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Abstract

The transition of mobile robots from a controlled environment towards the real-world represents a major
leap in terms of complexity coming primarily from three different factors: partial observability, non-
determinism and dynamic events. To cope with them, robots must achieve some intelligence behaviours
to be cost and operationally effective.

Two particularly interesting examples of highly complex robotic scenarios are Mars rover missions
and the Darpa Robotic Challenge (DRC). In spite of the important differences they present in terms
of constraints and requirements, they both have adopted certain level of autonomy to overcome some
specific problems. For instance, Mars rovers have been endowed with multiple systems to enable au-
tonomous payload operations and consequently increase science return. In the case of DRC, most teams
have autonomous footstep planning or arm trajectory calculation.

Even though some specific problems can be addressed with dedicated tools, the general problem
remains unsolved: to deploy on-board a reliable reasoning system able to operate robots without human
intervention even in complex environments. This is precisely the goal of an automated mission planner.

The scientific community has provided plenty of planners able to provide very fast solutions for clas-
sical problems, typically characterized by the lack of time and resources representation. Moreover, there
are also a handful of applied planners with higher levels of expressiveness at the price of lower perfor-
mance. However, a fast, expressive and robust planner has never been used in complex robotic missions.
These three properties represent the main drivers for the outcomes of this thesis.

To bridge the gap between classical and applied planning, a novel formalism named Hierarchical
TimeLine Networks (HTLN) combining Timeline and HTN planning has been proposed.

HTLN has been implemented on a mission planner named QuijoteExpress, the first forward-chaining
timeline planner to the best of our knowledge. The main idea is to benefit from the great performance
of forward-chaining search to resolve temporal problems on the state-space. In addition, QuijoteExpress
includes search enhancements such as parallel planning by division of the problem in sub-problems or
advanced heuristics management. Regarding expressiveness, the planner incorporates HTN techniques
that allow to define hierarchical models and solutions. Finally, plan robustness in uncertain scenarios has
been addressed by means of sufficient plans that allow to leave parts of valid plans undefined.

To test the planner, a novel lightweight, timeline and ROS-based executive named SanchoExpress has
been designed to translate the plans into actions understandable by the different robot subsystems.

The entire approach has been tested in two realistic and complementary domains. A cooperative multi-
rover Mars mission and an urban search and rescue mission. The results were extremely positive and
opens new promising ways in the field of automated planning applied to robotics.

Keywords: Automated Planning, Automated Execution, Mars Rover, Mobile Robot, Forward-
Chaining, HTN, HTLN, Timeline Planning, Non-determinism, Uncertainty
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Zusammenfassung

Der Übergang von beweglichen Robotern von einer kontrollierten Umgebung in eine reale Welt stellt
einen großen Komplexitätssprung dar, der hauptsächlich auf drei unterschiedlichen Faktoren beruht:
teilweise Beobachtbarkeit, Nicht-Determinismus und dynamische Ereignisse. Um diese zu beherrschen
müssen Roboter ein gewisses intelligentes Verhalten entwickeln, um kostengünstig operieren zu können.

Mars Rover Missions und der Darpa Robotic Challenge (DRC) sind zwei besonders interessante
Beispiele von hochkomplexen Roboterszenarien. Trotz wichtiger Unterschiede in Randbedingungen
und Anforderungen besitzen beide Szenarien ein gewisses Autonomieniveau, um spezielle Probleme
überwinden zu können. Mars Rover zum Beispiel, wurden mit multiplen Systemen ausgestattet, um
autonome Nutzlastoperationen zu ermöglichen und dadurch den wissenschaftlichen Nutzen zu erhöhen.
Im Falle von DRC nutzen die meisten Teams autonome Schrittplanung oder autonome Berechnung der
Bewegung des Roboterarms.

Obwohl einige spezielle Probleme mit eigens dafür entworfenen Tools bearbeitet werden kön-
nen, bleibt das generelle Problem ungelöst: Die On-board-Installierung eines zuverlässigen Entschei-
dungssystem, das in der Lage ist, Roboter ohne menschliche Intervention selbst in komplexen Umge-
bungen zu steuern. Genau dies ist das Ziel eines automatisierten Missionsplanungstools.

Wissenschaftler haben eine Vielzahl von Planungstools entwickelt, die in der Lage sind, sehr schnelle
Lösungen für klassische Probleme zu liefern, die sich typischerweise dadurch auszeichnen, dass die
Darstellung von Zeit und Ressourcen fehlt. Darüber hinaus gibt es eine Handvoll angewandter Tools mit
tieferer Detailtreue, was aber zu Lasten deren Performance geht. Ein schneller, expressiver und robuster
Missionsplaner wurde jedoch noch nie in einer komplexen Robotormission benutzt. Diese drei Eigen-
schaften stellen die Hauptmotivation dar für das Ergebnis dieser Arbeit.

Ein neuer Formalismus, Hierarchical TimeLine Networks (HTLN), wurde vorgeschlagen, der Zeitplan
und HTN Planung verknüpft, um die Lücke zwischen klassischer und angewandter Planung zu schließen.

HTLN wurde in dem Planungstool QuijoteExpress implementiert. Dieses Tool ist nach unserem Wis-
sen, das erste forward-chaining Zeitplanungstool. Die Idee ist von der hohen Performance der forward-
chaining Suche zu profitieren, um zeitliche Probleme im Zustandsraum zu lösen. Zusätzlich enthält
QuijoteExpress Suchverfeinerungen wie paralleles Planen durch Aufteilen des Problems in Unterprob-
leme oder fortgeschrittenes Management von Heuristiken. Bezüglich Expressiveness verwendet das
Planungstool HTN Techniken, die erlauben hierarchische Modelle und Lösungen zu definieren. Zu
guter Letzt wurde Planungsrobustheit durch das Konzept von “ausreichender Planung” adressiert , die
erlaubt, dass Teile von gültigen Plänen undefiniert bleiben.

Um das Planungstool zu testen, wurde ein neues “light” Zeitplan- und ROS-basiertes Executable ent-
worfen, um die Pläne in Aktionen zu übersetzen, die von den verschiedenen Robotersubsystemen ver-
standen werden können.
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Der gesamte Ansatz wurde in zwei realistischen und komplementären Bereichen getestet. Eine ko-
operative multi-Rover Mission und eine urbane Such- und Rettungsmission. Die Ergebnisse waren ex-
trem positiv und eröffnen neue vielversprechende Wege auf dem Gebiet von Automatisiertem Planen
angewendet in der Robotik.
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1 Introduction

Robotics represent a complex research field which still require multiple scientific advancements. Robots
are supposed to be, at least to some degree, autonomous actors, otherwise, they should not be consider
as team members but simply as tools. The last few decades have seen an increasing presence of robots
in factories, but the transition from these structured environments to unstructured ones has been proved
harder than expected.

One of such environments is space exploration. Space robotics show a big diversity including tele-
scopes, landers, automated vehicles, satellites, humanoid robots, flying spheres, robotic arms or ex-
ploration rovers, all demanding some level of autonomy. Among all of them, planetary rovers are
particularly challenging in terms of autonomy.

The Sojourner rover landed on Mars in 1997 demonstrated how important autonomy is. Sojourner
was idle 40 to 75% of the time waiting for orders from Earth. In April 2009, Spirit Mars Exploration
Rover (MER) got trapped on soft sand and could not get out again. After the landing in 2012, Curiosity
was driven manually for more than one year with the increasing overhead for operators and decreasing
science return it represents.

No other spacecraft missions are run so carefully as rovers. Even though several technical reports
and publications claim for higher levels of autonomy on-ground and on-board rovers [57, 6, 76], few
novelties are seen from one mission to the next in this regard and operations mostly depend on highly
detailed plans generated on-ground. The main reason that makes rovers so unique is the strong interaction
between the robot and a harsh, unstructured and dynamic environment such as Mars, which poses a high
risk for the spacecraft in case any problem occurs. In addition, the high cost of rover missions calls for
caution with respect to operations.

However, not all are bad news. The same factors presented in the previous paragraph can be claimed
in favour of more autonomy. Indeed, the communication delays with Mars are such that teleoperation
is unrealistic. Given the increasing complexity of future missions, the advantages in terms of science
return and costs are undeniable. As an example, MER would have never been so successful without
the AUTONAV system [17]. While autonomous navigation is broadly used, future missions will require
higher levels of autonomy to fulfil their objectives. As an example, Mars Sample Return (MSR) mission
will likely use a lightweight rover to recover a cannister with soil samples gathered by a previous mission
and bring it back to an Earth return vehicle. This rover will use an unprecedented level of autonomy to
increase its driving speed and perform opportunistic science during the long traverse towards the sample
catching area. Opportunistic science and, more in general, automatic plan generation/repair on-board
poses a lot of questions yet to be addressed, such as how to create robust plans for highly uncertain
environments.

Another example demanding autonomous dexterous robotics is disaster scenarios. On March 11th
2011, the unfortunate events unleashed in Fukushima Daiichi nuclear power plant awoke the scientific
community, showing the real deficiencies of present technology. Japan, supposedly a leader in the field
of robotics, had none to send into Fukushima when the crisis began. Less than a week after the tsunami
and earthquake, iRobot sent two robots, spare parts and engineers to the disaster area, but it took more
than four weeks until they were used [82]. Other robots later on delivered from different countries
(including Quince from Japan) experienced similar problems. Several factors such as limited communi-
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cations, poor situation awareness or the complexity inherent to the operation of the platforms were part
of the reasons for the poor performance displayed [113]. Even though a shared autonomy system would
have significantly reduced the operator’s workload, these robots were teleoperated because of the high
complexity of the scenario and lack of trust from the customer.

Two competitions are of special relevance for disaster scenarios: the RoboCup Rescue League1 and
the DARPA Robotics Challenge 2.

In the former, the robots have to find the victims in an arena representing a building partially collapsed,
determine their situation and location, and then report back their findings. Even though events like
Fukushima showed that autonomy is advisable in these situations, at present all Rescue League teams
rely on semi-autonomous systems with an operator in the loop. Once the robot starts a mission, it has
pre-programmed behaviours to achieve the goals. If required, the operator can manually assign specific
tasks to the robot, from high level such as find victim to low level such as manual driving.

Intended to be an answer to the Fukushima disaster, the DARPA Robotics Challenge (DRC) aimed to
test some of the skills needed by robots in such scenarios. Due to different factors, specially the lack of
time suffered in both the trials and DRC Finals, the teams had to focus on the development of sufficient
basic robotic capabilities, leaving aside those non-mandatory such as autonomy. The level of autonomy
used for the tasks was very low and most teams focused in control under human supervision where the
operator performs the action in a virtual world and the movements are then sent to the “real” robot, with
the exception of walking.

Rescue robots and planetary rovers actually present similar requirements in terms of autonomy:

• Need for autonomy: In many circumstances, teleoperating a robot is not possible. In field robotics,
the presence of infrastructures or high levels of radiation might block the signal, while in space the
long distances impose prohibitive delays in the communications.

• Robust plans: A plan should not fail in case it suffers slight deviations.

• Need to represent time: Most actions of a physical system take time to be executed. Moreover,
sometimes one action requires others to be synchronously executed. These temporal constraints
should be considered during planning.

• Dealing with resources: Physical systems such robots have resources, e.g. energy or memory. It is
important to model and reason about them in order to generate realistic plans.

• Dealing with uncertainty: Uncertainty comes from three different dimensions: (1) Dynamic en-
vironment that can unexpectedly change; (2) Partial observability of the world surrounding the
robot; and (3) Unstructured environment makes it impossible to precisely ascertain the outcome of
the robot actions.

In spite of these similarities, the criticality of both scenarios is quite different. First, there is no pos-
sible real-time communication with Mars robots as the round trip signal takes between 8 to 42 minutes.
Besides that, eclipses either for direct to-Earth communications or with an orbiter might prevent any
contact at all. On Earth, even in very complicated situations such as Fukushima where radiation and
heavy shielded walls represented a big problem, high power WIFIs and/or wired communications might
solve the situation. Second, the cost of rover missions, around 2.5 billion USD for Mars Science Labo-
ratory (MSL), together with the impossibility of recovering the robot in case of error plays an important
1 http://www.theroboticschallenge.org/.
2 http://www.robocuprescue.org/.
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role. Whereas it is affordable to lose a rescue robot, as it happened with Quince, there is no room for
mistakes in the space sector. Third, time is more critical for rescue robots; the first three days after the
onset of a disaster has been dubbed the “72-hour golden rescue period”, after which the survival rate
sharply declines. On the other hand, improving operations performance is more a benefit that something
critical for planetary rovers.

It is clear then that autonomy provides multiple advantages. In order to narrow down that concept, the
ECSS Space Segment Operability Standard[119] provides a formal definition of autonomy that can be
easily extrapolated to rescue robots:

Definition 1 (On-board autonomy) On-board autonomy management addresses all aspects of on-
board autonomous functions that provide the space segment with the capability to continue mission
operations and to survive critical situations without relying on ground segment intervention. The imple-
mentation of on-board autonomy depends on the specific mission requirements and constraints, and can
therefore vary between a very low level of autonomy involving a high level of control from ground to a
high level of autonomy, whereby most of the functions are performed on-board.

Level Description Function
E1 Mission execution under ground

control
Real-time control from ground for nominal operations.
Execution of time tagged commands for safety issues

E2 Execution of pre-planned,
ground-defined, mission operations

on-board

Capability to store time-based commands in an on-
board scheduler

E3 Execution of adaptive mission
operations on-board

Event-based autonomous operations. Execution of on-
board operations control procedures

E4 Execution of goal-oriented mission
operations on-board

Goal-oriented mission replanning

Table 1.1.: Autonomy Levels.

This same document classifies autonomy in different levels, shown in Table 1.1. The question is then
which is the appropriate level of autonomy. While some scenarios like Robocup Soccer or the DARPA
Grand Challenge mostly demand reactive systems, others like RoboCup Rescue, DRC or Mars rovers
also require deliberative behaviours. Spirit and Opportunity were based on a E3 autonomy level, claimed
to be the minimum level for a planetary mission [162], been E4 desirable.

In order to achieve E4, automated planning on-ground and at some extent on-board is required to
generate and modify plans. Besides, an executive is required on-board to perform the activities defined
in the plan. Although automated planning represents the main field of study, execution also presents
multiple challenges that have been explored in this thesis.

1.1 Automated Planning: from Theory to Practice

Humans act more frequently than they plan. Generally speaking, explicit deliberation only happens in
dangerous or new situations in which the task to perform is complex [12].

Planning has been an active research topic in artificial intelligence and presents nowadays several
forms including mission planning, path planning, motion planning, etc. This thesis focus on domain-
independent solutions able to be easily reused in different scenarios like those presented above. Before
getting i
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Figure 1.1.: Mars rover exploration problem.

Definition 2 (Automated planning) Planning is the reasoning side of acting that aims to organize ac-
tions according to their expected outcomes in order to achieve some given goal [81]. Automated plan-
ning is the area of Artificial Intelligence (AI) that studies this process.

A planner typically receives two inputs. One is a domain containing a formal description of both
the agent executing the actions (the robot in our case) and the environment surrounding the agent. The
second is a problem describing the present state of the agent and the goals to achieve. The problem of
plan generation in AI consists on computing a sequence of actions or states (the plan) to transform the
initial state of the world into another that satisfies the set of goals with limited (or no) human intervention.

An example of a problem is depicted in Figure 1.1. A rover must navigate through unknown terrain
towards an area (labelled as 1) where it has to take some pictures. Later on, it moves to another area (2)
where it performs some science such as chemical analysis of rocks. Finally, it moves to the final position
for that sol3 and communicates the information to an orbiter. During the process, apart from determining
the sequence of activities or states, the planner must have into account the resources such as battery and
the time required for each action. In case that the execution diverts from the original plan, it must be
cancelled and some counter-measure such as on-board replanning or wait Earth for instructions should
be taken.

One informal division in the field of automated planning can be done between theoretical and applied
planners, even though there are several examples laying in the middle.

Theoretical planning focus to a great extent on improving the performance of planners. Most modern
planners are based on heuristics, pieces of software telling the planner which nodes of the search space
should be analysed first. As the main planning branch, the mathematical foundations have been well
studied, providing a strong theoretical background used to define several “de facto” standards broadly
used by the community. For example, almost every modern classical planner is based on any of the
multiple versions of the Planning Domain Description Language (PDDL) [104, 69]. Several synthetic
domains have been built to test the performance based on well-defined metrics. The bi-annual Inter-
national Planning Competition (IPC) [150] represents the main event to understand the state-of-the-art
on planning, divided in different subtracks that cover the main research lines, namely sequential (subdi-
vided in optimal and satisficing), multi-core and temporal. After the competition, the source-code must
be shared in order to disseminate the knowledge and improve future planners.

3 sol is the name given to Martian days.
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Conversely, the world of applied planning is by nature less organised. Companies use to be reluctant
to freely share code, there are no standard languages, domains or competitions whatsoever. As planners
are oriented to solve specific-tasks, many are domain-dependent, making it harder to use the experience
earned in other problems, or to apply algorithms coming from the theoretical world.

In consequence, there is a gap between the two research areas. On the one hand, most of the theoretical
systems cannot be used for real-world problems as they are not expressive enough or they lack specific
knowledge required to solve the task. On the other hand, applied systems do not support standards and
do not promptly adopt new ideas coming from the theory resulting in low performance. In this thesis we
try to bridge this gap by evolving the novelties shown in modern theoretical planning systems into a new
temporal planner.

1.2 Motivation and Contributions

The primary motivation of this thesis is to provide a novel planning approach based on the Advanced
Planning and Scheduling Initiative framework or APSI (see 2.4.4) able to demonstrate high levels of
autonomy (on-ground and on-board) for planetary exploration missions such as MSR. Nevertheless,
the strong similarities with other scenarios such as rescue robots facilitated the extension of the scope
to the broader unmanned autonomous robotics in partially observable, non-deterministic and dynamic
scenarios. This work also strives for a complete system design incorporating the mission planner and an
executive to conduct experiments and validation with real world robots.

Most of the requirements presented at the beginning of the chapter, further extended in Section 2.2.2,
have been already achieved by different state-of-the-art mission planners. It is possible nowadays to
represent time and resources or compute solutions efficiently. However, focusing on temporal planning,
there are three fundamental capabilities yet to be completely addressed by a planner intended to be used
in these scenarios:

• Robustness: It is not possible to have all the relevant information about the robot or the surrounding
environment in uncertain scenarios . In consequence, plans tend to fail and repetitive replanning
becomes essential, yet it is still required to achieve the goals. In order to create more robust plans
with respect to deviations during execution, it is preferable to use flexible plans that are filled up
progressively as the information arrives. This aspect is of upmost importance when the mission or
system is critical, as is the case of a Mars rover.

• Performance: Enables the planner to be used in situations where responsiveness plays an important
role as it happens in disaster scenarios, where the chances to survive rapidly decrease with time.
Planning/replanning activities should be fast in order to resume operations as soon as possible.
In this thesis, several techniques such as parallel planning and classical planning approaches are
proposed to improve the planner performance.

• Expressiveness: Allow users to model domains and problems closer to the reality and at the same
time easier to understand. To achieve it, the use of hierarchies has been added to the traditional
representation based on automata to model domains and robot behaviours.

This thesis proposes a number of techniques listed in Table 1.2, each oriented to tackle one or more of
the three previous points.

Hierarchical Timeline Networks theory [170] (HTLN) combines Hierarchical Task Networks (HTN)
and timeline planning. HTLN addresses the problem of robustness as it allows human experts to in-
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Feature HTLN Sufficient Plan Parallel Planning Heuristics
Robustness ! !

Performance ! ! !

Expressiveness !

Table 1.2.: Impact of different planning techniques over three general properties of a planner: Plan Robust-
ness, Performance and Expressiveness.

troduce knowledge in the form of domain-dependent, highly robust plan fragments. In terms of ex-
pressiveness, HTLN helps to generate hierarchical models and plans, easier-to-understand by humans.
Finally, the use of HTN planning represents an improvement in performance thanks to the insertion of
plan fragments in one single step.

Sufficient plan allows the planner to generate partially defined plans in situations where the knowledge
about the environment and the required actions to achieve the goals is limited. The intention is to prevent
plan failures derived from early assumptions and therefore to provide more robust plans in uncertain
scenarios.

The Parallel planning technique presented in this thesis is based on a highly effective way to divide a
problem into subproblems, which takes advantage of certain properties of the hypergraph structure used
in HTLN to represent problems. Subproblems can be then planned in parallel preserving validity and
optimality with the resulting performance improvement.

Finally, a number of search algorithms such as A*-style borrowed from the classic-planning world
have been also used to improve the performance.

With this building blocks we have implemented a state-of-the-art planning system called QuijoteEx-
press [174, 167, 175]. We expect QuijoteExpress to be able to satisfy the requirements and to offer the
capabilities mentioned above, that is, to generate plans for complex problems with partial information in
uncertain environments in a robust and agile manner. To prove it, the planner has been extensively tested
in two different scenarios: a Rescue-robot and two Mars rovers, hereafter referred to as the reference
scenarios.

1.3 Outline of the Thesis

As mentioned before, this thesis lies between the theoretical and applied world. Due to its multidisci-
plinary nature, the background covers a wide range of topics including classical and applied planning,
plan execution and (space) robotics. Next, a novel planning formalism called HTLN is described. The
main output of the thesis, a planner based on HTLN and an executive able to directly manage the planner
output are also presented and their novelties analysed. Finally, their performance is evaluated and final
conclusions extracted. Below, we outline the chapters in more detail.

Chapter 2: Background
It is split in two main areas: planning and execution. Regarding planning, the chapter starts with an

analysis of the state-of-the-art in classical planning giving special emphasis to forward-chaining heuris-
tic search. Next, a similar overview on applied planning is conducted focusing on Hierarchical Task
Networks (HTN) and temporal planning. The combination of HTN, temporal planning and forward-
chaining represents one of the central ideas of the thesis. A section is also dedicated to APSI to settle
down the formalism in which this work is based. Regarding execution, the main features of an executive
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are identified and an overview of the state-of-the-art executives is presented. The chapter is closed with
the benchmarking metrics used to measure the different properties of the planner and executive.

Chapter 3: Hierarchical Timeline Networks: A Novel Planning Formalism
This chapter presents the Hierarchical Timeline Networks (HTLN) theory, one of the cornerstones of

this thesis. First, we give an overview of hypergraph theory, used to represent problems and solutions in
QuijoteExpress. Next, Hierarchical Task Networks (HTN) and temporal planning theory is studied, both
of capital relevance in the conception of HTLN theory. Finally, HTLN theory and its consequences in
the planning system are described.

Chapter 4: QuijoteExpress Planner: A Novel Planning System
This chapter focuses on the specific implementation of HTLN into one planner. QuijoteExpress is a

domain-independent, heuristic-based, parallel, hierarchical temporal planner that combines the novelties
presented in HTLN and classical planning techniques. We have pursued the creation of a new planner
that stands out in three different areas: (1) Strong performance thanks to the use of informed search
algorithms and HTLN; (2) More flexibility thanks to the use of heuristic search; and (3) More expressive
power thanks to the use of HTLN. Each novel feature in timeline planning such as parallel planning,
multi-heuristic evaluation, deferred heuristic evaluation, etc. are individually studied and the impact in
the global performance analysed. From an algorithmic point of view, the chapter presents the search
algorithms and heuristics developed for QuijoteExpress.

Chapter 5: SanchoExpress: Flexible Execution with FDIR Capabilities
Once the plan is generated, it needs to be executed. A number of executives are analysed, none of

which fulfils the requirements for the Mars and Rescue scenarios. SanchoExpress is a timeline-based
executive in charge of dispatching the appropriate commands to achieve the tasks in the timelines, at
the appropriate time frame and to the appropriate robot subsystem. It also monitors the execution and
reports back to the planner in case of errors. SanchoExpress can execute any plan represented with
the appropriate timeline format regardless of the planner used to generate it. Moreover, it is domain-
independent, that is, it can be used for any kind of robot without having to modify it. In this chapter, the
main concepts, architecture and implementation details of SanchoExpress are presented and compared
to other already existing executives.

Chapter 6: Evaluation in Real-World Scenarios
One of the differences between synthetic scenarios such as the blocks-world and “real” ones is that

there might be significant deviations between the plan generated and the outcome of the execution.
Previous chapters are intended to demonstrate the soundness of the different novelties from a theoretical
point of view. This chapter changes course and test the planner as a whole in two scenarios. The first,
named FASTER (Forward Acquisition of Soil and Terrain data for Exploration Rover) represents a Mars
exploration mission with two rovers that collaborate to traverse faster and safer towards a target. The
second, named USAR (Urban Search and Rescue) involves a rescue robot that must find the victims in
a disaster scenario and assess their state. Both scenarios helped to demonstrate high levels of autonomy
with real robots in complex environments.

Chapter 7: Conclusions
Last chapter provides an overview of what has been achieved highlighting the main contributions of

the thesis and the remaining open points for future research topics.
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2 Automated Planning and Execution: Background

This chapter covers a number of key topics for the thesis, including automated planning, execution,
robotics and space.

First of all, the most relevant planning formalisms are identified and characterized in order to analyse
which are the most relevant for the scenarios presented in Chapter 1. A number of synthetic and real
domains are then presented. Next section presents a list of relevant frameworks and planners with special
emphasys on HTN and Timeline-based planners. Following section analyses state-of-the-art executives.
Some metrics and relevant properties for planners and executives are then presented and finally, the con-
clusions summarize what is missing in the field of autonomy for mobile robots in complex environments
and what must be done to tackle the problem.

2.1 Classical vs. Applied Planning

Planning is the reasoning side of acting that aims to achieve some predefined objectives and Automated
planning is the area of Artificial Intelligence that studies this process.

There are several forms of planning, traditionally subdivided in two major groups: classical (or theo-
retical) and applied. The gap between the two of them is a reiterative topic in the main planning and AI
conferences. All planning systems used for the scenarios presented in Chapter 1 are based on some kind
of temporal planning, mainly timeline-based. However, it is clear that they could be highly benefited,
specially in terms of performance, from the novelties brought by modern classical planners.

In fact, both planning styles share multiple concepts. Most classical and applied planners have a
search space (see definition 8) containing at least one list (some have several) of candidate solutions that
the solver needs to evaluate. All types of uninformed and informed search are also shared between the
two worlds, with a predominant use of A*-style algorithms, and rely on heuristics based on the same
principles even though the type of knowledge used differs.

However, there are some key differences that make the application of classical planners to applied
domains complicated. These differences, analysed in [142], can be grouped as follows:

Knowledge about the Domain (time, resources)
The representation of time and resources is critical for applied systems. Moreover, all planners anal-

ysed for the space domain are based on timelines and contain schedulers to manage resources. On
the contrary, most of the theoretical planners do not support any of them. Among the few theoretical
temporal planners, only a minority support the whole specification of PDDL 3.1 which is already less
expressive than the applied temporal planners presented in Section 2.4.4, specially in terms of temporal
relations. With respect to the resources, supporting them require numerical fluents that imply infinite
domains making planning undecidable [43, 71, 35].

Knowledge about “Good Plans” (oversubscription, optimization, robustness, flexibility)
Timeline planners facilitate the reasoning about plan quality, expressed as hard (need to be enforced)

or soft (preferences) constraints. Quality metrics are defined to assign a score to the plan that the planner
tries to increase following the constraints [43, 123].
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Search-Control Knowledge

Interesting problems might present time and memory complexities exponential to the size of the prob-
lem, making blind search ineffective. In consequence, planners require some kind of search control to
lead them towards the most promising areas of the search space. Classical planners typically rely on
domain-independent heuristics and applied planners on domain-dependent. Domain-dependent knowl-
edge can dramatically improve the planner performance and sometimes make the difference between
solving a problem in exponential or polynomial time (e.g. [83, 141]), or allowing to solve problems
orders of magnitude more complicated (e.g. [115, 117, 4]).

Cooperative Planning

Sometimes, it is difficult to formally specify all constraint and operation preferences for a given do-
main, making a fully automatic plan generation approach inapplicable. Nonetheless, the complexity
of the problem also prevents to generate plans manually. Consequently, many timeline-based planning
systems adopt a mixed-initiative approach to support collaboration between humans and an planners to
build a high quality activity plan [24, 21, 22].

Ready for Execution

Applied planners produce plans usually intended to be executed by physical systems. In unstructured
domains, unforeseen events such as faults or science opportunities require fast response. In such situ-
ations, a monitoring system must alert the planner about the new situation in order to generate a new
plan [40] by means of fast replanning / rescheduling.

General Assumptions about the Domain and Problem

Classical planning is based on a number of assumptions, presented in Section 2.2.1. As these assump-
tions get relaxed, planning complexity increases to a point where it becomes intractable.

Search space

In [50], the strengths and weaknesses of state-space and plan-space approaches are evaluated. A key
advantage of state-space is that a planner based on this approach performs search based on a complete
understanding of the state of the world and therefore it is possible to design more informed heuristics to
guide the process. Moreover, as it always plans forward, it avoids the need to resolve threats, as is the
case in Iterative Repair, by imposing a total-order on actions: each new action added to the plan comes
after all those already in the plan. The total ordering of actions ensures that each new action cannot
threaten earlier constraints (it is automatically promoted), and no later action can threaten its constraints.
On the other hand, the price to pay is that actions never occur in parallel and their ordering is early
determined, which might lead to poor-quality plans and even make search more difficult.

Use of “de-facto” Standards

Among other factors, PDDL language and the International Planning Competition (IPC) have played
a mayor role in the standardization of classical planning.

PDDL (see Section 2.3.1) the reusability of code, models, etc. and to easily compare different
planners[69].

Regarding the International Planning Competition (IPC), its objectives are to provide an empirical
comparison of planning systems, to highlight challenges to the community in the form of problems at
the edge of current capabilities, to propose new directions for research and to provide a core of common
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benchmark problems and a formalism that can aid in the comparison and evaluation of planning systems.
The rules of the competition are clearly stated:

• Language: Planners must use a specific PDDL version.

• Tracks: Each planner can take part on one of the following tracks: sequential, temporal and pref-
erences.

• Evaluation: Metrics are defined to evaluate planners based on plan quality and solving time. Eval-
uation of each planner is performed in a standard platform and has a predefined time to solve all
the tasks.

Summarizing, applied planners are very expressive (supporting time, resources, external procedures),
effective on solving specific problems and can be easily tailored with external procedures and control
knowledge, partially thanks to its less restrictive formalisms. On the other hand, classical planners clearly
outperform applied planners in solving general problems, are based on well defined standards and have
a strong research community that constantly produces novelties.

2.2 Planning Domains

As a consequence of the differences analysed in the previous section, each planning technique is specially
suitable for some specific type of domains. The following subsections analyse the characteristics and
assumptions of classical and applied domains, used later on to classify problems and identify relevant
solving techniques.

2.2.1 Classical Domains

Classical domains are used in academia with scientific purposes. They typically represent abstractions
of real problems based on a number of assumptions referred to as the restricted model [81]:

• A0 (Finite Σ): The system Σ has a finite set of states.

• A1 (Fully observableΣ): The systemΣ is fully observable, i.e., one has complete knowledge about
the state of Σ.

• A2 (Deterministic Σ): Σ is deterministic, i.e, for every state s and every action µ, there is a
transition function |γ(s, µ)| ≤ 1. If an action is applicable to a state, the transition leads to another
single state.

• A3 (Static Σ): Σ has no internal dynamics, staying in the same state until an action is applied.

• A4 (Restricted goals): The planner handles only restricted goals specified as goal states Sg. Ex-
tended goals such as states to be avoided or utility functions are not considered.

• A5 (Sequential plan): A solution plan to a planning problem is a linearly ordered finite sequence
of actions.

• A6 (Implicit Time): Actions and events have no duration as time is not represented in this model.

• A7 (Offline planning): The planner is not concerned with any external change that may occur while
it is planning; it plans for the given initial and goal states regardless of the current dynamics, if any.
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Specially relevant is the International Planning Competition (IPC) which tests the planners against a
number of problems updated in every edition in order to cover new research topics. The domains of the
IPC are organized in two groups: Temporal and Sequential, with the later one including domains for the
satisfying, agile, optimal and multi-core tracks.

Several domains are submitted every IPC. The selection criterion is based on the following principles:

• Reproducible: Others can follow the method and produce the same (sort of) problems.

• Without bias: Does not favour a system against another.

• Useful: not resulting in all problems solved trivially, or all unsolvable.

• General: It can be applied to any set of planners, on any domain.

Different domains help to focus on different planning problems such as action-cost, negative-
preconditions, conditional-effects or durative actions. However, in opposition to real domains, they
can be simplified to a level in which planners are able to solve them.

One specially hard domain in the IPC-2014 sequential track was Visit-all [102]. An agent in the
middle of a square grid nxn must visit all the cells in the grid. This is an extremely simple problem
to solve non-optimally as it is just the result of multiple easy but conflicting goals that can often be
achieved trivially, once they are serialized. However, this domain is very difficult for “pure” heuristic
search planners, mainly those based on delete-relaxation heuristics.

With respect to the temporal track, the Satellite domain is specially interesting for this thesis. One or
more satellites are used to make observations, collecting and downlinking data to a ground station. The
satellites are equipped with different sets of instruments, each with different characteristics in terms of
appropriate calibration targets, data productions, energy consumption and requirements for warming up
and cooling down. The satellites can be pointed at different targets by slewing them between different
attitudes. There can be constraints on which targets are accessible to different satellites due to occlusion
and slewing capabilities. Instruments generate data that must be stored on the satellite and subsequently
downlinked when a communication window opportunity (which is fixed) opens with a ground station.
Due to the high volume of data, it is not possible to download the whole storage in one single pass,
therefore downlinks must be scheduled taking into consideration the activities related to production of
data, storage capacity and available communication windows.

In the real problem there are additional difficulties such as the management of energy, the use of
solar power, maintenance of operational temperatures during periods in shadow, targets are only visible
during particular time-windows and the downlinking windows are variable. Representing these facts in
PDDL2.1 is possible but not straightforward, remaining an area in which there is need for development.
The two domains used to evaluate QuijoteExpress go in this direction, demanding more expressiveness
than in those domains analysed so far, even though some simplifications are also required.

2.2.2 Applied Domains

In the case of applied planning, each specific domain implies its own specific assumptions. In the Mars
rover and rescue robot scenarios, none of the assumptions in Section 2.2.1 are valid:

• A0 (Finite Σ): The use of numerical state variables (such as power, memory) and parameters
(speed, position) implies the existence of infinite states, even if the system is modelled with finite
state machines.
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• A1 (Fully observable Σ): Some aspects of the state of the world are unknown, which is one of the
causes of uncertainty for the reference domains. It has three consequences: (1) Planning based on a
complete understanding of the world is not feasible; (2) Some of the assumptions considered during
planning might be wrong; and (3) New relevant information for the plan might be discovered only
during execution time.

• A2 (Deterministic Σ): Σ is non-deterministic, i.e, each action can lead to different possible states
but, contrary to stochastic systems, no probabilities are attached to them. In consequence, A5
assumption should also be relaxed, as the plan must encode ways for dealing with alternatives,
e.g., conditional constructs like “do a and, depending on its result, do either b or c” and iterative
constructs like “do a until a given result is obtained”. Notice that the controller has to observe the
state s in a closed-loop control. If assumption A1 is also relaxed, this leads to another difficulty:
the controller does not know exactly the current state s of the system at run-time.

• A3 (Static Σ): Σ could spontaneously change its state due to external events. This represents the
third factor of uncertainty for the reference scenarios.

• A4 (Restricted goals): Plans do not consist on reaching a final goal state, but rather on achieving
a set of states during a given time. Moreover, it could be desirable to specify quality metrics to
optimize the plan.

• A5 (Sequential plan): The plan might be a flexible structure where the execution of some parts
depend on others.

• A6 (Implicit Time): Timeline-based planners consider durations for the actions and for the relations
between them.

• A7 (Offline planning): In real-world scenarios, the plan execution must be checked online for
possible deviations. In cases something unexpected happens, the executive must notify the planner
in order to repair the plan.

These assumptions represent a big change with respect to the previous restricted model, making plan-
ning undecidable.

Space Domains

Due to the ever increasing complexity of spacecraft and missions, space agencies have started to move
toward autonomous operations for both on-ground and on-board segments.

NASA and ESA represent with no doubt the reference point in terms of autonomy. The NASA New
Millennium Program strove to built "faster, better and cheaper" missions with spacecraft autonomy be-
coming one of the crucial technologies to achieve this vision while ESA Proba family has launched
several satellites dedicated to demonstrate on-board autonomy.

Specially relevant for this thesis are the rover missions. A rover (see Figure 2.1) is a type of space
exploration vehicle designed to move across the surface of a planet or other celestial bodies. It is typically
equipped with a wheeled locomotion system to move across hazardous terrain, although legged versions
are common in research labs. Some rovers have been designed to transport astronauts like those used
in Apollo missions while others are robots with different levels of autonomy depending on the mission
constraints.

The hardware of a exploration rover is divided in subsystems that can be classified in two main groups:
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Figure 2.1.: Sojourner, MER and Curiosity Mars rovers (Courtesy of JPL).

• Platform: Involves the systems not related to scientific activities. Some examples are the GNC
(Guidance, navigation and control), communications, mast, battery, etc.

• Payload: Represents the scientific hardware. The sample catching rover of MSR for example
should have a vision system to analyse the rocks and a Sample Acquisition System (SAS) to store
the most interesting rocks.

While the platforms are becoming more or less standard, the payload significantly changes between
missions. This is the case for example of the 2020 Mars mission, that will largely reuse the Curiosity
rover platform.

Reasons for Autonomy
The degree of autonomy depends on the mission requirements, including: Execution and monitor-

ing of planned actions; Failure detection, isolation and recovery (FDIR); Automated planning/replan-
ning/scheduling of activities; and Expert systems.

Regarding automated planning, in the traditional approach to spacecraft operations, humans on ground
carry out a large number of functions including planning activities, sequencing spacecraft actions, ver-
ifying the spacecraft’s state, recovering failures, etc. This approach seems to be unfeasible in future
missions due to a number of reasons [41, 162]. The following is a non-exhaustive list of challenges
faced by space missions that can be (at least partially) mitigated with on-board autonomy:

• Mission complexity: Space missions have increased their complexity exponentially [57, 6]. As a
consequence, engineers need the help of automated tools to create better activity plans.

• Uncertainty: The sources of uncertainty exposed above (dynamism, unstructured and non-
determinism) usually make plans to fail, resulting in the need to replan. In the best case, replanning
imposes a huge workload to the personnel on-ground. In some missions however it might not be
even possible on-ground (see next point).

• Limited communications: Some missions, specially in deep space, do not allow continuous or real-
time communications with the robot for different reasons: (1) Eclipses preventing direct-to-Earth
communications, specially relevant for surface operations, combined with limited communication
windows with relay satellites; (2) Long-delays in the round-trip of radio signals, which in the case
of Mars range between 8 and 44 minutes; (3) Limited availability of the Deep Space Network,
which only allow few downlinks a day for each mission; . . . .
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• Limited on-board resources: There are several examples of such limitations that have been resolved
with more autonomy. For example, the limited on-board memory of Mars Express was solved by
means of the Mexar system[34, 32]; The high power consumption of the antennas in MER was
among the reasons to add on-board autonomous science detection in MER[28].

• Science: Maximizing science return is always critical. Taking advantage of on-board planning,
it can be achieved by means of opportunistic science[67], autonomous instrument placement[85],
on-board data processing[28], etc.

• Safety: Space represents a hazardous environment, as demonstrated with the loss of Spirit after
getting stuck in a sand trap. Automated planning on-board simplifies the self-monitoring, on-
board fault-management and health of the spacecraft.

• Cost: Spacecraft operations are expensive. Long term missions like MER, active in Mars since
2004, represent a challenge for the operations team: producing day-to-day command sequences
is a very demanding task that requires a huge team of experts. Automated tools on-ground such
as MAPGEN[22] (Mixed Initiative Activity Planning Generator) helped engineers to create valid
plans with less effort.

All these factors are specially critical for surface missions such as Mars rovers. As an example, the
Sojourner rover was idle 40 to 75% of the mission time, waiting for orders from Earth. This situation
has improved in modern rover missions such as MER or MSL thanks to on-board autonomous software
such as Autonav (autonomous navigation).

In the new model of operations, the scientists will communicate high-level science goals directly to
the spacecraft, which will automatically generate on-board the corresponding plan, verify its correctness
and ultimately execute it without routine human intervention. In the presence of errors, the spacecraft
will have to understand their impact and replan in light of the new information.

Next, a list of some of the most relevant missions from NASA and ESA in terms of autonomous
operations is presented.

Hubble Space Telescope (HST)
The NASA/ESA Hubble Space Telescope, launched in 1990 has revolutionised modern astronomy,

but also represented a cornerstone in terms of automated planning for space applications.
To cope with the tight short-term observing schedules, a framework named HSTS (Heuristic Schedul-

ing Testbed System) was used for the first time to develop integrated P&S applications. The observation
scheduler scaled up so well that in the end it was also used to plan long-term plans with all necessary
activities such as instrument reconfiguration, telescope re-pointing, data communication, etc.

HSTS can be considered the father of modern temporal planners, at least in the space domain. The
framework allows to represent the world as a set of state variables which vary over time. It also de-
scribes the dynamics of the domain by defining activities with pre and post conditions and the modelling
of resources, another key concept in modern planners. Solutions are presented in a flexible manner
as temporal constraint graphs, avoiding the problems of over-commitment inherent in “fixed times”
scheduling frameworks. Finally, HSTS provides a uniform view of P&S processes as an iterative con-
straint posting process allowing a range of problem solving strategies (e.g. forward simulation, backward
chaining, etc.). Most of these concepts are fundamental in modern temporal planners such as ASPEN,
EUROPA or APSI, analysed in Section 2.4.4.
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Deep Space One (DS-1)
Launched in 1999, it had the Remote Agent Experiment (RAX) on-board [110, 93], a layered agent

architecture developed at NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL).
RAX represented a new model of operations where scientists communicated high-level science goals
to the spacecraft converted by RAX into a plan executed and monitored on-board. The autonomous
agent architecture comprised three modules: the constraint, timeline-based “Planning and Scheduling
System” in charge of generating the activity plan; the “Smart Executive”, responsible for plan execution,
local recoveries and temporal adjustments according to the actual conditions of executions; the model-
based "Mode Identification and Recovery System" (Livingstone) in charge of monitoring the progress of
execution from abstracted sensor data, diagnose the cause of off-nominal behaviour and suggest mode
reconfigurations to be executed by the Smart Executive without any intervention from ground controllers.

Earth Observation One (EO-1)
Launched in 2003, the satellite was endowed with the Autonomous Sciencecraft Experiment

(ASE) [44, 136]. EO-1 was developed and is operated by NASA Goddard Space Flight Center (GSFC),
while ASE was developed by the Jet Propulsion Laboratory (JPL). ASE is composed of three compo-
nents: Continuous Activity Scheduling and Planning, Execution and Replanning (CASPER), which is
an on-board deliberative, model-based planner and scheduler; Spacecraft Command Language (SCL),
which acts as a middleware execution engine; and the Science processing software to perform additional
science classification and processing. There is also a complementary ground software called Automated
Scheduling and Planning Environment (ASPEN), which works collaboratively with CASPER to gen-
erate plans. ASE differs from RAX in two aspects: Autonomous spacecraft control with continuous
planning rather than batch-driven commands and the use of accurate and effective science models to
achieve science-driven autonomy. ASE was a complete success and some of the tools such as CASPER
and ASPEN are broadly use nowadays in several NASA missions (see 2.4.4).

Project for Onboard Autonomy (PROBA)-1
The Proba family is a series of micro-satellites intended to demonstrate different autonomous systems.
Proba-1 was provided with automatic functions for both the on-board and the ground segment, includ-

ing nominal operation and resource management, automated camera pointing and scanning, scheduling
and execution of payload operations, data communication management or pass operations [147].

Mars Pathfinder (MPF) / Sojourner
The Sojourner rover of the Mars Pathfinder (MPF) mission, landed on Mars in 1997, was the first

rover to demonstrate some level of autonomy. It drove a total of 84 meters during its entire mission.
However its autonomy was limited because of concerns about reliability and verifiability. The rover
could only execute rigid commands sequences rigorously checked and verified by mission control prior
to being uploaded. The default response to unexpected behaviours was to abort the sequence and wait for
the next communications opportunity. This approach resulted in a considerable fraction (between 40 to
75%) of the nominally 90 days of surface mission being used to determine the state of the remote system
and return it to productive operation. Sojourner demonstrated the potential for robotic Mars exploration
but at the same time showed the need for a more robust rover autonomy [156].

Mars Exploration Rover (MER)
Next rover mission, the Mars Exploration Rover (MER) that landed two rovers named Spirit and

Opportunity on Mars in 2004, greatly extended the capabilities of Pathfinder/Sojourner, from 10s of
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meters around its lander to many kilometres over different types of terrain. The efficiency of the MER
mission was far better than in Pathfinder, thanks to a great extend to the autonomous navigation software
(see 2.4.5).

MER operations are divided in strategic (time horizons about two weeks) and tactical (one sol time
horizon). The major steps of the tactical process are [106]: (1) Downlink reception; (2) Science ac-
tivity planning; (3) Activity plan refinement and validation; (4) Activity plan review; (5) Command
sequence generation; (6) Sequence integration and validation; (7) Command review; (8) Transmission
of commands to the spacecraft.

