).

• J. Muñoz-Morera, I. Maza, C. J. Fernandez-Agüera, and A. Ollero, Task allocation
for teams of aerial robots equipped with manipulators in assembly operations,
Advances in Intelligent Systems and Computing, vol. 417, pp. 585–596, Springer
International Publishing, 2016.

• J. Muñoz-Morera, F. Alarcon, I. Maza, and A. Ollero, Combining a hierarchical
task network planner with a constraint satisfaction solver for assembly operations
involving routing problems in amulti-robot context, International Journal of Advanced
Robotic Systems 15 (2018), no. 3, 1–13 (English).

• J.Muñoz-Morera and I.Maza andA.Ollero. SHOP*: a heuristic guided implementation
for dealing with the Vehicle Routing Problem. Engineering Applications of Artificial
Intelligence Journal (under review).
It is important to note that the author of this thesis was the speaker of the conference
paper presented in the International Conference on Unmanned Aircraft Systems
(ICUAS) in 2015.

6 Chapter 1. Introduction

1.3 Framework

An important part of the work presented in this thesis has been developed within the
framework of the European Projects ARCAS and AEROARMS, and the State Project
ARM-EXTEND.

The ARCAS (Aerial Robotics Cooperative Assembly System) project lasted from
November 2011 till November 2015 and is probably the first research project involving load
transportation, manipulation and deployment with multiple autonomous aerial vehicles
equipped with robotics arms.
The general objective of ARCAS1 was the development and experimental validation

of the first cooperative free-flying robot system for assembly and structure construction.
The ARCAS project provided integrated and consolidated scientific foundations for flying
robot perception, planning and control, and produced a framework for the design and
development of cooperating flying robots for assembly operations. The integration of all
these functionalities made a solid ground for new applications and services in aerial and
space robotics. The building of platforms for the evacuation of people in rescue operations
or the installation of platforms in uneven terrains for landing of manned and unmanned
VTOL aircrafts are some examples of aerial robotics potential.

The ARCAS robotic system involved transportation of parts by means of one and several
(joint transportation) flying robots, and the precise placement and assembly of the parts
with appropriate manipulation devices to build a structure or to assembly an object. The
project used experimental testbeds for the validation of concepts and algorithms in practical
applications.

The project had the following scientific and technological objectives:

• Motion control. The development of new techniques and methodologies for motion
control of a free-flying robot with a mounted manipulator in contact with a grasped
object as well as for coordinated control of multiple cooperating flying robots with
manipulators in contact with the same object.

• Perception. Development of new perception techniques to model, identify and
recognize the scenario and for use in guidance in the assembly operations by means
of flying robots.

• Cooperative assembly planning. The development of newmethods for cooperative
assembly by means of multiple flying robots with application to the assembly of
objects, in sites that are very difficult to access from the ground.

• Operator assistance. Development of strategies for operator assistance inmanipulation
tasks involving multiple cooperating flying robots. Identification of the appropriate
way to provide information concerning the system state to the operator and for
his/her interaction with the automatic control system using a previously developed
VR-haptic system.

As it can be read, the ARCAS project has two main axis: structure assembly by a team
of UAVs and space manipulation. The latter is a side-part of the project and primarily
1 http://www.arcas-project.eu

1.3 Framework 7

Figure 1.1 Overview of the ARCAS project. The objectives of the project included new
methods for motion control and coordination of free-flying robots equipped
with manipulators, new flying robot perception methods for identification and
recognition of objects, new methods for cooperative assembly planning and
structure construction and new strategies for operator assistance.

involved the control community. The structure assembly is the part combining work on
assembly sequence planning, task planning, motion planning and execution supervision.

In the project, the planning level was composed of three planners: an assembly sequence
planner that computes the assembly sequence from the CAD model of the structure to
be assembled, the symbolic planner which is responsible for the task allocation and
sequencing, and finally a motion planner to compute the trajectories for each action in the
symbolic plan.

The AEROARMSEuropean Project (AErial RObotic system integrating multiple ARMS
and advanced manipulation capabilities for inspection and maintenance) was launched
on June 2015 and is coordinated by Prof. Aníbal Ollero. The project is funded by the
European Commission program Horizon 2020 for Research and Development.
AEROARMS2 is a 4 years project. The challenging objective of AEROARMS is

the development of the first aerial robots in the world with multiple articulated arms and
advancedmanipulation capabilities. The aerial robots will be able to fly to inaccessible sites
2 http://www.aeroarms-project.eu/

8 Chapter 1. Introduction

Figure 1.2 The objective of the AEROARMS Project is the development of the first aerial
robots in the world with multiple articulated arms and advanced manipulation
capabilities. The aerial robots will be able to fly to inaccessible sites and
perform manipulation tasks with two arms while flying or they will anchor to a
structure, using other arm for accurate manipulation tasks.

and performmanipulation tasks with two armswhile flying or theywill anchor to a structure,
using other arm for accurate manipulation tasks. The robots will be applied to industrial
inspection and maintenance tasks that currently require the use of scaffolds, cranes and
manned aircraft. These aerial robotic manipulators are an evolution of the unmanned
aerial systems with the added possibility of physical interaction with the environment by
means of articulated arms.
AEROAMS includes the demonstration of the developed technologies in oil and gas

industries that currently involves very high maintenance costs (approximately €56.000
million a year). Then, the future use of a system as AEROARMS might have an important
economic impact, in addition to performing tasks that can be dangerous for workers. Two
particular applications will be demonstrated:

• Installation and maintenance of permanent Non Destructive Tests (NDT) sensors
on remote components such as pipes, fire flares or structural components. The
application involves the preparation of structures to install the sensors (drilling a
hole into insulation, removing paint, etc.), the installation of the sensors and the
finishing of the structure.

• Deploying and maintaining a mobile robotic system permanently installed on a
remote structure. Assuming the presence of a newly designed mobile robot allowing
easy exchange and maintenance of components (e.g., batteries etc.), the application
consists of the use of the aerial robot to maintain the robot permanently installed
in the structure without costly and dangerous human operations. The results of

1.3 Framework 9

AEROARMS could be also applied to the inspection and maintenance of generation
plants, critical infrastructures and others.

AEROARMS continues the work carried out in the FP7 European project ARCAS,
in which the first aerial robots with 6 and 7 degrees of freedom arms and perception
and planning capabilities have been developed and are being demonstrated in structure
construction.

The ARM-EXTEND project proposes the development of the first robotic manipulation
system with aerial and ground locomotion capabilities in an industrial environment and
the first specifically designed for inspection and maintenance purposes in locations with
very difficult access. The system will perform works at height that today are carried out
manually with important risks of the persons and high operational costs. This system will
be able to fly near to the intervention location, land on very constrained surfaces, such as
pipes, and roll on the surface performing inspection and maintenance tasks and reaching
sites not directly accessible by the flying system. Thus, it will be possible to perform
manipulation task with a fixed base overcoming the accuracy limitations of manipulation
with a floating base and decreasing the energy consumption allowing to increase the
duration of the missions, which is very constrained in aerial manipulation.
The scientific and technological objectives of ARM-EXTEND are the following:

• Development of the first aerial robotic manipulator with both aerial and ground
locomotion capabilities increasing accuracy in manipulation (millimitre accuracy)
and improving drastically the duration of the missions of the aerial manipulation
systems based onmulti-rotor which is only fewminutes. The rotarywing configuration
will have multiple rotors with tilted axis (vectorized thrust) to provide more agility
overcoming the limitation of conventional multi-rotor platforms with parallel axis.

• Develop autonomous landing on pipes and other constrained surfaces by using 3D
environment perception system with both visual and laser sensors. The landing
system will benefit from the agility of the multi-rotor with tilted axis.

• Manipulation by using light robotic arms overcoming the accuracy and dexterity
that can be achieved while the robot is flying without any contact point. Thus, the
manipulator will be able to perform wall thickness measurements and installation
of permanent sensors.

• Collaborate with other aerial robots in inspection and maintenance activities. Thus,
a fleet of aerial robotic inspectors will be able to detect and localise leaks and
determine the locations to be inspected by the aerial robotic manipulator to perform
wall thickness and other measurements requiring contact.

The above objectives are complex but can be achieved by using the very relevant previous
results of the research team that has pioneered the aerial robotic manipulation and play a
leadership role in this area and its applications to inspection. The ARM-EXTEND system
will be able to perform contact and non-contact inspection in energy generation plants
decreasing dramatically maintenance costs and avoiding contamination due to leakages or
even explosions due to gas losses. The project will perform experiments in pipe inspection
an maintenance, which is a very relevant activity with a huge economic impact.

10 Chapter 1. Introduction

This thesis has been created in the context of structure assembly and inspection, with
the intention of researching different ways of giving the task planner all the knowledge
needed to tackle the routing problems encountered in assembly and inspection operations.

2 Automated Planning Background

The general problem of finding a solution to a given task has been tackled mainly
following three approaches. First, programming-based approaches count on programmers

to encode the method to solve a problem. In learning-based approaches, it is the program
that improves itself by learning the adequate solution, and this can be done by trial-and-
error or based on the information provided by an instructor. Model-based methodologies
rely on a general program which infers automatically a solution, starting from a suitable
description of the actions, sensors, and goals.

Automated Planning, sometimes denoted as simply planning, is a model-based approach
to autonomous behaviour, and is a discipline of Artificial Intelligence that studies the
different aspects of what makes intelligent a behaviour. The ability to correctly reason
about the actions to perform before acting is certainly a central point to define intelligence,
and is the main focus of automated planning.

Automated planning concerns the realization of strategies or action sequences, typically
for execution by intelligent agents, autonomous robots and unmanned vehicles. The
solutions in automated planning are complex and are found usually in a multidimensional
space. Automated planning involves a wide range of research fields. The central problems
include reasoning, knowledge, task planning, learning, natural language processing,
perception and the ability to move and manipulate objects. Approaches include statistical
methods, computational intelligence, machine learning and traditional symbolic planning.
For robots to solve real-world tasks, they need to reason about both symbolic actions
and continuous-valued paths in the geometric world. Indeed, one of the main issues of
symbolic task planning is its difficulty to reason about the geometry of the environment
on which the action takes place.
This chapter presents how symbolic planning may be connected to its geometric

counterpart in the world. This inevitably brings us to the Motion Planning field and
all its related work. As the goal of this thesis is the application of HTN planning in the
resolution of vehicle routing problems for structure assembly and inspection domains,
the geometric reasoning in this study has been modelled at a high level of abstraction,
using cartesian coordinate systems for locations, graphs with costs for navigation maps,
euclidean distances and so on. Although this thesis is not centred in Motion Planning,

11

12 Chapter 2. Automated Planning Background

understanding the related literature to know the different techniques that have been applied
to connect symbolic and motion planners gave us some ideas to fill the gap between our
symbolic and geometric levels.

In this chapter we discuss works related to the general symbolic task planning problem
and systems that integrate symbolic and geometric reasoning. Thus a short classification
of the methods usually applied to tackle this problem is presented.

2.1 Plan Search Algorithms

Solving classical planning problems can be cast as a path-finding problem in a directed
graph whose nodes represent states, and whose edges represent state transitions due to
actions. The whole graph is usually called the State Transition Graph [73]. Classical
planning problems can then be solved by using graph search algorithms to find a path from
the initial state to a goal state. This graph search approach is not trivial because the size of
the graph may grow exponentially with the size of the planning problem.
Some search algorithms find new states generating a search tree without using any

domain specific knowledge. The algorithm does not have any additional information
about the states beyond the problem definition, no information is used to determine the
preference of one child over other when discovering and expanding nodes on the search
tree, thus looking the total search space for the solution. This kind of strategy is called
uninformed search. Some examples of popular algorithms that follow this strategy are the
Breadth-first and Depth-search algorithms [73]. Breadth first uses a First-In First-Out
(FIFO) queue to put all new nodes that have been discovered and are candidates to be
expanded in the search tree, thus selecting states using the first-come first-serve principle.
All plans that have k steps are exhausted before plans with k + 1 steps are investigated,
guaranteeing that the first solution found will use the smallest number of steps. If instead
of using a FIFO we use a LIFO (Last-In, First-Out) queue, then an aggressive exploration
of the state transition graph occurs. This variant is the depth-first search algorithm, which
dives quickly into the search graph. In that case the preference is toward investigating
longer plans very early, as opposed of looking first to shorter plans.

An approach that has been proved to be effective relies on the use of heuristics. Heuristic
search uses heuristic functions to evaluate the cost-to-go from a node to a goal, or more
generally, to provide a ranking of nodes in order of their relative desirability [96]. This
estimation of the distance in the search space is then used by the search algorithm to drive
the state-space search, preferring to visit nodes considered more promising from their
heuristic value. As stated in [8], planning with heuristic search is sound and complete by
construction, as far as the used search algorithm is complete, given that the state space
contains exactly all the possible plans as paths from the initial state to any goal state.
This strategy is called informed search, and some popular algorithms that follow the
strategy are A* [49, 50] and Best-first [73]. The A* search algorithm is an extension of
Dijkstra’s algorithm that tries to reduce the total number of states explored by incorporating
a heuristic estimate of the cost to get to the goal from a given state, called cost-to-go. If
that estimate is an underestimate of the true optimal cost-to-go for all states in the state
space, then the algorithm is guaranteed to find the optimal plan. For Best-first search,

2.1 Plan Search Algorithms 13

the priority queue is also sorted according to an estimate of the optimal cost-to-go. The
solutions obtained in this way are not necessarily optimal, it does not matter whether the
estimate exceeds the true optimal cost-to-go. Although optimal solutions are not found, in
some cases fewer vertices are explored which results in faster running times.

The search in the state space can be directed forward (progression search) or backward
(regression search). Both search techniques must handle the exponential growth of the
state space with respect to the number of actions. In some scenarios, backward search can
use partially uninstantiated actions and keep the branching factor lower, but still requires
further heuristics for good efficiency. The general approach to a heuristic search is to
apply domain-independent relaxations. Standard ways to relax actions are to ignore some
or all of their preconditions, or to ignore effects that delete literals, as proposed by [57].
Other heuristics involve abstracting states by decomposition of the goal into independent
subgoals [107]. Another popular approach is the generation of a planning graph, which
is a subset of the full state transition graph and allows reachability analysis to guide the
search. A description of planning graphs can be found in [6].
Another way of efficiently drive the state-space search is the use of metaheuristics.

In computer science and mathematical optimization, a metaheuristic is a higher-level
procedure designed to find, generate or select a heuristic that may provide a good enough
solution to an optimization problem, especially with incomplete or imperfect information
or limited computation capacity. Metaheuristics sample a set of solutions which is too
large to be completely sampled. They may make few assumptions about the optimization
problem being solved, and so they may be usable for a variety of problems. Compared
to optimization algorithms and iterative methods, metaheuristics do not guarantee that a
globally optimal solution can be found on some problems, and in fact they may stuck on a
local minimum or maximum. Many metaheuristics implement some form of optimization
so that the solution found is dependent on the set of random variables generated. In
combinatorial optimization, by searching over a large set of feasible solutions, metaheuristics
can often find good solutions with less computational effort than optimization algorithms,
iterative methods, or simple heuristics. As such, they are useful approaches for optimization
problems [4]. Several books and survey papers have been published on the subject [43, 40,
116] but most literature on metaheuristics is experimental in nature, describing empirical
results based on computer experiments with the algorithms. Some formal theoretical
results are also available, often on convergence and the possibility of finding the global
optimum [7].
The properties of metaheuristics can be summarized in the following:

• Metaheuristics are strategies that guide the search process.
• The goal is to efficiently explore the search space in order to find near–optimal
solutions.

• Techniques which constitute metaheuristic algorithms range from simple local search
procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.
• Metaheuristics are not problem-specific.

Metaheuristics will be covered in greater detail on Chapter 4.

14 Chapter 2. Automated Planning Background

2.2 Planning Software

Through the use of Artificial Intelligence planning, humans can program computers
to automatically formulate a plan, given a problem description and its related data as
input. Research in automated planning started in the late 1960s. From the early days
on, automated planning was motivated by and applied to controlling autonomous robots.
The first intelligent mobile robot, Shakey, was demonstrated to the public in 1969 [98]
and could navigate itself, avoiding obstacles and pushing objects to achieve a given task.
Both its automated planner and its pathfinding components were seminal to research in
symbolic planning and robot motion planning. Their combination may be considered
as the first task and motion planning system. The Shakey system included Fikes and
Nilsson’s STRIPS planner [33], which is regarded as the first major planning system. As
an automated planner, it solves a symbolic task, defined by a goal criterion, and generates
a valid sequence of actions which fulfils preconditions and entail effects. Using a symbolic
planner the Shakey robot could plan discrete motion, such as moving from one room to
another while respecting discrete geometric constraints, such as the connectivity of rooms.
After that, symbolic actions were refined by a path planner and executed by the mobile
platform.
Since then and in contrast to traditional planning representations, more expressive

languages were proposed. An example is the situation calculus language, as introduced
by [81] and refined in [105]. Situation calculus is designed to model linear time with
branching situations, and exhibits some features of a second-order language. As an
example, the action language Golog, which is based on the situation calculus, has been
applied to multi-robot task planning [31]. However, in situation calculus planning the
efficiency to solve practical problems is considerably sacrificed for the expressiveness of
problem definitions [107]. Other generalizations include temporal planning, where actions
require a certain time, concurrent planning, where multiple actions may be performed
simultaneously, or probabilistic planning, where the state can only be observed up to an
uncertainty.
Besides the already mentioned STRIPS formulation for domain descriptions, PDDL

[82] gained popularity and wide acceptance among planning software, especially through
the International Planning Competition (ICAPS). PDDL separates the domain description
with its action schema from the problem definition, which includes initial and goal states
for a particular instance. Its core syntax is stable and a common format for software
planners. In addition, many extensions and variants were proposed to accommodate more
expressive features, for instance numerical fluents and multiple agents.
Among planning software systems, several implementations have been applied to

robotics tasks. The Fast Forward planner (FF) by Hoffmann and Nebel [57] was the
first to combine a hill-climbing search with a goal distance heuristic. The heuristics of
FF and its variants have been proven to be particularly efficient for practical benchmark
problems [107]. Similar to FF, theFast Downward planner (FD), developed byHelmert [54],
progresses the search following several heuristics. However, it translates the problem
to a multi-valued task planning representation instead of operating in a conventional
propositional representation. The heuristics of the FF planner have been adapted to work
in a robotics task and motion planning system for multi-object manipulation [37]. With

2.3 Ways to Integrate Symbolic and Geometric Reasoning 15

interface implementation and symbolic mapping of continuous variables, multi-object
robot manipulation can directly use domain-independent planners, such as FF and FD
planner, as demonstrated by [115]. Other planners are dedicated to hierarchical task
planning, where larger-scale domains can be handled when a domain-specific hierarchy of
actions is provided, instead of a classical STRIPS domain. An implementation that has
been applied to robot task planning is the Simple Hierarchical Ordered Planner (SHOP),
which performs ordered task decomposition. SHOP was described and made available
by Nau et al. in 1999 [93], and has been applied in several hierarchical task and motion
planning systems since, for instance Bidot’s forward-chaining combined task and path
planner [5].
While the above-mentioned task planners apply general-purpose artificial intelligence

planners, several integrated task andmotion planning systems use domain-specific planners,
and many of the discrete search schemes directly encode a fixed action schema rather than
separating the domain description from the code. As an example, Kaelbling and Lozano-
Pérez belief-space hierarchical planner [61, 63] includes a domain-tailored backtracking
search that directly evaluates actions implemented in a scripting language. One of the
first hybrid task and motion planning systems, the aSyMov planner by Gravot, Cambon,
and Alami [44] included a hand-crafted search, and was later revised to a version that can
parse more generic domain descriptions [12].

2.3 Ways to Integrate Symbolic and Geometric Reasoning

One of the problems of symbolic task planning is the difficulty to reason about the geometry
of the world that many task planners have. To solve complex problems that require some
knowledge about the geometry of the environment the planner usually has to relax some
of the preconditions that are present in the problem domain. Different approaches from
diverse research directions have been proposed since years ago to combine symbolic and
geometric reasoning. In this section we aim to briefly categorize related works with respect
to their general approach, search strategy and main characteristics.
Along the years, the problem of combining symbolic and geometric reasoning came

from the need of efficiently combine task and motion planners. Although our work is not
focused specifically on motion planning, we rely and reason on symbolic and geometric
consequences and how they interfere one with each other, so the different connections
between task and motion planners are of our interest. The problem of combining symbolic
and geometric reasoning has been given different names, such as ’manipulation planning’
in [72], ’hybrid planning’ in [46], ’Combining Planning and Motion Planning’ (CPMP)
from [14], ’Task And Motion Planning’ (TAMP) in [77] and its variants [97, 52, 17, 70].
Task and motion planners perform searches through symbolic and geometric spaces.

Search schemes may be progressions directed forward from a starting configuration to a
goal [44, 114, 25, 103], regressions directed backwards from a goal to the start [61], or
may do recursion from both start and goal [3]. Some task and motion planners are built
on general-purpose automated planners and allow generic domain definitions and multiple
types of actions [114, 12, 24, 103], for which the Planning Domain Definition Language

16 Chapter 2. Automated Planning Background

(PDDL) is a frequent choice [12, 24]; others use domain-specific planners, where adding
new types of actions would require manual implementation [61, 63].
An important strategy for a task and motion planner is how to explore discrete and

continuous search spaces, how to sample in the continuous space, and how to coordinate
search in both spaces. In order to categorize search strategies, one can distinguish between
symbolic searches that are mostly refined by a geometric planner [10, 114, 27] and
geometric motion planners that are guided to fulfil a certain symbolic task [103, 53].
The simplest solution is to plan only symbolical actions and later refine these by motion
planning, as in the Shakey system [99]. Gravot, Cambon, and Alami [12] realized that a
tighter integration is required to achieve completeness, and search in the product space of
discrete and continuous states. Kaelbling and Lozano-Pérez [62] proposed a hierarchical
planner in the belief space, which can generate new symbols that represent geometric
constraints. Several other robot task planners search in the symbolic space and interface
a geometric planner to evaluate preconditions and apply effects, with the latter strategy
proposed by Dornhege et al. [25]. Several other planners [114, 74, 5] also belong to this
category.
In order to reduce the search space, some approaches propose to plan hierarchically

to interleave planning and execution, or to generate semantic maps. Hierarchical task
networks (HTNs) require a full definition of primitive actions and levels of compound
tasks, up to a goal task. The HTN planning approach is taken by the state-abstracted HTN
planner [123] and others [64]. Interleaved planning and execution may greatly reduce
the search space, since it only needs to solve for the next action. Interleaved planning is
proposed by several authors [48, 62], and is suitable for domains with sensor perception,
where the robot should react to measurements. It may be complete for domains that contain
only reversible actions, among other criteria [62]. On the task level, semantic maps can
represent spatial relations and domain knowledge [35].

Through the years many different approaches have been proposed to combine symbolic
and geometric reasoning. In the work done in [71] a good classification of the approaches
is presented taking into account how the communication is done between the planners.
Based on this classification, it is possible to distinguish three main categories:

• Symbolic layer calls the geometric layer. The symbolic planner performs the
search and verifies the plan by asking the geometric planner about its feasibility.

• Geometric layer calls the symbolic layer. The geometric planner knows the
possible solutions and uses the symbolic layer to determine which ones to further
explore.

• Sample in the compound state. The search space is a compound space between
the geometric and the symbolic spaces and the search is done simultaneously.

In the following subsections these categories are further explained.

2.3.1 Symbolic layer calls the geometric layer

Many developed approaches can fit inside this category. Some researchers propose to
compute first all symbolic plans and then use the geometry level to find a feasible one.

2.3 Ways to Integrate Symbolic and Geometric Reasoning 17

Others try to compute first a complete symbolic plan and then test it in the geometric level,
computing another complete symbolic plan if it is unfeasible. Another option is to call the
geometric planner while the symbolic planner is computing the plan.

The work done in [16] introduce the concept of a task motion multigraph, a data structure
that can be used to reveal the possibility of planning in different state spaces in order to
achieve the same goal. The different options reflect the mobile manipulator’s ability to
use different hardware components to perform a required task, as for example, opening
a door with the left arm or with the right arm, having thus two possible state spaces for
planning. Given the specification of a task, it shows how to encode the available motion
planning options in a task motion multigraph. In this case, from a list of possible plans they
are able to find a feasible set of motions that fulfil the given symbolic goal. The authors
have extended this work in [17] by introducing uncertainties and using Markov Decision
Processes to guide the search. Hierarchical Task Networks have also been used in this
respect. In [69] it is argued that the domain of humanoid robot manipulation has specific
features which allow to delegate a part of the geometric reasoning to the task planner,
enriching the planning domain with geometric representations. With this approach, the
task planner generates alternative sequences of actions which lead to the same geometric
result. They use a HTN where they broke the geometric actions into basic primitives, to
find all the possible plans, and then the geometric reasoner is used to test the geometric
feasibility of the plan.

One example of finding first a symbolic plan and then computing a geometrically feasible
solution can be found on [77]. They describe a strategy for integrated task and motion
planning based on performing a symbolic search for a sequence of high-level operations,
such as pick, move and place, while postponing geometric decisions. In [115], once they
find a task plan they try to plan the geometric actions, and if they fail an error is returned to
update the symbolic state and a new task plan is computed. A different solution is proposed
in [11] where a formal framework (the action description language C+) is used to provide
robots with high-level reasoning, such as planning. They introduce a method that bridges
the high-level discrete action planning and the low level continuous behaviour by trajectory
planning. When they encounter a problem (collision) they report it to the reasoner and a
new symbolic plan is computed where they try to extract the trajectories again. In [27]
the authors keep nearly the same framework but use, in place of the action description
language, a causal reasoner to find the symbolic plans. If the geometric resolution fails, it
changes the planning problem by adding constraints to the causal reasoner in order to take
the causes of failure into account.

Some studies ensure geometric feasibility while computing the symbolic plan. In [25]
the authors decompose the manipulation problem into a symbolic and a geometric part.
The symbolic part is implemented as a classical symbolic planner that tightly integrates a
geometric planner enabling to generate correct plans. A probabilistic roadmap planner
constitutes the geometric part. During the computation of the roadmap they utilize
proximity queries to determine non-colliding configurations and to verify collision free
paths between configurations. The same authors in [23] present a study about soundness
and completeness of their approach in addition to multiple examples and relevant results.
Hertle et al. [55] propose a new planning language, the Object-oriented Planning Language,
where the task descriptions are written in an easy object-oriented-like form similar to C++

18 Chapter 2. Automated Planning Background

and which can handle semantic attachments. In addition to describing the domain, their
language is also used to produce a domain-specific interface that allows the integration of
external modules.

Approaches based on calls to external procedures can be found. In [32] the authors build
a planner that makes use of an expressive variable-free, first-order planning language called
Functional STRIPSwhere constraints, functions and numerical variables are accommodated,
and extend it to handle also state constraints. They use functions for encoding the
geometrical dimensions and poses of objects, and state constraints to express that no
pair of objects, including the robot, can overlap in space. Gaschler et al. [39] also uses
external calls at symbolic level combined with a detailed symbolic state of the world to
compute feasible plans. They extend their work on [38] by adding specific geometric
predicates to their actions, which results in a improvement of the search speed.

In relation with HTNs, [123] presents a hierarchical planning system and its application
to robotic manipulation. The system is capable of finding kinematic solutions to task-level
problems, taking advantage of subtask-specific information and reusing optimal solutions.
They present results on discrete problems as well as pick-and-place tasks for a mobile robot.
The GoDel planning system [109] tackle one drawback of Hierarchical Task Network
planning, which is the difficulty of providing complete domain knowledge, i.e., a complete
and correct set of HTN methods for every task. To provide a principled way to overcome
this difficulty, the authors define a simple formalism that extends classical planning to
include problem decomposition using methods, and a planning algorithm based on this
formalism. The methods specify ways to achieve goals rather than tasks, as in conventional
HTN planning, and goals may be achieved even when no methods are available.

2.3.2 Geometric layer calls the symbolic layer

In this category fall all the approaches that guide a geometric search with information that
comes from queries to the symbolic layer. In [125] the search is done in the geometric
state space and for each state, symbolic information is computed to guide the geometric
search to the goal. An interesting approach is used by [14], where a motion planner is
used to explore the world. The generated graph is used to check if any of its edges modify
the state of any object, in which case the motion caused by the edge is considered to be an
action. Later, a symbolic planner is used to find a plan with these actions. In the work
done in [97] a synthesis algorithm complements continuous motion planning algorithms
with calls to a Satisfiability Modulo Theories (SMT) solver. From the scene description
given by the user, a motion planning algorithm is used to construct a placement graph, an
abstraction of a manipulation graph whose paths represent feasible low-level motion plans.
An SMT-solver is then used to symbolically explore the space of all integrated plans that
correspond to paths in the placement graph and also satisfy constraints demanded by the
user requirements. Aware of the fact that symbolic task planners can efficiently construct
plans involving many entities but cannot incorporate the constraints from geometry and
kinematics, the FFRob planner [37] shows how to extend the heuristic ideas from the
FastForward (FF) planner [57] to motion planning, using a multi-query roadmap structure
that can be conditioned to model different placements of movable objects. In [36] the
same authors build a reachability graph from a simplified version of the problem in a

2.4 Conclusions 19

backward fashion. From this graph they compute a heuristic that drives the forward search
to the final solution. The search is a enforced hill climbing: they remember the minimum
heuristic value and if a state with a lower value is reached then the queue of tasks is popped.
A different approach is done in [103] where the authors sample the continuous space

guided by the symbolic level, until reaching a state which satisfies the goal previously
given to the geometric planner. A tree is created and expanded at each iteration, choosing
the more relevant node and exploring the space from there. The same authors expand this
approach in [102] replacing the symbolic planner by an automata described using Linear
Temporal Logic (LTL).

2.3.3 Sample in the compound state

In this last category the search is carried out in parallel at geometric and symbolic levels,
using a compound state comformed by the union of the states of both levels. One of the first
works on combining symbolic and geometric reasoning was the aSyMov planner [44]. The
aSyMov planner was specially designed to address intricate robot planning problems where
geometric constraints cannot be abstracted in a way that has no influence on the symbolic
plan. The authors manage to establish an effective link between the representations used
by a symbolic task planner and the representations used by a motion and manipulation
planning library. At each step of the planning process both symbolic and geometric
constraints are considered. The planning process tries to arbitrate between finding a
plan with the level of knowledge it has already acquired, or investing more in a deeper
knowledge of the topology of the different configuration spaces it manipulates.

A key problem in integrating task and motion planning is to deal with the fact that many
motion planning queries are unfeasible. In high-dimensional configuration spaces no
effective motion planning techniques exist to detect that a query is unfeasible. Probabilistic
Road Maps (PRM) [66] planners can solve feasible queries efficiently but in variable
running times. In [52] it is considered that robots can move inside a feasible space only,
and can switch between ’feasible spaces’ through transitions: inside a feasible space the
robot cannot change his contacts with the outside world (as when the robot is moving an
object) but can do it through a ’transition space’ (by placing the object on a table). They
create and use a PRM in each ’feasible space’. The work is further extended in [51] by
creating a symbolic language able to make requests to their previous system, obtaining a
larger range of possible actions. Similar methods are used in [3], applying a RRT algorithm
instead of a PRM.

2.4 Conclusions

In this Chapter we have presented different plan search algorithms that are commonly
used for solving classical planning problems. Metaheuristics have been also introduced as
an efficient way to guide the search of plans. Several examples of planning software and
systems from the automated planning literature have been also studied.

From the related work, the different ways to integrate symbolic and geometric reasoning
researched and developed along the last years have been categorized. Three different

20 Chapter 2. Automated Planning Background

categories have been clearly distinguished and identified: symbolic layer calls the geometric
layer, geometric layer calls the symbolic layer, and sample in the compound state.

3 Hierarchical Task Network
Planning

Hierarchies are one of themost common structures used to understand and conceptualize
the world. In fact, the way the humans think when trying to accomplish an action is

hierarchical. When someone needs to buy food because the refrigerator is running empty,
the first thought is to go to the supermarket. After that, one thinks on getting into the car,
drive to the supermarket, buy the food and return. As soon as each action on the plan is
getting closer to its execution, they are further decomposed. For example, to get into the
car one first need to dress, search and pick the car key and then exit home and go to the
car. This way of thinking not only affects the way the humans act, it also affects the way
the humans organize the world. Governments, military or police forces, enterprises and in
general, the different entities of our world are all organized in a hierarchical structure of
persons and positions. This organization is not casual, it is a consequence of the way the
humans think.
Within the field of Artificial Intelligence planning, which deals with the automation

of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch
that represents and handles hierarchies. In particular, the requirement for rich domain
knowledge to characterize the world enables HTN planning to be very useful, and also to
perform very well on computation terms.
In recent years, hierarchical task networks have emerged as a powerful framework for

representing and organizing knowledge about actions. With access to such content, a
robot can generate or execute plans far more effectively than it can from other classical
approaches, because the knowledge specifies how to decompose complex tasks into simpler
ones.
HTN approaches have been applied successfully to a variety of challenging domains,

and in some cases they seem to scale to complexity much better than classical planning
methods. Despite their clear advantages, hierarchical task networks can be difficult and
time consuming to construct manually, as they need a specialized person that gives the
initial domain knowledge.

21

22 Chapter 3. Hierarchical Task Network Planning

This chapter presents the HTN planner on which our research is based. We start giving
an introduction where some details in the history of HTN are presented: its origins, some
of the most relevant HTN planners and practical applications. After that, the mathematical
model for the HTN formalism is presented. Finally an overview of JSHOP2, the HTN
planner used in our research, is presented.

3.1 Introduction

Automated planning systems can be classified into three categories, based on the amount
of knowledge they need to be configured to work in different planning domains: domain-
independent planners, domain-dependent or domain-specific planners and domain-configurable
planners [92].

