891 research outputs found

    Truncated SIMD Multiplier Architecture for Approximate Computing in Low-Power Programmable Processors

    Get PDF
    [Abstract]: Approximate computing has been exploited for many years in application-specific architectures. Recently, it has also been proposed for low-power programmable processors. However, this poses some challenges as, in a microprocessor, the energy consumed by fetching and decoding an instruction may be significantly higher than that of the execution itself. Therefore, approximate computing would be advisable only for those instructions, in which the execution stage is significantly expensive in terms of energy consumption. In this paper, we present new architectures for truncated SIMD multipliers able to calculate signed and unsigned products from 8 Ă— 8 to 64Ă— 64 bits. Next, we analyze the precision loss incurred by truncation for all product sizes. We implement accurate and truncated architectures for both scalar and SIMD products and find that truncation allows area savings of up to 27%. The proposed design is experimentally evaluated in different scenarios, showing potential energy savings ranging from 29% to 42%. Finally, this paper analyzes the overall convenience of introducing truncated SIMD architectures with respect to accurate SIMD and scalar architectures.This work was supported in part by the Ministry of Economy and Competitiveness of Spain under Project TIN2016-75845-P (AEI/FEDER, UE), in part by the Xunta de Galicia and FEDER Funds of the EU under the Consolidation Program of Competitive Reference Groups under Grant ED431C 2017/04, and in part by the Centro Singular de InvestigaciĂłn de Galicia Accreditation 2016 2019 under Grant ED431G/01.Xunta de Galicia; ED431C 2017/04Xunta de Galicia; ED431G/0

    Designing Approximate Computing Circuits with Scalable and Systematic Data-Driven Techniques

    Get PDF
    Semiconductor feature size has been shrinking significantly in the past decades. This decreasing trend of feature size leads to faster processing speed as well as lower area and power consumption. Among these attributes, power consumption has emerged as the primary concern in the design of integrated circuits in recent years due to the rapid increasing demand of energy efficient Internet of Things (IoT) devices. As a result, low power design approaches for digital circuits have become of great attractive in the past few years. To this end, approximate computing in hardware design has emerged as a promising design technique. It provides design opportunities to improve timing and energy efficiency by relaxing computing quality. This technique is feasible because of the error-resiliency of many emerging resource-hungry computational applications such as multimedia processing and machine learning. Thus, it is reasonable to utilize this characteristic to trade an acceptable amount of computing quality for energy saving. In the literature, most prior works on approximate circuit design focus on using manual design strategies to redesign fundamental computational blocks such as adders and multipliers. However, the manual design techniques are not suitable for system level hardware due to much higher design complexity. In order to tackle this challenge, we focus on designing scalable, systematic and general design methodologies that are applicable on any circuits. In this paper, we present two novel approximate circuit design methods based on machine learning techniques. Both methods skip the complicated manual analysis steps and primarily look at the given input-error pattern to generate approximate circuits. Our first work presents a framework for designing compensation block, an essential component in many approximate circuits, based on feature selection. Our second work further extends and optimizes this framework and integrates data-driven consideration into the design. Several case studies on fixed-width multipliers and other approximate circuits are presented to demonstrate the effectiveness of the proposed design methods. The experimental results show that both of the proposed methods are able to automatically and efficiently design low-error approximate circuits

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    Improving the Hardware Performance of Arithmetic Circuits using Approximate Computing

    Get PDF
    An application that can produce a useful result despite some level of computational error is said to be error resilient. Approximate computing can be applied to error resilient applications by intentionally introducing error to the computation in order to improve performance, and it has been shown that approximation is especially well-suited for application in arithmetic computing hardware. In this thesis, novel approximate arithmetic architectures are proposed for three different operations, namely multiplication, division, and the multiply accumulate (MAC) operation. For all designs, accuracy is evaluated in terms of mean relative error distance (MRED) and normalized mean error distance (NMED), while hardware performance is reported in terms of critical path delay, area, and power consumption. Three approximate Booth multipliers (ABM-M1, ABM-M2, ABM-M3) are designed in which two novel inexact partial product generators are used to reduce the dimensions of the partial product matrix. The proposed multipliers are compared to other state-of-the-art designs in terms of both accuracy and hardware performance, and are found to reduce power consumption by up to 56% when compared to the exact multiplier. The function of the multipliers is verified in several image processing applications. Two approximate restoring dividers (AXRD-M1, AXRD-M2) are proposed along with a novel inexact restoring divider cell. In the first divider, the conventional cells are replaced with the proposed inexact cells in several columns. The second divider computes only a subset of the trial subtractions, after which the divisor and partial remainder are rounded and encoded so that they may be used to estimate the remaining quotient bits. The proposed dividers are evaluated for accuracy and hardware performance alongside several benchmarking designs, and their function is verified using change detection and foreground extraction applications. An approximate MAC unit is presented in which the multiplication is implemented using a modified version of ABM-M3. The delay is reduced by using a fused architecture where the accumulator is summed as part of the multiplier compression. The accuracy and hardware savings of the MAC unit are measured against several works from the literature, and the design is utilized in a number of convolution operations

