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Abstract

Multi-agent systems is an evolving discipline that encompasses many different branches of research.
The long-standing Agents at Aberdeen (A3) group undertakes research across several areas of multi-
agent systems, focusing in particular on aspects related to resilience, reliability, and coordination. In this
article we introduce the group and highlight past research successes in those themes, building a picture
of the strengths within the group. We close the paper outlining the future direction of the group and
identify key open challenges and our vision towards solving them.

1 Introduction

Agents research at Aberdeen has a long history, with work ranging from fundamental theoretical research on
topics such as trust [1, 2], norms [3, 4] and argumentation [5], to applications of such technologies [6, 7, 8].
The Agents at Aberdeen group1 (A3) has changed over time, with several members joining the group in the
last two years. There are currently 5 academics working on research related to agents, and whose interests
cover multiple areas.2 The focus of the group revolves around ensuring that agents not only work well with
each other, but also behave predictably when working as part of a human-agent team and that such agents
can cope with unexpected changes in their environment. The first strand of research aims at enhancing
the reliability of a Multi-Agent System (MAS), and improving its resilience in the face of a dynamic and
changing environment. The second strand of research revolves around coordination among agents, as well as
within human-agent teams.

Resilience determines the ability to detect and deal (recover) with problems that may arise during ex-
ecution (failures, unforeseen circumstances, etc.). Autonomous systems require resilience due to constant
changes in the environment. There are many techniques for increasing resilience, such as runtime monitoring
to detect failures [9, 10], the use of norms and rules to design compliant systems [11, 12], and automated
planning to attempt to recover from failures [13, 14]. Due to the increasing ubiquity of autonomous systems,
there has been significant interest in making such systems more resilient. For example, the Trustworthy
Autonomous Systems Hub [15], is an initiative funded by UKRI which includes an element focused on
resilience.

A reliable system is a system that performs as expected. Reliability is critical when decisions made
autonomously by a system are mission or safety critical, or may affect humans. A recent Dagstühl seminar [16]
brought together researchers working on software engineering, verification, ethics, and machine learning to
discuss reliability in MAS, and highlighted the topic’s importance. One of the outcomes of the seminar was
a special issue [17] that posed two challenges: defining what is a good decision, and how to check that the
system will choose to make good decisions. There are many ways of improving the reliability of a system
and to try to tackle these challenges. For autonomous systems, the techniques often include verification and
validation, ranging from formal verification to simulation-based and physical-based testing [18]. Reliability

1https://agentsataberdeen.github.io/ (Accessed: 29/07/2022)
2In this paper, we focus on the work of the current members of the group rather than taking a historical perspective.
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is somewhat similar to resilience since both deal with increasing the trustworthiness of a system, and the
two concepts are therefore closely interconnected.

Coordination in a MAS concerns the coordination of individual and joint goals/actions of multiple agents.
Despite this simple concept, coordination can be achieved using a multitude of different techniques fromMAS.
For example: agents can engage in argumentation to deliberate about how and when to coordinate and how
to avoid conflicts arising from such coordination [19]; a trust system can be used to determine potential
agents for coordination [20]; norms can be specified to guide agent coordination in order to avoid conflicts or
improve efficiency [4]; multi-agent planning can solve scheduling problems in coordination as well as generate
decentralised plans and/or centralised joint plans [14]; and using goal and plan recognition to reduce the
need for explicit communication during coordination [21].

In this paper, we describe recent work done by A3 in resilience, reliability, and coordination in the
context of multi-agent systems. Figure 1 provides a general overview of the different research topics that
the members of A3 have been working on recently. While this word cloud illustrates some common topics of
research among the group, it does not cover the entirety of the A3’s research portfolio.
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Figure 1: Word cloud containing the most common keywords in recent publications by the members of A3

(2019–2022).

This paper is organised as follows. In Section 2 we list our combined efforts towards resilience and
reliability in autonomous systems. Section 3 briefly contextualises coordination in MAS and describes the
research that we have done in various topics in this area. In Section 4 we discuss open research challenges
in MAS including, but not limited to resilience, reliability, and coordination. Finally, Section 5 summarises
the contributions of the group so far and highlights future work.