Domain-independent planning systems have as input a description of a planning problem
to solve, and the planning engine is general enough to work in any planning domain that
satisfies some set of simplifying assumptions. For nearly the entire time that automated
planning has existed, it has been dominated by research on domain-independent planning.
The main limitation of this approach is that it is not possible to develop a domain-
independent planner that works efficiently in all kind of planning domains. Because
of this difficulty, most research has focused on a set of classical planning domains.
Domain-dependent planners are planning systems that are customized for its use on a

single specific planning domain and are unlikely to work in other domains unless major
modifications are made to the planning system. In a domain-dependent planner, the domain
specific information may be encoded into the planning engine itself. Such a planner can
be quite efficient in creating plans for the target domain but will not be usable in any
other planning domain. If the planner is needed to work with another domain, then it is
necessary to build an entirely new planner.
Domain-configurable planners are planning systems in which the planning engine is

domain-independent but the input to the planner includes domain-specific knowledge to
constrain the planner’s search so that the planner searches only a small part of the search
space. In domain-configurable planners, the planning engine is domain independent but
the input to the planner includes a domain description, that is, a collection of domain-
specific knowledge written in a language that is understandable to the planning engine.
The planning engine can be reconfigured to work in another problem domain by giving
it a new domain description. A special type of domain-configurable planners are HTN
planners.

Hierarchical Task Network (HTN) planning was first developed several years ago [108,
117]. The work done by Earl D. Sacerdoti in 1975 was the first on thinking in the non-
linearity of plans, and introduced the concept of procedural net as a new information
structure to represent a plan as a partial ordering of actions with respect to time, instead
of the classical view of a plan as a linear sequence of actions that are executed one at a
time. The procedural net was a network of nodes, with each node representing a particular
action at some level of detail. The nodes were linked in a partially ordered time sequence
by predecessor and successor links to form hierarchical descriptions of operations and to
form plans of action, so that nodes at each level of the hierarchy conformed a sequence

3.1 Introduction 23

that represented a plan at a particular level of detail. The developed NOAH planner [108],
whose name stands for Nets of Action Hierarchies, was the first on using a non-linear
representation of plans.
One year later and based on NOAH, the NONLIN [117] hierarchical partial-order

AI planning system was developed by Austin Tate at the University of Edinburgh. It
was developed to work on a project aimed at producing an interactive program for the
construction of project networks, such as in house building tasks. The NONLIN system
was a development made over the research done with NOAH, but improved the planner
in several ways. It introduced a task formalism as a powerful and flexible language for
the users to describe domains. Also, it had the capability of generating and storing all
the alternatives at the choice points of the search for a future use, either on the fail of
some approach tried by the planner or to generate more than one solution. Some other
improvements were done but, regardless of that, the works of Sacerdoti and Tate supposed
the beginning of HTN planning.

HTN planning is an Artificial Intelligence planning technique that differs from the main
ideas conceived in classical planning. A task network is a hierarchy of tasks where each
can be executed if the task is simple enough, or decomposed into lower-level subtask
networks otherwise. HTN planning includes an initial state description, an initial task
network that has to be decomposed and that represents the goal to achieve, and a domain
knowledge consisting on how to decompose the task networks. The planning process starts
by decomposing the goal task network, reducing it into several subtask networks until all
compound tasks are decomposed and thus, a solution is found. The solution consists on a
set of non-decomposable primitive tasks that are applicable to the initial world state.
The main characteristic of HTN planning is the need of a well-structured domain

knowledge to decompose the task networks into smaller subtask networks. This knowledge
contains all the information needed to solve a specific planning problem, and represents a
guide on how it must be solved. Such knowledge encodes much more information than
that needed and present in other classical planning techniques and has its advantages and
disadvantages [92]. Mainly, this knowledge gives a boost in terms of performance and
coverage across many domains to HTN planners compared to classical planners, but the
domain formalization is more complex and it requires an expert person who knows how to
solve the planning problem, so the human effort required to configure the planner is high.
Most of the HTN planning research have been focused on practical applications [28,

58]. Examples include production-line scheduling [121], planning and scheduling for
spacecraft [30, 2] and evacuation planning [86]. Many other real-world applications have
been developed by using the natural knowledge-modelling framework of HTN, including
military planning [85, 87], manufacturing processes [93, 111] and even interactive dialogue
generation [13].

An especially interesting field of application for HTN planning is strategy formulation
and character behaviour in computer games due to real-time or fast response requirements,
in addition to the generation of human-like demeanour. In [95] a modified version of
HTN structures was used to represent multi-agency and uncertainty in the bridge card-
playing game, applying HTN decomposition to produce a game tree on which each branch
represents a move that fits into some coherent strategy. Another example of using HTN
representations to model strategic game AI can be found in [56], where HTNs were used

24 Chapter 3. Hierarchical Task Network Planning

to model effective team strategies for bots while finite state machines were used to encode
individual bot behaviour. This allowed the bots to react properly in a highly dynamic
environment while contributing to the team task. The SHPE (Simple Hierarchical Planning
Engine) planner [83] is a hierarchical task network planning system designed to generate
dynamic behaviours for real-time video games, being able to return relevant plans in few
milliseconds for several problem instances of the presented planning domain. On the way
of the creation of virtual autonomous characters that are lifelike and intelligent, a strategic
planning architecture is presented in [78] in the domain of fire fighting and emergency
response. This architecture used a visual perception system and one HTN planner to
generate an online plan based on the information gathered from the visual perception
system, generating a believable non-player character behaviour.
As commented before, the NOAH and NONLIN were the two first developed HTN

planners but they have been followed by many others HTN planners in the AI community.
Among the most relevant we can find two categories: planners without monitoring features
(re-planning) and planners with monitoring features.

The UMCP (Universal Method Composition Planner) [29] is a pure planning system,
implemented in Lisp. UMCP has been proven to be sound and complete and offers
both and automatic (or interactive) search and a graphical user interface to navigate
through the search space. Years later of its development, the same authors developed the
SHOP2 [94] planner, a partially-ordered domain-independent planning system. SHOP2
starts its planning process from a problem file which contains the initial state of the world
as well as the tasks that must be accomplished. It needs to know how the decomposition
of tasks has to be done, so an additional file must be given containing this information.
SHOP2 generates the steps of each plan in the same order that those steps will be later
executed, so it knows the current state of the world at each step of the planning process.
This reduces the complexity of reasoning by eliminating a great deal of uncertainty about
the world, thereby making it easier to incorporate substantial expressive power into the
planning system. A multi-agent version of SHOP2, called A-SHOP [21] has also been
developed. It is an integration of the SHOP HTN planning system with the IMPACT multi-
agent environment [22]. The A-SHOP algorithm is an agentized adaptation of the SHOP
planning algorithm that takes advantage of IMPACT’s capabilities for interacting with
external agents, performing mixed symbolic/numeric computations, and making queries
to distributed heterogeneous information sources, such as specialized data structures or
external databases.
O-Plan2 [118] (Open Planning Architecture) provides a generic domain-independent

computational architecture suitable for command planning and execution applications.
The main contribution of O-Plan2 has been a complete vision of a modular and flexible
planning and control system incorporating artificial intelligence methods. It offers an
architecture not only for planning but also for scheduling, controlling and monitoring
the actions. Another example of a HTN-based plan generation and execution system is
SIPE-2 [122], a performance-oriented, general-purpose software system for generating
and monitoring the execution of plans. SIPE-2 plans hierarchically using different levels
of abstraction, and provides a formalism for describing actions as operators. Given an
arbitrary initial situation and a set of goals, SIPE-2 either automatically or under interactive
control combines operators to generate plans to achieve the prescribed goals in the given

3.2 HTN Formalism 25

world. SIPE-2 includes heuristics for reducing computational complexity, and is capable
of generating a novel sequence of actions that responds to the current situation: it has
execution-monitoring techniques that accept new information about the world and modify
the plan minimally to respond to unexpected events. SIADEX [19] is a complex framework
that integrates several AI techniques able to design fighting plans against forest fires, also
allowing to respond to the uncertainty in the execution of a plan by offering plan repairing
(replanning) and revision procedures. It is based on four main components, a web server
that centralizes all the flow of information between the system and the user, the ontology
server that is the basis for knowledge sharing and exchange between all the components,
and the planning and monitoring servers that are offered as intelligent services through the
web server.

3.2 HTN Formalism

3.2.1 Mathematical Model

The formalism presented here describes the mathematical model [41] of HTN planning,
composed of a planning language, operators, methods, tasks, task networks, planning
problem and solution.
The HTN planning language is a first-order language that contains several mutually

disjoint sets of symbols. A predicate, which may takes as values true or false, consists of
a predicate symbol p ∈ P, where P is a finite set of predicate symbols, and a list of terms
(τ1,...,τk). A term is either a constant symbol c ∈C, where C is a finite set of constant
symbols, or a variable symbol v ∈V , where V is a finite set of variable symbols. The set
of predicates is denoted by Q. A predicate is ground if its terms do not contain variable
symbols.

In formal systems of logic for knowledge representation, the Closed-World Assumption
(CWA) is the presumption that a statement that is true is also known to be true and
conversely, what is not currently known to be true is false. For our formalism, a state
s ∈ 2Q is a set of ground predicates in which the CWA is adopted, so only all the predicates
that are true are specified in a state. A primitive task is an expression tp(τ) where tp ∈ Tp
and Tp is a finite set of primitive task symbols, and τ = τ1,...,τk are terms. A primitive
task is represented by a planning operator.

Definition 3.2.1 (Operator) An operator o is a triple (p(o); pre(o);e f f (o)), where p(o) is
a primitive task, pre(o) ∈ 2Q are the preconditions to apply the operator, and e f f (o) ∈ 2Q

are the effects of applying the operator. The subsets pre+(o) and pre−(o) denote the
positive and negative preconditions of o, respectively. In addition, the subsets e f f+(o)
and e f f−(o) denote the positive and negative effects of applying o, respectively.

A transition from one state to another is accomplished by applying an instance of an
operator whose precondition is a logical consequence of the current state. An operator o
is said to be applicable in the state s, if pre+(o)⊆ s and pre−(o)∩ s = /0. Applying o to s
results in the state s[o] = (s\ e f f−(o))∪ e f f+(o). From now, the notations s[o] = s′ and
s o−→ s′ will be used interchangeably.

26 Chapter 3. Hierarchical Task Network Planning

A compound task is an expression tc(τ) where tc ∈ Tc and Tc is a finite set of compound-
task symbols, and τ = τ1,...,τk are terms. We denote the set of task names as Tn, which is
composed by the union of Tp and Tc.

Definition 3.2.2 (Task Network) A task network tn is a pair (T,φ), where T is a finite set
of tasks, and φ is a finite set of constraints.

The constraints in φ specify restrictions over T that must be satisfied during the planning
process to decompose the task network. A task network over Tp is a primitive task network.
The set of all task networks over Tn is denoted as T N.

Definition 3.2.3 (Method) A method m is a pair (c(m),tn(m)), where c(m) is a compound
task, and tn(m) is a task network to decompose c(m).

Definition 3.2.4 (Planning Problem) Aplanning problemP is a tuple (Q,Tp,Tc,O,M,tn0,s0),
where:

• Q is a finite set of predicates

• Tp is a finite set of primitive task symbols

• Tc is a finite set of compound task symbols

• O⊆ Tp×2Q×2Q is a finite set of operators

• M ⊆ Tc×T N is a finite set of methods

• tn0 is the initial task network

• s0 is the initial state .

An operator sequence o1,...,on is executable in s, if there are states s0,...,sn such that
s0 = s, oi is applicable in si−1 and si−1(oi) = si for all i 6 n. Given a problem P, a solution
to P is an operator sequence executable in s0 by decomposing tn0.

Given the previous definitions, the work-flow for an HTN planner would be the following:
the input to the planner consists on an initial task network tn0 representing the problem to
be solved, along with an initial state s0. The task network is a finite set of tasks T restricted
by a finite set of constraints φ that represents some action that needs to be done. Each task
on the network can be primitive, meaning that it can be performed directly, or compound,
meaning that the planner needs to figure out how to perform it. The set of operators O
tell the effects of executing each primitive task while the set of methods M tell how to
perform compound tasks. Each method m pairs a compound task c(m) with a task network
tn(m), and tells how to achieve the compound task by performing the tasks specified in the
network, supposing that this can be done in a way that satisfies all the constraints φ(tn0)
of the task network.

As commented before, the planning process starts with the initial task network tn0 and
the initial state s0, and repeats the following steps: until no compound tasks are left, it finds
a method m in M and a compound task ci in tn0 such that (ci(m),tn′(m)), i.e. a method
that pairs ci with tn′. Then it modifies tn0 by replacing ci(m) with the tasks in tn′(m) and
adding the constraints φ(tn′) into φ(tn0).

3.2 HTN Formalism 27

3.2.2 Search Space

In the mathematical model presented before, the main concepts that describe the HTN
planning formalism have been defined. All these concepts affect the structure of the space
on which the search takes place. There are two possible structures of search spaces that
can be created by HTN planners: plan space and state space.
The first type of search space, the plan space, consists of task networks and task

decompositions as evolutions from one task network to another. Given some planning
problem, at the beginning of the search, a task decomposition is imposed on the initial task
network, and the process continues by repeatedly decomposing tasks from a newly created
task network until a primitive task network is produced. A linearisation of this primitive
task network executable in the initial state represents a solution to the planning problem.
The second type of search space is called the state space. It consists on explicitly

described states restricted by task decompositions. The search begins in the initial state
with an empty plan, but instead of searching for a state that will satisfy the goal, the search
is for a state that will accomplish the initial task network. In particular, if a task from the
task network is compound, a task decomposition is performed and the search continues on
the next decomposition level, but in the same state. If the task is primitive, it is executed
and the search continues into a successor state. This task is then added to the plan. When
there are no more tasks in the task network to be decomposed, the search has finished.
The solution to the planning problem is the plan containing a sequence of totally ordered
actions.

We refer to HTN planners that search in the plan space as plan-based HTN planners, and
to the model of HTN planning as plan-based HTN planning. The term state space is used
to refer to the second type of search space. Thus, we refer to HTN planners searching in
this space as state-based HTN planners, and to the model of HTN planning as state-based
HTN planning.

3.2.3 Plan-Based HTN Planning

To formalize the plan-based HTN planning, Definition 3.2.2 must be further complemented
and also some new concepts must be introduced.

Definition 3.2.5 (Task network) A task network tn is a triple (T,ϕ,ψ), where

• T is a finite and non-empty set of tasks

• ϕ : T → Tn labels a task with a task name

• ψ is a formula composed by conjunction, disjunction of negation of the following
set of constraints:

– ≺⊆ T ×T is a strict partial order on T (irreflexive, transitive, asymmetric)

– 7→⊆V ×V ∪V ×C is a restriction on bindings of task network variables

– O⊆ Tp×2Q×2Q is a partial order on tasks and state predicates.

Definition 3.2.6 (Decomposition) Letm be amethod and tnc =(Tc,ϕc,ψc) be a task network.
Method m decomposes tnc into a new task network tnn by replacing task t, denoted

28 Chapter 3. Hierarchical Task Network Planning

as tnc
t,m−→D tnn, if and only if t ∈ Tc, ϕc(t) = c(m), and there exists a task network

tn′ = (T ′,ϕ ′,ψ ′) such that tn′ ≡ tn(m) and T ′∩T 6= /0, and
tnn := ((Tc\t)∪T ′,ϕc∪ϕ

′,ψc∪ψ
′∪ψD) where

ψD := {(t1,t2) ∈ Tc×T ′ | (t1,t) ∈≺c}∪{(t1,t2) ∈ T ′×Tc | (t,t2) ∈≺c}∪
{(p,t1) ∈ Q×T ′ | (p,t) ∈`≺c

∪{(t1,p) ∈ T ′×Q | (t,p) ∈`≺c
}∪

{(t1,p,t2) ∈ T ′×Q×T ′ | (t,p,t2) ∈`≺c
}.

Given a planning problem P, tnc →∗D tnn indicates that tnn results from tnc by an
arbitrary number of decompositions using methods from M.

Definition 3.2.7 (Executable Task Network) Given a planning problem P, a task network
tn = (T,ϕ,ψ) is executable in state s, if and only if it is primitive and there exists a
linearisation of its tasks t1,...,tn that is compatible with ψ and the corresponding sequence
of operators ϕ(t1),...,ϕ(tn) is executable in s.

Finally, a solution for a HTN planning problem can be formalized.

Definition 3.2.8 (Solution) A task network tns is a solution to a planning problem P, if and
only if tns is executable in s0, and tn0→∗D tns for tns being a solution to P.

Definition 3.2.9 (Plan Space) Given a plan-based HTN planning problem P, a plan space
PG is a directed graph (V ;E) if and only if tn0 ∈V , and for each tn→D tn′ : tn,tn′ ∈V
and (tn,tn′) ∈ E.

3.2.4 State-Based HTN Planning

To formalize state-based HTN planning, Definition 3.2.2 and Definition 3.2.3 must be
further complemented while some concepts that were defined for plan-based HTN planning
must be reformulated.

Definition 3.2.10 (Task network) A task network tn is a pair (T,≺), where

• T is a finite set of tasks

• ≺ is a strict partial order on T (irreflexive, transitive and asymmetric).

Definition 3.2.11 (Method) A method m is a triple (c(m),pre(m),tn(m)), where c(m) is a
compound task, pre(m) ∈ 2Q is a precondition, and tn(m) is a task network. The subsets
pre+(m),pre−(m) denote the positive and negative precondition of m, respectively.

A method m is applicable in state s, if and only if pre+(m) ⊆ s and pre−(m)∩ s = /0.
Applying m to s results in a new task network.

Definition 3.2.12 (Decomposition) Let m be an applicable method in s and tnc = (Tc,≺c)
be a task network. Method m decomposes tnc into a new task network tnn by replacing
task t, written tnc

s,t,m−−→D tnn, if and only if t ∈ Tc,t = c(m) and
tnn := ((Tc\{t})∪Tm,≺c ∪ ≺m ∪ ≺D) where
≺D:= {(t1,t2) ∈ Tc×Tm | (t1,t) ∈≺c}∪{(t1,t2) ∈ Tm×Tc | (t,t2) ∈≺c}.

3.3 JSHOP2 HTN Planner 29

Finally, the state space can be defined as follows.

Definition 3.2.13 (State Space) Given a state-based HTN planning problem P, a state space
SG is a directed graph (V,E) if and only if s0 ∈V , and there is a state si and tk ∈ tn such
that

• if tk is primitive, then si
tk−→ si+1 such that k = i+1,si,si+1 ∈V and (si,si+1) ∈ E; or

• if tk is compound, then tn→D tn′ is a self-transition such that si ∈V and (si,si) ∈ E.

3.3 JSHOP2 HTN Planner

As commented before in 3.2.2, the search space in HTN planning can be classified into two
different types, the plan space and the state space. Based on this, HTN planners can also be
classified in plan-based HTN planners or state-based HTN planners. From the work done
in [41], it can be seen that plan-based HTN planners need to search more complex spaces
than state-based HTN planners, which also affects some of the concepts used during the
search in terms of the number of needed techniques, their technical complexity and their
interconnection. Plan-based HTN planners seem to require smaller domain knowledge
than state-based HTN planners, but it appears that both categories of planners have similar
levels of practical expressiveness.

Due to the complexity of the problems to solve in this thesis, it is important the use of a
planner whose search space is the less complex as possible, as it will reduce computation
times. Also, the amount of domain knowledge needed by the planner is not important
in our case, as this knowledge is designed and given beforehand and does not affect the
performance of the planning process. For these reasons, state-based HTN planners are
more suitable for our problems. Specifically, the JSHOP2 HTN planner has been chosen
to solve the problem, as from all the state-based HTN planners it is one of the most applied
in the research community [41].

3.3.1 Planning Domain Definition Language: The Origin

The Planning Domain Definition Language (PDDL) is an attempt to standardize Artificial
Intelligence planning languages. Inspired by the STRIPS [33] and ADL [101] languages,
it was first developed by Drew McDermott in 1998 to make possible the 1998/2000
International Planning Competition (IPC). Since then, the language has evolved with each
competition, resulting on its different official versions.
The International Planning Competition is an event organized every two years in the

context of the International Conference on Planning and Scheduling (ICAPS). Among
its goals are to: analyse and advance the state-of-the-art in automated planning systems,
provide new data sets for the research community to be used as benchmarks for evaluating
different approaches to automated planning, or emphasize new research issues in planning,
among others. For the competition, different planners (among which SHOP2 was present in
previous sessions) are registered to try to solve the problems proposed by the organization,
producing different solutions that are later evaluated by following some criteria such as
the quality of the solution, its optimality, the computation time, etc.

30 Chapter 3. Hierarchical Task Network Planning

Due to the needs of having each of the registered planners being capable of solving
the same problems, a formal language definition was needed. The development of PDDL
supposed the adoption of a common formalism for describing planning domains. This
adoption has improved the reuse of research and allows a direct comparison of different
systems and approaches of implementations, fastening the progress in the field.

PDDL has become a standard encoding language to model classical planning problems.
Its syntax, inspired by the Lisp programming language, is mainly composed by logical
expressions and relations. The main components of a problem modelled with PDDL are
the following:

• Objects: the things in the world that are of interest for the problem.

• Predicates: the logical properties of objects that are of interest, and which can take
true or false as values.

• Initial state: the state of the world where the problem starts in, given by the initial
values of the predicates. Those initial values for the predicates are also called facts.

• Actions: the different ways of changing the current state of the world, the actions
that are applicable over the objects and that result in some effect that changes the
value of some predicates.

• Goal specification: the predicates that must be true to consider the problem as
solved.

The model for a planning problem is defined in PDDL by using two separated files: the
domain file and the problem file.
The domain file is used to model the world. It is composed of the different predicates

that can be present in a planning problem. The different actions that are applicable over
those predicates are also defined. An important feature of a domain file is that it is shared
by all the problem instances of a planning problem, so once specified this file remains
unchanged.

The problem file is used to create an instance of a planning problem. Inside the problem
file are defined the objects that are present in that specific problem instance, along with its
initial state and the goal specification. The domain file needed to solve the problem is also
specified.
All the official versions of PDDL are composed by the same basic defining elements,

but big changes have been done since the release of the first official version. These changes
have been focused in increasing the expressive power of the language and some of them
have finally made the language suitable for expressing time-based domains, expanding
greatly the type of problems that the language can manage. However, it must be noted that
PDDL is used to model planning problems and not to solve them, so the implementation of
a planner capable of solving all the problems that PDDL can express is not trivial. In fact,
many of the existing planners are only capable of interpreting a subset of expressions for a
specific version of PDDL, and some others even have a custom variant for the language.
The main characteristics of the different versions that have been published since the

release of the first official specification of the language are summarized below:

3.3 JSHOP2 HTN Planner 31

• PDDL 1.2: this was the first official release and the one which was used on the
first two IPC competitions in 1998 and 2000. It defined the basic elements of the
language (objects, predicates, initial state, actions and goals) and separated the
model of the planning problem in the domain file and the problem file.

• PDDL2.1: this versionwas used on the third IPC competition in 2002 and represented
a great change from the previous version, bringing the language closer to more real-
world problems. To model non-binary resources such us fuel-level, distance or
weight, it introduced the concept of numeric-fluents to associate a numeric value
to an object or tuple of objects. It also defined plan-metrics to allow quantitative
evaluation of plans, oriented to optimization and metric minimization/maximization.
Finally, the introduction of durative actions, which could have non-discrete length
conditions and effects, allowed the language to manage the time variable in the
domains.

• PDDL 2.2: this version was used on the fourth IPC in 2004 and extended the
language with some important elements, although it was not a great evolution from
the previous version. To model the dependency of given facts from other facts, such
as in the transitive relation, it introduced the concept of derived predicates. Also,
to model external events that occur at a given time independently from the plan
execution, the concept of timed-initial literal was created.

• PDDL 3.0: used on the IPC competition of 2006, it introduced the concepts of
state-trajectory constraints and preferences. The former represent hard-constraints
which should be true for the state-trajectory produced during the execution of the
plan, i.e. for the solution computed for a given planning problem. The latter define
soft-constraints whose satisfaction is not necessary but that can take part into the
plan metric to measure the quality of the plan.

• PDDL 3.1: this is the last version of the language and the one used on the IPC
competitions from 2008 until today. It introduced the concept of object-fluents to
associate an object to another object or to a tuple of objects.

3.3.2 JSHOP2 Overview

JSHOP2, the Java implementation of SHOP2 [94], is a sound and complete domain-
independent planning system based on Hierarchical Task Networks. JSHOP2 starts its
planning process from a problem file which contains the initial state of the world. This file
defines all the entities that are present in the problem and their initial state, as well as the
tasks that should be accomplished. The objective of JSHOP2 is the decomposition of these
tasks into smaller subtasks, until obtaining primitive tasks which are the actions at the
lowest level that compose the final plan. JSHOP2 needs to know how this decomposition
has to be done, so an additional file should be given containing the domain of the problem.
In this domain the structures that represent the high level tasks, called methods, are defined,
as well as the structures that represent the primitive tasks, called operators. The methods
contain the list of subtasks on which they can be decomposed, either another methods or
operators. Thus, for solving a planning problem these two files, the problem file and the
domain file, should be available.

32 Chapter 3. Hierarchical Task Network Planning

JSHOP2 generates the steps of each plan in the same order that those steps will be later
executed, so it knows the current state at each step of the planning process. As it has been
previously mentioned, this reduces the complexity of reasoning by eliminating a great deal
of uncertainty about the world, thereby making it easy to incorporate substantial expressive
power into the planning system. In addition to that, some of the main characteristics of
JSHOP2 are the following:

• JSHOP2 allows tasks and subtasks to be partially ordered. Plans may interleave
subtasks from different tasks.

• JSHOP2 incorporates features from PDDL, such as quantifiers and conditional
effects.

• If there are alternative ways to satisfy the preconditions of a method, JSHOP2 can
sort the alternatives according to a criterion specified in the definition of the method.
By this way it is possible to tell the planner which parts of the search space to explore
first.

• JSHOP2 can handle temporal planning domains, so it is possible to maintain
information for multiple timelines within the current state.

Along this Thesis, we will use the terms JSHOP2 and SHOP2 to refer to the same
planning system, but it must be taken into account that JSHOP2 refers to the Java implementation
while SHOP2 refers to the Lisp implementation of the planning engine. In addition, the
Python implementation of the engine, called PYHOP, will be presented and explained in
the next chapters.

3.3.3 Elements of a Domain Description

In JSHOP2, the description of a planning domain is composed by a set of tasks, operators,
methods, axioms and external function calls. These elements are described briefly in this
subsection.

Tasks

A task represents an activity to perform. Syntactically, a task consists of a task symbol
followed by a list of arguments. A task may be either primitive or compound. A primitive
task is one that is supposed to be accomplished by a planning operator: the task symbol is
the name of the planning operator to use, and the task arguments are the parameters for the
operator. A compound task is one that needs to be decomposed into smaller tasks using a
method.

Operators

An operator indicates how a primitive task can be performed. JSHOP2 operators are
similar to PDDL operators: each operator o has a head head(o) consisting on the operator
name and a list of parameters, a precondition expression pre(o) indicating what should be
true in the current state in order for the operator to be applicable, and a delete list del(o)
and add list add(o) giving the negative and positive effects of applying the operator. Like
in PDDL, the preconditions and effects may include logical connectives and quantifiers.

3.3 JSHOP2 HTN Planner 33

Operators can also do numeric computations and assignments to local variables. As in
PDDL, two operators can not have the same name, so for each primitive task, all applicable
actions are instances of the same operator. Operators also have an optional cost expression.
This expression can use any of the variables that appear in the head and preconditions.
The total cost of a plan is the sum of the costs of the operator instances.

Methods

Methods tell how to decompose a compound task into a partially or totally ordered set of
subtasks, each of which can be compound or primitive. The simplest version of a method
has three parts: the task for which the method is to be used (the head of the method), the
preconditions that the current state must satisfy in order for the method to be applicable,
and the subtasks on which the task will be decomposed. In general, a method m may have
the form

(: method head(m) p1 t1 p2 t2 ...),

where head(m) is the task name and arguments form, each pi is a precondition expression
and each ti is a partially or totally ordered set of subtasks. The meaning of this is analogous
to an if-then-else construct: it tells JSHOP2 that if p1 is satisfied then t1 should be used,
otherwise if p2 is satisfied then t2 should be used, and so on.

Axioms

The preconditions of each method or operator may include conjunctions, disjunctions,
negations, universal and existential quantifiers, implications, numerical computations, and
external function calls. Axioms can be used to infer preconditions that are not explicitly
asserted in the current state, simplifying the definition of methods and operators. Axioms
are generalized versions of Horn clauses, with the form

(:− head tail)

which means that head is true if tail is true. The tail of the clause may contain anything
that may appear in the preconditions of an operator or method.

External Function Calls

With the external function calls feature it is possible to make external Java function calls
from the preconditions of a method or operator. These calls allow the execution of external
code or libraries to run calculations or evaluations that in other ways could not be done
from inside the JSHOP2 planning engine. This greatly increases the planning capabilities
of JSHOP2, as it allows the interconnection among JSHOP2 and other types of specialized
planners to do more specific computations.

3.3.4 JSHOP2 Algorithm

Algorithm 1 shows a simplified version of the JSHOP2 planning algorithm. The algorithm
receives three parameters: the initial state s, a partially ordered set of tasks T and a domain

34 Chapter 3. Hierarchical Task Network Planning

description D. The algorithm runs while the set T contains any task, and on each iteration
chooses one task t that is known of not being preceded by any other task. Then two possible
cases appear: t being primitive or t being compound.

If t is a primitive task, then a set A of operator instances is created. This set is composed
with instances of all the operators from D whose head match the head of the primitive
task t and whose preconditions are satisfied by the state s. If the set A is non void, then an
operator a from the set is chosen and added to the final plan P, the state s is updated by
applying the delete list and add list from a, and the task t is removed from the set T. If A is
void then this branch of the search space fails.

If t is a compound task, then a setM of method instances is created. This set is composed
with instances of all the methods from D whose head match the head of the primitive task t
and whose preconditions are satisfied by the state s. If the setM is non void, then a method
m from the set is chosen, its subtasks sub(m) are added to the final plan P preceding the
tasks that t already preceded, and the task t is removed from the set T. IfM is void then
this branch of the search space fails.

3.3.5 Multi-Timeline Preprocessing

JSHOP2 does not have an explicit mechanism for reasoning about durative and concurrent
actions. However, it still has enough expressive power to represent durative and concurrent
actions because it knows the current state at each step of the planning process and since
its operators can assign values to variables and do numeric calculations. These features
allowed the development of a preprocessing technique calledMulti-Timeline Preprocessing
(MTP) [94]. MTP is a technique for translating PDDL operators into JSHOP2 operators
that keep track of temporal information in the current state.
Let us suppose that in each state s, every logical atom (p c1 ... cn) (also known as

predicates or functions in PDDL terminology) represents a property for an object. A
property is said to be dynamic if an operator may change the value cn. For example, if
the initial state for a problem contains (at robot1 location1) but there is an operator that
moves robot1 to a different location, then the location of robot1 is said to be dynamic. For
each property p that changes over time, MTP modifies the operators to keep track, within
the current state, of the times at which the property changes and the times at which various
preconditions depend on the property. For each dynamic property p, the current state will
contain two time-stamps: read− time(p), which is the last time that any action read the
value of p, and write− time(p), which is the last time that any action modified the value
of p. MTP modifies the operators in such a way that whenever an operator accesses a
dynamic property, the operator will update the property’s read-time and, if an operator
modifies a dynamic property, it will update the property’s write-time. By this way, the
current state will contain different timelines, consisting on a read-time and write-time for
each dynamic property.

3.4 Conclusion 35

Algorithm 1: Simplified JSHOP2 planning algorithm
Data: S, T and D
Result: Final plan P, or FAILURE
begin

P = The empty plan;
T0←− {t ∈ T : no other task in T is constrained to precede t};
Loop

if T = /0 then
return P;

choose any t ∈ T0;
if t is a primitive task then

A←− {a : a is an operator instance from D whose head match t and s
satisfies a′s preconditions};

if A = /0 then
return FAILURE;

choose any a ∈ A;
modify s by deleting del(a) and adding add(a);
append a to P;
modify T by removing t;
T0←− {t ∈ T : no other task in T is constrained to precede t};

else
M←− {m : m is a method instance from D whose head match t and s
satisfies m’s preconditions};

if M = /0 then
return FAILURE;

choose any m ∈M;
modify T by removing t and adding sub(m), constraining each task in

sub(m) to precede the tasks that t preceded;
if sub(m) 6= /0 then

T0←− {t ∈ sub(m) : no other task in T is constrained to precede t};
else

T0←− {t ∈ T : no other task in T is constrained to precede t};

3.4 Conclusion

In this Chapter we introduce JSHOP2, the HTN planner on which our research is based.
We have presented an overview of Hierarchical Task Network planning, including its
formalism, as the base on which JSHOP2 relies.
It has been shown that hierarchies resemble the way the humans think and act. Also,

the way the humans organize the world are reflected in the use of hierarchies. That makes
the use of HTN planners for solving real-world problems a natural approach. Modelling

36 Chapter 3. Hierarchical Task Network Planning

the domain requires a bigger effort compared to other planning techniques, because the
knowledge must be provided by one human that has some expertise in the matter, but the
domain is more easily understandable by any person, expert or not. Also, this knowledge
gives a boost in terms of performance and coverage across many domains to HTN planners
compared to classical planners. Several examples have been presented that show that
HTN planning can be used and applied in a large variety of real-world problems beyond a
classical set of domains. It requires a greater effort in the knowledge definition for the HTN
planner, but the higher performance of this planning technique makes the difference against
other classical choices, justifying our selection of HTN planning for problem solving.
The JSHOP2 HTN planner has been presented as our selected HTN planner for the

research in this thesis. Its modelling language is a direct translation of PDDL, making it
easier to model domains and problems of any kind. It is widely extended and accepted
in the research community and has been also adapted to be integrated in multi-agent
environments, being capable of interacting with external agents and making queries to
distributed heterogeneous information sources. That makes this planner a good selection
among the different possibilities.