As MER did not have any on-board replanning capability, they are referred to as “semi-autonomous”.
They have event-driven pre-programmed behaviours for many critical tasks as well as time-driven for
some payload functions. However, several updates along the years of operations after the nominal mis-
sion brought increasing levels of autonomy both on-ground and on-board (see Section 2.4.5).

Mars Science Laboratory (MSL) / Curiosity
MSL with its rover Curiosity landed on Mars in 2012. Even thought Curiosity is the most advanced

rover ever made, it does not represent a revolution in terms of autonomy, at least during the nominal
mission. The main effort has been oriented towards the consolidation of the software inherited from
MER [154] and Phoenix missions, which will represent a standard platform in future missions such
as Mars Sample Return (MSR). After more than one year of manual driving, the rover got a software
update in 2013 including the Autonav system that allows for autonomous navigation and AEGIS for the
ChemCam spectrometer autonomous target selection [65].

ExoMars
ExoMars 2020 represents the first rover mission of ESA. The ambitious requirements in terms of

number of experiment cycles per sol for the Humboldt(lander) and Pasteur(rover) payloads, including
operations such as instrument placement, sample acquisition using a driller or sample processing, and for
the rover mobility, with distances between cycles in the range of 500 meters, suggest an autonomy level
equal or higher to MER with the probable addition of on-board planning/scheduling [162] and multi-
sol operations [138]. Some studies about possible on-board architectures and planning systems such
as MMOPS (Mars Mission On-Board Planner and Scheduler) [163, 164] have been already conducted.
However, MMOPS is very conservative: autonomy on-board is reduced to timeline validation, control
and repair, no opportunistic science is considered and most of the heavy work should be accomplished
on-ground.

Mars Sample Return (MSR)
Future missions such as MSR are key to understand the requirements and research lines of future

planning systems.
The MSR is an international mission aiming to return 500 grams of Mars samples to the Earth in

order to be analysed with instrumentation only possible in Earth-based laboratories. The current MSR
architecture is based on a campaign of three missions plus a facility for Mars Sample handing on Earth
(see Figure 2.2):

• A Sample Caching Rover (SCR) mission (2018 or later), which acquires and places the samples
inside the cache for later pickup.

• A MSR Lander mission (2024) with a Sample Fetching Rover (SFR) which searches and retrieves
the cache, places it inside the orbiting sample (OS) container and launches it into a low Mars orbit.
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• a MSR Orbiter Mission (2022), which searches and captures the OS, places it in a bio-container
and brings it back to Earth.

• A Mars Sample receiving facility which retrieves the bio-container for delivery to the Sample
Receiving Facilities for samples unpacking, before distributing them to the science community.

Figure 2.2.: Mars Sample Return mission (Courtesy of NASA).

Both, the SCR and SFR will require unprecedented levels of autonomy due to time constraints be-
tween the different missions. The SCR will have to autonomously drive distances in the range of 10s of
kilometres to find the samples in a time frame delimited by the arrival of the SFR. This one will have
to navigate to the location of the sample cache and retrieve it to the Mars Ascend Vehicle (MAV) also
within a restrictive timeline. In order to mitigate a possible SCR malfunction, the SFR will itself acquire
soil samples from the surface/underground while travelling along its landing site and deliver them to the
MAV [6, 105].

On-Ground Domains

Robots have just recently started to move from highly structured domains like factories to the open
world. Some examples are unmanned vehicles (ground, aerial and underwater), for surveillance/military
purposes, rescue robots, robots playing different sports (football, ping-pong, . . .), autonomous drilling
in mines, robotic vacuum cleaners for domestic use, etc. Following the schema of the previous space
domains, the need of autonomy on-ground is justified and then the most relevant scenarios are presented.
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Reasons for Autonomy - Lessons Learned from Fukushima Disaster
On March 11, 2011, a 9.0 magnitude earthquake and following tsunami hit eastern Japan. At the

Fukushima Daiichi Nuclear Power Plant, at least three nuclear reactors suffered explosions due to
hydrogen gas that had built up within their outer containment buildings after cooling system failure
resulting from the loss of electrical power. Due to the high levels of radioactivity, mobile rescue robots
where selected for surveillance missions.

Less than a week after the disaster, iRobot sent two 510 PackBot, spare parts and engineers to the
disaster area. Since then, several robots such as iRobot 710 Warrior, Quince 1&2 or Monirobo have been
used for inspection in order to obtain information about the environment. In the future, robots will be
expected to conduct sampling and decontamination activities.

All these robots are tele-operated, imposing a high workload. To decrease it, Quince team offered
a shared autonomy system similar to those used in the Rescue League [113] but it was rejected by
TEPCO operators as they did not trust the system. Tele-operation imposes several time-consuming
restrictions [82]:

• Training: The company in charge of the nuclear plant did not want external personnel to directly
take part in the missions. It took around one week after the arrival of the two 510 PackBot to train
internal personnel and six weeks for the Quince, as it was assigned more complex activities.

• Limited connection: Wireless communications were very limited for two reasons: (1) Limited
connectivity due to the reactors’ thick concrete walls and metallic components (2) The nose created
by the radiation. Tethers were used instead, trading off range and mobility. With a fiber-optic
tethers the range is limited to a maximum of two kilometres, forcing the operators to work nearby
dangerous areas.

• Limited dexterity: Operators had to manipulate robot controls with protective clothing such as
gloves and masks, which highly limited their dexterity.

• Situation awareness: Due to radiation, most sensors such as GPS have noise. The images provided
by cameras flicked and had a very limited field of view.

• Complex operations: Operators had to face complex manoeuvres, making progress slow and
putting the robots in danger. Two relevant examples are: (1) At the start and end of climbing
stairs, the arm had to be moved to adjust the robot’s center of gravity or it could flip over (2) The
controller pad was the same as those used for video games, requiring to switch between the driving
mode and the arm-control mode continuously, on top of which, this had to be done in the middle
of unstable tasks, such as climbing stairs.

These restrictions are likely to be present in many other disaster scenarios apart from Fukushima and
could be addressed, at least partially, by endowing the robots with appropriate levels of autonomy.

RoboCup Rescue League
Its objective is to develop and demonstrate advanced robotic capabilities for emergency responders

using annual competitions and workshops to evaluate and disseminate best-in-class robotic solutions.
The league hosts annual competitions to (1) Increase awareness of the challenges involved in de-

ploying robots for emergency response applications; (2) Provide objective performance evaluations of
mobile robots operating in complex yet repeatable environments; and (3) Promote collaboration between
researchers.
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The scenario is the following: A building has partially collapsed due to an earthquake. Fearing sec-
ondary collapses from aftershocks, teams of robots are used to search the interior of the building for
victims. The mission for the robots and their operators is to build a map of the area, find victims, deter-
mine their situation, state, and location, and then report back their findings in a map of the building with
associated victim data. The section near the building entrance appears relatively intact while the interior
of the structure exhibits increasing degrees of collapse. The robots are considered expendable in case of
difficulty.

Specific robotic capabilities encouraged in the competition include the following: Negotiate com-
promised and collapsed structures; Locate victims and ascertain their conditions; Produce maps of the
environment; Establish communications with victims; Deliver fluids, nourishment, medicines; Emplace
sensors to identify/monitor hazards; Mark or identify best paths to victims.

Autonomy remains so far in the background. At present, all Rescue League teams rely on semi-
autonomous systems with an operator in the loop. Once the robot starts a mission, it has pre-programmed
behaviours to achieve the goals, which might be considered equivalent to an E3 level of autonomy. If
required, the operator can manually assign specific tasks to the robot, from high level such as find victim
to low level such as manual driving.

However, different scenarios such as oil spills, nuclear accidents or natural disasters requiring human-
itarian help where time is critical might require higher levels of autonomy.

Darpa Robotic Challenge (DRC)
The Fukushima event inspired DARPA to create the DRC competition. Similarly to the Rescue

League, DRC aims to speed up the development of robots used in response to natural and man-made
disasters.

The competition was divided in eight tasks:

• Drive and Exit Utility Vehicle: The robot must be able to safely drive a vehicle despite occasional
communications disruptions. Just getting out of the driver’s seat poses significant strength and
dexterity challenges.

• Walk Across Rough Terrain: The robots must maintain their balance and identify safe routes for
placement of limbs.

• Remove Debris from Doorway: Robots must demonstrate a wide range of motion, in addition to
balance and strength, to clear the path forward.

• Open Series of Doors: Moving the doors in an arc challenges the robots perception and dexterity.
The robots must figure out how to align and move themselves as they open each door.

• Climb Industrial Ladder: To avoid falls, the robots must safely navigate the ladder and maintain
their balance as they climb. Strength is key in this task.

• Cut Through Wall: Using power tools tests the robots’ strength, dexterity and ability to perceive
their environment. The robots must also simultaneously apply rigid force to hold a tool, yet demon-
strate the flexibility to smoothly manipulate it.

• Carry and Connect Fire Hose: The robots must identify the standpipe and then transport a bulky,
non-rigid item (the fire hose) to it. The robots must then have sufficient dexterity and strength to
attach the hose to a standpipe and open the spigot.
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• Locate and Close Leaking Valves: The robots must identify the valves, determine which ones are
open and have sufficient range of motion to turn the valve wheels in an arc to close them.

These tasks require the following key capabilities: Mobility and dexterity to manoeuvre in the de-
graded environments typical of disaster zones; Ability to manipulate and use a diverse assortment of
tools designed for humans; Ability to be operated by humans who have had little to no robotics training;
Partial autonomy in task-level decision-making based on operator commands and sensor inputs.

In this case, the robots are mostly operated through semantic commands, which represents a level of
autonomy even lower than in the Rescue League due to the higher complexity of the tasks and hardware.
The operators in a control station command and supervise the robot as it accomplishes the different tasks
in a semi-autonomous way. First the robot generates a 3D map consisting on a cloud of points and the
operators later match the points to specific objects on a database. Following, the operator indicates to the
robot the next action, which could represent complex or simple behaviours. For a complex behaviour,
the operator can select an object in the environment and through commands like walk and grasp, the
robot can autonomously generate a footstep plan to get near the object and estimate the position of the
hand needed to grasp it. Or for a simple behaviour, the operator can select an element of the robot such
as the hand and move it in the virtual environment to the target point. Once the action is received, the
robot calculates the trajectory and performs it.

Comparing the Mars and Rescue Scenarios

Disaster environments and planetary exploration present several similarities and differences illustrated
in Table 2.1. In consequence, both test cases complement each other, helping to better understand the
possibilities and requirements of automated planning and execution for robots.

Env. Dynamic Observ. Struct. Reconf. Ops. Autonomy Recovery Cost CPU
Mars ! 7 7 7 7 High Impossible $2500M Low

Rescue ! Maybe 7 ! Maybe Low-High Possible $100K High

Table 2.1.: Relevant features of “real-world” robotic scenarios: (3) Observable: Indicates whether the envi-
ronment is observable; (4) Structured; (5) Reconfigurable: Possibility of reconfiguring the robots
for other missions; (6) Direct operations: Indicate whether the robot can be directly operated or
not; (8) Recovery: Possibility of recovery under critical failure.

With respect to the environments, both of them are very similar. Only in terms of observability might
the former have an advantage thanks to the high availability of solutions on Earth such as cameras,
human inspection, aerial vehicles, etc, which obviously is not accessible in space.

Regarding the robot, the criticality is quite different mainly because major malfunctions in a Mars
rover use to represent the end of the mission, while rescue robots can be fixed or replaced. A related
factor is the cost of each robot/mission which is one of the main limitations to send robots to other
planets.

The type of missions is also very different: in the case of planetary rovers, they are designed to conduct
very specific tasks, making their adaptation to different uses unlikely. On the other hand, rescue robots
need to be highly reconfigurable.

With respect to the level of autonomy, rescue scenarios offer different options depending on the type
of environment, from tele-operation to highly automated. On Mars, due to several reasons including
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signal delay, limited communications, etc. operations use to be highly automated while tele-operation is
completely discarded.

2.3 Planning Formalisms

The first step towards automated problem solving consists on providing the theoretical foundations in
the form of a formalism used to explain fundamental concepts about planning, formally define domains
and problems or prove theorems.

There are multiple forms of planning, each specially suited for some specific type of problem. The
following is a general classification [80]:

• Classical Planning:

– State-Space Planning: The search space is a (maybe infinite) tree or graph representing all the
possible states of the problem where each node is a fully defined state and each arc represents
the transition from one state to another. From the initial state, a number of children are
generated, one for each applicable action and one of them becomes the current state from
which search continues until a solution is met. It will be further explained in Section 2.3.1.

– Plan-Space Planning: The search space can be represented as a tree or graph where the nodes
are partially defined plans and arcs represent plan refinements intended to complete a partial
plan. Planning starts from an initial node corresponding to an empty plan, searching for a
solution by means of two operations: choosing an action (as in state-space) and ordering it. A
plan is defined as a set of planning operators together with ordering constraints. Even though
it is included as a classical technique, it represents the most common approach for timeline
planners (TLP), which are of special interest in the thesis.

• Neoclassical Planning:

– Graphplan Planning: The search space is a directed layered graph, where each layer i is
divided in two nodes: one with actions (Ai) and one with propositions (Pi). The initial state
P0 contains all initial propositions. Search starts from P0 to generate A1, the set of actions
(ground operators) whose preconditions are satisfied in P0. P1 is the union of P0 and the set
of positive effects of actions in A1. This process continues from one layer to the next. A plan
is a sequence of sets of actions Φ = 〈π1, π2, . . . , πk〉, where πi is a subset of independent
actions of Ai that can be applied in any order to Pi−1 and lead to a state which is a subset of
Pi.

– Planning as Satisfiability: The idea is to formulate a planning problem as a propositional
formula. A satisfiability decision procedure determines whether the formula is satisfiable by
assigning truth values to the propositional variables. Finally, a plan is extracted from the
assignments determined by the satisfiability decision procedure.

– Constraint Satisfaction: Given a set of variables, their domains and a set of constraints on the
values that the variables may take, the problem is to find a value for each variable within its
domain such that the set of values for all the variables meet all the constraints.

• New Planning Systems:

– Hierarchical Task Network Planning: It is similar to classical planning as each state of
the world is represented by a set of atoms and each action corresponds to a deterministic
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state-transition, but it is different in the following sense: Planning proceeds by reducing non-
primitive tasks recursively into smaller and smaller subtasks, until the point where all of them
are primitive.

– Temporal Planning: In this case, a state represents the value assumed for each variable in
a specific instant of time. An action is not a single state-transition but a collection of local
change and persistence conditions that are spread out in time but are focused on just a few
state variables or propositions.

• Planning with Uncertainty:

– Planning based on Markov Decision Processes (MDPs): Represents the planning problem
as an optimization problem. The domain is modelled like a non-deterministic state-transition
system that assigns probabilities to state-transitions. Goals are utility functions used to express
preferences on the entire execution path of a plan rather than just desired final states.

– Planning based on Model Checking: Its key idea is to solve planning problems model-
theoretically. The domain is modelled like a non-deterministic state-transition system where
an action may lead from one state to many different states. Goals are temporal logic formulas.

Most modern classical planners follow an early commitment approach based on forward-chaining
heuristic search in the state-space. In particular in satisficing planning (where planners are not required to
find optimal solutions but rather solutions with reasonable quality quickly), state-space heuristic search
has outperformed other approaches by a large margin in the past decade. Since 2000, for example,
all winners of the classical satisficing track in the roughly biennial IPC have followed this paradigm
(e.g [91, 86, 38, 127]). Recent developments, however, suggest that this picture may change (e.g. [130]
for a highly competitive planner based on satisfiability). In addition, state-space heuristic search has also
become the state-of-the-art technique for optimal planning (see [97, 87]).

On the other hand, applied planners follow a least-commitment approach based on Partial Order Plan-
ning (POP) for the plan space and require a combination of technologies in order to find solutions to
problems that are theoretically intractable. For instance, ASPEN, EUROPA and APSI (see Section 2.4.4)
are based on a combination of a heuristic iterative repair unfolder for subgoaling, a scheduler to handle
resources, a temporal solver to handle time and a Constraint Satisfaction Problem (CSP) to solve para-
metric constraints.

The most influential approaches for this thesis are forward-chaining heuristic search in the state-space,
Timeline and HTN planning, which have been merged with other techniques such as partial and parallel
planning. The resulting planner, named QuijoteExpress [174, 167, 175], is the first timeline planner
based on state-space to the best of our knowledge.

Next, all the cited formalisms relevant for QuijoteExpress are reviewed in depth.

2.3.1 State-Space

STRIPS (Stanford Research Institute Problem Solver) [68] is by far the most widely used state-space
formal language to date due to its simplicity and reasonable expressiveness. Many languages are based
on STRIPS such as the PDDL [104] family or SAS+ [8]. The following sections introduce a general
overview of its main concepts, based on [81] which is very close in many aspects to APSI.
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State Variable

Definition 3 (State-variable) A k-ary state-variable x(v1, . . . , vk) is represented by a symbol x and
each vi is either a constant or a variable with an associated domain Dvi . A state-variable is ground if
every vi is a constant, or unground otherwise.

Definition 4 (State) A state s is an assignment of values to all the variables1, formally: s =
{(x = c)|x ∈ X} where c ∈ Dx, that is, a list of values in s of all the ground state variables.

Example 1 In the example of the two collaborative Mars rovers, the location of the primary robot at a
given state s can be expressed as follows: rloc(rprimary) = loc1

where rloc is a state variable and rprimary is a variable used to designate one of the robots2.

Problems use to have facts that are invariant along all the states. They are represented as relations
which share the same structure as state variables, but in this case the list of variables is replaced by a list
of subdomains. The list of relations of a domain is represented as R.

Example 2 The following constraint states that a satellite will provide a communication link to the
primary rover in the location pdest:

v isible(sat1, pdest)

These facts cannot be changed by the planner, therefore do not need to be stated in each state.

Operators and Actions

Definition 5 (Operator (o)) It is a triple o = (name(o), precond(o), effects(o)) where name(o) is a
unique name associated to a list of parameters, precond(o) is a set of expressions on state variables and
effects(o) is a set of assignments to state variables.

Example 3 Continuing with the Mars rovers, a formal description of an operator to move one of the
robots could be: going_to(rprimary, porig, pdest)
precond: rloc(rprimary) = porig
effects: rloc(rprimary)← pdest

The conditions in precond(a) refer to the values of state variables in a state s, whereas the updates in
effects(a) refer to the values in the state γ(s, a) (see Definition 11).

Definition 6 (Action (a)) It is a grounded operator o that satisfies all the preconditions in precond(o).

An action is applicable in a state s iff the values of the state variables in s satisfy the conditions in
precond(a), formally: ∀(x = c) ∈ precond(a)|(x = c) ∈ s. In that case, the state γ(s, a) is produced by
updating the values of the state variables according to effects(a).

Definition 7 (Goal) State specified by defining the values of one or more grounded state variables.

Example 4 The following goal indicates that the robot rprimary must be in position pdest:
at(rprimary) = pdest

1 In plan-space a state is a partial assignment.
2 Since all state variables depend on the current state, x(v1, ..., vk) refers implicitly to the value of x in the current state s.
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Search Space

Definition 8 (Search space) The set of all reachable states from the initial state by any sequence of
actions, which might be infinite. Depending on the properties of the domain, the topology of the search
space can be a tree, in case there is just one way to get from one state to another, or a graph otherwise.

Each node in the search space contains a fully defined state of the world while arcs correspond to state
transitions. The initial state is known as the root node while a leaf node is the one with no children in
the search tree (see below).

The search space is typically implemented with two lists.

Definition 9 (Open-list) Set of all leaf nodes available for expansion at any given point, also known as
frontier because it separates the explored region of the graph from the unexplored.

Definition 10 (Closed-list (optional)) Set of nodes already visited. It is used in case the search space is
a graph to avoid exploring more than once those nodes in loopy paths.

Domains and Problems

Definition 11 (Domain (Σ)) It is modelled as Σ = (S,A, γ) such that:

• S: The search space.

• A: Set of actions that meet the relations in R.

• γ(s, a): State-transition function such that γ(s, a) = {(x = c)|x ∈ X}, where c is specified by
an assignment x← c ∈ effect(a) or {(x = c)} ∈ s.

It is important to remark the difference between states and nodes. A state represents a configuration
of the world given by a partial assignment to the variables while a node is a bookkeeping data structure
that contains, besides the state, relevant information for the search algorithm such as the parent-node (to
extract a path), cost (to evaluate a solution), h-value (to evaluate distance to the goal), etc.

Given a state-transition with two states s, s′ ∈ S and one action a ∈ A such that s′ ∈ γ(s, a), there is
an arc from s to s′ labelled with a.

Definition 12 (Problem (P )) A problem is a triple P = (Σ, s0, g) where s0 is the initial state and g a
set of expressions on the state variables representing a goal state that might be partially defined, that is,
the value for some state variables might not be specified.

The Problem of Planning

A plan for a problem P is a sequence of actions Π = 〈a1, . . . , ak〉 such that a1 is applicable to s0, a2 is
applicable in γ(s0, a1) an so forth, and the conditions in the goal g are met in γ(sk−1, ak). The process
of looking for a plan is called search.

Search can proceed from the initial state towards the goal (forward-search) or the other way around
(backward-search). The former is generally accepted nowadays to be faster because the initial state is

29



fully defined while the goal state is not, which helps to decrease the branching factor. Regardless of the
search direction, a plan can be extracted following the path from the initial state to the goal state.

When search starts, the first step is to test whether the current state is a goal. If it is not, then the
node is expanded, that is, apply each applicable action to the current state, thereby generating a new
set of states (one for each applicable action). Next, the current state must be moved to one of the new
generated states and the process repeats until the end condition is met, process that grows a search tree
that will cover the search space (see Figure 2.3). End conditions can be defined in terms of some limit
such as maximum search time, memory used, number of nodes expanded, etc. or in terms of the search
type where the condition is met when one random goal is reached (satisficing planning), the optimal goal
is reached (optimal) or all goals are reached (complete).

Most search algorithms follow this process; they vary primarily on how they choose which state to
expand next, the so-called search strategy.

Figure 2.3.: Search tree generated during planning covering the graph search space.

PDDL

The Planning Domain Definition Language (PDDL) [104, 69, 59] is a “de facto” standard in classical
planning and the official language for the International Planning Competition (IPC) since 1998. Sev-
eral versions have progressively increased its expressive power, usually ahead of the capabilities of its
contemporary planners.

PDDL is a first-order logic, action-based language inspired by STRIPS with a finite number of pred-
icate symbols, constants and variables. States are sets of ground atoms while actions are defined as
(grounded) planning operators with preconditions and effects, expressed as logical propositions, and
can be parametrised by means of variables (terms). The version 2.1 added several extensions such
as numeric expressions, metrics, spontaneous events and, more importantly, durative actions used for
temporal planning.

Like in many other languages, modelling with PDDL is divided in two parts: domain and problem.
Most modern planners do not use PDDL representation internally, but translate PDDL tasks into simpler
formalisms and ground all operators before planning [129].
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2.3.2 Hierarchical Task Networks (HTN)

Hierarchical Task Networks (HTN) [134, 144, 165, 96, 64, 62, 157] is one of the most used planning
techniques for real world applications [159], in part because it allows to effectively encode knowledge
into domain-independent planners. Some relevant HTN planner examples are SIPE-2 and SHOP2 (see
Sections 2.4.3 and 2.4.3), Nonlin [144], one of the first HTN planning systems or O-Plan [145].

HTN planning uses actions and states of the world that are similar to those used in STRIPS-style
planning, i.e., operators consisting of three lists of atoms: a precondition list, an add list, and a delete
list. However, in HTN planning the objective is not to achieve a final goal as for STRIPS-style, but to
perform instead some set of tasks. The definitions of term, literal, atom, action and transition function
are the same as in classical planning.

The input to the planning system includes a set of operators similar to those of classical planning and
a set of methods which describe how to decompose non-primitive (or complex) tasks into subtasks. HTN
methods provide a convenient way to write problem-solving “recipes” that correspond to how a human
expert might think about solving a planning problem. Methods make it much easier to solve the planning
problem because they generate only plans that are solutions to the problem. Non-primitive tasks cannot
be directly executed as they could be achieved in different ways. For example, if a robot has to go from
point a to b, it could do it with auto navigation or teleoperated. Planning proceeds by decomposing
non-primitive tasks recursively into smaller and smaller subtasks, until all are primitive tasks.

HTN is based on a first-order language with some extensions, formally: L = 〈V,C, P, F, T,N〉where
V is a set of variable symbols, C constant symbols, P predicate symbols, F primitive-task symbols, T
compound-task symbols, and N symbols used for labelling tasks.

Definition 13 (Task) A task is a syntactic construct τ(x1, . . . , xn) where τ ∈ T and x1, . . . , xn are
terms. There are two type of tasks: primitive, called operators and nonprimitive called methods. The
task is grounded if all of the terms are grounded; otherwise, it is ungrounded.

Definition 14 (Method) A method is a tuple m = (τ, ω) where τ is a non-primitive task and ω is a task
network. It states that one way to accomplish the task τ is to achieve all the tasks in ω without violating
ω’s constraints.

A task (operator or method) τ is applicable in a state s if precond+(τ) ⊆ s and precond−(τ) ∩
s = ∅. A method m = (τ, ω) is relevant for a task τi if τ = τi. An action a =
(name(a), precond(a), effects(a) accomplishes a ground primitive task τ in the state s if name(a) =
τ and τ is applicable to s.

Definition 15 (Constraints) A constraint is a boolean formula. Being v , v ′ ∈ V , l a literal, c ∈ C and
n, n′ ∈ N , the type of constraints in HTN are:

• Variable binding constraints such as v = v ′ or v = c.

• Ordering constraints such as n ≺ n′ means that the task labelled with n precedes the one labelled
with n′.

• State constraints such as n, l, l, n or n, l, n′, meaning that l must be true after n, before n or
between n and n′ respectively.

Definition 16 (Task network) A task network is a pair ω = (N,C) in which N is a set of task nodes
and C the set constraints. Each node n ∈ N contains a task τn, represented as (n : τn). If all tasks τn
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are grounded, then ω is grounded. Each edge c ∈ C contains a constraint. If all nodes are ordered, then
ω is totally ordered. If all nodes are primitive, then ω is primitive.

Definition 17 (State) It is a list of ground atoms. The atoms appearing in that list are said to be true in
that state and those that do not appear are false in that state.

Definition 18 (Domain) A domain D is a pair D = 〈O,M〉 where O is a list of operators and M a list
of methods.

Definition 19 (Problem) A problem instance P is a triple 〈ω, I,D〉 where ω the target task network
that requires planning, I is the initial state and D is a planning domain.

P is primitive if the task network d contains only primitive tasks. P is regular if all the task networks
in the methods and d contain at most one non-primitive task, and that non-primitive task is ordered to
occur as either the first or the last task. P is propositional if no variables are allowed. P is totally ordered
if all the tasks in any task network are totally ordered.

A detailed description of a planning domain and problem for both the planetary rover and rescue robot
scenarios are given in Chapter 6.

Definition 20 (Decomposition) Let ω = (N,C) be a non-primitive task network that contains a (non-
primitive) node ni : τni

. Let m = (τm, ωm), where ωm = (Nm, Cm) be a relevant method for τni
and θ

the most general unifier of τni
and τm. The result of decomposing ni by ωm in ω under θ is obtained as

follows:

δ(ω, ni,m, θ) = ω′|ω′ = (N ′, C ′) (2.1)

where:
N ′ = N − ni ∪ θ(Nm)
C ′ is obtained from C by making the following changes:

• replace (ni ≺ nj) with last(Nm) ≺ first(Nnj
), that is, all tasks in the decomposition of ni must

precede all tasks in the decomposition of nj .

• replace (l, ni) with (l, first(Nm)).

• replace (ni, l) with (last(Nm), l).

• replace (ni, l, nj) with (last(Nm), l, first(Nnj
)).

• replace ni by Nm in every first[] or last[] expression where it appears.

Definition 21 (Solution) Let P = 〈ω, I,D〉 a planning problem. The cases in which a plan π =
〈o1, . . . , om〉 is a solution for P are:

• ω is empty: Then, the empty plan π = 〈∅〉 is a solution.

• The first task (n : τn) of ω is a primitive task: π is a solution for P if τn is applicable to s0 and
the plan π = 〈o2, . . . , om〉 is a solution for P ′ = (ω − n, γ(s0, a1), D), where P ′ is the planning
problem obtained from executing the first task of π (τn) and removing its corresponding node (n)
from the task network.
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• The first task (n : τn) of ω is a nonprimitive task: In case there is a method m relevant for τn and
applicable in s0. Then π is a solution for P if there is a task network ω′ = δ(ω, n,m, θ) such that
there is a solution for P ′ = (ω′, s0, D).

The constraint formulas are evaluated as follows:

• (ci = cj): true, if ci, cj are the same constant symbols.

• first[ni, nj, . . .]: returns the first node.

• last[ni, nj, . . .]: returns the last node.

• c = (ni ≺ nj): true if c ∈ C.

• l, ni: ni holds in sj , then true if l holds in sj−1.

• ni, l: ni holds in sj , then true if l holds in sj .

• ni, l, nj: ni holds in s′j , nj holds in s′′j , then true if l holds in all se such j′ ≤ e < j′′.

If π is a solution for (ω, s0, D), then for each task node n ∈ N there is a decomposition tree whose
leaf nodes are actions of π. The decomposition tree is composed of AND-branches. If n is primitive
the decomposition tree consists just of n. Otherwise, if n decomposes into a task network δ(ω, n,m, θ),
then the root of the decomposition tree is n and its subtrees are the decomposition trees for the nodes of
δ(ω, n,m, θ). Detailed information about the solution structure for the Mars rover scenario is given in
Chapter 6.

Different properties of HTN useful for HTLN such as expressiveness, soundness, completeness or
efficiency will be analysed in Chapter 3.

2.3.3 Timeline Planning

Representing time in applied planning systems is important because actions and relations occur over
timespans [53, 3, 153, 81, 39]. The STRIPS-style model of an action based on preconditions which
happen before the action, and effects happening after it must be greatly extended to represent the different
type of temporal relations between two or more actions/states. Several planners systems such as ASPEN,
EUROPA, APSI or IxTET are good examples of temporal planning, more specifically timeline-based
planning3.

A TLP problem is defined as a set of constraints (conjunctive or disjunctive) over a set of temporal
elements (time points or intervals) assigned to some actions. It can be resolved applying generic CSP
techniques, even though specific algorithms to deal with resources management have been developed.
The solutions are represented as timelines or sequence of states defining the behaviour of the system.
The main concepts are next introduced in detail.

Definition 22 (Temporal reference, time point, time interval) A temporal reference is an instant or
interval. An instant is a variable ranging over the set R of real numbers. An interval is a pair (x, y) of
instants, such that x < y. Some examples of temporal relations are before, overlaps or starts. They can
be expressed as CSP problems using two different formalisms: time-point algebra and interval algebra.
3 In this thesis the term Timeline-based planning (TLP) is used instead of Constraint-Based Interval planning (CBI) [71]

because the former is more widely accepted
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Definition 23 (Point algebra (PA) [153]) PA defines how to relate in time a set of instants with qual-
itative constraints without necessarily ordering them. Given a set of primitive relation symbols P =
{<,=, >}, the possible qualitative constraints are:

R = {∅, {<} , {=} , {>} , {<,=} , {>,=} , {<,>} , P} (2.2)

where ∅ is the empty constraint and P the universal. A constraint is represented as [tirtj], where ti, tj
are time instants and r a relation symbol. The symmetrical constraint of r is r′, obtained by replacing <
by > and the opposite.

A binary constraint network for the point algebra is defined as a directed graph (X,C) where X =
{t1, t2, . . . , tn} is a set of instant variables and each arc in C is a constraint. In contrast to standard
CSPs, variable domains in PA are infinite. A tuple of real numbers (v1, . . . , vn) is a solution of (X,C)
iff the n values ti = vi satisfy all the constraints of C.

Definition 24 (Interval algebra (IA) [3]) IA is similar to PA except that it deals with intervals instead
of points. Two intervals x and y whose end points are precisely set in R can be related qualitatively
in only thirteen possible ways composed of the seven represented in Table 2.2 plus their symmetrical
relations.

Relation Meaning

before

meets

overlaps

during

starts

finishes

equal

Table 2.2.: Allen’s interval relations.

Let P be the set of thirteen primitive relations, then R can be any combination of them plus the
symbols ∅ and P itself. Each constraint r ∈ R is a constraint interpreted as the disjunction of these
primitives. For example, x {before,meets} y denotes (x before y) ∨ (x meets y).

The definition of binary constraint network for IA is equivalent to this of PA replacing instant variables
by interval variables. A tuple of pairs of real numbers ((v−1 , v +

1 ) . . . (v−n , v +
n )), with v−i ≤ v +

i , is a
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solution of (X,C) iff the n intervals v−i , v +
i satisfy all the constraints of C. The IA network (X,C) is

consistent when a solution exists.

Definition 25 (Simple temporal constraint problem (STP) [53]) Let X = {t1, t2, . . . , tn} be a set of
time-points, each with domain in R. The following two constraints can be applied over X:

• Unary: ai ≤ ti ≤ bi.

• Binary: aij ≤ tj − ti ≤ bij .

with ai, bi, aij, bij ∈ R. Each unary constraint affecting ti can be written as binary by taking a reference
point t0 as follows: ai ≤ ti − t0 ≤ bi. A simple temporal constraint problem (STP) is a pair (X,C)
where each element in C is an interval rij that constrains the relative distance of a pair of instants
(ti, tj). A STP (X,C) is consistent if there is a solution that satisfies all the constraints. It is minimal if
every point in an interval rij belongs to some solution.

Definition 26 (Temporal constraint satisfaction problem (TCSP) [53]) In the general problem, called
TCSP, disjunctions of constraints are allowed on the distances between pairs of instants. In a TCSP
network, the constraint between a pair (ti, tj) corresponds to the disjunction (al ≤ tj − ti ≤
bl) ∨ . . . ∨ (am ≤ tj − ti ≤ bm), denoted as r = {[al, bl], . . . , [am, bm]}. Consistency and mini-
mality properties are equivalent to those of STPs.

Most of the temporal planners cited in this chapter share a common timeline-based approach to mis-
sion planning. In this approach, the overall system being planned (the spacecraft and relevant envi-
ronment elements) is represented by a set of timelines. In spite of recent efforts to formally define
timelines [39, 70], there is no consensus on what a timeline exactly is. A general definition could be the
following.

Definition 27 (Timeline [70]) Complete history of value changes of a variable over the specified plan-
ning horizon.

There are several types of timelines. In [70] they are classified according to the following criteria:

• Variable type: A timeline can be a state variable that usually models a given subsystem (e.g. cam-
era, robotic arm, etc.) or a resource (e.g. power, memory, etc.).

• Value constraints type:

– Value: Constrain a temporal assertion to a single value.

– Simple: Constrain the value and time.

– Complex: Exclude a subset of values on a timeline over a specified interval.

• Temporal constraints type:

– For state variables:

* Fixed: all start and end times of temporal assertions are fixed, and all intervals are totally
ordered.

* Total Order: Flexible start and end times of temporal assertions are allowed (with the
implication that interval durations are flexible), but all intervals on the Timeline are totally
ordered.
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* Partial Order: All start and end times of temporal assertions are fixed, but intervals may
be partially ordered.

* Flexible Partial Order: Durations of temporal assertions are fixed, but arbitrary temporal
constraints between events are otherwise supported.

* STN: Arbitrary temporal constraints may be imposed on the events.

* DTN: Disjunctive temporal network.

– For resources:

* Fixed: All event times are fixed (but events may be simultaneous).

* Total Order: All event times are totally ordered but event times may be flexible.

* STN: Arbitrary temporal constraints may be imposed on the events.

* DTN: Disjunctive temporal networks.

According to this classification, there are eighteen possible specializations for state variable timelines
and twelve for resources, all implying different time and space O(n) complexities.

A temporal planner typically operates on a temporal database that maintains temporal references and
provide functions for querying, updating, and maintaining its consistency. The planner asserts relations
among these temporal references. Once an activity plan is generated, the timelines are extracted and
used to verify the safety and validity of the plan.

Timeline-based planners have a number of modules, each solving a specific aspect of the problem:

• Parameter Constraint Engine: Reasoning about parameter dependencies.

• Temporal Engine: Reasoning about the temporal dependencies.

• Search Engine: In charge of adding supporting decisions to justify the new decisions added to the
problem, process also known as subgoaling [101, 9, 74].

• Timeline Completer: Responsible for representing the chronology of values of a state variable,
along with the temporal constraints that arise from the current chronology.

2.3.4 Planning under Uncertainty

The assumptions presented in Section 2.2.2 required for the two reference scenarios prevent the use of
the classical definition of solution, as it will frequently happen that the required information to generate
a detailed plan is not yet available at planning time. It might be not even desirable to generate a fully
defined plan in such conditions, as the planner might be forced to be very conservative. However, a valid
plan is required in order to start the execution. Two techniques have been widely used for planning under
uncertainty: Markov Decision Processes [27] and Model Checking (MC) [47, 13].

Markov Decision Process

MDPs deal with nondeterminism, probabilities, partial observability and extended goals. There are
two main categories: MDPs with full observability and MDPs with partial observability, also known as
POMDPs which is closer to the properties of the Mars rover and rescue robot domains.

A stochastic system is a non-deterministic state-transition system with a probability distribution on
each state-transition. It is a tuple Σ = (S,A,O, T,Ω, R) where:
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• S: Finite set of states.

• A: Finite set of actions.

• O: Finite set of observations.

• Ta(s, s′) where a ∈ A, s, s′ ∈ S: Probability that action a in state s will lead to state s′.

• Ωa(o|s′) where a ∈ A, s′ ∈ S: Probability of observing o in state s′ after executing action a.

• Ra(s, s′): Expected reward received after transition to state s′ from s

At each time, the system is in some state s ∈ S. The agent takes an action a ∈ A, which causes
the environment to transition to state s′ with probability Ta(s, s′), receives a reward and the process
repeats. All the information known about a state is provided by observations. It might not be possible
to distinguish between two states given a set of observations. Moreover, the same state may corre-
spond to different observations. The controller in charge of executing the plan can observe a probability
distribution over states of the system called belief state, rather than the exact state of the system.

The problem of POMDPs is to find a “policy”, a function π : B → A that maps belief states to
actions. Planning problems in POMDPs can be stated as optimization problems where an optimal policy
π has to be generated.

Model Checking

Equally to MDPs, Model Checking (MC) deal with nondeterminism, probabilities, partial observability
and extended goals.

A domain is a nondeterministic state-transition system Σ = (S,A, γ), where:

• S: Finite set of states.

• A: Finite set of actions.

• γ: SxA→ 2S is the state-transition function.

Non-determinism is modelled by γ: given a state s and an action a, γ(s, a) returns a set of states.
An action a is applicable in a state s if γ(s, a) 6= ∅. The set of actions that are applicable in state s is
A(s) = {a : ∃s′ ∈ γ(s, a)}.

Plans are policies similar to MDP policies. A policy π for a planning domain Σ = (S,A, γ) is a set
of pairs (s, a) such that s ∈ S and a ∈ A(s). For any state s there is at most one action a such that
(s, a) ∈ π. Unlike MDP, MC policies are not necessarily defined over all states.

An execution path is a possibly infinite sequence s1, s2, . . . of states such that, for every state si either
si is the last state of the sequence (called terminal state) or the transition T (si, si+1) holds. A state s′ is
reachable from another s if there is a path from s to s′.

As the execution of a plan may produce more than one possible path, the definition of a solution
to a planning problem is more complicated than in classical planning. A planning problem is a triple
(Σ, S0, Sg), where Σ is a planning domain, S0 ⊆ S a set of initial states and Sg ⊆ S is a set of goal
states. Let π be a policy for Σ. Then there are three kinds of solutions:

• Weak solutions are plans that may achieve the goal but are not guaranteed to do so.
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• Strong solutions are plans that are guaranteed to achieve the goal in spite of nondeterminism: all
the paths are finite and reach the goal.

• Strong cyclic solutions are guaranteed to reach the goal under the assumption that execution will
eventually exit the loop. These solutions are such that all their partial execution paths can be
extended to a finite execution path whose terminal state is a goal state.

Timeline representation is equivalent to weak solutions in MC as it is not possible to guarantee any
stronger solution due to uncertainty inherent to dynamic and non-structured domains (see A2 and A3
assumptions in Section 2.2.2). To solve this situation, the system relies on replanning in case the goal is
not reached.

2.3.5 Constraint Satisfaction Problems (CSP)

A constraint satisfaction problem (CSP) is defined as a tuple P = (X,D,C) where:

• X = {x1, . . . , xn}: Set of variables.

• D = {D1, . . . , Dn}: The set of finite domains of the variables, such that xi ∈ Di.

• C = {C1, . . . , Cm}: Finite set of constraints. A constraint cj restricts the possible values of a
subset of k variables {xj1, . . . , xjk} ⊆ X , in other words, the subset of the Cartesian product:
cj ⊆ Dj1x . . . xDjk.

A solution is a value assignment to each variable from its domain, formally a tuple σ = (v1, . . . , vn)
such that vi ∈ Di and the values of the variables xi = vi∀i ∈ [1, n] meet all the constraints. A CSP is
consistent if such solution σ exists.

An instance of a CSP can be conceptualized as a constraint graph G = {V,E}. For every variable
xi ∈ X there is a corresponding node in V . For every set of variables connected by a constraint cj ∈ C
there is a corresponding hyperedge in E. In the particular case in which only binary constraints (each
constraint involves at most two variables) are defined the hyperedges become simple edges. A well
known example of binary CSP is the Simple Temporal Network.

Given a CSP, one may be interested in addressing: (1) A resolution problem: finding a solution tuple;
(2) A consistency problem: checking whether such a solution exists; (3) A filtering problem: removing
some redundant values from domains or some redundant tuples from constraints; and (4) A minimal
reduction problem: removing every redundant value and redundant tuple.

The consistency problem of a binary CSP over finite domains is NP-complete. Resolution and mini-
mal reduction are NP-hard problems. Filtering is a polynomial problem. Its practical efficiency makes
it desirable as an approximation to consistency checking: it provides a necessary but not a sufficient
condition of consistency. If filtering reduces a domain or a constraint to an empty set, then the CSP is
inconsistent, but the converse is not true. Filtering is useful in particular when a CSP is specified incre-
mentally, as is typical for CSPs in planning, by adding at each step new variables and constraints. One
needs to check whether a step is consistent before pursuing it further. This incremental checking can be
approximated by filtering techniques.

Significant work has been conducted in the field of CSP planning, where different versions of arc and
path-consistency algorithms have been used in several planners [103, 14, 140]. In APSI, a CSP solver is
used to maintain parameter consistency. QuijoteExpress benefits from this functionality and extends it to
satisfy some specific requirements from HTN to represent the fact that a compound task and its related
network are actually the same thing.
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2.4 Software for Autonomy

There is a wide variety of autonomous software used on ground and space domains. This section starts
analysing generic search algorithms used by most automated planning systems, then it provides an
overview of mission planners and generic frameworks and finally presents some expert systems used
in Mars rovers.

2.4.1 Search Algorithms for Planning

To find solutions in the search space, both classical and applied planners use search algorithms. They can
be classified in two main subgroups: uninformed and informed. The first ones do not have information
about the search-space beyond the frontier. All they can do is to generate successors and distinguish a
goal state from a non-goal state. The later ones have information that help to evaluate how far each node
is from the goal.

Uninformed Search

Suppose that the search space is a graph where b is the branching factor, d the depth of the shallowest
goal node and m the maximum depth of any path. Some of the more relevant uninformed algorithms
are:

• Depth-first search (DFS): Its strategy consists on expanding the deepest node of the frontier start-
ing from the root node. It is complete in finite state-spaces, but not optimal as it might find a
non-optimal goal first. The time complexity is O(bm), much higher than this of BFS (see below),
but its memory requirements are smaller, O(bm).

• Depth-limited: To alleviate the problem of infinite length paths in DFS, this algorithm uses a
depth limit l where all nodes at l are treated as if they had no successors. However, l introduce yet
another source of incompleteness when l < d.

• Iterative deepening depth-first search (IDDFS): It searches for solutions up to a given depth
typically with a DFS strategy. In case no solution is found, the maximum depth is increased
and the search repeated from the beginning. The algorithm will have to expand the same node a
number of times proportional to its depth. More specifically, if the solution is at depth d, the time
complexity is O(bd) and the space complexity O(bd). Since most of the nodes are in the bottom
level, this fact is not so harmful. It is complete when the branching factor is finite and optimal
when the path cost is a none decreasing function of the depth of the node.

• Breadth-first search (BFS): Its strategy consists on expanding the shallowest unexpanded node.
It starts expanding the root node, then all its successors, and so on. It is complete if the shallowest
goal node is at finite depth. It is optimal if the step-cost increases with depth. The time complexity
is b + b2 + . . . bd = O(bd), the same as the space complexity, equivalent to the number of nodes
stored in the open list, which dominates the number of nodes in the closed list, equals to O(bd−1).