2 Resilient & Reliable Autonomy

We use the word resilience to express the ability of an autonomous agent to withstand several types of
failure while remaining functional (to some degree) and ensuring a minimum level of performance. The
notion of reliability is more general than resilience as the agent must have consistently good performance in
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all situations. Reliability is also a prerequisite for a system to be trusted by other agents/users. While trust
has many definitions [22] and is influenced by factors such as reputation, risk, experience, and transparency
among others; the members of the A3 have examined the transparency aspect by providing insightful ex-
planations [7] and visualisations [23], examined how trust can be used to underpin decision-making [6], and
how trust can be computed [2]. In what follows we describe our current work to achieve resilient and reliable
autonomy in MAS.

2.1 Formal Verification of Autonomous Decision-Making

One way of providing stakeholders with assurance in the reliability of a system is verification. Formal verifi-
cation uses formal methods to prove specific properties (often related to requirements) of system behaviour.
Examples of formal methods include model checking [24], where the desired property is specified in an ap-
propriate logic and a model checking algorithm is used to determine whether the property holds for a model
of the system; and runtime verification (RV) [25], which uses monitors to collect runtime events and then
checks formal properties against these events. Many autonomous systems and robotic applications, partic-
ularly in safety-critical domains [26], require some form of formal verification to assure stakeholders that
unsafe behaviours are not possible (or at least very unlikely) to occur, and/or that system objectives will
be achieved. This is evidenced by, for example, the overview of verification challenges for inspection robots
reported in [18] which also describes the common issues encountered in verifying remote inspection tasks
during the authors’ experience in three research hubs within the UK’s “Robots for a Safer World” programme
and which included involvement by members of A3. Verification research in the A3 group has focused in
particular on the verification of resource-bounded agents and multi-agent systems, where the behaviour of the
agents depends on the resources they have available (e.g., time, money, battery power). Initial work consid-
ered the verification of the time, space and communication requirements of agent and multi-agent programs,
e.g., [27, 28, 29], and the strategic ability of coalitions of agents under bounded resources [30, 31, 32, 33],
including the first work to consider systems in which the amount of resources agents are able to produce is
not known in advance [34, 35, 36, 37, 38]. More recently, we have investigated the problem of determining
the minimal amount of resources required to achieve a goal [39] rather than whether a given amount of
resource is sufficient to achieve a goal.

Another challenge in verification of agents is modelling the environment due to its dynamic nature,
which often results in an incomplete abstraction of the real environment. Therefore, a static verification of
the system using this abstraction of the environment does not provide sufficient assurances about the real
reliability of the system. In [40], Ferrando, Dennis, and Cardoso et al. introduce a domain specific language
to model the environment in such a way that a model checker can statically verify the environment. This
language also allows the compilation of runtime monitors that can verify the same constraints at runtime,
effectively checking if the environment abstraction holds during execution.

Members of the A3 group have also developed several tools and applications related to formal verification.
For example, in [32, 41, 33], an extension to the MCMAS [42] model checker is described that allows
verification of properties of resource-bounded multi-agent systems. More recently, Ferrando and Cardoso et
al. developed ROSMonitoring [9], a tool for performing RV of applications designed in the Robot Operating
System (ROS)3. ROS is a middleware for developing software for robots. Its main advantages are modularity,
interoperability, and range of tools and library packages containing drivers and state-of-the-art algorithms
for robotic tasks such as navigation. ROSMonitoring allows the user to specify formal properties in a variety
of formal logics, automatically synthesising the monitor based on a configuration file to be ready to deploy
in a ROS application. The monitor then observes events at runtime (or from a log file) and validates it
against its formal properties. Ferrando and Cardoso also developed the RVPlan [10] tool to automatically
synthesise runtime monitors from assumptions in classical planning. Plans found by a classical planner can
often become outdated when executing in dynamic environments and may be prone to failure. RVPlan
converts preconditions of planning operators and instantiated actions into properties that can be verified at
runtime in order to detect plan failures. Finally, in [43], Cardoso et al. apply heterogeneous verification

3https://www.ros.org/ (Accessed: 03/05/2022)
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techniques, such as RV, model checking, and theorem proving, to verify different nodes in a ROS 3D-based
simulation of an autonomous Mars Curiosity rover.

2.2 Automated Planning and Synthesis

Formal verification is a post-design (or in the case of runtime verification post-development) approach, in
that it checks properties of an existing agent design, program or system. If the desired property does not
hold, the system design or implementation must be revised by a developer and re-verified in an iterative
process. An alternative approach is to derive a (correct) behaviour, plan, program or policy from the
desired property together with a model of the environment and the information available to an agent. Such
approaches differ from learning-based model-free techniques in three key ways [44]. First, they require no
data in order to decide valid actions in any given environment. Second, they provide formal guarantees
about the resulting policies that learning-based approaches cannot. Finally, while no data is required, the
(offline or online) computational cost of deriving a plan or program may be high. Similarly, planning differs
from preprogrammed policies (e.g., using agent programming languages) in that it relieves the burden on
the designer in accounting for every possible contingency imposed by the environment.