4 Decoupled Geometric and
Symbolic Reasoning

This chapter addresses the combination of symbolic Hierarchical Task Network (HTN)
planning and geometric reasoning in a multi-vehicle context involving the Vehicle

Routing Problem (VRP) [18] for assembly operations with aerial robots. Each planner
has its own problem domain and search space, and the description of how both planners
interact in a loop sharing information in order to improve the solutions is presented. The
HTN planner estimates the cost of the sequence of actions needed in the mission execution
for each assignment computed for the VRP and gives feedback to the VRP solver in the
search for a better assignment. This interaction scheme has been tested with different VRP
solver configurations at the geometric reasoning level.
The main contribution presented in this chapter is a new way of connecting two

independent planning systems based on a score calculation system that lets them cooperate
in the optimization of the solutions found and its application in the context of structure
assembly missions.
The chapter initially presents a short description of the addressed problem. The

geometric VRP planner is described along with the connection between the geometric
level and the symbolic planner. Simulation results in a scenario with a team of aerial
vehicles assembling a structure are presented, showing the feasibility of the approach and
the performance obtained with the different configurations of the VRP solver.

4.1 Introduction

The main goal of the European project that inspired our work, the ARCAS project, was
constructing one structure defined in a CAD model by using multiple drones equipped
with robotic arms. This kind of system is of great interest in situations where the assembly
of a structure is required but the characteristics of the terrain or the environment make the
assembly operation difficult. This type of situations may arise in civilian missions such
a mountain rescue or fire, but also in military missions like building a bridge. Different

37

38 Chapter 4. Decoupled Geometric and Symbolic Reasoning

scheduling and planning problems are involved in this context: assembly planning, multi-
robot task allocation, symbolic planning and motion planning. There is a huge amount
of related work in any of these topics independently, but the problem of combining these
different planning levels has been less addressed in the literature until the last ten years.
Assembly planning can be defined as the process of constructing a specific structure

given a set of parts, by computing a plan that is composed of different assembly operations
and the order on which they must be executed to build the structure. During the plan
generation different variables are taken into account such as the geometry of the parts, the
geometry of the final structure, the resources to handle the parts and build the structure,
the tools available, etc. It has been proven in [65] that all assembly problems have an
NP-complete nature. A complete survey on assembly sequencing was presented in [60],
taking into account the geometry of the problem and its combinatorial nature. The most
complete and recent taxonomy on the topic can be found in [42]. In the context of multiple
aerial robots, a team that cooperatively constructs a structure is presented in [76]. In this
study, the different parts had a simple geometry and the tools used by the aerial robots were
grippers, so picking and placing the parts did not need any kind of manipulation planning.
In addition, the parts were placed sequentially, so the benefits of using a team of robots for
parallelization were not fully exploited and the assembly tasks were done sequentially. On
the other hand, an automated system that uses a team of robots equipped with different
tools for the assembly of furnishing is presented in [67]. In that work, a symbolic planner
determines the order of operations over the parts for the assembly operation. However,
the allocation of tasks to robots is done at the symbolic level by using preconditions and
postconditions in an object-oriented symbolic planning specification language, so the task
allocation does not use any optimization heuristic.
It can be seen that the assembly planning and sequencing topics have been addressed

since many decades ago but it still remains as an interesting research field and in fact,
nowadays the need to have robots with precise assembly capabilities is increasing. One
of the trends is to enhance the precision of robots by using new data models and sensors
with better precision in their measurements. In [119] the authors present a system for
the automatic generation of ’depth-maps’ for peg-in-hole assembly operations. Depth-
maps are two-dimensional arrays that contain the perpendicular distances of a peg with
respect to its mating hole and are commonly used in assembly operations. The framework
presented automatically generates a depth-map given as input the CAD model of the
peg and hole. Another way of improving the precision of assembly operations is by
measuring the sound produced by mating parts, as presented in [75]. In this study, an
acoustic contacting detection is presented to substitute the traditional use of strain gauge
load cells. By putting a receiver into a part, when two parts come into contact part of
the sound wave energy is transmitted from the part to the receiver, making it possible
to detect the contacting event. The work presented in [45] performs object localization
using a monocular camera. The authors use an eye-in-hand manipulator and a mobile
platform for the task. Initially, a SURF algorithm is applied for feature detection and
initial localization. Then, a new probability-based natural right angle detection algorithm
is applied, and finally, a 2D template matching algorithm is used to fine-tune the object
localization. Another interesting trend is the use of augmented reality (AR) to improve the
accuracy of the assembly process in teleoperation. In [9] the effects of using an AR system

4.1 Introduction 39

are evaluated with the intention of overcoming the differences in perception between
telepresence and real presence. The system used an RGB-D camera and a head-mounted
display for the operator, and a Baxter robot on the other side. By using this setup, the
authors demonstrated that by using their AR system the accuracy and efficiency of the
robot in the assembly tasks were improved. Regarding high precision measurements, a
case study of the error chain is done in [124]. In that work, a robotized assembly system
is studied and an assembly accuracy analysis model for misalignment errors is proposed.
This model provides an assembly accuracy estimation and has been tested in different
assembly experiments, giving a reliable worst-case accuracy estimation.

An interesting application of assembly planning can arise from the use of multiple robots.
Self-assembly is a process in which a disordered system of pre-existing components forms
an organized structure or pattern as a consequence of specific local interactions among
the components themselves, without external direction. Some studies can be found in this
matter. In [59] the authors have addressed the self-assembly process for swarm robots.
In that study they propose an enhanced self-assembling morphology distributed control
algorithm for swarm robots, enabling dynamic local navigation according to the distance
of seed robot and docking robot. The work also presents time measurements for line-shape,
arrow-shape, T-shape and star-shape morphologies. The case of using a heterogeneous
group of robots for self-assembling is studied in [26]. In that work, each agent can only
become the neighbour of a specific set of agents in the target pattern. A constrained
bipartite graph-matching algorithm is used to allocate the agents to spots in the target
pattern. The allocation is done in a way that adjacent agents are allocated only if they
are compatible. The presented algorithm is also compared with other optimal matching
algorithms, showing lower run times.
Another application of assembly planning that also requires cooperation among the

different robots is collaborative assembly. In [79] the authors address the problem of
moving objects with a group of autonomous robots. Instead of using different planning
strategies described in the literature for pick and place, object passing, object re-grasping,
etc, they propose a planning scheme that aims to unify the different solutions. The
implemented planner can exploit support surfaces if required in order to reach the goal,
for example putting an object in a region of a table that lets another robot to pick it. The
planner relies on the geometric information stored in a database about support surfaces,
possible approximations and feasible grasps, among others. In [34] a model for an
assembly/disassembly line that uses two wheeled robots working in parallel is presented.
One of the robots has a robotic manipulator used for part manipulation while the other robot
is used for transporting the parts. During the assembly, if a part does not pass the quality
test the whole assembly is cancelled and the disassembly starts to recover the different
parts. The work is focused on task planning, modelling and simulation of the assembly line,
and use Synchronized Hybrid Petri Nets to control the assembly/disassembly. Regarding
safety, some human-robot cells trigger a safety stop when humans leave the safety zone.
Collaborative human-robot assembly requires further research to avoid completely stopping
robot operations when humans are near the working area of the robots. In [120] a human-
aware robotic system is presented. The system is capable of predicting human motion and
plan in time to execute safe motions during automotive assembly tasks, without needing
to trigger a safety stop. The main interest of this system lies in its ability to adapt the

40 Chapter 4. Decoupled Geometric and Symbolic Reasoning

behaviour of the robot to the behaviour of the human. The robot can operate in a ’Planning
with Prediction’mode, without knowing the task of the human. The robot uses the detected
human position and a set of predictions to adapt its motion to the motion of the human.
By this way, the robot can pause its task or move to another zone to let the human move
freely, without needing to trigger a safety stop.
In our research it was required to deal with the combination of a symbolic state and

a geometric configuration, where a trajectory can modify the symbolic state. Hence,
when an action is applied, both the symbolic and geometric states can change. In the
literature, there are different possible decompositions for the composition of the symbolic
and geometric states: in [16, 77, 70, 114, 63] the symbolic level calls the geometric level,
the geometric level calls the symbolic level in [36, 103, 14] and the compound state is
used directly in [12, 51, 52]. The approach adopted in our project belongs to the second
group where the geometric level calls the symbolic level. However, this thesis is focused
on the combination of a symbolic HTN planner and a constraint satisfaction solver for the
Vehicle Routing Problem (VRP). The scheme proposed for this connection in a multi-robot
context for assembly operations with aerial robots is the main novelty of this work.
This chapter is focused on the combination of multi-vehicle symbolic planning with

geometric reasoning in the context of structure assembly. The geometric layer in this
thesis has been modelled at a high level of abstraction, using cartesian coordinate systems
for locations, graphs with costs for navigation maps and Euclidean distances. As it was
explained in Chapter 2, there are three different ways of connecting the symbolic and
geometric levels: the symbolic level calls the geometric level, the geometric level calls the
symbolic level, and using the compound state. Our approach belongs to the second group,
where the geometric planner calls the symbolic level. The novelty of our contribution
compared to previous work in that group is the use of a VRP planner to implement the
geometric layer. Thus, in this chapter the terms VRP planner and geometric planner refer
to the same thing.

4.2 Problem Statement

Given a set of parts that compose a structure, with the parts distributed along a scenario, and
given a set of aerial robots also distributed along the scenario, our goal is to assemble the
whole structure using the aerial robots, minimizing the total assembly time and maximizing
the potential parallelism of using a team of robots in a collaborative way.
The parts have a simple geometry (rectangular parallelepiped), with a handle on top

which makes it possible to pick the part, and with a cavity beneath which allows stacking
the parts. All the robots are equipped with robotics manipulators that let them pick and
place the parts. In addition, the assembly plan is known in advance, so for each part it is
known which other parts must be assembled first. The locations and orientations where
the parts must be picked and where the parts must be assembled are already known.
The problem of assembling the structure can be seen as two problems highly coupled

one with each other: the problem of assigning the parts to the robots, and the problem
of scheduling the different task of the robots in time. They are highly coupled because
changing the assignment will lead to a different scheduling, and changing the scheduling,

4.2 Problem Statement 41

that is, changing the time on which the different tasks are planned to be executed, will
probably invalidate the assignment.

The assignment problem consists in assigning the different parts to the available robots
by following some criterion. One valid criterion could be trying to minimize the routes
of the used aerial robots, because it is reasonable to think that minimizing the routes of
the robots the total assembly time will be minimized, as the robots will travel the shortest
paths possible. However this is not always true. If we think in the assembly plan, we know
that the parts must be assembled following some order, and one part may need other parts
to be assembled first. If the criterion of minimizing the path is the only one used, this could
result in one ’unbalanced’ assignment, where some robots were assigned lots of parts
because they were near them, and the other robots will have to wait until these unbalanced
aerial robots assemble their parts. So, it seems clear that the criterion of minimizing the
routes of the robots must be accompanied by another criterion. The other criterion could
be to do the assignment in a ’balanced’ way, by inspecting the dependencies of each part
and assigning them in a way that the amount of time that the robots have to wait for the
other is also minimized. In any case, this problem may be seen as a variant of the Vehicle
Routing Problem (VRP) described in [18].

On the other hand, once an assignment has been computed, the aerial robots must have
a detailed plan to execute the assembly of the parts. The tasks that compose their plans
must be correctly scheduled. These tasks include actions such as taking-off, travelling to
points of interests, synchronizing with the other aerial robots, picking the parts, placing
the parts, and so on. The start time and end times of each action must be planned and
computed.
Let us consider a mission M consisting on the assembly of a structure composed by

several parts initially located around the environment. The parts have to be assembled
on specific locations by a team of n aerial vehicles starting the mission from their home
locations. Then the mission is composed by a set of assembly tasks T . Each of the parts
has a weight and a dependency list consisting on the tasks that must be done prior to its
assembly. Let us define L as the set of stock parts locations, L ′ as the set of locations
where the parts have to be assembled and H as the home locations of the aerial vehicles.
The objective is to assemble all the parts on their locations minimizing the travel flight
times of the vehicles and exploiting the potential parallelism that can be achieved using
multiple aerial vehicles.
The implicit combinatorial problem can be expressed by the edges of a graph G(V,E)

considering the following notation:

• T = {t1, t2, ..., tm} is a set of m assembly tasks.

• Pi ⊆T is the set of preconditions for the i-th task, i.e. the subset of tasks that must
have been done prior to the execution of that task.

• n is the number of aerial vehicles.

• L = {l1, l2, ..., lm} is the set of stock parts locations and L ′ = {l′1, l′2, ..., l′m} is the
set of final assembly locations.

• H = {h1,h2, ...,hn} is the set of aerial vehicle home locations.

42 Chapter 4. Decoupled Geometric and Symbolic Reasoning

• V = {L ∪L ′∪H }= {v1,v2, ...,v2m+n} is the set of vertices of the G graph.

• E = {(vi,v j)|vi,v j ∈V ; i < j} is the edge set.

• Rk = {r1,r2, ...,rs} ⊆V is the route for the k-th aerial vehicle, composed by a subset
of sk vertices from V .

• Cost cri,r j
is a non-negative travel time between vertex ri and r j, where cri,r j

= cr j ,ri
.

• p = {p1, p2, ..., pn} is a vector with the maximum payloads of the aerial vehicles.

• w = {w1,w2, ...,wm} is a vector containing the weights of the parts.

• q = {q1,q2, ...,qm} is a vector containing the times on which the parts are finally
assembled.

The problem consists in determining a set R of routes with minimal cost and a vector
q of minimal task assembly times, with each route starting at the home locations of the
vehicles, such that every vertex in L is visited at least by one vehicle and followed by its
subsequent vertex in L ′, without exceeding the payload of each vehicle and respecting
the preconditions for each of the parts. The same location can be visited by several aerial
vehicles because some parts must be transported cooperatively by more than one aerial
vehicle if they are too heavy.

For the k-th aerial vehicle, the cost of a route is given by

C(Rk) =
sk−1

∑
i=1

cri,ri+1
, (4.1)

where r1 ∈H , ri ∈V and r j ∈ L =⇒ r j+1 ∈ L ′. Considering that up to two aerial
vehicles can cooperatively transport a single heavy part, this route Rk is feasible if:

(pk ≥ w j)∨ (∃Rz|r j ∈ Rz∧ (pk + pz)≥ w j),

i.e. the weight of each part does not exceed the maximum payload of the aerial vehicle
transporting it or there is another available aerial vehicle so that both can transport it
cooperatively. For each part w j in this route it must be met in addition that ∀ts ∈Pj : qs < q j,
i.e. all the parts from its set of preconditions must have been assembled before that part.

The goal is to minimize the total travel time ∑
n
i=1 C(Ri) of the feasible routes executing

all the assembly tasks of the mission and to balance the workload of the different aerial
vehicles.

4.3 Geometric Planner

4.3.1 Overview

The problem presented in the previous section has a high combinatorial nature. This kind
of problems are not suited for HTN planners as due to their implementation they usually
get stuck during the search phase, as the search tree is usually very huge in combinatorial

4.3 Geometric Planner 43

problems of medium and high sizes. To solve this problem we need to help the HTN
planner with a layer that frees the symbolic planner from the computation needed to solve
the VRP part. We do this by solving the VRP part with a separate planner, presenting a
new way of connecting two independent planning systems based on a score calculation
method that lets them cooperate in the optimization of the solutions found.

To solve the VRP problem we used OptaPlanner [100], an open source, multi-platform
planning enginewritten in Java and released under theApache Software License. OptaPlanner
is aimed to solve planning problems with resource usage optimization. It is a lightweight,
embeddable planning engine that allows to solve optimization problems efficiently, applying
constraints on plain domain objects and reusing existing code from other previously
implemented problem domains. One of its main characteristics is that it has been developed
to solve real-life problems, having a big applicability in several already known problem
types such as vehicle routing, educational timetabling, sport competition scheduling, etc.
OptaPlanner is capable of generating near-optimal plans by applying optimization

heuristics and meta-heuristics combined with score calculation. Its main advantage is
that the solver’s algorithm is highly configurable. In OptaPlanner it is possible to use
different heuristics and metaheuristics algorithms, also called optimization algorithms,
applied in sequence so that the user can select the most suitable algorithm combination
for the problem in question. The optimization is done in base of a score calculation that
is computed after a solution is found. This score determines the suitability of the last
computed solution: if after searching for a new solution the new score is worse than the
score computed for the previous solution, then the last solution is discarded and the process
continues trying to generate a solution with a better score.

Every new solution found by the solver is usually computed from a previously computed
solution, so the search process can be seen as evolving an initial solution into a mostly
better and better solution. OptaPlanner uses a single search path of solutions, not a search
tree as is usual in other planning engines. At each solution in the path it evaluates a number
of changes and applies them to take a step to the next solution, doing that during a high
number of iterations until the search process finishes, usually because a timer set by the
user has run out. OptaPlanner acts like a human planner, using a single search path and
moving facts around to find a good feasible solution. That way of working gives a high
scalability.
In OptaPlanner the entities of the real world that must be assigned are called planning

entities, and are represented as Java classes. These planning entities have one or more
planning variables represented as Java attributes that take different planning values over
the planning process. To solve an assignment problem, each of the planning entities
must have been given a valid planning value for each of its planning variables. This
requires the implementation of several Java classes that model the problem domain and
the solution, being also possible to implement comparator classes to sort the planning
entities by its assigned planning value or by other criteria to aid the planning process. After
implementing the domain, the solver must be configured by writing an XML file were the
different optimization algorithms desired to be used in the search process are specified and
customized. Then, the problem data set has to be read as an XML file. For that purpose,
OptaPlanner has a module that parses the XML file of the data set and automatically
instantiates the objects of the domain with all the data contained in the file. Finally, the

44 Chapter 4. Decoupled Geometric and Symbolic Reasoning

solver starts the search process and finishes when the search is exhausted or when a timer
expires. Then the best solution found can be recovered.

4.3.2 Moves

OptaPlanner acts like a human planner. When an initial solution is found, it evaluates a
number of changes on that solution and applies them to take a step to a new solution.

A move is a change or a set of changes from a solution A to a new solution B. The new
solution is said to be a neighbour of the original solution. A single move can change a
single planning entity or multiple planning entities. Whenever the case, all optimization
algorithms use moves to transition from one solution to another. The number of moves that
is possible to do from one solution may be extremely large. Thus, in addition of generating
moves, they must be selected to conform a reduced set. Discarding moves implies that the
solutions that could be reached by applying these moves will never be inspected, but the
reduction is necessary in order to keep the performance of the solver.
The way of generating moves in OptaPlanner is by using a special Java class named

MoveSelector. The purpose of aMoveSelector is to create a move iterator. The optimization
algorithm will then use it to iterate over the set of possible moves. To generate a move,
the MoveSelector needs to select one or more planning entities and planning values for
their planning variables. They are declared and configured in the XML configuration
file of the solver. One interesting characteristic is that they can be nested so the children
MoveSelectors can feed moves to their parent MoveSelectors, conforming a tree structure.

From all the moves generated by a MoveSelector or by a combination of MoveSelectors,
the optimization algorithm must select only one. The selected move is then applied to
the current solution, producing a new one. This move is called the step. The criterion
to select the winning move depends on the optimization algorithm used. Some of them
may select the first produced move or the move that leads to the best score. For example,
the Hill Climbing optimization algorithm will always select the move that leads to the
best score but the Tabu Search optimization algorithm will refuse to select that move
if it is included in the Tabu list, so a move that leads to a lower score will be selected
instead. An explanation of the different optimization algorithms will be presented in the
next subsection.

Figures 4.1 and 4.2 show a short explanation of four of the most commonly used types of
MoveSelectors that can be used within the OptaPlanner framework. In addition, Figure 4.3
shows an example of nesting multiple MoveSelectors and how it can be customized to give
priority to some MoveSelectors over others.

4.3 Geometric Planner 45

(a) Change MoveSelector. (b) Swap MoveSelector.

Figure 4.1 Example of the Change and Swap MoveSelectors. In the images, three lists
labelled as X, Y and Z are shown. All the lists have the same limited capacity to
store generic objects. The objects that must be stored within the lists represent
the planning entities and are shown in boxes of different colors, having each a
length whose value is shown inside. The planning variable for the boxes would
be of type list, and the possible planning values would be X, Y or Z. Figure 4.1a
shows an example of a Change MoveSelector, which moves planning entities
by changing the planning values of their planning variables. In that case, it is
moving the orange box from list X to list Y. Figure 4.1b shows an example of a
Swap MoveSelector, which swaps planning entities by swapping the planning
values of their planning variables. In that case, it is swapping the orange and
yellow boxes between lists X and Y.

46 Chapter 4. Decoupled Geometric and Symbolic Reasoning

(a) Change Pillar MoveSelector. (b) Swap Pillar MoveSelector.

Figure 4.2 Example of the Change and Swap Pillar MoveSelectors. In the OptaPlanner
terminology, a pillar is a set of planning entities that have the same planning
value for their planning variables. In the example shown it is traduced as boxes
that are stored in the same list. Figure 4.2a shows an example of a Change
Pillar MoveSelector, which moves a pillar of planning entities. In that case, it
moves the pillar from list Y to list Z. Figure 4.2b shows an example of a Swap
Pillar MoveSelector. In that case, it swaps the pillars between lists X and Y.

4.3 Geometric Planner 47

(a) Union MoveSelector with default probability weights.

(b) Union MoveSelector with customized probability weights.

Figure 4.3 Example of nesting MoveSelectors by using a Union MoveSelector. The
Union MoveSelector takes all the moves that are generated by all of its child
MoveSelectors in the XML configuration file. Inside a child, all the moves
have the same probability of being selected, but a probability weight can be
configured for each MoveSelector child to make more or less possible from
which MoveSelector a move will come. In Figure 4.3a the probability weights
are the same, which means that the move finally selected by the solver has
the same probability of coming from the Change MoveSelector or from the
Swap MoveSelector. However, as each of the children MoveSelector may
generate a different number of moves, the probability of selecting a specific
move from one child MoveSelector differs from the other child. Inside the
Change MoveSelector that generates 8 moves, the probability of selecting a
specific move is 1/8, but due to the probability weight of 1/2 its final probability
of being selected is 1/16. For the Swap MoveSelector a specific move has a
probability of 1/12 for being selected. Figure 4.3b shows the opposite case. The
probability weight for the Change MoveSelector is greater, but the probability
of selecting a specific move from the Change MoveSelector is the same as the
probability of selecting a specific move from the Swap MoveSelector.

48 Chapter 4. Decoupled Geometric and Symbolic Reasoning

4.3.3 Solver Phases

As it was mentioned before, the OptaPlanner solver can be configured to use multiple
optimization algorithms. Each of the optimization algorithms used is called a solver phase.
During the execution of the solver there is never more than one solver phase executing
at the same time, so a solver phase only starts when the previous phase has finished, i.e.
they are executed sequentially. There are three different types of solver phases that can be
used in the OptaPlanner solver: Construction Heuristics (CH), Metaheuristics (MH) and
Exhaustive Search (ES).

Construction Heuristics

The CH solver phase builds an initial solution in a short time. The solution computed
is not always feasible, but it tries to find it fast so that the following solver phases can
finish the search of a feasible one by starting from that initial solution. There are different
algorithms that can be used as CH. One common characteristic of them is that when a
CH assigns a planning entity, that assignment remains unchanged until the end of the
algorithm. This is the main reason that makes the CH algorithms find solutions that may
be unfeasible: no re-planning is done at this phase.
The available CH algorithms that can be used to configure the solver are: First Fit,

First Fit Decreasing, Weakest Fit, Weakest Fit Decreasing, Strongest Fit, Strongest Fit
Decreasing and Cheapest Insertion. A detailed description of them can be found in [100].

Metaheuristics

The MH solver phase is based on different types of local search algorithms. Local search
starts from the initial solution computed by the CH phase and evolves it into a mostly
better and better solution. At each solution, it evaluates a number of moves between the
planning entities and applies the most suitable to step to the next solution, whose score
may be better, equal or worse than the previous. Allowing as solution a new one which
has a worse score than the previous is important because it avoids getting stuck in local
minimum. The local search does not use a search tree, but a search path. When finding a
new solution all possible moves are evaluated but unless it is the chosen move, it does not
investigate further the rest of possible solutions. That makes the local search very scalable,
but it may not find never the optimal solution.

Five different local search algorithms can be used to configure the solver:

• Hill Climbing: tries different moves among the planning entities and then takes the
best move, which is the move which leads to the solution with the highest score.

• Tabu Search: like Hill Climbing but maintains a tabu list to avoid getting stuck
in local optima. The tabu list holds recently used objects that are taboo to use for
now. Any move in the current solution that involve an object in the tabu list is not
accepted.

• Simulated Annealing: a move is accepted if it does not decrease the score or, in case
it does decrease the score, it passes a random check. The chance that a decreasing
move passes the random check decreases relative to the size of the score decrement
of the new solution and the time the phase has been running.

4.3 Geometric Planner 49

• Late Acceptance: accepts a move if it does not decrease the score or if it leads to a
score that is at least the score of a fixed number of steps ago.

• Step Counting Hill Climbing: for a number of steps, it keeps the step score as a
threshold. A move is accepted if it does not decrease the score, or if it leads to a
score that is at least the threshold score.

Exhaustive Search

The ES solver phase does not depend on previous phases and is configured alone. The
Brute Force or the Branch and Bound algorithms are available. These methods guarantee
the find of the optimal solution for a problem, but are poorly scalable so are not usually
chosen to solve real problems. However, for very small size problems they can be a good
choice.

4.3.4 Score Calculation

To compare the suitability of the different solutions computed along the task allocation
process, a score-based calculation is done after a solution is found. This score is based
on the definition of three types of constraints with different levels of relevance. Given a
solution, its score consists on the sum of the broken constraints for each of the constraint
types defined for the problem. Thus, a sum of zero for each of the constraints is the best
possible score for a solution. The constraint types are:

• Hard-constraints: these are constraints that must not be broken in any case. A broken
hard-constraint will lead to an unfeasible plan, so its sum must be zero.

• Medium-constraints: these are constraints that are desirable to be broken the less as
possible. Its importance is under the importance of the hard-constraints but above
the importance of the soft-constraints.

• Soft-constraints: these are the constraints with lower priority. They have the lowest
impact when broken, but still they must be minimized.

For a given problem, the type of constraints that will be used in the score calculation
is previously specified in the XML configuration file of the solver. The meaning of each
of the constraints for a specific problem is defined in the implementation of the problem
domain, where a Score class is defined to be executed each time a solution is found. Inside
that class, the sum of the different types for the used constraints is done taking into account
the state of the solution.

As commented before, the score calculation is done after a solution is found. That is the
case when a MoveSelector generates a move. Every move generated leads to a solution
but this solution will only be the new solution if the move is selected by the optimization
algorithm. Whenever the case, the score calculation process is executed after each move is
generated to pair the move with the score of the solution it leads to. This is necessary for
the optimization algorithms to compare the score of the solutions for every move generated
and select the most appropriate move.

50 Chapter 4. Decoupled Geometric and Symbolic Reasoning

4.3.5 Geometric Domain

In OptaPlanner the entities of the real world that must be assigned are called planning
entities and are represented as Java classes. For the problem defined in Section 4.2 the
geometric planner domain has been defined as follows: the planning entities are the
assembly tasks. Each assembly task represents a part that must be assembled by one or
more vehicles, depending on the part weight and the payload capabilities of the vehicles.
In addition to the weight, each part has a dependency list that contains all the assembly
tasks that must be executed before the assembly of that specific part. Each of the vehicles
has a list on which the assigned assembly tasks will be stored. The same assembly task can
appear in the list of multiple vehicles if the weight of the part requires it to be assembled
by more than one, but the sum of the payload weights of the given vehicles must be equal
or greater than the part weight.

4.4 Symbolic Planner

4.4.1 PDDL Domain Definition

In Section 4.2 a planning problem consisting on the assembly of an structure by the
cooperation of a team of unmanned vehicles equipped with robotic manipulators was
presented. The part of the problem consisting on the assignment of assembly tasks to
vehicles was previously presented in Section 4.3, describing the solver and domain designed
to model that part of the problem.

The problem to solve in this section consists on, given an assignment of assembly tasks
to vehicles, finding a low-level plan for each of the vehicles and scheduling the different
low-level operations minimizing the total assembly time. The low-level plans must contain
the correct sequence of assembly tasks needed to assemble the structure successfully.
In this subsection the domain designed in PDDL to model that part of the problem is
presented.
Restrictions

Although recent versions of PDDL offer the greatest expressiveness for the domain
definition, the version of the language used to define the model is PDDL 2.2 as it offers
enough expressiveness for our specific domain, simplifying its development. As commented
in Chapters 2 and 3, the PDDL language is used to model planning problems and not to
solve them, so this PDDL domain has been developed with the purpose of enhancing the
understanding of the problem and easing the later use of the HTN planner to finally solve
the problem described.

To model the problem, the following restrictions have been taken into account:

• Each of the assembly tasks contains a dependency list consisting on the assembly
tasks that must be done prior to its execution. At any given time, only those assembly
tasks that have all its dependencies met can be selected to be executed.

• To find a low-level plan for each of the vehicles, and assignment of assembly tasks
to vehicles is needed to know which parts have been assigned to each of the vehicles.

4.4 Symbolic Planner 51

This assignment is supposed to be previously known, as it is part of the problem
that solves the planner presented in Section 4.3.

• The maximum number of vehicles needed to transport a single part has been limited
to two. This is reflected on the assignment of assembly tasks to vehicles, where
some parts appear assigned to only one vehicle and some others to two vehicles. The
information related, such as the payload capabilities of the unmanned vehicles or
the part weight is not needed at this level, as it has been previously used to compute
the assignment.

• Due to difficulties on the transportation, it is not allowed to make subassemblies
with the parts and assemble them on the final structure. All the parts must be directly
assembled on their assembly locations in the structure.

• Parallelization among the assembly tasks execution is needed when assembling the
structure in order to minimize the total assembly time. This implies that the actions
in the low-level plans may be executed concurrently.

• All the unmanned vehicles have a battery that limits their operation time and
decreases as the time goes by, along the execution of the different actions.

• All the actions that the unmanned vehicles can perform have a duration. This
duration is fixed for some of the actions and computed for others.

• The time variable must be taken into account in the domain definition, as the actions
in the low-level plans must be correctly scheduled and may be executed concurrently,
the resources such as the batteries must decrease over the time, and the total assembly
time must be minimized.

Types, Predicates and Functions

Although not mandatory for the definition of a domain, typing clarifies the kind of entities
that may be present, so the domain has been defined using this feature. PDDL has few
built-in types, mainly the object and number types to represent things and numbers, which
are the base for the definition of new types. Usually with these two types suffice for the
domain definition, but for clarifying purposes some new types have been defined. These
types can be seen on Table 4.1.

Predicates represent the logical properties of the entities that are of interest. They define
the state at which the entities of a problem instance may be. A predicate is a logical sentence
that may be checked to be true or false in a specific time instant or during a time interval.
For example, during a LAND action a quadrotor is on a landing state, but after finishing
the action the state of the quadrotor is landed and the previous landing state is no longer
true. Table 4.2 shows the different predicates that are present in the domain. In addition
to these, a special type of predicates named derived-predicates have been used. Those
special predicates model the transitive relations that can appear among normal predicates,
and are mainly used to simplify logical expressions. The list of derived-predicates can be
seen on Code 4.1.

Predicates associate a logical value to a single object or to a tuple of objects. To be able
to model non-binary resources such as fuel-level, speed or distance, among others, PDDL

52 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Table 4.1 Types defined for the PDDL domain. In addition to the two built-in types, five
new types have been defined to model the different objects that may be present
in a problem instance for the domain. The aerial vehicles that may be present
in a problem instance are of the specific type quadrotor, and all the parts are
considered to be of the same type. The location type defines the places where
the different objects of the problem instance are situated. This type serves as the
parent of two special location types, the pick_location and assembly_location
types, which define the location from where a part has to be picked and the
location where a part has to be placed in the structure, respectively. When
reaching a specific pick/place location, a vehicle may need additional data on
how to finally pick or place the related part, so this additional data requirement
has been modeled by defining these two special location types.

Type Name Parent Type
quadrotor object

part object
location object

pick_location location
assembly_location location

Code 4.1 Derived predicates defined for the PDDL domain. These predicates have been
defined to infer logical expression that automatically become true after some other logical
expression changes its value to true. Three derived predicates have been defined. The first
derived predicate tells that if a part is assembled, then it must exists an assembly location
on which the part is placed. The second derived predicate tells that if a part is assembled,
then all the parts that are dependencies for this part must also be assembled. The third
derived predicate tells that if a part is at a quadrotor, then the quadrotor is transporting the
part.

