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Abstract

An application that can produce a useful result despite some level of computational error
is said to be error resilient. Approximate computing can be applied to error resilient appli-
cations by intentionally introducing error to the computation in order to improve perfor-
mance, and it has been shown that approximation is especially well-suited for application
in arithmetic computing hardware. In this thesis, novel approximate arithmetic architec-
tures are proposed for three different operations, namely multiplication, division, and the
multiply accumulate (MAC) operation. For all designs, accuracy is evaluated in terms
of mean relative error distance (MRED) and normalized mean error distance (NMED),
while hardware performance is reported in terms of critical path delay, area, and power
consumption.

Three approximate Booth multipliers (ABM-M1, ABM-M2, ABM-M3) are designed
in which two novel inexact partial product generators are used to reduce the dimensions
of the partial product matrix. The proposed multipliers are compared to other state-of-
the-art designs in terms of both accuracy and hardware performance, and are found to
reduce power consumption by up to 56% when compared to the exact multiplier. The
function of the multipliers is verified in several image processing applications.

Two approximate restoring dividers (AXRD-M1, AXRD-M2) are proposed along with
a novel inexact restoring divider cell. In the first divider, the conventional cells are
replaced with the proposed inexact cells in several columns. The second divider computes
only a subset of the trial subtractions, after which the divisor and partial remainder are
rounded and encoded so that they may be used to estimate the remaining quotient bits.
The proposed dividers are evaluated for accuracy and hardware performance alongside
several benchmarking designs, and their function is verified using change detection and
foreground extraction applications.

An approximate MAC unit is presented in which the multiplication is implemented
using a modified version of ABM-M3. The delay is reduced by using a fused architecture
where the accumulator is summed as part of the multiplier compression. The accuracy
and hardware savings of the MAC unit are measured against several works from the
literature, and the design is utilized in a number of convolution operations.
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Chapter 1

Introduction

This chapter provides an introduction to the topics discussed in this thesis. Section 1.1
presents the motivation behind the research, Section 1.2 features a high-level survey of
approximate computing techniques, Section 1.3 describes the novel research contributions
presented in this thesis, Section 1.4 lists the publications and submissions made during
the course of the M.Sc. study, and Section 1.5 details the organization of the thesis.

1.1 Motivation

While energy consumption has always been an important metric in the design of comput-
ing systems, a number of recent trends have led power efficiency to become the paramount
concern in the field. Computing systems are becoming increasingly mobile, and there is
a strong demand for high performance computing on power-constrained devices. Even in
the context of more traditional devices that do not rely on battery power, emerging high
performance applications, such as multimedia streaming and machine learning, require
increasingly large datasets to be processed with high efficiency.

1.1.1 Trends in Semiconductor Scaling

In 1965, Gordon Moore observed that the number of transistors per integrated circuit was
doubling every year, and he predicted that this trend would continue for at least the next
decade [1]. A decade later and the co-founder of Intel, Moore revised his forecast to project
that the doubling would occur every two years [2]. Now widely known as Moore’s law,
his projection has held strong for decades, perhaps having acted as a sort of self-fulfilling
prophecy due to the fact that it has been widely used as a guide for establishing timelines
and setting targets in the semiconductor industry. In 1974, Robert Dennard observed
that power density remained constant as transistor dimensions shrank, a phenomenon
referred to as Dennard scaling [3]. Dennard proposed a method of scaling voltage and
current proportional to transistor dimensions, thereby yielding higher speed and reduced
power consumption. It is crucial to note that Moore’s law alone does not provide any
insight into performance. While Moore’s law predicts that transistors will shrink, it is
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Fig. 1.1. Decay of Dennard scaling in recent years. [5]

Dennard scaling that connects the reduction of transistor dimensions with smaller energy
consumption and higher clock frequencies.

The scaling of transistor density, clock frequency, and power consumption from 1975
to 2015 is shown in Fig. 1.1. For many decades, Dennard scaling allowed for increasing
clock frequencies and decreasing power consumption to match the rate of Moore’s law.
However, as visible from Fig. 1.1, Dennard scaling began to break down in 2005, de-
spite the fact that transistors are still shrinking. The cause of this breakdown lies in an
oversight made by Dennard when formulating his scaling technique, in which he assumed
that threshold voltage would scale with operating voltage. While sub-threshold voltage
leakage was rather negligible in 1974, transistors have now scaled to the point where sub-
threshold leakage has a major impact on overall chip power, thereby presenting serious
challenges with regards to further reducing operating voltage [4]. As a result, while tran-
sistor sizes continue to shrink in accordance with Moore’s law, we can no longer rely on
performance gains provided by Dennard scaling, and thus transistor size is no longer a
reliable representative of single-core computing performance.

Even if sub-threshold leakage can be addressed, there are additional issues associated
with the fact that performance improvements under Dennard scaling intrinsically rely on
Moore’s law. While there is still much debate as to how quickly the rate of progress will
saturate, transistor dimensions are already approaching atomic measurements and can
only become so small before they are fundamentally limited by physical constraints [6].
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In a 2005 interview with Techworld, Moore confirmed that the eventual obsolescence of
the law is unavoidable:

It can’t continue forever. The nature of exponentials is that you push
them out and eventually disaster happens.

In terms of [transistor] size you can see that we’re approaching the size
of atoms which is a fundamental barrier, but it’ll be two or three generations
before we get that far—but that’s as far out as we’ve ever been able to see.
We have another 10 to 20 years before we reach a fundamental limit. By
then they’ll be able to make bigger chips and have transistor budgets in the
billions. [7]

The International Technology Roadmap for Semiconductors has used Moore’s law as a
primary driving force behind their industry roadmaps since 1998. However, in 2016, with
the general acknowledgement that Moore’s law is slowing down, a final roadmap was
published and the organization was succeeded by the International Roadmap for Devices
and Systems, whose aim is to provide a more generalized approach to roadmapping [8],
[9].

Historically, the semiconductor industry has considered transistor miniaturization to
be among the most effective design paradigms in terms of generally improving computing
power. While there is still some room to further shrink transistors, the breakdown of Den-
nard scaling and deceleration of Moore’s law indicate that we must look beyond transistor
scaling if we hope to continue driving performance. This presents a unique opportunity
in that there is an unprecedented push to explore alternate methods of improving com-
putational performance. This push to develop new techniques for improving performance
has been a significant driving force behind the emergence of approximate computing as a
field of research.

1.1.2 Trends in Data Processing Applications

An application is said to be error resilient if it can produce useful results despite some level
of computational error. In [10], several application characteristics corresponding to error
resilience are identified. The ability to handle input noise is indicative of error resilience,
due to the fact that noise is essentially the consistent occurrence of small, unpredictable
errors. Similarly, the ability to handle redundant inputs also improves error resilience, as it
suggests that certain computations may be entirely skipped over without significant issue.
The absence of a unique golden output also corresponds to error resilience, where a perfect
output may be lacking due to the occurrence of multiple equally-desirable outcomes, or
because the optimality of the result is inherently unknown. Applications also tend to be
error resilient if their result is interpreted by limited human perception, e.g. a computer
will analyze an image and detect erroneous pixels with much greater speed and accuracy
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than a human. Finally, an application may be error resilient due to certain algorithmic
features that favor the mitigation of errors. For example, any application implementing
iterative refinement will be error resilient because errors generated are naturally reduced
by the algorithm.

The decreasing cost of storage, commodification of data sensors, and widespread use
of complex computational models for a variety of applications has lead to the emergence
of data-intensive computing as a field of research. Popular applications involving large
datasets include multimedia processing, data mining, data analytics, neural networks,
and computer vision. In [11], Gorton defines data-intensive computing as “managing,
analyzing, and understanding data at volumes and rates that push the frontier of current
technologies.” By definition, conventional processing techniques tend to be ineffective in
handling data-intensive applications, and thus new approaches must be explored. Many
data-intensive applications are error resilient since input noise and redundant data are
so common, and the lack of a golden output is also not unusual. Additionally, appli-
cations such as machine learning make use of highly iterative techniques, and therefore
exhibit a high degree of error tolerance. The prevalence of error resilient applications
has been a significant driving factor behind the development of approximate computing
techniques, and the unique challenges associated with data-intensive processing deepens
this motivation.

1.2 Approximate Computing as a Field of Research

Approximate computing in the most general sense involves the intentional introduction of
error to a computation in order to improve performance. This section provides a survey
of approximation techniques applied at all levels of the computing hierarchy. Software-
level techniques are discussed in Section 1.2.1, architecture-level techniques are reviewed
in Section 1.2.2, and circuit-level techniques are examined in Section 1.2.3. Because this
thesis focuses on the application of approximate computing to arithmetic hardware, a
study of these techniques is omitted from Section 1.2.3, and a comprehensive literature
review is instead provided in Chapter 2.

1.2.1 Software-Level Techniques

Software approximation encompasses a wide variety of methods at varying levels of ab-
straction. At the higher level, approximation-aware programming languages enable the
programmer to directly indicate acceptable levels of accuracy for various computations
executed in their program. In the programming language Eon [12], paths through a pro-
gram occupy different energy states set by the programmer, which generally correspond to
rate of execution priority. Eon’s automatic energy management then dynamically adapts
these states according to currently available and predicted energy levels. In [13], a Java
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extension EnerJ uses type qualifiers to declare data for which approximate computations
may be performed. These type qualifiers indicate to the system how the data should
be handled, where approximate data is mapped to low-power storage, operated on using
low-power computations, etc. The programming language Rely proposed in [14] supports
quantitative reliability specifications for results produced by a function, which essentially
defines the minimum acceptable reliability for the function to be called. A static quanti-
tative reliability analysis is used to verify the quantitative requirements on the reliability
of a program, effectively verifying that the program satisfies its reliability specification
when executed on the underlying unreliable hardware.

Approximate computing can also be applied in software at lower levels of abstraction.
Loop perforation is a technique in which computation loops are transformed to execute
only a subset of their iterations. In [15], a criticality testing phase filters out all critical
loops to identify tunable loops, i.e. any loop whose perforation does not result in unaccept-
able accuracy degradation. Loop perforation is also utilized in [16], in which the accuracy
loss produced by approximation is modelled and subsequently used to make approxima-
tion decisions, such as determining whether to terminate a loop early. In parallel systems,
relaxed synchronization introduces approximation by waiving some of the synchronization
requirements preventing concurrent accesses to shared data. Relaxed synchronization is
used in [17] to improve per-core utilization for the computation of large-scale quadratic
programming problems by relaxing the requirement that full synchronization be achieved
after each iteration and additionally permitting mid-iteration synchronization.

1.2.2 Architecture-Level Techniques

Approximate computing can be applied at the architecture-level in a variety of ways.
Memoization is an instruction-reuse technique in which the result of an instruction or
group of instructions is stored so that it may be reused in the case of an identical in-
struction call. However, the storage of these results requires resources and therefore it is
only beneficial if there is a certain level of data reuse. In fuzzy memoization, stored data
may be reused not only in the case of identical inputs but also for similar inputs, allowing
for a greater level of data reuse. The tolerance of multimedia applications is exploited
in [18], where fuzzy memoization is used for floating-point operations, resulting in energy
improvements of 12%. In the case of a load miss in a private cache, data typically needs
to be retrieved from main memory or higher-level caches, resulting in additional energy
consumption and latency. These costs can be mitigated using a technique called load
value approximation [19] in which value patterns are learned so that an approximate data
value may be generated in the case of a load miss, thereby avoiding the need to stall
during the time it takes to fetch the data and improving speedup by an average of 8.5%.

While a variety of approximate accelerators have been proposed for use in specialized
applications, the development of neural network accelerators has received notable atten-
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tion. A general-purpose limited-precision code accelerator for error tolerant applications
is introduced in [20] in which approximable regions of code are automatically transformed
from a von Neumann model to an analog neural model. An approximate computing
framework for artificial neural networks is proposed in [21] in which the impact of neu-
rons on the output quality is characterized so that the computations and memory accesses
for less critical neurons may be approximated. In [22], the Parrot transformation is pre-
sented which selects and trains a neural network to mimic a region of imperative code.
Once the learning stage is complete, the compiler replaces the code with an instance of
a low power accelerator, i.e. a neural processing unit (NPU). A new approach to imple-
menting hardware-efficient large-scale neural networks is presented in [23] in which neural
networks are approximated by firstly adapting the backpropagation technique to indicate
the impact of approximating a given neuron, and secondly approximating the neurons
found to have the smallest impact on output quality. In [24], an accelerator is used to
address the issue of branch divergence in single instruction, multiple data architectures
by training neural networks offline to approximate those regions of code with degraded
performance due to branch divergence, and subsequently replacing the code regions with
their neural network approximations. In [25], approximate programs are accelerated via
a NPU implemented in a field-programmable gate array (FPGA), where the proposed
accelerator is designed for use with a compiler workflow that automatically configures the
neural network topology and weights, rather than the programmable logic itself.

A number of approximate general-purpose processors have been proposed in the lit-
erature. These architectures generally provide some degree of configurability as to allow
for use not only in error-tolerant applications, but also generic applications with stricter
accuracy requirements. An error resilient system architecture is proposed in [26], where
high error resilience is achieved by mixing processor cores with varying reliability levels,
utilizing error resilient algorithms at the core of probabilistic applications, and perform-
ing intelligent software optimizations. In [27], the minimum error-protection required
for streaming applications is analyzed, and microarchitectural techniques are proposed to
mitigate errors arising in a general-purpose processor built from an unreliable fabric. A
processor is designed in [28] for use in recognition and mining, where a 2-D array of pro-
cessing elements, a streaming memory hierarchy, and an interconnect network allow for
the efficient execution of dominant computational kernels from a wide range of recognition
and mining applications. This work is extended in [29] in which the authors present an
automatic resilience characterization framework designed to quantitatively evaluate the
intrinsic error resilience of a given application. This framework is used alongside accuracy-
scalable hardware that can be dynamically configured at runtime according to applica-
tion requirements and data characteristics. The authors extend this work again in [30],
where they further refine the scalable effort design approach, stating that mechanisms
for modulating computational effort should be sought at all levels of design abstraction,
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emphasizing that maximal exploitation of error resilience requires the cross-layer opti-
mization of scaling mechanisms identified at all layers of abstraction. An energy efficient,
quality programmable vector processor is proposed in [31], where the notion of quality is
explicitly codified in the instruction set architecture (ISA) via the use of instructions for
which an associated quality field indicates the minimum level of accuracy that must be
met during execution. In [32], the authors observe that the memory hierarchy tends to be
overlooked in favor of applying approximation in the data path. In order to realistically
model the relationship between performance improvements and accuracy, errors occur-
ring both along the data path and in the memory hierarchy are analyzed using an energy
model that expresses its findings in terms of operations per virtual Joule, a relative metric
that is independent of implementation technology.