Work in the A3 group has focused on two main approaches to the automated derivation of behaviour:
AI behaviour composition [45] where provably correct behaviours or programs are synthesised from a formal
specification of a task; and automated planning, a class of AI algorithms concerned with automatically
generating plans or policies of action using a model of the environment and the information available to an
agent.

In terms of AI behaviour composition, A3 members initiated a new area of research in the synthesis of
provably correct programs for the control of autonomous cyber-physical systems, such as smart manufac-
turing systems consisting of multiple interacting robots [46, 47, 48, 49, 50], and whether a controller can by
synthesised given sufficient resources [51]. In the unbounded setting, only the types of available manufac-
turing resources are given, and we want to know whether it is possible to manufacture a product using only
resources of those types, and, if so, how many resources of each type are needed. This work has led to the
development of synthesis tools capable of generating industry-standard control software for manufacturing
assembly cells [52, 53, 50].

Members of the A3 group have also generated a number of contributions in automated planning modelling
techniques and formalism extensions. First, Maguaguagno, Meneguzzi, and others [54, 55] developed a series
of tools for developing, testing, and visualising planning domain descriptions for classical planning. These
tools have been recognised not only as useful pedagogical tools, but also as informative mechanisms for
visualising heuristic informativeness based on the design of each planning domain. Second, Maguaguagno
and Meneguzzi [56] introduced the notion of semantic attachments to Hierarchical Task Network (HTN)
planning languages, formalising the connection between the syntax of predicates reasoned about by the
planning system, and dynamics external to the planner. Such connection is critical for planning in symbolic-
geometric domains of the type required by robotics applications [57].

While most research in the past 20 years on automated planning has focused on algorithms for state-
space search using formalisms for domain-independent planning, recent efforts [58] have revived interest
in HTN planning, leading to new algorithms and heuristics. By contrast, members of our group have
leveraged techniques from BDI agent reasoning cycles to substantially optimise HTN planning, leading to
the development of HyperTensioN [59].This planner won the 2020 International Planning Competition for
Hierarchical Planning against contenders from multiple research groups. Meneguzzi and others have also
made substantial contributions to planning using reinforcement learning and imitation learning achieving a
high degree of sample efficiency [60].

Finally, we have consistently made contributions to applications of planning formalisms and algorithms.
Specifically, Meneguzzi and others have applied planning techniques to a number of domains, both within
computer science, and in transdisciplinary research. First, Meneguzzi et al. automatically generate and
validate agent commitment protocols [61, 62, 63] using an HTN planning formalism. Second, Meneguzzi et
al. carried out a body of research on applying a combination of automated planning and machine learning
as a tool for neuroscientific research [64, 65].
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2.3 Intention Progression

Autonomous agents often have to achieve multiple goals in parallel. Even if the behaviour or plan to achieve
each goal is (provably) correct, e.g., has been verified or derived from a specification of the goal or task, the
problem of acting (plan execution) remains [66]. The Intention Progression Problem (IPP) is the problem
of what a Belief-Desire-Intention (BDI) agent should do next [67], that is, what means (i.e., plan) to use
to achieve a given (sub)goal; and which of the currently adopted plans (i.e., intentions), to progress at the
current moment. An important capability of an intelligent agent is the ability to progress multiple intentions
in parallel, by interleaving the steps in each intention to provide the best outcome for the agent. This
problem is both central to agent reasoning and complex in its nature. For example, ‘best outcome’ may have
different definitions depending on the application, while goals and plans may conflict given the resources
available. A key challenge is the interleaving of steps in plans in different intentions to avoid conflicts, i.e.,
when the execution of a step in one plan makes the execution of a step in another concurrently executing
plan impossible.

Members of the A3 group have contributed both to state of the art approaches to the IPP, and to
the development of the field through the Intention Progression Competition4. For example, approaches
based on Monte Carlo Tree Search to intention progression at both the plan [68] and action [69] level have
been proposed, while in [70] it was shown how similar approaches can be used to recover from execution
failures, by exploiting positive interactions between intentions. A positive interaction occurs when the
execution of an action in one intention assists the execution of plans or actions in other intentions, for
example, by (re)establishing their preconditions. More recent work has focused on intention progression
under uncertainty [71], e.g., when it is not known whether a particular plan is applicable or an action is
executable, and how offline analysis of possible conflicts between an agent’s plans can significantly reduce
the computation required at runtime [72], increasing the responsiveness of agents to unanticipated changes
in the environment.