1 (:derived

2 (assembled ?prt)

3 (exists (?loc - assembly_location) (at ?prt ?loc))

4
5 (assembled ?prt1)

6 (forall (?prt2 - part)

7 (imply (depends ?prt1 ?prt2) (assembled ?prt2)))

8
9 (at ?prt - part ?uav - quadrotor)

10 (transporting ?uav ?prt)

11)

2.1 introduced the concept of numeric-fluents, also called functions. Functions are used
to associate a numerical value to an object or tuple of objects. This value does not need
to be constant, and thus can be decreased or increased over time. Functions have been
used in this domain to model concepts such as the batteries of the vehicles or the distance

4.4 Symbolic Planner 53

Table 4.2 Predicates defined for the PDDL domain. These predicates model the state
at which the quadrotors or parts may be, or the relations between different
entities. For example, a specific quadrotor may be in the landing state during a
LAND action or in the moving state while travelling from one location to another.
Similarly, a part will be in the assembled state after it has been assembled on the
final structure. In the case of the assemble_at predicate, it tells the location on
which a specific part must be assembled, establishing a logical relation between
both entities. The at predicate has been defined to have a second form to cover
the case of a part that has been picked by a quadrotor and that is considered to
be at the vehicle. Both forms differ on the type of their arguments.

Predicate Description
(at ?obj - object ?loc - location) Object obj is at location loc
(at ?prt - part ?uav - quadrotor) Part prt is onboard quadrotor uav
(assemble_at ?prt - part ?loc - assembly_location) Part prt must be assembled on location

loc
(depends ?prt1 ?prt2 - part) Part prt1 depends on part prt2
(assigned ?prt - part ?uav - quadrotor) Part prt is assigned to quadrotor uav
(assembled ?prt - part) Part prt is assembled
(landed ?uav - quadrotor) Quadrotor uav is landed
(landing ?uav - quadrotor) Quadrotor uav is landing
(taking_off ?uav - quadrotor) Quadrotor uav is taking-off
(hovering ?uav - quadrotor) Quadrotor uav is hovering
(moving ?uav - quadrotor) Quadrotor uav is going to some location
(picking ?uav - quadrotor ?prt - part) Quadrotor uav is picking part prt
(placing ?uav - quadrotor ?prt - part) Quadrotor uav is placing part prt
(transporting ?uav - quadrotor ?prt - part) Quadrotor uav is carrying part prt

between locations, among others. The complete list of the defined functions can be seen
on Table 4.3.

54 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Table 4.3 Functions defined for the PDDL domain. Four different functions have been
defined to model the battery and speed of the quadrotors, the distance between
locations and the parts that remain to be assembled. The battery is expressed
in seconds, as it represents the time that is left until the battery runs out. The
remaining_parts function represents the parts that are left to be assembled in a
given time.

Function Description
(battery ?uav - quadrotor) Remaining battery life for quadrotor uav, expressed in

seconds
(speed ?uav - quadrotor) Medium speed at which quadrotor uav moves, expressed

in meters per second
(distance ?loc1 ?loc2 - location) Distance in meters needed to go from loc1 to loc2
(remaining_parts) The number of parts that remain disassembled

Durative Actions

The values of predicates, derived-predicates and functions define the state on which the
entities of a problem instance are in a given time instant. To advance in the planning
process, a planner needs a way of modifying the value of these expressions to find new
states, in a search process that leads to the goal state. In PDDL, the way of modifying the
states of the entities is by the application of actions. As it name suggests, actions are the
different operations that is possible to do over the entities that are present in the world. For
an aerial vehicle, possible actions would be the take-off, move or land operations.

Actions usually have a parameter list which contains the arguments for the action. These
arguments are the objects that take part in the execution of the action. For a take-off action,
it would be the quadrotor that will execute the action, for example. Actions also have
conditions and effects. Conditions are the predicates whose value must be true for the
action to be applicable. If any of the predicates that appear in the condition list is false,
then the action will not be applicable for the given arguments. Effects are the consequences
of applying the action, and are also expressed as predicates with a given logical value. If
the conditions are satisfied, then the values of the predicates that appear in the effects list
will take effect. This can include setting to true or false the value of previous existing
predicates or setting new ones.
Due to the needs of taking into account the time variable, durative actions have been

used instead of the standard actions. Durative actions were first included in PDDL 2.1
to model actions that can take place during a time interval, instead of only on specific
moments. These actions have a duration expression that computes the exact or bounded
duration of the action, in time units. The duration expression may be:

• An equality, on which case the duration takes a fixed value.

• An inequality, on which case the duration will be bounded among some values.

• Void, on which case the value of the duration can not be fixed or bounded beforehand
and is determined by external events that make the action stop.

4.4 Symbolic Planner 55

In addition to the duration, durative actions have some modifiers that are possible to
be applied over the conditions and effects of the action. These modifiers make possible
to express the exact moment on which a condition must be true for the action in order to
be applicable, and the exact moment on which an effect becomes applied. The available
modifiers are:

• At start: determines that the condition or the effect must be checked or applied at
the start of the action, respectively.

• Over all: determines that the condition or the effect must be checked or applied
during the action, respectively. This range does not include the start and endmoments
of the action.

• At end: determines that the condition or the effect must be checked or applied at the
end of the action, respectively.

The durative actions defined for the domain model the different operations that the
vehicles can perform during a mission. Seven different durative actions have been defined.
Codes 4.2, 4.3 and 4.4 show the take-off, land and move durative actions. Codes 4.5, 4.6,
4.7 and 4.8 show the pick and place durative actions. In the case of the pick and place
actions, two different versions have been defined, one for the case of a part that needs
to be transported by a single vehicle and another for the case of a part that needs to be
transported by two vehicles.

Finally, a special consideration must be taken into account for the PDDL domain. Each
assembly task has a list of dependencies that must be met prior to its execution. One part
can not be assembled if all parts that appear on its dependency list are not yet assembled. It
may be the case that, in a given moment, a quadrotor could not assemble any of its assigned
parts until the dependencies of any of these parts are finally met. If that is the case, then
the quadrotor must wait until the dependencies of its assigned parts are met. A similar case
could be when picking a part that must be transported among two quadrotors. The part
may have all its preconditions met and one of the quadrotors may be located at the pick
location, however the other may be executing other operation. Again, the first quadrotor
has to wait until the second is ready and positioned at the pick location. Code 4.9 shows
the definition of a wait durative action. This action has been defined to take into account
that it may be necessary for a quadrotor to wait an amount of time until some condition
is met prior to the execution of its current action. This definition may not be necessary
depending on how the planner used to solve the PDDL problem behaves when an agent
is locked, because some of them automatically introduce wait or NOP (No OPeration)
actions to fit in the final plan or automatically increase the duration of other previously
executed actions if possible. As it will be seen in Subsection4.4.3, that is not the case of
JSHOP2, and the action definition will be needed.

56 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.2 Take-off durative action. The quadrotor must be landed at the start of the action,
and during the action its state must be taking-off and its battery must be equal or greater
than zero. If these conditions are met, then the state landed is removed at the start, the
taking-off state is set and the battery is decreased. At the end (when the action finishes),
the taking-off state is removed and the quadrotor enters in hovering state. The duration
has been set to fifteen seconds.

1 (:durative-action TAKE-OFF

2 :parameters

3 (?uav - quadrotor)

4 :duration

5 (= ?duration 15)

6 :condition

7 (and

8 (at start (landed ?uav))

9 (over all (taking_off ?uav))

10 (over all (>= (- (battery ?uav) ?duration) 0))

11)

12 :effect

13 (and

14 (at start (decrease (battery ?uav) ?duration))

15 (at start (not (landed ?uav)))

16 (at start (taking_off ?uav))

17 (at end (not (taking_off ?uav)))

18 (at end (hovering ?uav))

19)

20)

4.4 Symbolic Planner 57

Code 4.3 Land durative action. The quadrotor must be hovering at the start of the action,
and during the action its state must be landing and its battery must be equal or greater
than zero. If these conditions are met, then the state of hovering is removed at the start,
the landing state is set and the battery is decreased. At the end (when the action finishes),
the landing state is removed and the quadrotor enters in a landed state. The duration has
been set to fifteen seconds.

1 (:durative-action LAND

2 :parameters

3 (?uav - quadrotor)

4 :duration

5 (= ?duration 15)

6 :condition

7 (and

8 (at start (hovering ?uav))

9 (over all (landing ?uav))

10 (over all (>= (- (battery ?uav) ?duration) 0))

11)

12 :effect

13 (and

14 (at start (decrease (battery ?uav) ?duration))

15 (at start (landing ?uav))

16 (at start (not (hovering ?uav)))

17 (at end (not (landing ?uav)))

18 (at end (landed ?uav))

19)

20)

58 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.4 Move durative action. The quadrotor must be hovering at the start of the action,
must be located in the start location, and during the action its state must be moving and its
battery must be equal or greater than zero. If these conditions are met, then the state of
hovering is removed at the start, the quadrotor is no longer located at the start location,
the moving state is set and the battery is decreased. At the end (when the action finishes),
the moving state is removed, the quadrotor enters in a hovering state and finishes located
at the end position. The duration has been computed from the distance to travel and the
average speed of the quadrotor.

1 (:durative-action MOVE

2 :parameters

3 (?uav - quadrotor ?from ?to - location)

4 :duration

5 (= ?duration (/ (distance ?from ?to) (speed ?uav)))

6 :condition

7 (and

8 (at start (hovering ?uav))

9 (at start (at ?uav ?from))

10 (over all (moving ?uav))

11 (over all (>= (- (battery ?uav) ?duration) 0))

12)

13 :effect

14 (and

15 (at start (decrease (battery ?uav) ?duration))

16 (at start (moving ?uav))

17 (at start (not (hovering ?uav)))

18 (at start (not (at ?uav ?from)))

19 (at end (not (moving ?uav)))

20 (at end (hovering ?uav))

21 (at end (at ?uav ?to))

22)

23)

4.4 Symbolic Planner 59

Code 4.5 Pick durative action. The quadrotor must be hovering at the start of the action, it
must not be transporting any part, the part must be located on its pick location and not
assembled. During the action, the state of the quadrotor must be picking and its battery
must be equal or greater than zero. If these conditions are met, then the state of hovering
is removed at the start, the part is no longer located at its pick location, the picking state
is set and the battery is decreased. At the end (when the action finishes), the picking
state is removed, the quadrotor enters in hovering state and the part finishes located at the
quadrotor. The duration has been set to twenty seconds.

1 (:durative-action PICK

2 :parameters

3 (?uav - quadrotor ?prt - part)

4 :duration

5 (= ?duration 20)

6 :condition

7 (and

8 (at start

9 (exists (?loc - pick_location)

10 (and ((at ?prt ?loc)(at ?uav ?loc)))))

11 (at start (not (exists (?piece - part) (at ?piece ?uav))))

12 (at start (hovering ?uav))

13 (at start (not (assembled ?prt)))

14 (over all (picking ?uav ?prt))

15 (over all (>= (- (battery ?uav) ?duration) 0))

16)

17 :effect

18 (and

19 (at start (decrease (battery ?uav) ?duration))

20 (at start (picking ?uav ?prt))

21 (at start (not (hovering ?uav)))

22 (at start (not (at ?prt ?loc)))

23 (at end (not (picking ?uav ?prt)))

24 (at end (hovering ?uav))

25 (at end (at ?prt ?uav))

26)

27)

60 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.6 Dual Pick durative action. This action has been defined to model the case of a
part that needs to be picked by two robots due to its weight. The conditions and effects
that appeared in Code 4.5 are now duplicated, having one for each of the vehicles. When
the action is finished, the part is considered to be at both vehicles. The duration has been
set to thirty seconds.

1 (:durative-action DUAL_PICK

2 :parameters

3 (?uav1 ?uav2 - quadrotor ?prt - part)

4 :duration

5 (= ?duration 30)

6 :condition

7 (and

8 (at start

9 (exists (?loc - pick_location)

10 (and ((at ?prt ?loc)(at ?uav1 ?loc))(at ?uav2 ?loc))))

11 (at start (not (exists (?piece1 - part) (at ?piece1 ?uav1))))

12 (at start (not (exists (?piece2 - part) (at ?piece2 ?uav2))))

13 (at start (hovering ?uav1))

14 (at start (hovering ?uav2))

15 (at start (not (assembled ?prt)))

16 (over all (picking ?uav1 ?prt))

17 (over all (picking ?uav2 ?prt))

18 (over all (>= (- (battery ?uav1) ?duration) 0))

19 (over all (>= (- (battery ?uav2) ?duration) 0))

20)

21 :effect

22 (and

23 (at start (decrease (battery ?uav1) ?duration))

24 (at start (decrease (battery ?uav2) ?duration))

25 (at start (picking ?uav1 ?prt))

26 (at start (picking ?uav2 ?prt))

27 (at start (not (hovering ?uav1)))

28 (at start (not (hovering ?uav2)))

29 (at start (not (at ?prt ?loc)))

30 (at end (not (picking ?uav1 ?prt)))

31 (at end (not (picking ?uav2 ?prt)))

32 (at end (hovering ?uav1))

33 (at end (hovering ?uav2))

34 (at end (at ?prt ?uav1))

35 (at end (at ?prt ?uav2))

36)

37)

4.4 Symbolic Planner 61

Code 4.7 Place durative action. The quadrotor must be hovering at the start of the action,
it must be transporting the part and located on its assembly location, and the part must
have all its dependencies assembled. During the action, the state of the quadrotor must be
placing and its battery must be equal or greater than zero. If these conditions are met, then
the state of hovering is removed at the start, the part is no longer located at the quadrotor,
the placing state is set and the battery is decreased. At the end (when the action finishes),
the placing state is removed, the quadrotor enters in hovering state and the part finishes
assembled at its assembly location. The number of remaining parts is decreased in one
unit. The duration has been set to twenty seconds.

1 (:durative-action PLACE

2 :parameters

3 (?uav - quadrotor ?prt - part)

4 :duration

5 (= ?duration 20)

6 :condition

7 (and

8 (at start

9 (exists (?loc - assembly_location)

10 (and ((at ?uav ?loc)(assemble_at ?prt ?loc)))))

11 (at start (at ?prt ?uav))

12 (at start

13 (forall (?prt2 - part)

14 (imply (depends ?prt ?prt2) (assembled ?prt2))))

15 (at start (hovering ?uav))

16 (at start (not (assembled ?prt)))

17 (over all (placing ?uav ?prt))

18 (over all (>= (- (battery ?uav) ?duration) 0))

19)

20 :effect

21 (and

22 (at start (decrease (battery ?uav) ?duration))

23 (at start (placing ?uav ?prt))

24 (at start (not (hovering ?uav)))

25 (at start (not (at ?prt ?uav)))

26 (at end (not (placing ?uav ?prt)))

27 (at end (hovering ?uav))

28 (at end (at ?prt ?loc))

29 (at end (assembled ?prt))

30 (at end (decrease (remaining_parts) 1))

31)

32)

62 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.8 Dual Place durative action. This action has been defined to model the case of a
part that needs to be placed by two vehicles due to its weight. The conditions and effects
that appeared in Code 4.7 are now duplicated, having one for each of the vehicles. When
the action starts, the part is considered to be at both vehicles. The duration has been set to
thirty seconds.

1 (:durative-action DUAL_PLACE

2 :parameters

3 (?uav1 ?uav2 - quadrotor ?prt - part)

4 :duration

5 (= ?duration 30)

6 :condition

7 (and

8 (at start

9 (exists (?loc - assembly_location)

10 (and ((at ?uav1 ?loc)(at ?uav2 ?loc)(assemble_at ?prt ?loc)))))

11 (at start (at ?prt ?uav1))

12 (at start (at ?prt ?uav2))

13 (at start

14 (forall (?prt2 - part)

15 (imply (depends ?prt ?prt2) (assembled ?prt2))))

16 (at start (hovering ?uav1))

17 (at start (hovering ?uav2))

18 (at start (not (assembled ?prt)))

19 (over all (placing ?uav1 ?prt))

20 (over all (placing ?uav2 ?prt))

21 (over all (>= (- (battery ?uav1) ?duration) 0))

22 (over all (>= (- (battery ?uav2) ?duration) 0))

23)

24 :effect

25 (and

26 (at start (decrease (battery ?uav1) ?duration))

27 (at start (decrease (battery ?uav2) ?duration))

28 (at start (placing ?uav1 ?prt))

29 (at start (placing ?uav2 ?prt))

30 (at start (not (hovering ?uav1)))

31 (at start (not (hovering ?uav2)))

32 (at start (not (at ?prt ?uav1)))

33 (at start (not (at ?prt ?uav2)))

34 (at end (not (placing ?uav1 ?prt)))

35 (at end (not (placing ?uav2 ?prt)))

36 (at end (hovering ?uav1))

37 (at end (hovering ?uav2))

38 (at end (at ?prt ?loc))

39 (at end (assembled ?prt))

40 (at end (decrease (remaining_parts) 1))

41)

42)

4.4 Symbolic Planner 63

Code 4.9 Wait durative action. The duration of the action is bounded to be in the range
(0-1). A planner could choose a value in the given range to make a locked agent wait some
time until it is capable of executing any other action, and repeating the wait if necessary.
As specified in the conditions, at the start and during the wait, the quadrotor must not be
doing any other action that implies some kind of move, such as landing or taking-off. The
hovering state is allowed, as a quadrotor can wait in this state. The effect part of the action
is empty, as waiting only affects the increase of the time variable.

1 (:durative-action WAIT

2 :parameters

3 (?uav - quadrotor)

4 :duration

5 (and (<= ?duration 1) (> ?duration 0))

6 :condition

7 (and

8 (at start (not (landing ?uav))

9 (at start (not (taking_off ?uav))

10 (at start (not (moving ?uav))

11 (at start (not (exists (?prt - part)(picking ?uav ?prt))

12 (at start (not (exists (?prt - part)(placing ?uav ?prt))

13 (over all (not (landing ?uav))

14 (over all (not (taking_off ?uav))

15 (over all (not (moving ?uav))

16 (over all (not (exists (?prt - part)(picking ?uav ?prt))

17 (over all (not (exists (?prt - part)(placing ?uav ?prt))

18 (over all (>= (- (battery ?uav) ?duration) 0))

19)

20 :effect

21 (

22)

23)

64 Chapter 4. Decoupled Geometric and Symbolic Reasoning

4.4.2 Problem Description

Once a planning domain has been defined, then a problem description is needed to make a
specific instance of a planning problem.

The PDDL problem description contains the goal specification and the instances of the
entities, along with the initial states and values that conform a specific problem instance
that has to be solved. Thus, the PDDL problem description is used to define the initial state
at which a planning problem instance starts, as well as the goals that have to be achieved.
Every PDDL problem description is linked with a PDDL domain definition that tells

the planners how to solve the problem instances. Thus, a reference to the domain file must
appear in all the problem description instances.
A PDDL problem description is mainly composed by four parts: the declaration of

objects, the initialization of predicates, the initialization of functions and the goal and
metrics specifications. Codes 4.10, 4.11, 4.12 and 4.13 show some examples on how
these elements are defined.

Code 4.10 Objects declaration for a PDDL example problem. The different quadrotors,
parts and locations that are present in the problem instance are declared.

1 (:objects

2 uav1 uav2 - quadrotor

3 prt1 prt2 prt3 prt4 - part

4 loc1 loc2 - location

5 loc3 loc4 loc5 loc6 - pick_location

6 loc7 loc8 loc9 loc10 - assembly_location

7)

Code 4.11 Initialization of values for the different predicates that conform the initial state
of a PDDL example problem. Uninitialized predicates are supposed to be false.

1 (:init

2 (at uav1 loc1) (at uav2 loc2)

3 (landed uav1) (landed uav2)

4 (at prt1 loc3)...(at prt4 loc6)

5 (assemble_at prt1 loc7)...(assemble_at prt4 loc10)

6 (assigned prt1 uav1)

7 (not (assembled prt1))

8 ...

9 (depends prt3 prt1)

10 (depends prt3 prt2)

11 ...

12)

4.4 Symbolic Planner 65

Code 4.12 Initialization of function values for a PDDL example problem. Functions
are treated as predicates, so they are defined in the same :init section of the problem
description.

1 (= (speed uav1) 1)

2 (= (speed uav2) 1)

3 (= (battery uav1) 600)

4 (= (battery uav2) 600)

5 (= (distance loc1 loc2) 10)

6 ...

7 (= (distance loc10 loc9) 15)

8 (= (remaining_parts) 4)

Code 4.13 Goal and metric declaration for a PDDL example problem. The goal represents
the logical expression that must be true in order to consider the problem as solved. The
metrics are additional values that can be used to measure the quality of the solutions. For
the PDDL domain designed in the previous subsection, this definition remains unaltered
among all the problem instances, as all have as goals assembling all the parts minimizing
the total assembly time.

1 ; goal definition

2 (:goal (== (remaining_parts) 0))

3 ; metric definition

4 (:metric minimize (total-time))

4.4.3 SHOP2 Problem Domain

The JSHOP2 domain designed to solve the decomposition and scheduling problem described
in Section 4.2 is presented here. This domain is a translation of the PDDL domain
presented in the previous section. As stated before in this chapter, PDDL gives a language
to formalize and define a planning domain, but the problem must be solved by a planner.
Because of this, some additional elements have been added to the domain definition. These
elements represent the knowledge needed by JSHOP2 to solve the planning problems, and
are basically the definition of the different methods (task networks) that will be used to
decompose the high-level tasks to obtain the final plan.

To explain the designed JSHOP2 domain, a top-down approach will be used. First, the
high-level task that represents the problem to solve will be presented. This task represents
the assembly of a structure composed by multiple parts. The task of assembling a complete
structure can be seen as multiple subtasks consisting on the assembly of single parts. To
decompose the high-level task into subtasks, a recursive method has been defined to try
to assemble a single part on each call. This recursive method calls a lower-level method
which in turns try to decompose a subtask consisting on the assembly of a single part
into lower-level subtasks related to the operations that the different aerial vehicles need

66 Chapter 4. Decoupled Geometric and Symbolic Reasoning

to effectively assemble the part, such as taking-off, moving, picking or placing the part,
etc. Each of these operations is also represented by a method that finally calls a JSHOP2
operator and finishes the decomposition.
High-level Method Definition

In JSHOP2, the high-level tasks represent the goals to accomplish. For our domain
definition, only one high-level task has been defined. This task represents the assembly of
the whole structure, which is composed of several parts and is considered the goal to reach
in the planning process. The planning process ends when this task has been completely
decomposed and thus, a low-level plan has been computed.

The task of assembling a structure can be divided on smaller subtasks consisting on the
assembly of single parts. With the purpose of decomposing the high-level task on these
smaller subtasks, the high-level method shown in Code 4.14 has been applied. The method
has been defined to be recursive, so that on each call it selects one part from the set of
parts that can be eligible to be assembled, tries to assemble that part and again makes a
call to itself. The method have three pairs preconditions-subtasks, that cover the following
cases:

• The first pair covers the case of a part that needs to be assembled by using two aerial
vehicles. If there is a part that has been assigned to two different aerial vehicles and
it has all its preconditions met, then it is selected to be assembled and the recursive
method is called again.

• The second pair covers the case of a part that needs to be assembled by using only
one aerial vehicle. If there is a part that has been assigned to one aerial vehicle and
it has all its preconditions met, then it is selected to be assembled and the recursive
method is called again.

• The third pair covers the case of having all the assembly tasks done. There are no
parts left to be assembled, so no more recursive calls are made and an operator is
called to exit and flag the finish of the planning process.

The high-level method shown in Code 4.14 is a simplified version of the final method
implemented for the domain. In this simplified method, the only requirements needed to
choose a part is that the chosen part has all its preconditions met. If all the parts that are
present in its precondition list are assembled, then that part can be chosen to be assembled.
However, that way of selecting parts does not lead to optimal plans and do not minimize
the total assembly time. An example of this can be seen in Figure 4.4.

To minimize the total assembly time, a priority has been established among all the parts
that can be chosen to be assembled. From that set, those parts that are known to ’unlock’
other parts after being assembled are chosen first. By this way, situations as the shown in
Figure 4.4 are avoided and thus, the potential parallelism of using multiple aerial vehicles
is increased. Code 4.15 shows the changes made to the simplified high-level method to
establish a priority among all the eligible parts.

4.4 Symbolic Planner 67

Code 4.14 Simplified high-level method definition for the decomposition of the high-level
task. The high-level task consists on the assembly of a complete structure, composed of
several parts. The method to decompose that task has been defined to be recursive, so
that on each call it selects from the set of parts, one that satisfies any of the preconditions-
subtasks pairs.

1 (:method (mission ?missionType)

2 ;preconditions

3 ((remaining_tasks ?remaining)(call > ?remaining 0)

4 (object ?part) (not(assembled ?part))

5 (depends ?part ?dependency_list)

6 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list)) (assembled ?otherPart))

7 (location ?loc ?x1 ?y1 ?z1) (assembly_location ?part ?loc)

8 (quadrotor ?uav1) (quadrotor ?uav2) (call != ?uav1 ?uav2)

9 (assigned ?part ?uav1) (assigned ?part ?uav2))

10
11 ;subtasks

12 ((assemble ?uav1 ?uav2 ?loc ?part)

13 (mission ?missionType))

14
15 ;preconditions

16 ((remaining_tasks ?remaining)

17 (call > ?remaining 0)

18 (object ?part) (not(assembled ?part))

19 (depends ?part ?dependency_list)

20 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list)) (assembled ?otherPart))

21 (quadrotor ?uav) (assigned ?part ?uav)

22 (location ?loc ?x1 ?y1 ?z1) (assembly_location ?part ?loc))

23
24 ;subtasks

25 ((assemble ?uav ?loc ?part)

26 (mission ?missionType))

27
28 ;preconditions

29 ((remaining_tasks 0))

30
31 ;subtasks

32 ((!assembly_plan_finished))

33)

68 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Figure 4.4 Example structure showing the importance of establishing a priority when
selecting the parts. The outer parts can be selected and assembled at any time,
as they do not depend on any other part. However, selecting them first will
cause that other parts that are needed for other robots to start their work will be
assembled later. That is the case of the blue parts, as they need to wait until
all the parts below them are assembled. If the parts below the blue parts are
chosen to be assembled after the outer parts, then the total assembly time will
be increased as some vehicles will be waiting more time to start their work and
the potential parallelism of using multiple vehicles will not be exploited.

4.4 Symbolic Planner 69

Code 4.15 Modified high-level method definition for the decomposition of the high-
level task by using priorities. The pairs preconditions-subtasks of a JSHOP2 method are
analogous to an if-then-else construct, and thus the first pairs are checked first. By this way,
it is possible to model preconditions that give priority to a subset of parts. In that case, the
pairs added before those already shown in Code 4.14 serve to choose first the parts that
have all its preconditions met but also that are known to be dependencies for other parts
that are not assembled yet. In this manner, the unlocking of other parts is favoured.

1 (:method (mission ?missionType)

2 ;precondition

3 ((remaining_tasks ?remaining) (call > ?remaining 0)

4 (object ?part) (not(assembled ?part))

5 (depends ?part ?dependency_list)

6 (location ?loc ?x1 ?y1 ?z1) (assembly_location ?part ?loc)

7 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list)) (assembled ?otherPart))

8 (quadrotor ?uav1) (quadrotor ?uav2) (call != ?uav1 ?uav2)

9 (assigned ?part ?uav1) (assigned ?part ?uav2)

10 (object ?part2) (call != ?part ?part2)

11 (not(assembled ?part2))

12 (depends ?part2 ?dependency_list2)

13 (call Member ?part ?dependency_list2))

14
15 ;subtasks

16 ((assemble ?uav1 ?uav2 ?loc ?part)

17 (mission ?missionType))

18
19 ;precondition

20 ((remaining_tasks ?remaining) (call > ?remaining 0)

21 (object ?part) (not(assembled ?part))

22 (depends ?part ?dependency_list)

23 (location ?loc ?x1 ?y1 ?z1) (assembly_location ?part ?loc)

24 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list)) (assembled ?otherPart))

25 (quadrotor ?uav) (assigned ?part ?uav)

26 (object ?part2) (call != ?part ?part2)

27 (not(assembled ?part2))

28 (depends ?part2 ?dependency_list2)

29 (call Member ?part ?dependency_list2))

30
31 ;subtasks

32 ((assemble ?uav ?loc ?part)

33 (mission ?missionType))

34 ...

35)

70 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Submethods Definition

Previously, a high-level method defined to do the decomposition of the high-level task was
presented. This task was decomposed by this method into several subtasks consisting on
the assembly of single parts. These subtasks must be also decomposed to obtain a lower
level plan, so other submethods have been defined to do the decomposition.

Code 4.16 shows the submethods defined to decompose a task consisting in the assembly
of a single part into several subtasks. In the previous case, where a task representing
the assembly of a complete structure was decomposed into several subtasks consisting
in assembling single parts, the different aerial vehicles did not appear in the methods
definition. In this case the different aerial vehicles appear, as they are needed to execute
the assembly of single parts. Thus, the submethods are decomposed again into several
submethods that represent the different operations that the aerial vehicles can execute and
that combined, can lead to the execution of the assembly tasks. Each of these have been also
defined in the JSHOP2 domain. However, for the sake of simplicity, most of them are not
showed in this chapter, as their preconditions are the same as the preconditions that appear
in the operators they call. They have been implemented as a ’bridge’ between the method
that decomposes the single assembly tasks and the operators that represent the aerial
robot’s actions. Code 4.17 shows the implementation of the synchro_wait submethod.

4.4 Symbolic Planner 71

Code 4.16 Methods definition for the decomposition of the high-level task into subtasks.
The upper method is for the case of a part that can be transported by a single aerial robot.
The method checks that the part is in a specific location, not assembled and that all the
parts it depends on are assembled, and also that the aerial vehicle is not transporting any
other part. The method is then decomposed into several submethods, consisting on moving
the robot to the part location, picking the part, moving to the assembly location and placing
the part. The method below corresponds to the case of a part that must be transported by
two aerial vehicles. Its submethods are cooperative versions of the formers.

1 (:method (assemble ?uav ?targetLocation ?part)

2 ;precondition

3 ((quadrotor ?uav) (object ?part)

4 (location ?loc ?x1 ?y1 ?z1) (at ?part ?loc)

5 (location ?targetLocation ?x2 ?y2 ?z2) (not (transporting ?uav))

6 (not (transported ?part)) (not (assembled ?part))

7 (depends ?part ?dependency_list)

8 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list))

9 (assembled ?otherPart)))

10 ;subtasks

11 ((move ?uav ?loc) (pick ?uav ?part)

12 (move ?uav ?targetLocation) (place ?uav ?targetLocation ?part)))

13
14 (:method (assemble ?uav1 ?uav2 ?targetLocation ?part)

15 ;precondition

16 ((quadrotor ?uav1) (quadrotor ?uav2) (object ?part)

17 (location ?loc ?x1 ?y1 ?z1) (at ?part ?loc)

18 (location ?targetLocation ?x2 ?y2 ?z2) (not (transporting ?uav1))

19 (not (transporting ?uav2)) (not (transported ?part))

20 (not (assembled ?part)) (depends ?part ?dependency_list)

21 (forall (?otherPart)((object ?otherPart) (call Member ?otherPart ?

dependency_list))

22 (assembled ?otherPart)))

23 ;subtasks

24 ((move ?uav1 ?loc) (move ?uav2 ?loc)

25 (synchro_wait ?uav1 ?uav2)

26 (pick ?uav1 ?uav2 ?part)

27 (move ?uav1 ?uav2 ?targetLocation)

28 (place ?uav1 ?uav2 ?targetLocation ?part)

29)

30)

72 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.17 Submethod definition for the synchro_wait task. As the rest of the submethods
that represent the different operations of the aerial vehicles, this submethod serves as a
bridge between the method that decomposes the single assembly tasks and the operators
that represent the aerial vehicle actions, in this case the sync action that will be better
explained later. This action is needed in cooperative operations, where the aerial vehicles
must synchronize to be at the same location at the same time and to coordinate to execute
other operations. If one aerial vehicle is placed in a specific location and the other vehicle
is needed to be at this location to execute between both a cooperative operation, then
the first vehicle must wait until the second finishes its current operation and arrives. As
JSHOP2 plans for the tasks in the order they appear, at this moment of the search it is
possible for the planner to know if the second vehicle is executing a previous operation.
Also, as the MTP technique explained in 3.3.5 is used in our domain, the start time and
duration of this previous operation is already known, so based on these two timestamps the
planner can estimate the time on which the second vehicle will arrive to the location where
the first vehicle is, and the wait time for the first vehicle can be computed. All this can be
seen on the preconditions of the method, which uses two pairs preconditions-subtasks to
know which of the vehicles must wait. The write-times of the at property for both vehicles
are checked. In a specific moment, the vehicle who has the greater write-time will not
be available until that time is reached by the global timeline, so if the vehicle with lower
write-time wants to do a cooperative operation then it will have to wait until the write-time
of the second vehicle. As it can be seen, the start and duration times for the synchro_wait
task are computed in the preconditions and are sent to the called operator so that it will be
correctly scheduled.