1.2.3 Circuit-Level Techniques

While the majority of circuit-level approximation techniques feature inexact arithmetic
units as explored in Chapter 2, there are several other methods worth discussing here.
While dynamic RAM (DRAM) memory tends to be fast, the storage capacitor within each
memory cell must be periodically recharged for it to maintain its data value, resulting in
additional power usage. Approximation can be applied by reducing the rate of DRAM
refresh, thereby lowering power consumption at the risk of corrupting data stored in the
DRAM cells. An application-level technique is proposed in [33] which allows developers
to specify critical and non-critical data for their programs, where the storage location
for the data is selected by the runtime system accordingly. The refresh rate for the
memory containing non-critical data can then be reduced, resulting in lowered power
consumption. In [34], embedded DRAM-based frame buffers are segmented into four
tiers, each with a different refresh rate, reducing power consumption by an impressive
48% while maintaining adequate performance. Voltage overscaling (VOS) is a technique
in which the supply voltage for a given circuit is reduced without modifying the operational
frequency, lessening power consumption at the risk of analog values. An early example
of approximate computing can be found in [35], where a digital signal processing block
is approximated by pairing VOS with algorithmic noise tolerance schemes which perform
error compensation. In [36], several meta-functions are characterized as computational
kernels common to error resilient applications. An assortment of design techniques are
utilized to allow the hardware implementation for these meta-functions to scale more
gracefully under VOS. In [37], hardware for a proposed ISA extension utilizes dual-voltage
operation, where high voltage is used for precise computations, and low voltage is used
for inexact operations.
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1.3 Contributions of the Thesis

The main contributions of this thesis are as follows:

1. Approximate Booth multipliers
Two approximate partial product generators PPG-1S and PPG-2S are proposed
which utilize only one or two encoding signals, respectively. The first multiplier ABM-
M1 utilizes PPG-2S to approximate the partial products in its least-significant
columns. The second multiplier ABM-M2 uses PPG-2S to replace the least-significant
partial products of each row with a signal approximate partial product. The third
multiplier ABM-M3 utilizes PPG-1S to replace all bits in each row, for a significance
below a certain value, with a single approximate partial product. The designs are
evaluated in terms of accuracy and hardware, and their operation is verified using
several image processing applications.

2. Approximate restoring dividers
Two approximate restoring dividers are proposed, where the first design AXRD-M1
utilizes a novel approximate restoring divider cell in its least-significant columns
to reduce hardware cost. The second divider AXRD-M2 eliminates several rows
from the cell array such that only a subset of the trial subtractions are computed,
after which the partial remainder the divisor are rounded and encoded in order to
estimate the remaining quotient bits. The accuracy and hardware performance of
the dividers is investigated, and their functionality is verified using change detection
and foreground extraction applications.

3. Approximate MAC unit
The Booth multiplier ABM-M3 is used as a basis for designing an approximate
Booth multiplier-based MAC (ABM-MAC) unit, where the critical path delay is
reduced by fusing the accumulation with the multiplier compression. The accuracy
and hardware performance of ABM-MAC are evaluated alongside several other
approximate MAC units for benchmarking purposes. The accuracy-performance
tradeoff is additionally evaluated using combined accuracy-hardware metrics, and
the proposed design is functionally verified using a convolution application.
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1.4 Publications and Submissions during M.Sc. Study

1.4.1 Published Journal

1. S. Venkatachalam, E. Adams, H. J. Lee, and S. Ko, “Design and analysis of area
and power efficient approximate Booth multipliers,” IEEE Trans. Comput., vol. 68,
no. 11, pp. 1697–1703, 2019. doi: 10.1109/TC.2019.2926275

A Major portion of this paper is included in Chapter 3: Approximate Booth Multi-
pliers.

2. E. Adams, S. Venkatachalam, and S. Ko, “Approximate restoring dividers using in-
exact cells and estimation from partial remainders,” IEEE Trans. Comput., vol. 69,
no. 4, pp. 468–474, 2020. doi: 10.1109/TC.2019.2953751

A Major portion of this paper is included in Chapter 4: Approximate Array-Based
Restoring Dividers.

1.4.2 Published Conference

1. E. Adams, S. Venkatachalam, and S. Ko, “Energy-efficient approximate MAC unit,”
in Proc. 2019 IEEE Int. Symp. Circuits and Syst. (ISCAS), 2019, pp. 1–4. doi:
10.1109/ISCAS.2019.8701880

A Major portion of this paper is included in Chapter 5: Approximate Fixed-Point
MAC Unit.

2. S. Venkatachalam, E. Adams, and S. Ko, “Design of approximate restoring dividers,”
in Proc. 2019 IEEE Int. Symp. Circuits and Syst. (ISCAS), 2019, pp. 1–5. doi:
10.1109/ISCAS.2019.8702363

A Major portion of this paper is included in Chapter 4: Approximate Array-Based
Restoring Dividers.

1.4.3 Submitted Journal

1. E. Adams, S. Venkatachalam, H. J. Lee, and S. Ko, “Convolution using an approx-
imate radix-4 Booth multiplier-based MAC unit,” IEEE Trans. Circuits Syst. I,
2020, submitted.
A Major portion of this paper is included in Chapter 5: Approximate Fixed-Point
MAC Unit.
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1.5 Organization of the Thesis

The thesis is organized as follows:

• Chapter 1: Introduction describes the motivation behind the research presented
in this thesis, the history of approximate computing as a field of research, the
contributions provided in this thesis, the publications and submissions made during
the M.Sc. study, and the organization of this thesis.

• Chapter 2: Review of Contemporary Approximate Arithmetic Designs
provides a review of contemporary works in the literature which feature approximate
arithmetic hardware. The approximate designs reviewed include adders, multipliers,
dividers, and MAC units.

• Chapter 3: Low-Power Approximate Booth Multipliers presents three inex-
act radix-4 Booth multipliers which utilize approximation techniques in the partial
product generation stage via the use of two novel inexact partial product genera-
tors (PPGs).

• Chapter 4: Approximate Array-Based Restoring Dividers proposes two in-
exact array-based restoring dividers in which approximation is applied using inexact
divider cells as well as quotient estimation from rounded and encoded values.

• Chapter 5: Approximate Fixed-Point MAC Unit presents an inexact MAC
unit which utilizes one of the PPGs introduced in Chapter 3 alongside other ap-
proximation techniques.

• Chapter 6: Conclusions and Future Work provides a summary of this thesis
and discusses potential future works.
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Chapter 2

Review of Contemporary Approximate
Arithmetic Designs

This chapter provides an overview of approximate arithmetic hardware in the literature.
Approximate adders are reviewed in Section 2.1, inexact multipliers are surveyed in Sec-
tion 2.2, inexact dividers are discussed in Section 2.3, and approximate MAC units are
examined in Section 2.4. For each type of arithmetic unit, the most prominent approxi-
mate designs in the literature are explored.

2.1 Approximate Adders

The half-adder and full-adder architectures are simple and make use of few logic gates.
Thus, the works in the literature that propose approximate half- and full-adder designs
generally involve modifying the adder architecture at the transistor-level to improve hard-
ware efficiency. In [43], the logical complexity of the conventional mirror adder is reduced
to generate four approximate designs exhibiting a substantial reduction in power dissipa-
tion. Similarly, approximate XOR/XNOR-based adders are introduced in [44], where the
adder designs are based on XOR/XNOR-gates modified at the transistor-level for which
the multiplexer operation is implemented using pass transistors.

A wide variety of inexact multi-bit adders utilizing gate-level approximation can be
found in the literature. Considering the addition of n-bit operands X and Y , a conven-
tional parallel adder generally computes a given carry-out ci as a function of all previous
input bits, i.e. ci = f(xi−1, yi−1, . . . , x0, y0), meaning that the critical path delay of the
adder is proportional to log n. One of the earliest approximate adders in the literature is
a modified parallel adder introduced by Lu et al. in [45], for which the carry of a given
stage considers only up to the previous k inputs, i.e. ci = f(xi−1, yi−1, . . . , xi−k, yi−k) where
0 ≤ k ≤ i + 1. Consequently, the critical path delay of the adder is proportional to log k,
and the selection of k = √

n reduces the delay by half. A fast inexact adder based on the
carry-lookahead adder (CLA) architecture is proposed in [46], where a kill signal indicates
that the carry bit be set to zero in the case that both input bits are zero, resulting in the
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dependence of the current carry on the previous carry only if neither kill nor generate are
high. This inexact adder is then used as a component in a reliable variable latency adder
which utilizes error detection and error recovery to guarantee a correct result. In [47], an
inexact adder is proposed in which the addition is split so that the k most-significant bits
are computed using a precise adder and the remaining n−k bits are computed in parallel
by OR-ing the respective input bits.

Numerous approximate adders in the literature make use of segmentation, a technique
in which the inputs of a parallel addition are divided into k-bit segments and the carry-
out for a given segment is computed using only its k input bits. Zhu et al. [48] introduce
an error tolerant adder whose inaccurate part is comprised of a carry-free addition block
and a control block, where the carry-free addition utilizes a modified XOR-gate. In [49],
this work is extended with the proposal of a second adder architecture in which the carry
propagation path is split into several segments over which carry propagation is performed
concurrently. A modified version of this design is also presented in [49], where the carry
generators of each segment are cascaded as to improve accuracy in the most-significant
block at the expense of increased delay. This work is again extended in [50], where a
third error tolerant adder utilizes a selector circuit to determine the number of bits to
be divided into the accurate and inaccurate parts. Zhu et al. extend this work a final
time in [51] by proposing a carry-select adder (CSA)-based design in which the addition
is segmented into k-bit blocks whose carry chains are each broken into two stages, thereby
improving the accuracy of the most-significant block without incurring additional delay.
In [52], a novel function speculation technique is proposed which takes advantage of the
low probability of long carry chains. The addition operands are segmented into windows
of k consecutive input bits, where the carry-out of each window is speculated using only
the k input bits of the window. A variable latency CSA is also proposed in [52], in which
a fast addition is performed by utilizing speculation-based adders.

The literature also features adder designs in which accuracy can be configured at run-
time. In [53], the proposed accuracy-configurable adder is divided into four stages, i.e. an
approximate addition followed by three error correction stages, where the error correction
stages can be selectively enabled or disabled to provide different levels of computational
accuracy. In [54], an approximate adder is proposed where the addition operands are split
into k-bit segments each implemented by a k-bit adder. The adder units are connected us-
ing multiplexers which select a carry-in from either the previous adder unit or the carry-in
prediction component of the given adder unit, allowing for runtime configurability.

2.2 Approximate Multipliers

The application of approximate computing to multipliers has been widely explored in the
literature. Section 2.2.1 discusses approximate multiplier designs derived from the AND-
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array architecture, Section 2.2.2 reviews logarithmic multipliers, Section 2.2.3 surveys
approximate Booth multipliers, and Section 2.2.4 explores multipliers utilizing approxi-
mate compression techniques.

2.2.1 Approximate AND-Array Multipliers

For an n-bit multiplication X × Y , the AND-array multiplier architecture produces a
partial product matrix for which the partial product bit ppij corresponding to the jth
bit of the ith partial product is generated using a single AND-gate to compute xiyj.
In [55], an error tolerant multiplier is proposed in which the input operands are split
into a higher-order part and a lower-order part. A reduced width multiplier is used
to compute the product of the higher-order bits, while the remaining product bits are
approximated according to the position of the leading-one within the lower-order bits
of each operand. The carry propagation path in the resulting architecture is limited to
that of the higher-order part, and the reduction of the partial product matrix results in
substantial power savings. An underdesigned multiplier architecture is proposed in [56],
where an inaccurate 2×2 multiplier block is used to implement larger multipliers. Tunable
accuracy can then achieved by selectively replacing inaccurate 2 × 2 blocks with the
accurate version. In [57], a novel inaccurate 4:2 counter is used to build an approximate
4 × 4 Wallace multiplier. The 4 × 4 multiplier can then be used to build arbitrarily
large multipliers for which power consumption is substantially reduced. An accurate
version of the multiplier is also proposed, where error detection and error correction
compensate fully for all inaccuracies while only marginally increasing area and power
consumption. Similarly, an approximate Wallace-tree multiplier is proposed in [58] in
which a 2n× 2n multiplication is implemented using an accurate n× n multiplier for the
most-significant block and three inaccurate n × n multipliers for the remaining blocks.
Additionally, carry-in precomputation is used to exploit the fact that the occurrence of at
least two 1s in the critical column of the partial product matrix results in a carry of at least
1 being propagated to the next column. A dynamic segmentation method proposed in [59]
extracts a continuous k-bit segment from an n-bit operand for k ≥ n/2, where the segment
may only start from one of several fixed positions dependent on the location of the leading-
one in the operand. The multiplication is then implemented using a k×k multiplier, several
multiplexers, and a few additional gates, resulting in a significant power reduction over
the conventional architecture. In [60], a multiplier is designed to have an unbiased error
distribution, leading to lower computational errors during application. The multiplier
utilizes a leading-one detector (LOD) to locate the leading-one in each operand, and then
selects the following k − 2 bits, where k is a designer-defined value selected in accordance
with accuracy requirements. Error is reduced by assuming a uniform error distribution
and setting the value of the remaining lower bits to the nearest one-hot median value. An
inexact multiplier is proposed in [61] in which the operands are rounded to their nearest
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power of two, allowing for a simplified multiplication to be performed using three shift
operations and two addition/subtraction operations. Three hardware implementations
are presented which utilize computation blocks for sign detection, rounding, shifting,
addition, subtraction, and sign selection.