• Uniform-cost search: In case actions have different costs, BFS is not optimal. Uniform-cost is a
variant that expands the node with the lowest cost g(n) (also referred to as g-value) of the open
list. If there is an infinite sequence of zero-cost actions, the algorithm will get stuck. Therefore, it
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is complete only if every action cost is larger than a given threshold ε. As g(n) is a monotonically
increasing function (cost of actions are positive), the algorithm is optimal. Whenever the algorithm
returns a goal, it is the one with the lower cost in the open list. Given C∗ the cost of the optimal
solution, its time and space complexity is O(b1+bC∗/εc) [133].

• Bidirectional search: It is based on running two parallel searches, one forward from the initial
state and one backwards from the goal state. Backward search might not be that easy if some
actions are not reversible or there are several goal states, in which case the branching factor would
be much larger. Instead of testing whether a node is a goal, it is checked whether the frontiers of
the two searches intersect. It is complete and optimal when BFS is used in both searches. Time
and space complexity is just O(bd/2).

Table 2.3 compares different properties of the uninformed algorithms presented before.

Search Completeness Optimality Time complex. Space complex.
Depth-first (DFS) Yes1 No O(bm) O(bm)

Depth-limited Yes1,2 No O(bl) O(bl)
Iterative Deepening (IDDFS) Yes1 Yes4 O(bd) O(bd)

Breadth-first (BFS) Yes3 Yes4 O(bd) O(bd)
Uninformed Cost (UCS) Yes3,5 Yes O(b1+bC∗/εc) O(b1+bC∗/εc)

Bidirectional Yes1,6 Yes4,6 O(bd/2) O(bd/2)

Table 2.3.: Comparison of uninformed algorithms where: (1) If the algorithm avoids repeated states and
redundant paths and the search space is finite; (2) Limit depth l larger than depth of solution
d; (3) If finite branching factor; (4) All actions have same cost; (5) Complete if stepcosts ≥ ε;
(6) Both directions use breadth-first search.

Informed Search

Informed search strategies can find solutions more efficiently than uninformed. Best-first search is the
general approach used by almost all informed algorithms. The node with the best value for a given
evaluation function f(n) will be the next to be expanded. The only difference with respect to uniform-
cost algorithms is the use of f(n) instead of g(n) to order the open list. Most evaluation functions use a
heuristic function, defined as follows.

Definition 28 (Heuristic function (h(n) or h-value)) Estimated cost of the cheapest path from the state
of node n to a goal state.

Three of the most relevant informed search algorithms are:

• Greedy best-first search: Its evaluation function is f(n) = h(n), that is, it tries to expand the
node which is estimated to be closer to the goal. It is not optimal and, as DFS, is not complete
because it might get trap in infinite loops.

• A* search: Its evaluation function is f(n) = g(n)+h(n), where g(n) gives the cost from the root
node to another node n in the frontier and h(n) the cost from n to a goal. Hence, f(n) estimates
the path cost from the initial state to the goal through n. A* is identical to Uniform-cost search
except that it uses f instead of g. Some definitions are required to characterize the completeness
and optimality of A*.
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Definition 29 (Admissibility) A heuristic is admissible if it never overestimates the cost of reach-
ing the goal, i.e. the cost it estimates is not higher than the lowest possible cost from the current
point in the path [133].

Definition 30 (Consistency) For every node n and every successor n′ of n generated by an action
a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n′

plus the estimated cost of reaching the goal from n:
h(n) ≤ c(n, n′) + h(n′)

Admissible heuristics are by nature optimistic because they think the cost of solving the problem is
less than it actually is. Every consistent heuristic is also admissible but the opposite does not hold.

A* is optimal in a tree state-space if h(n) is admissible, while for a graph state-space h(n) must
be consistent. During search, A* add nodes in concentric bands of increasing f-cost (the fringe).
With uniform-cost the fringe will be circular while with A* it will stretch toward the goal state,
becoming narrower around the optimal path with more informative (lower error) heuristics. If C∗

is the cost of the optimal solution path, then it is granted that:

– A* will expand all nodes with f(n) < C∗.

– A* might expand some of the nodes right on the “goal fringe” (f(n) = C∗) before selecting
a goal node.

– A* will not expand any node with f(n) > C∗.

In consequence, A* is optimally efficient for any given consistent heuristic. That is, no other
optimal algorithm expands fewer nodes than A* (except through tie-breaking among nodes with
f(n) = C∗). In case an algorithm does not expand all nodes with f(n) < C∗, it might miss the
optimal solution.

The time complexity depends on the heuristic and the state-space. Two concepts are required to
analyse it as explained in [133]:

– Absolute error: ∆ ≡ h∗ − h where h∗ is the actual cost of getting from the root to the goal.

– Relative error: ε ≡ (h∗ − h)/h∗.
In the best case, time complexity is polynomial when the search space is a tree, there is a single
goal state, and ∆ ≤ O(log(h∗)). However, in most practical cases it is exponential in the length
of the solution even if ε is constant.

Similarly to Breadth-first search (from which A* is a variant), worst than the time complexity is the
space complexity, exponential to the length of the optimal path. Assuming that planning on-ground
is accomplished in powerful machines, A* is the most suitable algorithm for on-ground planning
in the rescue and Mars scenarios.

• Simplified Memory-bounded A* (SMA) search: The memory problems of A* might not be that
critical if the algorithm is run in a server with plenty of resources. However, if it is used in the
on-board computer of a robot, where resources are scarce, the situation changes. To solve this
problem SMA* limits the amount of memory used while preserving the properties of A*.

Just like A*, it expands the best leaf node according to the heuristic until the memory is full. At
this point, SMA* drops the leaf node with the worst f − value, but will preserve its f − value,
so that SMA* can regenerate the subtree if it turns out in the future to be the most promising path.
It is easier to understand how the algorithm works with the example in Figure 2.4.
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Figure 2.4.: Progress of SMA* with a memory size of three nodes. Each node is labelled with its current
f − cost. Values in parentheses show the value of the best forgotten descendant (Courtesy
of Stuart Russell and Peter Norvig).

SMA* is complete if the depth of the shallowest goal node is less than the memory size expressed
as number of nodes. It is optimal if the optimal solution is reachable, otherwise it returns the best
reachable solution. It is a very robust algorithm for finding optimal solutions, particularly when
the state-space is a graph, step costs are not uniform and node generation is expensive compared
to the overhead of maintaining the frontier and the explored set. These properties make SMA*
particularly suitable for on-board replanning in the reference scenarios.

Table 2.4 compares different properties of the informed algorithms presented before.

Search Completeness Optimality Time complex. Space complex.
Greedy best-first No No O(bm) O(bm)

A* Yes Yes O(b∆) O(b∆)
SMA* Yes4 Yes5 O(b∆)

Table 2.4.: Comparison of informed algorithms.

Heuristics

The efficiency of informed search algorithms depends to a great extent on the heuristics used. A heuristic
typically represents a relaxation of the problem as it ignores some characteristic or constraint. It is easier
then to solve the problem taking some assumptions about the consequences of the actions in the future.

The type of planner defines the type of heuristics to be used: node selection for state-space, distance
between goals for GraphPlan or flaw selection and resolver selection for plan-space.

Most of the research on heuristics is done for the state-space. Four groups have been identified and
described in [87]:
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• Critical Paths: Approximate the cost of a goal set by the most costly subgoal. It is admissible be-
cause it is always more difficult to achieve larger subgoals. The most relevant example is hm [84].

• Delete relaxation: Estimate the cost of reaching a goal state by considering a relaxed task Π+

derived from the actual planning taskΠ by ignoring all deleted effects of operators. Some examples
are h+(admissible) [91], hadd(not admissible) and hmax(admissible) [19].

• Abstraction: Abstraction heuristics map each state s of Π to an abstract state α(s). The heuristic
value hα(s) is then the distance from α(s) to the nearest abstract goal state. Some examples are
Pattern Databases (PDBs) [58] or Merge-and-Shrink [88].

• Landmarks (LM): A fact-landmark for a state s is a fact that is true at some point in every s-plan,
while the more recent disjunctive action-landmarks are sets of actions of which at least one is part
of every s-plan. Some examples are hLA [97] or hLM−cut [87], both admissibles.

Heuristics in plan-space are not only required to choose the next node to expand, but also the next flaw
(iterative repair approach) and the next resolver. However, they have not been so deeply studied as for
state-space.

Some of the heuristics identified in [48, 49] to select the next node to expand are:

• Fewest Threats First (FTF): Order the nodes in the open-list by the ascending number of threats to
be resolved. It aims at finding solutions quicker.

• Most Threats First (MTF): Aims at driving the search down through the hierarchy to find the
subplans causing conflicts with others so that they can be resolved more quickly.

Regarding the selection of the next flaw, a formal definition will be first provided, followed by a list
of related heuristics.

Definition 31 (Flaw) A flaw in a plan can be: (1) Open-Goal: Goal which constraints have not been
yet satisfied; (2) Threat: Action in the plan that presents conflicts.

Some heuristics used to select the next flaw to be resolved are:

• Zero-commitment: Gives top priority to unmatchable open conditions (enabling the elimination of
the plan). As a variant, ZLIFO gives next the priority to goals that can only be achieved uniquely,
and otherwise uses LIFO prioritization.

• Least-commitment: Selects the flaw which generates the fewest refined plans.

• Fewest alternatives first (FAF): This is the most commonly used. It selects the flaw having the
smallest number of resolvers in order to limit the cost of an eventual backtrack.

FAF has been proved useful for different kinds of applied planners such as HTN [149, 148, 120] and
timeline-based [49].

The development of advanced heuristics is outside the scope of the thesis. However, some heuristics
must be implemented to get real measurements of the planner performance.
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2.4.2 Forward-Chaining Planners

One of the most successful approaches to modern planning is forward search. It starts with the (fully)
defined initial state and explores the search space by iteratively choosing a state from the open-list,
expanding it in successors added to this open-list until either the goal state is reached or the open-list
is emptied. Forward-chaining (FC) planners differ mainly in the search algorithm used to decide the
expansion strategy, and heuristics (if required by the search algorithm) used to evaluate the cost of the
nodes. One of the main advantages of FC is that it can use very informative heuristics, as it always
expands nodes which states are fully defined.

Some of the most influential FC planners in the deterministic satisficing track (probabilistic or optimal
tracks are not relevant for this thesis) are the Fast Forward (FF) planner[91], winner of the AIPS-2000
planning competition, which started a period of dominance by heuristic search systems that last to the
present, Fast Downward[86] and LAMA[128].

Two planners are examined in depth. The first, Fast Downward, has played an extremely relevant role
in this thesis, not only for the search strategy followed during unfolding, but for other advanced concepts
such as multi-queue heuristic search, deferred heuristic evaluation, etc. The second, TLPlan, combines
forward-chaining with temporal reasoning, being therefore highly relevant for QuijoteExpress.

Fast Downward [86]

Fast Downward is a FC heuristic search planner, winner of the satisficing track at IPC 2004. Fast Down-
ward solves a problem in three phases:

1. The translation component is responsible for the transformation of the PDDL problem into a
SAS+ problem.

2. The knowledge compilation generates four kinds of data strucutures. Domain transition graphs en-
code how state variables can change their values. The causal graph[90] represents the hierarchical
relations between tasks, used later on to compute heuristic functions. The successor generator is
a data structure for determining the set of applicable operators in a given state. Finally, the axiom
evaluator is a data structure for computing the values of derived variables.

3. Search: In charge of doing the planning. It is based on two different varieties of the greedy best-first
search algorithm: single and multi-heuristic (causal graph and FF).

Fast Downward incorporates two search enhancements. Preferred operators are used to give special
priority to those transitions computed by the causal graph heuristic or helpful actions computed by the
FF heuristic. Deferred heuristic evaluation assigns to each node the heuristic value of its predecessor and
postpone its own evaluation to the time when the node is expanded. It is further analysed in Section 4.3.5.

OPTIC [10]

The OPTIC planner family represents the most powerful representation of classical temporal planning.
It inherits the knowledge obtained during the development of previous temporal solvers such as LPRPG,
CRICKEY, Colin or POPF.

OPTIC is capable of handling PDDL 3/+. It is based in the so called partial order planning forwards.
Rather than enforcing a strict total order, OPTIC builds a partial-order based on the facts and variables
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referred to by each step. OPTIC allows the representation of trajectory preferences (something similar
to the intermediate goals that can be represented in timeline-based planners), soft constraints and the
use of continuous cost functions that allow the definition of sophisticated temporal metrics beyond the
makespan.

2.4.3 HTN Planners

There are two types of planners according to the control knowledge used: (1) Those using some sort of
temporal formulas to tell which part of the search space should be avoided, including TLPlan, TalPlan
and AP2; (2) Those using HTN methods such as SHOP2 and SIPE-2. HTN planners search space
consists only of those nodes that are reachable using their methods, whereas TLPlan can explore any
part of the search space that avoids the “bad” states and their successors. It is hard to say which type of
control knowledge is more effective. As stated in [4], the two types are useful in different situations and
combining them might be an interesting topic for future research.

SHOP2 [116]

SHOP2 (Simple Hierarchical Ordered Planner) is an HTN, ordered task decomposition planning system.
Like most other HTN planners, SHOP2 is “hand-tailored”: its planning engine is domain-independent,
but the HTN methods may be domain-specific, and the planner can be customized to work in different
problem domains by giving it different sets of HTN methods.

Like its predecessor SHOP, SHOP2 is a sound and complete. It generates the plan steps in the order in
which they will be executed. Thus, SHOP2 knows the current state at each step of the planning process.

SHOP2 have several capabilities that go beyond those of a traditional HTN planner:

• Allows each method to decompose into a partially ordered set of subtasks, and allows the creation
of plans that interleave subtasks from different tasks.

• Incorporates many features from PDDL, such as quantifiers and conditional effects.

• Can handle temporal planning domains translating temporal PDDL operators into SHOP2 opera-
tors.

SIPE-2 [158, 160]

SIPE-2 (System for Interactive Planning and Execution) is a general-purpose, performance-oriented,
HTN-based planning and execution system. It has been employed in numerous problems such as air
campaign planning, oil spill response, production line scheduling, etc.

It plans hierarchically using different levels of abstraction. Given an arbitrary initial situation and
a set of goals, SIPE-2 either automatically or under interactive control combines operators to generate
plans to achieve the prescribed goals. Efficiency has been one of the primary goals in the design of
SIPE-2, which includes many heuristics for reducing computational complexity. Unlike expert systems,
the SIPE-2 architecture is capable of generating a novel sequence of actions that responds precisely to
the situation at hand. In addition, SIPE-2 implements and execution/monitoring system that accepts new
information about the world and modify the plan minimally according to this information.
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2.4.4 Timeline Frameworks and Planners

Frameworks are toolkits that facilitate the development of P&S solutions and typically provide fully
implemented planners. Table 2.5 compares some of the characteristics of the most relevant frameworks
for QuijoteExpress.

Planner Comm TL HTN PG Replan MI OBOG Heur
ASPEN Early ! ! 7 ! ! ! !

EUROPA Least ! ! ! 7 ! ! !

IxTET Least ! 7 ! 7 7 ! !

APSI Least ! ! ! 7 7 ! !

Table 2.5.: Planners comparison. Going from left to right, the columns are: (Comm) Commitment strag-
egy; (TL) Timeline-based; (HTN) Hierarchical Task Networks; (PG) Partially grounded; (Re-
plan) Replanning capabilities; (MI) Mixed-initiative; (OBOG) On-board and On-ground support;
(Heur) Heuristic-based search.

HSTS [111, 112, 108], CAIP / EUROPA2 [21, 22, 71]

HSTS (Heuristic Scheduling Testbed System) is one of the first timeline-based planners in which many
others such as Europa, ASPEN and APSI have been inspired. It consists of a heuristic chronological-
backtracking search operating over a constraint-based temporal database using iterative repair. It repre-
sents high-level state variables as timelines. The planner tries to place the tokens such that all the resource
and temporal constraints are met. The way HSTS defines time windows in order to react to unexpected
events has inspired the concept of Consistency Horizon of QuijoteExpress. However, HSTS does not
distinguish among activities, states, and resources, which is a really important aspect in QuijoteExpress.

The CAIP (Constraint-based Attribute and Interval Planning) [71] framework, based on HSTS is ori-
ented to the design of complex concurrent systems such as spacecraft. It is based on two techniques:
STN (Simple Temporal Network) and CSPs (Constraint Satisfaction Problems) and presents several
similarities with ASPEN and APSI, two timeline-based systems discussed later on this section.

In CAIP, a system is modelled as a list of components called attributes. An attribute is defined as a
set of states, e.g. a Camera with the states OFF, ON and TakingPicture. An interval contains a start time,
end time and the attribute instance to which it applies. In consequence, each attribute can only take one
value at any given time.

Domain constraints are used to describe the necessary conditions under which an interval (state with
temporal extent) can hold in a valid plan. The set of constraints associated to each interval is called
configuration.

A planning domain D is a tuple (I, A, R), where I is a set of intervals, A is a set of attributes, and R is
a set of configuration rules.

A planning problem instance is an incomplete plan, and the problem is to turn it into a valid and
complete plan. Unsequenced intervals are part of an incomplete plan; assertions that some activity takes
without justifying them.
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A candidate planPC is a mapping from attributes to sequences of intervals and a set of non-sequenced
intervals. A plan extension of PC is a plan P that preserves PC adding some new intervals. A valid
plan is a candidate plan that satisfies all planning domain constraints.

The initial plan is modified through a number of steps until it becomes a valid, complete plan. A plan
can be modified by means of:

• Restriction: Reduces the number of options remaining for existing decisions, like adding a new
decision (unsequenced interval) or reducing the number of remaining options (ground variables or
reducing the domain of the variable).

• Relaxation: Do the contrary.

The traditional definition of a complete valid plan requires that all of the constraints are satisfied, all
intervals sequenced and that the plan has been fully specified to the end of time. However, this is an
unnecessarily restrictive definition. In many applications, the Executor can fill in unspecified parts of
the plan. Those flexible plans that satisfy a given set of completeness requirements are referred to as
sufficient plans, a very relevant concept that will be extended in QuijoteExpress.

There are three differences between candidate plans from solutions: (1) There may be unbound vari-
ables; (2) There may be unsequenced intervals which have to be scheduled onto the appropriate attribute;
and (3) Some applicable compatibilities may not be yet satisfied.

EUROPA (1 and 2) are planners based on the CAIP framework. They have been applied to several
domains, including multiple satellite scheduling, planetary rover operations, automated flight planning,
Deep Space 1 mission, etc.

EUROPA2 has a powerful declarative modelling language called NDDL (New Domain Definition
Language). A planning domain D in NDDL is represented by the following elements:

• A set of timelines: T = {T1, T2, ..., Tn}, which are essentially variables capturing the evolution
of the attributes over time.

• A set of mutually exclusive activities associated with each timeline.

• A conjunction of temporal constraints associated with each activity.

The above representation differs from a PDDL domain description in two aspects: It uses a variable/-
value representation (timelines/activities) rather than a propositional representation; There is no concept
of state or action, only of intervals (activities) and constraints between those activities.

A planning problem P is represented by a pair P = {H, I} where:

• H ∈ N is the planning horizon that marks the time boundary of the activities in the plan to the
interval [0, H].

• I is the initial configuration represented by a set of activities placed on their corresponding time-
lines. For each activity, it is possible to fix the start and end time or leave it floating on the timeline.
The initial configuration corresponds to both the initial state and the goal state.

The planning algorithm at the core of EUROPA2 can be thought of as an instance of the plan refine-
ment search; given a domain D and a problem P , the algorithm starts from the initial configuration I
and incrementally refines it by adding activities to the timelines, ordering those activities and binding
variables until a final consistent configuration is found. There are three types of flaws, each solved in
different ways:

47



• Open condition flaw: An activity in the plan requires the support of other activities, still not in-
cluded in the plan.

• Ordering flaw: An activity is placed on a timeline and an ordering is required for the activity with
respect to the other activities already on that timeline.

• Unbound variable flaw: A variable that has not yet been instantiated appear in the plan.

The basic algorithm in EUROPA2 is a depth-first search characterized by flaw selection (no backtrack-
ing), flaw resolution (backtracking) and constraint propagation steps. Operations of plan refinement are
interleaved with constraint propagation on the temporal network underlying the current partial plan.

ASPEN-CASPER [75, 43]

The Automated Scheduling and Planning ENvironment (ASPEN) is one of the most successful plan-
ning systems used in space. It has been used in several missions/applications including EO-1, Citizen
Explorer 1 (CX-1) [161], CLARAty, CX-1 [66] Planetary Rover Operations, Multi-rover Integrated Sci-
ence Understanding System (MISUS) and more. Moreover, it is the closest approach from a theoretical
point of view to QuijoteExpress / APSI among all the tools showed along this section.

ASPEN is an object-oriented, reconfigurable framework, capable of supporting a variety of P&S ap-
plications including spacecraft operations, mission design, surface rovers and ground antenna utilization.

ASPEN consists of:

• A language called ASPEN modelling language (AML) used to describe the domain model.

• A constraint management system for representing and maintaining resource constraints and activ-
ities.

• A set of search algorithms for planning.

• A language for representing plan preferences and optimizing these preferences.

• A temporal reasoning system for representing and maintaining temporal constraints.

• A graphical interface for visualizing.

The job of the planner/scheduler is to accept high-level goals and generate a set of low-level activities
that satisfy the goals, do not violate any of the spacecraft flight rules or constraints, and optimize the
quality of the plan. ASPEN uses an early-commitment, local, heuristic, iterative search approach.

Spacecraft models are developed with AML by means of seven different model components:

• Activity: Occurrence over a time interval that in some way affects the spacecraft. It can represent
anything from a high-level goal or request to a low-level event or command. Once the types of
activities are defined, specific instances can be created from the types. For example taking a picture
with a camera represents an activity. An activity has a set of parameters, parameter dependencies,
temporal constraints, reservations and decompositions. All activities have at least three parameters:
start time, end time, and duration. There is also at least one parameter dependency relating these
three parameters. In addition, all activities have at least one temporal constraint that prevents the
activity from occurring outside of the planning horizon.
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• Parameter: Variable with a restricted domain. For example, the starting time is a parameter for the
action take picture.

• Parameter dependency: Functional relationship between two parameters. For example, the com-
pletion time for an activity is a function (the sum) of the start time and the duration. A more
complicated dependency might compute the duration of a spacecraft slew from the initial to the
final orientation.

• Temporal constraint: Relationship between the start or end time of one activity with the start or
end time of another activity. One might specify, for example, that an instrument warming activity
must end before the start of an activity that uses the instrument.

• Reservation: Requirement of activities on resources or state variables. For example, an activity can
have a reservation for 10 watts of power.

• Resource: Represents the profile of a physical resource or system variable over time such as power
or memory. In ASPEN, a resource can either be depletable or non-depletable (see 2.4.4). A re-
source can be assigned a capacity, restricting its value at any given time.

• State variable: Represents the value of a discrete system variable over time. The set of possible
states and the set of allowable transitions between states are both defined with the state variable.
An example of a state variable is a camera that has three states: OFF, ON and TakingPicture.

Activity hierarchies can be specified in the model using decompositions in a similar way to HTN
planners (see 2.3.2). A decomposition specifies how to accomplish a high-level activity by means of a
set of subactivities along with temporal constraints between them. The subactivities may have in turn
their own decompositions. In addition, an activity may have multiple decompositions to choose from.

A conflict is a violation of a parameter dependency, temporal or resource constraint. For each conflict
type, there is a set of repair methods. The search space consists of all possible repair methods applied to
all possible conflicts in all possible orders. The approach of ASPEN to searching this space is based on
a technique called iterative repair [166, 124]: First the conflicts in the schedule are detected, the repair
algorithm selects a conflict (one at a time) and then selects a repair method. The process is repeated until
no conflicts exist, or a user-defined time limit has been exceeded.

To achieve a higher level of responsiveness in a dynamic environment, CASPER (for Continuous
Activity Scheduling Planning Execution and Replanning) is used [40]. Besides the conventional in-
puts, CASPER has the current plan. The planner is responsible for maintaining a consistent, satisficing
plan with the most current information according to the following cycle: Changes in initial/goal state;
Propagate effects of these changes; Invoke repair algorithms to remove conflicts.

ASPEN also facilitates reasoning about plan quality [123]. It adopts a local, early-commitment, it-
erative approach to optimization. During iterative optimization, low scoring preferences are detected
and addressed individually until the maximum score is reached or a user-defined time limit has been
exceeded in a similar way as plan repair is achieved.

APSI [35, 72]

APSI (Advanced Planning and Scheduling Initiative) is the software instantiation of TRF (Timeline
Representation Framework), a theoretical framework aiming to provide the foundations to build Artificial
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Intelligence Planning and Scheduling technologies with timelines. TRF plays a critical role in this thesis,
therefore the concepts presented in this section will be used throughout the whole dissertation.

Two inputs are required to perform planning: the domain and the problem.

Definition 32 (Domain) A domain D is used to formally describe the world about which it is required
to generate plans. A TRF domain is constituted by a set of components and a domain theory that states
the relations among the values of the components.

Definition 33 (Component) The world is modelled as a set of entities, called components in TRF, whose
properties can vary in time according to some internal logic or as a consequence of external inputs. A
component is a reasoner that manages timelines and assertions that specify the properties of the timeline.
TRF contains three types of components: state variable, consumable resource and reusable resource.

Before describing the different types of components, the concepts of decision and relations must be
introduced.

Definition 34 (Behaviours and Decisions) A behaviour is defined as a tuple σ = 〈Tσ, Nσ〉 where Tσ
is a finite set of ordered time instants in H and Nσ is an assignment of values to the time instants in Tσ.
A decision is defined as d = 〈τd, vd〉 where τd = [ts, te) is the time frame, such that ts, te ∈ H, ts < te
and vd ∈ VC is a value of VC , the set of values applicable to a component C. Only some behaviours are
valid for a state variable, which are defined by means of transition functions.

Definition 35 (Relation) A relation is used to define some constraint affecting one or more values. Re-
lations in TRF can be organized in two groups:

• A n-ary temporal relation can be generalized as ftemp =
〈
type, [lb, up)3

0, tf = 〈t1, . . . , tn〉
〉

where type is a symbol that identifies an Allen’s temporal relation [3], [lb, up)3
0 are time frames

which quantity (zero to three) depends on type and tf containing the list of time instants ti affected
by the relation. Along the thesis, a more relaxed notation of temporal relation will be used in which
the list of time instants is replaced by the list of decisions to which the time instants belong, for-
mally (f typet

temp (d1, d2)) where scope(f) = d1, d2 contains the list of two decisions involved in the
relation. Even though these relations are n-ary according to the formal definition, STP problems
allows only binary relations. As an example, FindRoute before[0, 5] TraverseCycle specifies
that FindRoute will happen between [0, 5] time units before TraverseCycle.

• A n-ary data (or parameter) relation can be formally defined6 as fparam = 〈type, tf = 〈t1, . . . , tn〉〉
where type defines the type of the relation and tf is the scope containing the list of terms or pred-
icates affected by the relation. As for temporal relations, a the following (more relaxed) notation
will be used: f typep

param(t1, t2, . . . , tn)) where typep is a linear parameter constraint such as equal,
bigger_than or a linear function and scope(f) = t1, t2, . . . , tn the parameters involved. An
example of data relation is: pointingcamera = positiontarget.

The APSI framework provides several implementations of components:

Definition 36 (State Variable) Component used to represent systems that can be modelled as state ma-
chines such as the locomotion system showed in Figure 2.5.

A state variable CSV have a number of behaviours belonging to the co-domain DCSV
= 〈S,D, V 〉

where S is a finite set of symbols, D a finite set of parameter domains and V a finite set of values which
6 This definition is a generalization as the definition changes with the type.
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represent the different states. A value v ∈ V has associated a predicate and a minimal and maximal
allowed temporal duration. A predicate is defined as predv = 〈sv ∈ S, Tv = 〈tv _1, . . . , tv _m〉〉, where
the symbol sv represents the name of the value and Tv is the set of parameters (terms) of v , each having
a specific domain D(t) ∈ D. The domain of a parameter can be either an enumeration or a bounded
integer. When a value v is instantiated into a decision dv , it is assigned a unique identifier that allows
to distinguish it from other decisions with the same predicate, and a time frame τd = [ts, te). The
parameters must be also instantiated, getting as well a unique identifier. The application of a decision
to a state variable represents the choice of a value over a specific time interval.

Definition 37 (Resource Component) A resource is any physical or virtual entity of limited availability
such as battery or memory. The concept of limited availability is defined by means of minimum and
maximum bounds: a temporal function representing a behaviour of a resource is consistent if it is always
between the allowed bounds in the interval H. There are two classes of resources: reusable CR and
consumable CC which difference stems in the type of decision applicable. In both cases, a decision
captures the concept of resource usage, but for a reusable resource a decision represents an amount
of resource booked on a temporal interval while for a reusable resource it is an amount produced or
consumed in a time instant.

Taking as an example the FASTER Mars rover scenario7, its domain includes a model of the rover
subsystems (e.g. locomotion, battery, communications, etc.) and external elements (e.g. communication
windows). Figure 2.5 shows locomotion system of the primary rover modelled as a state variable with
four nominal states: idle, traversing, turning or initializing.

Figure 2.5.: State Variable component representing the locomotion subsystem of the primary rover in the
FASTER scenario.

A behaviour for the locomotion component could be:
σ = 〈Tσ = t1, t2, t3, Nσ = Idle(), T raverse(xo, yo, xd, yd), Idle()〉
where t1, t2, t3 are time instants, Idle and Traverse are value symbols and xo, yo, xd, yd are integer
parameters indicating the original and intended destination position for the rover.

Definition 38 (Timeline) A timeline is a finite set of variables representing ordered points in a temporal
interval H and variables representing values related to them, that is, a set of partitions of H into inter-
vals τi = [ti, ti+1) and associated values ν(τi). State variable timelines assign to time points states of
the state variable, possibly with constraints among their parameters, while resource timelines assign to
time points integer parameters, possibly with linear constraints among them. A component timeline take

7 This scenario is fully described in Chapter 6.
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values in a set of possible behaviours (set of valid assignments of values to time instants in the interval
H = [t0, tH)) while a domain timeline is a variable taking values in a set of domain evolutions (tuple
of component behaviours).

In real domains, the different subsystems influence each other’s behaviour. Hence, it is needed to
define valid patterns to represent the evolution of the system and the effect of decisions. This is accom-
plished by means of synchronizations.

Definition 39 (Synchronization) A synchronization is a rule between a reference value (that triggers
the application of the synchronization) and a target network composed of values and some n-ary relations
on time frames over the values describing the effects of triggering the reference.

For example, Communicate DURING Window, is a synchronization which says that a communication
with the relay satellite can only happen when the satellite is visible in the horizon, that is, whenever there
is a communication window.

Once the domain is defined, the user can create problems for this domain.

Definition 40 (Problem) The problem is modelled by stating a set of behaviours describing the initial
status for each component, a set of behaviours and decisions describing the goals and a domain theory
DT. The problem is represented by means of a Decision Network.

Provided a domain and a problem, it is possible to use APSI planners in order to extract valid plans. A
general solving process with timelines is an iterative process based on the following steps: (1) Analyse
the current status of the timelines and the decisions against the goal conditions and the domain theory
and then produce a list of flaws; (2) Analyse and heuristically prioritize the flaws; and (3) On the basis
of the flaw and the status of the timelines, select a planning or scheduling step to be applied in order
to remove the flaw and produce a solution. A step can consist on the addition/deletion of a decision or
relation to the decision network.

Definition 41 (Solution) A solution of a problem is an assignment of values to the elements (values and
parameters) such that all constraints posted are satisfied.

AP2 [33] is a planner based on the APSI-TRF technology used for planning and re-planning activities
in GOAC [30]. The planner can be invoked by a deliberative reactor that provides problems in the form
of user goals (planning) or plans to be fixed (replanning) and produces a number of solutions in the form
of flexible timelines.

2.4.5 Expert Systems for Rovers

There is a wide variety of autonomous software dedicated to solve specific problems. Some examples
used in space missions are opportunistic science [29], improved communications [34, 31], autonomous
inspection and servicing (AIS) [118], autonomous rendezvous and docking (AR&D) [26], planetary
entry, descent and landing (EDL) [121], human-robot interaction (HRI) [55] and a long etc.

In the specific case of planetary rovers, the extension of MER’s nominal mission, initially planned for
90 sols and running for more than 10 years in the case of Opportunity, allowed researchers to further
develop and infuse autonomous technologies. Autonomy has been used in both on-ground and on-board
segment, but it could be arguably said that the main effort has been focused on-board, as depicted in [135,
85, 67]. Even though the next subsections summarize the autonomous software used for MER/MSL
missions, there are many other tools developed for research or testing purposes.
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Autonomous Navigation - Autonav

The mobility flight software of MER / MSL provides a list of different navigation modes for the rover [17,
16]. One of them, the autonomous navigation with hazard avoidance (Autonav), is with no doubt the
most used autonomous software on-board. Autonav combines global path planning (Field D*) with
local hazard avoidance (GESTALT) to autonomously navigate around complex terrain [25]. During each
cycle, the rover acquires stereo images, assess the terrain, selects a safe drive arc and finally drives along
the arc.

Visual Target Tracking - VTT

Visual target tracking (VTT) is fully integrated into the existing MER flight software. VTT can run in any
combinations of rover driving: blind driving (with IMU-based estimator), VO (visual odometry) and/or
Autonav, enabling the rover to approach a designated target 10 to 20m away within a few centimetres
error [98].

Autonomous Instrument Placement - Autoplace

MER has a set of instruments installed in the turret of its robotic arm. Normally, the target for an
instrument placement is identified in stereo imagery acquired at the rover’s current location, that is,
no driving occurs between the imaging and the instrument placement. This allows rover operators to
manually create a sequence of commands which is verified both in simulation and by the on-board
rover software. Some safety checks however require knowledge of the terrain: checking for collisions
between the arm and the surface or ensuring that the instrument placement does not generate high loads.
A sol of operations can be eliminated by moving the target selection, trajectory generation, and terrain
collision analysis into the on-board software. This software is called Autonomous Instrument Placement
(AutoPlace) [85].

Dust Devil / Cloud SPOTTERS

Dynamic atmospheric phenomena in Mars include dust devils and clouds. Traditionally, campaigns to
observe them have been conducted by collecting a set of images at a fixed time, pre-specified in the
command sequence, and then downloading the image set. This process is highly inefficient as most
of images contained no interesting events. A new approach consists on analysing images on-board to
identify the presence of clouds and dust devils. By selecting only those images that capture the events,
more images can be stored on-board resulting in a much greater science return. Both algorithms were
integrated with the MER flight software and have successfully identified several events with a 93%
accuracy for the cloud detection and 85% for the dust devils [28].

Automated Science Targeting - AEGIS

The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated data
collection by planetary rovers. AEGIS software was uploaded to the Opportunity rover in 2009 and has
successfully demonstrated automated on-board targeting based on scientist-specified objectives. Prior
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to AEGIS, images were transmitted from the rover to the operations team on Earth; scientists manually
analysed the images, selected geological targets for the rover’s remote-sensing instruments, and then gen-
erated a command sequence to execute the new measurements. AEGIS represents a significant paradigm
shift: it uses scientist inputs to automatically select and sequence on-board high-quality science targets
with no human in the loop, which is particularly useful for narrow field-of-view instruments such as
the MER Mini-TES spectrometer, the MER Panoramic camera, and the 2011 Mars Science Laboratory
(MSL) ChemCam spectrometer [67]. This approach enables opportunistic science capabilities on-board
that can be considered equivalent to an E4 level of autonomy.

On-ground Plan Generation - MAPGEN, PSI and MSLICE

There is a number of tools used to generate the commands that will be uplinked to the spacecraft specially
developed for Mars missions. The first was the MAPGEN system, used to build plans for MER (Bresina
et al, 2005). MAPGEN assisted users, primarily the mission tactical planners and scientists, to build
efficient and safe rover plans each day in a collaborative manner. The tool, however, did not have a fully
integrated power planning element, but rather relied on a simplified model to do planning that had to be
later on verified. PSI (Phoenix Science Interface) developed for the Phoenix Mars Lander and MSLICE
(Mars Science InterfaCE) for MSL are follow-on applications (Aghevli et al., 2006).

During the 19.5 hours left to generate the tactical plan for rover missions, data from the previous sol
is combined with the long-term plan to determine the scientific objectives for the next sol. Scientists are
encouraged to oversubscribe resources to ensure that they will be fully utilized in the final plan. In the
next step, the science observation requests are merged with the engineering requirements and a detailed
plan and schedule of activities is constructed for the upcoming sol using either MAPGEN or MSLICE.

A schedule is a collection of activities planned to occur at predetermined times. Each activity has
associated constraints and utilizes resources, which are modelled within the system. The planner has to
integrate many different types of activities and constraints without violating any of the flight rules, like
exceeding power or data limits. To support this process, MAPGEN, PSI and MSLICE use EUROPA [71]
(see 2.4.4).

Once approved, the activity plan is used as the basis to create sequences of low-level commands, which
coordinate on-board execution. This sequence structure is then validated, packaged, and communicated
to the rover, thus completing the commanding cycle [22].

Figure 2.6 shows the role of MAPGEN in the plan generation process on-ground [107]

2.5 Plan Execution

One of the most important differences between planning for classical or robotic domains is that in the
later one, the plan is meant to be executed by a physical system.

Traditionally, execution has not been so deeply studied as planning, among other reasons due to the
scarce amount of platforms to test them, the absence of standards and mainly because it is considered to
be much easier than planning.

Nonetheless, the proliferation of sophisticated robots in research labs showed the need to invest more
efforts not only in the development of hardware, but also in the software to control them. It is precisely
in this area where the appearance of ROS (Robot Operating System) has played a major role.

Definition 42 (ROS) ROS is an open-source, meta-operating system for robots, providing services typ-
ical from an operating system such as hardware abstraction, low-level device control, implementation
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Figure 2.6.: MER Uplink process (Courtesy of J. Richard Morris and NASA-JPL).

of commonly-used functionality, message-passing between processes, and package management. It also
provides tools and libraries for obtaining, building, writing, and running code across multiple comput-
ers.

In the case of space exploration the problem is different. In spite of the large amount of satellites
launched every year, none of the multiple executives developed so far[152] has managed to become a
standard. The expected proliferation of (cheaper) robotic mission sharing common platforms such as the
2020 Mars mission, which will widely reuse the MSL design, can help to reuse low level software. More-
over, the irruption of ROS in the space sector[1] and its recent movement toward real-time systems[79]
might also facilitate the development of an standard executive system.

This thesis presents not only a mission planner, but an entire robotic architecture, a system involv-
ing several components intended to control the robot behaviour. It is usually divided in several layers
operating at different levels of abstraction and reaction-time. There are three main types of architectures:

• Deliberative: Top/down approach focused on high level control, which implies low capabilities to
react in real-time to unexpected events.

• Non-deliberative: Bottom-up approach, focused in reactive behaviour (could be real-time). High
level, strategic plans are difficult to implement in these systems.

• Hybrid: Present a slow, deliberative reasoning system in charge of deciding the strategic plan and
a fast, reactive system in charge of reacting to unexpected changes of the environment.

In the past, three tier architectures [78, 18, 2], which divide the software in planning (delibera-
tive), executive (reactive) and functional (control) layers, clearly dominated. However, at present two
tiers [109, 155, 30] combining planning and executive in one single layer have demonstrated to be a good
alternative.
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Designing and implementing a wholly operational architecture is an enormous task demanding a lot
of engineering, which is beyond the scope of a thesis. The aim of the architecture presented here is quite
different, as it has been build to demonstrate the main building blocks of this thesis, namely the planner
(Chapter 4) and executive (Chapter 5). In consequence, the following discussion focus on the different
executives and their properties.

Executives are based on the principles of control theory, that is, to control the system so that its
output follows a desired control signal. In opposition to deliberative systems, executives have negligible
reasoning capabilities as they must behave in a very reactive manner. Execution is however a complex
task due to the special properties of real-world scenarios as listed in 2.2.1. In case any of the assumptions
A0 to A3 hold, then it is not possible to guarantee execution completeness as defined in Section 2.6.

An executive typically consists on two components:

• Dispatcher: Selects the next activity to be executed and timely sends it to the corresponding sub-
system.

• Monitor: Tracks the execution of the activities, taking appropriate measures in case of deviations
with respect to the nominal plan and reporting them back to the planner.

Executives can be classified according to different properties:

• Feedback: The system might provide feedback as data from sensors monitoring the system. The
difference between the feedback and the expected output is the error, used to modify the input and
therefore minimize the error. This type of system is called closed-loop in opposition to open-loop,
which does not have (or use) any measurement of the output.

• Linearity: The output of some systems are governed by linear equations. Specially relevant in this
category are those which output is time invariant. Otherwise, the system is nonlinear and applies
to more realistic domains.

• SISO vs MIMO: Depending on the number of inputs and outputs, control systems range from SISO
(Single-input single-output) to MIMO (Multiple-input multiple-output).

The reference scenarios presented in Chapter 1 are nonlinear and demand closed-loop MIMO systems.
Closed-loop is key because it would be simply too risky for the mission to disregard the result of execu-
tion. With respect to the complexity, a robot composed of several subsystems, sensors and actuators is
clearly a MIMO system.

Next sections describe some of the most relevant executives found in the literature which can be
divided in two groups: those oriented to space missions and those general purpose based on ROS.

2.5.1 T-REX

Strictly speaking, T-REX (Teleo-Reactive Executive) [125, 122] is not an executive, but a hybrid systems
combining goal-driven and event-driven behaviours in an unified framework based on temporal planning
and the notion of sense-plan-act where sensing, planning and execution are interleaved.

In order to facilitate the scalability of the system, T-REX allows the partitioning of the system in
subsystems according to their functionality or temporal constraints. Each subsystem is controlled by
a reactor that encapsulates the logic of the subsystem and might contain a dedicated planner. Some
reactors have more deliberative duties, therefore having larger look-ahead windows while others need
to be more responsive. Reactors can synchronize among them by means of a messaging protocol for
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exchanging facts and goals. All reactors share the runtime state of their subsystems for both deliberation
and execution, offering a seamless integration between planning and control.

T-REX was originally developed for Adaptive Mission Control of Autonomous Underwater Vehicles.
However, it can be use in any domain that demands interleaved deliberation and execution for robotic
applications.

2.5.2 IDEA - Plan Runner

IDEA (Intelligent Distributed Execution Architecture) is a real-time 2-tier architecture in which the
executive and deliberative layers share a single plan representation. In IDEA, a system is implemented
as a set of agents, each having a model of the system (called domain), a plan database, plan runner and
a variety of planners.

The core execution component of the agent is the Plan Runner. It is expected to wake up, process all
received messages, call the Reactive Planner, receive termination notification from the Reactive Planner,
send appropriate messages to external agents and suspend itself within the execution latency. The agent
is guaranteed to operate within a well-defined real time range, a crucial condition for embedded control
system.

The Plan Runner is asynchronously activated when a message is received from another agent or be-
cause of a signal triggered by an internal timer. When it wakes up, it calls a Reactive Planner in order
to add the message to the plan database. In case the Reactive Planner finds a solution, the Plan Runner
starts executing the procedure.

Among the key features of IDEA and by extension of its executive it is important to remark the
centralized model representation and the definition of hard reaction constraints for all agents.

2.5.3 Universal Executive (UE)

Execution engine[151] for spacecraft operations. It can execute plans with variable levels of autonomy
and co-ordination among various systems and human operators. Plans are expressed with Plexil[15], an
executive language used to demonstrate automation technologies targeted at future NASA space mis-
sions. Applications of Plexil have included control of hardware prototypes such as planetary rovers
and drills, the Habitat Demonstration Unit, and procedure automation for the International Space Sta-
tion. Plexil allows to represent branches, loops, time and event driven activities, concurrent activities,
sequences, and temporal constraints.

The fundamental programming unit of UE/Plexil is the Node. A node is a data structure formed of
two primary components: a set of conditions that drive the execution of the node and another set which
specifies what the node accomplishes after execution. A plan is a tree divided in nodes close to the root
(high level nodes) and leaf nodes that represent primitive actions such as variable assignments or the
sending of commands to the external system.

2.5.4 Teer

Teer, which stands for task-execution environment for robotics, is a Python library proposing the use of
tasks instead of state machines to implement executives. Teer provides the following features:

• Tasks are written as sequential code in standard Python.

57



• Tasks can wait for a certain duration, for conditions to become true or for the termination of other
tasks.

• Tasks can create new tasks and kill other tasks.

• Tasks can pause or resume other tasks.

• Conditions are evaluated as rarely as possible, avoiding regular polling of their expressions.

Compared to state-machines, teer allows to maintain sequential code for sequential actions, using
multiple lightweight tasks to implement parallel flows of execution. Compared to multi-threading, the
cooperative aspect of co-routines removes synchronisation hazards.

2.5.5 SMACH

It is an executive based on state machines oriented to the execution of complex plans, where all possible
states and state transitions can be described explicitly. The domain is modelled with Python to facili-
tate the process of prototyping of hierarchical state machines. During execution, SMACH allows full
introspection of the state machines, state transitions, data flow, etc.

The main modelling unit in SMACH is the container. There are four types: StateMachine, Con-
currence, Sequence and Iterator. Each container provides different execution semantics, but they can
all be treated like states in other containers. A container is defined in terms of a dictionary of states. In
SMACH, a state corresponds to the system performing some task. This is different from formal state ma-
chines, where each state describes not what the system is doing but rather describes a given configuration
of the system. SMACH provides the following type of states:

• State: Basic type.