2.4 Argumentation-based Explanations

As agents are becoming more complex and ubiquitous in our everyday lives, it has become crucial to be able to
explain their behaviour and allow them to have profound interactions with humans. While there are myriads
of explanation techniques using graphs, statistics, and natural language descriptions, argumentation has a
unique advantage in transparently explaining the procedure and the results of reasoning through an “arguing
process”. The usual process of arguing can be viewed as (1) identifying and modelling the information at hand
and (2) generating an explanation for the topic, usually through some fictitious proponent and opponent
debate game. Of course, the structure of the arguments and the protocol of the debate game will vary
depending on the desired expressiveness of the explanations and the nature of the topic.

For instance, Yun, Vesic and Oren [73] proposed a dialectical framework based on argumentation to
compute and explain pure strategy Nash equilibria. Roughly speaking, this framework extends the framework
of [74] (allowing attacks on attacks) and models a two-agent dialogue, where the proponent’s goal is to show
that an argument is a Nash equilibrium while the opponent seeks to demonstrate that the proponent’s
argument is not a Nash equilibrium by proposing alternatives. Another example is the work of Dennis and
Oren [75], where they proposed a dialogue-based approach for explaining the behaviour of a BDI agent.
This dialogue considers two participants, who may have different views regarding the beliefs, plans and
external events, and make utterances which incrementally reveal their traces to each other, allowing them
to identify divergences or to conclude that their traces agree. Moreover, as part of the EPSRC funded
“Scrutable Autonomous Systems” project, the A3 group made use of their expertise to design a tool based
on argumentation to explain automated planning [7], allowing for humans and agents to coordinate actions.
Much of this project examined efficient proof dialogues for providing such explanation [76], as well approaches
to knowledge representation which can naturally lead to argumentative structures [77].

The members of the A3 group also researched how to convey explanations through various forms of graphs.
This is critical as Vesic, Yun and Teovanovic have shown that interacting with the graphical representation

4http://intentionprogression.org/ (Accessed: 03/05/2022).
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of arguments can increase the compliance with desirable and rational behaviours [78]. As a result, the group
has developed several models and concrete tools to generate argumentation graphs automatically from logical
knowledge bases [79, 80, 81, 82].

2.5 Computational Trust and Normative Reasoning

In an open MAS, agents must identify others to coordinate with, either to undertake joint actions, or to
delegate tasks to. A core problem here is that some agents within the system may be malicious, or simply
incompetent, and such agents should ideally be avoided, or that measures be put into place mitigating the
effect of such agents in order to improve resilience and reliability of the system.

A trust and reputation system allows an agent to combine their direct experiences of others (trust) and
obtain information from third parties about others (reputation), so as to compute a reliability ordering about
these other agents. This reliability ordering can then be used to decide who to interact with [6, 20], or to
put other measures into place so as to minimise the harm these other agents can cause. For example, we
combined a trust rating with principal agent theory to determine how much utility transfer should take
place between a delegator and a delegatee, and how much monitoring the delegator should undertake of the
delegatee’s behaviour [6, 83].

The Eigentrust framework [84] is a simple and popular approach to computing trust among agents,
originally used in the context of peer-to-peer file sharing. Eigentrust assumes that trust is transitive (if
A trusts B and B trusts C then A should trust C), and that an agent’s ability to provide reputational
information is correlated to its ability to perform a task. It then represents the (direct) trust relationship
between agents in a matrix. Multiplying a vector by this matrix yields a new vector representing direct
trust, and — under the assumptions described above — further multiplications of the resultant vector
by the matrix yield a new vector describing first hand, second hand, and so on reputational information.
However, Eigentrust does not discriminate between lack of information about an agent, and lack of trust in
the agent. We proposed the MaxTrust algorithm [2] to take this difference into account, and it has been
shown to obtain more accurate trust ratings in some situations.

Another element of work on trust taking place in the A3 group considers the case where a task can be
delegated multiple times. For example, a company could outsource some task to another, which further
outsources the task until it is eventually executed by the last element of a delegation chain. The question
we ask is how trust should be updated by, and for, all agents in the delegation chain. Beginning with an
empirical evaluation [85], we have described more principled approaches building on ideas from game theory
and multi-arm bandits [20] to deal with trust in such sub-delegative domains. Our current research focuses
on extending this work by integrating reputational information, introducing parallelism, and also considering
a model of others in trust update decisions. A related strand of work considers responsibility and blame for
failures in team plans [86, 87], and allows the degree of responsibility of each agent for the failure, and the
degree of blame attached to each agent to be determined.