2.2.2 Logarithmic Multipliers

The logarithmic multiplier (LM), originally introduced in [62], converts the multiplication
operands to inexact logarithmic numbers so that an inexact product may be computed
using only bitshifting and addition. More specifically, the binary operands of the multi-
plication X × Y can be expressed as

log2X = k1 + log2(1 + x1), where 0 ≤ x1 < 1, (2.1)
log2 Y = k2 + log2(1 + x2), where 0 ≤ x2 < 1, (2.2)

in which k1 and k2 are the characteristics of X and Y , respectively, meaning that they
indicate the position of the leading-one in the unsigned binary representations. The
product P and its logarithm can then be expressed as

P = X × Y = 2
k1+k2(1 + x1) × (q + x2), (2.3)

log2 P = k1 + k2 + log2(1 + x1) + log2(1 + x2). (2.4)

As log2(1 + x) ≈ x when 0 ≤ x < 1, the logarithmic product can be approximated as

log2 P ≈ k1 + k2 + x1 + x2. (2.5)

The computation described in (2.1)–(2.5) is implemented by performing leading-one detec-
tion on each operand, converting the operands to their logarithmic equivalents, summing
k1 + x1 and k2 + x2, and converting the result to its binary form. The LM does not
generate partial products and thus does not require the use of partial product generators
or partial product accumulation trees, allowing for substantially reduced hardware com-
plexity. The LM generates significant errors, so contemporary works have aimed to refine
the design and improve its accuracy. In [63], the size of the approximate fraction in the
LM is kept proportional to its precision via the use of truncation. The least-significant
bits are rounded off in the approximate log and anti-log conversions, resulting in reduced
hardware costs. In [64], log2 x is approximated by rounding x to its nearest power-of-two
rather than the highest power-of-two smaller than or equal to x. The multiplication can
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be rewritten as

X = m1 + q1, where m1 = 2
k1 , (2.6)

Y = m2 + q2, where m2 = 2
k2 , (2.7)

X × Y ≈ (2k1+k2 + q22
k1 + q12

k2) +���q1q2 . (2.8)

As indicated in (2.8), the least-significant term is ignored as approximation error. Based
on the LOD structure, a nearest-one detector (NOD) circuit determines the nearest power-
of-two for each operand. The required number of shifts is then determined using a priority
encoder according to the output of the NOD. The three terms are then summed using a
combination of exact and approximate adders.

A LM implementation utilizing an iterative approach is proposed in [65], where a
correction term is computed and added to the approximate product to increase accuracy.
The correction term is computed concurrent to the product, and therefore no additional
delay is incurred. A new truncation scheme is introduced to reduce the area overhead
of the iterative error correction. Designs for both iterative and non-iterative LMs are
proposed in [66], where inexact adders are utilized during the mantissa addition. The
lower-part OR-adder from [47], the third inexact mirror adder design from [43], and a
novel inexact adder architecture are utilized in the mantissa addition, allowing for a
substantial reduction in power-delay product (PDP).

2.2.3 Approximate Booth Multipliers

The radix-4 Booth multiplication algorithm, also known as the modified Booth algorithm,
is a popular multiplication architecture in which the number of partial products is reduced
by encoding the multiplicand as a set of radix-4 digits. The multiplicand is examined in
overlapping 3-bit groups {y2i+1, y2i, y2i−1}, and each group is encoded as a radix-4 value in
the range [−2, 2] via the use of a modified Booth encoder (MBE) circuit. Each encoded
digit is expressed using three encoding signals, i.e. neg i, twoi, and zeroi. A PPG takes as
input the encoding signals along with multiplier bits xj and xj−1 to compute the jth bit of
the ith partial product ppij. For a signed n×n multiplication, the height of the resulting
partial product matrix is reduced to ⌈n/2⌉. Because the partial product generation of the
Booth multiplier has additional complexity, a number of works apply approximation to the
MBE or the PPG to reduce hardware cost. In [67], a MBE is proposed in which four novel
encoding signals are generated. The delay incurred in the encoder is equal to that of the
fast conventional encoder, and the decoder requires two fewer transistors when compared
to the conventional design. The structure of the partial product matrix is also modified
by combining the least-significant bit (LSB) of each row with its corresponding sign-
correction term as to make the matrix more regular. The final summation is performed
using a novel adder which combines the properties of the conditional-sum adder and the
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conditional-carry adder. An approximate Wallace-Booth multiplier is proposed in [68],
where an inexact MBE, an approximate 4:2 compressor, and an approximate tree structure
are utilized. Rather than generating encoding signals and passing them to the PPG, the
approximate MBE computes the partial product bit in terms of three multiplier bits
and a single multiplicand bit, generating errors in only 2/16 input combinations. The
approximate 4:2 compressor utilized during compression is the second design from [69].
Finally, the approximate tree structure eliminates a compression stage by utilizing the
approximate compressor in the n/2 least-significant columns of the matrix and eliminating
the most-significant sign-correction term. An approximate Booth multiplier is presented
in [70], where two inexact encoding algorithms are utilized alongside an approximate
Wallace tree. Both of the proposed encoders express the partial product as a direct
function of the multiplier and multiplicand bits, introducing error in 4/32 and 8/32 cases,
respectively. Similar to [68], the number of compression stages in the Wallace tree is
reduced by ignoring the most-significant sign-correction term.

The literature also features a number of approximate multipliers that make use of
higher-radix Booth encoding. The radix-8 Booth algorithm tends to be less popular
due to the complexity in generating partial products corresponding to ±3X. In [71],
an approximate 2-bit adder is designed for calculating this partial product by summing
×1X and ×2X. Two approximate radix-8 multipliers utilizing this adder are proposed,
where each multiplier is implemented for several truncation widths. In [72], a hybrid
high-radix encoding scheme is used to improve multiplier performance. In the proposed
encoding scheme, the n-bit multiplicand is divided into two parts: the higher-order part of
n− k bits, and the lower-order k-bit part, where the configuration parameter k is an even
number such that k ≥ 4. The higher-order part is encoded using radix-4 Booth encoding
to maintain accuracy, while the lower-order part utilizes a high radix-2k encoding to
reduce hardware cost. Three multipliers are implemented for which the lower-order part
is encoded using radix-64, radix-256, and radix-1024 encoding, respectively. Compared to
the accurate radix-4 multiplier, the proposed designs reduce area and power consumption
by up to half while producing an error with a Gaussian distribution and a near-zero
average.

2.2.4 Multiplication using Approximate Compressors

Partial product accumulation is often the most resource-intensive stage of the multipli-
cation operation. Thus, a number of approximate compressors have been proposed for
use in reducing the complexity of the accumulation tree. In [69], two inexact 4:2 com-
pressors are proposed and subsequently verified for use in partial product accumulation.
The first approximate compressor leverages the fact that the carry output for an exact
compressor is equal to cin in 24 of 32 input states by simplifying carry to cin . Because
the carry output has a higher weight than the other outputs and produces a difference

16



of 2 when incorrect, partial error compensation is provided by setting the sum output
to 0 in the case that cin = 1. The cout output is also modified to compensate for errors
associated with carry and sum. The result of these modifications is an incorrect output
in 12/32 cases. Because the carry and cout outputs have the same weight, their equa-
tions are simply interchanged in the second compressor design, resulting in an output
error rate of 4/16. Several n × n multipliers are implemented, where exact compressors
are replaced with one of the proposed compressors for either the entire partial product
matrix or the n − 1 least-significant columns. The use of approximate compressors in
the n − 1 least-significant columns provides a good balance between improving hardware
performance and maintaining accuracy. Three approximate 4:2 compressors are proposed
in [73], where the cin and cout signals are ignored. The inexact compressors are utilized
in a 8× 8 multiplier with Dadda-tree accumulation, where the four least-significant prod-
uct bits are truncated and the next four least-significant product bits are accumulated
using the proposed compressors. In [74], the compressor designs from [69] and [73] are
modified for use alongside error recovery modules, resulting in a multiplier design with
higher accuracy, smaller area, and lower power consumption. Approximate designs for a
2:1 compressor, 3:2 compressor, 4:2 compressor, 5:3 compressor, and 6:3 compressor are
introduced in [75], where the optimal allocation of approximate compressors for a given
multiplier is determined using a novel algorithm. The proposed compressors and alloca-
tion algorithm are tested for several operand lengths and are shown to provide substantial
reductions in power and delay.

2.3 Approximate Dividers

Division as an operation is not nearly as ubiquitous as multiplication. In the an average
computer program, multiplications occur with a much greater frequency than divisions.
Because of its lower utilization, the design of approximate dividers has received rela-
tively little attention. Additionally, while the partial products of a multiplication can be
generated in parallel, division is a sequential operation and thus is more challenging to
approximate, due to the fact that the error produced at a given stage will propagate to
all following stages. Division is commonly implemented using an array-based architec-
ture which implements either a restoring or non-restoring division algorithm. A restoring
2n/n division performs the operation over i iterations, where each iteration involves the
subtraction of the divisor from the shifted partial remainder to produce a trial difference.
If the result of the subtraction is non-negative, the quotient bit for the current iteration
is set to 1 and the partial remainder is loaded with the value of the trial difference. If
the subtraction produces a negative result, the quotient bit is set to 0 and the partial
remainder is restored to its prior value. In non-restoring division, the result of the sub-
traction instead selects a quotient bit from the set {−1, 1} so that restoring the value of
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the partial remainder is not necessary. The non-restoring division architecture requires
an additional remainder correction circuit to correct the final remainder in the case that
it is negative. Array-based division utilizes a matrix of divider cells, where each row
computes an iteration of the division. In [76], three transistor-level approximations of the
full-subtractor are presented. Three corresponding designs are then proposed in which the
conventional subtractor of the divider cell is replaced with the approximate subtractor for
a portion of the array, where four different cell-replacement schemes are explored. The
authors of [76] extend their work to restoring dividers in [77], where the inexact subtractor
cells proposed in [76] are utilized in three restoring divider designs. In [78], the proposed
divider computes the division of a n-bit dividend by a n/2-bit divisor by utilizing a LOD
to dynamically select for each operand a predefined number of consecutive bits starting
at the leading-one, which are then routed to an accurate core divider. The parameter k

refers to the number of bits that are divided in the core divider, meaning that k dividend
bits and k/2 divisor bits are selected. Priority encoders and multiplexers are used to route
the selected bits to the core divider to compute a k/2-bit quotient which is then adjusted
to a width of n/2 using a barrel shifter. A similar design is presented in [79], where
LODs are used to select a portion of the bits from each input operand for routing to an
accurate reduced-width divider. An additional error-correction block utilizes OR-gates to
recover the error introduced by the shifter. In [66], the architectures of the logarithmic
divider and the conventional array-based divider are combined in an approximate hybrid
divider. Restoring divider cells are used to generate the most-significant bits (MSBs) of
the quotient as to maintain accuracy, while the use of logarithmic division to compute
the LSBs reduces hardware cost.

2.4 Approximate MAC Units

While approximate computing has been widely applied to atomic arithmetic operations,
comparatively little work has been done to utilize approximation techniques in the MAC
unit hardware. In [80], an inexact MAC unit is proposed in which the partial prod-
uct terms of the multiplier are compressed using OR-gates to implement approximate
counters, and a compensation term is introduced to improve accuracy. Designs are im-
plemented for three levels of truncation, and the function of the proposed MAC unit is
verified using a Gaussian kernel application. An inexact MAC unit is proposed in [81],
which utilizes an approximate compression tree to improve hardware performance. The
MAC operation is divided into two stages: (1) AND-based partial product generation,
and (2) partial product accumulation via the compression tree. The proposed design im-
plements a fused MAC architecture, where the previous accumulator value is inserted at
the bottom of the generated partial product matrix so that it may be accumulated during
partial product compression. The compression tree performs an approximate compression
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over three stages to produce an intermediate product and two accuracy compensation vec-
tors. The intermediate product and compensation vectors are subsequently compressed
into a sum and carry, which are then summed to generate the final result. The function-
ality of the proposed MAC unit is verified in a Gaussian smoothing application, as well
as a convolution operation within a neural network.
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Chapter 3

Approximate Booth Multipliers

In this chapter, approximation is applied to the radix-4 Booth multiplication architecture
to produce three inexact multiplier designs. Approximation is introduced in the partial
product generation stage of the multipliers using two novel inexact PPGs which utilize a
reduced number of encoding signals. In two of the proposed multipliers, the use of the
approximate PPGs results in the reduction of the partial product matrix. The designs
are evaluated alongside other state-of-the-art approximate multipliers, where MRED and
NMED are used to measure accuracy, and hardware performance is evaluated in terms
of area, power consumption, and area-power product (APP). The multipliers are utilized
in applications for image transformation, matrix multiplication, and a finite impulse re-
sponse (FIR) filter, where application performance is evaluated using peak signal-to-noise
ratio (PSNR), MRED/NMED, and mean squared error (MSE), respectively.

Author contributions are firstly outlined in Section 3.1. Section 3.2 provides a back-
ground of radix-4 Booth multipliers, and Section 3.3 presents the inexact multiplier de-
signs. Accuracy and hardware performance are evaluated in Section 3.4, and signal pro-
cessing applications are presented in Section 3.5.