• SPAState: A state which has three pre-defined outcomes: succeeded, preempted and aborted.

• MonitorState: A state that subscribes to a topic and blocks while a condition holds.

• ConditionState: A state that executes a condition callback.

• SimpleActionState: A state which acts as a proxy to preemtable tasks.

Unlike PLEXIL or T-REX, SMACH is not meant to be used as a state machine for low-level systems
that require high efficiency. It also falls short as the scheduling of the tasks becomes less structured.

2.6 Benchmarking Methodology

The approach to evaluate some characteristic of an algorithm is based on two different aspects: the
measurement itself by means of some predefined metrics and the comparison with the results of other
algorithms.

From the three properties identified in Chapter 1, only performance can be measured quantitatively
while expressiveness and robustness are analysed in a qualitative style. Section 3.3 presents the theo-
retical results while Section 4.4 shows the performance evaluation of QuijoteExpress compared to other
APSI planners.
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2.6.1 Planning Performance

The performance evaluation focuses on satisficing (in opposition to optimal) temporal problems, for
which some properties such as soundness and completeness must be taken into consideration. Synthetic
scenarios such as those used in the IPC are not relevant because of the limited relevance given to temporal
aspects (see Section 2.2.1). Instead, variations of the Mars and Rescue scenarios will be used.

Evaluating the performance of a planning system is an empirical task, often depending on the criterion
of the evaluator in terms of the weight assigned to different combined metrics. As an example, in the
IPC, coverage and plan quality are combined to obtain the planner ranking. Evaluating a planner in such
a way is out of the scope of this thesis. The metrics considered are:

• Number of nodes expanded: Number of nodes that the planner needed to expand before returning
a solution.

• Planning time: Time required for the planner to exhaust the search space (optimal) or obtain the
n-first solutions (satisficing).

• Plan quality: If any criterion about quality is provided for a given problem, the quality of the
different solutions is compared.

For example, timespan and/or resource consumption represent general metrics to measure the plan
quality in the two reference domains [20].

2.6.2 Expressiveness

This property can be analysed from the point of view of the grammars accepted by planning language.
In addition, Section 3.3.4 presents a number of concepts derived from HTLN that cannot be expressed
with the regular APSI framework.

2.6.3 Robustness

This property depends on multiple factors such as the specific domain and problem. The claims regarding
robustness in Section 3.3.2 are derived from the level of flexibility allowed to the planner in order to
postpone assumptions and decisions in a similar way as the start/end time intervals assigned to actions,
preventing to make specific assumptions until the time when the actions are due to execution.

2.6.4 Execution Power

The categorization of the different types of solutions provided in Section 2.3.4 can be reused in the
context of execution to characterize the domain. The two scenarios proposed and virtually any real-world
scenario will fall inside the category of weak solutions, meaning that it is not possible to guarantee the
achievement of the goals under the assumptions indicated in Section 2.2.2.

The principles to evaluate an executive are radically different from those used for planning. While
planning focuses on performance, this aspect is not relevant for an executive from a theoretical point
of view. An executive represents a deterministic system that should always exhibit the same behaviour
for the same state in opposition to search algorithms which are non-deterministic8. In consequence,
8 Do not confuse the concept of non-deterministic choices used here with non-deterministic actions used in the assumptions

defined in Section 2.2.1
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performance is related to low-level implementation details not relevant from a research point of view.
Evaluating an executive is however possible in terms of their execution capabilities, specially in some
desirable, general properties that they might offer:

• Temporal: The executive allows the execution of time-tagged tasks at due time.

• Autonomy: The executive can operate in different levels of autonomy, from E1 to E4. In conse-
quence, it must be able to interpret time or event-tagged plans.

• Parallelism: The executive allows to execute tasks in sequence or concurrently.

• Loops: The executive allows the execution of loops. In case the task in the loop is time-tagged, a
maximum duration for the loop should be provided.

• Conditional execution: The executive should be able to define guards preventing the execution of
behaviours in case they are not satisfied. The guards could be time-tagged.

• Monitoring: The executive allows the definition of monitors to observe the evolution of the sys-
tem. Moreover, the executive should be able to pause/stop/resume the execution based on the
information coming from the monitor and the planner.

• Tightly coupled planner and executive: Planner and executive can communicate one with each
other and get access to their internal state.

• Shared plan: Planner and executive will share a common plan, allowing the planner to rapidly fix
a plan taking into consideration the modifications of the executive and to the executive to resume
execution without intermediate transformations as soon as the planner has finished.

• Platform-independent: The executive can be used with different robots.

2.7 Conclusions

Robotics represent a complex research field which has not yet reached matureness due to the multiple
scientific advancements it requires. It has not been until recently that the different pieces required to de-
velop autonomous robots for real-world scenarios are starting to be integrated. Focusing on the level of
autonomy, robots moves in the range defined by two antagonist lines: highly automated robots operating
in deterministic domains such as fabrics, and highly teleoperated robots for non-deterministic environ-
ments such as space or rescue missions. Our interest however lies precisely in the middle, that is to
enable highly autonomous robots in highly complex scenarios compliant with the assumptions presented
above.

After a deep analysis of the state-of-the-art in planning, it is clear that this field has not been fully
addressed yet. Plenty of planners such as Fast Downward or Shop/Shop2 have been used since long in
classical, deterministic domains such as logistics [89] or evacuation plans [114]. Some planners such
as ASPEN or EUROPA have been used for satellites domains [110, 45, 137, 93, 32] which are quite
deterministic and static (assumptions A2 and A3). EUROPA has been even used to support planning
generation on-ground for MER mission [22], but no planner has been used to date on-board Mars rover
or rescue robot missions.

Several factors are to be blamed for this lack of autonomy. First of all, the complexity derived from the
assumptions presented in Section 2.2.2 makes automated planning and execution a hard job. In addition,
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the lack of standards has prevented a faster progression, even though ROS is helping to mitigate this
problem. Finally, the interest for automated robots has only recently gained traction in the (planning)
research community. The reasons in the space sector are different, coming primarily from the criticality
of the missions, derived from its high cost, and the impossibility to recover/replace the system in case of
failure, facts specially relevant in the case of Mars rovers. In this regard, planners would need to improve
the performance, expressiveness and the robustness of the plans produced to be ready for such scenarios.

Modern classical planning is highly focused on the development of heuristics for sequential, forward-
chaining planning. It can be arguably stated that there have been no big novelties in the field since
years. Moreover, it seems that competitions such as IPC have to move towards more realistic scenarios,
including for example resource consumption, intermediate goals and mainly time as mandatory features.
Therefore, in terms of expressiveness and robustness, classical planning does not seem to be the more
appropriate approach. Nevertheless, applied planning can highly benefit from several novelties derived
from classical planning regarding search algorithms and heuristics.

With respect to applied planning, there has also been little innovation in the field, as it seems like the
work is moving from the development of the planners towards the adaptation to new domains. Contrary
to classical planning, where forward-chaining clearly dominates, applied planning presents a big diver-
sity of systems, even though the timeline approach seems to be one of the most successful for temporal
problems. In spite of the remarkable contribution of POMDPs and Model Checking in non-deterministic
problems, they are not suitable for the Mars and Rescue scenarios. As for POMDPs, timeline planning
might have utility functions (based on costs and rewards) that lead the planner towards the best solution.
However, classical policies defined as pairs (state,action) are not applicable because the number of states
might be infinite. At the same time the probabilities of the transitions are unknown. The equivalent of
Model Checking “policies” in QuijoteExpress are the HTN methods which do not contain all the states,
but just those required to achieve complex tasks. Unlike Model Checking, the application of an action in
the reference domains produces one single state, the one obtained from the ideal execution of the action.
It is also not realistic in real systems to apply actions without knowing, to some extent, the present state.
Once an action is applied, all relevant observations from sensors are gathered to derive the state of the
system. Next actions are only applied once the state is assessed. To increase robustness, two concepts
have been used: partial solutions allow to partially define a plan when relevant information is not yet
available; flexible timelines assign time intervals (rather than fixed time points) to the start and end of
the activities to make plans more flexible. Regarding expressiveness, HTN and timeline planning are the
cornerstones of QuijoteExpress.

Combining different techniques from classical and applied planning is one of the key ideas of this
thesis. Forward-chaining, planning enhancements or advanced heuristics from the classical world can
help to boost the planner performance. Timeline planning and HTN can provide higher expressiveness
levels while HTN also facilitates an easier inspection of the plans in a hierarchical manner.

With respect to execution, the study of the state-of-the-art revealed that none of the existing solutions
was suitable for the two reference scenarios. It is important to remark that the number of executives is
however very limited in comparison to the number of planners. Using SMACH would force the archi-
tecture to duplicate the definition of the domain and problem in DDL and the SMACH specific language
which might cause several problems in terms of consistency, synchronization, etc. Furthermore, time is
partially supported. With respect to Teer, it has a closer approach to timelines but it is rather limited in
terms of temporal execution and conditional execution. T-Rex has been used with APSI planners in the
GOAC experiment [30, 73, 36]. However, it imposes a whole architecture based on reactors that goes
beyond the responsibilities of an executive. In addition, its reactor approach is highly redundant with
the concept of ROS node, making its integration with many robotic platforms very difficult. The factors
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affecting the evolution of planning and execution are different. The lack of standards and affordable plat-
forms has a bigger impact in executives as they are closer to the hardware than planners. Moreover, there
is no standard definition for what a plan is: even though timelines are fairly common, other approaches
could be used. The irruption of ROS will certainly help to solve this situation.

Due to all these factors, a new timeline-based executive introduced in Section 5 has been develop. It
is capable of managing flexible plans according to the formal definition provided by APSI.
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3 Hierarchical Timeline Networks: A Novel Planning Formalism

Among the most relevant applied techniques, Hierarchical Task Networks or HTN [64] (see Sec-
tion 2.3.2) and Timeline-based Planning or TLP [108, 71, 74] (Section 2.3.3) have been used in sev-
eral systems and seem to complement each other. Even though the unification of these two formalisms
could be relevant for multiple applications, little efforts have been conducted in this direction and clearly
need further research. One exception is ASPEN (see Section 2.4.4), but its formalism has not been fully
defined and it does not explore all the possibilities offered by the combination of both techniques.

This chapter introduces the Hierarchical Timeline Planning (HTLN [170]) formalism that aims to
provide a solid definition of the main concepts that emerge from the combination of HTN and TLP.
Along the chapter it will be demonstrated that HTLN is more expressive than HTN and TLP alone,
improves the time and space complexity by reducing theO in the unfolding and scheduling phases while
maintaining the soundness and completeness of TRF, increases plan robustness by means of sufficient
planning and improves the planner performance by defining how to achieve parallel planning.

3.1 Background

3.1.1 Combining HTN and Temporal Planning Theories

Among other applications, TLP has been broadly used in the space sector (see Section 2.4.4). Its
strongest point is its expressiveness power to represent the dynamics of the environment. On the other
hand HTN is one of the most used planning techniques in real-world applications, in part because it
allows to effectively encode knowledge into domain-independent planners. Moreover, the organization
of tasks in hierarchies helps to simplify the modelling, which is one of the major problems that engineers
need to face to deploy automated tools and at the same time produces better understandable plans.

Temporal and HTN planning are powerful techniques, but they have both some deficiencies that can
be overcome by combining them in a new joint formalism that could satisfy the objectives described at
the beginning of the chapter. HTLN [170] aims to unify HTN and TLP planning under a new formalism,
trying to be as compliant as possible with their respective nomenclatures, even though some concepts
would need to be added or redefined. While HTN theory is clearly defined, there is no “standard” TLP
approach. HTLN is based on one specific TLP formalism called TRF [35], therefore there might be
conceptual differences with other temporal formalisms.

HTLN is strictly more expressive than HTN because temporal relations are more expressive than
temporal ordering and truth constraints while parametric relations are more expressive than variable
binding relations. For example, in the conventional HTN representation[64] there is one single temporal
relation≺ used to express precedence, such as n ≺ n′ where n, n′ ∈ N . The precedence relation cannot
express all the possibilities of Allen’s relations such as nDURINGn′. Moreover, HTN does not allow
to express linear functions between parameters. In consequence, there is a whole range of problems that
can be represented in HTLN but not in HTN. Comparing other aspects such as performance becomes
then irrelevant, as HTN is not capable of representing those problems relevant for HTLN.

More important is the comparison of HTLN and TLP as both of them are oriented to solver the same
type of problems. The advantages of incorporating HTN to TLP are:
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• Plan robustness: HTLN contributes to increase plan robustness in two different ways: (1) Allowing
to define high level goals to be partially defined in situations of uncertainty (see Section 3.3.2);
(2) Because the methods represent pieces of good plans that have been thoughtfully validated
before being added to the Knowledge DataBase.

• Performance: As explained in Section 2.3.2 and more specifically in Section 3.3.3, HTN planners
have shown great performance in part because the decomposition of complex goals allow to insert
pieces of good plans (the methods) in the plan in just one step, helping to decrease the size of the
search space.

• Expressiveness: Hierarchical decisions make HTLN more expressive than TLP as it is possible now
to define complex and simple decisions and to express constraints over sets of partially-ordered
decisions.

• Human factor: HTLN enables a more rational modelling and plan structure, closer to the organiza-
tion of real systems and the way in which humans think. It also allows users to define preferences
about the types of solutions they are willing to accept.

• Domain-dependent knowledge: Allows domain-independent planners to be easily customized for
different problems just by replacing the set of HTN methods.

Section 3.3 will provide formal demonstrations for some of these properties based on the formalism
presented in Section 3.2.

3.1.2 Hypergraph Theory

In mathematics, hypergraphs join together graph and set theories [132]. They have been applied in dif-
ferent areas such as the definition of complex data structures or optimization [11, 77]. In HTLN, they
are used to represent the set of decisions and n-ary relations of the domain and problem. Besides their
properties as data-structures, hypergraphs are useful for the mission planner because they are efficient
computational structures to calculate parameters such as the shortest path between two decisions, con-
nected components to divide a problem in subproblems, etc. In the following lines, the mathematical
foundations are provided while in Chapter 4 it is analyses in depth how they are used in QuijoteExpress.

Hypergraph

A conventional hypergraph (represented in Figure 3.1) is a generalization of a graph whose edges, called
hyperedges, can connect any number of nodes. Notice that a hyperedge is a set, and therefore all prin-
ciples of set theory can be applied. HTLN uses however a nonconventional definition as it contains
not only hyperedges but also hypernodes [132]. Both hypernodes and hyperedges can be considered
themselves hypergraphs which is a key property in HTLN in order to represent hierarchical structures.

A hypergraph is formally defined as follows:

H = (N,E) where:
N = {n1, n2, . . . , nn} finite set of hypernodes
E = {e1, e2, . . . , em} finite set of hyperedges
∪mj=1ej = N

(3.1)
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Figure 3.1.: Standard hypergraph representation without hypernodes (Courtesy of Wikipedia).

The domain and problem used as inputs of a HTLN-based planner can be translated to their underlying
hypergraphs. These hypergraphs are used instead of the conventional data structures (sets of decisions
and relations) by the pre-processor, some resolvers and heuristics as explained in Chapter 4.

Nodes and Hypernodes

A node is a mathematical abstraction used to represent an object (e.g. a decision in HTLN). A hypernode
hn on the other hand represents a set of nodes and their associated hyperedges.

Hyperedges

Represent relations among a group of nodes or hypernodes (e.g. a temporal precedence among the nodes
involved). Notice that, even though it has the same theoretical representation as hypernodes, a hyperedge
has a completely different meaning which will be reflected in the way they are used in HTLN. While a
hypernode represents a complex decision, a hyperedge represents a relation.

Properties

Hypergraphs are useful from a theoretical point of view in order to study different mathematical prop-
erties and from an applied point of view as an effective data structure to represent information. In
consequence, HTLN uses hypergraphs to formalise its definitions and QuijoteExpress, a planner based
on HTLN, uses them as data structures to represent decisions and relations. The hypergraphs used by
both HTLN and QuijoteExpress are cyclic and directed.

The domain and problem definition might contain cycles depending on the properties of the problem at
hand. For example, in the FASTER domain presented in Section 6.3.3, the traverse behaviour in charge
of moving the rover from point A to B contains a cycle that is repeated until the rover reaches B.

In TRF, temporal relations are directed while parameter relations are not. In case the internal hyper-
graph representation does not allow to combine directed and undirected edges, it is possible to translate
an (undirected) not instantiated parametric relation such as fparam involving m values v1, v2, . . . , vm
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into a number of directed relations Ef by calculating the 2-permutation of its values. The number of
edges produced is |Ef | = m!

(m−2)! . Formally:

fparam_o(v1, v2, . . . , vm)⇒ Ef = fparam_1, . . . fparam_m, fparam_i = vi, vj/vi, vj ∈ fparam_o, vi 6= vj
(3.2)

3.2 HTLN Formalism

HTLN provides formal definitions of the building blocks required for hierarchical timeline planning,
leaving aside on purpose any specific implementation detail, which will be covered in Chapter 4. Ta-
ble 3.1 summarizes the main concepts of TLP, HTN, and their equivalences in HTLN.

HTN TRF HTLN Symbol
Primitive task Value: state variable or

resource
Primitive state variable
value or resource value

v p ∈ V p

Compound or
Complex task

- Complex state variable
value

v c ∈ V c

Action (Instantiated
task)

Decision: ValueChoice
or Activity

Decision: Simple/com-
plex ValueChoice or
Activity

d, dv p , dv c

Method - Method m ∈M
Task Network Decision Network Decision Network dn

Decomposition - Decomposition δ
Transition function Transition function Transition function γ

Table 3.1.: Combining HTN and APSI nomenclature in HTLN.

3.2.1 Values and Decisions

In HTN, a task is defined as t(p1, . . . , pn) where t is a symbol and pi is a term. If t is an operator, then the
task is primitive, otherwise the task is complex1. TRF tasks are represented by means of values, formally
v = 〈sv ∈ S, Tv = 〈tv1, . . . , tvm〉 , τv = [ts, te]〉, where the symbol sv is the name of the value, Tv is
the set of parameters of v and τv the minimal and maximal allowed temporal duration of the value. TRF
has two type of values, state variable values (e.g. going_to(integer, f loat, f loat)) and resource values
(e.g battery.REQUIREMENT (float)) but it does not distinguish between primitive and complex
values. The equivalent in TRF of a HTN action (instantiated task) is a decision represented as a pair
〈time− frame, value〉 (see Section 2.4.4) where the time-frame is the time in which the value will
actually happen according to the plan. TRF has two types of decisions, one for each type of value:
ValueChoice (VC) for state variable components and Activity for resources.

1 The conventional name in HTN nomenclature is compound. Along the thesis, the word complex will be used instead, as
it is considered by the author to be more representative.
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HTLN increases the expressiveness of TRF by adding the concept of complex state variable value,
equivalent to the concept of complex task in HTN. The set of all primitive and complex values in a
domain are represented as V p and V c respectively, where:

V p ∩ V c = ∅
V all = V p ∪ V c

(3.3)

It is very easy to infer the complexity property of a value v c from the domain just by analysing whether
v c is reference of any method in the domain (complex) or not (primitive). On the other hand, HTLN
inherits “as is” the definition of resource value from TRF because there is no straightforward utility
for the concept of complex activity as it happens with complex ValueChoices and it would increase the
complexity to calculate resource consumption. Without loss of generality, value and decision will be
used from now on without specifying the type of component (state variable or resource) whenever the
type can be unambiguously determined from the context.

3.2.2 Decision Network (dn)

HTN and TRF represent problems as partially supported networks called task network and decision
network (dn) respectively. Both are modelled as a graph or hypergraph w = (N,E) containing a set of
tasks (HTN) or decisions (TRF) which are the nodes of the hypergraph and a set of relations among the
nodes which are the edges/hyperedges of the hypergraph. In HTLN, complex decisions are represented
as hypernodes that might also contain other subhypernodes. A dn is represented in HTLN as a graph of
hypergraphs, formally:

dn = (v c, N,E, dnsub) (3.4)

where v c is the optional value of the network when it is considered as a single value, N is the list of
nodes, E the list of edges and dnsub the list of subhypernodes where each subhypernode is itself a dn.

When a dn is instantiated, every value v in the network (including v c and those in N ) is transformed
in a node containing a decision with value v . Every element in the network (decision, parameter or
temporal element) is assigned a unique identifier to distinguish it unambiguously.

3.2.3 Primitive Value (v p)

The representation of a primitive value is the same as in TRF. However, its definition need to be extended
to cope with HTN. A primitive value (v p) cannot be further decomposed and is directly executable. It is
instantiated in HTLN as a decision (dv p), that is a node of the underlying hypergraph.

Example 5 In the FASTER scenario, TraversePrimary is a primitive value in charge of moving
the primary rover. It has a boolean parameter that indicates whether the destination is actu-
ally a waypoint in the path (a subtarget). Because the specific coordinates do not play any
role in the generation of the plan, they are hidden in the model. The lower bound for its
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execution is five seconds and the upper ten minutes. TraversePrimary is formally defined as:

TraversePrimary(bool?isWP )[5000, 600000] ;
Formally:
v = 〈predv , lbv , ubv 〉;
predv = 〈Name = TraversePrimary, Tv = 〈(?isWP, FALSE, TRUE)〉〉;
lb = 5000;
ub = 600000;

3.2.4 Complex Value (v c)

Unlike HTN, the instantiation dv c of a complex value can be represented in two different ways depending
on its decomposition status: (1) In case it has not yet been decomposed, dv c is represented by a Value-
Choice decision (a node) that cannot be executed; (2) In case it has been decomposed, dv c is represented
as a decision network (a hypernode), abbreviated as dndv c or simply dnd (see the tree below).

Moreover, a decomposed decision represented by the network dnd, can be used in two ways:

• Single decision (hypernode): The planner uses dnd as if it were a single decision (the value of
which is dv c) in case it wants to make modifications that affect dnd as a whole. The network itself
is seen as a black box.

• Decision Network (hypergraph): The planner can use dnd as a decision network (a subproblem) in
case it wants to make modifications on dnd decisions or relations.

The duality in the representation of complex decisions and in the interpretation of decision networks is
a powerful novelty with respect to ASPEN (the only other timeline-based planner with HTN capabilities)
and with any other HTN planner to the best of our knowledge. The main benefits of this approach,
theoretically demonstrated in Section 3.3, are:

• Better planning performance: Interpreting dnd as a single decision dv c , modifications on dv c di-
rectly affect the whole subnetwork.

• Handle uncertainty: In case it is unknown how to achieve a complex goal dc during planning
time, dc is modelled as a cd. During execution, once the required information is available, a
decomposition method is chosen for dc and the plan is completed.

• More intuitive results: Plans are organized in multiple layers of increasing detail/complexity.

• Higher expressiveness than HTN and TRF.

Unlike HTN, the concept of executability and valid plan are decoupled in HTLN as explained in
Section 3.3.2. It is not mandatory to decompose a complex decision to generate a valid plan, but it is to
generate an executable one.

Decisions

StateVariable

Primitive

V C

Complex

V C DN

Resource

Activity
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Example 6 In the FASTER scenario, TraverseCycle is a complex value used to move a robot along
a segment from the initial to the destination position. TraverseCycle can be decomposed in two
methods, TraverseCycle − PR and TraverseCycle − Team, defining a sequence of activ-
ities repeated in a loop until the robot reaches the destination position. TraverseCycle has a
boolean parameter that indicates whether the traverse is done in cooperative mode between the
primary and scout rovers or just by the primary. Similarly as in the previous example, the spe-
cific coordinate variables are ignored. The lower bound for its execution is two seconds and
the upper 20 minutes. Its formal definition has the same format as a primitive value, with the
only difference being that TraverseCycle has associated one or more decomposition methods:

TraverseCycle(bool?inTeam)[2000, 1200000];
Formally:
v = 〈predv , lbv , ubv 〉;
predv = 〈Name = TraverseCycle, Tv = 〈(?inTeam, FALSE, TRUE)〉〉;
lb = 2000;
ub = 1200000;

3.2.5 Domain (D)

In HTN, a domain is defined by a set of operators and methods D = (O,M). On the other hand, a TRF
domain is constituted by a set of components and a domain theory that states the relations among the
values of the components. HTLN adds to TRF’s definition a list of methods in order to support HTN. In
consequence, the decisions of a domain in HTLN are organized in a tree structure with k + 1 levels of
abstraction, where level k corresponds to the root of the tree with the highest level of abstraction while
level 0 corresponds to the leaves containing the most detailed components. A complex value v c might
have associated several methods (see Section 3.2.7) where more than one could be applicable for a given
problem P representing a branching point for the decomposer resolver.

3.2.6 Problem (P )

In HTN, a problem is defined as P = (s0, w,D), where s0 is the initial state represented as a list of
atoms,w the initial task network containing the tasks to achieve andD the domain with a list of operators
and methods. A problem in TRF is represented as P = (stinit, D) where stinit is the initial state defined
as a partially supported decision network that contains a list of pairs 〈TLi, di〉 with the initial value for
each timeline and the goals for some timelines, and D is the domain.

HTLN takes the approach of classical planning where the initial state stinit contains the network
dninit with the initial value of all the timelines while the goal state stgoal contains the network dngoal
with the list of goals. While dninit must be fully defined, that is, the value of all the components must be
specified at t = 0, dngoal might not specify the value for some components. This fact plays an important
role in the type of search strategy (forward or backward chaining) used in QuijoteExpress as explained
in Section 4.3.

As the initial and goal networks dninit, dngoal do not decompose any higher level decision, they
cannot behave as simple nodes. Therefore a problem network dnx is always represented as a hypergraph
with an internal value vx equals to null. The Table 3.2 presents a correlation between the elements of the
hypergraph and the elements of HTLN.
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Element Description
Node Primitive dv p or not-decomposed complex dv c decision.

Hypernode Decomposed complex decision dv c .
Hyperedge Constraint (Parameter, Temporal) between a set of nodes.

Hypergraph Problem or plan.

Table 3.2.: Correlation between hypergraph and HTLN elements.

3.2.7 Method (m)

A method is a HTN mechanism employed by the user to express control-knowledge that tells the planner
which areas of the search space should be explored by telling the only valid ways in which complex
values can be decomposed. The set of methods contains mission-dependent information that can be
modified for the same domain to achieve different purposes.

A method is formally defined as m = (namem, v refm , dndecm )2 where namem is a unique name
for the method, v refm the complex value to be decomposed, called reference and dndecm = (vm =
v refm , Nm, Em, dn

sub = ∅) is a decision network called the target network that decomposes the refer-
ence in smaller, more detailed decisions.

Regarding vm, contrary to problem networks which can be exclusively used as decision networks, all
target networks can also be used as simple decisions, the reason why dndecm has an associated value vm
corresponding to the reference value that the network decomposes. This feature allows HTLN to create
relations involving the complex value even when it has been already decomposed, affecting the target
network as a whole.

Focusing on the target network dndecm , besides the internal relations among its decisions, it requires a
number of additional temporal and parameter relations between the complex decision vm and the rest of
decisions.

In case dndecm is totally ordered, two additional temporal relations f beforetemp (vm, first(Nm)) and
faftertemp (vm, last(Nm)) must be added, where first returns the first decision of the network accord-
ing to the temporal order and last the last one. Otherwise, for each decision dmi

∈ Nm, a relation
f containstemp (vm, dmi

) is added, meaning that each decision in dndecm must be executed within the time
frame assigned to vm, which will be equal once vm is instantiated to the time frame of dv c , the complex
decision that will be decomposed in dndecm .

Moreover, for any parameter t
v ref

i
in v refm unifiable (see Section 3.2.11) with another parameter tdm_i

in a decision dm ∈ Nm, an equal constraint f equalparam(t
v ref

i
, tdm_i) must be added.

In case these relations are not specified in the method, the process to add them comes with no cost at
planning time because they will be added during the pre-processing phase.

With respect to the subnetworks, dnsub will be originally empty in every method as no complex values
in dndecm is decomposed yet.

The set of methods M of a domain constitutes the domain-dependent information used by a domain-
independent planner to limit the size of the search space. If there is at least one complex value v c in
the domain that cannot be decomposed in primitive values, then the model is not complete and it is not
possible to generate executable plans for problems containing v c.

2 A more relaxed notation m = (vm, dnm) will be occasionally used for the sake of simplicity.
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Example 7 The following example shows a formal description of two methods relevant for the complex
decision Traverse of the FASTER domain:

name : m_traverse_nominal ;
id : tn ;
reference : Traverse(graph, pinit, pdest) ;
target :

vtn = Traverse(graph0, pinit0, pdest0) ;
Ntn = {ntn1 : InitTravGraph(graph1), ntn2 : FindRoute(pinit2, pdest2), ntn3 :
TraverseCycle(path3)} ;
Etn = {etn1 : f beforetemp (ntn1, ntn2), etn2 : f beforetemp (ntn2, ntn3), etn3 : f beforetemp (vtn, ntn1), etn4 :
faftertemp (vtn, ntn3), etn5 : f equalparam(graph0, graph1), etn6 : f equalparam(pinit0, pinit2), etn7 :
f equalparam(pdest0, pdest2)} ;
dndectn = ∅ ;

name : m_traverse_non_nominal ;
id : tnn ;
reference : Traverse(graph, pinit, pdest) ;
target :

vtnn = Traverse(graph0, pinit0, pdest0) ;
Ntnn = {ntnn1 : BringBackSR(pinit1, pdest1)} ;
Etnn = ∅ ;
dndectnn = ∅ ;

The methodm_traverse_nominal decomposes the complex decision Traverse in a network which
contains three nodes and seven relations. The relations can be classified into three subgroups (see
Section 3.2.12):

• {etn1, etn2}: Ordering relations between the subdecisions.

• {etn3, etn4}: Extra temporal relations between v ref and the subdecisions in dndec.

• {etn5, etn6, etn7}: Extra parameter relations between v ref and the parameters of the subdecisions
in dndec.

In order to guarantee a good performance during planning (see Section 3.3.3), the terms (parameters
or decisions) are assigned specific levels of abstraction in such a way that a term in a given level does
not appear anywhere in higher levels of abstraction. In other words, the number of terms monotonically
increases with the level of detail.
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3.2.8 Relations (f )

TRF has two types of relations (Section 2.4.4): (1) Unary/binary temporal (instant and interval) con-
straints such as t1 BEFORE t2 whereBEFORE is an Allen’s relation; (2) n-ary equality/inequal-
ity v 6= v ′ or linear parametric relations such as x+ 2y = k3.

On the other hand HTN typically has three types (Section 2.3.2): (1) Variable binding such as v = v ′;
(2) Temporal ordering such as n ≺ n′; (3) Truth constraints such as (n, l) which means that the literal l
must be true immediately after the task n.

TRF constraints represent a superset of HTN, therefore HTLN does not extend the definition of rela-
tion from TRF.

3.2.9 Resolver (ρ)

Some planners such as ASPEN or AP2 have a set P of resolvers used iteratively to refine a problem until
a solution is found or it is demonstrated that none exists. Designing a planner based on resolvers is an
architectural decision suitable when the planning process can be clearly divided in different steps, but it
does not enforce any specific type of planning such as flaw-resolution or forward-chaining.

A resolver ρ ∈ P is a procedure intended to fix some specific type of flaw. In TRF, it is formally
defined as ρ(D, dni, dngoal) = {d+, d−, f+, f−}whereD is a formal description of the domain, dni the
current problem, dngoal the goal network and d+, d−, f+, f− the lists of decisions (ValueChoice and/or
Activity) and relations (temporal and/or parametric) to be added/retracted respectively. Given a network
dni, the resolver tries to fix it by adding/retracting decisions ({d+, d−}) and relations ({f+, f−}) in
order to achieve dngoal.

Different types of planning paradigms require different solving steps. In state-space, the equivalent
of a resolver is the algorithm in charge of searching all applicable actions for a given state. Plan-space
partial order planning (POP) is oriented towards the collection and resolution of flaws, divided in two
main steps: (1) Unfolding: Adds supporting decisions for the goals in the network; (2) Scheduling: Add
relations based on causal links that temporally order the new activities added during the unfolding step.
In HTN, resolvers might vary but generally extend partial order planning with one additional step known
as task reduction or decomposition.

TRF presents some similarities with respect to POP as it is also oriented to the resolution of flaws.
While the unfolding process is quite similar, scheduling is a more generic/powerful variant of the causal
links based on Allen’s temporal relations. Moreover, it adds and additional one: (3) Timeline Comple-
tion, which fills the gaps of the timelines where no state is specified. HTLN adds to these steps the
decision decomposition.

The order in which each resolver should be applied depends on the specific implementation and would
be typically heuristically determined

3.2.10 Transition Function (γ)

In classical and HTN planning, the state-transition function γ is used to calculate the new state s′ of
the problem by applying the effects of a given action a to the current state s, formally γ(s, a) = s′. In

3 The terms relation and constraint will be indistinctly used along the text as HTLN relations always impose constraints in
the domain of the variables involved.
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HTLN, the state is defined by a decision network rather than a set of values and instead of an action a,
the output of one or several resolvers is used.

Given the problem network dni = (vi, Ni, Ei, dn
sub
i ) and {ρ} a list of resolvers, suppose without

loss of generality that {ρ} is formed by just one resolver {ρx}. The transition function γ under the
application of the resolver ρx is calculated as shown in equation 3.5.

γ(dni, ρx) = dni+1 =(vi+1, Ni+1, Ei+1, dn
sub
i+1)

vi+1 = null

Ni+1 = Ni \ d− ∪ d+

Ei+1 = Ei \ f− ∪ f+

dnsubi+1 = dnsubi \ d− ∈ dnsubi ∪ d+ ∈ DN (3.5)

Intuitively, the list of nodes Ni+1 and edges Ei+1 are calculated from their predecessors in dni by
adding and deleting the corresponding lists generated by the resolver. Regarding the list of subnetworks,
dnsubi+1 adds all the decisions in d+ which are decision networks and removes those decisions from d−

that were subnetworks in dni.
Prior to the description of the decomposition process, it is required to formally introduce the concept

of unification (used by the decomposition) and the necessary conditions for unification.

3.2.11 Unification

Unification attempts to identify and delete duplicated elements from a decision network. The process is
complex and requires a precise definition.

Definition 43 (Constraints for Unification) Two variables of the same type can be unified when there
is a not null set of solutions for which the two variables can share the same value.

In practice, checking the bounds of two variables resulting after the propagation of the posted con-
straints is just a necessary but not sufficient condition to check the unifiability of the two variables
because propagation will give information about the values that are not contained in any solution but no
information about the values that will be in the solution. To check unifiability, it would be necessary to
post an equality constraint among the variables and check that a solution exists to be sure that they can
unify. What is possible to check is if two variables cannot unify. To state a necessary condition for uni-
fication, it is enough to check if there is an empty intersection between the domains of the two variables.
The condition can be sufficient if the two data variables are constants or if one of the two variables is not
constrained, in which case it can always unify with another variable [139].

In those cases were the unification conditions are not sufficient, a TRF/HTLN planner can only create
a branch in which the two elements are unified and another in which they are not. As search continues,
one of the branches will be proved to be inconsistent because some constraints could not be satisfied.

Given a decision d and another element e (decision, parameter or relation) with which d can be unified,
there exists a most general unifier θ which application produces a result different from ∅:

CanUnify(d, e) = > ⇒ ∃θ, θ(d, e) = θe, θe 6= ∅ (3.6)

Unification is different depending on the type of e. Therefore, it will be iteratively explained in
increasing level of complexity of the element type.
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Parameter Unification

The necessary conditions to unify two parameters can be formally expressed as:

tv , tv ′ terms|type(tv ) = type(tv ′) ∧D(tv ) ∩D(tv ′) 6= ∅ ⇒ CanUnify(tv , tv ′) = > (3.7)

Equation 3.7 indicates that the parameters tv , tv ′ can be unified if both share the same type and the
intersection of their domains is not empty. In case the two parameters have the same type and they are
not instantiated (the parameter’s domain is not restricted by any constraint), there is no need to compare
the domains of the parameters as they would be always equal.

The unification under θ proceeds as follows:

tv , tv ′ terms|CanUnify(tv , tv ′) = > ⇒ θ(tv , tv ′) = θtv ′|Dθtv ′
← Dtv , valueθtv ′ ← valuetv

(3.8)
In case tv and tv ′ are unifiable, then tv ′ will be assigned the domain and specific value from tv .

Decision Unification

The necessary conditions to unify two decisions is slightly more complicated:

dv , d
′
v ′ decisions|sv = sv ′ ∧ |Tv | = |Tv ′| ∧ ∀tvi

∈ Tv∃tv ′i
∈ Tv ′, CanUnify(tvi

, tv ′i
) = >

⇒ CanUnify(dv , d
′
v ′) = > (3.9)

Given two values dv and d′v ′ , they can be unified in case their value symbols are equal, they share the
same number of parameters and each pair of parameters (tvi

, tv ′i
) can be unified.

If dv and d′v ′ are unifiable, the unification under θ proceeds as follows:

dv , d
′
v ′ decisions|CanUnify(dv , d

′
v ′) = > ⇒ θ(dv , d

′
v ′) = θd′v ′|
τθd′

v ′
← τdv

θ(tdv _i, td′
v ′_i

)∀i ∈ |Tdv | (3.10)

The unification of dv and d′v ′ produces a decision θd′v ′ , the time frame of which is the one of dv and all
its parameters are the result of the unification of the parameters of dv and d′v ′ . Notice that the definition
of unification for two nodes of a decision network can be directly extracted from the previous definition
as follows:

nd, nd′ nodes|CanUnify(d, d′) = > ⇒ CanUnify(nd, nd′) = > (3.11)

The unification of two nodes nd, nd′ produces a new node θnθd′ which decision is the result of unifying
the decisions of the two nodes. Formally:

nd, nd′ nodes|CanUnify(d, d′) = > ⇒ θ(nd, nd′) = θnθd′|
θ(d, d′) = θd′ (3.12)
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Unification with a Relation

The necessary condition to unify a value d with a relation ftype depends on the type of relation.
In the case of a temporal relation ftemp, the necessary condition to unify it with d is:

d decision, ftemp relation|∃df ∈ scope(ftemp) ∧ CanUnify(d, df ) = >
⇒ CanUnify(d, ftemp) = > (3.13)

If d can be unified with any of the decisions in the scope of ftemp then d and ftemp are unifiable as
follows:

d decision, ftemp relation|CanUnify(d, ftemp) = >
⇒ θ(d, ftemp) = θftemp|scope(θftemp) = scope(ftemp) \ df ∪ d (3.14)

The unification of d and ftemp produces θftemp, a relation equal to ftemp in which scope df is replaced
by d.

In case of a parameter relation fparam, the necessary condition to unify it with d is:

d decision, fparam relation|∃td ∈ Td,∃tf ∈ scope(fparam) ∧ CanUnify(td, tf )
⇒ CanUnify(d, fparam) = > (3.15)

If the parameter td of the decision d can be unified with one parameter tf in the scope of the relation
fparam, then d and fparam can be unified as follow:

d decision, fparam relation|CanUnify(d, fparam) = >
⇒ θ(d, fparam) = θfparam|scope(θfparam) = scope(fparam) \ tf ∪ td (3.16)

Which is very similar to the unification for a temporal relation.

Unification with a Decision Network

Finally, the unification of a value d with a decision network dn proceeds by iteratively applying the
unification to each of the decisions and relations of the network (in case the corresponding necessary
conditions are met), to each subnetwork and to the network’s value. Formally:

θ(d, dnm = (vm, Nm, Em, dn
sub
m )) =

θ(d, vm)θ(d, dm)∀dm ∈ Nm|CanUnify(d, dm) = >,
θ(d, fm)∀fm ∈ Em|CanUnify(d, fm) = >,

θ(d, dnsubm _i)∀dnsubm _i ∈ dnsubm ,

(3.17)

Notice that during decomposition the set of subnetworks dnsub is empty, therefore no propagation of
the unification is required.
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3.2.12 Decomposition Resolver (ρδ)

Given a problem network dni = (vi = null, Ni, Ei, dn
sub
i ) and a complex decision dv c ∈ Ni, dv c =

〈τd, v 〉, being v a state variable value with a predicate predv = 〈sv ∈ S, Tv = 〈tv1, . . . , tvm〉〉. Let
m = (v refm , dndecm ) where dndecm = (vm, Nm, Em, dn

sub
m ) is a relevant, applicable method for v and θ

the most general unifier of dv c and dndecm . The decomposition of dv c requires a sequence of activities
explained in the following subsections.

Selection

The only methods interesting to decompose the complex decision dv c are those that are both applicable
in the current state s and relevant for dv c .

In HTN, applicability is defined as follows:

Definition 44 (Applicability) A method m is applicable in a state s if precond+(m) ⊆ s and
precond−(m) ∩ s = ∅.

This definition is not valid for HTLN. Even though the concept of precondition, which does not exists
in TRF, can be easily extended to relation, proving the satisfiability condition of the relations in m’s
target network requires to actually solve the problem. The necessary but not sufficient condition is that
a method could be applicable if none of its relations cannot be satisfied in s, in other words, if there is a
relation in m that would be violated in s, then the method is not applicable. Formally:

∀f ∈ Em, Applicable(f, dni) 6= ⊥ ⇒ Applicable(dndecm , dn) = 1/24 (3.18)

The specific conditions to be checked by Applicable(f, dni) depend on the implementation, in this
case on APSI, and are out of the scope of this chapter.

On the other hand, the definition of relevance in HTN can be easily adapted to HTLN.

Definition 45 (Relevance) A method m is relevant for a complex decision dv c in case v c can be unified
with v refm . Formally:

∀m ∈M,m =
〈

v refm , dndecm

〉
|CanUnify(dv c, v refm ) = > ⇒ m ∈M select

v c (3.19)

The selection step provides a list of methods proven not to be not applicable in dni and relevant for
dv c . In theory, each method m ∈M select

v c represents a new branch in the search space created as a result
of the application of the decomposition to the current state s. Specific details about the order in which
the children will be chosen for expansion depends on the specific implementation and will be covered in
Chapter 4.

4 1/2 means Maybe in three-valued logic.
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Instantiation

Once a method is selected, an instantiation dnd = (nd, Nd, Ed, dn
sub
) of the target network dndecm is

created. As m is relevant for dv c , there exists a unifier θ between dv c and dndecm
5, which application to

a decision, described by Equation 3.10, is adapted here to the case of a network’s decision as follows:

θ(dv c, nd) = θnd|τθnd
← τdv c , vθnd

← vdv c (3.20)

The instantiated target network θdnd is also a decision which gets the time frame and value (symbol,
list of parameters and for each parameter its specific value) from dv c .

Decomposition

Once a relevant method for dv c has been selected and instantiated, it is possible to proceed to the de-
composition. To do so, all relations in Ed (the instantiated target network) and Ei (the problem network)
unifiable with dv c are unified according to equations 3.14 and 3.16, formally:

∀f ∈ {Ei, Ed}|CanUnify(dv c, f) = > ⇒ θ(dv c, f) = θf ∈ θF (3.21)

where F is the set of all relations that can be unified with dv c and θF is the set of unified relations.
The result of the decomposition of dv c ∈ Ni by dnd under the most general unifier θ is formally

expressed as:

ρδ(dni, dv c, dnd, θ) ={d+, d−, f+, f−}
d+ = {dnd, Nd}
d− = dv c

f+ = θF

f− = F (3.22)

The nodes Nd plus the network dnd itself are the list of decisions to be added while dv c has to be
deleted. With respect to the relations, all the unifiable relations F must be retracted and the resulting
unified relations θF added. The output of ρδ is used to create an evolution of the problem dni as shown
in Equation 3.5.

Example 8 Continuing with the FASTER rover domain, the example below contains two activities:
(1) Initial traverse with the two rovers towards a target; (2) Once the destination is reached, estab-
lish communication.

name : dn0 ;
id : 0 ;

n0 = null ;
N0 = {n1 : 〈τd1 = [0, 10], vd1 = Traverse(graph1, pinit1, pdest1)〉 ;n2 :
〈τd2 = [11, 20], vd2 = Communicate(file2)〉} ;
E0 = {e1 : f beforetemp (n1, n2)} ;
dnsub0 = {∅} ;

5 Recall that vm = v refm is the value related to the target network.
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Suppose that the next resolver chosen to be applied to the problem dn0 is the decomposer over the
decision d1 in the node n1. The following lines show the steps required to decompose the Traverse
goal in subgoals.