    Design of Energy-Efficient Approximate Arithmetic Circuits

    Get PDF
    Energy consumption has become one of the most critical design challenges in integrated circuit design. Arithmetic computing circuits, in particular array-based arithmetic computing circuits such as adders, multipliers, squarers, have been widely used. In many cases, array-based arithmetic computing circuits consume a significant amount of energy in a chip design. Hence, reduction of energy consumption of array-based arithmetic computing circuits is an important design consideration. To this end, designing low-power arithmetic circuits by intelligently trading off processing precision for energy saving in error-resilient applications such as DSP, machine learning and neuromorphic circuits provides a promising solution to the energy dissipation challenge of such systems. To solve the chip’s energy problem, especially for those applications with inherent error resilience, array-based approximate arithmetic computing (AAAC) circuits that produce errors while having improved energy efficiency have been proposed. Specifically, a number of approximate adders, multipliers and squarers have been presented in the literature. However, the chief limitation of these designs is their un-optimized processing accuracy, which is largely due to the current lack of systemic guidance for array-based AAAC circuit design pertaining to optimal tradeoffs between error, energy and area overhead. Therefore, in this research, our first contribution is to propose a general model for approximate array-based approximate arithmetic computing to guide the minimization of processing error. As part of this model, the Error Compensation Unit (ECU) is identified as a key building block for a wide range of AAAC circuits. We develop theoretical analysis geared towards addressing two critical design problems of the ECU, namely, determination of optimal error compensation values and identification of the optimal error compensation scheme. We demonstrate how this general AAAC model can be leveraged to derive practical design insights that may lead to optimal tradeoffs between accuracy, energy dissipation and area overhead. To further minimize energy consumption, delay and area of AAAC circuits, we perform ECU logic simplification by introducing don't cares. By applying the proposed model, we propose an approximate 16x16 fixed-width Booth multiplier that consumes 44.85% and 28.33% less energy and area compared with theoretically the most accurate fixed-width Booth multiplier when implemented using a 90nm CMOS standard cell library. Furthermore, it reduces average error, max error and mean square error by 11.11%, 28.11% and 25.00%, respectively, when compared with the best reported approximate Booth multiplier and outperforms the best reported approximate design significantly by 19.10% in terms of the energy-delay-mean square error product (EDE_(ms)). Using the same approach, significant energy consumption, area and error reduction is achieved for a squarer unit, with more than 20.00% EDE_(ms) reduction over existing fixed-width squarer designs. To further reduce error and cost by utilizing extra signatures and don't cares, we demonstrate a 16-bit fixed-width squarer that improves the energy-delay-max error (EDE_(max)) by 15.81%