3.1 Author Contributions

S.V. conceived of and designed the proposed multiplier models. E.A. provided minor de-
sign contributions to the proposed models. S.V. and E.A. carried out the implementation
of benchmarking models from the literature. S.V. and E.A. carried out the functional
simulations and synthesis simulations. S.V. and E.A. analyzed the accuracy and hard-
ware metrics of the implemented models. S.V. carried out the simulations for the signal
processing applications. S.V. and E.A. wrote the manuscript in consultation with S.K.
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Table 3.1. Radix-4 Booth encoding where (ppij)4 is the partial product as a radix-4 digit

Input Encoded Signals (ppij)4
y2i+1 y2i y2i−1 neg i twoi zeroi

0 0 0 0 0 1 +0
0 0 1 0 0 0 +X
0 1 0 0 0 0 +X
0 1 1 0 1 0 +2X
1 0 0 1 1 0 −2X
1 0 1 1 0 0 −X
1 1 0 1 0 0 −X
1 1 1 0 0 1 −0

3.2 Radix-4 Booth Multipliers

Consider the 2n-bit product P of a signed n × n multiplication with multiplier X and
multiplicand Y given by

X = −xn−12
n−1 +

n−2

∑
i=0

xi2
i
, (3.1)

Y = −yn−12
n−1 +

n−2

∑
i=0

yi2
i
, (3.2)

P = −p2n−12
2n−1 +

2n−2

∑
i=0

pi2
i
. (3.3)

The radix-4 Booth multiplication algorithm, also known as the modified Booth algorithm,
reduces the number of partial products by encoding the multiplicand as a set of radix-
4 digits. The encoding process is described in Table 3.1. First, the multiplicand is
examined in overlapping 3-bit groups {y2i+1, y2i, y2i−1} as shown in Fig. 3.1, where the
least-significant group uses only two bits of the multiplicand and assumes the third bit to
be zero. Each 3-bit group occupies an unsigned value in the range [0, 3] and is inputted
to a MBE which computes the equivalent radix-4 encoded value, a signed number in the
range [−2, 2]. Each encoded digit can be represented using three encoding signals neg i,
twoi, and zeroi defined as

neg i = y2i+1 ⋅ y2i ⋅ y2i−1, (3.4)
twoi = y2i+1 ⋅ y2i ⋅ y2i−1 + y2i+1 ⋅ y2i ⋅ y2i−1, (3.5)
zeroi = y2i+1 ⋅ y2i ⋅ y2i−1 + y2i+1 ⋅ y2i ⋅ y2i−1. (3.6)

Each bit of the partial product is computed via a PPG whose circuit schematic is
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0 1 1 0 1 0 1 0 0
Fig. 3.1. Example of overlapping encoding groups for an 8-bit multiplicand, where red indicates the zero
padding bit.

0

1xj

xj−1

twoi

m

negi zeroi

ppij

Fig. 3.2. Gate-level schematic for exact PPG.

Fig. 3.3. Partial product matrix of the exact 16×16 radix-4 Booth multiplier. ●: a partial product. ○: a
sign-extension term. ○: an inverted sign-extension term. □: a sign-correction term.

shown in Fig. 3.2. The generated partial product is given by

m = (xj ⋅ twoi) + (xj−1 ⋅ twoi),
ppij = zeroi ⋅ (neg i ⊕m). (3.7)

While a traditional AND-array based multiplier produces a n×n partial product matrix,
the radix-4 Booth algorithm reduces the height of the matrix to ⌈n/2⌉ as visible in Fig. 3.3.

3.3 Approximate Radix-4 Booth Multipliers

Because of the complexity associated with multiplicand encoding, Booth multipliers are
well-suited to applying approximation techniques in the partial product generation hard-
ware. An exact radix-4 PPG requires all three encoding signals, i.e. neg i, twoi, and zeroi,
to generate the partial product. In approximate Booth multiplier model 1 (ABM-M1) and
approximate Booth multiplier model 2 (ABM-M2), an approximate PPG is used where
only two of the three signals, namely neg i and twoi, are utilized. In approximate Booth
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Fig. 3.4. Karnaugh-map for PPG-2S, where 1 represents a change from 0 to 1 and 0 represents a
change from 1 to 0.

multiplier model 3 (ABM-M3), an additional inexact PPG is proposed in which only the
signal zeroi is utilized. In ABM-M1, approximation is also applied in the partial product
accumulation by combining the sign-correction terms cor i with their respective columns
in the partial product matrix, thereby reducing its height. In ABM-M2 and ABM-M3,
the width of the partial product matrix is reduced by replacing several exact PPGs with
a single approximate PPG for multiple rows of the matrix.

The term approximation factor k is used to refer to the magnitude of approximation
for a given design. ABM-M1 and ABM-M3 employ a column-wise approximation, where k
refers to the number of columns in which approximate PPGs are used. ABM-M2 utilizes
a diagonal-wise approximation for which k implies the number of exact PPGs in each
matrix row that are replaced with a single inexact PPG. For ABM-M1 and ABM-M3,
designs for k = 4, 8, 12, 16 are implemented. Because the reduction technique in ABM-M2
approximates a greater number of elements for a given k when compared to the other
designs, ABM-M2 models for k = 2, 4, 6, 8 were selected for implementation.

3.3.1 Approximate Booth Multiplier Model 1 (ABM-M1)

The logic of the exact PPG is modified according to the Karnaugh-map [82] shown in
Fig. 3.4 in which 4/32 entries are modified. The resulting architecture is a 2-signal partial
product generator (PPG-2S), where the two utilized encoding signals are neg i and zeroi.
The circuit schematic for PPG-2S is shown in Fig. 3.5 and can be expressed as

ppij = xj ⋅ neg i + xj ⋅ neg i ⋅ zeroi. (3.8)

When compared to the exact PPG, the PPG-2S circuit does not require a multiplexer
or an XOR-gate, and the output can be expressed using only two AND-gates and one
OR-gate. The error difference between the exact PPG and PPG-2S is given in Table 3.2.
Since the twoi signal is absent in PPG-2S, the +2X and −2X cases are replaced with
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xj

negi

xj

negi
zeroi

ppij

Fig. 3.5. Circuit-level schematic for PPG-2S.

Table 3.2. Accurate radix-4 encoding vs. approximate encoding via PPG-2S

PPG PPG-2S

neg i twoi zeroi
ppij∣xjxj−1 (ppij)4 ppij∣xjxj−1 (ppij)4 Error

00 01 10 11 00 01 10 11

0 0 1 0 0 0 0 +0 0 0 0 0 +0 0

0 0 0 0 0 1 1 +1X 0 0 1 1 +1X 0

0 0 0 0 0 1 1 +1X 0 0 1 1 +1X 0

0 1 0 0 1 0 1 +2X 0 0 1 1 +1X 1

1 1 0 1 0 1 0 −2X 1 1 0 0 −1X −1
1 0 0 1 1 0 0 −1X 1 1 0 0 −1X 0

1 0 0 1 1 0 0 −1X 1 1 0 0 −1X 0

0 0 1 0 0 0 0 −0 0 0 0 0 −0 0

Fig. 3.6. Partial product matrix of ABM-M1 for k = 12. ●: an exact partial product. ■: an inexact
partial product generated by PPG-2S. ○: a sign-extension term. ○: an inverted sign-extension term.
⊙: the result of OR-ing each sign-correction term with the above partial product.

+1X and −1X, respectively, resulting in two cases with an error distance of ±1.
The partial product matrix of ABM-M1 for k = 12 is shown in Fig. 3.6. In the

ABM-M1 design, all partial products with a significance less than k are approximated
using PPG-2S, and all remaining partial products are generated using the exact PPG.
To reduce the height of the matrix, each sign-correction term is combined with the least-
significant bit in its corresponding row using an OR-gate.
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8-input reduction via
summation and PPG-2S

(a)

(b)

Fig. 3.7. Partial product matrix of ABM-M2 for k = 8, where (a) indicates the row-wise groups over
which xj is summed, and (b) shows the reduced matrix. ●: an exact partial product. ■: an inexact
partial product generated by PPG-2S. ○: a sign-extension term. ○: an inverted sign-extension term.

3.3.2 Approximate Booth Multiplier Model 2 (ABM-M2)

The ABM-M2 design differs from ABM-M1 such that, in every row of the partial product
matrix, the k least-significant exact PPGs are replaced with a single PPG-2S. The k LSBs
of input X are summed to produce xsum , and a value x∀j∈(0,k−1) is generated by comparing
xsum to the median value for a k-bit number according to

xsum =
k−1

∑
j=0

xj,

x∀j∈(0,k−1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩1, xsum > k/2
0, xsum ≤ k/2 .

(3.9)

The approximate partial product ppi,∀j∈(0,k−1) for each row i is then generated using
PPG-2S, where x∀j∈(0,k−1) is supplied as the xj signal.

The reduction of the partial product matrix is illustrated in Fig. 3.7 for k = 8. The
8 LSBs of X are summed to produce xsum . From xsum , the value x∀j∈(0,7) is found as
per (3.9), which is then used to generate for each row i the approximate partial prod-
uct ppi,∀j∈(0,7), where neg i, zeroi, and x∀j∈(0,7) serve as the inputs to PPG-2S.
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x0
x1

xk−(2i+1)
zeroi

ppij

…

Fig. 3.8. Circuit-level schematic for PPG-1S.

variable-input reduction via
OR-gate and PPG-1S

(a)

(b)

Fig. 3.9. Partial product matrix of ABM-M3 for k = 12, where (a) indicates the row-wise groups over
which xj is reduced, and (b) shows the reduced matrix. ●: an exact partial product. ■: an inexact
partial product generated by PPG-1S. ○: a sign-extension term. ○: an inverted sign-extension term.
□: a sign-correction term.

3.3.3 Approximate Booth Multiplier Model 3 (ABM-M3)

In the ABM-M3 design, all partial products with significance less than k are reduced to
a single column of approximate partial products. Considering the exact partial product
matrix in Fig. 3.3, for a given row i, let l be the number of bits with a significance less
than k. For a row i, x∀j∈(0,k−(2i+1)) is generated by OR-ing the l least-significant bits of X.
The approximate partial product for the row i is then generated by the use of the 1-signal
partial product generator (PPG-1S), whose circuit schematic is shown in Fig. 3.8. PPG-1S
takes in the signal zeroi and the result of the OR operation to produce the approximate
partial product for that row.

Consider the partial product matrix for k = 12 shown in Fig. 3.9. For the row i = 3,
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Table 3.3. Accuracy and hardware metrics for approximate multipliers

Design k

Error Metrics Hardware Metrics

MRED NMED Area Power APP
(10−2) (10−6) (µm2) (mW) (µm2 ⋅mW)

Exact radix-4 — — — 3851 1.3 5006
Exact radix-8 — — — 4116 1.3 5351

4 0.011 5.079 3578 1.3 4651
8 0.012 5.089 3419 1.2 4103
12 0.016 5.491 3218 1.2 3862ABM-M1

16 0.079 20.800 3160 1.1 3476

ABM-M2

2 0.040 15.250 3148 1.1 3463
4 0.165 64.626 2797 1.0 2797
6 0.663 266.100 2333 0.8 1866
8 2.689 1087.270 2015 0.7 1411
4 0.007 0.005 3747 1.3 4871
8 0.010 0.106 3563 1.3 4632
12 0.020 2.002 2669 1.0 2669ABM-M3

16 0.340 36.150 1830 0.7 1281

R4ABM [70]

4 0.012 5.714 4037 1.3 5248
8 0.013 5.835 4008 1.3 5210
12 0.038 8.430 3640 1.2 4368
16 0.473 64.190 3362 1.1 3698

ABM1 [71] — 0.040 19.360 3589 1.2 4307
ABM2-C9 [71] — 0.089 44.500 2820 1.0 2820
RAD256 [72] — 0.277 167.800 1977 0.7 1384

xj ranging from 0 to k − 7 are passed to the (k − 6)-input OR-gate. The output of this
OR-gate x∀j∈(0,k−7) and the signal zero3 are inputted to an AND-gate which computes
the approximate partial product pp3,∀j∈(0,k−7). Similarly, for i = 0, input xj from 0 to
k − 1 and zero0 are considered. For the row i = 1, input xj from 0 to k − 3, and zero1 are
considered. For the row i = 2, input xj from 0 to k − 5 and zero2 are considered, and so
on.

3.4 Experimental Results

In addition to the proposed designs, several state-of-the-art approximate Booth multipli-
ers are implemented for benchmarking purposes. In [70], an approximate radix-4 Booth
multiplier (R4ABM) is proposed in which a novel inexact PPG does not take in any
recoding signals, but rather operates only on bits of the multiplicand and multiplier.
The approximate Booth multiplier 1 (ABM1) presented in [71] is a radix-8 based design
which approximates partial products corresponding to ±3X using an inexact 2-bit adder.
ABM2-C9 is a modification of ABM1, where error compensation is utilized in the approx-
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imate 2-bit adder alongside 9-bit truncation. In [72], the RAD256 multiplier uses radix-4
encoding to compute higher-order partial products, while radix-256 encoding is used to
compute lower-order partial products. Because the designs from [71] are based on the
radix-8 architecture, an exact radix-8 multiplier is implemented along with the radix-4
design to provide fair benchmarking.

All designs are implemented in Verilog HDL, and functional verification is performed
using a SystemVerilog testbench. Python scripts are used to process the testbench out-
puts. All multipliers are tested on an identical set of one million random input pairs with
a uniform distribution. The multipliers are synthesized using Synopsys Design Compiler
for the TSMC 65 nm technology library. The Design Compiler simulations use an operat-
ing voltage of 1 V and an operating temperature of 25 °C. The largest critical path delay
of all the designs, i.e. that of the exact radix-8 multiplier, was measured to be 1.2 nm,
and this delay value was then used as the timing constraint when simulating all other
models. The error characteristics of the implemented designs are reported in Table 3.3,
where the error metrics computed are MRED and NMED as defined in [83]. Area, power
consumption, and APP are the metrics used to evaluate hardware performance.

ABM-M2 achieves an accuracy similar to that of ABM1 and ABM2-C9 [71], but is
outperformed by R4ABM [70]. ABM-M1 and ABM-M3 exhibit the lowest MRED values,
and ABM-M3 achieves the lowest NMED values. All proposed designs exhibit significant
area and power savings over the exact radix-8 multiplier. ABM-M1 provides APP savings
in the range of 13% to 35%, and ABM-M3 provides APP savings in the range of 9% to 76%.
ABM-M2 exhibits the most substantial APP reduction, with k = 2, 4, 6, 8 corresponding
to improvements of 35%, 48%, 65% and 74%, respectively.

3.5 Applications

Three signal processing applications are used to verify the function of the proposed mul-
tipliers, namely image transformation, matrix multiplication, and a FIR filter implemen-
tation. Designs for k = 8, 16 are tested for ABM-M1 and ABM-M3, while ABM-M2 is
tested for k = 4, 8. Simulations were performed in ModelSim, and MATLAB was used to
generate input data and assess output quality.