First, it is required to find all applicable and relevant methods for Traverse(graph, pinit, pdest).
Previously, two of them, named m_traverse_nominal and m_traverse_non_nominal were pre-
sented:

CanUnify(d1, v reftn ) = > ∧ Applicable(dntn, dn0) = 1/2
CanUnify(d1, v reftnn ) = > ∧ Applicable(dntnn, dn0) = 1/2 (3.23)

Next, one of these methods must be heuristically selected. Suppose without loss of generality that the
first one is chosen. An instantiation of the network is created, assigning a unique id to the network, nodes
and relations:

name : m_traverse_nominal ;
id : a ;
reference : Traverse(graph, pinit, pdest) ;
target :

na0 = Traverse(grapha0, pinita0, pdesta0) ;
Na = {na1 : InitTravGraph(grapha1);na2 : FindRoute(pinit_a2, pdest_a2);na3 :
TraverseCycle(patha3)} ;
Ea = {ea1 : f beforetemp (na1, na2); ea2 : f beforetemp (na2, na3); ea3 : f beforetemp (na0, na1); ea4 :
faftertemp (na0, na3); ea5 : f equalparam(grapha0, grapha1); ea6 : f equalparam(pinita0, pinita2); ea7 :
f equalparam(pdesta0, pdesta2)} ;
dndeca = ∅ ;

The unifier θ between the node to be decomposed, d1 and the instantiation dna ofm_traverse_nominal
is:

θ(d1, dna) = (n3 ← na0;n4 ← na1;n5 ← na2;n6 ← na3; e′1 ← e1; e2 ← ea1; e3 ← ea2; e4 ←
ea3; e5 ← ea4; e6 ← ea5; e7 ← ea6; e8 ← ea7; graph3 ← grapha0; pinit3 ← pinita0; pdest3 ←
pdesta0; graph4 ← grapha1; pinit5 ← pinita2; pdest5 ← pdesta2; path6 ← patha3)

The unification of d1 (the decision in n1) and da0 (the decision that represents the target network as a
whole) according to equation 3.17 by means of θ is:

θ(d1, da0) = d3|τd3 ← [0, 10], vd3 ← Traverse(graph3, pinit3, pdest3)

while the unification with the rest of the decisions in dna is:

θ(d1, da1) = d4|τd4 not grounded, vd4 ← InitTravGraph(graph4) ;
θ(d1, da2) = d5|τd5 not grounded, vd5 ← FindRoute(pinit5, pdest5) ;
θ(d1, da3) = d6|τd6 not grounded, vd6 ← TraverseCycle(path6) ;
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Next, all the relations in dn0 and θdna unifiable with d1 are unified according to equations 3.14 and
3.16. The resulting relations are:

θ(d1, e1) = e′1 : f beforetemp (n3, n2) ;
θ(d1, ea1) = e2 : f beforetemp (n4, n5) ;
θ(d1, ea2) = e3 : f beforetemp (n5, n6) ;
θ(d1, ea3) = e4 : f beforetemp (n3, n4) ;
θ(d1, ea4) = e5 : faftertemp (n3, n6) ;
θ(d1, ea5) = e6 : f equalparam(graph3, graph4) ;
θ(d1, ea6) = e7 : f equalparam(pinit3, pinit5) ;
θ(d1, ea7) = e8 : f equalparam(pdest3, pdest5) ;

The output of the decomposer using equation 3.22 is:

ρδ(dn0, n1,m_traverse_nominal, θ) =
d+ = {n3;n4;n5;n6} ;
d− = {n1} ;
f+ = {e′1; e2; e3; e4; e5; e6; e7; e8} ;
f− = {e1} ;

And the result of the transition by means of equation 3.5 is:

γ(dn0, ρδ(dn0, n1,m_traverse_nominal, θ)) = dn1 ;
name : dn1 ;
id : 1 ;

n1 = null ;
N1 = {n2 : 〈τd2 = [11, 20], vd2 = Communicate(file2)〉 ;n3 :
〈τd3 = [0, 10], vd3 = Traverse(graph3, pinit3, pdest3)〉 ;n4 :
〈τd4 not grounded, vd4 = InitTravGraph(graph4)〉 ;n5 :
〈τd5 not grounded, vd5 = FindRoute(pinit5, pdest5)〉 ;n6 :
〈τd6 not grounded, vd6 = TraverseCycle(path6)〉} ;
E1 = {e′1 : f beforetemp (n3, n2); e2 : f beforetemp (n4, n5); e3 : f beforetemp (n5, n6); e4 : f beforetemp (n3, n4); e5 :
faftertemp (n3, n6); e6 : f equalparam(graph3, graph4); e7 : ea6 : f equalparam(pinit3, pinit5); e8 :
f equalparam(pdest3, pdest5)} ;
dnsub1 = {dna} ;

3.3 Properties of HTLN

In order to define the properties of HTLN and compare it with TRF the following assumptions are taken.

• HTLN: Given a problem network dni = (ni, Ni, Ei, dn
sub
i ), there is a complex decision goal

dv c ∈ Ni decomposed in dndecm = (vm, Nm, Em, dn
sub
m ) with m ∈M select

v c .

• TRF: Given the same problem dni, a number of decisionsNm and relationsEm among them, equal
to those in dndecm , must be added to dni.

79



3.3.1 Soundness and Completeness

Assessing the soundness and completeness of HTLN is difficult from a theoretical point of view and
highly depends on the specific planner implementation and the model at hand.

The demonstration of soundness is based on the definition of solution provided in Section 2.4.4 and
extended in Section 3.3.2 to incorporate the concept of task refinement.

Given a planning system based on a set of resolvers, each oriented to solve a type of flaw, the planner
is sound if every resolver is sound. Formally, it is expressed as:

∀ρ ∈ P, sol(ρ, dni, D, P ) = > ⇒ planner is sound (3.24)

The demonstration by contradiction is very straightforward. Suppose this assertion is false. Then, the
plan π returned by the planner is not a solution. If it is not a solution, π must contain at least one flaw φ
which has not been solved by the corresponding resolver ρ, therefore ρ is not sound, as it has returned a
plan which is not a solution.

Assuming that for a candidate solution dni, any given unfolder is capable of checking whether the con-
ditions of each decision are supported, that the scheduler can check whether all STP and CSP constraints
are satisfied and that the timeline completer can verify that there is no gap in any of the timelines6. To
evaluate the effect of HTN on TRF in terms of soundness, two inference rules are required:

R1 - If dni is a totally ordered, grounded and primitive decision network7 then sol(ρδ, dni, D, P ) =
>.

R2 - If dni is a non-primitive decision network and dnk is a primitive decision network derived from
dni by iteratively decomposing all the complex decisions such that R1 holds for dnk, then dnk is
a solution.

Any algorithm that preservesR1 andR2 is sound and complete [64]. This definition will be expanded
in Section 3.3.2 to incorporate the concept of partial solution.

Regarding completeness, in case the maximum depth and branching of the search space were finite,
then an exhaustive algorithm that examines all the possibilities would be complete. As the domains
for all the elements in TRF, and HTLN by extension, are finite, the maximum branching is limited.
Moreover, the maximum number of decisions in the solution has an upper bound equal to the problem
timespan as each decision takes at least one unit of time, therefore the maximum depth is also limited.
In consequence, any exhaustive planner for TRF is complete. Even if the number of Values v ∈ V
or domain of the parameters were infinite, the planner can achieve completeness in case it uses the
appropriate search algorithm for the unfolding step as shown in Section 2.4.1.

Focusing on HTLN completeness, the fact that there exists a sequence of ground operators that strips-
solves the problem does not necessarily mean that an HTN planner must find it as a solution. In particular,
unless there is a sequence of decompositions of the goal decisions that results in that ground operator
sequence, the HTN planner will not find it. Thus, the completeness of an HTN planner has to be defined
with respect to both the domain decisions as well as the set of methods [95]. If the model is complete,
that is, all complex decisions can be decomposed into a finite set of primitive decisions, then R1 and R2
are preserved and the decomposer resolver is complete.
6 This assumptions depend on the specific resolvers and are not meant to be demonstrated here
7 Notice that the unfolder and scheduler are in charge of verifying that all constraints are satisfied.
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3.3.2 Robustness

It is difficult to do a quantitative analysis of how the different novelties proposed improve the plan
robustness. Two techniques have been envisaged to help increasing plan robustness in HTLN: HTN
methods and sufficient planning.

HTN Methods

Multiple real domains present for any given problem several solutions from a formal point of view, while
in practice most of them are not reasonable. Moreover, the users may have strong preferences about the
types of solutions they are willing to accept.

The problem is that in these domains it is crucial to take into account the expert knowledge that
determines which solutions are valid. HTN facilitate the coding of these knowledge in the form of
methods that represent large, stable and high-quality plan fragments. HTN methods allow the users not
only to specify what skeleton plan is used to achieve a goal, but also to specify a priori what causal
dependencies must hold in the plan fragment. This shifts the focus from precondition establishment to
plan merging [56, 95].

In consequence, assuming that the engineers in charge of the modelling phase have endowed the plan-
ner with high quality methods, the solutions provided by the planner would be expected to be more
robust than others in which these expert knowledge would not be taken into account. As a particular ex-
ample, during the FASTER field trials the team was able to configure some activities with different time
ranges depending on the behaviours, for example path planning during the initial calculation or during a
repair. That helped to prevent to a great extent failures due to time overrun (see further information on
this regard in Chapter 6.).

Sufficient Planning

Traditional timeline planners search for fully justified plans which are:

• Complete: The plan always specifies how to proceed (the timelines have no gaps).

• Fully ordered: All the decisions are sequenced.

• Valid: All the constraints are satisfied.

• Grounded: All the variables have assigned specific values.

This definition might represent an unachievable condition in real-world problems. In order to create
more robust plans in non-deterministic, dynamic and partially observable environments, more flexibility
is required. HTLN is based on the concept of Sufficient Plan which represents an evolution of the idea
presented in [71]. It is defined as follow:

Definition 46 (Sufficient Plan) A plan is sufficient if all variables and relations are sufficiently
grounded, all fully grounded relations are satisfied, all decisions are sufficiently decomposed and all
the mandatory goals can be achieved for at least one specific instantiation of the sufficient plan.

This definition represents an extension of the definition provided in [71], where a sufficient plan is
fully defined up to a certain point called plan horizon, ignoring activities that fall outside it. In HTLN,
any decision or constraint might be partially defined according to an initial definition. The different
concepts involved in this definition are described in the following sections.
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Sufficiently grounded
All decisions dv ∈ Dall and relations f ∈ R that appear as goals in the problem must specify whether

they should be grounded or not at planning time. A decision is grounded when its value and parameters
are grounded; a relation is grounded when all the decisions of its scope (those affected by the relation)
are grounded. A partially grounded relation has two important consequences: (1) The relation cannot be
satisfied, (2) In case of temporal relations, the resulting dn is partially ordered.

Sufficiently decomposed
In order to determine whether a decision or network is sufficiently decomposed, two additional vari-

ables must be added to the definition of decision.
mustDecompose(dv c) indicates whether or not dv c must be decomposed (it is obviously ignored for

v ps). This property can be used to avoid planning on those activities for which some relevant information
is missing.
decLevel(dv c) describes the level of decomposition of the decision dv c . It can be in one of three

different levels:

• Not sufficiently decomposed (nsd): The decision requires further decompositions in order
for the planner to generate a valid plan. By recursion, a complex decision dv c for which
mustDecompose(dv c) = true is not sufficiently decomposed if it has not yet been decomposed
or if any of its subdecisions is not sufficiently decomposed.

• Sufficiently decomposed (sd): Indicates that the decision has been partially decomposed. By re-
cursion, a complex decision dv c is sufficiently decomposed if it has not been decomposed and
mustDecompose(dv c) = false or in case mustDecompose(dv c) = true, dv c has been de-
composed and none of its subdecisions is nsd but at least one is sufficiently decomposed. All the
activities in a problem should be at least sd to define a valid plan.

• Fully decomposed (fd): A primitive decision dv p is always fully decomposed. A complex decision
dv c is fully decomposed if, regardless of the valuemustDecompose(dv c), it has been decomposed
and all its subdecisions are as well fd.

Formally:

decLevel(dv c) = nsd mustDecompose(dv c) = > ∧ dec(dv c) = ⊥||
mustDecompose(dv c) = > ∧ dec(dv c) = >|
m ∈M select

dv c ∧ ∃d′v ′c ∈ dndecm , decLevel(d′v ′c) = nsd (3.25)

decLevel(dv c) = sd mustDecompose(dv c) = ⊥||
mustDecompose(dv c) = > ∧ dec(dv c) = >|
m ∈M select

dv c ∧ >d′v ′c ∈ dndecm , decLevel(d′v ′c) = nsd∧
∃d′v ′c ∈ dndecm , decLevel(d′v ′c) = sd (3.26)

decLevel(dv ) = fd d ∈ Dp||d ∈ Dc ∧ dec(d) = > ∧ ∀d′v ′c ∈ dndecm , decLevel(d′v ′c) = fd
(3.27)

where dec(dv c) is a boolean function that determines whether the decision dv c has been already de-
composed or not.
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Example 9 Continuing with the example of the Primary Rover, imagine that the rover needs to perform
two traverses: Traverse1(p1, p2) within the field of view and Traverse2(p2, p3) beyond the field of
view. A human operator on-ground might be interested in marking the second traverse with the flag
mustDecompose = false because it is not possible at planning time to predefine a trajectory or make
any assessment about the properties of the terrain in this situation. The initial problem, labelled as dn0
is defined in PDL as follows:

f1 <fact> compMission.tl1.Idle();
f2 <fact> compNav.tl1.Idle();
...
g1 <goal> compMission.tl1.Traverse(?_inTeam = FALSE);
g2 <goal, ND> compMission.tl1.Traverse(?_inTeam = FALSE);

where the tagND (Not to Decompose) is used by the parser to set the flagmustDecompose. In con-
sequence, decLevel(g2) = SUFFICIENTLY _DECOMPOSED and no decomposition will be
attempted on this decision. Regarding g1, in this example where the Primary Rover traverses alone,
the decomposer would choose the decomposition path shown in Figure 3.2. Imagine that at step i
the decomposer ρδ creates the i − th problem network dni by decomposing the last element of the
path, BGenerateMapPR. At this moment, all complex decisions in the network are decomposed
in subdecisions whose depth level is 0. In consequence, g1 changes its decomposition level from
NOT_SUFFICIENTLY in dni−1 to FULLY _DECOMPOSED in dni. dni also changes
its decomposition level value (which is equivalent to the lowest value among all its decisions). It
corresponds to g2, which is SUFFICIENTLY _DECOMPOSED. At that moment, the plan is
considered a solution from the point of view of the decomposer. If no other solving steps are required,
then the planner returns dni as a solution and is ready to be executed. Later on, the problem will be
completed by some deliberative agent on-ground or on-board by decomposing g2 in subdecisions.

This approach offers plenty of benefits. In scenarios where communications are not possible and
the information required to complete some of the goals of the mission is still not available, sufficient
planning allows to define the whole mission, marking these problematic goals as NotToDecompose,
uplink the sufficient plan and let the replanner on-board complete it at due time. This situation is actually
quite common in Mars missions as soon as the rover goes beyond the field of view. Even if it is possible
to communicate with the robot, this technique can help in order to create look ahead plans. By defining
some estimation of time and resource consumption for the sufficient goals, it is possible to generate a
sufficient plan to get a better idea of how it looks like. The plan is even executable until it reaches the
sufficient goals, that will have to be decomposed.

3.3.3 Performance

Analysing the performance of a HTLN solver is a complex task due to the interaction of different re-
solvers with different properties. In the following subsections, it will be first theoretically demonstrated
that the addition of a HTN step does not represent a penalty in terms of time or space complexity. Next,
it is anaylised how a HTLN-based solver might be benefited from an improved performance with respect
to other TRF planners thanks to two fundamental HTLN characteristics: HTN methods and parallel
planning.
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Figure 3.2.: Decomposition methods for Traverse complex goal in FASTER scenario.

Complexity Analysis

The complexity of a HTLN planner depends on the specific implementation of each of the resolvers.
However, it is possible to analyse the asymptotic complexity of each resolver and specially the impact
of HTN in the TRF formalism using Big O notation.

Finding an optimal plan in HTN is at least as difficult as the problem of determining whether or not
a plan exists [64]. In HTLN, plan existence with partially ordered, not-regular decision networks is
decidable because: (1) Plan length is finite: As the time horizon is finite and the minimum time duration
for a decision must be greater than 0, only a finite number of complex decisions can be added to a
given timeline; (2) Acyclic methods: Considering that the level of abstraction of any complex decision
level(d) in the domain D is limited by the upper bound k (see Section 3.2.5), given a set of acyclic
methods, that is, for a decision d′ ∈ dndecd it is guaranteed that level(d′) < level(d) where 0 is the level
of all primitive decisions, then any decision can be expanded to a depth of at most k. In consequence, the
number of possible decompositions for any given problem has always an upper limit and therefore plan
existence is decidable from a HTN perspective [64, 62]. In addition, plan existence is also decidable for
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models with cyclic methods as the number of decisions that can be allocated for any given plan is limited
as indicated in point (1).

The process of unfolding and decomposition search are both based on the problem of searching in the
tree (or graph for domains with loops). To characterize the time and space complexity, let us assume that
b is the branching factor of any decision (the number of applicable actions or methods for the unfolder
and decomposer respectively), d the maximum depth of any path, ρ an unfolder or decomposer resolver
and greedy best-first the search strategy. The resolver ρ has a time and space complexity equal to O(bd)
(see Section 2.4.1).

With respect to the scheduling problem [37], required to solve the associated CSP problem, consis-
tency/filtering algorithms such as PC are more appropriate than solving algorithms because they can be
used incrementally as new time points and parametric constraints are added. PC-8 [46] has a time com-
plexity of O(n3d4) and space complexity of O(n2d) with no extra space required, being n the number
of nodes and d the size of the domain. The discussion focuses on CSP complexity as it typically domi-
nates the complexity of STPs which is O(n3) for the Floyd-Warshall algorithm. For APSI, the specific
type of CSP problem is known as the Resource Constrained Project Scheduling Problem with Gen-
eralized Precedence Relations (or RCPSP/max), which is considered to be particularly difficult, more
specifically NP-Hard [7], due to the presence of temporal separation constraints.

In consequence, the complexity of the scheduling problem theoretically dominates the complexity of
the other steps or, in other words, the addition of a HTN step to the solving process does not asymptoti-
cally increase the overall complexity.

Another important aspect to consider in the complexity analysis is the depth at which each step hap-
pens. Regardless of the search strategy, the nodes at the solution layer of the search tree cannot corre-
spond to those generated in the decomposition step. Subgoaling after decomposition is not mandatory,
as it might happen that all the subdecisions added to the problem network are already fully supported.
However, scheduling the new decisions added by the unfolder or decomposer is mandatory. Considering
the rather general assumption of a search tree with the same, or nearly the same, branching factor b at
each level, it can be stated that there are more nodes in the last layer of the tree than among all previous
layers together. In consequence, most of the work actually will be accomplish by the scheduler.

Performance Improvement - HTN Methods

The use of domain-specific knowledge can improve the performance of a planner from exponential to
polynomial time [83, 141].

In experimental studies [115, 117, 4, 116], hand-tailored planners have solved problems orders of mag-
nitude more complicated than those typically solved by planning systems based on domain-independent
algorithms and knowledge. For example, in very simple problems with few constraints where the num-
ber of applicable actions is high, classical planning have huge problems due to the explosion of nodes in
the search space. This kind of problems is very hard to solve with generic heuristics, but very simple in
case domain-specific information is added in the form of HTN methods.

Adding a decomposition step in HTLN provides different advantages that might improve the overall
solver performance.

Reduce the search space by decreasing the maximum depth
First, methods help to reduce the size of the search space as it decreases the maximum depth d by

compacting several unfolding-scheduling steps in just one decomposition. Suppose for simplicity and
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without loss of generality, that all resolving steps (unfolding, scheduling and decomposition) have a
branching factor equal to b and that each new decision added during unfolding must be scheduled before
others are added. Assume that for a given complex decision dv c , there is a relevant method dndecv c in
which dv c is decomposed that contains n decisions. In the worst scenario, the decomposer will need to
expand all b methods to get to dndecv c . On the other hand, a solver based on unfolding-scheduling steps
would need bd nodes, being d = 2(n− 1) because we need two expansion levels (one for each resolver)
to increase in one the number of decisions.

In addition, each method dndecv c typically represents a carefully designed partial plan that grasp the
knowledge of the experts and is therefore very optimized and stable. From the b2n−2 methods generated
by the unfolder-scheduler, all those that are not represented in the set of methods dndecv c most probably
will not represent good solutions, even if they are valid plans.

Reduce the search space by early pruning not valid solutions
Pruning partial plans is a more complicated topic. Using abstractions in planning does not guarantee

an improvement in search efficiency. Tenenberg [146] defined the so-called Upward Solution Prop-
erty, which can be informally stated as: “If there exists a concrete solution, then there also exists an
abstract solution”. Though this property is important, it does not establish a relationship between the
abstract and concrete plan. Knoblock’s works [99] established a more restrictive property named Or-
dered Monotonicity Property: “An abstraction space satisfies the ordered monotonicity property if any
concrete solution can be derived from some abstract solution while leaving the actions in the abstract
plan intact and relevant to the concrete plan”. The ordered monotonicity property does not guarantee
a good performance as it does not enforce that every abstract solution can be refined to a concrete one.
This property is provided by the Downward Refinement Property (DRP) [5]: “If a non-abstract, con-
crete level solution to the planning problem exists, then any abstract solution can be refined to a concrete
solution without backtracking across abstraction levels.”

If DRP is satisfied, at any given level of abstraction search for alternate abstract plans can be termi-
nated once a single correct plan has been found because it is guaranteed that any abstract solution can
be refined to a concrete level one without ever need to backtrack. In consequence, when a new operator
is added to refine the plan, it is added solely to achieve the new (more detailed) preconditions, not to
achieve previously satisfied conditions. Thus, if there is a concrete level solution, search in this man-
ner will find it without having to consider alternate abstract plans [5]. DRP can rarely be guaranteed
in actual planning domains. The way to achieve it in HTLN is to define the model in such a way that
the domains of the elements on dv c are an envelope of the domains in the subnetwork dndecm such that:
(1) The duration of dv c must be an upper limit of the duration of all its possible decompositions; (2) The
domain of any parameter in dv c must always include the domain of any equivalent parameter in some
decision d ∈ dndecm . If the envelope property is respected, it is guaranteed that any decomposition into
subgoals will never violate previously satisfied conditions and therefore DRP will be preserved.

Trying to satisfy DRP might have however consequences with respect to completeness due to the
downward unlinearizability [95].

Definition 47 (Downward unlinearizability) A constraint is monotonic if, once a plan is inconsistent
with respect to this constraint, no amount of additional steps can make it consistent [94].

Monotonicity of a constraint depends upon the types of refinements allowed by the planner. One effect
of adding task decomposition to a temporal planner is that constraints that are normally monotonic might
become non-monotonic, therefore they cannot be used to prune partial plans. As an example for HTLN,
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if an abstract decision d gets a very wide temporal interval, it could make some abstract plans not valid,
even though they could be refined into valid plans once d were decomposed.

Simplify the network by reducing the number of constraints
HTLN also has a direct theoretical impact in terms of performance with respect to TRF based on the

number of constraints generated in the problem network. Consider the number of nodes |Nm| = x and
the number of edges |Em| = y. Table 3.3 shows a comparison of the number of constraints that would
be required in case the decisions and relations of dndecm were added using HTLN and TRF.

dndec
m Mode Ordered ¬ Ordered

Ordered HTLN y + 2 y + x
TRF y y + 2x∗

¬ Ordered HTLN y + 2 y + x
TRF m m∗

Table 3.3.: Comparison of the number of relations in HTLN vs TRF.

In case dndecm is ordered, HTLN requires two more relations than HTN to order the complex decision
with respect to its subnetwork, as explained in Section 3.2.7. Addition of further decisions or relations
in dni will have an equal impact regardless of the formalism used.

However, if dndecm is not ordered, the number of temporal relations needed in HTLN is smaller. HTLN
will require y + x relations corresponding to the internal relations of dndecm plus a Contains relation
between the complex decision of the network and its subdecisions. If dni is ordered, TRF will require
y + 2x where 2x correspond to the temporal relations: (1) f beforetemp (last, dmi

) between the last decision
in dni before dndecm and each decision in dndecm ; (2) faftertemp (first, dmi

) between each decision in dndecm

and the first decision in dni after dndecm . If dni is not ordered, the decisions of dndecm will be completely
mixed with the rest of decisions in dni and it will not be possible to tell that they pursued a common
goal. This fact represents an important penalization in case further Before or After temporal relations
had to be added to dni: In case a decision a of dni has to be ordered respect Nm, it would require in
TRF x additional relations between a and each of the decisions in Nm while it would require only one
relation in HTLN between a and dndecm .

Besides the number of temporal relations required, there is an intrinsic advantage derived from using
HTN in STP problems. Suppose that a complex decision dv c decomposed in the network dnd. Provided
that the temporal relations of the decisions in dnd are relative to the time points of dv c (as explained in
the Instantiation and Decomposition steps explained in Section 3.2.12), single modifications affecting
the temporal relations in which dv c is involved will immediately affect the temporal relations in the
subnetwork dnd without the need of any constraint propagation. This positive effect happens precisely
because the temporal elements of the subnetwork are relative to those of the complex decision. For
example, if dv c is moved after another decision di, then dnd will also be moved. In consequence, the
performance of the scheduler should be improved as it requires less steps in order to obtain a solution.

Performance Improvement - Parallel Planning

By reasoning about the underlying graph of an HTLN problem, it is possible to identify separate subprob-
lems, allowing the use of parallel planning. As explained in [54], a graph G = (V,E) has a separation
vertex v if there exist vertices a and b, a 6= v , b 6= v such that all the paths connecting a and b pass
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through v . A graph that has a separation vertex is called separable. Let V ′ ⊆ V , the induced subgraph
G′ = (V ′, E′) is called a non-separable component if G′ is non-separable and if for every larger V ′′,
V ′ ⊆ V ′′ ⊆ V , the induced subgraph G′′ = (V ′′, E′′) is separable. An efficient algorithm to gener-
ate valid temporal plans (not considering resource consumption) and computing the minimal network is
to first find the non-separable components C1 . . . Cm

8 and then solve each one of them independently.
If all components are valid, then the entire network is valid and the minimal networks of the individ-
ual components coincide with the overall minimal network. Taking advantage of HTLN structure, it is
possible to isolate independent subproblems dnsub and assign resolvers in parallel threads to each of
them [170]. Further information about the specific implementation of parallelism for temporal networks
in QuijoteExpress is provided in Section 4.3.5.

3.3.4 Expressiveness

HTLN provides several advantages in terms of expressiveness that can be summarized as:

• More structured way of defining domains in different abstraction layers.

• Easier plan inspection derived from the hierarchical organization of the solution.

• More expressive language to define complex/primitive decisions, meta-relations and loops.

Focusing on the domain definition, it could be argued that a hierarchical structure could better char-
acterize the way in which humans think about problems [52]. Besides, a hierarchical model allows the
user to organize the domain in different complexity levels up to the desired level of detail or granularity,
which could be easily extended as required.

Hierarchies also help to better understand a plan from a human point of view, simplifying its verifica-
tion and validation as the user can focus on a specific layer disregarding the details of lower ones.

As explained in the previous section, HTN allows the user to define domain-dependent knowledge. It
allows domain-independent planners to be easily customized for different problems just replacing the set
of methods.

From a theoretical point of view, HTN is more expressive than classical STRIPS-based planning
and TRF as it is Turing-complete [63]: even undecidable problems can be expressed as HTN planning
problems. While the set of solutions for a classical planning problem is a regular language, the set of
solution for a total-order STN planning problem is a context-free language [64].

One consequence of using a context-free language is the power to represent loops, just by adding to
the list of subdecisions dndecm the reference decision v refm in the method specification, as shown in the
following example.

Example 10 In FASTER, the TraverseCycle complex decision is in charge of moving the rover/s needs
to iterate through a sequence of activities, whose main steps are: Perception, Map Generation,
Path Generation and Traverse. However, the exact number of iterations required to reach the
target is is unknown beforehand. It can be expressed in HTLN as follows:

DECOMPOSE compNavigation.tl1 {
VALUE TraverseCycle(?inTeam, ?initWP, ?targetWP){
?initWP != ?targetWP;
cd1 compPrimaryLoc.tl1.InitNextCycle();
cd2 compPrimaryPath.tl1.LocateScout();
cd3 compScoutPath.tl1.TransmitPose();
...

8 Notice that here the dissertation talks about graph components, not about APSI components.
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cd13 compPrimaryPath.tl1.PlanPrimaryPath(?inTeam, ?nextWP);
...
cd17 compPrimaryLoc.tl1.TraversePrimary(?initWP, ?nextWP);
cd18 compNavigatatin.tl1.TraverseCycle(?inTeam, ?nextWP, ?targetWP);
}
}

The initial condition ?initWP ! =?targetWP ; checks that the initial and target waypoints are dif-
ferent, in which case the loop is executed. After generating the map, the path is planned, obtaining the
next intermediate waypoint ?nextWP , used for the next traverse. Finally, the method calls itself again,
replacing the previous ?initWP by ?nextWP . This representation is more powerful than others based
on quantified goals applicable in conventional TLP planning, which would require to know in advance
the number of steps [95].

Moreover, HTLN allows to distinguish between complex/primitive goals. While the relation between
complex goals and their associated methods is represented using the same structure as conventional APSI
synchronizations, the meaning and consequences are completely different. A synchronization represents
a relation between a decision (the reference) and a network. Synchronizations are part of the domain and
involve decisions that are not required to be in different levels of complexity. During planning, enforcing
a synchronization implies the need to satisfy the set of constraints (temporal or parametric) between the
reference decision and the target decisions.

On the other hand, the methods do not belong to the domain, but to the knowledge database. In a
method, one decision must be in a higher level of complexity that the network in which it is decom-
posed. Finally, applying a method in HTN implies the replacement of the complex decision by the set of
subdecisions in the network.

Besides the representation of loops and complex/primitive decisions, HTLN allows to express
meta-relations between a decision dv and a sub-network dni thanks to the possibility of bind-
ing together a decision network under a higher level complex decision. Assuming that Em
does not totally order the nodes in Nm, it is possible in HTLN to specify any of the relations
Meets/Overlaps/During/Starts/F inishes/Equal between a decision a ∈ dni and the decom-
posed network dndecm (interpreted as a unique complex decision), but it is not possible in TRF as there is
no complex decision encompassing all the subdecisions to which the relation could make reference.

Example 11 Given a problem in which the Primary Rover must perform a Traverse and then
Communicate to Earth, suppose that the goal Traverse has been already decomposed in the network
dndecTraverse. The following constraint expresses the temporal ordering between the subnetwork obtained
from the decomposition of Traverse (which is a DecisionNetwork) with Communicate, which is a
simple decision.

f_{temp}^{before}(Traverse, Communicate);

3.4 Conclusions

This chapter has presented HTLN, a formalism that combines temporal and task networks in an effective
way. Taking advantage of the formal definition, it was possible to prove that HTLN offers several
advantages with respect to conventional TLP and HTN in the fields of performance, plan robustness and
expressiveness.

The increase of performance comes from a better time and space complexity derived from the use of
partial plans (the methods) plus the capability of performing parallel planning.
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In the field of expressiveness, the main advantage of HTLN comes from a novel approach to HTN
planning in which the hierarchical order between the complex decision dv c and its subdecisions in dndecv c

is maintained in the network after decomposing dv c thanks to the dual representation of complex values
as decisions and networks. That allows to express relations between any other decision in the problem
network and the whole subnetwork dndecv c . The use of methods also allows an elegant way to express
recursion in a method m by including in the target network dndecm a call to the reference decision v refm .

Regarding robustness, HTLN contributes in two different ways to improve it, sufficient planning and
HTN methods. The first provides a tool to construct more robust plans in scenarios with high uncertainty,
as it allows to postpone the decision making process to the time in which the information is available.
HTN methods on the other hand are good quality sub-plans thoughtfully evaluated.

All this properties are theoretical. Chapter 4 presents a planner based on HTLN that will show their
impact in real applications.
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4 QuijoteExpress Planner: A Novel Planning System

Several factors, identified in Section 2.7, have prevented so far the use of more autonomy on robotic
systems in the open-world. The main motivation of this thesis is to provide a novel temporal plan-
ner prototype for on-ground/on-board robotic missions in partially observable, non-deterministic and
dynamic scenarios (see Section 2.2.2). More specifically, the aim is to improve a number of features
identified in Section 2.2.2:

• Performance: It is critical in situations where a fast reaction determines the success of failure like
Earth observation satellites that need to rapidly react to capture images of a specific region [137, 45]
or for Mars rovers to capture serendipitous events such as dust devils [28]. In the rescue scenario,
fast reaction is mandatory, as the survival rate rapidly decrease with time [143].

• Robustness: The planner should be able to produce robust plans even for highly complex scenarios
were the assumptions presented in Section 2.2.2 hold.

• User/planner interaction: It can be improved in two ways: Increasing the language expressiveness
to create more realistic models and generating more understandable plans.

The approach presented in this chapter is based on the combination of classical and applied planning
techniques. The result is a novel planner called QuijoteExpress [174, 167, 175]. QuijoteExpress (abbre-
viated QE) is a timeline planner based on the HTLN formalism. It profoundly deviates from any other
timeline planner developed so far, as it uses heuristic, forward-chaining search in the state-space as most
classical planners.

The chapter is organized as follows. It starts with the description of the general architecture in which
APSI* and QE together with APSI are put in context. Next sections present further details about the
design and implementation of APSI* and QE. The planner performance is also evaluated in this chapter
as a standalone component, comparing the impact of the different features with synthetic examples while
Chapter 6 evaluates the whole system (including the Executive) in a real-world scenario. The chapter
ends with the conclusions.

4.1 Architecture

The formalism introduced in Chapter 3 presents radical differences with respect to APSI. In order to pro-
duce a planner able to exploit both of them, an architecture organized in three layers has been designed.

APSI3 is in the lowest layer. Some modifications were required in the core of the framework, such
as the representation of decomposition levels or primitive/complex decisions. These modifications have
been now integrated in the official APSI distribution.

To implement HTLN as a general solution, able to be reused for other planners (including APSI ones),
an additional abstraction layer, called APSI* had to be defined on top of APSI. APSI* follows the same
internal organization dictated by APSI with the intention of maintaining a cohesive design, based on the
organization of the software in a TRF* (Framework and Kernel) and Solver packages.

Finally, the planner sits on top of APSI and APSI*. It uses the STP and CSP capabilities of APSI
and the solving approach (search space, resolvers, etc) of APSI*. The building blocks are presented in
Figure 4.1.
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Figure 4.1.: Building blocks of QuijoteExpress and APSI*.

4.2 APSI*

APSI* is a new solving layer that extends APSI3 TRF to incorporate HTLN. As indicated in Sec-
tion 3.2.12, the key concept for APSI* (derived from HTLN) that differentiates it from other HTN
planners is the way in which complex goals are represented and managed. Most HTN planners like
SIPE-2 [160] or O-Plan [145] replace the complex task in the problem by the set of subtasks of the
method selected. In consequence, some information is lost as the problem does not retain the hierar-
chical structure of the domain. This information can be in fact useful during planning as depicted in
Section 3.3.4.

APSI* is meant to be used as an abstraction layer, backwards compatible with APSI3, that isolates
the user from low level details to facilitate the development of new HTLN solvers in any kind of search
space (plan-space, state-space, etc.), so that any planner developed for APSI could use it. It focuses on
providing functions and data structures to improve the performance, plan robustness and expressiveness
of the planners.

From an architectural point of view, APSI* is placed on top of APSI3. It is divided into two layers,
TRF* and Solver (Figure 4.1). As in APSI TRF, TRF* is organized in a low level of detail package
named Kernel and a high level named Framework, which is actually where all functionalities for the user
are placed. TRF* extends the original TRF in two directions:

• Algorithms: Define the general structure for solvers, heuristics and its related parameters.

• Search Space: Contain data structures defining what is a search node, open-list, closed-list and
search-space.

The solver package does not provide any concrete class, but rather a set of abstract classes that define
what is required to implement HTLN solvers. It is divided in three blocks: Preprocessor, Resolver and
Supersolver which will be analysed in depth in Section 4.3.2.
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4.2.1 Expanding the APSI Core

Adding HTLN requires some modifications in key components of APSI3. In the lowest level, the APSI
parser in charge of reading the domain description files (DDL) was modified to be able to handle
decompositions by means of the new keyword DECOMPOSE, which shares the same syntax as
SY NCHRONIZATION but is computed by the decomposer resolver ρδ in a different way. It has
been also added the keyword DEFAULT to indicate which is the default state of a StateV ariable
component. This property can be used as a landmark by the heuristics to estimate the distance from
the present state to the goal. With respect to the problem description language (PDL), a new keyword
ND has been added to indicate that its associated goal does not need to be decomposed. This keyword
can be used by the planner on-ground to generate partial plans. All these concepts are illustrated in the
following example.

Example 12 In the FASTER scenario, Idlemust be represented as the default state for the Mission com-
ponent. Moreover, the method that decomposes the complex decision Nav igate needs to be modelled.
The corresponding DDL is showed below.

COMP_TYPE STATE_VARIABLE MissionType
VALUES
{
DEFAULT Idle() [1, +INF];
Navigate(bool ?inTeam) [2000, +INF];
...
}

DECOMPOSE compMission.tl1 {
VALUE Navigate(?inTeam){
cd1 compPrimaryPath.tl1.InitTravGraph();
cd2 compPrimaryPath.tl1.FindRoute();
cd3 compNav.tl1.TraverseCycle(?inTeam3);

cd1 BEFORE [1,+INF] cd2;
cd2 BEFORE [1,+INF] cd3;

?inTeam = ?inTeam3;
}
}

Regarding the problem definition, the Primary Rover needs to perform two traverses (see model
in Section 6.3.3), with the second being beyond the field of view. It might be desirable to generate a
plan containing both traverses in order to get a better overview of the whole mission, but leaving the
details of the second one undecided until the end of the first traverse, allowing the robot to gather more
information before it is further detailed.

f1 <fact> compMission.tl1.Idle();
f2 <fact> compNav.tl1.Idle();
...
g1 <goal> compMission.tl1.Navigate(?_inTeam = TRUE);
g2 <goal, ND> compMission.tl1.Navigate(?_inTeam = TRUE);

With respect to TRF, the class V alue contains a new flag to indicate whether it is primitive or not. This
flag might change for the same value depending on the set of methods provided (known as Knowledge
DataBase orKDB). For example, in the rover example presented in Chapter 3, the user might not define
any method to decompose Traverse, in which case it would be primitive, leaving the responsibility
of its interpretation to the Executive. In case a method such as m_traverse_nominal is defined,
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Traverse becomes complex. To avoid inconsistencies, the preprocessor is in charge of computing the
primitive property for each value of the domain in advance. Another flag mustDecompose is required
to indicate to the planner whether a complex decision dv c (primitive decisions cannot be decomposed)
needs to be decomposed or not (see Section 3.3.2). Because it is not possible to clone a decision in
APSI, in case two different search nodes share the same decision d and one of them modifies it, the
changes will also be reflected in the other node. The implications for HTLN are important, as different
nodes might have different levels of decomposition for the same decision. To solve this problem, this
parameter becomes intrinsic to the DecisionNetwork (DN ). Each network contains a table with the
level of decomposition for all its decisions plus its own decomposition level which is computed every
time a new decision or subnetwork is added according to equation 3.27.

The application layer has also been modified to process the KDB and to use the preprocessor.

4.2.2 Search Space

The SearchNode is the data structure that contains all the relevant information related to a given state of
the world. It is the main unit of information of the search space.

A search node contains a state, which type depends on the type of node. Besides, some bookkeeping
information related to the search process and the state itself is stored:

• Id: Unique identifier of the node.

• Solver: The solver that generated the node.

• Parent: For a given node n expanded in a number of children {ni}, n is the parent of ni.

• Status: A node can be New when it is created as a result of an expansion, Open while it is being
analysed by a solver for expansion or Closed once it has been expanded. Closed nodes do not need
to be re-open in case the search is complete and generates all possible children, as it happens in
QE. For other planners such as AP2 [36], if no solution is found, a backtracking process is required
to go back to a previously closed node, and then re-open and expand it again.

• Solution type: In case it has not been checked whether or not the node is a solution, its type is
NOT_EVALUATED. This is the case of some special nodes such as the first node generated from
the initial state defined in the problem or the node generated after the combination of several
subproblems. Every time a node n is open, it is evaluated whether the node is a SOLUTION. In
case it is not, n is expanded by a solver (Supersolver or Resolver). If n has no children, then it
is a DEAD_END. A solution node ni returned by a resolver can be: A RESOLVER_STEP if it
still requires other resolvers; A PARTIAL_SOLUTION if ni does not require any other resolver
but is just a solution for one of the subproblems in which a higher order problem was divided;
A SOLUTION otherwise. The cycle relating status and solution type for a node is presented in
Figure 4.2.

• Alive children: In case the problem contained in the node n has been divided in several subprob-
lems, this variable indicates how many subproblems are pending to be resolved.

APSI* provides two type of nodes: SimpleSearchNode and SuperSearchNode. Before describing how
they are used, the concept of frontier must be introduced.
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Figure 4.2.: Relation between states and solution types for search nodes in APSI*: Orange: Different sta-
tus of the node; Blue: RESOLV ER_STEP solution type; Red: DEAD_END; Green:
PARTIAL_SOLUTION or SOLUTION

Definition 48 (Frontier) Each timeline has associated a frontier containing two decisions: (1) Last de-
cision of the current state with respect to its temporal ordering; (2) First decision of the goal state with
respect to its temporal ordering. Each timeline might have multiple frontiers, dividing a sequence of tem-
porally ordered goals g1, . . . , gn in n−1 subproblems where the current and goal state of subproblemi

are gi, gi+1 (see Section 4.3.3).

The SimpleSearchNode is used by resolvers. Its state-type is a DN . It also contains a delta DN that
indicates the additional decisions/relations added by the solver plus a frontier 1

The SuperSearchNode is used by the Supersolver. Its state-type is a SearchProblem that contains
an initial and goal SimpleSearchNodes, which represents a major difference respect conventional APSI
planners in which the problem is defined by one single node that contains the facts and goals. Besides,
it contains information required in case the SearchProblem has been divided in several subproblems.

Each solver (Supersolver or Resolver) has associated a search space used to support the search process
as described in Section 2.3.1. A search space typically contains two lists of nodes: the open-list and the
closed-list. The solver peeks a node n from the open-list and expands it, generating a number of children
derived from n by means of some transformation performed by the solver. The children are stored in
the open-list while n is moved to the closed-list. To improve the efficiency during search, most planners
order the open-list according to one or several priority criteria heuristically evaluated. The problem with
priority-queue open-lists is that the queue needs to be sorted every time an element is queued/enqueued,
a process that might be computationally expensive when the number of nodes is large. To avoid this
problem, the open-list is implemented as a two-levels bucket-based priority queue (Figure 4.3). First of
all, it is required to obtain the range of f and g values, named here as {f} and {g} respectively. The
first level of the queue is divided in a number of buckets corresponding to a range of values in {f}, each
one subdivided in another queue with a list of buckets corresponding to a range of values in {g}. The
second level is key to break ties in case two nodes receive the same f -value. APSI* provides two types
of open-lists: single-queue and multi-queue (see Section 4.3.5).

In case there are loopy paths that can lead the search to previously explored nodes, the topology of
the search space is a graph, in which case the closed-list is added to store all the nodes already visited.

1 The frontiers are computed by the class FrontierManager provided by APSI*.
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Figure 4.3.: Two-levels bucket-based priority queue (Courtesy of IBM).

Every new child generated that matches any node in the closed-list is discarded instead of being added
to the open-list. The closed-list does not need to be ordered, therefore the addition/deletion of nodes is
faster. In case there are no loops, the topology is a tree and the closed-list is not required.

The edges of the graph or tree connect a given node n with its successors ni (if any), and contain
information about the modifications done to the parent in order to produce the child.

Example 13 Figure 4.4 illustrates the structure of the open-list. Suppose a problem n decomposed in
two subproblems n1 and n2. The subproblem n1 is later on subdivided in n11 and n12. Once a solution
is found for n11 and n12, they are recombined producing several solutions n1s for the node n1. The
same process is accomplished with n2. Once all the subtasks of n have produced subsolutions, a global
solution ns is extracted.

APSI* provides two different search spaces: the SuperSearchSpace used to store SuperSearchNodes
of the Supersolver and the SimpleSearchSpace which stores SimpleSearchNodes of the resolvers. Both
contain an open and closed list, so they can be used for graph and tree search.

4.2.3 Solvers

Most classical planners have two types of solving algorithms: search algorithms and heuristics. In the
case of TLP, the concept of search algorithm needs to be generalized.

Definition 49 (Solver) A solver in APSI* is an algorithm that, given as input an initial and goal state,
tries to reach the goal from the initial state by means of some internal mechanism.

A solver is endowed with an internal search space to store the intermediate nodes generated during
the process. There are two types of solvers in APSI*: supersolver and resolver. Unlike the search
space package, APSI* does not provide any specific solving algorithm but rather a list of abstract classes
illustrated in Figure 4.5 that needs to be extended to create a new planner.
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Figure 4.4.: Open list structure.

Classical planning consists of one single step, the expansion of a given node by means of all possible
applicable actions to generate a number of children. In TLP however, a number of steps must be inter-
leaved, traditionally including unfolding, scheduling and timeline completion, plus decompositions in
the case of QE. As a consequence, a strategic planner, known as the Supersolver, is required to choose
the next node to be analysed and the resolver to be used. APSI* approach is based on a Producer-
Consumer paradigm where the Supersolver produces new jobs, that is, the nodes in the open-list to be
consumed by different resolvers, each running in a separate thread. APSI* provides the general mecha-
nisms required by the Supersolver to initialize the planner, launch resolvers in new threads and manage
the search space, while QE (see Section 4.3.2) implements an instantiation of the Supersolver class.