While trust allows for the filtering of interaction partners, another aspect of resilience and robustness
involves putting appropriate sanctions into place to punish misbehaving agents, and to compensate those who
suffered. The A3 group has a long history of research into normative systems and electronic contracting to
perform such tasks. For example, [88] introduces a contracting language from which obligations, permissions
and prohibitions with regards to a target can be described (c.f., commitments [89]), while [90] details how an
agent can reason in the context of norms encoded as numerical constraints, and [91] studies the problem of
checking whether agents can bring about a state satisfying a property without incurring a specified number of
sanctions. Norms are inherently non-monotonic [92], and our recent work has examined how argumentation
can be used to undertake practical reasoning in the presence of both norms and goals [93].

A key problem in normative MAS is detecting norm violations. For large-scale MAS, monitoring for vio-
lations may involve significant computational costs. Members of the A3 group have proposed decentralised
approaches to norm monitoring, in which agents are incentivised to monitor the actions of other agents for
norm violations [94]. In [95], this work is extended to settings in which there is no crisp definition of a norm
violation; rather, it is a matter of judgement whether an agent’s behaviour conforms to generally accepted
standards of behaviour, and agents may legitimately disagree about borderline cases. Other norm-related
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work has considered what (and where) monitors need to be placed to check for compliance with obligations
and prohibitions [96], the strongest norm that can be enforced given the available monitoring infrastruc-
ture [97], and which norms can enforced in practical settings [98]. When such monitors are unavailable, plan
recognition can be used to detect deviation from norms [99].

Norms may not always be explicit, and an agent entering a new system may need to learn the system’s
norms. We have described a plan recognition based approach to doing so [100], which effectively filters out
norms inconsistent with executed plans. A refinement to this work [4] used a Bayesian approach to identify
the most likely norms.

3 Coordination

There is a large body of research dealing with coordination among agents including work in game theory [101]
and multi-agent planning [102, 103]. At A3, the focus of research into coordination has revolved around four
elements, namely (a) argumentation as a mechanism for reasoning about how and why coordination should
take place; (b) how to generate decentralised plans and joint plans using multi-agent planning; (c) goal
recognition as a means to understand others’ objectives so as to allow coordination to take place; and (d)
a framework for evaluating the effectiveness of coordination. We now describe each of these topics in more
detail and summarise our contributions.

3.1 Making Decisions in a Multi-Agent Setting

The problem of making a decision when multiple agents are involved is very complex, especially when
many parameters must be taken into account for the decision. There can be one or several global costs
functions that need to be optimised, agents can have conflicting viewpoints about the situation at hand
and can also have different objectives. Within A3, argumentation [104] and dialogue [105] are used as the
underpinning paradigm allowing agents to exchange information, reason in the presence of conflict, and reach
and understand the reasons for a (joint) decision. For example, as part of the EU funded “EcoBioCAP”
project, the problem of designing innovative packaging solutions was investigated. Here, experts taking
the role of agents exchange information to optimise multiple criteria regarding food packaging such as the
packaging’s cost, environmental impact, and bio-safety. Yun et al. [19, 106] then proposed an argumentation-
based tool to drive this information exchange, take account of conflicting agent preferences, and help the
experts understand the impact of arguments advanced by them and others on the final outcome. In other
works, Yun et al. [107] have studied how to best support decision making in more constrained situations,
i.e., when only given agents’ arguments and no preferences are elicited. They proposed an approach that
makes use of ranking-based semantics [108, 109] to provide agents with viewpoints (non-conflicting sets of
arguments) that are the most relevant with respect to several desirable postulates.

It should also be noted that within a MAS, concepts such as trust, goals, obligations and permissions, as
well as the provenance of information also affect decision-making. Research within A3 has examined how an
argumentation semantics can also be used to reason alongside such concepts [110, 93, 111, 112, 8]. As part of
such decision making, strength of evidence (due to different levels of trust in sources or simple uncertainty)
must be considered, and working with different types of argument strength is another element of the group’s
research [113, 114, 115, 116].