3.5.1 Image Transformation

A 16-bit image is selected and its pixel values are shifted from the range [0, 65535] to[−32768, 32767]. The pixel values of the image are then multiplied by a constant to
provide a brightening effect. The outputs computed for the implemented designs are
shown in Fig. 3.10, where PSNR is used to express the quality of the result. For all
models, image quality deteriorates with increasing approximation factor. ABM-M3 for
k = 8, 16 outperforms R4ABM for equivalent approximation factors, as well as ABM1,
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(a) Input (b) Accurate output (c) ABM-M1, k = 8
(101 dB)

(d) ABM-M1, k = 16
(83 dB)

(e) ABM-M2, k = 4
(73 dB)

(f) ABM-M2, k = 8
(49 dB)

(g) ABM-M3, k = 8
(112 dB)

(h) ABM-M3, k = 16
(81 dB)

(i) R4ABM [70], k = 8
(109 dB)

(j) R4ABM [70], k = 16
(71 dB)

(k) ABM1 [71]
(77 dB)

(l) ABM2-C9 [71]
(71 dB)

(m) RAD256 [72]
(63 dB)

Fig. 3.10. Input image and generated outputs for image transformation application.

and ABM2-C9. Because ABM-M2 has lower accuracy, it only produces competitive PSNR
values for k = 4.
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Table 3.4. MRED and NMED of multipliers for matrix multiplication

Design k
MRED NMED
(10−3) (10−5)

8 0.308 0.51ABM-M1 16 0.337 1.006

ABM-M2 4 3.274 6.074
8 51.774 97.726
8 0.004 0.005ABM-M3 16 1.186 1.747

R4ABM [70] 8 0.382 0.577
16 4.233 6.499

ABM1 [71] — 1.858 1.617
ABM2-C9 [71] — 2.447 3.341
RAD256 [72] — 3.140 8.531

3.5.2 Matrix Multiplication

Matrix multiplication is widely used in applications such as deep learning, image and video
processing, and robotics. This application multiplies two 5×5 matrices, and performance
is measured by calculating the MRED and NMED of the outputted matrix. The MRED
and NMED values computed for the implemented designs are summarized in Table 3.4,
where ABM-M1 and ABM-M3 produce competitive results.

3.5.3 FIR Filter Implementation

The finite impulse response (FIR) is widely used in digital signal processing to compute
frequency response. In this application, an electrocardiograph wave with high frequency
noise is passed through a 41-tap low-pass FIR filter with a cut-off frequency of 45 Hz
and a sampling frequency of 200 Hz. In Fig. 3.11, the input signal and the filtered signal
are shown in both the time and frequency domains. While FIR filtering utilizes both
addition and multiplication, only the multiplication operations are modified to implement
the inexact multiplier designs. Performance is evaluated using MSE as summarized in
Table 3.5, where the proposed designs achieve high strong performance.
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Fig. 3.11. Input electrocardiograph signal in the (a) time domain and (b) frequency domain. Signal
outputted by the low-pass FIR filter in the (a) time domain and (b) frequency domain.

Table 3.5. MSE of multipliers in FIR filter application

Design k MSE

8 2.546 × 10
−9

ABM-M1 16 6.328 × 10
−8

ABM-M2 4 1.044 × 10
−6

8 2.673 × 10
−4

8 3.570 × 10
−12

ABM-M3 16 2.391 × 10
−7

R4ABM [70] 8 7.747 × 10
−11

16 1.819 × 10
−5

ABM1 [71] — 7.291 × 10
−9

ABM2-C9 [71] — 2.897 × 10
−7

RAD256 [72] — 1.919 × 10
−6
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Chapter 4

Approximate Array-Based Restoring
Dividers

In this chapter, approximation is applied to the array-based restoring divider architecture
to produce two inexact divider designs. The first divider features a novel approximate
restoring divider cell which is used to replace the conventional cells in several columns of
the array. Only a subset of the trial subtractions are performed in the second divider,
where encoding and rounding are used to estimate the remaining quotient bits. The
designs are evaluated alongside other state-of-the-art approximate dividers. Accuracy is
measured using MRED and NMED, and hardware performance is expressed in terms of
delay, area, power consumption, PDP, and area-delay product (ADP). The ability of each
design to balance hardware reduction with accuracy is evaluated by computing a number
of hybrid accuracy-hardware metrics. The dividers are then verified in two image process-
ing applications, namely change detection and foreground extraction, where performance
is measured in terms of PSNR and structural similarity index measurement (SSIM).

Section 4.1 describes the author contributions, Section 4.2 provides an outline of the
conventional array-based restoring divider architecture, and the approximate restoring
dividers are proposed in Section 4.3. An accuracy and hardware analysis are performed
in Section 4.4, and the image processing applications are presented in Section 4.5.

4.1 Author Contributions

S.V. conceived of and designed the first proposed divider model, while E.A. conceived of
and designed the second proposed divider model. S.V. and E.A. carried out the imple-
mentation of benchmarking models from the literature. S.V. carried out the functional
simulations and synthesis simulations for the first model as presented in the conference
manuscript. S.V. analyzed the accuracy and hardware metrics for the first model as
presented in the conference manuscript. S.V. carried out the image processing simula-
tions for the first model as presented in the conference manuscript. E.A. carried out the
functional simulations and the synthesis simulations for both models as presented in the

32



journal manuscript. E.A. analyzed the accuracy and hardware metrics for both models
as presented in the journal manuscript. E.A. analyzed the accuracy-hardware tradeoff
performance for both models as presented in the journal manuscript. E.A. carried out
the image processing simulations for both models as presented in the journal manuscript.
S.V. and E.A. wrote the conference and journal manuscripts in consultation with S.K.

4.2 Exact Restoring Dividers

Binary division generally involves the division of a 2n-bit dividend z by a n-bit divisor d

to produce a n-bit quotient q and a n-bit remainder s, where s < d. Restoring division
involves the repeated subtraction of the divisor from the shifted partial remainder, where
the value of the partial remainder is restored if the result of the subtraction is negative. In
more formal terms, each iteration i involves the subtraction of the shifted divisor 2nd from
the shifted partial remainder 2s

(j−1) to produce a trial difference 2s
(j−1) − qn−i(2nd). If

the result of the subtraction is non-negative, the quotient bit qn−i is set to 1 and the next
partial remainder s

(i) is loaded with the value of the trial difference. If the subtraction
produces a negative result, the quotient bit qn−i is set to 0 and the partial remainder is
restored to the prior shifted value s

(i) = 2s
(j−1). After i = n iterations, all quotient bits

have been selected and the remainder s is set to the most-significant n bits of the final
partial remainder s

(n).
Restoring division is commonly implemented using an array-based architecture. A

2n/n division makes use of an array of n rows, where each row contains n restoring
divider cells and a single OR-gate. Each exact restoring divider cell (EXRDC) consists
of a full substractor (FS) and a multiplexer, as shown in Fig. 4.1. The multiplexer is
used to select the difference in the case of a non-negative partial remainder and otherwise
selects the prior value in the case of a restored partial remainder. The architecture of the
8/4 array-based restoring divider is illustrated in Fig. 4.2.

4.3 Approximate Restoring Dividers

An exact 2n/n division requires n × n restoring divider cells as well as n OR-gates. As
n grows, the hardware required to compute the division quickly becomes expensive. This
section describes two approximate divider architectures which compute an inexact division
through the use of reduced hardware. Approximate restoring divider model 1 (AXRD-
M1) replaces some of the exact divider cells with approximate divider cells whose logic
expressions are simplified. In approximate restoring divider model 2 (AXRD-M2), sev-
eral rows of the array are eliminated and the corresponding quotient bits are instead
approximated by rounding and encoding the divisor and partial remainder. As the ratio
of approximate cells to exact cells in AXRD-M1 increases, the accuracy decreases and
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Fig. 4.1. Circuit-level schematic for EXRDC.
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Fig. 4.2. Architecture of exact 8/4 restoring divider.

the hardware savings improve. A similar tradeoff occurs in AXRD-M2 as the number
of eliminated rows increases. The term approximation factor k is used to refer to the
magnitude of approximation for a given design. In AXRD-M1, k expresses the number of
columns for which exact cells have been replaced with approximate cells. In AXRD-M2,
k indicates the number of rows that have been eliminated from the array.

It should be noted that, while AXRD-M1 computes an inexact remainder, AXRD-M2
does not. The reason for this is related to the fact that the quotient is generally much more
useful than the remainder in the majority of approximate division applications [76]. The
architecture of AXRD-M1 is structured such that an approximate remainder is computed
alongside an approximate quotient without any additional overhead. The architecture of
AXRD-M2 differs in that additional gates would be needed to compute an approximate
remainder. Considering that approximate remainders have such limited use, it was decided
that circuitry devoted solely to remainder computation would not be added to AXRD-M2
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Fig. 4.3. Circuit-level schematic for AXRDC.

as to maximize hardware savings.

4.3.1 Approximate Restoring Divider Model 1 (AXRD-M1)

This section introduces the architecture of the proposed AXRD-M1 design. As de-
scribed above, approximation is applied by replacing all EXRDCs in the k least-significant
columns of the array with the proposed approximate restoring divider cell (AXRDC). The
outputs of EXRDC can be expressed as

s = qsd + qsx, (4.1)
bout = x⊕ y ⋅ bin + xy, (4.2)

and the equivalent circuit diagram is shown in Fig. 4.1. The circuitry of the proposed
AXRDC is shown in Fig. 4.3 and the equivalent logic expressions are

s = qs ⊕ x, (4.3)
bout = x, (4.4)

from which it can be seen that s and bout are independent of y and bin . The high-level
architecture of AXRD-M1 for k = 8 is shown in Fig. 4.4. For a 2n/n division and
approximation factor k, the number of approximated cells is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k(k + 1)
2

, for k <= n

n(2k − n + 1) − k(k + 1)
2

, for k > n
. (4.5)
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4.3.2 Approximate Restoring Divider Model 2 (AXRD-M2)

This section describes the architecture of the proposed AXRD-M2. The design utilizes
the exact architecture to perform the first n − k trial subtractions, producing the first
k quotient bits and the partial remainder s

(n−k). The positions of the leading-one in
both the divisor d and the partial remainder s(n−k) are used to generate encoded values u
and v, which are then used to approximate the remaining quotient bits. The high-level
architecture of AXRD-M2 is shown in Fig. 4.5.

Independent of k, the three most-significant bits of the divisor dn−1∶n−3 are examined
by d-LOD. The location of the leading-one (or its absence) is used to round the divisor
according to

drnd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
7 = 128, dn−1∶n−3 = 1xx

2
6 = 64, dn−1∶n−3 = 01x

2
5 = 32, dn−1∶n−3 = 001

2
4 = 16, dn−1∶n−3 = 000

. (4.6)

More precisely, the location of the leading-one is determined and the value of the rounded
divisor drnd is computed by keeping the leading-one and setting all other bits to zero.
In the case that the leading-one is absent, the leading-one is assumed to be at bit-
position n − 4 and the value of drnd consequently becomes 16.

The seven most-significant bits of the partial remainder s(n−k)n−1∶n−7 are similarly examined
by s-LOD to produce a rounded partial remainder s

(n−k)
rnd according to

s
(n−k)
rnd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
n+k−1

, s
(n−k)
n+k−1∶n+k−7 = 1xxxxxx

2
n+k−2

, s
(n−k)
n+k−1∶n+k−7 = 01xxxxx

2
n+k−3

, s
(n−k)
n+k−1∶n+k−7 = 001xxxx

2
n+k−4

, s
(n−k)
n+k−1∶n+k−7 = 0001xxx

2
n+k−5

, s
(n−k)
n+k−1∶n+k−7 = 00001xx

2
n+k−6

, s
(n−k)
n+k−1∶n+k−7 = 000001x

2
n+k−7

, s
(n−k)
n+k−1∶n+k−7 = 0000001

0, s
(n−k)
n+k−1∶n+k−7 = 0000000

. (4.7)

It should be noted that the width of s(n−k) is n+ k bits. In the case that the leading-one
is absent, the partial remainder is rounded to zero. To provide a more tangible example,
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Table 4.1. Divisor rounding and encoding to generate u

dn−1∶n−3 drnd u1 u0

000 16 0 0
001 32 0 1
01x 64 1 0
1xx 128 1 1

Table 4.2. Partial remainder rounding and encoding to generate v

s
(n−k)
n+k−1∶n+k−7 s

(n−k)
rnd v2 v1 v0

0000000 0 0 0 0
0000001 2

n+k−7 0 0 1
000001x 2

n+k−6 0 1 0
00001xx 2

n+k−5 0 1 1
0001xxx 2

n+k−4 1 0 0
001xxxx 2

n+k−3 1 0 1
01xxxxx 2

n+k−2 1 1 0
1xxxxxx 2

n+k−1 1 1 1

k = 4 can be used with (4.7) to generate

s
(4)
rnd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
11 = 2048, s

(4)
11∶5 = 1xxxxxx

2
10 = 1024, s

(4)
11∶5 = 01xxxxx

2
9 = 512, s

(4)
11∶5 = 001xxxx

2
8 = 256, s

(4)
11∶5 = 0001xxx

2
7 = 128, s

(4)
11∶5 = 00001xx

2
6 = 64, s

(4)
11∶5 = 000001x

2
5 = 32, s

(4)
11∶5 = 0000001

0, s
(4)
11∶5 = 0000000

, (4.8)

where the seven most-significant bits of s(4) are examined to produce s
(4)
rnd .

The rounded divisor drnd and rounded partial remainder s
(n−k)
rnd are then used to gen-

erate encoded values u and v, respectively, where u is a 2-bit number and v is a 3-bit
number. The process of rounding the divisor and partial remainder as well as generating
u and v is illustrated in Table 4.1 and Table 4.2.