1 (:method (synchro_wait ?uav1 ?uav2)

2 ;precondition

3 ((quadrotor ?uav1) (quadrotor ?uav2)

4 (write-time at ?uav1 ?t1) (write-time at ?uav2 ?t2)

5 (call >= ?t1 ?t2) (assign ?duration (call - ?t1 ?t2))

6 (assign ?start ?t2) (battery ?uav1 ?r1) (battery ?uav2 ?r2)

7 (call >= (call - ?r2 ?duration) 0))

8
9 ;subtasks

10 ((!sync ?uav2 ?uav1 ?start ?duration)

11 (!sync ?uav1 ?uav2 ?t1 0))

12
13 ;precondition

14 ((quadrotor ?uav1) (quadrotor ?uav2)

15 (write-time at ?uav1 ?t1) (write-time at ?uav2 ?t2)

16 (call < ?t1 ?t2) (assign ?duration (call - ?t2 ?t1))

17 (assign ?start ?t1) (battery ?uav1 ?r1) (battery ?uav2 ?r2)

18 (call >= (call - ?r1 ?duration) 0))

19
20 ;subtasks

21 ((!sync ?uav1 ?uav2 ?start ?duration)

22 (!sync ?uav2 ?uav1 ?t2 0))

23)

4.4 Symbolic Planner 73

Operators Definition

The operators defined for the JSHOP2 domain are presented in the codes below. Operators
represent tasks at the lowest-level of the task hierarchy, and are defined to model tasks that
can be executed directly.
The operators presented here are a direct translation of the PDDL operators that were

defined in Subsection 4.4.1 as durative-actions. The purpose of our domain is to solve
planning problems not only by decomposing high-level tasks to lower-level tasks, but also
by computing the scheduling of the resulting lower-level tasks. This requires that each of
the lowest-level tasks must have two timestamps, one to mark the start of the operation and
one to tell its duration so that the start and end times for the operation are well defined.
If all the operators have these two timestamps defined, then the resulting plan will be
correctly scheduled.
As it was explained in Code 4.17, the methods that are above the operators in the

hierarchy compute the start and duration times on its preconditions and, after that, they
call the operators by passing these values as arguments. This is one of the steps required
to apply the MTP technique explained in Section 3.3.5. The second step is done within
the operators. They use these two values with two purposes:

• The first purpose is to check if the battery will last until the end of the operation. If
not, or if the rest of preconditions for the operator are not met, then it is not possible
to apply the operator. The failing will be notified to the upper level method and the
JSHOP2 planning engine will start a backtracking process to try to find another task
decomposition and another state that leads to a correct operator execution.

• The second purpose is to update the read-time and write-time of all the dynamic
properties that are used by the operator. Two dynamic properties are defined in our
domain: the at predicate and the battery resource, that is modelled also as a predicate.
The update of dynamic properties is important to generate a valid scheduling and
avoid concurrent access to these properties, which will lead to operators that overlap
in time and change predicate values while other operators are using them.

Codes 4.18, 4.19 and 4.20 show the take-off, land and move operators. Codes 4.22,
4.23, 4.24 and 4.25 show the pick and place operators in its versions for one and two
vehicles. Finally, Codes 4.26 and 4.27 show the sync and finish operators.

74 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.18 Take-off operator defined for the domain.

1 (:operator (!takeoff ?uav ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav) (landed ?uav)

4 (battery ?uav ?r) (read-time battery ?uav ?t0)

5 (write-time battery ?uav ?t1)

6 (assign ?end (call + ?start ?duration))

7 (call >= (call - ?r ?duration) 0))

8
9 ;delete list

10 ((landed ?uav) (battery ?uav ?r)

11 (read-time battery ?uav ?t0)

12 (write-time battery ?uav ?t1))

13
14 ;add list

15 ((hovering ?uav) (battery ?uav (call - ?r ?duration))

16 (read-time battery ?uav ?end)

17 (write-time battery ?uav ?end))

18)

Code 4.19 Land operator defined for the domain.

1 (:operator (!land ?uav ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav) (hovering ?uav)

4 (battery ?uav ?r) (read-time battery ?uav ?t0)

5 (write-time battery ?uav ?t1)

6 (assign ?end (call + ?start ?duration))

7 (call >= (call - ?r ?duration) 0))

8
9 ;delete list

10 ((hovering ?uav) (battery ?uav ?r)

11 (read-time battery ?uav ?t0)

12 (write-time battery ?uav ?t1))

13
14 ;add list

15 ((landed ?uav) (battery ?uav (call - ?r ?duration))

16 (read-time battery ?uav ?end)

17 (write-time battery ?uav ?end))

18)

4.4 Symbolic Planner 75

Code 4.20 Move operator defined for the domain. The result of applying the operator is
the aerial vehicle being placed at the end location.

1 (:operator (!move ?uav ?source ?destination ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav) (hovering ?uav)

4 (location ?source ?x1 ?y1 ?z1) (location ?destination ?x2 ?y2 ?z2)

5 (at ?uav ?source) (battery ?uav ?r)

6 (read-time battery ?uav ?t0) (write-time battery ?uav ?t1)

7 (read-time at ?uav ?t2) (write-time at ?uav ?t3)

8 (assign ?end (call + ?start ?duration))

9 (call >= (call - ?r ?duration) 0))

10
11 ;delete list

12 ((at ?uav ?source) (battery ?uav ?r)

13 (read-time battery ?uav ?t0) (write-time battery ?uav ?t1)

14 (read-time at ?uav ?t2) (write-time at ?uav ?t3))

15
16 ;add list

17 ((at ?uav ?destination)

18 (battery ?uav (call - ?r ?duration))

19 (read-time battery ?uav ?end) (write-time battery ?uav ?end)

20 (read-time at ?uav ?end) (write-time at ?uav ?end))

21)

76 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.21 Two-vehicles version of the move operator. This operator has been specially
defined to cover the case of one part that is being transported by two aerial vehicles. In
that case, the part is supposed to be at both vehicles and they must move in a synchronized
way along all the path while carrying the part. Thus, this operator is only used after a
dual-pick operator execution.

1 (:operator (!move ?uav1 ?uav2 ?source ?destination ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav1) (hovering ?uav1)

4 (quadrotor ?uav2) (hovering ?uav2)

5 (location ?source ?x1 ?y1 ?z1)

6 (location ?destination ?x2 ?y2 ?z2)

7 (at ?uav1 ?source) (at ?uav2 ?source)

8 (battery ?uav1 ?r1)

9 (read-time battery ?uav1 ?t0) (write-time battery ?uav1 ?t1)

10 (read-time at ?uav1 ?t2) (write-time at ?uav1 ?t3)

11 (battery ?uav2 ?r2) (read-time battery ?uav2 ?t4) (write-time battery ?uav2 ?

t5)

12 (read-time at ?uav2 ?t6) (write-time at ?uav2 ?t7)

13 (assign ?end (call + ?start ?duration))

14 (call >= (call - ?r1 ?duration) 0) (call >= (call - ?r2 ?duration) 0))

15
16 ;delete list

17 ((at ?uav1 ?source) (at ?uav2 ?source)

18 (battery ?uav1 ?r1) (battery ?uav2 ?r2)

19 (read-time battery ?uav1 ?t0) (write-time battery ?uav1 ?t1)

20 (read-time at ?uav1 ?t2) (write-time at ?uav1 ?t3)

21 (read-time battery ?uav2 ?t4) (write-time battery ?uav2 ?t5) (read-time at ?

uav2 ?t6) (write-time at ?uav2 ?t7))

22
23 ;add list

24 ((at ?uav1 ?destination) (at ?uav2 ?destination) (battery ?uav1 (call - ?r1 ?

duration)) (battery ?uav2 (call - ?r2 ?duration))

25 (read-time battery ?uav1 ?end) (write-time battery ?uav1 ?end) (read-time at

?uav1 ?end) (write-time at ?uav1 ?end)

26 (read-time battery ?uav2 ?end) (write-time battery ?uav2 ?end) (read-time at

?uav2 ?end) (write-time at ?uav2 ?end))

27
28)

4.4 Symbolic Planner 77

Code 4.22 Pick operator defined for the domain. The applying of this operator results in
one single part being picked by a single aerial vehicle.

1 (:operator (!pick ?uav ?part ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav) (object ?part)

4 (hovering ?uav) (location ?loc ?x1 ?y1 ?z1)

5 (at ?part ?loc) (at ?uav ?loc)

6 (not (transported ?part)) (not (transporting ?uav))

7 (assign ?end (call + ?start ?duration))

8 (read-time at ?uav ?t0) (read-time at ?part ?t1)

9 (write-time at ?part ?t2)

10 (battery ?uav ?r) (call >= (call - ?r ?duration) 0))

11
12 ;delete list

13 ((read-time at ?uav ?t0) (read-time at ?part ?t1)

14 (write-time at ?part ?t2) (at ?part ?loc)

15 (battery ?uav ?r))

16
17 ;add list

18 ((transporting ?uav) (transported ?part)

19 (at ?part ?uav) (read-time at ?uav ?end)

20 (read-time at ?part ?end)

21 (write-time at ?part ?end)

22 (battery ?uav (call - ?r ?duration)))

23)

78 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.23 Two-vehicles version of the pick operator.

1 (:operator (!pick_object ?uav1 ?uav2 ?part ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav1) (quadrotor ?uav2)

4 (object ?part) (hovering ?uav1)

5 (hovering ?uav2)

6 (location ?loc ?x1 ?y1 ?z1) (at ?part ?loc)

7 (at ?uav1 ?loc) (at ?uav2 ?loc)

8 (not (transported ?part)) (not (transporting ?uav1))

9 (not (transporting ?uav2))

10 (assign ?end (call + ?start ?duration))

11 (read-time at ?uav1 ?t1) (read-time at ?uav2 ?t2)

12 (read-time at ?part ?t3) (write-time at ?part ?t4)

13 (battery ?uav1 ?r1) (call >= (call - ?r1 ?duration) 0)

14 (battery ?uav2 ?r2) (call >= (call - ?r2 ?duration) 0))

15
16 ;delete list

17 ((read-time at ?uav1 ?t1) (read-time at ?uav2 ?t2)

18 (read-time at ?part ?t3)

19 (write-time at ?part ?t4) (at ?part ?loc)

20 (battery ?uav1 ?r1) (battery ?uav2 ?r2))

21
22 ;add list

23 ((transporting ?uav1) (transporting ?uav2)

24 (transported ?part) (at ?part ?uav1)

25 (at ?part ?uav2)

26 (read-time at ?uav1 ?end) (read-time at ?uav2 ?end)

27 (read-time at ?part ?end) (write-time at ?part ?end)

28 (battery ?uav1 (call - ?r1 ?duration)) (battery ?uav2 (call - ?r2 ?duration))

)

29)

4.4 Symbolic Planner 79

Code 4.24 Place operator defined for the domain. The applying of this operator results in
one single part being assembled.

1 (:operator (!place ?uav ?loc ?objectName ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav) (object ?objectName)

4 (hovering ?uav) (location ?loc ?x1 ?y1 ?z1)

5 (at ?uav ?loc)

6 (transported ?objectName) (at ?objectName ?uav)

7 (transporting ?uav)

8 (depends ?objectName ?dependency_list)

9 (forall (?z)((object ?z) (call Member ?z ?dependency_list))

10 (done_with ?z))

11 (read-time at ?uav ?t0) (read-time at ?objectName ?t1)

12 (write-time at ?objectName ?t2)

13 (assign ?end (call + ?start ?duration))

14 (remaining_tasks ?remaining)

15 (call > ?remaining 0) (assign ?left (call - ?remaining 1))

16 (battery ?uav ?r) (call >= (call - ?r ?duration) 0))

17
18 ;delete list

19 ((read-time at ?uav ?t0) (read-time at ?objectName ?t1)

20 (write-time at ?objectName ?t2)

21 (transported ?objectName)

22 (at ?objectName ?uav) (transporting ?uav)

23 (remaining_tasks ?remaining) (battery ?uav ?r))

24
25 ;add list

26 ((read-time at ?uav ?end) (read-time at ?objectName ?end)

27 (write-time at ?objectName ?end) (at ?objectName ?loc)

28 (done_with ?objectName)

29 (remaining_tasks ?left) (battery ?uav (call - ?r ?duration)))

30)

80 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.25 Two-vehicles version of the place operator.

1 (:operator (!place ?uav1 ?uav2 ?loc ?part ?start ?duration)

2 ;precondition

3 ((quadrotor ?uav1) (quadrotor ?uav2)

4 (object ?part) (hovering ?uav1)

5 (hovering ?uav2) (location ?loc ?x1 ?y1 ?z1)

6 (at ?uav1 ?loc) (at ?uav2 ?loc)

7 (transported ?part) (at ?part ?uav1)

8 (at ?part ?uav2) (transporting ?uav1) (transporting ?uav2)

9 (depends ?part ?dependency_list)

10 (forall (?z)((object ?z) (call Member ?z ?dependency_list)) (done_with ?z))

11 (read-time at ?uav1 ?t0) (read-time at ?uav2 ?t1)

12 (read-time at ?part ?t2) (write-time at ?part ?t3)

13 (assign ?end (call + ?start ?duration))

14 (remaining_tasks ?remaining)

15 (call > ?remaining 0) (assign ?left (call - ?remaining 1))

16 (battery ?uav1 ?r1) (call >= (call - ?r1 ?duration) 0)

17 (battery ?uav2 ?r2) (call >= (call - ?r2 ?duration) 0))

18
19 ;delete list

20 ((read-time at ?uav1 ?t0) (read-time at ?uav2 ?t1)

21 (read-time at ?part ?t2) (write-time at ?part ?t3)

22 (transported ?part)

23 (at ?part ?uav1) (at ?part ?uav2)

24 (transporting ?uav1) (transporting ?uav2)

25 (remaining_tasks ?remaining)

26 (battery ?uav1 ?r1) (battery ?uav2 ?r2))

27
28 ;add list

29 ((read-time at ?uav1 ?end) (read-time at ?uav2 ?end)

30 (read-time at ?part ?end) (write-time at ?part ?end)

31 (at ?part ?loc) (done_with ?part)

32 (remaining_tasks ?left)

33 (battery ?uav1 (call - ?r1 ?duration))

34 (battery ?uav2 (call - ?r2 ?duration)))

35)

4.4 Symbolic Planner 81

Code 4.26 Sync operator defined for the domain. The purpose of this operator is to make
an aerial vehicle to wait an amount of time, so it only has effect on the battery and at
dynamic properties of the vehicle.

1 (:operator (!sync ?uav1 ?uav2 ?start ?duration)

2 ;precondition

3 ((assign ?end (call + ?start ?duration))

4 (read-time at ?uav1 ?t0) (battery ?uav1 ?r1)

5 (battery ?uav2 ?r2) (call >= (call - ?r1 ?duration) 0))

6
7 ;delete list

8 ((read-time at ?uav1 ?t0) (battery ?uav1 ?r1))

9
10 ;add list

11 ((read-time at ?uav1 ?end) (battery ?uav1 (call - ?r1 ?duration)))

12)

Code 4.27 Finish operator defined for the domain. This operator does not appear in the
durative-actions defined for the PDDL domain. It has been defined as a base case for the
recursive method defined in Section 4.4.3 to signal the end of the planning process and
therefore to stop the recursion. It checks in the preconditions that all the parts have been
assembled and has no effects.

1 (:operator (!assembly_plan_finished)

2 ;precondition

3 ((remaining_tasks 0))

4
5 ;delete list

6 ()

7
8 ;add list

9 ()

10)

82 Chapter 4. Decoupled Geometric and Symbolic Reasoning

4.5 Connecting the Geometric and Symbolic Planners

The solution for the problem presented in Section 4.2 involves two parts: an assignment
of assembly tasks to aerial vehicles and an assembly tasks decomposition and scheduling
over time for each aerial vehicle. In order to compare the suitability of different solutions
computed along the whole planning process, a score-based calculation is done after a new
solution is found.

The solution score is based on three types of constraints with different levels of relevance.
Given a new solution, its score consists on the number of broken constraints for each of
the constraint types defined, thus they are represented as negative values. The constraint
types were explained in Section 4.3.4.

The domain presented in Section 4.3 has been designed to solve the assignment part of
the problem. In that domain, only the aerial vehicles and assembly tasks along with their
dependencies are considered as entities, but the temporal aspects of the problem are not
present. The values of the hard and medium constraints are computed within this domain.
The hard-constraint value indicates if the weight of the assigned parts does not exceed
the sum of the payloads of the assigned vehicles. Once an assembly task is allocated, the
medium-constraint value indicates how many of its dependencies (parts that should be
already assembled) are also allocated to the same vehicle.
The symbolic domain presented in Section 4.4 is designed to compute the assembly

tasks decomposition and scheduling of the problem. In this case, the temporal domain is
considered and the soft-constraint value is computed as the total assembly time for the
whole structure within this symbolic domain.

The whole score calculation needs both planners to be connected and to communicate
in a bidirectional way. The pseudo-code for the whole planning process can be seen in
Algorithm 2. First, the VRP planner must solve the assignment problem and compute the
related hard and medium constraints values. After that, and only if the hard-constraints for
the given assignment are zero, it sends the computed assignment to the symbolic planner,
which solves the decomposition and scheduling problem and computes the soft-constraint
value. Then this value is sent back to the VRP planner, closing the score calculation
loop. With the total score of the whole solution, the VRP planner can compare different
solutions and optimize the search to try to find new assignments that lead to better scores
and improved solutions. Hence, the optimization is done cooperatively between both
planners, preserving each of them its own domain and solving a different part of the whole
problem.
Figure 4.5 represents a summary of the interconnection between the geometric and

symbolic planners, showing a simplified version of Algorithm 2 in a visual way.

4.5 Connecting the Geometric and Symbolic Planners 83

Algorithm 2: Pseudo-code showing the connection between the involved planners.
The inputs for the system are a pre-computed assembly plan composed of assembly
tasks, the list of available robots, the list of locations and the time limit specified for
the computations. Initially, the values for the current hard (H), medium (M) and
soft (S) constraints are set to the minimum possible negative value. The best values
computed during the planning process for these variables are also kept and set to
the same minimum possible value. On each iteration, the VRP solver calls the
computeRoutes function, which computes an assignment of assembly tasks to robots
and defines the routes for each one. After that, it calls the computeScore function to
compute the related hard and medium-constraints values. If the hard-constraints are
zero, it calls the symbolic planner through theHTN_Planner function, which in turn
computes the decomposition of the assembly tasks (the low-level plan for each aerial
robot) and the related soft-constraints value. If the decomposition was possible,
then the VRP solver compares the new values for the hard, medium and soft-
constraints with the best values that have been found by calling the comparePlans
function, and updates the best values if the new ones are better, also storing the
decomposition computed by the symbolic planner, which is then the best plan
found. The process is repeated until the time is exhausted.
Data: Assembly tasks list A, robots list R, locations list L, time limit T
Result: plan P for all the robots
begin

P← /0,Pnew← /0 ;
H←−∞,M←−∞,S←−∞;
Hmax←−∞,Mmax←−∞,Smax←−∞;
Loop

routes← VRP_Planner.computeRoutes(A, R, L) ;
(H,M)← VRP_Planner.computeScore(routes) ;
if H 6= 0 then

continue ;
(Pnew,S)← HTN_Planner(routes) ;
if Pnew 6= /0 then

if VRP_Planner.comparePlans(P,Pnew) then
Hmax← H,Mmax←M,Smax← S;
P← Pnew;

if timeReached(T) then
exit loop ;

return P;

84 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Figure 4.5 Work-flow of the whole planning process where the role of the different planners
is highlighted.

4.6 Use Case: Testing the Architecture 85

4.6 Use Case: Testing the Architecture

In this section a representative mission will be used to illustrate the operation of our
decoupled planning approach in a multi-vehicle context. In the mission presented, a
fleet composed of four unmanned aerial vehicles equipped with robotic manipulators is
available, where all of the vehicles are simulated. The environment contains twenty-six
locations of interest (see Figure 4.6) where eleven of them are the initial locations for the
parts, another eleven are the assembly locations and four are home locations for the UAVs.
The structure to be assembled can be viewed in Figure 4.7.

The entry point to the system is the 3D CAD environment model that contains the initial
state (stock parts and home locations of the UAVs) and the 3D CAD model of the structure
to be built. An external assembly planner [90] reads the 3D CAD model of the structure
and generates a valid assembly plan. Each of the assembly tasks contains two nodes: one
with the effects of the operation and one with the preconditions for the operation. The effect
of the operation is the part that will be assembled after the task execution, whereas the
preconditions for the operation are the parts that must be assembled prior to the execution
of the task. Part of the assembly plan generated by the assembly planner is shown in
Code 4.28.
In order to exploit the capabilities of a team with multiple vehicles, at the geometric

planner level, tasks can be divided to be shared among different UAVs. That is the case of
the assembly tasks associated to Box001, Box002 and Box003, whose weight of 900 grams
is higher than the payload of a single vehicle, which is of 500 grams. The task for each of

Figure 4.6 CAD model of the indoor testbed used for the experiments of the ARCAS
Project. In this arena, the parts are initially stored over tables in different stock
areas and are finally assembled on a designated location.

86 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Figure 4.7 Assembly structure for the mission. The structure is composed of eleven parts,
enumerated from Box001 to Box011. All the parts are supposed to have a flat
handle from which the robotic arms of the UAVs can pick them.

these parts is automatically divided into two different tasks of 450 grams. In this manner,
a single part can be assigned to multiple UAVs.
The geometric planner solves the assignment problem. The solver was configured

to apply two phases: a Construction Heuristic and a Metaheuristic. The Construction
Heuristic chosen was the so called First Fit Decreasing, which assigns the more difficult
planning entities first (those tasks with a higher part weight in our case), so it sorts
the planning entities on decreasing difficulty. The Metaheuristic chosen was the Late
Acceptance, a variant of the Hill Climbing local search. Late Acceptance does, for the
assignment initially computed by the Construction Heuristic, some moves between the
planning entities, one per iteration, and accepts any move that leads to a score that is better
than the best score of a number of moves ago. This allows to do one move that initially
leads to a worse score than the previous to improve the score computed some moves ago.

After an assignment of parts to UAVs is done, the geometric planner generates a planning
problem in a format suitable for the symbolic planner. The JSHOP2 planning problem
contains the high-level task that represent the whole structure assembly and that should
be decomposed into primitives, as well as the initial states of all the entities involved.
Code 4.29 shows the generated JSHOP2 planning problem that led to the best solution
found, containing among others, the assignment from parts to UAVs generated by the
geometric planner and the dependencies computed for each of the parts by the assembly
planner. It must be remembered that on each iteration of the geometric planner, a new
JSHOP2 planning problem is generated, so we only show the one that led to the best
solution.

4.6 Use Case: Testing the Architecture 87

Code 4.28 First tasks of the assembly plan generated by the external assembly planner [90].
The tasks are partially orderedmeaning that a single vehicle could do the assembly correctly
by executing the tasks in that order. Tasks that appear later in the file may be executed
before some of the previous as is the case of part Box001 which constitutes a part of the
base and thus do not depend on any other.

1 <plans>

2 <assemblyPlan>

3 <assemblyOperation action="base">

4 <effect>

5 <at part="Box002"/>

6 </effect>

7 </assemblyOperation>

8 <assemblyOperation action="connection">

9 <precondition>

10 <at part="Box002"/>

11 </precondition>

12 <effect>

13 <at part="Box011"/>

14 </effect>

15 </assemblyOperation>

16 <assemblyOperation action="connection">

17 <precondition>

18 <at part="Box002"/>

19 </precondition>

20 <effect>

21 <at part="Box010"/>

22 </effect>

23 </assemblyOperation>

24 <assemblyOperation action="base">

25 <effect>

26 <at part="Box001"/>

27 </effect>

28 </assemblyOperation>

29 ...

30 </assemblyPlan>

31 </plans>

The plan computed by the symbolic planner contains all the primitives for each of the
vehicles involved in the mission execution and it has been represented with a Gantt chart in
Figure 4.8. Again, we only show the Gantt chart for the best solution found. The symbolic
planner produced a schedule of all the assembly tasks computed by the assembly planner.
In the cases where multiple choices could be done, the planner decided to assemble first
those parts that were dependencies for other parts that could not be assembled yet, trying
to maximize the potential parallelism of using multiple vehicles. That produced, for the
assignment computed by the geometric planner, a correct scheduling of the assembly tasks.

88 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Code 4.29 JSHOP2 planning problem. It contains the assignment from parts to UAVs
generated by the geometric planner and the dependencies computed for each of the parts
by the assembly planner. The state of the different vehicles and parts is also included.

1 ; FACTS

2 (

3 ; UAV defs

4 (quadrotor uav1)(quadrotor uav2)

5 (quadrotor uav3)(quadrotor uav4)

6 ; location defs

7 (location 1)

8 ...

9 (location 26)

10 ; object defs

11 (object Box001)

12 ...

13 (object Box011)

14 ; object state defs

15 (at Box001 1)

16 ...

17 (at Box011 21)

18 ; ObjectDependencies

19 (depends Box001 ())

20 (depends Box002 ())

21 (depends Box003 (Box008 Box009 Box010 Box011))

22 (depends Box004 (Box011 Box010))

23 ...

24 (depends Box010 (Box002))

25 (depends Box011 (Box002))

26 ; assembly locations

27 (assembly_location Box001 2)

28 ...

29 (assembly_location Box011 22)

30 ; part assignments

31 (assigned Box003 uav1)

32 (assigned Box004 uav1)

33 (assigned Box001 uav1)

34 (assigned Box008 uav1)

35 (assigned Box002 uav2)

36 ...

37 (assigned Box002 uav3)

38 (assigned Box010 uav4)

39 (assigned Box005 uav4)

40 (assigned Box001 uav4)

41 ; UAS state defs

42 (battery uav1 1200)

43 (at uav1 23)(landed uav1)

44 ...

45 (battery uav4 1200)

46 (at uav4 26)(landed uav4)

47 ...

48 ; remaining tasks

49 (remaining_tasks 11)

50)

51 ; GOALS

52 ((mission assemble))

4.7 Simulation Results 89

Figure 4.8 Gantt chart of the best solution found by the system. Each rectangle represents
a primitive task. Primitives with a string on top represent the assembly task
of the part with the given name. Primitives of blue color are independent and
are executed by the vehicles individually. Primitives of red, green and orange
color are cooperatives and thus are executed by the UAVs on which they appear
simultaneously. Cooperative primitives appear on parts that must be managed
by two vehicles simultaneously due to their weight. Red primitives are executed
cooperatively and simultaneously by UAV1 and UAV4 in order to assemble the
part Box001, green primitives by UAV2 and UAV3 to assemble Box002 and
orange primitives by UAV1 and UAV3 to assemble Box003.

4.7 Simulation Results

Different simulations have been carried out in the environment shown in Figure 4.6,
which is the 3D model of the indoor testbed used for the experiments. Within the testbed,
localization of the robots is given by the Vicon motion tracking system with millimetre
precision. In the study done by Merriaux et al. [84], it has been proven that the Vicon
system can achieve errors below two millimetres at common speeds, and below one
millimetre for static objects. For the simulations, the ROS global coordinate system is
used. The tests have been done on a machine with an Intel i7 CPU at 2 GHz and 8GB
RAM. The goal of the simulations is to compare different solvers.

A team of four aerial robots equippedwithmanipulators has to assemble a given structure.
Figure 4.9 shows one of the prototypes developed in the context of the project that is
modelled and used in the simulations of this section.

Three structures with a different number of parts (see Figure 4.10) have been considered
and, for each of the structures, ten data sets have been generated changing randomly the
initial locations of the parts.
The solver has been configured to use one Construction Heuristic phase followed by

one Metaheuristic phase. The purpose of the former is to obtain an initial solution for the
assignment problem, which will be later optimized by the second solver phase. Three CH
algorithms have been applied to our problem: First Fit, First Fit Decreasing and Cheapest
Insertion. A detailed description of each one can be found in [100]. The results shown
in Table 4.4 have been computed with a time limit of ten minutes if the search does not

90 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Figure 4.9 Aerial robot prototype equipped with a robotic arm in the indoor testbed located
in the FADA-CATEC facilities in Seville (Spain). The model of this prototype
has been used in the simulations of the missions.

Figure 4.10 Structures used for the benchmark with sizes of five, eleven and twenty-five
parts (structures 1, 2 and 3 from top to bottom for later reference).

4.7 Simulation Results 91

finish before. It can be seen that the First Fit algorithm obtained slightly better values,
even reducing to zero the medium constraints. In addition, its computation times are lower
than the others.

Table 4.4 Construction Heuristic solver phase results for 30 simulations. For each
algorithm, the mean and standard deviations for the hard, medium and soft
constraint values are presented, as well as the mean computation time. The
broken constraints are represented as negative values.

CH Algorithm Hard
(SD)

Medium
(SD)

Soft
(SD)

t(s)

First Fit -0.33
(0.48)

0 (0) -625.80
(418.34)

3.12

First Fit Decreasing -0.33
(0.48)

-0.33
(0.48)

-630.15
(422.36)

9.56

Cheapest Insertion -0.33
(0.48)

-0.33
(0.48)

-630.15
(422.36)

21.33

The second phase is theMHphase, which tries to optimize the initial locations assignment
computed by the previous CH phase. Five local search algorithms, whose description
can also be found on [100], have been compared: Hill Climbing, Tabu Search, Simulated
Annealing, Late Acceptance and Step Counting Hill Climbing. As this phase requires the
use of a previous CH phase, the First Fit algorithm was configured as CH. The results are
shown in Table 4.5. All the MH algorithms reduced to zero the values of the hard and
medium constraints, so only the mean and standard deviations of the soft constraint values
are shown. The results show that the Late Acceptance and Step Counting Hill Climbing
algorithms tie, obtaining better values than the others.
To study the effects over the solutions of changing the number of aerial vehicles used,

we have decided to focus our attention on the Late Acceptance algorithm, although the
Step Counting Hill Climbing would have been also a good choice. We have used only the
third structure since it is the most complex one with the higher number of parts (25). Five
parts need to be transported between two aerial robots due to its high weight, so these five
parts are divided into two assembly tasks, resulting in 30 different assembly tasks. Then,
the difficulty in solving the problem is greater than using the other structures. To test the
scalability of the system when increasing the number of available aerial vehicles, five
datasets for the given structure have been created with a number of available aerial vehicles
of 10, 20, 30, 40 and 50 respectively. The results of the tests are presented in Figure 4.11.
Figure 4.11a shows the score (assembly time) obtained for each of the datasets, whereas
Figure 4.11b shows the number of aerial robots used in the solutions.
As it is shown in Figure 4.11a, increasing the number of available aerial robots leads

to better plans, as the assembly time tends to decrease. However, from the 30 available
aerial robots dataset onwards the differences are not so high and the assembly time starts
to decrease more slowly than for the previous datasets. In fact, the 50 dataset gets worse
assembly times than the 30 and 40 aerial robots datasets.

The resulting number of aerial robots used for each dataset is displayed in Figure 4.11b.

92 Chapter 4. Decoupled Geometric and Symbolic Reasoning

Table 4.5 Meta-heuristics solver phase results of the soft constraints generated after 30
simulations with three different structures. The solver was configured with a
time limit of ten minutes if the search did not finish before. However, all the
algorithms reached the time limit without exhausting the search.

CH Algorithm Struct.1
(SD)

Struct.2
(SD)

Struct.3
(SD)

Total
(SD)

Hill Climbing -205.80
(14.19)

-415.80
(37.91)

-1020.0
(54.33)

-547.27
(353.15)

Tabu Search -205.80
(14.19)

-403.10
(29.64)

-1020.9
(55.95)

-543.27
(354.99)

Simulated
Annealing

-203.70
(15.29)

-413.40
(31.34)

-1031.9
(49.81)

-549.67
(359.18)

Late
Acceptance

-203.80
(15.33)

-410.80
(31.27)

-991.30
(73.75)

-535.30
(342.06)

Step Counting
H.C.

-203.80
(15.33)

-410.80
(31.27)

-991.30
(73.75)

-535.30
(342.06)

As the number of available aerial robots is increased, the number of aerial robots used in
the solutions tends also to increase. For the datasets that have a number of available aerial
robots lower or equal than the number of assembly tasks (30), the solver uses a number of
vehicles that is near the maximum number of vehicles available, as it can be seen in the
10, 20 and 30 aerial robots datasets. For a higher number of available aerial robots, the
number of used aerial robots stabilizes near 30, which is the number of assembly tasks
for the structure. This fact tells us that the solver will always try to use the maximum
number of available aerial robots, even using one aerial robot per assembly task if there
are enough aerial robots available. This may seem logical because it is an (extreme) way
of maximizing parallelism: in fact, many people will think on this as the optimal solution.
However, two associated issues should be also taken into account:

• Having many aerial robots working in our testbed with a size of tens of meters is
unrealistic due to the associated air traffic density. As the combined planner will
always try to use the maximum number of available resources, the usage of these
resources should be limited for instance introducing hard-constraints that saturate
the maximum number of used vehicles.

• Increasing the number of available aerial robots also increases indirectly the problem
size. The VRP planner has a greater number of options to choose when assigning
assembly tasks, which can lead to obtaining better plans but can also have the
opposite effect since the search tree size is increased and many more options would
be available to be check. We can see this in the results for the 50 available aerial
robots dataset, whose assembly time is slightly worse than the times for the 30 and
40 available aerial robots datasets. Thus, if the number of available aerial robots is
increased, then the solver’s computing time should also be increased.

Although it is out of the scope of this paper, our planning framework includes the
possibility to simulate the execution of the low-level plans computed for each vehicle. An

4.7 Simulation Results 93

execution layer has been implemented as a C++ graphical user interface application to
read the low-level plans. The interface, implemented using the Qt framework, checks
for the correct execution and synchronization of the tasks and generates Gantt charts to
display the different timelines of the aerial vehicles. The application communicates with
a middleware developed by using the ROS (Robot Operating System) framework that
connects with the Gazebo simulator. Figure 4.12 shows a screenshot of a mission execution
on the Gazebo simulator by one aerial robot. A video of the execution can be downloaded
from https:// grvc.us.es/ symballoc#simulationPaper.
It should be mentioned that the motion planning, multi-robot collision avoidance and

the control levels have been also implemented in ROS. In particular, the approach followed
at the control level is described in [106], whereas for multi-robot collision avoidance the
techniques implemented are presented in [1]. Regarding motion planning, a comparative
study was presented in [104] that lead to the use of the RRT-Connect algorithm in our
simulations.
The whole ROS stack developed for the integrated planning framework has been used

in the real aerial robots equipped with manipulators. However, the implementation details
of the other planners and their interconnection are out of the scope of this paper. As a
reference, there are some videos available also in https:// grvc.us.es/ symballoc that show
these additional planning capabilities and the execution of plans with several aerial robots
both in simulation and in the testbed located in FADA-CATEC.

https://grvc.us.es/symballoc#simulationPaper
https://grvc.us.es/symballoc

94 Chapter 4. Decoupled Geometric and Symbolic Reasoning

(a) Assembly times for tests in a range of available aerial robots between 10
and 50.