While there are increasing evidence that argumentation-based approaches are able to model human
reasoning to a certain extent [117, 118], the generation of arguments [119] and the expensive computation
of some argumentation extensions [120], such as the preferred-semantics, are often limitations that prevent
their wide-adoption in settings where fast decision-making is required. To accommodate such settings, Yun
et al. have also considered rule-based approaches that can be applied directly to knowledge bases in the
Ontology-Based Data Access (OBDA) setting [121, 122]. In this setting, a set of well-designed rules (an
ontology), is used to access and combine the knowledge of each agent, allowing for heterogeneous agents with
different vocabularies (e.g., agents working in different application domain) to seamlessly communicate. For
instance, in [122], a multi-criteria decision-making system is proposed to model each agent criteria evaluation
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over the alternatives using expressive languages. This avenue of research was further investigated by Yun
et al. [121], who combined inconsistency measures with Shapley techniques to assist decision-making. The
approach was successfully applied on the aforementioned packaging use-case, allowing for the data from more
than 20 professionals working in the food industry to be aggregated and used in the decision-making process.

3.2 Multi-Agent Planning

Multi-Agent Planning (MAP) had many different interpretations over the years, but in general the overall
process can be interpreted around two main aspects: a) the planning process itself is either centralised
(performed by a single agent) or distributed (performed by multiple agents), and b) the solution is for a single
agent or for multiple agents. Planning done by a single agent (centralised planner) will encounter the search
state-space explosion problem as the number of agents to plan for increases. Distributing/decentralising
the planning process can lead to faster computation times depending on the number of agents to plan for
and how tightly coupled the actions of these agents are. Tightly coupled actions require more coordination
before/after planning, but in loosely coupled scenarios using multiple agents to perform planning can result
in substantial improvements in planning time [14]. Another advantage of MAP is that it can utilise privacy-
preserving algorithms [123] to maintain various levels of privacy during planning so that private planning
information (such as actions, goals, etc.) are not shared amongst agents.

Cardoso and Bordini developed the Decentralised Online Multi-Agent Planning (DOMAP) framework [14]
that combines HTN planning with the JaCaMo MAS development platform [124], resulting in BDI agents
that can plan at runtime using HTN planning, and then coordinate their actions during execution using
JaCaMo’s organisational dimension. The most notable contributions of the framework is that it can be
used to bridge the gap between planning and execution often found in the literature, it provides fair goal
allocation prior to planning using a contract net protocol mechanism, and it performs decentralised HTN
planning using an off-the-shelf HTN planner. Results show that DOMAP outperforms the best planners
from the 2015 International Competition of Distributed and Multi-Agent Planners (CoDMAP) [125] in
terms of planning time, execution time, and parallelism (variance of the plan size of each individual agent,
used to indicate the spread of actions and to identify how well execution loads are balanced) for the most
difficult problems (large number of agents). As shown by DOMAP, MAS dimensions (agent, environment,
and organisation) and agent programming can help to bridge the gap between planning and execution,
and future work in this topic can tackle some of the most difficult problems in MAP such as dealing with
conflicting actions, coordinating concurrent and joint actions, and enforcing privacy constraints.

3.3 Goal and Plan Recognition

Goal Recognition is a task related to automated planning (Section 2.2), where an agent employs abductive
reasoning to infer the most likely goal pursued by another agent [126]. The evidence for this kind of reasoning
often consists of a sequence of observations of the observed agent’s plan. Here, instead of deducing a plan
from an initial state towards a goal using some kind of domain theory, the deduction is about filtering the
correct goal out of a set of goal hypotheses. Research on goal recognition lies within the context of Plan,
Activity, and Intent Recognition [127] and employs distinct inference techniques to recognise the ultimate
goals of agents under observation. Goal recognition is also related to the problem of Plan Recognition [128],
which consists of trying to infer the actual plan adopted by the observed agent. The task of goal recognition
has a number of potential and actual applications, including assisting the handicapped [129], activities of
daily living [130], workplace safety [131], among others [132, 133].

In the context of the A3 group, goal and plan recognition provide a key mechanism for non-verbal
communication, as agents that can recognise the goals and plans adopted by others can more effectively
coordinate their activities, minimising the need for explicit communication. Members of the A3 group have
made significant contributions in addressing both of these problems at the theoretical and practical levels.