The resolver is a type of solver used by the Supersolver to progress in the search. There are four types
of resolvers in APSI*: unfolder, scheduler and decomposer. The results are sent to the Supersolver,
which will be in charge of the analysis.

In terms of heuristics, APSI* just provides some abstract classes to be extended in the concrete
implementation.

Heuristics and solvers can be launched in parallel as independent threads. However, some information
needs to be shared among the resolvers and Supersolver to guarantee an appropriate synchronization,
compiled in a number of thread-safe parameters in the class PlannerSharedInfo. First of all, Planner-
SharedInfo takes care of coordinating the access to the DomainManager of APSI, in charge among other
things of propagating the temporal constraints of the underlying STP network. It also contains a pool of
resolvers and heuristics that can be launched in parallel at any time by the Supersolver2. Other variables
are used to inform the Supersolver every time a resolver finishes.

2 the maximum number of solvers to be run in parallel is configured via a parameter of the planner
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Figure 4.5.: APSI* algorithms class diagram and shared data.

4.3 QuijoteExpress

QuijoteExpress [174, 167, 175] is a planner based on APSI*. The planner is sound and complete for
some configurations of the specific resolvers presented in Section 4.3.3. Nonetheless, it might not be
possible (nor desirable) to guarantee these properties under some circumstances, e.g. when anytime
replanning is required to provide a solution as soon as possible, in which case completeness might be
compromised.

The planner benefits from all features provided by APSI, including the model-based approach, the use
of DDL and PDL languages, which extensions for HTLN were presented in Section 4.2.1, STP reasoning
by means of the temporal network and CSP using the Choco resolver. It also uses the scheduler provided
by AP2, even though some modifications were required (see Sections 4.3.3 and 4.3.3).

Other features of APSI has been disregarded in favour of their counterparts in APSI*, more specifically
the search space, resolvers, heuristics and Supersolver. The novelties presented with respect to other TLP
planners, some derived from the use of HTLN and analysed from a theoretical point of view in Chapter 3,
are briefly listed below and further studied in subsequent sections:
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• HTLN: The planner is based on the formal definition of HTLN planning with the aim of providing
a more expressive language to describe domains and better understandable solutions in the form
of hierarchical plans. Opposite to most HTN planners, QEv2 is based on the construction of
hierarchical structures rather than goals replacement, adding new levels of detail as complex tasks
are refined into subtasks [170] (see Section 3.2.12).

• Sufficient Planning: The planner can generate partially defined plans in order to produce more
robust and versatile solutions as it postpones the need to take some decisions to the moment when
the information is available.

• Parallel Planning: QEv2 can take advantage of modern microprocessors endowed with multi-
threading, multi-core capabilities by running in parallel several resolvers and heuristics to improve
the performance.

• Forward-Chaining in the state-space (see Section 4.3.3): QEv2 is the first heuristic forward-
chaining TLP planner to the best of our knowledge. The aim is twofold: (1) To improve the
performance of the planner and (2) To benefit from the huge amount of research accomplished in
this field.

• Heuristic Planning: Derived from the previous point, QEv2 can exploit classical heuristics such as
Landmarks or PDBs for satisficing and optimal planning in the state-space in opposition to Fewest
Alternative First (FAF) heuristics typically used in TLP planning. The benefits are identical to
those stated above.

Even though some of these aspects have been previously explored for classical planning, they are
certainly innovative in the field of timeline planning. The combination of Sufficient Planning and HTLN
might represent the first steps towards more advanced levels of autonomy (see Tables 1.1 and 4.1).

Level Description Function
E5 Execution of on-board

reconfigurable plans
Allows the mission planner to autonomously modify
the plan, dropping or adding new goals in support of
special needs such as opportunistic science.

Table 4.1.: New Autonomy Level.

The E5 level implies an important change of paradigm in operations: while E4 is based on replanning
a set of given high level goals, E5 gives the planner the capability of generating its own goals and dis-
carding given ones. This technique, named auto-goaling, provides the flexibility required for missions
in which the goals are unknown beforehand.

Regarding HTN planners, even though they present a rich variety of relations and constraints, TLPs
are clearly more expressive in terms of time representation. The approach taken by HTLN, specially the
dual representation of complex goals as networks and decisions (Section 3.2.4) and the way in which
goals are decomposed (Section 4.2) is completely different to other HTN planners such as SIPE-2 [160]
or O-Plan [145].

With respect to temporal planning, there are several planners in the literature (see Section 2.4.4) which
scope is similar to QEv2. From all these planners, only IxTET and ASPEN are endowed with some kind
of HTN capabilities. In the case of IxTET, the task decomposition is just a user programming facility
to build models of complex tasks on the basis of simpler ones [101]. ASPEN is the closer approach to
QEv2, but they present some key differences listed in Table 4.2, being the most important related to the

99



planning and solving strategies. Moreover, while QE keeps the hierarchical relation between decisions
once they are added to the problem network, ASPEN behaves as other conventional HTN planners,
replacing the complex activity by subactivities. QE supports parallel planning based on the analysis of
frontiers while ASPEN does not have parallelism. Finally, both planners can specify that an action does
not need to be decomposed, but QE allows more flexibility, distinguishing between full, sufficient and
not sufficient decompositions.

Search QuijoteExpress ASPEN
Planning Approach State-Space Plan-Space

Solving Strategy Forward-chaining Iterative repair
Hierarchical

representation
Inside the Decision-
Network

Outside the network in
the Activity Database
(ADB)

Parallel planning ! 7

Sufficient planning ! Partially

Table 4.2.: Comparison of QEv2 and ASPEN.

4.3.1 Configuration & Preprocessor

A number of new parameters have been added to configure the solvers and heuristics.

• maxThreadsSolvers: Indicates the maximum number of resolvers of the same type that the
Supersolver can launch in parallel.

• maxNumSolutions: In case a solver finds a number of solutions equal to maxNumSolutions,
it finishes and returns.

• timeOut: Maximum time allocated for the Supersolver to return solutions.

• complete: Configures the solvers to explore all the nodes until maxNumSolutions is reached,
the timeOut is reached or the search space is exhausted.

• decompLevel: Indicates the minimum decomposition level (SUFFICIENT or FULL)
reached by the solutions.

• decomposer, unfolder, scheduler: Specifies the algorithm used for each type of resolver.

• singleEvalPerNode: Even if multiple heuristics are defined, only the heuristic selected by
metaHeur will be evaluated. It should be used to save time required to evaluate heuristics.

• deferredEval: Assign to a child node the heuristic value of the parent. Should be used if heuristic
computation is more expensive than memory space.

• gCorrectionFactor: If deferredEval is used, then the child’s h-value is corrected by subtract-
ing to the parent’s h-value the (mean/specific) g-value of each successor node.

• nextResolver: Specifies the strategy to be used by the Supersolver to select the next resolver.
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• metaHeur: Specifies the heuristic used to select the next-node-heuristic, in case several are de-
fined.

• heurNextNodeUnfolder, heurNextNodeDecomposer: Indicates one or several heuristics
together with their weight to select the next node for the unfolder and decomposer.

The preprocessor is derived from the work done in RoBen [173, 168], a benchmarking tool used to
analyse the complexity of the problems. It is launched before the planning phase to extract knowledge
about the domain and problem in a similar way as [86] does. The purpose of this information is to be
used later on by heuristics and resolvers to speed up search. Specially relevant is the computation of the
temporal transition matrices and the value’s lowest hierarchical level.

Temporal Duration Transition Matrix
For each StateVariable in the domain, the transition temporal durations from each state to the rest

of the same component are calculated. These values are intended to be used by heuristics to estimate
the best path from the initial state towards the goal in a fast way. Therefore, the way to calculate the
transition duration must be optimistic in order to guarantee admissibility. This is achieved by means of
the following assumptions:

• Given a value v which duration is defined as an interval [min,max), the duration assumed is
always the lower bound.

• Given a transition from the value vi to vg which duration is defined as an interval [min,max), the
duration assumed is always the lower bound.

• The instant duration from a value to itself is its minimum duration.

• If a decision is complex, its minimum duration is equal to the minimum timespan among all its
target networks.

The result is a matrix having as columns and rows the list of all the values defined in the domain where
a given cell [vi][vg] indicates the duration from vi to vg.

Decision Lowest Hierarchical Level
As mentioned in Sections 3.2.5 and 3.3.3, all decisions in the domain have associated a hierarchical

level related to the structure defined by means of the methods M in the domain. Algorithm 1 shows how
the hierarchical level is computed.

The algorithm first makes a copy of all primitive values V p ∈ V all of the domain in Vnext. The initial
values (primitives) get assigned a level 0 and then the algorithm enters a loop in which the next level
of values is obtained as follow: Given the current list of values Vnext, all the methods in the domain
which target network contains at least one value v ∈ Vnext is extracted in Mnext. The next hierarchical
level corresponds to the list of reference values v refm of Mnext. The process is repeated until the list of
methods is empty. Unlike for the generation of the causal-graph in planners such as FastDownward, this
algorithm does not need to make any relaxation in the domain to handle loops, as they are avoided in
a natural way following and ascending search using the network-reference organization of the methods,
which is monotonically decreasing in number of values. The hierarchical order is fundamental for the
decomposer to define the order in which complex decisions must be decomposed (see Section 4.3.3).
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Algorithm 1: preprocessor.computeHighestHierarchicalLevel()
begin

next_level← 0
Vnext ← V p

level(vnext)← next_level,∀vnext ∈ Vnext
Mnext ←Mselect

vnext
,∀vnext ∈ Vnext

while (Mnext 6= ∅) do
next_level + 1
Vnext ← v refm ,∀m ∈Mnext

hlevel(vnext)← next_level,∀vnext ∈ Vnext
Mnext ←Mselect

vnext
,∀vnext ∈ Vnext

4.3.2 Supersolver

The strategic solver, hereafter referred to as Supersolver, inherits the basic functionalities provided in
APSI*. It takes care of three fundamental activities: Division/recombination of a problem into subprob-
lems, the solving loop and analyse the outputs of the resolvers.

A Supersolver receives as inputs a SuperSearchNode with an initial and goal state, shared parameters
for synchronization purposes, configuration parameters, a list of one or more heuristics to evaluate the
h-value of supernodes, a heuristic to rate the solutions, an algorithm to choose the next resolver and a
g-evaluation function to determine the cost of the node. It returns a list of solutions sorted according to
the solutions-rating heuristic.

Algorithm 2 presents the solving loop:

Algorithm 2: Supersolver.call()
begin

openList← div ideProblemInSubProblems(problem)
while (¬exitCond()) do

if (pendingResults(sharedInfo)) then
analyseResults()

if (openList.size() > 0) then
node← selectNextNode(openList)
ρ← selectNextResolver(node)
submitSolver(ρ, node, domain)

else if (onGoingJobs(sharedInfo)) then
waitResults()

Initially the Supersolver tries to split the problem into subproblems (see Section 4.3.5), adding the
result to the open-list of the search space and evaluates the exit conditions of the loop which logic is
presented in Equation 4.1.

requestedStop ∨ pendingJobs = 0 ∨ numSolutions >= maxSolutions∨
timeConsumed >= timeOut⇒ exit = >

(4.1)

In case the exit conditions are not satisfied, then it checks whether any resolver has finished, in which
case it analyses the output. Otherwise, in case the open-list is not empty, it heuristically selects the next
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node and a resolver for it and launches the resolver in a new thread. If the open-list is empty, then it waits
until any of the resolvers returns a solution and the loop starts again. There are four fundamental concepts
inside this algorithm: the analyses of the resolver’s output, the division of a problem into subproblems,
the selection of the next resolver and the selection of the next node. The first three are studied next, while
the selection of the next node will be studied in Section 4.3.4.

Selection of a resolver

The order in which resolvers are selected can play a relevant role in the overall performance of the
planner. The strategy used by QEv2 to choose the next resolver is determined by means of an external
algorithm to be specified in the configuration file. The ordering is not totally flexible and depends on the
characteristics of the different resolvers. In the case of QEv2, for example, a limiting factor is the need
to run the scheduler when the decisions are not totally ordered prior to the execution of the unfolder, as
it needs the DecisionNetwork to be totally ordered to extract the frontiers.

Two strategies illustrated in Figure 4.6 and 4.7 have been conceived. Both of them start by verifying
whether the node is a solution, in which case the timeline completer is called. Otherwise, the unfolder is
called. The main difference lies on the next step. Assuming that the problem network is not sufficiently
decomposed, UDS would then call the decomposer, whileUSDS interleaves a scheduling step between
the unfolder and the decomposer. Either way, the scheduler is always run before the next unfolder
execution and the decomposer is only executed if the network is not sufficiently decomposed (SD).

Figure 4.6.: Next resolver strategy - UDS (Unfolder, Decomposer, Scheduler).

Figure 4.7.: Next resolver strategy - USDS (Unfolder, Scheduler, Decomposer, Scheduler).
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Output analysis

Algorithm 3 illustrates how the outputs produced by the resolvers are analysed.

Algorithm 3: Supersolver.analyseOutput()
begin

while (tasksF inished(sharedInfo) > 0) do
ρ← getNextF inished(sharedInfo)
subtask ← getProblem(ρ)
plans← getSolutions(ρ)
freeResolver(sharedInfo, ρ)
if (isDeadEnd(subtask)) then

closedList← subtask

else if (solutionType(subtask) = RESOLV ER_STEP ) then
openList← subtask

else if (solutionType(subtask) = PARTIAL_SOLUTION ) then
openList← extractNewProblem(subtasks)

else if (solutionType(subtask) = SOLUTION ) then
solutions← subtask

The loop iterates through all the jobs finished at the time the function is called. First, the problem
(a subtask represented as a node nsubi containing a dn) and its solutions (a set of plans Πi equally
represented as nodes) are retrieved.

If there is no solution, then the subtask and all its supertasks (if any) are labelled as DEAD_END
and stored in the closed-list. Otherwise, each plan is analysed according to its solution type, which is
defined by the resolver.

Example 14 Continuing with the search space showed in Figure 4.4, Figure 4.8 illustrates how a
DEAD_END node affects the open-list. Suppose that the subtask n11 finds no solution. In conse-
quence, its parents n1 and n will also be labelled as DEAD_END because it is not possible to find a
solution for the supertask if one of the subtasks has none. Moreover, the rest of children of n1 and n will
also be labelled as DEAD_END as it is already known that the supertask does not have any solution.

If the k-th plan πik ∈ Πi is a RESOLV ER_STEP , other resolvers will be still required, therefore
π is stored in the open-list.

In case it is a PARTIAL_SOLUTION , no further resolver is needed but πik needs to be added to
the rest of subplans to create a whole solution. The Supersolver checks then whether all the subtasks nsubi

of the supertask nsuper have been resolved. If it is so, then extractNewProblem(subtasks) combines
all the subtasks into a new node that will be added to the open-list. This new node will require at least an
extra scheduling step before becoming a solution. In case some subtasks are still pending to be resolved,
π is stored in a hash which key is the supertask. Finally, if the type is SOLUTION , it means that nsubi

has no supertask and therefore the plan is stored in the list of solutions.
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Figure 4.8.: Propagation of a DEAD_END subtask up to the supertasks.

Problem division and recombination

Given a problem P containing an initial state stinit formed by a list of facts (typically one per timeline)
and a totally ordered goal state containing zero or more goals for each timeline, the maximum number
of subproblems in which P can be divided is equivalent to the maximum number of goals max_goals
of any timeline in the goal state. The process is better explained with an example.

Example 15 Figure 4.9 presents a problem for a simplified version of the Primary Rover in the FASTER
scenario. In this case, the system is composed of three timelines (Locomotion, Path Planner and An-
tenna), where the yellow boxes represent the initial facts and the white ones goals.

Figure 4.9.: Problem division in subproblems.
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The timelines TLLoc (Locomotion) and TLPRPP (Path Planning) have the maximum number of
goals with a total of two, which is the value assigned to max_goals . In consequence, two frontiers are
generated for the goal state: Frontier1 = {Traverse1, P lanPRPath1, Comm1} and Frontier2 =
{Traverse2, P lanPRPath2}.

The first subproblem P1 has as an initial state all the facts in stinit while the goal state contains the
first frontier, Frontier1. Subsequent subproblem Pi has as facts the goals of Pi−1 and as goals the next
frontier of the goal state, in this case Frontier2. The process iterates max_goals times until the last
goal state frontier is reached.

The unification is simpler. Given max_goals subproblems, the Supersolver will try to solve each
of them. In case it is not possible to find a solution for one Pi, stinit is declared as DEAD_END.
Otherwise, for each subproblem the Supersolver receives a list of one or more subplans and computes
the Cartesian product of all of them. The resulting combination represents the list of children of stinit.

4.3.3 Resolvers

The resolvers are tactical algorithms in contraposition to the strategic approach of the Supersolver. Given
a SuperSearchNode, a resolver tries to evolve the initial state to reach the goal state. For example, in
the case of the unfolder, given an initial decision for a StateVariable component, it tries to find the path
to the goal in the automaton defined by the component, adding the most promising successors to the
DecisionNetwork.

A resolver receives as inputs a SuperSearchNode with an initial and goal state, a number of config-
uration parameters specific to the resolver, a number of parameters for synchronization purposes with
other resolvers running in parallel, a list of heuristics (one or more) to evaluate the h-value of a node, a
meta-heuristic to choose which heuristic to use and a g-evaluation function to determine the cost of the
node. It returns to the Supersolver a list of solutions sorted according to the f -value (g + h) of each
node.

Unfolder

The unfolder is the equivalent of the node expansion algorithm in classical planning. It is the responsible
for one of the main novelties of the planner, the forward-chaining in the state-space search strategy in
opposition to the plan-space iterative repair approach followed by most (if not all) TLP planners such as
AP2. As explained in Sections 2.3.1 and 2.4.2, this approach has demonstrated to be the most successful
for classical planning. Its benefits (presented in Section 2.1) with respect to Partial Order Planning
(POP), can be summarized as: (1) More informed heuristics thanks to the whole definition of the current
state; (2) No need to resolve threats thanks to the early ordering of the decisions. Forward-chaining is
preferred to backward-chaining due to the smaller search tree generated (see Section 2.3.1).

In spite of all the benefits, constructing a linear unfolder presents several difficulties that needed to be
addressed to make it efficient. While most of the problems cited in Section 2.1 were solved in QEv2,
the non-linear nature of temporal problems with parallel actions represents a big challenge that will be
further analysed at the end of this section.

Forward-chaining is just a strategy that can use any of the algorithms presented in Section 2.4.1.
QuijoteExpress’ unfolder is based on A* because of its nice properties: it is complete and optimally
efficient when used with consistent heuristics. As the space complexity of A* is worst than its time
complexity, a variant called SMA (Simplified Memory-bounded A*) can be used in case computing
resources are scarce, for example when executed in the on-board computer of a robot.
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When the unfolder is called by the Supersolver, it receives a number of inputs (listed above)including
an initial and goal nodes. The initial node is stored in the open-list of the search space and search begins
as shown in Algorithm 4.

Algorithm 4: unfolder.call()
begin

while (¬exitCond()) do
node← selectNextNode(openList)
if (hasNode(closedList, node)) then

continue

if (isSolution(node)) then
if (Frontiersgs == 1) then

solutionType(node)← PARTIAL_SOLUTION

else if (Frontiersgs > 1) then
solutionType(node)← RESOLV ER_STEP

solutions← node

else
successors← getSuccessors(node, goal)
if (successors = ∅) then

solutionType(node)← DEAD_END

else
solutionType(node)← RESOLV ER_STEP
solutions← successors
closedList← node

First of all, the algorithm checks the exit conditions, which are equal to those of the Supersolver
described in Equation 4.1.

In case no exit condition is met, the algorithm gets the next node of the open-list (typically the one
with lower cost), which becomes the current node ncurrent and checks by means of isSolution(node)
whether ncurrent is already a solution. The current/initial state stcurrent associated to a node n
is a solution if the goal state stgoal of the node is empty. In this case, the node is labelled as
PARTIAL_SOLUTION and stored in the list of solutions.

If the current node ncurrent is not a solution, the list of successors from stcurrent towards stgoal is
extracted. If there are no successors, ncurrent is a DEAD_END. Otherwise, the successors are stored
as RESOLV ER_STEP s in the solutions list and the algorithm returns.

Example 16 Continuing with the Primary Rover scenario presented in the previous example, Fig-
ure 4.10 shows that the current state3 has been expanded, being its latest frontier Frontiercurrent =
{Traverse, P lanPRPath, Comm}. On the other hand, the earliest frontier of stgoal isFrontiergs_1 =
{Traverse1, P lanPRPath1, Comm1}. In case CanUnify(Traverse, Traverse1) = > ∧
CanUnify(PlanPRPath, P lanPRPath1) = > ∧ CanUnify(Comm,Comm1) = >, the ex-
panded current state is a solution for Frontiergs_1. As stgoal still has more frontiers, stcurrent solving
type is labelled as RESOLV ER_STEP .

Regarding getSuccessors(node, goal), given the current state stcurrent, the algorithm gets first a
list of all the timelines having a goal in the goal state stgoal. For each of these timelines tl, the latest
3 At the beginning, initial and current states are equal
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Figure 4.10.: Example of a matching frontier.

frontier in stcurrent named dtlifront and the earliest frontier in stgoal referred to as dtlgfront_1 are extracted.
These two values correspond to the initial and goal state for which the method must find a path in the
associated component automaton. The unfolder uses an A* algorithm to search an optimal path until one
of the following conditions is met:

• If the current successor dtlsucc is unifiable with the decision of the timeline frontier in the goal state
dtlgfront_1 (see Section 4.2.2), then the goal has been reached.

• The whole search space is exhausted and the goal is not reached.

• A non-deterministic decision is reached. A successor dtlsucc of the decision dpred is considered non-
deterministic if: (1) The number of successors of dtlpred is larger than one; (2) dtlsucc is a complex
decision or the reference of a synchronization.

Having generated for each timeline different lists of successors dtlsucc_i, one for each possibility of
the non-deterministic step, the Cartesian product of the lists of successors of the different timelines will
represent the list of solutions found.

Example 17 Given the initial and goal states shown in Figure 4.11, the unfolder needs to search suc-
cessors just for the first two timelines (Locomotion and Path Planning), as the third (Antenna) does not
have goals.

Figure 4.11.: Selection of timelines for which the unfolder needs to search successors.

In the left hand of Figure 4.12, the automaton for the component Locomotion is represented. The
initial state frontier dLocifront is labelled as I and the earliest goal frontier dLocgfront_1 as G. The algorithm
returns the two possible paths connecting I and G ordered according to their cost, which has been
heuristically evaluated. For example, if each edge has a unitary cost, the first path costs 3 units while
the second costs 2.
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Figure 4.12.: Path search based on an A* algorithm for a StateVariable component.

The list of successors will be extracted by combining these two solutions with the solutions obtained
for the PathP lanning timeline.

Once the concepts behind the unfolder have been presented, it is possible to explain the problem
derived from the (non-linear) nature of the dependencies generated by the decompositions and synchro-
nizations. When a resolver ρδ decomposes a complex decision dc in a subnetwork dnd, the subnetwork
will typically contain decisions and constraints belonging to different components. In order to make the
planner complete, the scheduler must search all possible orderings for each decision dtl ∈ dnd. In case
dtl can be placed between the initial decision dtlinit and the frontier of the timeline dtlfinit, all the decisions
between dtl and the initial frontier will not be valid anymore. As a consequence, the heuristics cannot be
admissible as the h − value representing the distance to the goal will necessarily increase. Therefore,
A* will not be optimal between different runs in terms of node expansions.

Decomposer

The decomposer is the equivalent of the task reduction algorithm in HTN. This resolver is the responsible
for the second novelty of this planner which is the decomposition of complex decisions in subdecisions
according to the HTLN formalism.

With the inclusion of HTN capabilities in a TLP planner, the planning process can be analysed from
two different dimensions:

• Horizontal (Temporal): Ordering of the decisions of the plan in the timeline.

• Vertical (Granularity): Decomposition of the decisions up to a certain level of detail.

The horizontal dimension is well defined by the interval H = [t0, tH) from the starting point to the
horizon. However, the level of granularity is not that clear. The planner can only plan down to the
maximum level of detail at which the model has been defined. The executive will be then in charge
of translating the actions of the plan to the appropriate low-level functions executable by the different
subsystems. Planning to the lowest level is often undesirable because of the resulting combinatorics of
deep search. Furthermore, planning should be limited down to abstraction levels at which actions can be
reasoned ahead on time.

When the decomposer ρδ is called by the Supersolver, it receives a number of inputs including an
initial and goal nodes. The initial state, which contains at least one complex decision dv c , is stored in
the open-list of the search space and the decomposition process starts as described in Algorithm 5.
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Algorithm 5: decomposer.call()
begin

while (¬exitCond()) do
node← selectNextNode(openList)
if (hasNode(closedList, node)) then

continue

if (isSolution(node)) then
solutionType(node)← PARTIAL_SOLUTION
solutions← node

else
successors← decompose(node)
if (successors = ∅) then

solutionType(node)← DEAD_END

else
solutionType(node)← RESOLV ER_STEP
solutions← successors
closedList← node

The main structure of the algorithm is the same as for the unfolder. In the decomposer however, the
function isSolution is different as it uses decompose(node) instead of getSuccessors(node, goal).
isSolution returns true in case the level of decomposition of the DecisionNetwork in the state

stcurrent associated to the node ncurrent is equal or higher than the minimum level of decomposition
defined in the configuration file, which can be PARTIAL or FULL4

The function decompose(node) follows the principles defined for the Decomposition resolver ρδ in
Section 3.2.12. It is based on a recursive approach that alternates two functions, decomposeNet and
decomposeDec, in charge of decomposing a decision network and complex goal respectively. The first
one just checks if the network is NOT_SUFFICIENTLY decomposed, in which case it calls the
function decomposeDec for each of the complex decisions dv c in the network. In case dv c cannot be
unified with any method m ∈ M , the node is a DEAD_END. Otherwise, there are two possibilities:
(1) There is one single unifiable method: The step is deterministic, therefore the instantiated network
θdnd is generated and further decomposed; (2) There is more than one unifiable method: The step is
non-deterministic, therefore an instantiated network θdndi for each method mi is generated (later on
used to generate the Cartesian product) and the process finishes. The algorithm is sound and complete
as demonstrated in Section 3.3.1. The pseudocode is represented in Algorithm 6.

As explained in the previous section, the subnetwork dnd obtained from a decomposition or synchro-
nization does not need to have a linear ordering. Therefore, the frontiers need to be recalculated in the
scheduling step, once the scheduler has ordered all decisions of dnd in the problem network dn.

Scheduler

QuijoteExpress uses a modification of the scheduler of AP2, based on the algorithms presented in [37]
which is sound but not complete.

4 Obviously, a DN which is NOT_SUFFICIENTLY decomposed does not represent a solution.
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Algorithm 6: decomposer.decomposeDec()
begin

if (getDecLevel(decision) == NOT_SUFFICIENTLY ) then
methods← getDecompositions(Domain)
if (methods = ∅) then

solutionType(node)← DEAD_END
closedList← node

else
if (|methods| = 1) then

decomposeNet(θdnd)
else

decomposeNet(θdndi),∀dndi = θ(dv c ,mi)

The scheduler has been adapted to be thread-safe by means of a wrapper that implements a solving
function similar to those showed for the unfolder and decomposer. This modification allows the super-
solver to launch the scheduler in an independent thread which might be running in parallel with other
resolvers. In addition, it has been configured to order the decisions of the current and goal states and
update the frontiers.

Timeline Completer

As a side effect of the forward-chaining approach followed by the unfolder, no gaps are left in the
timeline completer. In consequence, its duties are reduced to extract the timelines, which represent a
particular solution of the multiple allowed by the decision network and the structure used by SanchoEx-
press for execution.

4.3.4 Heuristics

The change of paradigm from plan-space to state-space provides some advantages from the point of view
of the heuristics:

• Allows to incorporate classical heuristics such as Landmarks or PDBs.

• The states are fully defined which makes easier to create more informed heuristics.

The heuristics should fulfil the following properties in order to be useful in the scenarios of interest
identified in Chapter 1:

• (Mandatory) Safe Pruning: It is a necessary condition to achieve completeness. Non-safe heuristics
might be required for certain problems, in which case it should be clearly stated.

• (Mandatory for optimal planning) Strongly Safe Pruning: In case the concept of optimality is
defined for the problem at hand, for example by means of a function that evaluates the cost of each
node, then strongly safe heuristics must be provided.

• (Mandatory for optimal planning) Admissible heuristics: Admissible heuristics guarantee that the
search process expands the minimum number of nodes possible and that the best solution obtained
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is the optimal one. It might be hard to achieve if the concept of distance to the goal or cost is not
well defined.

QEv2 requires two groups of heuristics: MetaHeuristics, in charge of selecting other heuristics and
heuristics to select the next node to analyse. An appropriate selection of the heuristics is fundamental,
as they have a great impact on the performance of the planner. For example, in the IPC many planners
which shared the same core but used different heuristics such as the family of FastDownward and Lama,
showed important differences. Implementation of advanced heuristics represents a complex task outside
the scope of this thesis. However, APSI* has been developed having in mind the integration of modern
heuristics to the planner in the future.

MetaHeuristic
In case a multi-queue approach (see Section 4.3.5) is used to evaluate a node with several heuristics,

some kind of policy, here called meta-heuristic, is required to choose the queue from which the next
node to be expanded should be extracted. This schema can be further modified by assigning numerical
priorities to each queue and using some queues more often than others [129].

The combination of the meta-heuristic and multi-queue are intended to exploit the strengths of dif-
ferent heuristics to improve the planner performance. This research field has not been explored in
depth yet, even for classical planning. However, different meta-heuristics have been suggested such
as those based on arithmetic operators (maximum, addition, etc.), Pareto-optimal or Alternation [131].
The meta-heuristics provided with QE are:

• mhmax: Selects among all the queues the node having the maximum h-value (see Section 2.4.1).
When used with admissible heuristics, the resulting heuristic dominates all individual ones and
usually requires fewer state evaluations to solve a task, having shown a very good performance in
optimal planning.

• mhalt: Alternates sequentially between the different queues. It has shown good performance in
satisficing planning.

Next Node Heuristic
The development of heuristic estimators for optimal/satisficing classical domain-independent planning

represents one of the most active research fields in planning. Heuristics can be classified into one of the
following four groups: delete relaxations, critical paths, abstractions, and most recently, landmarks [87].

The scenario looks radically different in applied planning. While generic heuristics as those men-
tioned above are not so relevant, the use of knowledge to control search has been consistently used with
great success as indicated in Section 2.1, which in turn has not received that much attention from the
classical community, in part because it is specific to each problem and does not represent a good, gen-
eral approach to compare different algorithms from a research point of view. However, this situation has
changed with the appearance of landmark heuristics [92, 97, 87]. Landmarks present some similarities to
HTN methods, as both contain information about elements (whatever an element is in the corresponding
formalism) that a given plan should satisfy to achieve some goal.

The best strategy used by QE to prune the search space is actually not a heuristic, but the use of HTN
methods [170]. Besides, two heuristics have been conceived for the unfolder in order to choose the next
node to expand:

• Least constrained value: The heuristic value assigned to the node corresponds to the addition of the
minimal number of assertions among all the synchronizations and decompositions of the domain
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for which each decision of the DecisionNetwork is a reference. The heuristic is not admissible, as
it disregards the fact that some of these assertions might be already satisfied in the current network.

• Temporal distance: Estimates the minimal temporal distance from each decision in the frontier of
the current node to the first frontier of the goal node according to the values precomputed for each
component by the preprocessor. This heuristic is admissible.

4.3.5 Search Enhancements

Parallel Planning

Running several algorithms in parallel represents an important boost in the performance of any system.
Three sources of parallelism have been identified in QE: (1) Dividing the problem according to the
temporal organization of the goals in frontiers; (2) Run in parallel resolvers for different child nodes
and multiple heuristic evaluations for a given node; (3) Dividing the problem according to its graph
connected components.

From these three options, the first and third imply the division of the plan into subplans with the
corresponding overhead related to the synchronization and further recombination of the subparts. In the
specific case of APSI there is one additional problem: APSI has one single STN, which is stored in the
DomainManager, forcing the scheduler to compute the whole STN for every new node. In consequence,
two schedulers cannot be used at the same time in APSI (Section 4.4 present some ideas to mitigate this
problem). The second type of parallelism could be used at no extra-cost because there is no dependency
between different child nodes or between different heuristic evaluations for the same node. QE exploits
the first two options.

Before the planning phase starts, the Supersolver attempts to divide the problem into subproblems
with respect to the frontiers (see Section 4.2.2 for its definition and 4.3.3 for its extraction process),
which are then resolved in parallel. Even though this process has been limited so far, the division of a
problem could be further exploited inside the main loop of the Supersolver after every execution of the
unfolder or decomposer. If the result is optimal for every subnetwork dnsub, the overall solution will
also be optimal [170].

With respect to the second type, during planning the Supersolver is able to launch a new resolver for
each successor obtained from the expansion of a node for each of the subproblems (in case the problem
is divided). Moreover, it can launch in parallel several heuristics to evaluate a node in case the multi-
queue approach is selected. Suppose a problem has been divided into m subproblems, that the average
branching factor for a node is b and that the number of next-node heuristics is n. QE could be able in its
most powerful configuration to run m× b× n parallel threads.

Sufficient Planning

The traditional definition of complete, valid plan requires a full specification and ordering of all the
activities, with all the variables grounded and all constraints satisfied. However, this is an unnecessarily
restrictive definition. In many situations with high levels of uncertainty such as those faced by rescue
robots or Mars rovers (see the example in Section 4.2.1), the information required to define an activity
that lies inside the planning horizon might still not be available, yet it is required to generate a valid plan.
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In other cases, it might be desirable to allow the executive to complete the unspecified parts of the plan
(see the issues related to plan granularity in Section 4.3.3).

To solve this problem the concept of sufficient planning, theoretically described in Section 3.3.2,
has been introduced with the aim to handle uncertainty and create more robust plans by decreasing the
number of assumptions needed to be taken at the moment the plan is first generated.

QE achieves sufficient planning thanks to the combination of HTLN (more specifically the concept
of complex and primitive values) and some additional information added to the desired complex goals
in the problem description by means of the label ND. This label is used to tell the decomposer which
decisions do not need to be further decomposed as previously explained in Section 4.2.1.

Deferred Heuristic Evaluation

Upon expansion of a state s, informed algorithms such as Greedy best-first or A* compute the heuristic
evaluation of all s successors and sorts them into the open- list. This can be wasteful if the search space
presents a big branching factor and the evaluation of the heuristics is computationally expensive, two
conditions that are often true for heuristic search approaches to planning.

With deferred heuristic evaluation, once a state s is removed from the open-list for expansion, its
heuristic value is calculated and assigned to all its successors with the resulting decrease in the number
of heuristic evaluations. However, this technique usually increases the node expansions and therefore,
has higher space requirements compared to standard best-first search because the heuristics are less
informative. Nonetheless, heuristic evaluations are usually so costly in time (they make up 80% of the
runtime in Fast Downward [129]) that memory is not a limiting factor.

This technique, borrowed from the FastDownward planner [86], has demonstrated that it can improve
search performance, especially in problems where branching factors are large and the heuristic estimate
is informative [126]. QE applies deferred heuristic evaluation in both the Supersolver and resolver.

Multi-queue

This technique has been also inspired in classical planning [86, 131, 128].
Nowadays a wide range of heuristics is available, none of which consistently outperforms the others.

In this approach, the open-list is divided in several queues, each associated to one heuristic. Each new
state is evaluated with respect to all heuristics and added to all the open-list queues, in each case with its
corresponding heuristic value. When a new node is required for expansion, the search algorithm selects
the most promising node (the head) from the queue selected by the meta-heuristic, deleting the node
from the rest of queues.

This approach is ideal for QE as it can evaluate all heuristics at virtually no extra temporal cost thanks
to its parallel approach. Because the evaluation of each heuristic is independent from the rest, there is no
overhead due to synchronization activities as it happens in the division of a problem and recombination
of subproblems.

Moreover, in case the heuristics used are computationally expensive and parallel planning is not used,
another approach of QE called Single Evaluation Multi Heuristic offers the possibility to alternatively
evaluate just one of the heuristics, which selection is also based on the meta-heuristic, in which case the
open-list contains just one queue.
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4.4 Evaluation

4.4.1 Testing QEv1

In [167], the performance of QuijoteExpress based on a flaw-repair approach and AP2 planners were
compared against two synthetic rover domains (see Table 4.3 for a comparison of their properties).

The first domain, called RD-C (Rover Domain Complex) fully represents the model presented in
Figures 4.13 and 4.14. The second one named RD-S (Rover Domain Simple) has removed a level
of decompositions, as Driv ing is directly decomposed in the primitive tasks without the Blind and
Autonav intermediate layer. Moreover, theNav igation andDriller components have been removed.
Further details are provided in [167]. Each of these models have been defined in a hierarchical and
flattened style in order to compare QEv2 and AP2. The modifications included the translation of the
decompositions as synchronizations, which have similar semantics, while no additional constraints have
been required.

Figure 4.13.: Hierarchical rover model.

Property RD-C RD-S
Number of timelines 9 7
Total number states 27 19

Number decompositions 4 2
Number synchronizations 14 6

Table 4.3.: Properties of synthetic rover domains for QEv1.
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Figure 4.14.: Knowledge database associated to the synthetic rover domains to evaluate QEv1.

A total of 7 problems named Problem-1 to Problem-7 with increasing level of complexity were cre-
ated. Each problem Problem-x contains a list of facts defining the initial state for each component and
x high-level goals, i.e. goals from the Master component. A simplified instantiation of Problem-4 for
the domain RD-C is shown below.

PROBLEM Rover-Problem (DOMAIN Rover_Domain){
f1 <fact> Locomotion.At(?x=0, ?y=0);
f2 <fact> Mast.PointingAt(?pan=0, ?tilt=0);
f3 <fact> Camera.CamIdle();
f4 <fact> Driller.DrillIdle();
f5 <fact> Planner.PlannerIdle();
f6 <fact> Antenna.CommIdle();
f7 <fact> Navigation.NavIdle();
f8 <fact> Master.Idle();

f9 <fact> CommWindow.Visible() AT [0,5];
f10 <fact> CommWindow.Visible() AT [40,80];

g1 <goal> Master.Drive(?x=1, ?y=1, ?trav=easy);
g2 <goal> Master.Pic(?x=1,?y=1,?pan=2,?tilt=2);
g3 <goal> Master.Drill(?x=1, ?y=1, ?depth=1);
g4 <goal> Master.Drive(?x=4, ?y=4, ?trav=hard);

g1 BEFORE [1,+INF] g2;
g2 BEFORE [1,+INF] g3;
g3 BEFORE [1,+INF] g4;

Most of the parameters in the decisions of the domain are self-explanatory with the exception of ?trav
in the goal Drive, which describes the type of terrain and is used at planning time to decide the type
of navigation the rover should do. Few modifications were required to create similar problems for the
RD-S domain. Drilling activities are replaced by TakingP icture and facts f4 and f6 were removed
from the initial state.

Both planners have been configured to search for all possible solutions. Completeness can be achieved
by the unfolder and decomposer, but it is not possible for the the scheduler provided by APSI. Addition-
ally, QE was configured to run in single thread mode, with single heuristic evaluation (blind heuristic) and
with FULLY decomposition mode, that is, even those goals indicated to be partially decomposed in the
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problem would be in the end finally decomposed, increasing the work load not only for the decomposer,
but also for the unfolder and scheduler.

The tests have been run in an Intel Core i5 M540 at 2.53 GHz computer with 3 GB RAM and Win-
dows 7 Enterprise 32 bits. To understand the level of impact of the different decomposition methods in
the performance, both QEv1 and AP2 were configured to choose randomly the decomposition/synchro-
nizations to apply. Notice that for the rover domain, the decomposition of a Driv ing goal as Autonav
impose way more constraints than Blind.

For each run, several parameters were recorded, including the time required to find the first solution
and the number of nodes/edges in the solution network. The results comparing QEv1 and AP2 are shown
in Figures 4.15-4.18.

Figure 4.15.: Performance of QEv1 and AP2 in RD − C .

Figure 4.16.: Performance of QEv1 and AP2 in RD − S.

In the first domain, RD-C, AP2 starts to have problems to find solutions even with very simple prob-
lems due to the big branching factor experienced during scheduling. AP2 has to branch for all possible
disjunctive synchronizations and then unfold supporting actions and schedule them. On the other hand,
QEv1 uses the decomposer to find an appropriate method and directly insert it as a sub-plan in the
decision network, decreasing the number of calls to the unfolder and specially to the scheduler.

In the second scenario, AP2 managed to solve up to Problem-5. As the problem complexity grows,
the number of edges increments notoriously faster than the number of nodes. In addition, QEv1 consis-
tently generate less edges than AP2. These two facts are crucial to understand the degradation in AP2

performance: AP2 uses an all-pairs shortest path algorithm to propagate the temporal network which
time complexity is quadratic to the number of time points when new constraints are added. It is also
interesting to remark that the peak in time does not come with the second Driv ing activity, which im-
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Figure 4.17.: Number of nodes generated by QEv1 and AP2 in RD − C .

Figure 4.18.: Number of nodes generated by QEv1 and AP2 in RD − S.

poses itself a number of subtasks and subrelations, but with the next activity which is TakingP icture.
The reason is that after the second Driv ing, the planners (unfolder and scheduler) need to do a lot of
processing to insert TakingP icture and unify some of its parameters. The same effect can be seen in
the first scenario with QEv1.

4.4.2 Testing QEv2

AP2 has been also compared with the new version based on forward-chaining. A variant of RD-S (see
Table 4.4) with just three components and one single decomposition has been used to maximize the
iteration between different resolvers.

The problems from the previous experiment have been adapted to the new model. Two sets with
increasing complexity have been created: one having all goals fully ordered by f beforetemp constraints and
the other without any ordering.

Property RD-B
Number of timelines 2
Total number states 5

Number decompositions 2
Number synchronizations 0

Table 4.4.: Properties of the synthetic rover domain for QEv2.
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The target of these tests is to evaluate the performance of the forward-chaining and parallel planning
approach. Evaluation of other enhanced features such as deferred heuristic evaluation and multi-queue
heuristic evaluation heavily depend on the heuristics used and fall outside the scope of this thesis. How-
ever, taking into consideration that the unfolder and decomposer follow the same approach than most
classical planners, previous studies such as [87] or [128] could shed light on the positive impact of
advanced heuristics on the performance of QuijoteExpress.

The planners have been configured to return the first solution. QuijoteExpress has been tested in
single-thread (labelled QE-ST in the graphs) and multi-thread (labelled as QE-MT ), in both cases with
multiple blind heuristics running in a multi-queue configuration. Configuring QE in multi-threading also
implies the division of the problem in subproblems, activity performed by the preprocessor prior to the
process of planning. The search time was limited to 180 seconds and the level of decomposition forced
to FULLY . The computer was the same used in the previous test.

Figures 4.19 and 4.20 presents the results of total order and partial order plans respectively.

Figure 4.19.: Performance of QEv2 and AP2 in Totally Ordered Problems.

Figure 4.20.: Performance of QEv2 and AP2 in Partially Ordered Problems.

As explained in the previous experiment, the difference in the performance of the planners with the
two sets is due to the time required to propagate the temporal network. Providing a total order among the
goals greatly restricts the possible solutions and therefore the effort required by the scheduler. Specially
significant is the case of QE, which required almost constant time to solve the totally ordered problems
but required a considerable time to solve problems 7 and 8 of the partially ordered set (1 second vs. 30
seconds in the last problem).

QEv2 shows better performance than QEv1, increasing the distance with respect to AP2. The impact
of multi-threading is neligible due to the low impact of the unfolder in the overall computational time
as indicated by the statistics extracted with a profiler (see Figure 4.21). To understand the effect of
multi-threading, a time delay of 100 milliseconds was placed in the function of the unfolder in charge
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of generating the successors. The intention was to simulate a deeper search originated by complex
automata. The percentage of CPU usage by the unfolder climbed from 1.2% to 2.7% while the time
required to solve Problem − 5 was 21 seconds for the single-thread version and 14 for the multi-
thread. The benefit of multi-threading would be more relevant in highly complex scenarios, provided
that APSI had a parallelizable scheduler (see Section 4.3.5). To overcome this limitation, the unfolder
and scheduler could be integrated taking advantage of the forward-chaining approach. To do that, the
scheduler should be re-designed to perform incremental schedules as individual actions are sequentially
added to each timeline by the unfolder, strategy that has been already used by OPTIC, one of the best
PDDL temporal planners available nowadays[10].

Figure 4.21.: CPU usage by QEv2 resolvers.

Another consequence of parallelism, more specifically from the division of the problem in sub-
problems, is that the size of the search space decreases because the size of several small problems
(the subtasks) is smaller than the size of a single big problem. This effect can be easily appreciated
in Tables 4.5 and 4.6: QE-MT consistently creates less nodes and evaluates less heuristics than the
single-threaded version.