The quotient bits that have yet to be computed are approximated by dividing the
rounded partial remainder by the rounded divisor and therefore can be expressed in terms

39



u1u0

v1v0

00 01 11 10

00

01

11

10

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

v2

u1u0

v1v0

00 01 11 10

00

01

11

10

1

1

0

0

1

1

0

1

1

1

1

1

1

1

1

1

v2

(a) Karnaugh-map for q3
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(b) Karnaugh-map for q2

Fig. 4.6. Karnaugh-map for further approximating q3 and q2 in AXRD-M2, where 1 represents a change
from 0 to 1, 0 represents a change from 1 to 0, and a blue box indicates approximated terms.

of u and v. However, these expressions are dependent on five input variables and are still
more complex than is ideal. This is remedied by applying further approximation to the
logic expressions for the remaining quotient bits qk−1∶0 via the use of Karnaugh-maps [82].
For k = 4, the Karnaugh-maps for q3 and q2 are shown in Fig. 4.6a and Fig. 4.6b,
respectively, and the corresponding logic expressions are given by

q3 = u2u1 + u2v1 (4.9)
q2 = u2u0 + u1v1. (4.10)

Table 4.3 demonstrates the process of rounding the divisor and partial remainder, gener-
ating u and v, and computing the remaining inexact quotient bits. Table 4.3 also compares
the quotient value qacc resulting from the division of the rounded partial remainder by the
rounded divisor with the quotient value qapp derived from the Karnaugh-maps in Fig. 4.6.
Error is exhibited only by qapp and specifically in cases where qacc is larger than 15, due
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Table 4.3. Use of encoded values u and v to produce approximate quotient bits for k = 4

s
(n−k)
rnd

drnd
Encoding Quotient Values

u2∶0 v1∶0 qacc qapp ED

0 16 000 00 0 0 0
0 32 000 01 0 0 0
0 64 000 10 0 0 0
0 128 000 11 0 0 0
32 16 001 00 2 2 0
32 32 001 01 1 1 0
32 64 001 10 0 0 0
32 128 001 11 0 0 0
64 16 010 00 4 4 0
64 32 010 01 2 2 0
64 64 010 10 1 1 0
64 128 010 11 0 0 0
128 16 011 00 8 8 0
128 32 011 01 4 4 0
128 64 011 10 2 2 0
128 128 011 11 1 1 0
256 16 100 00 16 15 1
256 32 100 01 8 8 0
256 64 100 10 4 4 0
256 128 100 11 2 2 0
512 16 101 00 32 15 17
512 32 101 01 16 15 1
512 64 101 10 8 8 0
512 128 101 11 4 4 0
1024 16 110 00 64 15 49
1024 32 110 01 32 15 17
1024 64 110 10 16 15 1
1024 128 110 11 8 8 0
2048 16 111 00 128 15 113
2048 32 111 01 64 15 49
2048 64 111 10 32 15 17
2048 128 111 11 16 15 1

to the fact that the approximation expresses the inexact quotient using only four bits.
It should be noted that qacc in this context is only “accurate” and not “exact” because
approximation has already been applied when rounding the partial remainder and divisor.
As visible in Fig. 4.5, the approximate recoded logic (ARL) block takes u and v as inputs
and computes the inexact quotient bits according to (4.9) and (4.10).
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For any approximate arithmetic circuit, the magnitude of approximation applied to
the design is primarily limited by the ceiling on acceptable error metrics defined by the
intended application. During the design of AXRD-M2, competitive error metrics were only
achieved when eliminating no more than n/2 array rows, and thus larger approximation
factors were not explored. Approximation factors of k = 2, 3, 4 exhibited a desirable
balance of hardware savings and accuracy, and those designs were therefore selected for
implementation. Only the architecture for k = 4 is illustrated in full (see Fig. 4.5), but the
designs for k = 2, 3 can be expressed using the logic provided for k = 4. More specifically,
the logic expression of q3 for k = 4 is equivalent to that of q2 for k = 3, and q1 for
k = 2. Similarly, the expression of q2 for k = 4 is equal to q1 for k = 3, and q0 for k = 2.
In the k = 4 design, the two least-significant quotient bits q1q0 are truncated, as is the
least-significant quotient bit q0 for k = 3.

4.4 Experimental Results

This section provides an evaluation of the proposed dividers in terms of accuracy and
hardware efficiency. Several state-of-the-art approximate dividers are selected from the
literature for use in benchmarking. In [77], three inexact full-subtractors are used to imple-
ment approximate restoring divider (AXDr) models #1–3, where several cell replacement
schemes are explored. In [79], an adaptive approximation-based divider (AAXD) is pre-
sented in which the operand bits are selectively trimmed according to the position of the
leading-one, allowing for the division to be computed using a shifter and a reduced-width
divider. An approximate hybrid divider (AXHD) is proposed in [66] in which EXRDCs
are used to compute the MSBs of the quotient while the remaining LSBs are computed
using a logarithmic division scheme. In the context of AXDr, AAXD, and AXHD designs,
approximation factor k indicates the number of approximated columns via triangular re-
placement, the bitwidth of the pruned divisor, and the approximation depth as defined
by the authors, respectively. Approximation factors were selected such that the pro-
posed designs and the benchmarking designs exhibit similar error metrics, allowing for
fair comparison.

4.4.1 Accuracy Evaluation

All models are implemented using Verilog HDL, and functional verification is implemented
using a SystemVerilog testbench. For all models, accuracy was evaluated using exhaustive
analysis. Python scripts are used to generate inputs and calculate accuracy metrics. The
accuracy of the approximate dividers is evaluated using MRED and NMED as defined
in [83], as well as error rate (ER) and maximum error distance (Dmax). Simulation results
are summarized in Table 4.4, where accuracy measurements are provided for both quotient
and remainder, where applicable.
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Table 4.4 shows that AXRD-M1, AXDr1 [77], and AXDr3 [77] perform the best in
terms of quotient MRED, with the lowest MRED being achieved by AXDr1 for k = 6.
Considering quotient NMED, the highest-performing designs are AXRD-M1, AXDr1 [77],
AXDr3 [77], and AXHD [66], where AXHD for k = 12 has the lowest NMED value. It
is important to note that the low NMED values achieved by AXHD are largely due to
the fact that a 2n/n division in this design produces a 2n-bit quotient rather than a
n-bit quotient, meaning that NMED for this design is generated by dividing MED by
2
2n − 1 rather than 2

n − 1, resulting in a substantially smaller value. The lowest quotient
ER is demonstrated by AXRD-M1 for k = 4 and AXDr1 [77] for k = 6, where both
designs achieve similar values. AXRD-M1, AXRD-M2, and AAXD [79] have low Dmax,
and AXRD-M2 obtains especially small values.

The sequential nature of division means that errors introduced in one stage will be
propagated to the next stage. Because the remainder is computed at the very final stage,
approximate remainders tend to have poor accuracy. Only a subset of the implemented
designs compute a remainder, namely AXRD-M1 and AXDr [77]. As reflected in Table 4.4,
the remainder accuracy metrics for these designs is generally quite poor, although this
is not of great concern. Regardless, it is worth mentioning that the smallest remainder
MRED and NMED are achieved by AXDr1 [77] and AXRD-M1, respectively. All dividers
that compute a remainder are capable of producing maximal or almost-maximal error
distances in the remainder output.

4.4.2 Hardware Evaluation

All dividers are synthesized for the TSMC 65 nm process technology using Synopsys
Design Compiler. For all simulations, an operating voltage of 1 V and an operating
temperature of 25 °C are used. Synopsys Design Compiler is used to report critical path
delay, circuit area, and power dissipation, while PDP and ADP are manually computed
to provide a more comprehensive measurement of hardware efficiency. Simulation results
are summarized in Table 4.4.

The proposed AXRD-M1 and AXRD-M2 provide reductions in critical path delay of up
to 38% and 49%, respectively, when compared to the exact design. The AXDr [77] designs
have relatively high delays, especially AXDr3 whose delay actually surpasses that of the
exact divider for k > 6. The most impressive delay metrics are achieved by AAXD [79] and
AXHD [66], where AAXD for k = 3 demonstrates a reduction of 64%. In terms of circuit
area, AXRD-M1, AXRD-M2, and AXDr2 [77] exhibit the most substantial reductions.
AXRD-M1 and AXRD-M2 achieve area savings of up to 43% and 46%, respectively, when
compared to the exact divider, while AXDr2 [77] for k = 10 has the lowest circuit area of all
implemented designs with a reduction of 59%. It should be noted that AAXD [79] reports
an area larger than that of the exact divider for k = 5. The greatest reduction in power
dissipation is achieved by AXRD-M1, AXRD-M2, AAXD [79], and AXHD [66]. When
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Fig. 4.7. Graphs illustrating accuracy-hardware tradeoff metrics for the implemented dividers.

compared to the exact divider, AXRD-M1 and AXRD-M2 reduce power consumption
by up to 50% and 57%, respectively, while the largest reduction of 69% is obtained by
AAXD [79] for k = 3.

A greater understanding of the hardware performance for a given design can be ob-
tained by considering the combined hardware metrics shown in Table 4.4, namely PDP
and ADP. The most impressive PDP values are those for AXRD-M2, AAXD [79], and
AXHD [66]. The proposed design AXRD-M2 provides a PDP reduction of up to 79%,
relative to the exact divider, and the smallest PDP for all implemented designs is achieved
by AAXD for k = 3, with a reduction of 89%. The designs exhibiting the lowest ADP
values are AXRD-M2, AXDr2 [77], and AAXD [79], where the proposed AXRD-M2 has
a reduction of up to 75%, and the lowest ADP is obtained by AXDr2 [77] for k = 10 with
a reduction of 87%.

4.4.3 Accuracy-Performance Tradeoff

As shown in Table 4.4, the smallest MRED is achieved by AXRD-M1, AXDr1 [77], and
AXDr3 [77], which exhibit similar values for k = 4, 6, 6, respectively. Among these designs,
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Table 4.5. Accuracy-hardware tradeoff metrics for approximate dividers

Design k

Tradeoff Metrics

MPDPP MADPP NPDPP NADPP
(fJ) (µm2⋅ns) (fJ) (µm2⋅ns)

4 3.388 7.497 0.558 1.234
6 5.624 12.715 1.149 2.598AXRD-M1
8 11.158 28.375 2.623 6.669

AXRD-M2
2 10.314 25.266 1.581 3.874
3 14.169 36.524 2.248 5.794
4 16.390 45.231 2.927 8.077
6 2.968 6.862 0.616 1.425
8 17.468 42.572 4.229 10.308AXDr1 [77]
10 53.794 142.361 16.422 43.458

AXDr2 [77]
6 13.506 32.015 2.663 6.312
8 38.514 98.804 8.210 21.062
10 41.558 134.635 8.390 27.182
6 3.315 7.633 0.776 1.788
8 13.099 32.515 3.499 8.686AXDr3 [77]
10 38.864 106.330 11.565 31.641

AAXD [79]
5 12.371 42.750 5.823 20.123
4 12.895 53.637 6.041 25.130
3 13.123 66.630 6.137 31.156
12 12.497 69.670 0.060 0.337
14 12.232 66.097 0.181 0.978AXHD [66]
16 12.449 66.608 0.657 3.517

AXRD-M1 exhibits the smallest delay, AXRD-M1 and AXDr3 [77] achieve the smallest
area metrics, and AXDr3 [77] features the most impressive power savings. The smallest
NMED is achieved by AXRD-M1, AXDr1 [77], AXDr3 [77], and AXHD [66], where simi-
lar values are exhibited for k = 4, 6, 6, 12, respectively. Among these designs, AXRD-M1
and AXDr3 [77] provide a modest advantage in area savings, while AXHD [66] achieves
substantial improvements over the others designs in terms of both delay and power con-
sumption.

The accuracy and hardware metrics reported in Table 4.4 vary significantly accord-
ing to implemented design and approximation factor. In order to obtain a better un-
derstanding of the general ability of a divider to improve hardware performance while
maintaining accuracy, an analysis of the accuracy-performance tradeoff of each design is
needed. Several works have made use of hybrid accuracy-hardware metrics to serve this
purpose [66], [76], [77], [84]–[86]. To provide a thorough evaluation of all implemented
designs, four hybrid accuracy-hardware metrics are proposed, namely MRED-PDP prod-

46



uct (MPDPP) [86], MRED-ADP product (MADPP), NMED-PDP product (NPDPP),
and NMED-ADP product (NADPP). Fig. 4.7 illustrates the relationship between the hy-
brid metrics and approximation factor, where the metrics are summarized in Table 4.5.
The lowest MPDPP and MADPP are achieved by AXDr1 [77], while the lowest NPDPP
and NADPP correspond to AXHD [66]. As per the discussion in Section 4.4.1, it is unsur-
prising that AXHD [66] has such low values for these metrics, considering the dependence
on NMED. While AXDr1 [77] has very low MPDPP and MADPP for k = 6, it can be
seen in Fig. 4.7 that these values increase rapidly with k, and a similar trend is visible in
AXDr3 [77]. The proposed designs AXRD-M1 and AXRD-M2 exhibit hybrid metrics on
par with the highest-achieving of the implemented designs. Additionally, it is apparent
from Fig. 4.7 that the proposed dividers provide an advantage over the benchmarking
designs in that accuracy metrics scale well with k.

4.5 Applications

The proposed designs were tested using two image processing applications, namely change
detection and foreground extraction. Performance is evaluated in terms of both PSNR
and SSIM, where SSIM can better separate structural information from image distortion.

4.5.1 Change Detection

Considering two images of equal size, the change between these images can be detected by
performing a per-pixel division, where the output image is constructed from the computed
quotient values. Dividers are used to detect the change between two 8-bit grayscale
images as shown in Fig. 4.8. The PSNR and SSIM values computed for the dividers are
summarized in Table 4.6.

As visible in Fig. 4.8d and 4.8e, the proposed dividers produce images that are highly
similar to that generated by the exact divider. The images most closely resembling the
accurate output were generated by AXRD-M1 AXRD-M2 and AXDr [77]. AXDr3 [77]
produces the best result with a PSNR and SSIM of 60.9 dB and 0.9997, respectively.
AXRD-M1 achieves very similar performance, with a PSNR and SSIM of 60.2 dB and
0.9996, respectively.