    A Study on Efficient Designs of Approximate Arithmetic Circuits

    Get PDF
    Approximate computing is a popular field where accuracy is traded with energy. It can benefit applications such as multimedia, mobile computing and machine learning which are inherently error resilient. Error introduced in these applications to a certain degree is beyond human perception. This flexibility can be exploited to design area, delay and power efficient architectures. However, care must be taken on how approximation compromises the correctness of results. This research work aims to provide approximate hardware architectures with error metrics and design metrics analyzed and their effects in image processing applications. Firstly, we study and propose unsigned array multipliers based on probability statistics and with approximate 4-2 compressors, full adders and half adders. This work deals with a new design approach for approximation of multipliers. The partial products of the multiplier are altered to introduce varying probability terms. Logic complexity of approximation is varied for the accumulation of altered partial products based on their probability. The proposed approximation is utilized in two variants of 16-bit multipliers. Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38% respectively compared to an exact multiplier. They have better precision when compared to existing approximate multipliers. Mean relative error distance (MRED) figures are as low as 7.6% and 0.02% for the proposed approximate multipliers, which are better than the previous state-of-the-art works. Performance of the proposed multipliers is evaluated with geometric mean filtering application, where one of the proposed models achieves the highest peak signal to noise ratio (PSNR). Second, approximation is proposed for signed Booth multiplication. Approximation is introduced in partial product generation and partial product accumulation circuits. In this work, three multipliers (ABM-M1, ABM-M2, and ABM-M3) are proposed in which the modified Booth algorithm is approximated. In all three designs, approximate Booth partial product generators are designed with different variations of approximation. The approximations are performed by reducing the logic complexity of the Booth partial product generator, and the accumulation of partial products is slightly modified to improve circuit performance. Compared to the exact Booth multiplier, ABM-M1 achieves up to 15% reduction in power consumption with an MRED value of 7.9 Ă— 10-4. ABM-M2 has power savings of up to 60% with an MRED of 1.1 Ă— 10-1. ABM-M3 has power savings of up to 50% with an MRED of 3.4 Ă— 10-3. Compared to existing approximate Booth multipliers, the proposed multipliers ABM-M1 and ABM-M3 achieve up to a 41% reduction in power consumption while exhibiting very similar error metrics. Image multiplication and matrix multiplication are used as case studies to illustrate the high performance of the proposed approximate multipliers. Third, distributed arithmetic based sum of products units approximation is analyzed. Sum of products units are key elements in many digital signal processing applications. Three approximate sum of products models which are based on distributed arithmetic are proposed. They are designed for different levels of accuracy. First model of approximate sum of products achieves an improvement up to 64% on area and 70% on power, when compared to conventional unit. Other two models provide an improvement of 32% and 48% on area and 54% and 58% on power, respectively, with a reduced error rate compared to the first model. Third model achieves MRED and normalized mean error distance (NMED) as low as 0.05% and 0.009%. Performance of approximate units is evaluated with a noisy image smoothing application, where the proposed models are capable of achieving higher PSNR than existing state of the art techniques. Fourth, approximation is applied in division architecture. Two approximation models are proposed for restoring divider. In the first design, approximation is performed at circuit level, where approximate divider cells are utilized in place of exact ones by simplifying the logic equations. In the second model, restoring divider is analyzed strategically and number of restoring divider cells are reduced by finding the portions of divisor and dividend with significant information. An approximation factor pp is used in both designs. In model 1, the design with p=8 has a 58% reduction in both area and power consumption compared to exact design, with a Q-MRED of 1.909 Ă— 10-2 and Q-NMED of 0.449 Ă— 10-2. The second model with an approximation factor p=4 has 54% area savings and 62% power savings compared to exact design. The proposed models are found to have better error metrics compared to existing designs, with better performance at similar error values. A change detection image processing application is used for real time assessment of proposed and existing approximate dividers and one of the models achieves a PSNR of 54.27 dB

    Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems

    Get PDF
    The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain. FPGA devices are often used as implementation platforms for image and video processing algorithms for real-time applications due to their programmable structure that can exploit inherent spatial and temporal parallelism. While performance and area remain as two main design criteria, power consumption has become an important design goal especially for mobile devices. Reduction in power consumption can be achieved by reducing the supply voltage, capacitances, clock frequency and switching activities in a circuit. Switching activities can be reduced by architectural optimization of the processing cores such as adders, multipliers, multiply and accumulators (MACS), etc. This dissertation research focuses on reducing the switching activities in digital circuits by considering data dependencies in bit level, word level and block level neighborhoods in a video frame. The bit level data neighborhood dependency consideration for power reduction is illustrated in the design of pipelined array, Booth and log-based multipliers. For an array multiplier, operands of the multipliers are partitioned into higher and lower parts so that the probability of the higher order parts being zero or one increases. The gating technique for the pipelined approach deactivates part(s) of the multiplier when the above special values are detected. For the Booth multiplier, the partitioning and gating technique is integrated into the Booth recoding scheme. In addition, a delay correction strategy is developed for the Booth multiplier to reduce the switching activities of the sign extension part in the partial products. A novel architecture design for the computation of log and inverse-log functions for the reduction of power consumption in arithmetic circuits is also presented. This also utilizes the proposed partitioning and gating technique for further dynamic power reduction by reducing the switching activities. The word level and block level data dependencies for reducing the dynamic power consumption are illustrated by presenting the design of a 2-D convolution architecture. Here the similarities of the neighboring pixels in window-based operations of image and video processing algorithms are considered for reduced switching activities. A partitioning and detection mechanism is developed to deactivate the parallel architecture for window-based operations if higher order parts of the pixel values are the same. A neighborhood dependent approach (NDA) is incorporated with different window buffering schemes. Consideration of the symmetry property in filter kernels is also applied with the NDA method for further reduction of switching activities. The proposed design methodologies are implemented and evaluated in a FPGA environment. It is observed that the dynamic power consumption in FPGA-based circuit implementations is significantly reduced in bit level, data level and block level architectures when compared to state-of-the-art design techniques. A specific application for the design of a real-time video processing system incorporating the proposed design methodologies for low power consumption is also presented. An image enhancement application is considered and the proposed partitioning and gating, and NDA methods are utilized in the design of the enhancement system. Experimental results show that the proposed multi-level power aware methodology achieves considerable power reduction. Research work is progressing In utilizing the data dependencies in subsequent frames in a video stream for the reduction of circuit switching activities and thereby the dynamic power consumption

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations
    • …
    corecore