The comparison of the complexity of the solutions generated from divided/non-divided problems is
however inconclusive. On the one hand, divided problems consistently produce, as expected, solutions
with less decisions because different goals in non-divided problems can use the same supporting activity
while in a divided problem the supporting activity will have to be duplicated. On the other hand, no
approach dominates in terms of number of edges, something that has not been fully understood and
would require further research.

#Goals #Solutions #Nodes Created #Heuristics Decisions in Sol. Edges in Sol.
3 2 50 101 7 9
4 3 162 330 9 19
5 4 412 842 11 26
6 5 890 1820 13 31
7 6 1710 3495 15 36
8 7 3010 6146 17 42
9 8 4952 10100 19 50

10 9 7722 15732 21 58

Table 4.5.: Results of QEv2-ST for Partial Ordered Problems.
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#Goals #Solutions #Nodes Created #Heuristics Decisions in Sol. Edges in Sol.
3 2 62 123 7 10
4 3 162 339 10 18
5 4 385 792 11 27
6 4 722 1507 14 32
7 5 1333 2814 16 37
8 5 2168 4695 18 43
9 7 2255 4750 20 47

10 4 2627 5499 24 54

Table 4.6.: Results of QEv2-MT for Partial Ordered Problems.

4.5 Conclusions

QuijoteExpress is a HTLN temporal planner that incorporates multiple novelties:

• Effective combination of forward-chaining, HTN and TLP planning techniques used in the un-
folder, decomposer and scheduler resolvers respectively.

• Use of sufficient planning to produce partial, valid plans in scenarios with high levels of uncertainty.

• Parallel planning capabilities to improve performance.

• The possibility of exploiting classical planning heuristics.

All these novelties make QuijoteExpress notoriously different from any other planner. In classical
planning, POPF2 [50, 51] and specially OPTIC [10] incorporated temporal reasoning to a PPDL planner
based on a POP approach, while ASPEN [42] is the only planner in use nowadays based on Timeline
planning using HTN.

Even with poor heuristics, the results provided were better than expected, showing a big improvement
with respect to previous APSI-based planners as shown in Section 4.4. The tests ran with the planner
provided important lessons learnt:

• Better performance: The capability of HTN planners to reduce the branching factor and therefore
the size of the search space is crucial to understand the great benefit in terms of performance.

• HTN represents an overhead during the modelling process: The design and validation/verification
of the models implemented (hierarchical and non-hierarchical) was tedious and error prone. This
fact is particularly relevant in HTN, where the model can present hidden constraints/dependencies
between elements in different levels of abstractions. In consequence, it will be crucial in the future
to develop new tools able to assist during the construction of complex models.

• Debugging and understanding the output of the planner is very difficult for a non-expert: HTN
plays an important role in these two aspects. During the runs with the hierarchical model, it was
possible to identify failing conditions just by observing the high-level goals and their relations.
It would have taken much more time in case a flat model had being used. In the same way, it is
easier for the user to understand the plan by examining only the timelines related with complex
components.
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• Modern domain description languages are not expressive enough: Even temporal-oriented mod-
elling languages such as DDL impose several restrictions. Extending expressiveness or moving
towards the use of standard programming languages, as it happens with SMACH for ROS, will be
required to construct realistic models.

• It is important to provide tools that allow users to represent knowledge: Domain-dependent knowl-
edge (HTN methods in the case of QuijoteExpress) must be contained in dedicated structures to
improve the system reusability.

• General vs. dedicated heuristics: The use of general heuristics such as method timespan, number
of complex tasks, etc. are not appropriate because the selection depends on the same specific
knowledge contained in the method. For example, in the FASTER domain, the selection between
the different type of traverses rely on the knowledge represented in the methods.
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5 SanchoExpress: Flexible Execution with FDIR Capabilities

This chapter focuses on the reactive part of the architecture, more specifically on SanchoExpress (SE), an
executive that performs dispatching and monitoring of the commands that constitute the plan calculated
by QE. Besides SE, a robotic architecture named QEA (QuijoteExpress Architecture) was developed.
QEA includes a number of components such as RobCon, platform-dependent executives, communication
services, data types or visualization tools, some of which will be also presented. The following section
introduces the 3-tier architecture where the planner, executive and rest of components are situated in
place. Next, the different components (with the exception of the mission planner previously presented)
are individually analysed and finally a number of conclusions related to plan execution are extracted.

5.1 Architecture

To cope with the need for continuous modifications/repairs of the plan intrinsic to robotic operations
in the reference scenarios, the deliberative and reactive layers must be tightly coupled. Achieving it
in QEA proved to be challenging due to low-level implementation issues between APSI and ROS. The
plans produced by QE need to be translated to ROS messages and the other way around for execution and
replanning respectively. The additional latency added to the system by this intermediate step is however
negligible compared to the reaction time of the (re)planner.

The final design of QEA, as illustrated in Figure 5.1, is a 3-tier architecture where the planner and
executive closely interact in an agile manner.

Figure 5.1.: Three layers architecture with QE and SE.

In the deliberative layer, QE is in charge of generating and repairing the plan. In the reactive, SE
performs dispatching and monitoring while in the functional, the Dedicated Executives implement
platform-dependent low level functions. To coordinate the actions of the user, planner and executive,
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an additional component called RobCon (Robot Controller) has been implemented, which functionality
extends along the deliberative and reactive layers.

In order to use the architecture with a new robot, the user would need to define a new formal do-
main and new problems (the inputs of the planner), while the dedicated executives are the only piece of
software that is needed to be replaced.

The flexibility offered by ROS in terms of communications and connection of nodes allows to eas-
ily modify this architecture depending on the needs of the specific project as illustrated with the two
examples provided in this thesis (Figures 5.2 and 6.13).

The first image illustrates an architecture for multiple robots with on-board replanning capabilities.
In this example, ground segments consists of a high level deliberative layer which combine users and

the on-ground mission planner, and one instantiation of RobCon.
Ground segment connects with the on-board systems via RobCon, which offers high level functional-

ities such as uplink plan, start/pause/resume execution, get status, etc.
On-board, each robot has a local replanner and executive connected via a local RobCon, which also

helps to synchronize activities between the robots.
Communications between components are organised as follows:

• User↔ RobCon: The user only interacts with RobCon to request a planning or execution decision.
RobCon itself can ask the user to redefine the inputs in case of failure at execution time.

• Planner↔ RobCon: RobCon can request planning or replanning actions to the planner while the
planner only interacts with RobCon to send the results of the planning activity (either a valid plan
or failure). In the first case, depending on the level of autonomy, RobCon will proceed to execute
the plan at due time (E4) or it will send back the result to the user (<E4), who is in charge of later
commanding the execution. In case of failure, the user will be informed.

• RobCon ↔ Generic Executive: RobCon can request the start or stop of the execution while the
executive sends back to RobCon an updated version of the plan once the execution is interrupted.

• Generic Executive ↔ Dedicated Executive: Every time a command belonging to a timeline tl
is due to be dispatched, SanchoExpress checks in a database to which dedicated executive tl it
belongs and sends the command. The dedicated executive will try to execute the commands at due
time, reporting back the result of the execution.

Generally speaking, commands and plans flows downstream, from the deliberative to the functinal
layer, while observations (updates in the plans and commands) flow upstream.

The life cycle of a plan on-board is presented in Figure 5.3. The first state only indicates a new request
to generate a plan. The data (initial state, goals, etc) is stored by RobCon in a queue and waits for the
planner. Once it is planned, it is sent for execution. Both planning and execution can be successfully
finish, being cancelled, or produce a failure. In this last case, the error will be managed in different ways
depending on the level of autonomy as explained in Section 5.2.2.

5.2 Components

Next subsections presents in detail the most relevant components of the QEA architecture.
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Figure 5.2.: Multi-rover architecture with replanning capabilities. Each box is a ROS node: Blue boxes
represent deliberative components, green reactive and grey functional. The orange boxes on
top of the arrows indicate service calls.

5.2.1 User

The higher component in the architecture is the user which is in charge of generating the following
inputs: (1) Model of the domain; (2) Problem definition; (3) Configuration of the planner and executive
(see Chapter 4). The user has the highest priority to start/stop planning and execution.
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Figure 5.3.: Life cycle of a plan.

5.2.2 RobCon

RobCon (Robot Controller) is the next component in terms of priority. It coordinates the collaboration
between user, planner and executive according to the level of autonomy defined on-ground and on-board.

RobCon is implemented as a server running an infinite loop, waiting for planning or execution calls
from its clients (users or other RobCon). It is also a client posting requests on the planner and executive.
The services offered by RobCon are: plan_execute(goal) and cancel_execution(goal).
plan_execute receives as input a goal which format is showed in Table 5.1 and stores it in a FIFO

queue, even though it would be easy to add other strategies such as ordering the goals according to their
earliest starting time. RobCon peeks the next goal (if any), analyses it taking into consideration the level
of autonomy, takes the appropriate action and sends back the result to its client. The goal can specify
three different behaviours:

• command = Plan: RobCon initializes the planner according to the configuration file and launch
it with the domain and problem. Then it waits until the planner finishes with either a failure or a
solution, which is returned to its client.

• command = Execute: RobCon calls the executive, passing the plan and waits until SE finishes,
returning an updated version of the plan with the information resulting from the execution to some
reasoning entity (see next paragraph). RobCon will also provide periodical information by means
of feedback messages coming from the executive.

• command = Plan_Execute: RobCon calls first QE. In case it returns a failure, RobCon returns
the error to its client. Otherwise, it sends the plan directly to the executive, repeating the behaviour
explained before.

In the last two options involving the executive, the behaviour of RobCon in case of a failure during
execution depends on the level of autonomy. In E1 level, it can report back directly to its client after the
completion of each individual action. In E2 and E3, it executes the plan reporting always the outcome
to its client. The difference between the two levels lies on the flexibility inherent to the plan and the
capability of the executive to fix some flaws. Finally, in E4 it can communicate directly with the mission
planner instead of reporting back to its client to complete high level goals of the plan or repair it after a
flaw.
cancel_execution(goal) simply cancels the planning or executing commands.
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Variable Type Description
domain string Path of the domain file.

problem string Path of the problem file.

configuration
string Path of the configuration file.

plan FlexibleDomainTime-
line

Plan to be executed.

starting
transition

int Transition of the plan from which execution should start.

command <Plan, Execute,
Plan&Execute>

Indicates the type of activity requested. For planning, the
variables domain, problem and configuration are required,
while plan is required for execution.

autonomy <E1, E2, E4, E5> Indicates the desired level of autonomy.
feedback

status
<Planning, Replanning,

Executing, Feedback>
It is possible to ask RobCon about the status of its current
command, which can be one of the list.

result <Planning_Succeeded /
Failed / Cancelled;

Execution_Succeeded /
Failed / Cancelled>

Result after the finalization of the command.

error
description

string If an error occurred, the dedicated executives might attach a
description.

plan FlexibleDomainTime-
line

Updated version of the timelines with the status of each ac-
tion and the time tag in which each was executed.

Table 5.1.: Format of the goal handler parameter used by RobCon.

5.2.3 Planner

The mission planner is in charge of planning and replanning activities. QuijoteExpress, the planner
presented in Chapter 4 is incorporated to the architecture as a server waiting in an infinite loop for job
requirements coming from RobCon. It offers the following services: plan(domain, kdb, problem) and
replan(domain, kdb, problem).

The two services are intended to provide the user with different configurations of the mission planner.
Planning is typically done on-ground where plenty of resources are available in order to create a new
plan from the beginning. In consequence, the planner is configured to produce the best possible solutions
using computationally intensive algorithms. On the other hand, replanning use to be performed on-board,
where resources are scarce, to fix a plan. The re-planner use to be configured with light algorithms that
return the first solution found without exhausting the search space.

5.2.4 SanchoExpress

The executive is one of the cornerstones of any robotic architecture together with the planner. Its mission
is to isolate the activities related to the execution of a plan from the details of specific robotic platforms.
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Section 2.5 listed some relevant executives. ROS offers some general solutions such as SMACH1 or
Teer2, but none of them satisfied the needs of the two case studies. SMACH requires as input a model
of all automata defined with its own specific language which would force QE and generally speaking
APSI users to duplicate the modelling for the solving an execution layers. Besides, the representation of
temporal constraints in APSI and SMACH are not completely compatible. With respect to Teer, it has
a closer approach to timelines but it is not consistent with the definition of flexible timeline of APSI.
T-Rex has been used with APSI planners in the GOAC experiment [36], but it is more an architecture
than an executive which reactor approach is redundant with the nodes defined in ROS. In fact, a version
of T-Rex tailored for ROS was promptly discontinued. The Universal Executive might be the most
suitable option. It is very expressive thanks to the Plexil[15] language and has been conceived for the
space domain. However, it does not directly support timelines. In consequence, a new executive named
SanchoExpress (SE) has been developed.

SE is a two-layers MIMO mission-independent timeline-based executive (see Section 2.5) capable of
timely dispatching actions to the appropriate subsystem and monitoring the execution, reporting back to
RobCon after completion or failure. It can be used directly by the user in low-levels of autonomy (E1 or
teleoperation) or by RobCon in higher levels. SE offers a number of novelties, described below, intended
to solve some of the problems that emerge when plans are executed in complex domains. Among them,
the most relevant are:

• Timeline representation: It supports the execution of Flexible Domain Timelines produced by
APSI*. In [139], a flexible timeline is defined as a set of two or more totally ordered time points
with associated tuples of values plus a set of minimal and maximal distances between each pair
of consecutive time points (see Figure 6.14). The first time point is always the origin (value 0) of
the temporal problem while the last is the horizon (H), i.e., if the temporal problem is defined in
[O,H], the first time point of the flexible timeline occurs in [O,O] and the last occurs in [H,H].

• Handle uncertainty: Derived from the previous one, SE allows to handle uncertainty thanks to the
flexible starting and duration times assigned to each action.

• Designed for ROS: ROS was chosen as QEA development framework because it resolves a lot of
common problems such as synchronization, parallelism, communications, etc. that needed to be
explicitly addressed by other approaches. More specifically, SE is implemented as an actionlib
client/server, a package that provides tools to create servers that execute long-running goals (such
as mission planning or execution) that can be pre-empted. The unit of execution is the action which
is divided in three fields: (1) Goal: Contains information required by the server to perform the task;
(2) Feedback: Defines the data provided in case the server is asked to report the progress on the
execution of the goal; and (3) Result: Sent from the server to the client upon completion of the
goal. To the best of our knowledge, SE is the only executive of this type.

• Two layers: SE is organized in two layers, both implementing command dispatching and monitor-
ing, but the first one operates at a higher level of abstraction and is domain-independent while the
second is dependent.

• Expressiveness: The dedicated executives can be implemented with common programming lan-
guages such as Python or C++, providing SE with a high level of expressiveness, specially relevant
to represent conditional execution and loops. Only Plexil is comparable in this regard to SE.

1 http://wiki.ros.org/smach.
2 http://wiki.ros.org/executive_teer.
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• Adaptable level of autonomy: The system can behave in different levels from E1 to E43 just chang-
ing the corresponding configuration parameter.

Like RobCon, SE also plays a double role, as server waiting for requests from RobCon in an infinite
loop and as a client that makes requests to the Dedicated Executives. It offers the following services:
execute_plan(goal) and cancel_plan(goal).

Plan execution
execute_plan(goal) is the main function in the reactive layer, as it contains the loop in charge of

executing a plan. It receives as input a goal which format is showed in Table 5.2.

Variable Type Description
plan FlexibleDomainTime-

line
Plan to be executed.

starting
transition

int Transition of the plan from which the execution should start.

transition
Time

int Time at which the last transition has been triggered.

error
description

string Same as before.

plan FlexibleDomainTime-
line

Version of the timelines with the status of each action and the
time tag in which each was executed at the time the feedback
was requested.

error
description

string If an error occurred, the dedicated executives might attach a
description.

plan FlexibleDomainTime-
line

Final version of the plan after the end of the execution (due
to nominal ending or errors) with the status of each action
and the time tag in which each was executed up to the last
transition.

Table 5.2.: Format of the ExecutePlan action used by SanchoExpress.

plan is the most important field of the goal as it contains a translation of the plan generated by QE into
a ROS compatible format. The plan is represented as a matrix of values where each row corresponds to
a timeline and each column to a transition. For example, the value values[i][j] corresponds to the value
of the i− th timeline at j − th transition.

Definition 50 (Transition) Time point in which at least one of the timelines changes its value.

When SE receives a new plan, it checks first its internal status. If SE is already executing a plan, the
new plan will be queued until it is executed. If the new plan is meant to be executed as soon as possible,
then the previous one will have to be cancelled. In case SE is idle, then it performs some internal checks
to verify the plan, initializes some internal variables including a dictionary that maps timeline names to
their associated dedicated executives and finally calls the Algorithm 7.

Execution starts in the initial transition of the plan. At any given transition tj , SE extracts for each
timeline tli the corresponding decision di,j from the matrix representing the plan and its associated

3 With the exception of E3, as none of the components of QEA support event-tagged commands.
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Algorithm 7: se.execute_plan(goal)
begin

currentP lan← goal.plan
currentTrans← goal.starting_transition
while currentTrans <= currentP lan.transitions do

for dv ∈ currentP lan.values[currentTrans] do
lastTransition← getEndTransition(dv )
dv .lowerBound← currentTrans.lowerBound
dv .upperBound← lastTransition.upperBound
dedicatedExecutive[dv .tlIndex].execute(dv )
currentTrans+ +

starting interval [lbj, ubj] which indicates the lower and upper bound to start di,j . Notice that lbj must
be equivalent to the time point of the transition in which di,j must be executed.

For each of these decisions, the algorithm sets as the execution starting time the earliest value lbj
of the current transition (even though changing it to the latest time would be trivial if required) and as
execution ending time the upper bound ubj+1 of the value in the next transition, computed by means of
the getEndTransition(dv ) function.

Next, SE searches in the local database which dedicated executive is in charge of executing the values
of the timeline tli and sends a request to execute di,j at time lbj . Every time a value is successfully
executed, the next transition is checked.

In case the plan is not fully decomposed, the corresponding partially decomposed values {dsf} cannot
be executed. An additional time range [lb, ub] defined by the user is attached to each of these values,
indicating the earliest and latest time before the execution of dsf at which it has to be replanned and
therefore fully decomposed. In case no such interval is provided, the executive will rise an error at the
time dsf is due for execution and automatic replanning will happen to fix the plan.

The algorithm iterates over all the transitions until either the last transition is successfully finished, it
is interrupted by the user or an error arises during execution. Once the execution is completed, SE sends
back to RobCon the results.

Example 18 In the example of the FASTER primary rover, suppose Figure 6.14 represents a solution for
a problem in which the rover is initially stopped with the antenna in idle mode and the goals are to do a
traverse to certain location and transmit then some data.

The plan is divided in 10 transitions (T0 to T9) during which at least one timeline changes value.
Suppose the Executive is going to process T8. There are two timelines changing value (Locomotion and
PathP lanning) and one that does not, Antenna. For Locomotion, the next value to be dispatched
is PRLocTraverse, which starting time is equal to the one of T8 and its ending time is the starting
time of T9. For PathP lanning, the next value is PRPPIdle which starting time is also T8 while its
ending time is not T9’s starting time (there is no transition for PathP lanning here) but T9’s ending
time.

Once SE has extracted the values and execution intervals, it searches in the databases the dedicated
executives for their corresponding timelines. In this case, PRLoc is the executive that has to execute
the value PRLocTraverse and PRPP the one in charge of PRPPIdle. SE calls both of them in
parallel and waits for a reply (either a success or a failure). The process for PRLoc is illustrated in
Figure 5.4
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Figure 5.4.: Example of how SanchoExpress executes a locomotion activity.

Cancelling a Plan Execution

When invoked, cancel_plan stops the execution of the activities being running in every timeline and
updates the plan, adding to those activities that were completed a special tag and the time at which
they were executed. This information is required to know the initial state of the robot for the next plan.
Finally, it returns the control to RobCon which will later on return the updated plan to the appropriate
deliberative entity.

5.2.5 Dedicated Executive

SE also includes a template describing how to implement a dedicated executive. It represents an abstract
subsystem that offers a list of services mapped to one or several real subsystems. In FASTER five
dedicated executives where defined: Communications, Primary Rover Path Planning, Primary Rover
Locomotion, Scout Rover Path Planning and Scout Rover Locomotion. Primary Rover Locomotion
for example requires services from two real subsystems: Global Navigation and Primary Locomotion
System.

Every dedicated executive is implemented as a server running an infinite loop until it is stopped by SE
and offers the following services: execute_goal(goal) and cancel_goal(goal).
execute_goal(goal) receives as input a goal which format is showed in Table 5.3.

Variable Type Description

endTransition
TimeInstant Indicates the execution window in which the value must be

executed.
value Value Indicates the value (either a SV V alue for StateVariable

components or Activ ity for resources) to be executed.
message string Feedback returned by the dedicated executive.

endTransition
TimeInstant Updated time instant reflecting the time in which the value

was actually executed.
error

description
string Same as before.

value Value Updated value reflecting its new status.

Table 5.3.: Format of the ExecutePlan action used by SanchoExpress.
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Once a goal is received, execute_goal searches in an internal dictionary the method in charge of exe-
cuting the value and calls it. In case the goal is simple, the method just sends the goal to the correspond-
ing sub-system. Otherwise, the method can contain complex structures such as if − then conditions,
loops and multiple low level operations in order to achieve the complex goal. For example, the method
TurnToWP (goal), implemented in the ExecutivePrimaryLocomotion of FASTER to turn the robot to
the given waypoint (abbreviated as wp), calls internally the functionsGN_NextWaypoint provided by
the global navigation subsystem, GetTransform to change the waypoint coordinates from the world
reference to the rover and finally BLS_PointTurn provided by Bridget Locomotion System (BLS) to
actually perform the turn.

Each low level operation is sent to the controller and the executive waits for its completion. At this
level is where the monitoring actually takes place. In case the call fails or the returned values from
the call are incorrect, the dedicated executive will label the result as Execution_Failed. Finally, the
executive returns a message with the updated values to the generic executive.

In the FASTER scenario, some Dedicated Executives were endowed with short-scope repairing capa-
bilities for very specific errors (see Chapter 6). In case one of the methods returns an error for which the
dedicated executive has a repairing procedure, it will automatically call it. As the flawed decision dv has
not been replanned, the repairing procedure must be completed within the time allotted to dv . Moreover,
other aspects such as resources consumption must be taken into account when implementing these repair
procedures. The time te in which the repair procedure finishes will be the one indicated in the timestamp
of dv . In case of succeed, SE will not have even noticed that there were a problem and still it will receive
the appropriate values regarding resource and time consumption.
cancel_goal(goal) cancels the execution and returns the value with the status and endTransition

fields updated.

5.3 Conclusions

This chapter has presented an architecture based on a very flexible and lightweight executive with a
completely different approach to previous APSI attempts based on T-Rex.

Focusing on the executive, it is the only timeline executive based on ROS. It is important to remark
that T-Rex is not an executive, but rather a system that embeds a planner an executive. Moreover, T-Rex
imposes an architecture based on reactors that overlaps with the node philosophy used in ROS, reason
why most probably the T-Rex version for ROS did not succeed. It architecture as a two layers with a
generic and dedicated executives is also unique with respect to other alternatives such as Plexil.

The properties used to characterize planners, such as soundness and completeness do not apply to
executives as they cannot be guaranteed in real-world applications.

With respect to the three features identified for a planner, performance plays no role for an executive:
SE always dispatch as soon as it can the decisions of the next transition and never has experienced delays
on this regard.

It is rather the robustness in terms of flexible execution and repair capabilities the most relevant fea-
tures to take into account. With respect to execution flexibility, SE is based on the most flexible of all
timelines that APSI can produce. Regarding its repair capabilities, Chapter 6 will further detail how
short-scope plan repair has been implemented for FASTER.

Regarding expressiveness, the possibility to implement dedicated executives with conventional pro-
gramming languages (C++ and Python) provide SE with an exceptional expressiveness. The possibility
to express conditions and loops has positive effects even in the planner, as this complexity can be brought
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down to this level instead of the planning modelling language, where such capabilities would be much
more difficult to handle.

In the future, a most powerful approach could be implemented, based on a dedicated executive exclu-
sively oriented to repair activities. This executive should be connected to the rest of dedicated executives
and could command them directly according to the repair procedure. Another interesting line of re-
search would be to execute directly the Decision Network instead of timelines, helping to improve the
collaboration between the deliberative and executive layers.
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6 Evaluation in Real-World Scenarios

Rescue activities, maintenance of industrial platforms, surveillance or space exploration are just some of
the possible scenarios that could benefit from higher levels of autonomy. QuijoteExpress (QE) and San-
choExpress (SE) have been tested in two of them: a collaborative Mars rover mission named FASTER
and a rescue mission, hereafter referred to as USAR. Section 2.2.2 analysed how both scenarios com-
plement each other. Moreover, testing QE and SE with different robots helps to demonstrate the claims
in terms of reusability. Due to space limitations, the chapter primarily focus on the first one while the
rescue scenario is briefly described.

6.1 Tailoring the Planner and Executive

Thanks to the domain-independent approach of the mission planner and the executive, the adaptation to
a new robot or mission is minimal as explained in the following sections.

6.1.1 Adapting QuijoteExpress

The tailoring of QE is reduced to define the inputs of the planner:

• Domain model: Formal description in DDL language of the robots and other external components
of the environment. The way in which a domain is modelled has a big impact in different aspects
of the planner such as performance or plan quality. In temporal planning, and more specifically in
APSI, this phase includes the selection of the actions/states that represent the state machines and
the definition of the appropriate intervals delimiting the minimum and maximum duration for each
activity and transition, which is crucial to deal with the inherent uncertainty of the domain.

• Behaviours: Complex behaviours are specific to the mission, such as TraverseCycle − Team
in FASTER or Patrol in USAR. In case the same robot could be used for different purposes,
the user would be required to change this input while the domain model could be reused. As an
example, in case Hector were used for inspection activities in a power-plant disaster, the behaviour
SearchV ictims could be replaced by SearchLeaks.

• External functions: Depending on the scenario at hand, the planner might need external functions
for different purposes such as estimation of battery consumption, estimation of the time needed for
a traverse, etc. In FASTER, an external function will provide QE with an estimation of the number
of perception cycles (see Section 6.3.3) and the time required to reach a given waypoint from the
initial position.

• Problem: Formal description of the present state of the robots and goals of the mission.

The domains and behaviours are based on the concepts of Component and State described in Sec-
tion 2.4.4 in which each subsystem is represented as a state machine called Component containing a
number of states1.
1 The words state and action will be used indistinctly in this section.
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Figures 6.3 and 6.16 illustrate the formal models of FASTER and USAR. Each component is repre-
sented as a big soft-blue box containing an automaton, composed by a number of states represented as
boxes with unique names. There are five types of states represented in different colours:

• Nominal complex (Blue): State that cannot be directly executed. This state must be decomposed
in substates (there might be more than one possible decomposition) by the planner in order to
generate an executable plan.

• Nominal primitive (White): State that can be mapped to an action which is directly executable by
the subsystem.

• Error (Red): Usually, the execution will be suspended and the replanner will be called to repair the
plan. However, under some circumstances (depending on the design) the executive might be able
to recover from the error (see Section 6.3.3).

• Default (Orange): Default (components diagram) or initial (behaviours diagram) state.

• Goal (Green): It is only used in the behaviours diagram to indicate the goal state.

Following UML notation, initial states have a triangular shape on the left side and goal states a thick
black line around the box.

Regarding relations between states, they are represented as lines, again with different colours depend-
ing on the role they play:

• Black: Represent transitions from one state to another.

• Blue: Decomposition of a state in a number of substates and relations between them.

• Dotted orange: Synchronizations (represent dependency) between states of different components.

6.1.2 Adapting SanchoExpress

Similarly to QuijoteExpress, SanchoExpress has been designed as a domain-independent executive. Tai-
loring it to a specific problem is more complicated than the planner as it implies the development of
dedicated executives that interface with the hardware, one for each subsystem (see Section 5.2.5). A
dedicated executive has two responsibilities:

• Execution: The executive implements the logic to execute the actions related to each state of its
associated subsystem. Some states will be directly mapped to a specific command while others
involve a number of them. For example, PRLoc − Traverse method contains one single com-
mand, BLS_BridgetFollowPath used by Bridget Locomotion System (BLS) to move the rover
to a given position. On the other hand, PRLoc − TurnToWP method calls three commands to
perform the action: GN_NextWaypoint, GetTransform and BLS_PointTurn, that is, get
the next waypoint, compute the angle between the rover position and the waypoint, and command
the BLS to turn the given angle.

• Short-scope plan repair and safe-mode: A fault in the execution of an activity might affect the
plan in different ways: Change the sequence of future activities; Recalculate temporal bounds;
Recalculate resource consumption; Recalculate parameter constraints; . . . . In some situations, a
fault does not spread along the plan, and therefore it is possible to fix it immediately without the
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need of replanning. To do so, the dedicated executive responsible for the failed action needs to
implement the corresponding recovery procedure to resume execution. Otherwise, the executive
needs to put the subsystem in safe-mode before replanning is requested. TraverseCycle−Team
behaviour contains two examples of each scenario. SRLoc−HazardDetected (ScoutLocomo-
tion) and PRPP − ScoutNotFound (PrimaryPathPlanner) error states are used to recover from
the fault and resume execution. As the recovery activities will happen in the time frame assigned
to the faulted action, those states with higher risk of failure have been assigned conservative time
ranges to support contingency actions if needed. On the other hand, PRLoc−HazardDetected
(PrimaryLocomotion) and PRPP − PathNotFound (PrimaryPathPlanner) imply big impacts
in the plan in terms of change of activities, time and resources. In consequence, the corresponding
error states will just put the subsystems in safe-mode (in that case, bringing the scout back to the
primary), prior to replanning.

6.2 Impact of QuijoteExpress and SanchoExpress Features on the Modelling

Taking advantage of HTLN expressiveness, the domains and behaviours of FASTER and USAR have
been modelled in a hierarchy, defining different layers of abstraction (see Figure 6.3 and 6.16). The
higher levels contain abstract components with mission-related complex actions while the lower layers
have components with low level functionalities directly related to specific subsystems. The main benefits
of this approach were introduced in Section 3.3.

In the specific case of FASTER and USAR, it facilitated the distribution of responsibilities among
components in a more structured way. As an example from FASTER, the state representing the primary
or scout rover reaching a target (AtWP ) involves the participation of different subsystems and the
fusion of data from different sensors. In consequence, it is included as a high level goal in the abstract
PrimaryRover component. On the other hand, the Locomotion component contains a similar state
called Idle which represents the fact that the robot is stationary at a certain location. However, at this
level it is not possible to know whether the robot has reached a waypoint or not.

A significant amount of time was devoted to refine the methods in order to fix or mitigate the impact
of uncertainty in corner cases detected during the trials. As an example from FASTER, both rovers were
forced to turn towards the next waypoint at the end of each traverse regardless of the instructions of the
path planner (which might indicate that this action was not necessary). As it was impossible to ascertain
the final position of each rover, this action was intended to avoid some situations where the primary was
not able to detect the scout, therefore requiring replanning to bring back the scout to a position visible
by the primary. The methods allowed the team to include specific knowledge for the mission that helped
to prevent different types of failures in a-priory valid plans.

Similarly, both scenarios benefited from the flexibility of flexible timelines to tackle uncertainty. Con-
siderable time was dedicated to define appropriate time ranges (lower and upper bound) for the actions
and constraints defined in the domain and behaviours. To set these boundaries, the team ran specific
scenarios oriented to measure the time required to perform individual functionalities.

With respect to sufficient planning, this feature was not used on the field trial. Sufficient planning
is appropriate when a complex goal can be accomplished in several ways which was not the case of
FASTER or USAR.

The executive also contributed to increase plan robustness by means of short-scope plan-repair proce-
dures as explained in Section 6.1.2.
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6.3 The FASTER Project

6.3.1 Introduction to Rover Missions

Rover missions (see Section 2.2.2) are considered of maximum scientific interest. Contrary to orbiting
spacecraft or stationary landers, they can be directed to interesting features and perform experiments in
direct contact with the scientific target.

Space robots and in particular planetary rovers present several challenges, which were analysed in
Section 2.2.2. All these factors are reflected in the high number of failed missions to Mars which stands
around 50%. Even though most of the problems seem to be solved in modern missions, surface op-
erations still demand a lot of technical advancements, specially from the point of view of autonomy.
Among them, Mars Sample Return (MSR), introduced in Section2.2.2 might be considered as the most
important one and, in consequence, a relevant case study for this thesis.

6.3.2 Description of the Mission

FASTER2(Forward Acquisition of Soil and Terrain data for Exploration Rover) is a European Com-
mission funded research project intended to pave the way of future Mars robotic missions such as
MSR [171]. Current robotic surface exploration is seriously impeded by the lack of a priori detailed
information about the soil and terrain conditions. This is one of the main factors forcing the robots to
move slowly, typically below 5 cm/s [16] and, in some cases, to very complicated situations as illustrated
by the loss of NASA MER Spirit rover after getting trapped in hidden soft sand. Information about ter-
rain conditions is currently gathered solely from remote sensing instruments such as satellites and rover
cameras. However, this data can be misleading due to its low resolution and lack of accurate information
about the physical properties of the immediate subsurface layer. FASTER represents an innovative solu-
tion to enhance remote sensing data through in situ evaluation of near-surface soil properties conducted
by the rover systems. Such data will allow rovers to be safer, faster and more autonomous than it is
possible nowadays.

The operations concept focuses on the “traverse phase” required in any exploration missions, more
specifically on the long range traverses with minimal science operations foreseen for the sample fetch
mission of MSR. It involves two collaborative robots, a primary (Figure 6.1) and a scout (Figure 6.2).
The last one is a highly mobile, lightweight (∼30kg) rover whose mission is to traverse ahead to asses
the trafficability of the preplanned path. If the analysis of the path is positive, then the primary will
follow. Otherwise, the scout will explore the surroundings until it finds an alternative route towards the
target. To achieve its mission, the scout is endowed with hardware and software subsystems to perform
soil sensing. On the other hand, the primary is a heavy (∼300kg) ExoMars category rover whose main
goal is to perform science. Its payload consists on a combination of soil sensing systems and scientific
instruments. During each traverse, it will wait for the scout to find a safe route and then it will follow the
path towards the target.

6.3.3 Modelling the Planner Inputs for FASTER

2 https://www.faster-fp7-space.eu/
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Figure 6.1.: Bridget testbed developed for ExoMars mission. In FASTER, Bridget has been used as the
Primary Rover (PR) during the test campaigns in the Mars Yard (Courtesy of Astrium UK).

Figure 6.2.: Scout Rover (SR) for FASTER project being tested in the Mars Yard (Courtesy of DFKI).
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Domain Model

The domain model contains ten components organised in four groups: complex, primary primitive, scout
primitive and external.

The model illustrated in Figure 6.3 is hierarchically organised in two layers. The higher one contains
the mission goals to be used by the operators, while the lower one has commands directly related to
specific subsystems and is not intended to be directly used by the operator, even though it would be
possible if required.

All FASTER components present a start-shape, with the central node being the Idle state and the
rest of nodes the different services offered by the subsystem. Error states have output transitions but no
inputs, that is, there is no path from a nominal to an error state. The reason is that the planner will never
require to plan how to achieve an error state. On the other hand, the replanner needs to understand how
to recover from a failure, reason why error states have transitions to nominal ones.

Figure 6.3.: List of subsystems of the Primary and Scout Rover relevant for QuijoteExpress.

For the sake of space, a high level description of the functionalities of each component will be pre-
sented without getting into implementation details of the specific states.
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Primary Rover Subsystems
The primary rover is responsible for high level deliberation, task execution and supervision. It is

divided in five subsystem: mission planner, executive, path planner, locomotion and antenna. The first
two do not play any role in the mission plans and therefore do not need to be modelled. The only situation
in which the mission planner should consider itself during the generation of a plan could be a situation
in which replanning activities could be predicted, in which case the planner could allocate in the plan
replan activities to take into account the time they require. However, this is not the case for FASTER,
where replanning activities only happen as a response to unforeseen events. For similar reasons there
are no activities of the executive included in the plan. Again, the only possibility would be to foresee
replanning activities, in which case the executive would need to stop execution and later on resume it.
The main states of each component are described in the subsequent paragraphs.

PR Mission Planner Subsystem Capabilities:

• Planning: Generate a valid plan given a domain description, the present status of each subsystem, a
number of goals and optionally a list of behaviours. A plan consists of a number of timelines (one
for each component), containing the sequence of actions to be performed by the corresponding
subsystem and the time boundaries within which each activity should be executed. Search and
heuristic algorithms are computationally intense, as planning for FASTER is performed on-ground.

• Replanning: Instead of receiving a list of goals, the replanner obtains as input a failed plan. The
goal is to fix the plan introducing as little changes as possible. The algorithms are also different in
order to quickly obtain a result rather than exploring all the possibilities. The plan might fail for
two reasons: due to a fault during execution or because of the insertion of new goals that are still
unsupported in the current plan. This feature (adding new goals) is desirable to allow opportunistic
science activities.

PR Executive Subsystem Capabilities: The executive is in charge of two activities.

• Execution:

– Dispatching: Upon reception of a new plan, the executive is in charge of dispatching (in
parallel) the activities of its associated timelines preserving the temporal constraints.

– Cancel execution: The user or the Monitor might request to cancel the execution. The execu-
tive should then stop each subsystem in a safe mode.

– Recovery: Some errors which do not represent changes in the temporal constraints can be
fixed by the executive.

• Monitoring: In charge of fault detection (not recovery). In case an activity fails to execute, cannot
start or finishes at the appropriate time, the Monitor will report an error.

PR Path Planner Subsystem Capabilities:

• Traverse Graph operations: Graph search and maintenance operations allowing the addition/dele-
tion/modification of vertices and edges in the traverse graph.

• Mapping: Build Digital Elevation Maps (DEMs) obtained from merging data from multiple stereo
images, including those from the scout rover. Additionally, images and/or data from the primary
rover should be filtered to ensure that the scout rover is not included as part of the elevation map.
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• Path planning: Planning a path to a local goal based on a Digital Elevation Map (DEM). Apart
from geometric obstacles and rover capabilities, this should take into account the rocks detected
by the visual soil sensing component of the FASTER Soil Sensing System (SSS) and any known
trafficability information.

• Self-localization: Accurate self-localization is required for successful, long range traverses of pre-
planned paths and to identify if the target location has been reached.

• Scout localization: Recognition and localization of the scout rover using camera images from the
primary rover.

PR Locomotion Subsystem Capabilities:

• Path traverse: Following a planned path safely, while interacting with components of the FASTER
SSS that have been deployed on the primary rover.

• Point turn: Allows the primary to orientate itself with no requirements in terms of trafficability, as
the rover will not change position respect the x and y coordinates.

PR Comms Subsystem Capabilities:

• Communication: (1) Transmission of commands to the scout rover and reception of trafficability
information and other data (such as stereo images and status); (2) Transmission of telemetry to a
satellite and reception of new plans.

Scout Rover Subsystems
The scout rover has very limited responsibilities in terms of high level deliberation. It has three

subsystems: executive, path planner and locomotion. The executive is considered as a black box that
communicates only with the executive of the PR translating the telemetry and commands to TCP pack-
ages. Its functionalities are similar to the dispatcher of the primary (without monitoring).

SR Path Planner Subsystem Capabilities:

• Self-localization: While it is expected that the primary rover will provide periodic localization
updates to the scout, the SR is also capable of self-localization.

SR Locomotion Subsystem Capabilities:

• Path traverse: Moves the scout along a path while conducting “forward sensing” operations with
the components of the FASTER SSS on-board the scout rover.

• Return to primary rover: In certain cases such as hazard detection during traverse or some emer-
gency scenarios (identified in [AD2]), the scout rover should be able to return to the primary rover
using the local DEM and the last path followed (or an updated path received from the primary
rover).

Abstract subsystems
Abstract components are used by operators to define mission goals. FASTER has four abstract compo-

nents: Mission, Navigation, Primary Rover and Scout Rover. The Mission component contains all high
level goals related to FASTER mission. In nominal situations, the user should define goals exclusively
for this component and the planner will take care of adding the corresponding actions to achieve them.
In non-nominal situations such as failures, the operator might want to specify lower level goals to have a
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better control of the plan generated. Due to the relevance of traverses for this scenario, a dedicated com-
ponent called Navigation has been defined. With respect to the rovers, each has an abstract component
with high level goals.

Mission:

• Traverse: Involves all activities related with the preparation of the traverse (localization, map
generation, manoeuvres calculations) and locomotion activities for both robots from the starting
waypoint until the destination is reached or a failure is raised.

• Communicate: Involves the transmission/reception of information between the primary and scout
or the primary and a satellite.

Navigation:

• TraverseCycle: This complex activity might be achieved in different ways depending on the
scout availability. It involves a number of subactivities that are repeated in a cycle until the final
waypoint is reached. As indicated in Chapter 4, representing loops is a novel feature critical for
FASTER. Section 6.3.3 explains how it is used.

• BringBack − SR: In case the scout finds a hazard that cannot be avoided, it should come back
to a position close to the primary.

Primary: The state of the primary can be: Idle, Traversing or Communicating, each synchro-
nized with a number of subsystems.

Scout: The scout has two states: Idle and Traversing.

External subsystems
Besides the robot description, the formal model must contain as well relevant information about those

external elements that might pose constraints to the mission. The surface (in this case of Mars) is not
included, as it is directly managed by the Path Planner subsystem. Typical external components are
ground segment, satellites, other robots, etc.

Satellite Communications Subsystem:

• Communication windows: Communications (up and down) using the primary antenna are bound
to the windows in which the satellite is visible. In consequence, the satellite is modelled as a
component with two states: visible or not. The communication windows are known in advance,
therefore they can be specified in the problem as a list of facts including the starting and ending
time in which the satellite will be visible.

Behaviours (Knowledge DataBase)

Besides the domain model, a number of hierarchical behaviours have been defined. While the domain
is used to formally describe the world in terms of components and states, the behaviours are used to de-
scribe mission related concepts, more specifically how to combine low-level actions to achieve complex
goals. The behaviours presented below have been implemented in DDL and passed as an input to QE.

Two high level behaviours have been considered for FASTER: Traverse and Communicate, each
describing how to achieve their corresponding complex goals.
Communicate is simulated via wireless connection between the primary rover and a laptop that plays

the role of a satellite, with the communications being limited to time windows that simulate the pass of
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the satellite over the area in Mars where the rover is. This activity is relevant for the planner because it
imposes realistic constraints on the mission. Besides, it helps to test the planner in a very easy manner
under different stress levels.

Traverse is more complicated and the main target of FASTER. Its behaviours are organized in a
tree-structure where higher levels involve complex behaviours that are decomposed in more detailed
subbehaviours as represented in Figure 6.4.

Figure 6.4.: List of hierarchical behaviours included in the KDB of QuijoteExpress for FASTER.

Assumptions and Requirements
Suppose a nominal scenario in which the two robots are in formation with all their subsystems in the

default state (Figure 6.5).
Data of the Martian surface is used by Ground Control to identify potential paths (a preferred path as

well as several other “contingent” paths). Each planned path is represented as an nondirectional graph
where the nodes are waypoints and the edges potential straight line paths between waypoints (Figure 6.6).
Each edge has an associated cost that can be estimated based on distances, even though actual costs are
influenced by other factors (such as the slope of terrain, expected terrain traction, etc.). Calculation of
the best (global) path is then a graph search problem performed at the beginning of each traverse and
after a graph update.
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Figure 6.5.: Primary and Scout Rovers in formation before starting the next traverse to waypoint (Courtesy
of Airbus).

Traverse between waypoints
A traverse can be initiated in case the previous step has been successfully achieved. Figure 6.4 il-

lustrates three different behaviours included in the KDB for auto navigation with the primary and scout
rovers:

• TraverseCycle− PR: Describes the activities to conduct when the primary is traversing alone,
used in case the scout is lost.

• TraverseCycle − Team: Describes the activities to conduct when both primary and scout are
navigating in nominal formation.

• BringBack − SR: Describes the activities to bring back the scout to a position close to the
primary. This behaviour is required in situations in which the scout did not find a path, the primary
cannot traverse the planned path towards the scout or there is a change in the mission goals when
the two robots are not close.

Change from team to primary-alone traverse must be manually commanded, as the lost of the scout
represents a major failure that should be assessed on-ground.

Focusing on TraverseCycle − Team, it moves the robots from one waypoint to the next until the
target is reached. Two waypoints might be tens or hundreds of meters apart. However, rovers sensors
have a limited range of approximately 4 meters. In consequence, a traverse between two consecutive
waypoints is split in several parts using intermediate waypoints that are separated at most 4 meters away.
Each individual traverse to reach an intermediate or final waypoint is achieved by a sequence of actions
named PerceptionCycle which is depicted in the external cycle of the TraverseCycle − Team
behaviour (see Figure 6.4), from PRLoc− InitNextCycle until BTraversing:

1. PRPP − InitTraverse: Initializes the global navigation traverse graph with the new waypoints
and goals provided from Ground Control.
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Figure 6.6.: A set of possible paths across a sub section of the Mawrth Vallis, which was selected as a
possible landing site for the MSL. A preferred path is highlighted in red (Courtesy of Airbus).