(b) Number of aerial robots used for tests in a range of available aerial robots
between 10 and 50.

Figure 4.11 Results of the scalability tests done in a range of available aerial robots between
10 and 50. The third structure from Figure 4.10 has been used in the tests
since it is the most complex one with a higher number of parts. First Fit and
Late Acceptance algorithms have been configured in the solver. Five datasets
have been created with a number of available aerial vehicles of 10, 20, 30, 40
and 50 respectively. Increasing the number of available aerial robots leads
to better plans since the assembly times tend to decrease. As the number of
available aerial robots grows, the number of aerial robots used in the solutions
tends to increase.

4.7 Simulation Results 95

Figure 4.12 Screenshot of the simulation of an assembly action executed by one aerial
vehicle during one of the missions. All the parts have a handle to hold and
move them and can be stacked.

96 Chapter 4. Decoupled Geometric and Symbolic Reasoning

4.8 Conclusions

In this chapter we perform task assignment and scheduling to improve cooperation and
maximize parallelism in a domain that mix symbolic reasoning with the VRP. The main
contribution is a new way of connecting two independent planning systems based on a
score calculation system that lets them cooperate in the optimization of the solutions found
and its application in the context of structure assembly missions.
The approach has been tested successfully in missions involving multiple simulated

aerial vehicles. The bi-directional communication between the planners has allowed the
optimization of the solutions found by the VRP planner, and thus, the feedback of the
symbolic layer has been a key aspect to drive the search towards better solutions.

Different meta-heuristic algorithms have been applied. Although these algorithms have
not been able to guarantee optimal solutions, they have computed feasible solutions in
short times proving their effectiveness.

One of the problems found in our new approach arises at theVRP level, as theOptaPlanner
engine may not find a solution that satisfies all the imposed hard-constraints. In addition to
this, the planning time is set beforehand by the user, so when the timer expires OptaPlanner
may not have found yet a feasible solution. These problems can be solved by increasing
the planning time and relaxing the hard-constraints for the problem domain. Nevertheless,
in all the simulations we have been able to find and generate a feasible solution without
increasing the planning time or relaxing the initial constraints.

There are several advantages in using an aerial robot with manipulation capabilities and
practical applications of the research presented in this chapter can be found in different
industry fields. The AEROARMS 1 European project aims to develop the first aerial
robotic platform equipped with multiple arms and advanced manipulation capabilities,
with the intention to be used in inspection and maintenance tasks in industrial plants. This
project is based on the results obtained from the ARCAS 2 European project that inspired
the work presented in this chapter, and one of its main objectives is the development of
systems which are able to grab and dock with one or more arms and perform dexterous
accurate manipulation with another arm. Another practical application can be found in
the ARM-EXTEND 3 Spanish project, which is also based on the results of the ARCAS
project. ARM-EXTEND proposes the development of the first robotic manipulation
system with aerial and ground locomotion capabilities in an industrial environment and
the first specifically designed for inspection and maintenance purposes in locations with
very difficult access. The system aims to be used particularly in the maintenance of solar
power plants.
In future work, the goal is to enhance the planning domain based on the realistic

conditions with the prototypes developed in our project. Modifying the architecture to
ensure the completeness of the system is one of our current goals. To achieve this, a new
sound and complete symbolic HTN planner with geometric reasoning capabilities has

1 https://aeroarms-project.eu
2 http://www.arcas-project.eu
3 https://grvc.us.es/national-projects/

4.8 Conclusions 97

been developed, with the intention of replacing the OptaPlanner planning engine. It will
be presented in the next chapter.

5 Coupled Geometric and Symbolic
Reasoning

In the previous chapter, the combination of a symbolic Hierarchical Task Network (HTN)
planner and a VRP planner was used to solve the problem domain modelled for the

ARCAS project. The composition of the geometric and symbolic states was solved by
making the VRP planner call the HTN planner when needed: after the VRP planner made
an initial assignment of parts to aerial vehicles based on the locations of the aerial vehicles
and the locations of the parts (as well as their dependencies), it called the HTN planner
to obtain the scheduling of the assembly operations and to get the estimated duration of
the assembly. With this estimation, it was possible for the VRP planner to optimize the
computed assignment and try to get another one that could improve the overall score and
thus, the plan quality.
Our new score-based interconnection between the VRP and HTN planners made it

possible to solve the modelled ARCAS domain but left some questions opened. Is it
possible to solve this kind of problems, where a certain degree of geometric reasoning is
needed, by using only the given HTN planner? If that is the case, how good the solutions
will be? Is it possible to optimize the solutions or to obtain the optimal solutions? Is there
a way to ensure the completeness of the system?

In order to be able to answer these question and based on the idea of a guided heuristic
search, a newHTNplanner has been developed and tested in the context of the AEROARMS
project. The algorithm for our new HTN planner is based on the A* algorithm [49, 50]
and offers some additional features that are not present in the score-based interconnection
presented in Chapter 4. These features are novelties that are not present in the original
JSHOP2 implementation and are the result of replacing the depth-first search algorithm
implemented in JSHOP2, which is commonly used in many others HTN planners as the
search strategy, by a guided heuristic search. We call this new planner SHOP*.
The chapter is structured as follows. The motivations and expectations for our new

HTN algorithm are described in Section 5.1. In Section 5.2 the description of our new
heuristic-guided SHOP* HTN planner and its properties is given along with a short

99

100 Chapter 5. Coupled Geometric and Symbolic Reasoning

overview of the A* algorithm and its properties, which inspired the development of our
new planner. An use-case in the context of the AEROARMS project to test the optimality
of our new planner is presented in Section 5.3, where the Travelling Salesman Problem [47]
is involved. In Section 5.4 a benchmark is applied and the previous problem is solved
by using our new planner. Its results are compared to the results obtained by using the
original implementation of JSHOP2 and our original planner interconnection used in the
previous chapter. Finally, the chapter ends by presenting the conclusions obtained during
the research and after the tests.

5.1 Replacing the Depth-first search: Motivations and Expected Behaviour

In Section 3.3.4 we presented and explained the JSHOP2 algorithm. This algorithm was
implemented by its authors using a depth-first search [73]. As soon as the subtasks of a
given task are identified, they are inserted in a queue by following a First-In First-Out way
(FIFO). By this way, when a task can be decomposed, the first subtask is explored first.
With that subtask the process is repeated, exploring again first the first subtask on which it
can be decomposed, and so on.

Along the research done in this thesis we have found that the use of a depth-first search
seems to be a common scheme in the implementation of HTN planners. The SHOP
planner [93] was implemented using this search algorithm, and it results interesting that
its evolution, the JSHOP2 planner used in this thesis, still uses that kind of search. The
HATP hierarchical planner [110], developed by researchers of the LAAS-CNRS, also
uses a depth-first search on its implementation. In the field of video games, where the
use of a well implemented Artificial Intelligence is important to model the behaviour
of Non-Player Characters (NPCs), the trend keeps the same. The Simple Hierarchical
Planning Engine (SHPE) [83] is a planning system based on HTN planning techniques
currently implemented in games, and uses a depth-first search. Many other examples that
use the same search pattern for the implementation of their HTN planning systems can be
found [112, 113].
Which can be the reason that makes some researchers choose the depth-first search

algorithm over other popular search schemes like breadth-first [73] when implementing
their HTN planning systems? We know that in the field of graph search algorithms, the
use of depth-first gives preference toward investigating longer plans very early while the
use of breadth-first guarantees that the first solution found will always use the smallest
number of steps. So, why not to use always a breadth-first in the implementation of HTN
planning systems?

To make an idea of the possible answer for this last question let us consider the graphs
shown in Figure 5.1. In this figure, two possible traversals of a decomposition tree for a
high-level task are shown. The decomposition for the high-level task (the root node) and
all the subtasks has been supposed to be binary (each task can be decomposed only into
two subtasks). Although in HTN planning a given task can be modelled to be decomposed
into 1 to N subtasks, the decomposition into a single subtask is not a very frequent case,
as the child decomposition of the subtask could be directly attached to the parent task, so
for a simplification in our explanation let us suppose a completely binary decomposition

5.1 Replacing the Depth-first search: Motivations and Expected Behaviour 101

tree. For each task (circle node) in the tree, two possible decompositions can be chosen.
The lowest-level subtasks on which the high-level task can be decomposed are represented
by the leafs of the tree (square nodes). These nodes represent the final decomposition
of the high-level task, so they can be seen as the goal states to reach in the search tree.
Figure 5.1a shows the decomposition tree traversal if a breadth-first search is applied, while
Figure 5.1b shows the traversal if a depth-first is applied. The nodes have been labelled
with the order on which they are explored. Red nodes represent nodes that are explored
before visiting a leaf node, while the green node represent the first visited leaf. By looking
into the figures two interesting things can be seen. The first is that in the given example,
the depth-first search is capable of decomposing the parent task faster than breadth-first, as
it reaches a leaf node faster. The second thing is that breadth-first needs to visit a greater
number of nodes before reaching a leaf node in comparison with depth-first.
From what can be seen on Figure 5.1 two conclusions can be made. The first is that

depth-first makes an aggressive exploration in the depth of the decomposition tree, and
this seems to fasten reaching a goal state in the search tree, as in HTN trees the goals are
located in the leaf nodes. The second conclusion is that breadth-first needs to visit more
nodes before reaching a leaf node. In HTN systems this is not only translated in higher
computation times, but also in a greater consumption of the available memory. A HTN
system requires that each visited node keeps stored in memory until the algorithm finishes,
as if some decomposition fails then a backtrack mechanism is triggered to go back to
the parent node of the failing node to try the other possible decomposition. That makes
breadth-first consume a considerable high amount of memory compared with depth-first,
and as it will be seen later on this chapter, this can be an issue when solving problems of
medium or high sizes.
The decomposition tree on Figure 5.1 has been used as an example to see the main

differences between two classical graph search algorithms, the depth and breadth-first
algorithms, that could be used in the implementation of HTN planners. Of course, we
could find specific examples where breadth-first finds a solution sooner than depth-first.
But in the field of HTN, guiding the search towards finding a plan using depth is natural,
so in general the depth-first algorithm is a better choice than breadth-first.

After knowing one of the reasons why a depth-first search was used in the JSHOP2 HTN
planner, we thought different ways of improving its performance. One of the drawbacks of
the JSHOP2 planner is that it stops after finding the first solution. The domain description
is used to drive the symbolic search toward a good enough solution by providing methods
in their order of quality and using ordering functions when binding variables. By this
way, we usually consider that finding the first feasible plan in a reasonable time is enough.
However, that makes its use impractical in problems that, for example, depend on any kind
of assignment, as the cost of the solutions highly depends on the initial assignment. That
was one of the reasons that lead us to use an external VRP planner to solve the ARCAS
domain presented in Chapter 4. The plan quality for the ARCAS domain was highly
dependent on the initial assignment of parts to aerial vehicles. When trying to solve the
ARCAS domain by using only the JSHOP2 planner, we realized that after making an initial
assignment, JSHOP2 was unable to modify it if a solution was found. In addition to this,
we encountered problems when facing the geometrical part of the problem. Although the
geometric level of the ARCAS domain was modelled at a high level of abstraction, as we

102 Chapter 5. Coupled Geometric and Symbolic Reasoning

(a) Breadth-first search.

(b) Depth-first search.

Figure 5.1 Example of breadth-first and depth-first search applied to a HTN decomposition.
The tree root represents the task to decompose while leaf nodes represent the
lowest-level subtasks on which the root task can be decomposed (goal states).
High-level tasks (those that can be decomposed) are represented as circles
while low-level tasks are represented as squares. The decomposition tree has
been supposed to be binary, so each task only has two possible decompositions.
Figure 5.1a shows the decomposition tree traversal for breadth-first, while
Figure 5.1b shows the traversal if a depth-first is applied. Red nodes are visited
prior reaching a leaf node, while the green node is the first visited leaf. Depth-
first reaches a goal state sooner and exploring a lower number of nodes than
breadth-first.

used a graph with costs and Euclidean distances, its encoding in the JSHOP2 domain was
difficult and hardened the readability of the domain and problem description.

When planning in JSHOP2 we stop at the first solution. To find the optimal solution
would require to explore the complete decomposition tree and try all the alternatives,
which would require very long computation times, specially if using the depth-first search.
Indeed, a great number of problems would not be solvable, at least in a reasonable time.

5.2 SHOP*: the A*-based HTN Planner 103

In this chapter we propose to replace the depth-first search algorithm implemented in
JSHOP2 and use the domain encoding as a form of heuristic to drive the search, focusing
on nodes that open promising solutions. In specific, we propose to use the ideas of the
A* algorithm (which will be explained in the next section). For each problem domain, an
additional heuristic function will be given. The purpose of this heuristic function is to
give a cost estimation to go from a decomposition node to the goal node, which is the one
where all tasks would have been decomposed. By using this heuristic function (which is
problem dependent), all the possible decompositions of a task will be scored with their
costs and will be ordered to explore first the more "promising" ones, those with the lowest
cost and that would drive to a better plan. If the explored nodes are stored in a priority
queue as they are found, ordered by their costs, recovering and expanding on each iteration
the more promising ones, and if the heuristic function meets some mathematical properties
(which will be also explained in the next section), then the best solution will be found. To
be capable of handling more easily problem domains that have some sort of geometry, a
geometric projection of the decomposition nodes based on geometric computation, such
as using Euclidean distances and so on, could be used in the heuristic function.
What we first expect with this proposal is to give JSHOP* the ability to improve the

solution found. The search engine will still stop after finding the first solution, but the
quality of this solution should be significantly higher than before, because the search will
be driven by the heuristic function towards a better solution. And as we will see in the
next section, if the heuristic function is admissible, then we can guarantee that the solution
found is the optimal solution.

In performance terms, the algorithm should be slower than before applying the changes,
as we will evaluate a higher number of nodes before reaching the solution. Also, the
memory usage should be higher than using the depth-first, as the discovered nodes will
be kept on memory to update their score in those cases where different decomposition or
variable bindings drive to the same search state.

5.2 SHOP*: the A*-based HTN Planner

The A* search algorithm [49, 50] is an extension of Dijkstra’s algorithm [20] that tries
to reduce the total number of states explored by using a heuristic estimate of the cost to
go from a given state to the goal. It is widely used in path-finding and graph traversal
problems, and enjoys widespread use due to its performance and accuracy. It is very
common to see A* usages in the field of video-games, due to its easy implementation.

A* is proven to be complete: it finds a solution if one exists and otherwise, it correctly
reports that no solution is possible. In addition, under certain conditions A* is also proven
to be optimal: if a solution is found, then it is guaranteed that this solution is the optimal
solution.
A* solves problems by searching among all possible paths to the solution for the one

that incurs the smallest cost. Among these paths it first considers the ones that appear to
lead more quickly to the solution. Starting from a specific node of a graph, it constructs a
tree of paths starting from that node, expanding paths one at a time, until one of its paths
ends at the predetermined goal node.

104 Chapter 5. Coupled Geometric and Symbolic Reasoning

At each iteration, A* needs to determine which of its partial paths to expand into one or
more longer paths. It does so based on an estimate of the cost to go to the goal node. A*
selects the path that minimizes:

f (n) = g(n)+h(n) (5.1)

where n is the last node on the path, g(n) is the cost of the path from the start node to
n, and h(n) is a heuristic function that estimates the cost of the cheapest path from n to
the goal. For the algorithm to find the shortest path (the optimal solution), the heuristic
function must be admissible [73], meaning that it never overestimates the actual cost to go
to the nearest goal node. This heuristic function is problem-specific. As an example of
admissible heuristic, when searching for the shortest route on a map, h(n) might represent
the straight-line distance from the current node n to the goal, since that is physically the
smallest possible distance between any two points. In some problems it is difficult to find
a heuristic that is efficient and provides a good search guidance, and in some cases finding
an admissible heuristic may not be possible, so finding the optimal plans is not always
possible.
Algorithm 3 shows the pseudocode for the A* algorithm. Some implementations of

A* use a priority queue to perform the repeated selection of the minimum estimated cost
nodes to expand, while others use a simple queue. The queue is known as the open set. At
each iteration, the node with the lowest f(n) value is removed from the queue, the f and g
values of all its neighbours are updated, and these neighbours are added to the open set.
The algorithm continues until a goal node is reached and has a lower f value than any node
in the open set, or until the set is empty. If h is an admissible heuristic, then the f value of
the goal is guaranteed to be the length of the shortest path (the best solution). To find the
actual sequence of steps, the algorithm can be implemented so that each node on the path
keeps track of its predecessor. By this way, it is possible to reconstruct the path that leads
to the goal node.
It is necessary to remark four important functions that appear in Algorithm 3 and that

are problem specific:

• The Is_Goal function receives the current state and the goal state, and checks if the
current state is indeed a goal state, on which case the algorithm finishes and the path
to the solution is reconstructed and returned.

• TheGet_Neighbor_List function receives one state and returns the list of all possible
states that can be reached from the input state.

• The Dist function computes the distance (cost) of going from the current node to
one of its neighbours. This function is needed to compute the g(n) value.

• The Heuristic_Cost function computes the estimated distance of going from a node
to the closest goal node, and represents the value of h(n).

For each problem domain, these four functions, as well as the data structure for the
nodes, need to be implemented.

The PYHOP planner (see https:// bitbucket.org/ dananau/ pyhop) is a Python implementation
developed by the same author of the JSHOP2 HTN planning system, and was developed

https://bitbucket.org/dananau/pyhop

5.2 SHOP*: the A*-based HTN Planner 105

Algorithm 3: Pseudocode for the A* algorithm. At each iteration, the node with the
lowest f(n) value is removed from the queue, the f and g values of all its neighbours
are updated, and these neighbours are added to the open set. To compute the gScore
of neighbours, a Dist function that returns the cost of getting from the current node
to the neighbour is needed. The algorithm continues until a goal node is reached
and has a lower f value than any node in the open set, or until the set is empty.
If the Heuristic_Cost function is an admissible heuristic, then the f value of the
goal is the length of the shortest path. If each node keeps track of the previous
node, when the algorithm finds a solution then the path to the goal node can be
reconstructed and returned by calling the function Reconstruct_Path.
Data: Start node start, end node goal
Result: Plan path P, or FAILURE
begin

openSet = new Empty_Set(NODE);
cameFrom = new Empty_Map(NODE−> NODE);
gScore = new Empty_Map(NODE−> DOUBLE);
f Score = new Empty_Map(NODE−> DOUBLE);
neighborList = new Empty_List(NODE);
gScore[start] = 0;
f Score[start] = gScore[start]+Heuristic_Cost(start,goal);
openSet.put(start);
while NOT openSet.empty() do

current = the node in openSet having the lowest fScore value;
if Is_Goal(current,goal) then

return Reconstruct_Path(cameFrom,current);
openSet.remove(current);
neighborList = Get_Neighbor_List(current);
for each neighbor o f neighborList do

tentative_gScore = gScore[current]+Dist(current,neighbor);
if neighbor not in openSet then

openSet.add(neighbor);
else

if tentative_gScore >= gScore[neighbor] then
continue;

cameFrom[neighbor] = current;
gScore[neighbor] = tentative_gScore;
f Score[neighbor] =
gScore[neighbor]+Heuristic_Cost(neighbor,goal);

return FAILURE;

106 Chapter 5. Coupled Geometric and Symbolic Reasoning

to be easy to understand and implement, as it has less than 150 lines of code. This code
simplicity made as to take the decision of replacing its depth-first search algorithm with
our new A*-based heuristic-guided search algorithm and to see how the solutions would
be improved.

In PYHOP, the states of the world are represented using ordinary variable bindings and
not logical propositions as in JSHOP2. A state is just a Python object that contains the
variable bindings, and one can add to a state as many variables of any type as desired.
Also, the HTN operators and methods for PYHOP are not defined using a specialized
planning language. Instead, they are written as ordinary Python functions that receive the
current state of the world passed as an argument and modify it as needed. Inside these
functions a programmer can code anything that he wants, but the nature of JSHOP2 must
be kept: the purpose of operators and methods still is to decompose tasks into subtasks
and to update the current state of the world. PYHOP, like JSHOP2, constructs plans in the
same order that they will be later executed, so at each planning step the current state of the
world is known.

We chose PYHOP for its minimalist implementation, easier to understand and modify
than any other HTN planning system. Also, we did not had to handle with any specialized
planning-language software module, as in PYHOP the domain description (operators and
methods) and the problem description (the state of the world and the tasks to decompose)
are encoded in the same code file with Python functions, objects and variable declarations.
As in PYHOP all is done using the Python language, that gave us the ability to do almost
anything we wanted when modifying the algorithm. During our research we also noticed
that both PYHOP and JSHOP2 had similar computation times when solving problems,
with the advantage of PYHOP being simpler and more easily customizable

Code 5.1 shows the main Python code for the PYHOP algorithm implementation. We
have omitted the originally included debug code and other pieces of code related to how
methods and operators are declared for clarification purposes. The main algorithm of
PYHOP is defined as a recursive function that receives the current state of the world, a list
with the tasks that must be decomposed, and a list that represents the final plan, which
is initially empty. On each recursive call, the algorithm initially checks if the task list is
empty, on which case the algorithm finishes returning the plan list. If that is not the case,
then the first task of the list is retrieved and two possibilities may arise.
The first possibility is that the task can be executed directly by an operator, on which

case the new state resulting of applying the operator is created, the task is removed from the
task list and added to the plan list, and a recursive call is done with the updated variables.
The second possibility is that the task can be executed by some methods. In that case,

the methods that can decompose the task are tried in order of appearance. The subtasks
resulting of applying the methods to the task are computed and added to the first positions
of the task list, and a recursive call is done. In that case, the plan list is not modified.

One of the most important parts of the code is when applying a method to a task. It must
be remarked that, although there may be multiple methods that can decompose the task,
they are only applied if the recursive call fired by the previously applied method failed in
finding a plan. In other words, with that implementation, the only way to try the different
decomposition branches of the different methods that can be applied to a specific task is
that a backtrack is triggered, and that situation only occurs when the recursive call for the

5.2 SHOP*: the A*-based HTN Planner 107

Code 5.1 Python code of the main algorithm for the PYHOP HTN planner. The algorithm
is defined as a recursive function that receives the current state of the world, a list with
the tasks that must be decomposed, and a list that represents the final plan, initially empty.
Each task of the task list is also a list where the first element (task1[0] in the code) is a string
that represents the task name and the rest of elements are the arguments or parameters
for the task (task1[1:] in the code). This is the same for the plan list. If the task list is
empty, the algorithm finishes returning the plan list. If not, then the first task of the list
is retrieved. If the task can be executed directly by an operator, the current state of the
world is updated, the task is removed from the task list and added to the end of the plan
list. If the task can be executed by some methods, they are tried in order of appearance,
the resulting subtasks are computed and added to the first positions of the task list.

1 def seek_plan(state , tasks , plan) :
2 if tasks == []:
3 return plan
4 task1 = tasks [0]
5 if task1 [0] in operators :
6 operator = operators [task1 [0]]
7 newstate = operator (copy.deepcopy(state) ,∗ task1 [1:])
8 if newstate :
9 solution = seek_plan(newstate , tasks [1:], plan+[task1])
10 if solution != False :
11 return solution
12 if task1 [0] in methods:
13 relevant = methods[task1 [0]]
14 for method in relevant :
15 subtasks = method(state ,∗ task1 [1:])
16 if subtasks != False :
17 solution = seek_plan(state , subtasks+tasks [1:], plan)
18 if solution != False :
19 return solution
20 return False

chosen method failed in finding a plan. If a plan is found, no other decomposition branch
will be checked, so the algorithm finishes when finding the first feasible plan.

Another important thing to be taken into account is that always the first task of the
task list is retrieved, and that when inserting new subtasks, these are inserted in the first
positions of the task list. In this manner PYHOP constructs plans in the same order that
they will be later executed, knowing at each planning step the current state of the world.
This also implies that a depth-first search algorithm is being used.

As it has been explained in Section 5.1, we want to apply the idea of a guided heuristic
search from the A* algorithm to PYHOP, so several modifications were done to the PYHOP
code to achieve this. To avoid distracting the attention of the reader on implementation
details relatedwith the Python language, from now all the code relatedwith thesemodifications
will be shown as pseudocode.

We want an algorithm that on each iteration retrieves and expand the node with the
lowest f(n) value. So the first decision made over PYHOP was to avoid using a recursive

108 Chapter 5. Coupled Geometric and Symbolic Reasoning

Code 5.2 Pseudocode for the State class definition. One state is initially composed of two
variables of type List, one for the tasks that need to be decomposed and one for the tasks
that have been decomposed and conform the resulting plan. Additional variables may be
added as needed, depending on the problem domain.

1 Class State {
2 List task_list ;
3 List plan_list ;
4 };

function and use instead an iterative function. This decision does not affect the behaviour
of PYHOP, as any recursive function has an iterative counterpart and vice versa.
After thinking in the iterative counterpart of PYHOP we realized that adding the

characteristics of the A* algorithm to the PYHOP algorithm could be more easily done
if the code of the PYHOP algorithm is inserted instead on the skeleton of a Python
implementation for the A* algorithm. As explained previously, the A* algorithm has
four function definitions that are problem specific and that characterize how the different
problems are solved, so that the rest of the A* pseudocode shown in Algorithm 3 remains
unchanged for any kind of problem. To insert the PYHOP functionality into the A*
algorithm we only have to center our attention into the Is_Goal function and the Get_-
Neighbor_List function, introducing the PYHOP functionality into these two functions
and leaving the implementation of the other two for later. But before explaining the
implementation of functions it is important to define first how the states are defined in our
new planner.
As commented before, in PYHOP the current state of the world is represented as a

Python object with variable bindings that is copied and modified into a new state object
when an operator is applied. We have kept this decision in our planner, but added the
requirement that each state object must have two required variable bindings: the current
task list and the current plan list. We saw in Code 5.1 that on each recursive call, a copy
of the task and plan lists is done and modified to be passed as arguments for the following
recursive call. By this way, if a backtrack is triggered, then the original task and plan lists
are found unaltered. Since we now want an iterative version of the algorithm and need to
store the different states in a priority queue, we need to store for each state its related task
and plan lists as a variable binding. As it was seen in Code 5.1, each task element of the
task list is indeed a list where the first element is a string that represents the name of the
task and the rest of elements represent the parameters or arguments for the task. The same
happens for the plan list. Code 5.2 shows the pseudocode definition for our State object.
This object initially has two variable bindings, the task list and the plan list. Depending on
the problem domain, the user can add as many variable bindings as needed.
The implementation of the Is_Goal function was trivial. Since we know that in HTN

the goal is to have all tasks decomposed, in this function we only have to check that the
task list is empty. Algorithm 4 shows the pseudocode for the function. It checks that the
state that is passed as argument has an empty task list, which means that all tasks have

5.2 SHOP*: the A*-based HTN Planner 109

been decomposed and thus, a plan has been found.

Algorithm 4: Pseudocode for the Is_Goal function. The function only checks
that the task list for the given state is empty, which means that all tasks have been
decomposed and thus, the given state is a goal state.
Function Is_Goal(State state):

return state.task_list.is_empty();

The implementation of theGet_Neighbor_List function was also easy. In this function is
where the main functionality of PYHOP has been inserted, with some modifications. The
purpose of this function is, given an input node, to return the list of all its neighbour nodes,
that is to say, the list of all nodes that can be visited from the input node. In HTN terms,
this is equivalent to returning all possible decompositions that can be done from the input
node. Algorithm 5 shows the pseudocode for the implementation of theGet_Neighbor_List
function.

With the implementation of the Is_Goal function and theGet_Neighbor_List function we
now have our new planning system complete. The SHOP* HTN planner is a combination
of the PYHOP and A* algorithms. A* brings its main scheme, the guided heuristic search,
while PYHOP brings its HTN planning system, embedded on the A*. Since we are
embedding the PYHOP functionality into the A* algorithm, our new planner SHOP* is
inheriting two of the most important characteristics of A*:

• The algorithm is proven to be complete. If a solution exists, then it is guaranteed to
be found. Otherwise, it correctly reports that no solution is possible.

• If the heuristic function h(n) is admissible, meaning that it never overestimates the
distance from the current node to the closest goal node, then the solution found by
the planner is optimal.

All of this have been possible by implementing the Is_Goal and Get_Neighbor_List
functions but, what happens with theDist function and h(n) heuristic function from A* and
the operators and methods from PYHOP? These functions are problem specific, meaning
that their implementation depend on the type of problem that needs to be solved. For this
reason these functions have not been shown here. They will be implemented in the next
section, where a specific problem is presented, defined and solved: the Travelling Salesman
Problem [47] in the context of structure inspection operations of the AEROARMS project.

110 Chapter 5. Coupled Geometric and Symbolic Reasoning

Algorithm 5: Pseudocode for the Get_Neighbor_List function. This function
receives an input state and returns a list of all neighbour states that can be reached
from the input state. In HTN terms, this is equivalent of returning all possible
decompositions that can be done from the input state. The first task in the task list
of the input state is recovered. If an operator can be applied to the task, then the
task is removed from the task list of the input state and added to the plan list of
the input state, and the new state is updated accordingly, returning a neighbour list
composed of only one neighbour. If any method can be applied to decompose the
task, then the subtasks resulting of applying each of the applicable methods to the
task are computed, and the task is replaced from the task list with the subtasks,
updating the new states accordingly. In that case, each applicable method and
variable binding generates a new state that is inserted in the neighbour list.
Function Get_Neighbor_List(State state):

neighbor_list = new Empty_List(State);
task = state.task_list[0] if an operator ρ can be applied to task then

newstate = resulting state of applying ρ to task;
newstate.task_list = result of removing task from state.task_list;
newstate.plan_list = result of adding task to the end of state.task_list;
neighbor_list.put(newstate);

else
for each method φ and variable binding θ that can be applied to task do

subtasks = result of decomposing task by applying φ with θ ;
newstate = new copy of state;
newstate.task_list = result of replacing task with subtasks in

state.task_list;
neighbor_list.put(newstate);

return neighbor_list;

5.3 Use Case: Testing the Optimality of SHOP*

In the previous sections we have detailed and explained the steps done to implement
our new planner, the SHOP* HTN planning system. The planner has been implemented
by using the idea of the A* algorithm, the use of a guided heuristic search instead of
the traditional use of a depth-first search for discovering new states. Two of the main
advantages that we claim by using the SHOP* HTN planner are its completeness and,
under certain conditions, its optimality.

In this section we present an use case in the context of the AEROARMS project to test
the optimality of the planner.

5.3.1 Problem Statement

Let us consider a mission M consisting on inspecting a given structure to check the
condition and integrity of the building, such as in the AEROARMS project. There are

5.3 Use Case: Testing the Optimality of SHOP* 111

several ways of doing this, depending on the type of the structure. For example, if the
structure consists on pipes that transport hot gases, a thermal camera can be used to find gas
leaks. Or more generally, a laser profilometer can be used to check the surface condition
of the pipes. In any case, the inspection has to be done by using an aerial vehicle that starts
the mission on its home location, previously known, and the inspection will be done in
specific key points of the structure, also previously known. The aerial vehicle is equipped
with different sensors, each one suitable for different pipe types: a thermal camera for
pipes with hot gases, a profilometer for pipes with gases at room temperature, etc. Before
inspecting each key point, the aerial vehicle must decide which sensor to use and execute
the actions needed to ensure that the inspection is correctly done, such as sending a camera
focus command, triggering the photo, starting the profilometer, etc. Let us define L as
the set of locations where the inspection has to be done, that is, the key points, and H
as the starting home location of the aerial vehicle. The objective is to inspect the whole
structure visiting each of the locations of L only once, starting from the home location
H and finishing in the same home location, minimizing the total distance travelled during
the mission.
As can be seen, the implicit combinatorial problem can be expressed by the edges of

a graph GN(V,E) with N vertices, where the vertices V are the union of L and H and
the edges E are the weighted straight line connections between every two locations, with
the weight representing the Euclidean distance between the locations. Let us define more
formally the problem by introducing some definitions.

Definition 5.3.1 (Complete Graph) A complete graph GN is a graph with N vertices and an
edge between every two vertices.

Definition 5.3.2 (Weighted Graph) A weighted graph is a graph in which each edge is
assigned a weight representing the cost of traversing that edge.

Definition 5.3.3 (Hamilton Circuit) A Hamilton circuit is a circuit that uses every vertex of
a graph once.

Given the previous definitions, we can define our problem as the problem of finding a
minimum-weight Hamilton circuit in GN that starts in H . Part of the problem described
here is very similar to the well-known Travelling Salesman Problem (TSP) [47].

5.3.2 SHOP* Problem Domain

To model the SHOP* domain for the problem presented in the previous subsection we need
first to design a hierarchical task network to represent the domain. Figure 5.2 shows the
task network designed. The ellipse shaped nodes represent methods, the rectangle shaped
nodes represent operators and the diamond shaped nodes represent preconditions. Nodes
grouped by a box represent subtasks of the same decomposition. Purple arrows represent
the order on which subtasks have to be executed inside a decomposition, left to right in
the figure. S’ and S" represent modified states over the input state S. Only operators can
modify states. The input arguments for the methods and operators are inside parenthesis.
The state is always an argument for each method and operator.

112 Chapter 5. Coupled Geometric and Symbolic Reasoning

Figure 5.2 Task network designed for the TSP-derived problem presented in
Subsection 5.3.1. The ellipse shaped nodes represent methods, the
rectangle shaped nodes represent operators and the diamond shaped nodes
represent preconditions. Nodes grouped by a box represent subtasks of the
same decomposition. Purple arrows represent the order on which subtasks
have to be executed inside a decomposition, left to right in the figure. S’
and S" represent modified states over the input state S. Only operators can
modify states. The input arguments for the methods and operators are inside
parenthesis. The state is always an argument for each method and operator.
Precondition cond1 checks if in the current state S there are locations that
remain unvisited. Precondition cond2 checks the pipe conditions, which is
needed to choose the most appropriate sensor between the two available to do
the inspection.