4.5.2 Foreground Extraction

Given an image with a visually disruptive background variation, the division of the image
by its background allows for the foreground to be extracted. Approximate dividers are
used to extract the foreground of the 8-bit grayscale image shown in Fig. 4.9a by dividing
it by its background as shown in Fig. 4.9b. The image in Fig. 4.9a is multiplied by a factor
of 64 prior to division to improve precision. Application performance is again measured
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(a) Input image 1 (b) Input image 2 (c) Accurate output

(d) AXRD-M1, k = 4 (e) AXRD-M1, k = 6 (f) AXRD-M1, k = 8

(g) AXRD-M2, k = 2 (h) AXRD-M2, k = 3 (i) AXRD-M2, k = 4

(j) AXDr1 [77], k = 6 (k) AXDr2 [77], k = 6 (l) AXDr3 [77], k = 6

(m) AAXD [79], k = 3 (n) AAXD [79], k = 4 (o) AAXD [79], k = 5

Fig. 4.8. Change detection results computed using various dividers.
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Table 4.6. Application metrics for approximate dividers

Design k
Change Detection Background Removal

PSNR (dB) SSIM PSNR (dB) SSIM

4 60.2 0.9996 51.8 0.9957
6 57.7 0.9993 48.9 0.9920AXRD-M1
8 50.7 0.9959 42.1 0.9765

AXRD-M2
2 53.7 0.9983 48.5 0.9927
3 51.3 0.9972 44.4 0.9887
4 45.3 0.9893 37.6 0.9739
6 57.4 0.9993 49.1 0.9936
8 52.2 0.9982 42.6 0.9868AXDr1 [77]
10 40.8 0.9614 36.1 0.9440

AXDr2 [77]
6 51.9 0.9981 42.9 0.9901
8 41.6 0.9912 35.3 0.9593
10 29.8 0.9262 29.6 0.8309
6 60.9 0.9997 57.1 0.9988
8 54.8 0.9986 46.4 0.9859AXDr3 [77]
10 45.2 0.9841 36.7 0.9219

AAXD [79]
5 46.9 0.9949 45.0 0.9857
4 39.5 0.9829 40.7 0.9683
3 36.8 0.9474 35.1 0.9257
12 46.3 0.9959 42.7 0.9874
14 46.3 0.9959 42.7 0.9874AXHD [66]
16 46.3 0.9959 42.7 0.9874
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using PSNR and SSIM, where the computed metrics are summarized in Table 4.6.
Most approximate dividers produce outputs similar to that of the exact divider. The

proposed dividers AXRD-M1 and AXRD-M2 produce good results for k = 4, 6 and k =
2, 3, respectively. The output image of highest quality was produced by AXDr3 [77] for
k = 6, where the corresponding PSNR and SSIM are 57.1 dB and 0.9988, respectively.
Comparatively, AXRD-M1 for k = 4 achieves competitive metrics with a PSNR and SSIM
of 51.8 dB and 0.9957, respectively.
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(a) Input image (b) Background (c) Accurate output (d) AXRD-M1, k = 4

(e) AXRD-M1, k = 6 (f) AXRD-M1, k = 8 (g) AXRD-M2, k = 2 (h) AXRD-M2, k = 3

(i) AXRD-M2, k = 4 (j) AXDr1 [77], k = 6 (k) AXDr2 [77], k = 6 (l) AXDr3 [77], k = 6

(m) AAXD [79], k = 3 (n) AAXD [79], k = 4 (o) AAXD [79], k = 5

Fig. 4.9. Foreground extraction results computed using various dividers.
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Chapter 5

Approximate Fixed-Point MAC Unit

This chapter proposes an approximate MAC unit whose architecture is based on the
ABM-M3 multiplier presented in Chapter 3. Several other approximation techniques
are utilized alongside the ABM-M3 architecture to propose a novel MAC design. The
design is compared with other state-of-the-art inexact MAC designs in terms of error
and hardware metrics. Accuracy is evaluated using MRED, NMED, and mean absolute
error (MAE), while hardware performance is measured by area and power consumption.
Hybrid accuracy-hardware metrics are computed to provide insight into the ability of each
design to reduce hardware costs while maintaining accuracy. Finally, the MAC units are
verified using a Gaussian blur application for 5 × 5 and 7 × 7 filters, where performance
is measured in terms of PSNR and SSIM.

The author contributions are outlined in Section 5.1. A brief review of the ABM-M3
architecture from Chapter 3 is given in Section 5.2, and the architecture of the proposed
MAC unit is presented in Section 5.3. Accuracy and hardware performance are analyzed
in Section 5.4, and Section 5.5 provides a discussion of the Gaussian blur applications.

5.1 Author Contributions

E.A. conceived of and designed the proposed MAC model which utilizes techniques orig-
inally presented by S.V. in the multiplier work. E.A. carried out the implementation of
benchmarking models from the literature. E.A. carried out the functional simulations
and synthesis simulations. E.A. analyzed the accuracy and hardware metrics of the pro-
posed model. E.A. analyzed the accuracy-hardware tradeoff performance of the proposed
model. E.A. carried out the Gaussian blur applications by simulating convolution opera-
tions. E.A. wrote the (unpublished) manuscript in consultation with S.V. and S.K.

5.2 Approximate Booth Multiplier (ABM-M3)

The architecture of the mantissa multiplier for the proposed approximate MAC unit is
based on the approximate 8-bit ABM-M3 from Chapter 3 with approximation factor k = 6.
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median truncation

Fig. 5.1. Bit matrix of ABM-MAC in which the partial product bits generated by the multiplication are
summed along with the accumulator value in a single computation. The k = 6 least-significant bits of the
result are truncated to the median value. ●: exact partial products, ○: sign-extension terms, ▲: inexact
partial products, ■: accumulator bits from the prior computation, □: newly-computed accumulator value.

In the ABM-M3 design, all partial products with significance less than k are reduced to a
single column of approximate partial products. For a given partial product matrix row i,
let l be the number of bits with a significance less than k. For a row i, x∀j∈(0,k−(2i+1)) is
generated by OR-ing the l least-significant bits of X. The approximate partial product
for the row i is then generated by the use of PPG-1S which takes in the signal zeroi and
the result of the OR-operation to compute the approximate partial product for that row.

5.3 Approximate Booth Multiplier-Based MAC (ABM-MAC)

The architecture of the proposed ABM-MAC consists of three stages: (1) the inputs are
clocked to registers, (2) the multiplication of the inputs and the summation of the product
with the accumulator value are computed as a single fused operation, and (3) the result
is clocked to the output register. Fig. 5.1 illustrates the bit matrix that is operated on
during the fused operation. The method of generating partial products is as described
in Section 5.2, where the partial products in the k = 6 least-significant columns are
compressed row-wise into single inexact partial products via PPG-1S. The remaining
2n − k columns are generated using the exact PPG. As visible in Fig. 5.1, selecting
an approximation factor of k = 6 alleviates the need to compute any sign-correction
terms cor i. This is not immediately advantageous during the partial product generation
since cor i = neg i in this design and neg i still requires computation. However, considering
that partial product compression tends to be the most resource-intensive portion of the
computation, it is beneficial to reduce the number of terms to be accumulated.
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5.3.1 Partial Product Compression

The accumulator value is included in the initial matrix as the bottom-most row in Fig. 5.1,
effectively fusing the partial product compression with the accumulation operation. Dur-
ing the initial design of the unit, hardware simulations quickly indicated that fusing the
operations was the better decision. It may seem that choosing to fuse the operations
would not have a substantial effect on the efficiency of the model, especially considering
that both the fused and non-fused units contain precisely the same number of half- and
full-adders. However, the ordering of compression stages can have a significant impact on
critical path delay. The reason the proposed MAC unit is poorly-suited for implemen-
tation via a non-fused architecture is related to the fact that it utilizes a Booth-based
multiplication algorithm. In a traditional AND-array multiplier, the partial products are
each generated using only a single AND-gate and can be computed in parallel as soon
as the inputs become available. Conversely, in the radix-4 Booth multiplier, the multi-
plicand must first be encoded in terms of radix-4 digits before partial products may be
generated. Additionally, the PPGs in a Booth multiplier are significantly more complex
than the single AND-gate that is needed to generate a partial product in the AND-array
multiplier. Because of these factors, the partial products in a Booth multiplier are gener-
ated with some additional delay. This is counteracted by the fact that the radix-4 Booth
algorithm reduces the number of partial product terms by half, or almost half in the case
of an unsigned multiplier, therefore greatly reducing the hardware needed for the accu-
mulation. While the reduced partial product matrix can provide significant advantages in
terms of hardware reduction, there are still cases in which the increased delay associated
with partial product generation can be problematic. During the initial development of
ABM-MAC, the combination of delays introduced during partial product generation and
the latency incurred during accumulation result in a critical path delay that was actually
slightly larger than that of the exact MAC unit. The partial product matrix generated by
a non-fused ABM-MAC has a height of h = 5. Considering that the Dadda compression
algorithm defines the height of the matrix after the next compression stage j as

hj+1 = 2 ⋅ ⌊hj

3
⌋ + hj mod 3, (5.1)

it can be deduced that a total of four compression stages are needed to reduce the matrix
into a single product term p. However, since the operation is not fused, p needs to be
additionally be summed with the accumulator z. As a result, there are effectively a total of
five compression stages required to compute the MAC operation. Additionally, it should
be noted that the latter accumulation stages tend to be slower than earlier stages. Each
compression stage produces a matrix of reduced height but greater width and, as a result,
the length of the carry-propagate chain increases with each compression. Considering all
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of this, it becomes clear that this design is better suited for implementation via a fused
operation. In this fused operation, z is included as the bottom-most row of the partial
product matrix which now has an initial height of h = 6. Due to the occurrence of the
floor function in (5.1), the operation can still be computed using only four compression
stages. The use of the fused operation results in a critical path delay that meets the timing
constraints derived from the delay of the exact MAC unit while also reducing hardware
cost. These hardware savings are examined further in Section 5.4.2.

5.3.2 Median Value Truncation

While MAE is an important metric in accuracy analysis, the distribution of the error
function is of special significance for the MAC unit due to the fact that it repeatedly
accumulates the results of its computations. Even if the magnitude of the error produced
is not large, the error observed in the output will grow with each accumulation if the
mean of the error function is not centered near zero. It is desirable in this architecture to
have an even-sided error function, i.e. one that tends to produce positive errors as often
as it produces negative errors. Truncation can become a potential issue since rounding
everything to zero will underestimate the result. Of course, the accuracy is affected
not only by the truncation error but also by any other error function that results from
additional approximation techniques. Thus, while it may not be immediately evident
which rounding scheme is ideal for minimizing the error of a given design, it is worth
investigating alternate techniques to use in place of traditional truncation.

The error E produced by an approximate computation for an inexact result a and
correct result b is given by E(a,b) = a − b, and thus relative error RE can be expressed as

RE(a, b) = a − b

b
= E

b
. (5.2)

Because relative error is not a magnitude but rather indicates positive or negative direc-
tion, its distribution can be analyzed to gain insight into the ability of a design to a provide
an even-sided error function. The distribution of RE for ABM-MAC is shown in Fig. 5.2a.
The error distribution was calculated on data derived from computing 10000 randomized
operations each involving 25 accumulations. It may also be noted that this is the same
data used to perform the accuracy analysis provided in Section 5.4.1. While not per-
fectly zero-centered, it can be seen that the distribution occupies the region near zero.
This distribution was considered alongside other accuracy evaluation techniques when
determining the truncation method that will result in the highest computation accuracy.
Despite the fact that the MAC unit still slightly overestimates the operation result, it was
determined though experimentation that truncating to the median value (i.e. 7b1000000)
minimizes error. The effect of error distribution on MAC unit accuracy is discussed further
in Section 5.4.1.
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(a) ABM-MAC
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(b) Design #1 [80]
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(c) Design #2 [80]
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(d) Design #3 [80]
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(e) ATC-MAC [81]
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(f) AP-MAC (k = 4) [87]
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(g) AP-MAC (k = 6) [87]
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(h) AP-MAC (k = 8) [87]

Fig. 5.2. Relative error distribution for implemented MAC units.
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Table 5.1. Accuracy and hardware metrics for approximate MAC units

Design
Accuracy Metrics Hardware Metrics

MRED NMED MAE Area Power
(10−2) (10−2) (104) (µm2) (mW)

Exact MAC — — — 2224.8 2.2482
ABM-MAC 0.391 0.281 0.422 1279.4 1.5084
Design #1 [80] 1.423 1.050 1.557 1420.9 2.0723
Design #2 [80] 1.493 1.100 1.585 1216.8 1.7035
Design #3 [80] 3.925 2.859 2.640 734.0 1.1395
ATC-MAC [81] 3.946 2.954 5.145 1046.5 1.8310
AP-MAC (k = 4) [87] 10.858 8.176 9.651 1776.6 1.7391
AP-MAC (k = 6) [87] 10.861 8.179 9.651 1454.4 1.6581
AP-MAC (k = 8) [87] 11.082 8.337 9.715 1212.1 1.6107

5.4 Experimental Results

This section provides an evaluation of the proposed design in terms of both accuracy
and hardware by comparing its performance to other approximate MAC units from the
literature. Works used for benchmarking include: (1) Designs #1–3 from [80], (2) the
approximate tree compressor-based MAC (ATC-MAC) from [81], and (3) the approxi-
mate MAC (AP-MAC) from [87]. The AP-MAC design presented in [87] is accuracy-
configurable via the selection of an approximation factor. Several approximation factors
were considered, and it was decided that AP-MAC would be analyzed for k = 4, 6, 8,
as the resulting models produced accuracy and hardware metrics that made for a fair
comparison with the other designs. It should be noted that [87] provides two primary
contributions: a novel approximate MAC unit, and a data reuse method for use in the
given neural network which aims to reduce the number of MAC computations. The data
reuse method is designed specifically for the neural network proposed in [87] and more-
over is outside of the scope of this work, so only the approximate MAC unit architecture
is implemented for use in benchmarking. It should also be noted that all designs were
modified as to allow for accumulation up to a bitwidth of 20. This is because a bitwidth
of 20 is needed to perform the filtering applications discussed in Section 5.5.

The results of the accuracy and hardware evaluation are summarized in Table 5.1. All
designs are implemented in Verilog HDL and synthesized using Synopsys Design Compiler
for the TSMC 65 nm process technology library. Synthesis simulations are configured to
use an operating voltage of 1 V and an operating temperature of 25 ◦C. Functional
verification is performed using SystemVerilog testbenches. All data processing and error
analysis is performed using Python scripting.
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5.4.1 Accuracy Analysis

A set of 10000 random 8-bit input operations is used for testing, where each operation
involves resetting the model to clear the accumulator and then performing 25 MAC op-
erations before reading out the result. The input set size of 25 operations was chosen as
to imitate a 5 × 5 filter. MRED, NMED, and MAE are selected to measure accuracy as
they provide insight into both the magnitude and the distribution of the error. Because
a 20-bit accumulator is used, values for NMED are calculated by normalizing the MED
by 2

19. Relative error is also computed so that the error distribution of each design may
be analyzed. Table 5.1 shows that the proposed ABM-MAC performs best across all
accuracy metrics compared to other designs. AP-MAC [87] performs relatively poorly in
terms of accuracy for all k. While Design #1 and Design #2 from [80] perform somewhat
competitively, the proposed ABM-MAC achieves lower error metrics by nearly an order
of magnitude for all three measurements.