On the theoretical side, Meneguzzi, Oren and Pereira developed the current generation of the state-of-the-
art in goal and plan recognition algorithms. This has started with the application of planning landmarks to
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perform accurate and efficient goal recognition [134, 135, 21, 136]. Building upon this work, the group devel-
oped approaches for online goal recognition in continuous domains [137], as well as in incomplete [138], and
learned domains [139]. The latest iteration of novel goal recognition techniques employs linear programming
and operator-counting heuristics to perform goal and plan recognition under noisy and low observability con-
ditions [140]. More recently, Meneguzzi and others developed a series of techniques for hybrid, neuro-symbolic
reasoning towards goal recognition, to both automatically derive symbolic representations from unstructured
data [130, 141, 142, 143, 144, 145], and enhancing the recognition process with learned preferences of the
agents under observation [146]. Finally, Meneguzzi and others have bridged the gap between reinforcement
learning and goal recognition techniques by providing the first formalisation and efficient algorithms for goal
recognition as reinforcement learning [147].

On the practical side, Meneguzzi and others have developed a number of applications of plan and activity
recognition, including activities of daily living [148] and scene recognition [149]. Goal recognition is an area
that is at least as broad as the applications of automated planning itself [44]. These areas include network
security [150], crowd safety [151], among others.

If the goals of other agents can be recognised (or are known), then agents are able to coordinate more
effectively. The multi-agent intention progression problem for BDI agents extends the IPP presented in
Section 2.3. In the multi-agent setting, how an agent progresses its intentions has implications for both
the achievement of its own goals and the achievement of the goals of other agents, e.g., if the agent selects
a plan that consumes a resource necessary for another agent to achieve its goal. In [152], the MCTS-
based approach to intention progression discussed in Section 2.3 is extended to support intention aware
scheduling, where each agent attempts to anticipate the possible actions of other agents in the environment
when progressing their own intentions. Intention-aware scheduling was shown to be more effective than
the approaches in [69] in cooperative, selfish and competitive environments. More recently, this approach
to intention-aware scheduling has been extended to the case in which the plans used by other agents are
unknown, and agents use an abstraction of their own program called a partially-ordered goal-plan tree
(pGPT) to schedule their intentions and predict the actions of other agents [153].

3.4 Multi-Agent Programming

Agent programming languages focus on rational agents, which are computational programs that usually make
use of a reasoning cycle in order to make their decisions. The most common reasoning model in existing agent
programming languages follows the BDI model, as shown in recent literature surveys [154, 155, 156, 157].

The Multi-Agent Programming Contest (MAPC)5 is an annual competition aimed at advancing the
state-of-the-art in terms of tools, programming languages, and methodologies for the engineering of MAS,
in particular to try to bring forward the advantages of agent programming languages. Teams of agents
compete against each other in a synchronous simulation, with every step lasting only a few seconds in which
agents have to submit their actions for the next step. During this limited period, agents are encouraged
to coordinate and agree on their actions in order to work together as a team and achieve the goals of the
scenario efficiently.

Members of A3 have participated and obtained 1st place in MAPC 2016 [158], 2nd place in MAPC
2018 [159], 1st place in MAPC 2019 [160] and 2nd place in MAPC 2020/21 [161]. In all cases the team was
programmed using JaCaMo [124]. The main strategies used by our teams in the past included the use of an
automated planner to perform optimal planning for the individual movement of agents in the grid [162], a
formally verified map merging protocol [163] that agents followed to coordinate and build a global map, and
the organisational layer in JaCaMo to specify roles and coordination schemes that were used to guide the
high-level coordination of joint actions.

5https://multiagentcontest.org/ (Accessed: 03/05/2022)
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4 Open Challenges and Future Directions

Recent developments in AI, and particularly in machine learning, have the potential to significantly impact
the development and runtime behaviour of agent systems. However, while there has been remarkable advances
in machine learning, many tasks remain resistant to learning-based approaches, for reasons of explainability,
the need for commonsense or causal reasoning, among many others. We believe that future agent systems
must exploit the advantages of both symbolic and sub-symbolic techniques to ensure reliability and resilience
in challenging domains, such as long-term autonomy, human-robot teamwork, and hybrid intelligence. For
example, such systems must be capable of robust autonomous decision-making taking into account socio-
technical concepts (including accountability, responsibility and trust). To be trusted by users and approved
by regulators, we must be able to offer guarantees that the behaviour of such systems is, at the very least, safe.
This will require the development of new approaches to the verification and synthesis of MAS that combine
symbolic and sub-symbolic approaches. Verification of such hybrid systems is extremely challenging, and
will require significant advances across a range of areas, including logics of strategic ability, automata-based
learning, stochastic search and quantitative games on graphs, among others.