Some variable bindings have been added to the State class to ease the implementation
of the domain: one object of type Set with the locations that have been visited and another
Set object with the locations that remain unvisited. In addition to these two sets, the
starting location and the current location of the aerial vehicle have been included, as well

5.3 Use Case: Testing the Optimality of SHOP* 113

as a reference to a dictionary that holds for each location its cartesian coordinates. At
the starting state, the set of visited locations is empty and the set of unvisited locations
contains all target locations, with the exception of the start location of the aerial vehicle
from which the mission starts.

The top-level method is called TSP and receives as input the current state of the world.
This method can generate two types of decompositions depending on the logical value
of the precondition cond1. This precondition checks if in the current state S there are
locations that remain unvisited. If that is not the case, then the aerial vehicle has to move
from its current location to the start location and finish the mission; these subtasks conform
a decomposition group, thus the returned decomposition contains two subtasks, Visit and
End, for which both operators have been implemented. Only one decomposition is returned,
as there is no need for variable binding. The Visit operator modifies the state to exclude
from the unvisited set the location passed as argument and to include that location in the
set of visited, also updating the current location of the aerial vehicle. The End operator
is a convenience operator that signals the end of a mission, and does nothing over the
received state. Its only purpose is to appear at the end of the resulting plan.

In the case that there are locations that remain unvisited, then the TSP method returns a
different decomposition, composed of two subtasks. The first is the Select subtask, for
which a method has been implemented, and the second is a TSP subtask. The Select
subtask has the purpose of selecting one location from the unvisited set. After selecting a
location and computing the decomposition for the Select task, the input state S is modified,
so the following call for the TSP method is done with the new state S’, which now contains
one less location to visit. So, the TSP method can be seen as a recursive method that on
each call decomposes a problem of smaller size (one location less to visit). It is needed to
say that for this decomposition group, a variable binding for the loc variable is needed,
as it can take as value any of the locations that appear in the unvisited set. So, the Select
method will generate as many decompositions as values can take the loc variable.

Given a variable binding, the Select method generates a third decomposition group. This
group is composed of a Visit subtask for the given location, and a Inspection subtask. For
this last, a method has been implemented that generates two possible subtasks depending on
the value of cond2. The purpose of this condition is to check the pipe type and choose the
most appropriate sensor between the two available: the thermal camera of the profilometer.
For each sensor, an operator has been implemented that models the actions needed to use
the specific sensor type. These operators do not modify the state received as argument.
After explaining the HTN network implemented, from the A* algorithm shown in

Algorithm 3 there are two functions left to complete the domain for our SHOP* planner:
the Dist function and the Heuristic_Cost function.

The Dist function computes the distance (cost) of going from the current node to one of
its neighbours. This function is needed to compute the g(n) value of A*. In our problem,
the cost of going from one state state1 to a neighbour state state2 is the cost of going
from the current location where the aerial vehicle is in state1 to the location where the
aerial vehicle is in state2. This cost has been modelled as the Euclidean distance between
locations. Algorithm 6 shows the pseudocode for our Dist function.

The Heuristic_Cost function computes the estimated distance of going from a node to
the closest goal node, and represents the value of h(n) in A*. As we want to show the

114 Chapter 5. Coupled Geometric and Symbolic Reasoning

Algorithm 6: Pseudocode for the Dist function. The cost of going from one state
state1 to a neighbour state state2 is the cost of going from the current location
where the aerial vehicle is in state1 to the location where the aerial vehicle is in
state2. This cost has been modelled as the Euclidean distance between locations.
Function Dist(State state1, State state2):

return euclidean_distance(state1.current_loc,state2.current_loc);

optimality of our planner, we need to choose an admissible heuristic. So, let us first define
the concept of a Minimum Spanning Tree (MST).

Definition 5.3.4 (Spanning Tree) A spanning tree of a graph is a subgraph that contains all
the vertices of the graph and is a tree.

Definition 5.3.5 (Minimum Spanning Tree) From all spanning trees of a graph, theminimum
spanning tree is the one with the minimum sum of the edge costs of the tree.

Figure 5.3 shows an example of a minimum spanning tree. The graph from the left has
multiple spanning trees, but the one with the minimum sum of edge cost is shown at the
right of the figure.

Figure 5.3 Minimum spanning tree example graph. The graph from the left has multiple
spanning trees, but the one with the minimum sum of edges cost is shown at
the right of the figure. In that case, its sum value is of 10 units.

Given the definition of a minimum spanning tree, we have implemented the heuristic
function for our problem as follows: given a state n, the heuristic function h(n) is computed
as the sum of the distance to the nearest unvisited location from the current location plus
the estimated distance to travel all the unvisited locations plus the nearest distance from an
unvisited location to the start location. The estimated distance to travel all the unvisited
locations is computed by creating a weighted graph from all the unvisited locations and
computing the sum of the edge costs of its minimum spanning tree. By this way, our
heuristic function h(n) never overestimates the cost of going to the closest goal node, so
we have an admissible heuristic function.

5.3 Use Case: Testing the Optimality of SHOP* 115

Algorithm 7 shows the pseudocode for our Heuristic_Cost function. To compute the
minimum spanning tree of a graph there are multiple algorithms, but in this thesis we have
used the Python implementation of the Kruskal’s algorithm [68, 15].

Algorithm 7: Pseudocode for the Heuristic_Cost function or h(n). Given an input
state, the heuristic function is computed as the sum of the distance to the nearest
unvisited location from the current location plus the estimated distance to travel
all the unvisited locations plus the nearest distance from an unvisited location
to the start location. The estimated distance to travel all the unvisited locations
is computed by creating a weighted graph from all the unvisited locations and
computing the sum of the edge costs of its minimum spanning tree. This is an
admissible heuristic as it never overestimates the cost to go to the closest goal node.
Function Heuristic_Cost(State state):

cost = 0;
cost+= distance_to_nearest_unvisited(state.current_loc,state.unvisited);
cost+= minimum_spanning_tree_cost(state.unvisited);
cost+= distance_to_nearest_unvisited(state.start_loc,state.unvisited);
return cost;

5.3.3 Solving a Specific Case

In this subsection we will present a first use-case to test the optimality of our new planner.
Although a deeper study with simulation results where three different techniques for
solving the problem in Subsection 5.3.1 has been done and is presented in the next section,
presenting and solving here a simple example can be useful to understand how our new
planner works.

Given an aerial vehicle that starts the mission on a specific location, our objective is to
check the integrity of a given structure that is primary composed by gas pipes. The mission
presented here is an inspection task, such those targeted by the AEROARMS project.
The locations of interest or key points where the aerial vehicle has to do the inspection
are known before the mission starts. From its starting position, the aerial vehicle has to
visit each location once, returning from the last visited location to the start location, and
minimizing the distance travelled during the mission.
Figure 5.4 shows the input problem. Ten locations where the aerial vehicle has to do

the inspections have been defined, marked in red color. The starting location is marked in
green color. All locations are expressed in cartesian coordinates, and the distances between
locations are computed as Euclidean distances. The measurement unit has been omitted in
the axes because it depends on the coordinate system used, and this can be configured for
the domain (the measurement unit can be configured to be meters, kilometres, and so on).

To test if SHOP* was capable of computing the optimal solution by using the heuristic
function defined in Algorithm 7, a brute force algorithm was used to solve the problem.
The brute force algorithm checks all the possible routes for the aerial vehicle and returns
the one with the minimum length.

116 Chapter 5. Coupled Geometric and Symbolic Reasoning

Figure 5.4 Use case for testing the optimality of SHOP*. Ten locations where the aerial
vehicle has to do the inspections have been defined, marked in red color. The
starting location is marked in green color. All locations are expressed in
cartesian coordinates, and the distances between locations are computed as
Euclidean distances. The measurement unit has been omitted in the axes
because it depends on the coordinate system used, and this can be configured
for the domain (themeasurement unit can be configured to bemeters, kilometres,
and so on).

Figure 5.5 shows the graphs resulting of applying the brute force algorithm and the
SHOP* algorithm to the input problem. The numbers over the red locations represent the
order on which the locations are visited on each graph. The dashed line represents the
return of the aerial robot from the last visited location to the start location. Both algorithms
returned a path length of 31,231646 units (rounded to six decimals, but a higher precision
is achieved), so from all possible solutions to the problem, our SHOP* algorithm was
capable of computing the optimal solution. It is interesting to see that, although both
algorithms returned the same path length, the graphs are different, as the order on which
the locations are travelled varies from one to another. That means that, for the problem
presented in Subsection 5.3.1, there may be different optimal solutions, and our planner
only returns one of them.

5.3 Use Case: Testing the Optimality of SHOP* 117

(a) Brute force graph result for the input problem of Figure 5.4.

(b) SHOP* graph result for the input problem of Figure 5.4.

Figure 5.5 Resulting graphs of applying the brute force algorithm and SHOP* to the input
problem. Figure 5.5a shows the solution returned by the brute force algorithm.
Figure 5.5b shows the solution returned by the SHOP* planner. The numbers
over the red locations represent the order on which the locations are visited on
each graph. The dashed line represents the return of the aerial vehicle from the
last visited location to the start location. Both algorithms returned a path length
of 31,231646 units (rounded to six decimals, but a higher precision is achieved),
so from all possible solutions to the problem, our SHOP* algorithmwas capable
of getting the optimal solution. Although both algorithms returned the same
path length, the graphs are different, as the order on which the locations are
travelled varies from one to another. That means that, for the problem presented
in 5.3.1, there may be different optimal solutions and our planner only returns
one of them.

118 Chapter 5. Coupled Geometric and Symbolic Reasoning

5.4 Simulation Results

Different simulations have been carried out to compare three different options to solve the
problem presented in Section 5.3. The options that have been evaluated are:

• The coupled approach presented in this chapter, using our new SHOP* HTN planner.

• The use of the original JSHOP2 planner.

• The decoupled approach presented in Chapter 4, consisting on the dual-planner
interconnection OptaPlanner-JSHOP2.

The domain designed for the coupled approach, our new SHOP* HTN planner, was
explained in Section 5.3. In that section, the hierarchical task network designed for solving
the problem was presented and shown in Figure 5.2. This hierarchical task network have
been reused in the second option, the original JSHOP2 planner.
For the third option, the dual-planner interconnection OptaPlanner-JSHOP2, some

modifications have been done. In first place, now OptaPlanner is used as a TSP solver
instead of a VRP solver as it was used in Chapter 4. The score for the OptaPlanner domain
has been configured to use only one type of constraint: a soft-constraint that measures
the distance travelled by the aerial vehicle. The solver has been configured to use one
Construction Heuristic phase plus a Metaheuristic Phase. As Construction Heuristic the
First Fit algorithm was used. As Metaheuristic, the five local search algorithms tested in
Section 4.7 have been used: Simulated Annealing, Late Acceptance, Tabu Search, Hill
Climbing and Step-Counting Hill Climbing. Additionally, a Brute Force algorithm has
been used. For all the algorithms, a time limit of five minutes was configured. In the figures
presented in this section they are referenced as SA, LA, TS, HC, SC and BF respectively.
After computing the order on which the locations must be travelled to minimize the
distance (the Euclidean distance between each pair of locations is used), OptaPlanner
calls the JSHOP2 process passing the ordered list of locations as argument. Then, from
this ordered list, a task network is decomposed to obtain the low-level plan. As the task
network knows the order on which the cities have to be visited, for this purpose we have
changed slightly the task network used in the other two approaches. The new hierarchical
task network is shown in Figure 5.6. The main difference with respect to the original
network is that now the TSP method receives an additional argument, a list order with
the unvisited locations in the order on which they must be visited. The first consequence
of this change is that now the Select method does not need a variable binding for the loc
variable, as it will take as value the first location on the list. The second consequence is
that the Visit operator must modify the order list to remove the first location from the
list, so that the following call to the TSP method receives correctly the updated order list.
Henceforth, when we talk about OptaPlanner we are making reference to the dual planner
interconnection OptaPlanner-JSHOP2.

For the tests, six data sets have been generated with problem sizes of 10, 15, 20, 25, 30
and 35. The problem size is given by the number of locations that the aerial vehicle must
visit. Each of the data sets is composed of five different problems where the coordinates
for the locations have been generated randomly to be included in the range [0, 100] on

5.4 Simulation Results 119

Figure 5.6 Redesigned task network for the OptaPlanner-JSHOP2 test. The new
hierarchical task network differs slightly from the task network of Figure 5.2.
Themain difference is that now the TSPmethod receives an additional argument,
a list order with the unvisited locations in the order on which they must be
visited. The first consequence of this change is that now the Select method
does not need a variable binding for the loc variable, as it will take as value
the first location on the list. The second consequence is that the Visit operator
must modify the order list to remove the first location from the list, so that the
following call to the TSP method receives correctly the updated order list.

each axis. Thus, we have 30 different problems to solve. The tests have been done on a
machine with an Intel i7 CPU at 2 GHz and 8GB RAM. The goal of the simulations is to
compare the performance of the three different options (OptaPlanner-JSHOP2, SHOP*
and JSHOP2).
The measurement unit in the simulations are meters. One purpose of the simulations

was testing the quality of the computed solutions. The quality of the solutions is given by
its score, which measures the total distance travelled in meters by the aerial vehicle when
traversing the locations. We use the Euclidean distance between each pair of locations.

120 Chapter 5. Coupled Geometric and Symbolic Reasoning

The lower the distance, the better the score is. Figures 5.7, 5.8 and 5.9 show the mean and
standard deviations values for the algorithms tested. Note that as the SHOP* algorithm
always computes the optimal solutions as it uses an admissible heuristic, its mean and
standard deviation values are the best possible, so they are considered as the optimal mean
and standard deviation and thus, serve as reference for the other algorithms. The Brute
Force and JSHOP2 algorithms are far from the others, so those are the two algorithms that
offered the worst results. In the case of Brute Force, this bad result is because it reached
the time limit without exhausting the search, so it did not find the optimal solution. For the
remaining, it can be seen that the OptaPlanner algorithms computed results that are near
to the optimal mean computed by SHOP* in all data sets, but the difference seems to grow
slowly as the problem size increases. So, the SHOP* planner computed the best solutions.

(a) 10 Locations set result. (b) 15 Locations set result.

Figure 5.7 Results for the 10 and 15 locations data sets. For every set, the upper graph
shows the results for all the algorithms tested, the computed travelled distance.
As the results of two of the algorithms, Brute Force and JSHOP2, were very
far in value from the others, an additional graph is shown below showing a
zoom for the six best algorithms and displaying a red line that represents were
the optimal mean value for the data set is located (the optimal mean is the
mean computed from the optimal solutions of a data set). This line will always
contains the point that represent the mean of the SHOP* algorithm, as it always
gets the optimal solutions due to the use of an admissible heuristic. For every
algorithm, the mean and standard deviation are shown. The SHOP* mean and
standard deviation represent the optimal mean and standard deviation, so it is
used as a reference. Brute Force and JSHOP2 computed the worst results, very
far from the other algorithms in both data sets. In the case of Brute Force, this is
because it exhausted the time limit before finding the optimal solution. The rest
of algorithms computed solutions that were optimal or very near to the optimal.
For the 10 locations data set, all got the optimal mean and standard deviation,
with the exception of the Hill Climbing algorithm. For the 15 locations data set,
in addition to Hill Climbing, the Tabu Search algorithm did not get the optimal
mean.

5.4 Simulation Results 121

(a) 20 Locations set result. (b) 25 Locations set result.

Figure 5.8 Results for the 20 and 25 locations data sets. Again, the results computed by
the Brute Force and JSHOP2 algorithms are the worst, very far from the rest in
both data sets. On this time, any of the other algorithms was capable of getting
to the optimal mean of SHOP*. This can be better seen for the 25 locations
data set, where the distance to the optimal mean starts to grow.

(a) 30 Locations set result. (b) 35 Locations set result.

Figure 5.9 Results for the 30 and 35 locations data sets. As it happens with the data sets
shown in Figure 5.8 and 5.7, the Brute Force and JSHOP2 algorithms are
even further from the rest, so at this point we can affirm that those are the two
algorithms that offered the worst results. For the rest, it can be seen that they
still computed results that are near to the optimal mean computed by SHOP*
in both data sets, but the difference seems to grow slowly as the problem size
increases, as it can be seen comparing the results in Figure 5.9a with the results
in Figure 5.9b.

The consumption of memory has been measured in Figures 5.10 and 5.11. It can be
seen that the algorithm that consumes the least amount of memory is JSHOP2, using
near zero MBytes of memory in most of the data sets (it usually consumed few kilobytes).

122 Chapter 5. Coupled Geometric and Symbolic Reasoning

Following that are the OptaPlanner algorithms, which consumed amounts of memory
near the 100 Mbytes. Those algorithms have shown a very similar behaviour in memory
consumption, having very similar means and standard deviation values, so we have omitted
additional plots for them. As JSHOP2, the memory consumption for OptaPlanner does not
increase with the problem size, which traduces in a high scalability. Finally, SHOP* was
the algorithm that used a higher amount of memory, which increases with the problem
size. SHOP* memory consumption has been proven to increase linearly with the execution
time for this problem domain, as it can be seen in Figure 5.11, being therefore the worst in
memory consumption.

Finally, as Simulated Annealing has been proven to be the best from all the OptaPlanner
algorithms for this domain (we also got this conclusion in Section 4.7, where it tied with
Step Counting Hill Climbing), and as JSHOP2 is unable to optimize its solutions, we
have finally centred our attention in comparing the optimization curves for SHOP* and
Simulated Annealing, shown in Figure 5.12.

Each curve is an approximation made with a third degree polynomial from the results of
the six data sets, and represent how each algorithm optimizes the solutions as time goes by.
Both algorithms tend to decrease the computed best scores as time increases (lower values
on the y axis are better), but from a given time instant, the SHOP* curve gets better (lower)
values. That means that our guided heuristic search drives the search faster to compute
better values than Simulated Annealing.

5.4 Simulation Results 123

Figure 5.10 Maximum memory usage per data set. From all the algorithms, the one
that needed the least amount of memory was the JSHOP2 algorithm, having
checked that it used no more than 23 Mbytes in its worst case. All of the
algorithms used by OptaPlanner (Brute Force, Hill Climbing, Tabu Search,
Simulated Annealing, Late Acceptance and Step Counting Hill Climbing)
showed a very similar usage of memory, with almost identical mean values
and very low standard deviations. For this reason, they appear overlapped. For
clarity purposes, we omit a zoom for these algorithms because its behaviour in
memory use is almost the same, but it is interesting to see that they always use
more or less the same amount of memory, around 100 Mbytes independently
of the problem size. This gives us an idea of their good scalability. SHOP* was
the algorithm that used the greatest amount of memory, which increased with
the problem size so it is the algorithm with worst scalability. It is interesting
to see its high standard deviation values. As it will be explained later (see
Figure 5.11, the SHOP* memory consumption increases linearly with the
execution time. So, for a given problem, the amount of memory used is given
by the execution time needed to solve it: problems that are solved soon use
less memory than problems that are solved later. As in a specific problem the
distance of the goal state from the root of the search tree is random (as the
visit and start locations have been generated randomly), then for each data set
we can have problems that are solved very soon or very late, which is traduced
in high standard deviation values for memory usages.

124 Chapter 5. Coupled Geometric and Symbolic Reasoning

Figure 5.11 SHOP* memory consumption per execution time. From all the solved
problems for the six data sets, a total of 30 points (5 per data set) that
represent the memory usage per execution time is represented. The points
have been approximated with a least squares line. As it can be seen, the
memory usage of SHOP* increases linearly with the execution time. Each
discovered state must be kept in memory until the algorithm finishes, because
each state can be re-discovered and its score improved, so the use of memory
increases with the execution time. It is important to clarify that the amount
of memory increased depends on the problem: for example, problems with
a large combinatorial nature will produce more states on each iteration and
consume more memory. Thus, the plot shown in this figure must be seen as
the memory consumption curve for the specific problem solved, and not as
the general memory consumption curve for SHOP*.

5.4 Simulation Results 125

Figure 5.12 SHOP* and Simulated Annealing Optimization Curves. Each curve represents
the best score as a function of the execution time. Each curve is an
approximation made with a third degree polynomial from the results of the six
data sets, and represent how each algorithm optimizes the solutions as time
goes by. As from all the tested OptaPlanner algorithms Simulated Annealing
offered the best results, for clarity purposes we omit the curves for the rest
of algorithms. The lower the distance in meters, the better the solution is, so
lower values in the y axis are better. Both algorithms tend to decrease the
computed best scores as time increases, but from a given time instant (near
second 75 approximately), the SHOP* curve gets better (lower) values. That
means that the guided heuristic search drives the computed solutions faster to
better values than Simulated Annealing.

126 Chapter 5. Coupled Geometric and Symbolic Reasoning

5.5 Conclusions

In this chapter we have addressed the combination of geometric and symbolic reasoning
by following a coupled approach.

A new HTN planner has been developed, based on the ideas of the A* algorithm. The
depth-search algorithm of the Python implementation of JSHOP2 has been replaced by
our new A*-based search algorithm.

The main idea of our new SHOP* HTN planner is to perform a guided heuristic search.
The purpose of the guided heuristic search is to replace the depth-first algorithm present in
most HTN planners and drive the search towards the best possible solution expanding first
the more promising nodes. For domains that involve some kind of geometric reasoning, a
geometric projection of the decomposition nodes based on geometric computation, such as
using Euclidean distances and so on, can be used, avoiding the needs of using an external
geometric planner.
Our new HTN planner is capable of computing the optimal solution if the heuristic

function provided to the system is admissible. Although the planner is capable of working
in any type of domains, single or multi-vehicle, for clarification purposes we have tested
the planner in a single-vehicle domain example against a brute force algorithm to check
that effectively, when the admissibility criterion is satisfied by the heuristic function, then
the optimal solution is returned.
Several tests have been additionally done to measure the performance of our new

HTN planner against the original JSHOP2 implementation and the decoupled approach
OptaPlanner-JSHOP2 tested in the previous chapter, in the context of the AEROARMS
project for a single aerial vehicle. We have demonstrated that only SHOP* was capable
of computing the optimal solution in all data sets. SHOP* has proven to be the fastest
algorithm after the original implementation of JSHOP2, which computed the worst score
results.

Future work include the optimization of the SHOP* algorithm to decrease the memory
consumption. In addition, the performance of our new planner has to be measured in
multi-vehicle domains, as they usually involve higher computational loads.

6 Conclusions and Future
Developments

This chapter summarizes the main contributions of the thesis and highlights its main
results. Advantages and disadvantages of the proposed approaches are discussed.

Finally, in order to overcome the drawbacks, some guidelines are introduced for future
improvements.

6.1 Conclusions

The application of symbolic Hierarchical Task Network (HTN) planning in the resolution
of Vehicle Routing Problems (VRP) in domains involving unmanned vehicles is addressed
in this thesis, in the context of assembly and inspection operations .
The different ways to integrate symbolic and geometric reasoning researched and

developed along the last years are categorized in Chapter 2. From the literature, three
different categories have been clearly distinguished and identified: symbolic layer calls
the geometric layer, geometric layer calls the symbolic layer, and sample in the compound
state. When connecting geometric and symbolic layers, one of these three categories needs
to be applied.

Even though there are many powerful symbolic planning methods, we focused our work
in HTN because hierarchies resemble the way the humans think, act and organize the
world, as we explained in Chapter 3. That makes the use of HTN planners for solving
real-world problems a natural approach. Modelling the domain requires a bigger effort
compared to other planning techniques, because the knowledge must be provided by a
human that has some expertise in the matter, but the domain is more easily understandable
by any person. This knowledge gives a boost in terms of performance and coverage across
many domains to HTN planners compared to classical planners. The higher performance
of this planning technique makes the difference against other classical choices, justifying
our selection of HTN planning for problem solving. In addition, the JSHOP2 HTN planner
has been presented as our selected HTN planner for the research. Its modelling language is

127

128 Chapter 6. Conclusions and Future Developments

a direct translation of PDDL. It has been shown to be sound and complete, and it has been
also adapted to be integrated in multi-agent environments, being capable of interacting
with external agents and making queries to distributed heterogeneous information sources.
Because it is widely extended and accepted in the research community, we chose this
planner among the different possibilities.
Two approaches to integrate geometric reasoning with the HTN planner have been

studied, presented and tested. The first approach consists on a new score-based optimization
method for connecting a VRP planner with the HTN planner. We call this the decoupled
approach as we solve the lack of geometric reasoning of the symbolic HTN planner by
connecting it to a separate planner that communicate with it and feeds it with the missing
geometric information. The second approach, which we call the coupled approach, consists
on the development of a new HTN planner to perform a guided heuristic search that
enhances the performance of the planner and eases the use of geometric information in the
HTN planning engine, without needing to connect it to a VRP planner.

6.1.1 Decoupled Approach

The decoupled approach was presented in Chapter 4 and consists on a new score-based
optimization method that allowed us to connect two independent planning systems, the
geometric planner and the HTN planner, in the context of structure assembly missions that
involve the VRP. We solve the lack of geometric reasoning of the symbolic HTN planner
by connecting it to a VRP planner that communicates with it and feeds it with the missing
geometric information. Both planners communicate to optimize the solutions found based
on a scoremethod, and the solutions are improved over time. The planning engine presented
performs task assignment and scheduling to increase parallelism and cooperation in the
domain of the ARCAS project, mixing geometric and symbolic reasoning.
A quantitative study for each of the possible configurations for the VRP planner was

made, running multiple simulations. The decoupled approach was able to compute a valid
assignment of structure parts for the aerial vehicles on each simulation. In addition, a
correct scheduling for the different actions of the resulting plan for each of the vehicles
was generated in all the simulations. The bi-directional communication between the
geometric planner and the symbolic HTN planner allowed the optimization of the solutions
found by the VRP planner. Different metaheuristic algorithms were tested and compared.
Although these algorithms are not capable of finding the optimal solutions, they can
compute reasonably good solutions in short times, showing their effectiveness.

6.1.2 Coupled Approach

The coupled approach consists on the development of a new HTN planner based on the
idea of a guided heuristic search and inspired by the A* algorithm. The purpose of the
guided heuristic search is to replace the depth-first algorithm present in most HTN planners
and drive the search towards the best possible solution expanding first the more promising
nodes. For domains that involve some kind of geometric reasoning, such as the VRP, a
geometric projection of the decomposition nodes based on geometric computation, such as
using Euclidean distances and so on, can be used, avoiding the needs of using an external
geometric planner. We call this planner the SHOP* HTN planner.

6.2 Future Developments 129

Our new HTN planner is capable of computing the optimal solution if the heuristic
function provided to the system is admissible. We have tested it in a single-vehicle domain
example in the context of the VRP and against a brute force algorithm. The results show
that when the admissibility criterion is satisfied, then the solution returned from our new
planner is optimal.

Several tests have been additionally done to measure the performance of our new HTN
planner against the original JSHOP2 implementation and the decoupled approach from
Chapter 4, in the context of the AEROARMS project. In the tests it is shown that only
SHOP* was capable of computing the optimal solution in all the data sets. The speed
of our SHOP* planner was also compared with the fastest solver configuration for the
Optaplanner-JSHOP2 connection, showing that SHOP* is the fastest algorithm.

6.2 Future Developments

One of the main drawbacks of the decoupled approach is the impossibility of ensuring
the completeness of the system. In the decoupled approach, the search is mainly driven
by OptaPlanner, which in turns calls JSHOP2 to get feedback from the symbolic level
and tries to optimize the solution found at the geometric level. JSHOP2 is sound and
complete, but that is not the case of OptaPlanner so our decoupled approach cannot ensure
that it will always find a solution if one exists. Further research on this is needed. One
possible solution is to let JSHOP2 drive the main search and call the geometric planner to
get feedback from the geometric level. If OptaPlanner is not capable of finding a solution
in the geometric level, we can let JSHOP2 continue and finish the search at the symbolic
level, making some assumptions to bypass the missing geometric information or even
trying to compute a solution to the geometrical problem when OptaPlanner fails. As the
main search will be done by JSHOP2, which we know is sound and complete, we can
then ensure the completeness of the system. Also, in future work, the goal is to execute
the missions with the prototypes developed in the ARCAS project in order to find more
realistic aspects to enrich the decoupled approach.
For the coupled approach, an optimization of the SHOP* main algorithm to decrease

the memory consumption is needed, as in domains with a large combinatorial nature, the
system that is executing the planner may run out of memory very fast. In addition, the
performance of our new HTN planner has to be measured in multi-vehicle domains with
the prototypes from the AEROARMS project, as having multiple agents usually involve
higher computational loads. Finding an admissible heuristic that lets the planner compute
the optimal plans is also more difficult. In addition to this, the quality of the solutions when
using a non-admissible heuristic has to be studied and compared with other approaches.