2. PRPP − FindRoute: Selects one of the possible routes passing by all waypoints from the
traverse graph.

3. PRLoc− InitNextCycle: Transition from the previous perception cycle to the next one.

4. PRPP − LocateSR: At the beginning of each cycle, both rovers should be relatively aligned
and separated by a safe distance. In this situation, the PR Navcam (mounted in the chasis) acquires
stereo pictures that are processed to identify the scout marker (the black box in the rear part of the
SR in Figure 6.5) and then to determine the scout position.

• PRPP − ScoutNotFound: In case the scout is not properly aligned or it is farther than
expected, the primary might not be able to localize it. In this situation, the dedicated
PrimaryPathPlanner executive can automatically fix the problem without requiring replan-
ning. The scout is commanded to position itself in front of the primary by means of the
TurnAwayFromPR action and LocateSR is repeated. These activities take place in the
time allocated for the initial LocalizeSR, which is given a conservative time to prevent re-
planning in such situations.

5. SRPP − TransmitPose: The PR sends to SR its estimated position.

6. PRLoc − TurnToWP , SRLoc − TurnToWP : Starting from a waypoint, the rovers turn in
place until they are facing the next waypoint. To do the turn, the rover first retrieves the next
waypoint from the route computed in InitNextCycle. Next it gets the rover current position and
calculates the desired angle. Finally, the low level locomotion function is called to perform the
turn.

7. BGenerateMapTeam: Complex state decomposed in the following subactivities:

a) PRPP −ExtractPRDEM : The stereo cameras take three pictures (left, front and right of
the rover) that covers an area of more than 90 degrees. The result is a point cloud from which
a DEM is generated.

b) PRPP − FilterScout: 3D information in the DEM that corresponds to the scout rover is
removed, so that the scout is not detected as an obstacle.

c) SRPP − ExtractSRDEM : The SR extracts a point cloud of the terrain in front moving
the laser up and down.
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d) PRPP −MergeLocalMaps: Merges filtered point clouds from the PR and SR generating
an extended DEM which is also more accurate in those areas where the two point clouds
overlap (Figure 6.7).

e) PRPP −MergeInGlobalMap: In case initial information of the area around the rover is
provided in advance, the global map is represented as a low resolution map; otherwise, it is
empty. As high resolution local maps are generated, they will replace the corresponding areas
of the global map (Figure 6.8).

8. BPlanPath: The path planner gets information from two sources: the trafficability, provided by
the scout (see next point), only available once the scout has finished its first traverse and the DEM.
The cost values from each map are weighted and fused into a single value which is then used by the
path planner, based on an A* algorithm to compute the most cost-effective path from the current
position towards the next waypoint (see Figure 6.9).

• PRPP − PathNotFound: The PrimaryPathPlanner cannot find a path towards the next
waypoint. In that case, the scout is commanded to come back if it is not close to the primary.
Once together, the traversability graph needs to be updated. Depending on the position of the
rovers, there are two possibilities: (1) Rovers are located in a waypoint: The edge representing
the path between the last (or current) waypoint and the next way point is removed. The global
path can be considered invalid and an alternative path to the final destination needs to be
selected; (2) One of the rovers is not at a waypoint: The current location of the rover is
inserted into the graph as a new vertex. Knowing that the robot has reached the new position
from the last vertex, it is safe to add a new edge between that last waypoint and the newly
created one. The edge for the non-traversable path is removed. Again, a new graph search
should be run to determine a new path.

Finally, to avoid replanning, a dedicated executive (PrimaryPathPlanner in this case) calls the
generic executive to drop the remaining activities of this perception cycle and start the next
one. The path planner should also overestimate the number of perception cycles required to
reach the target (higher than expected) to avoid replanning (see Section 6.1.1). At the time
of FASTER final demonstration, the executive was not yet endowed with the capability of
dropping activities and therefore this feature was not used.

9. SRPP − SendTraverseMap: The updated DEM including the path is sent to the scout.

10. BTraversing: In case the path planner cannot find a path for either the PR or SR, it calls the
scout back and repeats the cycle of operations from the beginning. Otherwise, it commands the
scout to start moving towards the waypoint. During the scout traverse, the laser scanner is used to
detect obstacles. At the same time, trafficability information is gathered from the WLSIO (Wheel-
Leg Soil Interaction Observation) system and the mDCP (motorized Dynamic Cone Penetrometer).
WLSIO is a Soil Sensor System of the SR that measures the sinkage of the front wheels with two
cameras and positions this measurement in the local map using information from two IMUs and
wheel odometry. If the trafficability values go under a certain level, the scout stops and sends the
information to the primary. A new path is then computed to take into account the new information.
If the trafficability value is within a range called maybe, the rover deploys the penetrometer or
mDCP, a tube ended in a cone that can be actuated to impact the surface and measure the sinkage.
The results of the mDCP are used to produce the final Go/No-go value. When the scout arrives at
the waypoint, the primary follows. In case it encounters an obstacle that cannot be avoided, then
the scout is brought back and a new cycle starts.
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• SRLoc − HazardDetected: The scout has advanced along the planned path when the
FASTER SSS returns a “No-Go” assessment, and no alternative path towards the next way-
point can be found by its on-board path-planner. The dedicated ScoutLocomotion executive
can automatically fix this problem without the intervention of the mission planner in the same
way as PRPP − PathNotFound.

• PRLoc − HazardDetected: In case the primary rover cannot follow the scout due
to its more limited locomotion capabilities, the behaviour is the same as for PRPP −
PathNotFound, that is, bring back the scout and replan. Figure 6.10 contains three maps
that illustrate this example. From the top to the bottom it is possible to see the global map,
DEM based path and trafficability path. The last two have two images: original primary path
(left) and replanned primary path (right). The global map shows that the scout has arrived to
the intermediate waypoint following a green line that represents the initial path. When the
primary starts to move, it discovers a new obstacle (big black circle in the lower images). Path
replanning is then required, producing a second path illustrated as another green line in the
upper image to the left of the original one.

Figure 6.7.: Local map obtained from merging point clouds from primary and scout rovers (Courtesy of
SAS).

Figure 6.8.: Global map containing the new information from the last local map (Courtesy of SAS).

End condition
The end of the planned traverse can be reached in the following ways:

• The rover can no longer find a global path to the final waypoint. In this case, the rovers should wait
to the next communication window to report the problem and wait for further instructions from
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Figure 6.9.: Initial path for the primary rover (Courtesy of SAS).

Figure 6.10.: Replanned path for PR and SR after successful traverse of the SR (Courtesy of SAS).

Ground Control. In a MSR scenario, if communications cannot be established, a contingency plan
could be adopted where the cache (or MAV) location is taken as the goal waypoint.

• The rover reaches the goal waypoint, which indicates a successful execution of the traverse plan.
In case this is not the last activity, execution continues. Otherwise, the rover enters Idle mode until
further instructions arrive.

External Functions

When the mission planner constructs a new traverse plan, it requires from the path planner some infor-
mation, namely estimated traverse time and number of perception cycles. However, this information is
still unknown, as the path planner also needs some information produced by activities not yet planned
in order to compute a path. Two external functions were used to provide estimations for these two
parameters.

The first one is a conservative estimation using as distance the straight line between the waypoints, the
average speed of the rover ( 3cm/sec) as speed, and a certain penalization k to take into account point
turns (which consume a lot of time) and possible deviations to avoid obstacles. The resulting equation

t =
√

(xdest−xorig)2+(ydest−yorig)2

v =3 × k gives an estimated time that will be used to define the time bounds
of each perception cycle.
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The second divides the distance between two consecutive waypoints by the maximum range of the

sensors (4 meters), that is: numcycles =
√

(xdest−xorig)2+(ydest−yorig)2

range=4 . This number will be used by the
mission planner to allocate numcycles times the activities related to the perception cycle.

Problem

A problem must define the initial status for each subsystem (facts) and the desired status to achieve
(goals). In FASTER, goals are locations that represent waypoints where the rovers should go. Problems
are implemented in PDL language and represent one of the inputs of the planner together with the
domain, behaviours and external functions.

6.3.4 Implementing the Dedicated Executives for FASTER

Each of the components in the lower layer of the model presented before is directly related to a rover
subsystem. Only four of the ten components in the model have a dedicated executive: PR Path Planner,
PR Locomotion, PR Antenna, SR Path Planner and SR Locomotion.

SR Locomotion is specially relevant as it is the only one containing short-scope repair activities,
triggered in case the error state SRLoc −HazardDetected is reached. As indicated in Section 6.1.2,
the error states in PR Locomotion and PR Path Planner are too complex to be fixed by the executive and
require the mission planner.

6.3.5 Evaluation

Testing

In order to achieve the goals of the project, validation & verification became crucial at each stage of the
development. As the components and subsystems were integrated, the emphasis evolved from the initial
hardware testing to the software integration.

Subsystem-level Testing
Each subsystem was individually tested by means of unit tests in order to validate all the requirements

prior to the integration phase. Once each of them had acquired the necessary maturity, the integration
between them became the focus. The integration of the FASTER (hardware) sub-systems occurred over
the course of 5 campaigns between April 2014 and August 2014, each lasting an average of 4 to 5 days.

Integration of the software modules was still not feasible at this stage. In the case of the planner and
executive, several unit-tests were defined in order to verify the model, behaviours, plans and executabil-
ity. Validation and verification was specially complicated because the tailoring of both components (see
Sections 6.1.1 and 6.1.2) has strong dependencies with respect to the subsystems.

In the case of QE, the model and behaviours continued evolving until the formal definition of each
subsystem was completed. Both were manually verified first with the FASTER team and later on checked
against the DDL parser. Different problems were defined for the three main traverse types (Team,
Primary, BringBack-SR) and the plans obtained were remotely evaluated against a simulator at SAS
(Belgium). The tests conducted for QE can be classified into two groups:
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• Fully defined plan: For the Primary and Team traverses, a plan like the one showed in Section 6.3.3
was used. Simulations allowed to improve the temporal bounds assigned to activities, specially
relevant for those that could lead to error states, and more importantly to early detect conceptual
errors in the behaviours. No partial solution was required in this scenario, as the rovers did not
have on-board replanning capabilities.

• Replanning: For those cases in which execution failed, the capability of the planner to fix the
plan was verified. The activity consisted in modifying the problem to reflect the new status of the
robots, obtain a new plan and uplink it. Like in the previous point, simulations helped to improve
the model and behaviours.

Figure 6.14 shows the timelines extracted from the plan for the TraverseCycle − PR behaviour.
The plan obtained for TraverseCycle− Team will be analysed in Section 6.3.5.

V&V of the dedicated executives was more complicated, because it required a high level of detail.
During initial phases, dummy methods were used to simulate the behaviour of the real systems in order
to test the executive in the simulator at very early stages of the different subsystems. The tests conducted
with the simulator were:

• Nominal mission: Execution of a plan goes as expected.

• Nominal mission with hazards detection during traverse: Replanning is not required unless the
estimation of perception cycles is incorrect.

• Non-nominal mission: Execution fails due to a failed activity (PRPP − ScoutNotFound or
SRLoc − HazardDetected). Replanning not required, but executive needs to conduct repair
activities.

• Non-nominal mission: Execution fails due to a failed activity (PRLoc − HazardDetected or
PRPP − PathNotFound). Replanning is required due to the big impact of repair activities on
the plan.

• Non-nominal mission: Execution fails because the maximum time allowed for a goal was ex-
ceeded. Replanning is required.

• Non-nominal mission: Execution fails because extra activities have to be allocated in the plan
(more perception cycles). Replanning is required.

Mission-level Testing
Once the various subsystems were integrated and the software interfaces provided, the higher level

functions at a mission level could be tested in the Airbus Defence & Space Mars Yard, also used during
the final demonstration. This is a 13m x 30m indoor facility that represents a mock-up of a Martian-like
environment that provides consistency and repeatability to test robotic prototypes (Figure 6.11).

Four test campaigns between July and October 2014 were dedicated to specific integration and de-
velopment activities comprising: Handshake between the various systems; Functional verification of the
key functions; Full system testing against a representative mission scenario; Final demonstration.

Generally, each test consisted of three steps:

1. Rovers placement and on-board flight software initialization (navigation, path planning, etc).

2. Prepare the test area (e.g. preparing soil density, situating hazards, etc).
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Figure 6.11.: Panoramic picture of the ASU Mars Yard with two Bridget rovers and the control room in the
far side (Courtesy of Airbus).

3. Launch the test, gathering all relevant information for further analysis.

From the point of view of QE and SE, the tests conducted were those already validated in the simulator.
The only changes required came from the replacement of the dummy services by the real ones in the
dedicated executives and the fine-tuning of the time bounds.

Final Demonstration

The final system was presented to EU, ESA and NASA officials during the full day Workshop and Final
Demonstration event, held on October 23rd, 2014 in the New Mars Yard facility, Airbus DS, Stevenage,
UK.

The demonstration was based on the following scenario:

• The mission targeted a location 15m away in straight line from the starting point.

• The path to the target contained both visible, hard obstacles (e.g. rocks) of different sizes and
hidden hazards considered unsafe for the PR locomotion system.

• The rocks were placed to force the PR to go through the hidden hazard zone, comprising a sub-
surface hazard consisting of small pit(s) containing a Sand Trap Analogue covered with a layer of
sand to make it visually similar to its surroundings.

• The planned path should be first traversed by the SR, whilst deploying its sensors. The scout should
detect the hidden hazard, evaluate its severity using its on-board sensors, and convey data to the
PR with a trafficability evaluation and the location of the hazard.

• Data on visible hazards would be derived both from the SR on-board sensors and from PR data

The demonstration was specially relevant for this thesis for two reasons: It used QE to generate plans
for a real system in a real environment; SE demonstrated the execution of a plan and repair capabilities.

Preparing the Test
Setup of the Mars Yard: The configuration of the scenario, described in detail in [175], is shown in

Figure 6.12. The departure point was placed close to the control room, while the destination point was
placed in the other side of the Mars Yard, some 15 meters apart in straight line. A sand bank and a
trap, not visible with cameras, were situated in the way between the rovers and the target. Other small
rocks were placed according to the normal distribution found in Mars. Finally, a big rock represented the
second obstacle after the trap in the way of the rovers. The potential routes that the operators estimated
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beforehand for the mission are displayed in different colours where red lines represented non-trafficable
paths, yellow lines tentative paths and green are the estimated final paths.

Figure 6.12.: Representative Mission Scenario to exercise all the FASTER functions (Courtesy of Airbus).

Setup of the Rovers and Computers: The two robots were initially in formation, with the scout
in front of the primary pointing toward the target. Each of the three operators where connected to
the On-Board Computer (OBC) to initialize the different subsystems and launch the plan. Once the
demonstration had started, connection was maintained to abort execution in case of critical failures.

Setup of Ground Control: The mission planner was deployed in an external laptop, while the rest
of the software for each subsystem (including the executive) was running in the primary OBC. Field
trials required the participation of at least one responsible for each subsystem: PR On-Board Computer
(OBC), SR OBC, Planner/Executive, Path planner, Wheel Bevameter, Penetrometer, Primary Rover,
Scout Rover, etc. Upon starting of the tests, only three operators were required: Primary OBC, Scout
OBC and Planner/Executive. Once the two OBCs were ready and a plan generated, the Executive oper-
ator could launch the plan, starting the autonomous operations.

Setup of the Mission Planner and Executive: Figure 6.13 illustrates the 3-tier architecture deployed
for FASTER. The deliberative component, a mission planner located in the Ground Segment represented
by a laptop, was in charge of generating the initial plan. The reactive component, a generic executive
installed on the the on-board computer (OBC) of the PR, was in charge of commanding both rovers. The
approach derives from the idea of a master robot in charge of execution and FDIR functions according
to the uploaded plan (taking advantage of higher computational capabilities) and a subordinated robot
following instructions. This schema is very simple and allowed the mission to reach the targeted E3 level
of autonomy, similar to current MER or Curiosity missions. Nevertheless, the level of autonomy could
have been easily increased to E4 just by deploying a replanner on-board and reconfiguring RobCon as
defined in Figure 5.2.

Problem Definition: The mission consisted of just two goals: a long traverse and a final communi-
cation with ground segment, both marked to be fully decomposed on planning time. As indicated in
the formal specification presented below, all subsystems are set to the default state. Notice that f9 and
f10 define the communication windows in which the satellite is visible. The first goal (Navigate) has
two parameters. ?f_iter is an external function used to estimate how many perception cycles are re-
quired. ?t_traverse defines the traverse mode (Team, Primary or BringBack-SR). Finally, the second
goal defines a communication that should happen after the traverse.

PROBLEM Rover-Problem (DOMAIN Faster_Domain) {
//-------------------------
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Figure 6.13.: Architecture for FASTER scenario with two collaborative rovers.

// Facts
//-------------------------
f1 <fact> compMission.tl1.Idle();
f2 <fact> compNav.tl1.Idle();
f3 <fact> compPrimaryPath.tl1.Idle();
f4 <fact> compPrimaryLoc.tl1.Idle();
f5 <fact> compPrimaryAntenna.tl1.Idle();
f6 <fact> compScoutPath.tl1.Idle();
f7 <fact> compScoutLoc.tl1.Idle();
f8 <fact> STATIC compCommWindow.tl1.Visible();
f9 <fact> STATIC compCommWindow.tl1.Visible();

f1 RELEASE [0, 0];
f2 RELEASE [0, 0];
f3 RELEASE [0, 0];
f4 RELEASE [0, 0];
f5 RELEASE [0, 0];
f6 RELEASE [0, 0];
f7 RELEASE [0, 0];
f8 AT [0, 0] [600000, 600000] [600000, 600000];
f9 AT [3000000, 3000000] [3600000, 3600000] [600000, 600000];

//-------------------------
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// Goals
//-------------------------
g1 <goal> compMission.tl1.Navigate(?f_iters, ?_inTeam = TRUE);
g2 <goal> compMission.tl1.Communicate(?gfile2 = 1);
g1 RELEASE [1, +INF];
g2 RELEASE [2, +INF];
g1 BEFORE g2;
}

Results

QuijoteExpress was configured in single-thread mode (no parallelism), to search for all possible solu-
tions, to use the resolvers defined in Section 4.3.3 (forward-chaining unfolder, decomposer and sched-
uler) and to use blind heuristics. The type of output was a flexible plan in which starting and duration
times where described as intervals.

Three inputs were defined: the domain shown in Figure 6.3, the navigation behaviours shown in
Figure 6.4 and the problem previously described.

The domain was modelled taking advantage of the hierarchical approach of HTLN, facilitating the
definition of abstract components such as the Mission planner, which states became the only goals de-
fined for the trial. In addition, the HTN capabilities were also exploited to model the mission behaviours
as HTNL methods. With respect to the problem defined for the trial, it was not very challenging from
the point of view of planning. The deterministic nature of the decompositions and the role of QE as
on-ground planner made unnecessary to use partially defined goals and, in consequence, QE produced
fully defined plans. However, some actions like TurnToWP (goal), only modelled to a certain level of
detail for the planner, were actually decomposed by the corresponding dedicated executive.

QE was able to generate solutions in few seconds. As observed in Section 4.4, the behaviours play an
important role in this aspect, because they represent pre-planned valid sub-plans that contribute to im-
prove the planner’s performance. The solution obtained consisted of 12 traverse cycles, each containing
18 transitions organized in five timelines, one for each subsystem. Figure 6.14 partially illustrates how a
traverse for the PR looks like.

Figure 6.14.: Flexible domain timelines for the FASTER Primary Rover. The highlighted boxes represent
goals.

Once the plan was uploaded in the PR OBC, all subsystems including the generic and dedicated
executives were started and the flight software was commanded to start autonomous execution of the
plan. At that time the role of the operators was reduced to a mere supervision activity. In case of failure,
two possible repairing activities on-board were considered: (1) The executive could repair a number of
specific errors without replanning; (2) Stop execution, drop the remaining activities, compute a new plan
(on-ground), uplink it and launch it again.

The expected sequence of events should be the following:
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1. Compute the shortest path to the target (crossing the hidden sand bank). SE is then commanded to
start operations.

2. The scout enters an area of loose soil and gets a “Maybe” as trafficability value. To produce a “Go”
or “No-Go”, the SR deploys the penetrometer, obtaining a No-Go. An area denoted by a circle
around the trap is marked as non-trafficable.

3. ExecutiveScoutLocomotion then calls the failure state SRLoc−HazardDetectedwhich contains
a specific behaviour to repair the plan. Internally, the dedicated executive calls the path planner to
recalculate the path for both rovers and traverse is resumed (see Figure 6.4). The repair activities
must be executed during the time boundaries of SRLoc − TraverseWithSS. Otherwise, the
error would be scaled up to SE and from there to QE.

4. The scout WLSIO system identifies a “Maybe” value and deploys the mDCP obtaining a Go. The
scout arrives at the first intermediate waypoint, stops and the PR starts to move towards it following
the updated path. At every intermediate waypoint, the rovers are pointed towards the next one to
allow the sensors to generate a map of the area they should traverse. Several perception cycles are
repeated between intermediate waypoints, 4 meters apart each other.

5. The path towards the target passes through a sand trap.

6. The scout identifies the trap and the path is flagged as No-Go. The executive launches again the
SRLoc−HazardDetected behaviour to repair the plan.

7. A new path is generated to avoid the sand trap passing through a big rock.

8. When the robots are less than four meters apart from the rock, the sensors of the SR will detect
the obstacle during the BGenerateMapTeam activity and the path planner will produce and
adequate path avoiding it (no need for repair or replan).

9. After the avoiding manoeuvre, both robots reach the target.

As in previous test campaigns, during the final trial no re-planning was required. The first sand bank
was not detected by the sensors but it did not have any consequence in the mission and therefore no inter-
vention from the planner or executive was required. On the other hand, the executive needed to demon-
strate its short-scope repair capabilities in two occasions triggered by a SRLoc − HazardDetected
as explained before. Repair at execution level was possible thanks to an accurate modelling of complex
goals and to the subsequent generation of flexible plans by the planner. In case the time assigned to
complex goals had been too tight, the executive would not have had time to initiate the corresponding
repair procedures, triggering as a consequence a call to the replanner.

Due to the limited time available, the rovers were stopped in nominal state before reaching the target.
The overall performance of the system, and especially of the mission planner and executive, was com-
pletely successful and allowed the mission to reach the expected E3 level of autonomy, which would
have been E1 otherwise.

6.4 The USAR Project
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6.4.1 Description of the Mission

The aim of this project is to demonstrate high levels of autonomy beyond mere exploration in USAR
(Urban Search and Rescue) environments.

The mission involves a rescue robot in a disaster scenario. The robot must first explore the area, create
a map and send images of potential victims to the control center. A human operator must then verify
for each picture whether or not there is a victim. Depending on the conditions, different sensors such as
stereo or infrared cameras, microphones, etc. could be used. Once the robot has explored the entire area,
it returns to the base station, recharge the batteries and return to the arena to conduct a patrol activity,
visiting all the victims according to an optimal pre-computed path until the batteries get again depleted,
moment at which it returns again to the base station and the process repeats.

Hector, displayed in Figure 6.15, is the robot used for this project. It is a four wheeled UGV equipped
with a LIDAR, RGB-D camera, infrared camera, IMU and wheel/track encoders[100].

Figure 6.15.: Hector Rescue Robot (Courtesy of SIM Group, TU Darmstadt).

6.4.2 Modelling the Planner Inputs for USAR

Domain Model

The domain is constructed in two hierarchical layers: complex and primitive, with a total of five com-
ponents including a battery resource. Unlike in the FASTER case, these components do not use directly
any hardware functionality, but rather Hector complex behaviours.

Figure 6.16 illustrates the DDL model of Hector used by QuijoteExpress.

Mission
Abstract component containing complex goals for the rescue mission. Explore directly maps to the

Hector behaviour HLoc − Explore (see below), Patrol starts a loop in which the robot visits all the
victims found and GoToBase returns the robot to the base station.
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Figure 6.16.: Hector Subsystems.

Camera
Includes functionalities to orientate the mast and operate its cameras, allowing to take pictures or

record videos of the targeted position.

Locomotion
Contains Hector mobility complex behaviours. HLoc−Explore initiates the exploration of the entire

area, getting into any open space it finds and looking for victims with the cameras mounted in the mast.
Every time the robot considers that it has found a victim, pictures are sent to the operator who must
verify them. HLoc − NextWP moves the robot to the next waypoint computed by the path planner
and HLoc−MoveTo to a specific coordinate.

Path Planner
Contains activities related to path planning. HPPPathP lanBase computes the path to a single

waypoint represented by the base station. HPPPathP lanV ictims is based on a Travel Salesman
Problem (TSP) strategy to compute the optimal path passing by a number of waypoints, the coordinates
of which correspond to the positions where the victims were found.

Behaviours (Hector DataBase)

Each complex activity of the Mission component is divided in a behaviour illustrated in Figure 6.17
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Figure 6.17.: Hierarchical behaviours included in the KDB of QuijoteExpress for USAR project.

Explore first calls the method HLoc − Explore described before. During the exploration, the
operator is confirming each of the potential victims detected by Hector. Once the robot has explored the
whole area, it returns to base. The idea is that the robot could carry some equipment to the victims.

Patrol first computes an optimal path passing by all the waypoints where a victim has been confirmed
and goes to visit them. Every time Hector reaches a waypoint, it stops and gather some information
(pictures and video). The idea is to assess the state of the victim and to allow the victim to provide
information to the operators via videostream.

In case the battery goes below a certain level, GoToBase is called. This behaviour computes the path
to the base and drives the robot there.

External Functions

The behaviours named before required some functionalities that were not implemented for Hector.

At the time of the test, the connection between the planner and executive was not ready. To allow
replanning, RobCon was configured to connect to an auxiliary component that had pre-computed plans
ready to be injected in the executive. More specifically, there were three pre-computed plans, one for
each behaviour, which activities could be used regardless of the specific situation of the robot.

Another external function was the battery simulator, used to simulate the estimation of battery con-
sumption. It also allowed to easily adapt the duration of the tests just by changing the ratio of consump-
tion estimated, forcing the robot to go back to the control station.

A third external function was used to estimate the order in which the victims had to be visited by
means of a TSP strategy.
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6.4.3 Dedicated Executives for USAR

Three dedicated executives were implemented, one for each of the primitive components identified in the
model. Implementing them was more complicated than for FASTER, as the system needed to interface
with Hector legacy software.

6.4.4 Evaluation

Based on the same schema used for FASTER, the evaluation of the system was divided in a testing phase
followed by a number of demonstrations with the real robot.

Testing

Testing was much easier than in FASTER for several reasons. First, unlike for FASTER, this scenario
was based on consolidated software and hardware used for years in rescue competitions. Second, a very
good integration with the simulator (see Figure 6.18) made it possible to test the whole mission before
the demonstration. Finally, the executive had been extensively debugged during FASTER.

Figure 6.18.: Simulation of a rescue mission with QE and SE on-board a virtual Hector rover in the Gazebo
simulator.

Demonstration

The final demonstration was run in the arena shown in Figure 6.19, used by TU Darmstadt to test software
and hardware for rescue robots.
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Figure 6.19.: Picture displaying Hector robot in the SIM/TU Darmstadt arena. Close to the robot there is a
doll with an electric blanket representing a victim.

The mission consisted on the exploration of the whole arena, followed by a patrol activity.

PROBLEM Rover-Problem (DOMAIN USAR_Domain) {
//-------------------------
// Facts
//-------------------------
f1 <fact> compMission.tl1.Idle();
f2 <fact> compCamera.tl1.Idle();
f3 <fact> compLoc.tl1.Idle();
f4 <fact> compPathPlanner.tl1.Idle();

f1 RELEASE [0, 0];
f2 RELEASE [0, 0];
f3 RELEASE [0, 0];
f4 RELEASE [0, 0];

//-------------------------
// Goals
//-------------------------
g1 <goal> compMission.tl1.Explore();
g2 <goal> compMission.tl1.Patrol();
g1 BEFORE g2;
}

The aim of this scenario was to demonstrate an E4 level of autonomy in which the robot had to
discover its goals (the victims). Moreover, it allowed to test the mission planner and executive in a
different scenario. RobCon also demonstrated its capability to operate at different levels of autonomy,
this time connecting to a replanner instead of the user as it happened in FASTER.

Preparing the Test
The arena required almost no preparation. Three dolls were used as victims, each covered with an

electric blanket in order to be detected by the infrared camera.
For the different runs, the dolls and Hector were situated in different places, some specially challeng-

ing like a small, totally dark cavity. At the start of every run the robot had the batteries fully charged.
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One operator was in charge of commanding the start of the mission via a GUI (Figure 6.20. RobCon was
configured to the maximum level of autonomy.

Figure 6.20.: User interface containing a representation of the timelines in execution for USAR project.

Results
Due to the simplicity of the model, consisting on just three timelines, the planner could generate

plans in few milliseconds without the need of search enhancements. That makes this scenario ideal for
continuous replanning due to changing conditions such as the need to recalculate the path and resources
due to new obstacles blocking the way to the victims. The situation would be certainly different in case
the level of control on the robot activities had been higher.

As the connection of the planner to the executive was not yet completed, three plans were pre-
computed, one for each behaviour. Explore consisted of just three activities. Patrol plan consisted
of an initial HPP − PlanPathV ictim operation plus 10 loops, each containing three activities
(HLoc − NextWP , HCam − TakeP icture and HCam − TakeV ideo). Finally, GoToBase
contained three, including one single waypoint represented by the base station.

TheE4 level of autonomy was successfully demonstrated. Once the robot had discovered the victims,
a new path was autonomously calculated and the robot started the Patrol behaviour in a loop. In
addition, a type of replanning based on precomputed plans was also demonstrated. At the time the robot
had virtually drained the battery, SanchoExpress stooped the execution of Patrol and askedRobCon for
a new plan. RobCon then returned the pre-computedGoToBase plan which was successfully executed
in all the runs.

In total, four runs with different setups were successfully completed each taking approximately 10
minutes of autonomous exploration.

6.5 Conclusions

The FASTER project was a highly representative example of the Mars rover scenario involving a realistic
mission inspired in the future requirements of MSR, a real Mars rover named Bridget which is the testbed
for the future ExoMars mission, and the Mars Yard, a realistic environment that simulated the conditions
on Mars. The USAR project was equally representative of a disaster scenario. Hector is a state-of-the-
art rescue robot that has won several prices in the Rescue League while the arena simulates different
properties of a collapsing building.
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With respect to the planner, almost no time was spent on changes in the code, being most of the work
dedicated to the definition of the model and behaviours, something very positive considering that mod-
elling requires significantly less time than developing domain-dependent algorithms. Specially critical
for FASTER was the selection of the actions to be performed in corner cases and the assignment of
appropriate time ranges to actions and constraints in order to guarantee the executability of the plan.
In USAR, the main problem consisted on properly integrating the new behaviours with those already
existing for Hector.

The dedicated executives required a lot of time, specially to validate and verify the methods interfacing
with the real systems. Using the executive in two different projects helped to identify and isolate common
elements that were moved to the generic executive, improving the reusability of SanchoExpress.

Simulations played an important role to detect errors at early stages of the development, specially in
USAR. In the case of FASTER, it was during the integration campaigns when the status of the rovers
experienced the biggest evolution. For the whole first campaign and the first day of the rest of campaigns
several people were required in the Mars Yard to configure the rovers. As the time passed, hardware
became more reliable and people started to move to the control room to work in the software. However, it
is always good to have someone in the Yard for supervision activities and fast reaction in case something
goes wrong.

Getting time for testing in the rescue arena was very easy compared to the Mars Yard. As the time of
the final demonstration approached, stress built up. Obtaining time to run a test became more compli-
cated as all teams tried to get more time to check their systems. Carefully planning the tests ahead of the
campaign and at the beginning of each day is crucial to maximize the benefit of scarce resources such as
the Mars Yard.

Focusing on the role of the planner and executive, the expressiveness and plan robustness (in terms of
flexible timelines) were the most important features of QE for the FASTER scenario, while performance
was the key feature in USAR. In FASTER, an E3 level of autonomy with short-scope plan-repair was
accomplished while USAR achieved an E4 level with deliberative plan-repair.

With respect to the executive, its modular approach in generic and dedicated executives helped to
facilitate the integration with the different robots. In the case of FASTER, FDIR capabilities were crucial
to achieve the goals of the project.

Summarizing, in this chapterE3 andE4 levels of autonomy have been demonstrated for two different
scenarios using QE and SE. Moreover, short-scope and deliberative plan repair were demonstrated during
virtual and real tests. Finally, the reusability and stability of the mission planner and executive has been
proven with three different robots.
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7 Conclusions

7.1 Summary

This thesis has analysed the current state of automated mission planning from a theoretical and applied
point of view, identified the needs of future missions and proposed solutions in the form of a mission
planner and executive which have been tested in two different scenarios. QuijoteExpress presents several
novelties to the field of automated planning that can be summarized as the combination of classical and
applied planning, more specifically of the following planning techniques: Timeline planning, forward-
chaining and HTN. The following lines present the main ideas and how they contribute to the field of
automated planning and execution.

7.1.1 HTLN

Hierarchical TimeLine Networks (HTLN), introduced in Chapter 3, combines Timeline and HTN plan-
ning techniques. While temporal planning is the core technique required to solve problems such as the
Mars rover scenario, HTN allows the encoding of domain-specific knowledge in a natural way in the
form of HTN methods that can be used by a domain-independent planner.

The dual representation of complex goals as hypernodes (decisions) and hypergraphs (decision net-
works) is one of the key features of HTLN, oriented to avoid the loss of information produced in HTN
due to the replacement of complex goals by their decomposition methods. It is also one of the key
differences with respect to ASPEN [43], the only known TLP planner with HTN capabilities besides
QuijoteExpress.

Using HTLN, we were able to theoretically demonstrate important properties such as the soundness
and completeness of the solvers, to increase the level of expressiveness from regular to context-free
grammars and to improve the performance thanks to the reduction of the number of constraints derived
from the use of complex goals. The capability to conduct parallel planning, derived from the analysis of
certain properties of the graph representing the problem, was also introduced from a theoretical point of
view.

Summarizing, the contribution of HTLN must be judged as the first theoretical formalisation of hier-
archical timelines. It is also the first formalism in which task decomposition is based on an expansion
rather than a replacement of a complex action by a set of subactions. Two important consequences of the
formalism, the capability to perform parallel planning in multiple ways and the extraction of sufficient
plans contribute to the state-of-the-art in terms of improved performance and plan robustness.

7.1.2 QuijoteExpress

A planner based on the HTLN formalism, named QuijoteExpress (QE), was introduced in Chapter 4. QE
planning process is divided in two steps. A strategic solver called the Supersolver obtains the next job,
which is a node of the search space, and dispatches it to one of the three (tactical) resolvers available:
unfolder, decomposer and scheduler. Each resolver benefits from one of the planning techniques defined
before: the unfolder is based on forward-search, the decomposer on HTN and the scheduler on TLP.
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QE can perform parallel planning based on the extraction of frontiers and the subsequent division of
the problem in subproblems delimited by these frontiers. The concept of frontier itself is derived from
the HTLN formalism.

In addition, it inherits from classical planners such as Fast Forward [86] the concept of multi-queue,
multi-heuristic evaluation and deferred heuristic evaluation, another first-in-class feature that can be
exploited when the heuristics from classical planners were ported to QE.

An interesting effect derived from the combination of TLP, HTN and forward-chaining is the mix of
the state-space and plan-space representations of the search space. While the unfolder is based on the
state-space approach, the decomposer and scheduler are plan-space. This fact is just conceptual and does
not have any implications implementation level.

QE provides multiple contributions to the state-of-the-art in automated planning. It is the first real
attempt to combine classical and applied planning, more specifically, the first Timeline planner based
on forward-search. The impact of this combination in the field of applied planning is highly positive, as
it facilitates the adoption of classical planning techniques. Moreover, it is the first timeline planner that
exploits parallel planning to improve the performance and the first one able to produce sufficient plans
to improve plan robustness.

7.1.3 SanchoExpress

A novel executive, called SanchoExpress (SE), was presented in Section 5. It is tightly integrated with
the planner, with whom it shares a common plan and mission-specific knowledge in the form of HTN
methods. SE is capable of performing parallel execution of flexible timelines and short-scope plan
repair, two characteristics deemed crucial during the final demonstration of the FASTER project, where
two rovers successfully completed a long traverse full of obstacles. SanchoExpress is, to the best of our
knowledge, the first executive of its kind developed for ROS.

7.2 Future Work

While QE and SE have provided multiple answers, they also opened new questions. The following is a
non-exhaustive list of topics that can be further investigated.

7.2.1 Future of Planning for Robotic Applications

Planning systems will need to be adapted to the new requirements, some of them already addressed in
this thesis. QuijoteExpress is a prototype designed to be expandable, offering multiple open lines for
research.

Planning Under Uncertainty
In those environments where plan generation on-ground is difficult (if not impossible) due to the

high level of uncertainty, that is, those that cannot be fully observed, are unstructured and/or dynamic
(see assumptions A1 to A3 in Section 2.2.2), several lines of research have been analysed along the
thesis. First, further research in the field of sufficient planning will help to produce on-ground valid,
partial plans that are increasingly completed on-board as new information about the environment is
gathered. Future work could focus on how to automatically define the appropriate level of decomposition
of actions, based for example on the temporal order of the actions: the plan would be completely defined
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in the short-term, getting more abstract for actions taking place farther in time, balancing the effort
required to generate a valid plan. Better performance in the scope of satisfying replanning would be
required to promptly react to the changing conditions, specially when high levels of autonomy such as
E4 and beyond are required. In this regard, a number of suggestions are provided in the APSI paragraph.
In very extreme cases, robotic missions might benefit from the flexibility given by the possibility of
dropping or generating goals without human intervention, a concept coined in this thesis and named
auto-goaling. This represents an important shift in terms of operations from goal-based replanning (E4)
to autonomous on-board goal generation (E5).

Integrated Deliberative Layer

Besides the mission planner, a robotic software architecture might contain other reasoning systems
such as path planners, expert systems to evaluate science goals, etc. Integrating them would be the
ultimate step to accomplish reasoning about the mission as a whole. Some initial work has been al-
ready conducted in this direction for FASTER where the mission planner requested battery and time
estimations to the path planner in order to add traverse activities to the plan.

Human-Planner Collaboration

Cooperation between the deliberative layer and humans by means of mixed-initiative planning should
be greatly enhanced in the future. The organization of models and plans in hierarchical structures and
the capability to reason with abstract, complex goals represent a first step to facilitate the analysis,
verification and validation of models and plans, which were identified as key aspects for the space sector
during the recent RCOS (Robot Control Operating System) forum at ASTRA 2015.

APSI and APSI*

The work accomplished in QuijoteExpress helped to discover some limitations in APSI. Starting with
the language, several requirements coming from QE such as identification of default values or decompo-
sitions have been already added. Re-designing DDL as an object oriented language will provide multiple
benefits during the modelling phase, specially from the use of inheritance, a feature that Europa’s NDDL
language already offers[9]. With respect to performance, the major drawback of APSI is the existence of
one single temporal network in the DomainManager. This approach forces the scheduler to add/retract
all the decisions and relations every time a new node is created in the search space. Moreover, it prevents
the use of all kinds of parallelism during scheduling with the exception of multi-heuristic evaluation. The
problem lies on the need to lock the domain to guarantee the consistency of the STP network. Solving
this problem and making APSI thread-safe would drastically improve the performance.

Forward-Chaining Temporal Planning

This technique could be evolved in different ways. First of all, it might eliminate the need of schedul-
ing as used nowadays. Because actions are already ordered, scheduling responsibilities would be reduced
to calculate the time intervals associated to the ordered actions and propagate the changes in the tem-
poral network and resource consumption profiles. Regarding search, the non-linear nature of temporal
problems poses big challenges to forward-chaining planning, making A* non-optimal. Anticipating de-
compositions as much as possible would decrease the error of the heuristics, but other techniques based
on graph-search are also promising.
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Search Algorithms
Multiple search algorithms can be added in a very easy way. Specially useful on-board would be

SMA*, as it limits the memory consumption and Greedy A* because it can generate faster solutions dur-
ing replanning. In models where the distance to the goal can be easily measured, applying IMBA* [23]
based on graph-cuts could improve the performance while maintaining the optimality and completeness
of A*.

Search Space
In search spaces with graph topologies, detecting duplicates becomes important. Even though Quijo-

teExpress does not incorporate any of these algorithms, it is possible to give some hints on the way to go.
Provided that every value and every type of temporal and parametric constraint has a unique numerical
identifier, it would be possible to compute the sum of all the decisions and constraints for each node
generated. In case the sum of a new node were different to that of all nodes in the closed, the new node
could not be a duplicate. This is a necessary but not sufficient condition, therefore the opposite case
would require an exhaustive comparison of all their decisions and relations.

Heuristics
Using forward-chaining search facilitates the use of heuristics developed for classical planners. PDBs

and Landmark heuristics might be highly useful to prune the search space in APSI* based planners thanks
to their conceptual similarities with respect to HTLN methods. It would be interesting to compare them
with HTN methods [61, 60], which might help to understand how to decrease the negative impact of
decompositions in forward-chaining search.

7.2.2 Future of Execution on New Robotic Applications

With respect to the reactive layer, executing directly the Decision Network without the need of extracting
the timelines would simplify the integration of the planner and executive. The framework IDEA [109]
already explored this option but from an architectural rather than planning point of view.

SanchoExpress has been developed for ROS. It is uncertain whether this system will be ready in the
future for space applications where RAMS (Reliability, Availability, Maintainability and Safety) systems
are crucial. While SE can be used “as is” on Earth, space applications might require the concept to be
adapted to other platforms.

7.3 Closing Remarks

The robot industry is experiencing a very rapid growth led by an increasing demand for both service
and industrial sectors. The trigger of the robot revolution will be the massive transition from structured
environments such as factories to the open world, where robotic systems are expected to be used in
diverse scenarios such as healthcare, transport & logistics, defense, homecare or emergency response.
This transition will demand multiple innovations in different areas, being artificial intelligence, and
more specifically decision-making technologies one of the most relevant. Competitions such as the
Darpa Robotic Challenge or the RoboCup, the decreasing price of hardware and the irruption of de-facto
open source standards such as ROS, used by millions of developers, have re-shaped the state-of-the-art,
accelerating the evolution of ground robots.

With a much smaller market, space robotics would certainly benefit from the technologies tested on
Earth in future missions such as Mars Sample Return or a hypothetical return to the Moon, in which
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astronauts are expected to closely collaborate with exploration robots. In this regard, the Horizon 2020
programme has identified six technologies, including autonomy, that will possibly become full scale
applications in the 2025-2035 decade. This thesis makes several contributions in the fields of automated
planning and execution, two technologies that will be increasingly demanded on-board space robotic
missions.
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A.1 HTLN nomenclature

v , v p, v c, V p, V c, v ref , V all Value, Primitive value, Complex value, Reference (complex) value of a
method, Set of primitive values, Set of complex values, Set of all values

dv = 〈τd, v 〉, dpv , dcv , drefv , d+, d−,
Dp, Dc, Dall

Decision where τd ∈ H is the time frame of the decision and v ∈ V c, v ∈ N
a state variable value, Primitive decision, Complex decision, Reference (com-
plex) decision of an instantiated method decision network, Decisions to be
added, Decisions to be deleted, Set of primitive decisions, Set of complex de-
cisions, Set of all decisions

dtlifront, d
tl
gfront Decision frontier for the timeline tl in the initial and goal state respectively

predv =
〈sv ∈ S,Xv = 〈xv

1 , . . . , x
v
m〉〉

Predicate of the value v , where the symbol sv represents the name of the value
and Xv is the set of parameters of v

f , f+, f−, f typet
temp (t1, t2),

f
typep
param(t1, t2, . . . , tm)

Relation, Set of relations to be added, Set of relations to be deleted, Temporal
relation, Parameter relation

D Domain of a variable

m = (vm, dnm), M Method where vm is the reference value and dnm the target network, Set of all
methods of a domain

dn = 〈N,E〉, dni, dnm, dndecdv
Decision Network wit a set N of nodes and a set E of edges, i-th decision
network, method decision network, Instantiated target network of a method
which reference value is v

P Problem

D Domain

σ = 〈Tσ, Nσ〉 Behaviour, where Tσ is a finite set of ordered time instants in H and Nσ is an
assignment of values to the time instants in Tσ

n, nm_i, N Node, i-th node of the target network of method m, Set of all nodes of a
graph/hypergraph

ei, em_i, Emodif , Eparam, Etemp, E Edge, i-th edge of m’s target network, Set of modified relations of resulting of
the instantiation of m’s target network, Set of additional parameter relations
resulting of the instantiation of m’s target network, Set of additional temporal
relations resulting of the instantiation ofm’s target network, Set of all edges of
a graph/hypergraph

ρ(D, dni, dngoal), ρυ , ρσ , ρδ , ρχ, P General resolver which inputs are the domain, current network and goal net-
work; Unfolder; Scheduler; Decomposer; Timeline completer; Set of all re-
solvers

θ(dv , dnm) Most general unifier of a decision dv and a method target network dnm

ρδ(dni, dv , dnm, θ) Decomposition in dni of value dv in the target network dnm under the unifi-
cation θ

γ(dni, ρ) Transition function of a network dni after the application of the output of a
resolver ρ

C,CSV , CC , CR Set of components of a domain, state variable components, consumable re-
source components, reusable resource components

τi = [ti, ti+1) Time interval starting in ti (inclusive) and ending in ti+1 (excluded)
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