We believe that argumentation and dialogue can also address several challenges related to agent reason-
ing, coordination and explanation. One strand of active research involves investigating how closely complex
argumentation systems (e.g., those that incorporate weights or structured arguments) mimic human reason-
ing [164, 165], and how such systems can be made to comply with desirable properties. Such work can allow
an agent to infer a human’s preferences [5], or identify how strong information needs to be to convince a
user of some conclusion [115]. At a more applied level, we intend to investigate argument-based reasoning
in the context of socio-technical concepts such as trust, responsibility and accountability [166].

Despite recent trends in deep learning [167], key applications of AI in our daily lives will involve collabo-
ration between AI systems and humans [168]. Such collaboration imposes several challenges to AI systems,
one of which involves coordinating the activities of AI-driven algorithms and their human partners. To ac-
complish such coordination, AI systems must be capable of reasoning about a number of aspects of cognition
and behaviour. This includes inferring the intentions of their human interlocutors (Section 3.3), reaching
consensus among mixed teams of agents and humans (Section 3.1), and planning for joint courses of actions
(Section 3.2). Our group envisions addressing these kinds of challenges using a mixture of classic AI models
(for robustness and explainability), as well as machine learning models to deal with inherently noisy environ-
mental data. Recent work in this direction includes eliciting (human) preferences from the arguments they
advance [5], and identifying what strength an argument requires to be acceptable to a human reasoner [115].

Most of our work in the past has been in symbolic AI (representation of AI problems through the use
of symbols, simulating the human reasoning process) with some applications of machine learning [146].
However, there are still many open challenges and potential advantages of combining symbolic AI and
machine learning techniques. For example, symbolic AI has been shown to be effective in scenarios where
reactivity is necessary [161], while machine learning has demonstrated excellent results in scenarios where
learning is essential [169]. Therefore, scenarios that require both reactive and learning behaviours, such as
self-driving cars or autonomous vehicles, would greatly benefit from such integration. Moreover, with recent
advances in neuro-symbolic AI [170], we can now align ontologies and concepts with neural networks. A new
research avenue will be to integrate argumentation with such technologies to boost the reliance of neural
network systems by verifying that they comply with basic rules and possibly discover hidden patterns in
data. This will also allow A3 to secure a new way to obtain arguments, possibly bringing argumentation
closer to machine learning.

Alongside the purely architectural questions of how symbolic and sub-symbolic approaches can be effec-
tively combined, work in this direction gives rise to a range of new research problems centred around the
notion of bounded adaptation [171]. How should the split between predefined or canonical behaviours and
learned behaviours (e.g., refinements, or implementations of very high-level actions, etc.) be characterised?
What development methodologies and verification approaches can be used to specify and certify the be-
haviour of agents that integrate significant AI capabilities into their decision making? This can be seen as
establishing a new strand of research exploring hybrids of programming-based, learning-based, and model-
based approaches to developing AI capabilities [172]. We believe that the agent programming paradigm forms
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an ideal framework in which to explore the resulting complex mix of scientific and engineering questions.
Since several members of A3 have only joined the group recently, most of the research topics discussed

in this paper have been investigated separately. Combining the different elements of A3’s research may also
yield interesting insights. For example, argument-based explanation could enhance formal verification of
systems by providing easy to understand reasons as to why certain properties are violated. Similarly, plan
recognition techniques may be used to ascribe responsibility with regards to certain undesirable outcomes in
a system, while multi-agent planning techniques can be combined with other approaches to achieve robust
system behaviour.

5 Conclusion

We have discussed recent work in A3 related to resilience, reliability, and coordination in MAS. We focused
on a variety of topics for each theme. Our work in verification, in particular model checking and runtime
verification, has been demonstrated to improve reliability of cyber-physical systems through the use of
various tools and applications. Still related to reliability, we have described our contributions for automated
generation of programs in both program synthesis and automated planning, allowing the generation of
provably correct programs. In regards to resilience, we have identified the intention progression problem and
proposed a set of state of the art solutions, presented a range of argumentation-based techniques for providing
explanations about agents’ behaviour, and discussed our past work in trust, reputation, and normative
systems. Moving on to coordination, we have reported a series of works based on using argumentation to aid
in making group decisions, a decentralised planner for generating multi-agent plans, goal and plan recognition
techniques as a mechanism for non-verbal communication, and a series of applications in multi-agent oriented
programming scenarios where coordination is essential.

There are still many open challenges that are directly related to resilience, reliability, and coordination
in MAS that we will continue to investigate by extending some of the work reported here. Nevertheless, we
also plan to use our past experience in these research themes to combine and apply them with socio-technical
concepts, human-agent scenarios, and hybrid symbolic and statistical agents.
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