List of Figures

1.1 Overview of the ARCAS project. 7
1.2 Aerial robot with multiple articulated arms. 8

4.1 Example of Change and Swap MoveSelectors. 45
4.2 Example of Change and Swap Pillar MoveSelectors. 46
4.3 Example of nesting MoveSelectors. 47
4.4 Example structure showing the importance of establishing a priority when selecting

the parts. 68
4.5 Planning algorithm. 84
4.6 CAD model of the indoor testbed. 85
4.7 Assembly structure for the mission. 86
4.8 Gantt chart of the best solution found by the system. 89
4.9 Aerial robot prototype equipped with a robotic arm in the indoor testbed located

in the FADA-CATEC facilities in Seville (Spain). The model of this prototype has
been used in the simulations of the missions 90

4.10 Structures. 90
4.11 Results of the scalability tests done in a range of available aerial robots between

10 and 50. 94
4.12 Simulation screenshot of an assembly action. 95

5.1 Example of breadth-first and depth-first search applied to a HTN decomposition. 102
5.2 Task network designed for the TSP-derived problem. 112
5.3 Minimum spanning tree example graph. 114
5.4 Use case for testing the optimality of SHOP*. 116
5.5 Resulting graphs of applying the brute force algorithm and SHOP* to the input

problem. 117
5.6 Redesigned task network for the OptaPlanner-SHOP2 test. 119
5.7 Results for the 10 and 15 locations data sets. 120
5.8 Results for the 20 and 25 locations data sets. 121

131

132 List of Figures

5.9 Results for the 30 and 35 locations data sets. 121
5.10 Maximum memory usage per data set. 123
5.11 SHOP* memory consumption per execution time. 124
5.12 SHOP* and Simulated Annealing optimization curves. 125

List of Tables

4.1 Types defined for the PDDL domain. In addition to the two built-in types, five
new types have been defined to model the different objects that may be present
in a problem instance for the domain. The aerial vehicles that may be present
in a problem instance are of the specific type quadrotor, and all the parts are
considered to be of the same type. The location type defines the places where
the different objects of the problem instance are situated. This type serves
as the parent of two special location types, the pick_location and assembly_-
location types, which define the location from where a part has to be picked and
the location where a part has to be placed in the structure, respectively. When
reaching a specific pick/place location, a vehicle may need additional data on
how to finally pick or place the related part, so this additional data requirement
has been modeled by defining these two special location types 52

4.2 Predicates defined for the PDDL domain. These predicates model the state
at which the quadrotors or parts may be, or the relations between different
entities. For example, a specific quadrotor may be in the landing state during a
LAND action or in the moving state while travelling from one location to another.
Similarly, a part will be in the assembled state after it has been assembled
on the final structure. In the case of the assemble_at predicate, it tells the
location on which a specific part must be assembled, establishing a logical
relation between both entities. The at predicate has been defined to have a
second form to cover the case of a part that has been picked by a quadrotor
and that is considered to be at the vehicle. Both forms differ on the type of their
arguments 53

4.3 Functions defined for the PDDL domain. Four different functions have been
defined to model the battery and speed of the quadrotors, the distance between
locations and the parts that remain to be assembled. The battery is expressed
in seconds, as it represents the time that is left until the battery runs out. The
remaining_parts function represents the parts that are left to be assembled in
a given time 54

133

134 List of Tables

4.4 Construction Heuristic solver phase results for 30 simulations. For each algorithm,
the mean and standard deviations for the hard, medium and soft constraint
values are presented, as well as the mean computation time. The broken
constraints are represented as negative values 91

4.5 Meta-heuristics solver phase results of the soft constraints generated after 30
simulations with three different structures. The solver was configured with a
time limit of ten minutes if the search did not finish before. However, all the
algorithms reached the time limit without exhausting the search 92

List of Codes

4.1 Derived predicates defined for the PDDL domain. These predicates have been
defined to infer logical expression that automatically become true after some
other logical expression changes its value to true. Three derived predicates
have been defined. The first derived predicate tells that if a part is assembled,
then it must exists an assembly location on which the part is placed. The
second derived predicate tells that if a part is assembled, then all the parts
that are dependencies for this part must also be assembled. The third derived
predicate tells that if a part is at a quadrotor, then the quadrotor is transporting
the part 52

4.2 Take-off durative action. The quadrotor must be landed at the start of the
action, and during the action its state must be taking-off and its battery must be
equal or greater than zero. If these conditions are met, then the state landed
is removed at the start, the taking-off state is set and the battery is decreased.
At the end (when the action finishes), the taking-off state is removed and the
quadrotor enters in hovering state. The duration has been set to fifteen seconds 56

4.3 Land durative action. The quadrotor must be hovering at the start of the action,
and during the action its state must be landing and its battery must be equal
or greater than zero. If these conditions are met, then the state of hovering
is removed at the start, the landing state is set and the battery is decreased.
At the end (when the action finishes), the landing state is removed and the
quadrotor enters in a landed state. The duration has been set to fifteen seconds 57

135

136 List of Codes

4.4 Move durative action. The quadrotor must be hovering at the start of the action,
must be located in the start location, and during the action its state must be
moving and its battery must be equal or greater than zero. If these conditions
are met, then the state of hovering is removed at the start, the quadrotor is no
longer located at the start location, the moving state is set and the battery is
decreased. At the end (when the action finishes), the moving state is removed,
the quadrotor enters in a hovering state and finishes located at the end position.
The duration has been computed from the distance to travel and the average
speed of the quadrotor 58

4.5 Pick durative action. The quadrotor must be hovering at the start of the action,
it must not be transporting any part, the part must be located on its pick location
and not assembled. During the action, the state of the quadrotor must be
picking and its battery must be equal or greater than zero. If these conditions
are met, then the state of hovering is removed at the start, the part is no
longer located at its pick location, the picking state is set and the battery is
decreased. At the end (when the action finishes), the picking state is removed,
the quadrotor enters in hovering state and the part finishes located at the
quadrotor. The duration has been set to twenty seconds 59

4.6 Dual Pick durative action. This action has been defined to model the case of
a part that needs to be picked by two robots due to its weight. The conditions
and effects that appeared in Code 4.5 are now duplicated, having one for each
of the vehicles. When the action is finished, the part is considered to be at both
vehicles. The duration has been set to thirty seconds 60

4.7 Place durative action. The quadrotor must be hovering at the start of the action,
it must be transporting the part and located on its assembly location, and the
part must have all its dependencies assembled. During the action, the state
of the quadrotor must be placing and its battery must be equal or greater than
zero. If these conditions are met, then the state of hovering is removed at
the start, the part is no longer located at the quadrotor, the placing state is
set and the battery is decreased. At the end (when the action finishes), the
placing state is removed, the quadrotor enters in hovering state and the part
finishes assembled at its assembly location. The number of remaining parts is
decreased in one unit. The duration has been set to twenty seconds 61

4.8 Dual Place durative action. This action has been defined to model the case of
a part that needs to be placed by two vehicles due to its weight. The conditions
and effects that appeared in Code 4.7 are now duplicated, having one for each
of the vehicles. When the action starts, the part is considered to be at both
vehicles. The duration has been set to thirty seconds 62

List of Codes 137

4.9 Wait durative action. The duration of the action is bounded to be in the range
(0-1). A planner could choose a value in the given range to make a locked agent
wait some time until it is capable of executing any other action, and repeating
the wait if necessary. As specified in the conditions, at the start and during
the wait, the quadrotor must not be doing any other action that implies some
kind of move, such as landing or taking-off. The hovering state is allowed, as a
quadrotor can wait in this state. The effect part of the action is empty, as waiting
only affects the increase of the time variable 63

4.10 Objects declaration for a PDDL example problem. The different quadrotors,
parts and locations that are present in the problem instance are declared 64

4.11 Initialization of values for the different predicates that conform the initial state of
a PDDL example problem. Uninitialized predicates are supposed to be false 64

4.12 Initialization of function values for a PDDL example problem. Functions are
treated as predicates, so they are defined in the same :init section of the
problem description 65

4.13 Goal and metric declaration for a PDDL example problem. The goal represents
the logical expression that must be true in order to consider the problem as
solved. The metrics are additional values that can be used to measure the
quality of the solutions. For the PDDL domain designed in the previous subsection,
this definition remains unaltered among all the problem instances, as all have
as goals assembling all the parts minimizing the total assembly time 65

4.14 Simplified high-level method definition for the decomposition of the high-level
task. The high-level task consists on the assembly of a complete structure,
composed of several parts. The method to decompose that task has been
defined to be recursive, so that on each call it selects from the set of parts, one
that satisfies any of the preconditions-subtasks pairs 67

4.15 Modified high-level method definition for the decomposition of the high-level
task by using priorities. The pairs preconditions-subtasks of a JSHOP2 method
are analogous to an if-then-else construct, and thus the first pairs are checked
first. By this way, it is possible to model preconditions that give priority to a
subset of parts. In that case, the pairs added before those already shown in
Code 4.14 serve to choose first the parts that have all its preconditions met but
also that are known to be dependencies for other parts that are not assembled
yet. In this manner, the unlocking of other parts is favoured 69

4.16 Methods definition for the decomposition of the high-level task into subtasks.
The upper method is for the case of a part that can be transported by a single
aerial robot. The method checks that the part is in a specific location, not
assembled and that all the parts it depends on are assembled, and also that the
aerial vehicle is not transporting any other part. The method is then decomposed
into several submethods, consisting on moving the robot to the part location,
picking the part, moving to the assembly location and placing the part. The
method below corresponds to the case of a part that must be transported by
two aerial vehicles. Its submethods are cooperative versions of the formers 71

138 List of Codes

4.17 Submethod definition for the synchro_wait task. As the rest of the submethods
that represent the different operations of the aerial vehicles, this submethod
serves as a bridge between the method that decomposes the single assembly
tasks and the operators that represent the aerial vehicle actions, in this case
the sync action that will be better explained later. This action is needed in
cooperative operations, where the aerial vehicles must synchronize to be at the
same location at the same time and to coordinate to execute other operations. If
one aerial vehicle is placed in a specific location and the other vehicle is needed
to be at this location to execute between both a cooperative operation, then the
first vehicle must wait until the second finishes its current operation and arrives.
As JSHOP2 plans for the tasks in the order they appear, at this moment of the
search it is possible for the planner to know if the second vehicle is executing
a previous operation. Also, as the MTP technique explained in 3.3.5 is used
in our domain, the start time and duration of this previous operation is already
known, so based on these two timestamps the planner can estimate the time
on which the second vehicle will arrive to the location where the first vehicle
is, and the wait time for the first vehicle can be computed. All this can be
seen on the preconditions of the method, which uses two pairs preconditions-
subtasks to know which of the vehicles must wait. The write-times of the at
property for both vehicles are checked. In a specific moment, the vehicle who
has the greater write-time will not be available until that time is reached by the
global timeline, so if the vehicle with lower write-time wants to do a cooperative
operation then it will have to wait until the write-time of the second vehicle.
As it can be seen, the start and duration times for the synchro_wait task are
computed in the preconditions and are sent to the called operator so that it will
be correctly scheduled 72

4.18 Take-off operator defined for the domain 74
4.19 Land operator defined for the domain 74
4.20 Move operator defined for the domain. The result of applying the operator is

the aerial vehicle being placed at the end location 75
4.21 Two-vehicles version of the move operator. This operator has been specially

defined to cover the case of one part that is being transported by two aerial
vehicles. In that case, the part is supposed to be at both vehicles and they
must move in a synchronized way along all the path while carrying the part.
Thus, this operator is only used after a dual-pick operator execution 76

4.22 Pick operator defined for the domain. The applying of this operator results in
one single part being picked by a single aerial vehicle 77

4.23 Two-vehicles version of the pick operator 78
4.24 Place operator defined for the domain. The applying of this operator results in

one single part being assembled 79
4.25 Two-vehicles version of the place operator 80
4.26 Sync operator defined for the domain. The purpose of this operator is to make

an aerial vehicle to wait an amount of time, so it only has effect on the battery
and at dynamic properties of the vehicle 81

List of Codes 139

4.27 Finish operator defined for the domain. This operator does not appear in the
durative-actions defined for the PDDL domain. It has been defined as a base
case for the recursive method defined in Section 4.4.3 to signal the end of
the planning process and therefore to stop the recursion. It checks in the
preconditions that all the parts have been assembled and has no effects 81

4.28 First tasks of the assembly plan generated by the external assembly planner [90].
The tasks are partially ordered meaning that a single vehicle could do the
assembly correctly by executing the tasks in that order. Tasks that appear later
in the file may be executed before some of the previous as is the case of part
Box001 which constitutes a part of the base and thus do not depend on any other 87

4.29 JSHOP2 planning problem. It contains the assignment from parts to UAVs
generated by the geometric planner and the dependencies computed for each
of the parts by the assembly planner. The state of the different vehicles and
parts is also included 88

5.1 Python code of the main algorithm for the PYHOP HTN planner. The algorithm
is defined as a recursive function that receives the current state of the world,
a list with the tasks that must be decomposed, and a list that represents the
final plan, initially empty. Each task of the task list is also a list where the first
element (task1[0] in the code) is a string that represents the task name and
the rest of elements are the arguments or parameters for the task (task1[1:]
in the code). This is the same for the plan list. If the task list is empty, the
algorithm finishes returning the plan list. If not, then the first task of the list is
retrieved. If the task can be executed directly by an operator, the current state
of the world is updated, the task is removed from the task list and added to the
end of the plan list. If the task can be executed by some methods, they are tried
in order of appearance, the resulting subtasks are computed and added to the
first positions of the task list 107

5.2 Pseudocode for the State class definition. One state is initially composed of
two variables of type List, one for the tasks that need to be decomposed and
one for the tasks that have been decomposed and conform the resulting plan.
Additional variables may be added as needed, depending on the problem domain 108

Bibliography

[1] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, A reactive method for collision
avoidance in industrial environments, Journal of Intelligent & Robotic Systems 84
(2016), no. 1, 745–758.

[2] M. M. Arentoft, Y. Parrod, J. Stader, I. Stokes, and H. Vadon, Optimum-AIV: a
planning and scheduling system for spacecraft {AIV}, Telematics and Informatics 8
(1991), no. 4, 239 – 252.

[3] J. Barry, L. P. Kaelbling, and T. Lozano-Perez, A hierarchical approach to
manipulation with diverse actions, IEEE Internation Conference on Robotics and
Automation (ICRA), 2013.

[4] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, A survey on
metaheuristics for stochastic combinatorial optimization, Natural Computing 8
(2009), no. 2, 239–287.

[5] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, Geometric backtracking for
combined task and motion planning in robotic systems, vol. 247, 2017, Special
Issue on AI and Robotics, pp. 229 – 265.

[6] A. L. Blum and M. L. Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90 (1995), no. 1, 1636–1642.

[7] C. Blum and A. Roli, Metaheuristics in combinatorial optimization: overview and
conceptual comparison, ACM Computing Surveys 35 (2003), no. 3, 268–308.

[8] B. Bonet and H. Geffner, Planning as heuristic search, Artificial Intelligence 129
(2001), 5–33.

[9] F. Brizzi, L. Peppoloni, A. Graziano, E. D. Stefano, C. A. Avizzano, and E. Ruffaldi,
Effects of augmented reality on the performance of teleoperated industrial assembly
tasks in a robotic embodiment, IEEE Transactions on Human-Machine Systems 48
(2018), no. 2, 197–206.

141

142 Bibliography

[10] C. Burbridge and R. Dearden, An approach to efficient planning for robotic
manipulation tasks, Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2013.

[11] O. Caldiran, K. Haspalamutgil, A. Ok, C. Palaz, E. Erdem, and V. Patoglu, Bridging
the gap between high-level reasoning and low-level control, Logic Programming
and Non-monotonic Reasoning, Lecture Notes in Computer Science, vol. 5753,
Springer, 2009, pp. 342–354.

[12] S. Cambon, R. Alami, and F. Gravot, A hybrid approach to intricate motion,
manipulation and task planning, International Journal of Robotics Research (IJRR)
28 (2009), no. 1, 104–126.

[13] M. Cavazza and F. Charles, Dialogue generation in character-based interactive
storytelling, Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE), AAAI Press, 2005, pp. 21–26.

[14] J. Choi and E. Amir, Combining planning and motion planning, IEEE International
Conference on Robotics and Automation (ICRA), 2009, pp. 238–244.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,
3rd ed., The MIT Press, 2009.

[16] I. A. Şucan and L. Kavraki, Mobile manipulation: encoding motion planning
options using task motion multigraphs, IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 5492–5498.

[17] I. A. Şucan and L. E. Kavraki, Accounting for uncertainty in simultaneous task and
motion planning using task motion multigraphs, IEEE International Conference on
Robotics and Automation (ICRA), 2012, pp. 4822–4828.

[18] G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management
Science 6 (1959), no. 1, 80–91.

[19] M. de la Asunción, L. Castillo, J. Fdez-Olivares, O. García-Pérez, A. González, and
F. Palao, SIADEX: an interactive knowledge-based planner for decision support in
forest fire fighting, AI Communications 18 (2005), no. 4, 257–268.

[20] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik (1959), 269–271.

[21] J. Dix, H. Muñoz-Avila, D. Nau, and L. Zhang, IMPACTing SHOP: putting an
AI planner into a multi-agent environment, Annals of Mathematics and Artificial
Intelligence 37 (2003), no. 4, 381–407.

[22] J. Dix and Y. Zhang, Impact: a multi-agent framework with declarative semantics,
pp. 69–94, Springer US, 2005.

Bibliography 143

[23] C. Dornhege, P. Eyerich, T. Keller, M. Brenner, and B. Nebel, Integrating task and
motion planning using semantic attachments, Bridging the Gap Between Task and
Motion Planning, Papers from the AAAI Workshop, 2010.

[24] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel, Semantic
attachments for domain-independent planning systems, International Conference
on Automated Planning and Scheduling (ICAPS), 2009.

[25] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, Integrating symbolic and
geometric planning for mobile manipulation, International Workshop on Safety,
Security and Rescue Robotics (SSRR), 2009.

[26] A. Dutta, Self-assembly in heterogeneous multi-agent system using constrained
matching algorithm, 2016 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), Oct 2016, pp. 351–358.

[27] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras, Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for
robotic manipulation, IEEE International Conference on Robotics and Automation
(ICRA), 2011, pp. 4575–4581.

[28] K. Erol, J. Hendler, and D. Nau, HTN planning: complexity and expressivity,
Proceedings of the National Conference on Artificial Intelligence (AAAI), AAAI
Press, 1994, pp. 1123–1128.

[29] K. Erol, J. A. Hendler, and D. Nau, UMCP: a sound and complete procedure for
hierarchical task-network planning, Proceedings of the International Conference
on AI Planning & Scheduling (AIPS), 1994, pp. 249–254.

[30] T. A. Estlin, S. A. Chien, and X. Wang, An argument for a hybrid HTN/operator-
based approach to planning, Recent Advances in AI Planning, Lecture Notes in
Computer Science, vol. 1348, Springer Berlin Heidelberg, 1997, pp. 182–194.

[31] A. Ferrein, C. Fritz, and G. Lakemeyer, Using Golog for deliberation and team
coordination in robotic soccer, Künstliche Intelligenz 19 (2005), no. 1, 24–.

[32] J. Ferrer-Mestres, G. Francès, and H. Geffner, Planning with state constraints
and its application to combined task and motion planning, PlanRob - Workshop
on Planning and Robotics, International Conference on Automated Planning and
Scheduling (ICAPS), 2015.

[33] R. E. Fikes and N. J. Nilsson, STRIPS: a new approach to the application of theorem
proving to problem solving, Proceedings of the 2nd International Joint Conference
on Artificial Intelligence (IJCAI), Morgan Kaufmann Publishers Inc., 1971, pp. 608–
620.

[34] A. Filipescu, A. Filipescu, A. Voda, and E. Minca, Hybrid modeling, balancing and
control of a mechatronics line served by two mobile robots, 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), Oct 2016,
pp. 234–239.

144 Bibliography

[35] C. Galindo, J. A. Fernández-Madrigal, J. González, and A. Saffiotti, Robot task
planning using semantic maps, Journal of Robotics and Autonomous Systems (RAS)
56 (2008), no. 11, 955–966.

[36] C. R. Garret, T. Lozano-Perez, and L. P. Kaelbling, Backward-forward search for
manipulation planning, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015.

[37] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, FFRob: An efficient heuristic
for task and motion planning, pp. 179–195, Springer International Publishing, 2015.

[38] A. Gaschler, I. Kessler, R. A. Petrick, and A. Knoll, Extending the knowledge
of volumes approach to robot task planning with efficient geometric predicates,
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2015.

[39] A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, and A. Knoll, KVP: a
knowledge of volumes approach to robot task planning, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2013, pp. 202–208.

[40] M. Gendreau and J.Y. Potvin, Handbook of metaheuristics, 2nd ed., Springer
Publishing Company, Incorporated, 2010.

[41] I. Georgievski and M. Aiello, HTN planning: overview, comparison, and beyond,
Artificial Intelligence 222 (2015), no. 0, 124–156.

[42] S. Ghandi and E. Masehian, Review and taxonomies of assembly and disassembly
path planning problems and approaches, Computer-Aided Design 67 (2015), no. C,
58–86.

[43] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning,
1st ed., Addison-Wesley Longman Publishing, 1989.

[44] F. Gravot, S. Cambon, and R. Alami, aSyMov: a planner that deals with intricate
symbolic and geometric problems, pp. 100–110, Springer Berlin Heidelberg, 2005.

[45] J. Gu, H. Wang, W. Chen, and R. Wu, Monocular visual object-localization using
natural corners for assembly tasks, 2016 IEEE International Conference on Robotics
and Biomimetics (ROBIO), Dec 2016, pp. 1383–1388.

[46] J. Guitton and J. Farges, Towards a hybridization of task and motion planning for
robotic architectures, International workshop on Hybrid Control of Autonomous
Systems (HYCAS), 2009, pp. 21–24.

[47] G. Gutin and A. P. Punnen, The traveling salesman problem and its variations,
Combinatorial optimization, Kluwer Academic, 2002.

[48] K. Zita Haigh and M. M. Veloso, Interleaving planning and robot execution for
asynchronous user requests, Autonomous Robots 5 (1998), no. 1, 79–95.

Bibliography 145

[49] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Transactions on Systems Science
and Cybernetics 4 (1968), no. 2, 100–107.

[50] , Correction to "a formal basis for the heuristic determination of minimum
cost paths", SIGART Bull. (1972), no. 37, 28–29.

[51] K. Hauser, Task planning with continuous actions and non-deterministic motion
planning queries, 2010.

[52] K. Hauser and J. C. Latombe, Integrating task and PRM motion planning: dealing
with many infeasible motion planning queries, ICAPS Workshop on Bridging the
Gap between Task and Motion Planning, 2009.

[53] K. Hauser, V. Ng-Thow-Hing, and H. Gonzalez-Baños, Multi-modal motion
planning for a humanoid robot manipulation task, pp. 307–317, Springer Berlin
Heidelberg, 2011.

[54] M. Helmert, The Fast Downward planning system, Journal of Artificial Intelligence
Research (JAIR) 26 (2006), no. 1, 191–246.

[55] A. Hertle, C. Dornhege, T. Keller, and B. Nebel, Planning with semantic
attachments: an object-oriented view, Proceedings of the European Conference on
Artificial Intelligence, 2012, pp. 402–407.

[56] H. Hoang, S. Lee-Urban, and H. Muñoz-Avila, Hierarchical plan representations
for encoding strategic game AI, Artificial Intelligence and Interactive Digital
Entertainment Conference, 2005, pp. 63–68.

[57] J. Hoffmann and B. Nebel, The FF planning system: fast plan generation through
heuristic search, Journal of Artificial Intelligence Research (JAIR) 14 (2001), no. 1,
253–302.

[58] C. Hogg, H. Muñoz-Avila, and U. Kuter, Learning hierarchical task models from
input traces, Computational Intelligence (2014).

[59] J. JianJu and G. YunJian, A enhanced self-assembly morphology distributed control
algorithm of swarm robots, 2017 2nd International Conference on Robotics and
Automation Engineering (ICRAE), Dec 2017, pp. 57–62.

[60] P. Jiménez, Survey on assembly sequencing: a combinatorial and geometrical
perspective, Journal of Intelligent Manufacturing 24 (2013), no. 2, 235–250.

[61] L. P. Kaelbling and T. Lozano-Perez, Unifying perception, estimation and action
for mobile manipulation via belief space planning, IEEE International Conference
on Robotics and Automation (ICRA), 2012, pp. 2952–2959.

[62] L. P. Kaelbling and T. S. Lozano-Perez, Hierarchical task and motion planning
in the now, IEEE International Conference on Robotics and Automation (ICRA),
2011, pp. 1470–1477.

146 Bibliography

[63] L. P. Kaelbling and T. Lozano-Pérez, Integrated task and motion planning in belief
space, International Journal of Robotics Research (IJRR) 32 (2013), no. 9-10,
1194–1227.

[64] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and F. Schmidt,
Combining task and path planning for a humanoid two-arm robotic system,
Proceedings of TAMPRA: Combining Task and Motion Planning for Real-World
Applications (ICAPS workshop), 2012, pp. 13–20.

[65] L. Kavraki, J. C. Latombe, and R. H. Wilson, On the complexity of assembly
partitioning, Information Processing Letters 48 (1993), 229–235.

[66] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces, IEEE International
Conference on Robotics and Automation (ICRA), 1996, pp. 566–580.

[67] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, Ikeabot: an autonomous
multi-robot coordinated furniture assembly system., IEEE International Conference
on Robotics and Automation (ICRA), 2013, pp. 855–862.

[68] J. B. Kruskal,On the shortest spanning subtree of a graph and the traveling salesman
problem, Proceedings of the American Mathematical Society 7 (1956), no. 1, 48–50.

[69] F. Lagriffoul, Delegating geometric reasoning to the task planner, Workshop on
Planning and Robotics, International Conference on Automated Planning and
Scheduling (ICAPS), 2013, pp. 54–59.

[70] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson, Efficiently
combining task and motion planning using geometric constraints, International
Journal of Robotics Research (IJRR) 33 (2014), no. 14, 1726–1747.

[71] R. Lallement, Symbolic and geometric planning for teams of robots and humans,
Theses, INSA de Toulouse, 2016.

[72] J.P. Laumond and R. Alami, A geometrical approach to planning manipulation
tasks in robotics, First Canadian Conference on Computational Geometry, 1989.

[73] S. M. LaValle, Planning algorithms, Cambridge University Press, 2006.

[74] D. Leidner, A. Dietrich, F. Schmidt, C. Borst, and A. Albu-Schaffer, Object-
centered hybrid reasoning for whole-body mobile manipulation, IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 1828–1835.

[75] S. Li and H. Gu, Acoustic contacting detection in robotic accurate assembly, 2017
IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec 2017,
pp. 1829–1832.

[76] Q. Lindsey, D. Mellinger, and V. Kumar, Construction of cubic structures with
quadrotor teams, Robotics: Science and Systems, MITP, 2012.

Bibliography 147

[77] T. Lozano-Perez and L. P. Kaelbling, A constraint-based method for solving
sequential manipulation planning problems, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2014, pp. 3684–3691.

[78] I.M. Mahmoud, L. Lianchao, D. Wloka, and M. Z. Ali, Believable npcs in serious
games: HTN planning approach based on visual perception, IEEE Conference on
Computational Intelligence and Games (CIG), 2014, pp. 1–8.

[79] H. Marino, M. Ferrati, A. Settimi, C. Rosales, and M. Gabiccini, On the problem of
moving objects with autonomous robots: A unifying high-level planning approach,
IEEE Robotics and Automation Letters 1 (2016), no. 1, 469–476.

[80] I. Maza, J. Muñoz-Morera, F. Caballero, E. Casado, V. Perez-Villar, and A. Ollero,
Architecture and tools for the generation of flight intent from mission intent for a
fleet of unmanned aerial systems, International Conference on Unmanned Aircraft
Systems (ICUAS), IEEE, 2014, pp. 9–19.

[81] J. McCarthy and P. J. Hayes, Readings in nonmonotonic reasoning, Morgan
Kaufmann Publishers Inc., 1987, pp. 26–45.

[82] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins, PDDL - The Planning Domain Definition Language, Tech. Report
TR-98-003, Yale Center for Computational Vision and Control, 1998.

[83] A. Menif, E. Jacopin, and T. Cazenave, SHPE: HTN planning for video games,
Computer Games, Communications in Computer and Information Science, vol. 504,
Springer International Publishing, 2014, pp. 119–132.

[84] PierreMerriaux, YohanDupuis, Rémi Boutteau, Pascal Vasseur, andXavier Savatier,
A study of Vicon system positioning performance, Sensors 17 (2017), no. 7.

[85] S. W. Mitchell, A hybrid architecture for real-time mixed-initiative planning and
control, Proceedings of the National Conference on Artificial Intelligence and
Conference on Innovative Applications of Artificial Intelligence, AAAI Press, 1997,
pp. 1032–1037.

[86] H. Muñoz-Avila, D. W. Aha, D. Nau, R. Weber, L. Breslow, and F. Yamal, SiN:
integrating case-based reasoning with task decomposition, Proc of the International
Joint Conference on Artificial Intelligence (IJCAI), 2001.

[87] H. Muñoz-Avila, D. C. Mcfarlane, D. W. Aha, L. Breslow, J. A. Ballas, and D. Nau,
Using guidelines to constrain interactive case-based HTN planning, International
Conference on Case-Based Reasoning and Development (ICCBR), 1999.

[88] J. Muñoz-Morera, F. Alarcon, I. Maza, and A. Ollero, Combining a hierarchical
task network planner with a constraint satisfaction solver for assembly operations
involving routing problems in a multi-robot context, International Journal of
Advanced Robotic Systems (IJARS) 15 (2018), no. 3, 1–13.

148 Bibliography

[89] J. Muñoz-Morera, I. Maza, F. Caballero, and A. Ollero, Architecture for the
automatic generation of plans for multiple UAS from a generic mission description,
Journal of Intelligent & Robotic Systems 84 (2016), no. 1, 493–509.

[90] J. Muñoz-Morera, I. Maza, C. J. Fernandez-Agüera, F. Caballero, and A. Ollero,
Assembly planning for the construction of structures with multiple UAS equipped
with robotic arms, International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, 2015, pp. 1049–1058.

[91] J. Muñoz-Morera, I. Maza, C. J. Fernandez-Agüera, and A. Ollero, Task allocation
for teams of aerial robots equipped with manipulators in assembly operations,
Advances in Intelligent Systems and Computing, vol. 417, pp. 585–596, Springer
International Publishing, 2016.

[92] D. Nau, Current trends in automated planning, Artificial Intelligence Magazine 28
(2007), 43 – 43.

[93] D. Nau, Y. Cao, A. Lotem, and H.Muñoz-Avila, SHOP: Simple hierarchical ordered
planner, Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), Morgan Kaufmann Publishers Inc., 1999, pp. 968–973.

[94] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman, SHOP2: an
HTN planning system, Journal of Artificial Intelligence Research (JAIR) 20 (2003),
379–404.

[95] D. Nau, S. J. J. Smith, and K. Erol, Control strategies in HTN planning:
theory versus practice, Proceedings of the National Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, American
Association for Artificial Intelligence, 1998, pp. 1127–1133.

[96] N. Nau, M. Ghallab, and P. Traverso, Automated planning: theory & practice,
Morgan Kaufmann Publishers Inc., 2004.

[97] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki, SMT-based
synthesis of integrated task and motion plans for mobile manipulation, IEEE
International Conference on Robotics and Automation (ICRA), 2014, pp. 655–662.

[98] N. J. Nilsson, A mobile automaton: an application of artificial intelligence
techniques, Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1969, pp. 509–520.

[99] , Shakey the robot, Tech. Report 323, AI Center, SRI International, 1984.

[100] Red Hat open source community, OptaPlanner, 2018.

[101] E. Pednault, ADL: exploring the middle ground between STRIPS and the situation
calculus, Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, 1989, pp. 324–332.

Bibliography 149

[102] E. Plaku, Planning robot motions to satisfy linear temporal logic, geometric, and
differential constraints, ICAPSWorkshop on Combining Task and Motion Planning
for Real-World Applications, 2012, pp. 21–28.

[103] E. Plaku and G. D. Hager, Sampling-based motion and symbolic action planning
with geometric and differential constraints, IEEE International Conference on
Robotics and Automation (ICRA), 2010, pp. 5002–5008.

[104] R. Ragel, I. Maza, F. Caballero, and A. Ollero, Comparison of motion planning
techniques for a multi-rotor UAS equipped with a multi-joint manipulator arm, 2015
Workshop on Research, Education and Development of Unmanned Aerial Systems
(RED-UAS), Nov 2015, pp. 133–141.

[105] R. Reiter, Artificial intelligence and mathematical theory of computation, Academic
Press Professional Inc., 1991, pp. 359–380.

[106] F. Ruggiero, M. A. Trujillo, R. Cano, H. Ascorbe, A. Viguria, C. Perez, V. Lippiello,
A. Ollero, and B. Siciliano, Amultilayer control for multirotor UAVs equipped with a
servo robot arm, 2015 IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 4014–4020.

[107] S. Russell and P. Norvig, Artificial intelligence : a modern approach, 3 ed., Prentice
Hall, 2010.

[108] E. D. Sacerdoti, The non-linear nature of plans, Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann Publishers
Inc., 1975, pp. 206–214.

[109] V. Shivashankar, K. Kaipa, D. Nau, and K. S. Gupta, Towards integrating
hierarchical goal networks and motion planners to support planning for human-
robot teams, (2014).

[110] L. D. Silva, R. Lallement, and R. Alami, The HATP hierarchical planner:
formalisation and an initial study of its usability and practicality, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 6465–
6472.

[111] S. J. J. Smith, K. Hebbar, D. Nau, and I. Minis, Integrating electrical and mechanical
design and process planning, Knowledge intensive CAD, IFIP — The International
Federation for Information Processing, Springer US, 1997, pp. 269–288.

[112] D. Soemers and M. Winands, Hierarchical task network plan reuse for video games,
IEEE International Conference on Computational Intelligence and Games (CIG),
2016, pp. 1–8.

[113] S. Sohrabi, J. A. Baier, and S. A. McIlraith, HTN planning with preferences,
Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI),
Morgan Kaufmann Publishers Inc., 2009, pp. 1790–1797.

150 Bibliography

[114] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, Combined
task and motion planning through an extensible planner-independent interface
layer, IEEE International Conference on Robotics and Automation (ICRA), 2014,
pp. 639–646.

[115] S. Srivastava, L. Riano, S. Russell, and P. Abbeel, Using classical planners for tasks
with continuous operators in robotics, ICAPS Workshop on Planning and Robotics,
2013.

[116] E. Talbi, Metaheuristics: from design to implementation, Wiley Publishing, 2009.

[117] A. Tate, Generating project networks, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann Publishers Inc.,
1977, pp. 888–893.

[118] A. Tate, B. Drabble, and R. Kirby, O-Plan2: an open architecture for command,
planning and control, Intelligent Scheduling, Morgan Kaufmann Publishers Inc.,
1994, pp. 213–239.

[119] A. Dayal Udai and S. K. Saha, A framework for CAD-based offline depth-map
preparation for automated assembly tasks, 2016 International Conference on
Robotics and Automation for Humanitarian Applications (RAHA), Dec 2016, pp. 1–
6.

[120] V. V. Unhelkar, P. A. Lasota, Q. Tyroller, R. D. Buhai, L. Marceau, B. Deml, and
J. A. Shah, Human-aware robotic assistant for collaborative assembly: Integrating
human motion prediction with planning in time, IEEE Robotics and Automation
Letters PP (2018), no. 99, 1–1.

[121] D. E. Wilkins, Practical planning: extending the classical AI planning paradigm,
Morgan Kaufmann Publishers Inc., 1988.

[122] , Using the SIPE-2 planning system: a manual for version 4.17, (1997).

[123] J. Wolfe, B. Marthi, and S. Russell, Combined task and motion planning for mobile
manipulation, Interational Conference on Automated Planning and Scheduling
(ICAPS), 2010.

[124] F. Zhao, H. Gu, C. Li, and C. Chen, Accuracy analysis for robotized assembly system,
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec
2017, pp. 1850–1855.

[125] S. Zickler and M. Veloso, Efficient physics-based planning: sampling search via
non-deterministic tactics and skills, Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, 2009, pp. 27–33.

Index 151

	Resumen
	Abstract
	Nomenclature
	Introduction
	Motivation and Objectives
	Outline and Main Contributions
	Summary of Publications

	Framework

	Automated Planning Background
	Plan Search Algorithms
	Planning Software
	Ways to Integrate Symbolic and Geometric Reasoning
	Symbolic layer calls the geometric layer
	Geometric layer calls the symbolic layer
	Sample in the compound state

	Conclusions

	Hierarchical Task Network Planning
	Introduction
	HTN Formalism
	Mathematical Model
	Search Space
	Plan-Based HTN Planning
	State-Based HTN Planning

	JSHOP2 HTN Planner
	Planning Domain Definition Language: The Origin
	JSHOP2 Overview
	Elements of a Domain Description
	Tasks
	Operators
	Methods
	Axioms
	External Function Calls

	JSHOP2 Algorithm
	Multi-Timeline Preprocessing

	Conclusion

	Decoupled Geometric and Symbolic Reasoning
	Introduction
	Problem Statement
	Geometric Planner
	Overview
	Moves
	Solver Phases
	Construction Heuristics
	Metaheuristics
	Exhaustive Search

	Score Calculation
	Geometric Domain

	Symbolic Planner
	PDDL Domain Definition
	Restrictions
	Types, Predicates and Functions
	Durative Actions

	Problem Description
	SHOP2 Problem Domain
	High-level Method Definition
	Submethods Definition
	Operators Definition

	Connecting the Geometric and Symbolic Planners
	Use Case: Testing the Architecture
	Simulation Results
	Conclusions

	Coupled Geometric and Symbolic Reasoning
	Replacing the Depth-first search: Motivations and Expected Behaviour
	SHOP*: the A*-based HTN Planner
	Use Case: Testing the Optimality of SHOP*
	Problem Statement
	SHOP* Problem Domain
	Solving a Specific Case

	Simulation Results
	Conclusions

	Conclusions and Future Developments
	Conclusions
	Decoupled Approach
	Coupled Approach

	Future Developments

	List of Figures
	List of Tables
	List of Codes
	Bibliography
	Index
	Glossary
	End/Last page
	First page