Error distribution can provide key insight into the reason for which a MAC unit
exhibits a given accuracy. The distribution of the relative error for all models is illustrated
in Figure 5.2. All distributions are Gaussian in nature, although the mean and deviation
vary greatly among designs. The feature that seems to be most evidently related to
model accuracy is the distribution mean. AP-MAC [87] performs poorly in terms of
accuracy, and the mean of its error distribution is ∼10%. Design #3 [80] and ATC-
MAC [81] exhibit similar error metrics and their distribution means both lie near ∼3.5%.
Design #1 and #2 [80] achieve decent accuracy and have a mean error of ∼1.5%. Finally,
with a error distribution mean of ∼0.35%, ABM-MAC exhibits strong accuracy metrics.
While the cause for each model to generate the given distribution is complicated, the
likely reason for ABM-MAC to produce a distribution closer to zero lies in the fact that
it relies on Booth-based multiplication. Due to the nature of Booth multiplication terms,
the approximated partial product terms in ABM-MAC may belong to a partial product
row that is either positive or negative. The approximation techniques used in ABM-MAC
do not affect whether partial products are considered positive or negative, and thus the
error produced by ABM-MAC has opportunities to be both positive and negative. The
ability of the Booth-based architecture to generate a more balanced error distribution
makes it well-suited for use in approximate MAC units.

5.4.2 Hardware Analysis

The maximum critical path delay of the exact MAC unit was measured to be 0.74 ns,
and this value was then set as the clock period for all other simulations. The area and
power measurements for all simulations are summarized in Table 5.1, and the percentage
improvements over the exact design are illustrated in Fig. 5.3. Design #3 from [80]
exhibits hardware metrics which are superior to those for all other designs. The ATC-
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Fig. 5.3. Hardware savings for approximate MAC units compared to the accurate design.

MAC design interestingly performs very well in terms of area but somewhat poorly in
power consumption. The proposed ABM-MAC performs similarly to Design #2 [80],
except Design #2 achieves slightly better area metrics, and ABM-MAC achieves better
power consumption. Design #1 provides moderate area savings and negligible power
savings, which is unsurprising since it introduces a low level of approximation. AP-MAC
for k = 8 achieves a strong area reduction, but otherwise the AP-MAC designs perform
poorly in terms of hardware performance when compared to the other models.

Hardware simulations can demonstrate the advantage of choosing a fused-operation
architecture for ABM-MAC. The non-fused MAC unit was synthesized and its hardware
metrics are compared to those of the fused MAC design. The non-fused design actually
failed to meet the 0.74 ns timing constraint set by the exact MAC unit and thus, to
provide a fair comparison of the fused and non-fused models, the critical path delay of
the unfused design was determined to be 0.78 ns, and this delay was then set as the clock
period for the simulations used in this comparison. The percentage area and power saved
for both the fused and non-fused ABM-MAC are illustrated in Fig. 5.4. It can be seen
that, while the designs perform nearly identically in terms of power, the fused model
reduces circuit area by ∼15%. Considering that the result computed in both architectures
is identical, it is clear that the fused model is advantageous in this application.

5.4.3 Accuracy-Performance Tradeoff Evaluation

Evaluating accuracy and hardware usage individually is critical in determining the overall
level of performance for a given arithmetic unit. However, a holistic opinion cannot
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Fig. 5.4. Comparison of hardware savings delivered by fused vs. non-fused ABM-MAC.
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Fig. 5.5. Inverse multiplication of error metrics (MRED and NMED) by hardware parameters (area and
power) to evaluate tradeoff.

be formed unless we can understand the relationship maintained between accuracy and
hardware performance for the given model: a quality design will achieve a balance between
reducing hardware complexity and maintaining an acceptable level of accuracy. This
relationship is illustrated for the proposed model and benchmarking designs in Fig. 5.5.
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The data plotted is the inverse of MRED/NMED multiplied by area/power, corresponding
to four sets of metrics for which a larger value indicates a greater ability to both maintain
low computational error and provide strong hardware savings. For each set, all data
points are normalized by the maximum value.

Fig. 5.5 highlights a strength of the proposed design. While ABM-MAC achieved
neither the smallest area metric nor the smallest power metric among the implemented
models, the plots shown indicate the ability of the proposed design to produce significant
power savings while maintaining high levels of accuracy. Comparatively, Designs #1–
3 [80] as well as ATC-MAC [81] provide larger hardware savings but at the cost of de-
graded accuracy. Among the AP-MAC [87] designs, the k = 8 model achieves low area
and moderate power savings; however, the AP-MAC [87] designs involve a high level of
approximation and are therefore limited by low accuracy. The ability of ABM-MAC to
provide competitive hardware savings while maintaining high accuracy indicates that it
provides novel contribution in the context of state-of-the-art inexact MAC units.

5.5 Gaussian Blur Application

The MAC unit is widely utilized in both general matrix multiplication and convolution.
The implemented MAC units are evaluated for performance in a Gaussian blurring ap-
plication in which an 8-bit grayscale image is blurred by convolving it with a discrete
Gaussian filter. The application consists of two testbenches: one in which the blur is
applied to 256 × 256 images using a 5 × 5 kernel, and the other for which a 7 × 7 kernel
operates on images of size 512× 512. Convolution using discrete Gaussian kernels results
in a large accumulated number which must be rescaled down to fit back into 8-bits at the
end of computation. This is performed by simply dividing the outputs by a constant de-
pendent on the particular kernel being used. A Python script was used to read the image
file and produce an equivalent data file for quick reading. Simulations were performed
using ModelSim, and Python scripting was used to transform the raw output data to an
image and subsequently compute performance metrics. The performance of each design is
indicated by the level of degradation in the output image when compared to the accurate
output, and thus PSNR and SSIM are used to for evaluation. The performance metrics
measured for all designs are summarized in Table 5.2.

The 5 × 5 filter application utilizes the kernel shown in Fig. 5.6, where 1/273 is the
scaling factor used to scale the large accumulated output of the convolution back down
to an 8-bit number. Convolutions are performed for several input images. The input
images, the accurate outputs, and the outputs produced by ABM-MAC are shown in
Fig. 5.7. From Fig. 5.7, it can be seen that there is no visible difference between the images
produced by ABM-MAC and those computed accurately. The 7 × 7 kernel testbench
utilizes the kernel shown in Fig. 5.8 to perform the convolution. The input images, the
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Fig. 5.6. Discrete 5 × 5 Gaussian filter.

Table 5.2. PSNR and SSIM measurements for Gaussian blur application

(a) 5 × 5 filter

Design PSNR (dB) SSIM

Clk Chm Aer Cam Clk Chm Aer Cam

ABM-MAC 41.9 40.5 40.5 41.1 0.985 0.981 0.990 0.980
Design #1 [80] 27.6 37.4 32.6 38.3 0.979 0.985 0.977 0.986
Design #2 [80] 27.4 36.4 32.2 37.2 0.978 0.985 0.977 0.985
Design #3 [80] 27.1 27.5 27.4 27.5 0.943 0.928 0.950 0.844
ATC-MAC [81] 39.6 38.5 38.2 39.4 0.989 0.987 0.992 0.987
AP-MAC (k = 4) [87] 28.5 31.4 29.1 30.7 0.982 0.977 0.981 0.981
AP-MAC (k = 6) [87] 28.5 31.4 29.1 30.6 0.982 0.977 0.981 0.980
AP-MAC (k = 8) [87] 28.0 29.7 28.1 29.3 0.979 0.972 0.978 0.975

(b) 7 × 7 filter

Design PSNR (dB) SSIM

Boa Brb Air Glh Boa Brb Air Glh

ABM-MAC 43.1 44.1 43.4 44.9 0.992 0.991 0.992 0.991
Design #1 [80] 37.6 34.7 27.9 34.7 0.988 0.985 0.983 0.985
Design #2 [80] 37.0 34.3 27.8 34.3 0.988 0.985 0.983 0.985
Design #3 [80] 27.3 27.3 27.3 27.1 0.973 0.968 0.973 0.968
ATC-MAC [81] 38.3 36.8 35.2 36.1 0.987 0.983 0.984 0.982
AP-MAC (k = 4) [87] 30.3 29.4 27.7 29.4 0.967 0.965 0.965 0.961
AP-MAC (k = 6) [87] 30.3 29.3 27.7 29.4 0.967 0.965 0.965 0.961
AP-MAC (k = 8) [87] 29.6 28.8 27.7 28.9 0.966 0.962 0.963 0.959

accurate results, and the approximate results are shown in Fig. 5.9.
Table 5.2a summarizes the PSNR and SSIM results computed for all MAC units for

each of the four test images in the 5×5 blur application, where the image names are abbre-
viated as: Clock → Clk, Chemical plant → Chm, Aerial → Aer, and Cameraman → Cam.
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Original Exact Filter Inexact Filter

Fig. 5.7. Images used in 5×5 Gaussian blur application from top to bottom: clock, chemical plant, aerial,
and cameraman. The first column contains original images used as input, the second column is the result
from convolution computed using exact operations, and the third column contains the outputs of the
convolution computed by ABM-MAC.
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Fig. 5.8. Discrete 7 × 7 Gaussian filter.

Firstly, it is worth noting that not all designs performed consistently across all four test
images. More specifically, Design #1 and #2 from [80] compute PSNRs from over a 10 dB
range. While Design #1 and #2 have moderate performance, Design #3 does not perform
adequately in this application. On the other hand, ATC-MAC [81] performs very well for
all input images in terms of both PSNR and SSIM. AP-MAC [87] exhibits poor accuracy
metrics when compared to the other designs, so it is not surprising that it produces rel-
atively low PSNR and SSIM values. The proposed ABM-MAC consistently achieves the
best PSNR values amongst the implemented designs. While ATC-MAC [81] does achieve
the highest SSIM, the SSIM values for ABM-MAC differ from those of ATC-MAC by less
than one percent.

Table 5.2b summarizes the PSNR and SSIM results computed for all MAC units
for each of the four test images in the 7× 7 blur application, where the image names are
abbreviated as: Boat → Boa, Barbara → Brb, Airplane → Air, and Goldhill → Glh. There
are substantial differences between the metrics derived from the 5 × 5 filter application
and those derived using the 7× 7 filter. Firstly, the PSNR values in the 7× 7 application
improved for all models. In the case of Design #1–3 [80], PSNR values improved by
a value of 10 dB. The SSIM metrics remained very similar between both testbenches.
The performance for all MAC units relative to one another is quite similar to that of
the previous testbench. However, one difference is that ABM-MAC now reports the best
SSIM values for all four images.
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Original Exact Filter Inexact Filter

Fig. 5.9. Images used in 7 × 7 Gaussian blur application from top to bottom: boat, barbara, airplane,
and goldhill. The first column contains original images used as input, the second column is the result
from convolution computed using exact operations, and the third column contains the outputs of the
convolution computed by ABM-MAC.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

While Dennard scaling enabled impressive performance improvements for decades, its
decay has highlighted the need to explore alternate methods of improving performance
beyond the scope of transistor miniaturization. The emergence of data-heavy error re-
silient applications has enabled the development of approximate computing as a paradigm
for improving performance, where approximation techniques are largely independent of
semiconductor technology. While approximation can be applied at any layer of the com-
puting hierarchy, the development of approximate arithmetic hardware has been proven
to be an especially effective method of reducing unnecessary hardware cost.

In Chapter 3, three approximate Booth multipliers were proposed alongside two inex-
act PPGs. The proposed multipliers were compared to other state-of-the-art designs in
terms of both accuracy and hardware performance. Compared to the exact design, power
is reduced by up to 15% for ABM-M1, 46% for ABM-M2, and 46% for ABM-M3. When
compared to the benchmarking models, ABM-M1 and ABM-M3 achieve the lowest error
metrics, and the highest area and power savings are achieved by ABM-M3. The multi-
pliers are utilized in three applications, i.e. image transformation, matrix multiplication,
and a FIR filter implementation. For all three applications, the best performance was
typically achieved by ABM-M1 and ABM-M3.

In Chapter 4, two approximate restoring dividers are proposed. The first divider
utilizes a proposed inexact divider cell in its least-significant columns to reduce hardware
cost. The second model performs only a subset of the trial subtractions, after which
the partial remainder and the divisor are rounded and encoded for use in generating the
remaining quotient bits. The dividers were evaluated according to their accuracy and
hardware performance alongside several benchmarking divider designs. When compared
to the exact divider, power is reduced by 46% for AXRD-M1 and 57% for AXRD-M2.
When compared with the benchmarking designs, the proposed dividers achieve a strong
balance between accuracy and hardware savings.

In Chapter 5, ABM-MAC is proposed in which the multiplication architecture is based
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on ABM-M3. The proposed design was compared with several other inexact MAC units
to evaluate its accuracy and hardware performance. Compared to the exact design, area
is reduced by 42% and power is reduced by 33%. Compared to the benchmarking de-
signs, while the proposed MAC unit exhibits relatively competitive hardware metrics, its
primary advantage is its high accuracy. Finally, the function of ABM-MAC is verified by
implementing convolution operations for both 5 × 5 and 7 × 7 kernels.

6.2 Future Work

The development of low-level approximate arithmetic units has received vast attention in
the literature, likely in part due to the fact that such units are generic and can therefore
be utilized in a variety of error tolerant applications. While the flexibility associated with
basic arithmetic blocks may be convenient, additional hardware savings are sacrificed to
provide this generalization. To be more specific, approximation techniques can generally
be classified in one of two ways. Domain-specific techniques are intended for use in a
certain data domain and therefore hold prior expectations on what sort of data will be
received. On the other hand, general-purpose techniques have no prior knowledge or
conceptions of the data and therefore can be used with any dataset. Domain-specific
techniques have an advantage in that approximation may be applied according to the
expected characteristics of the data. While general-purpose techniques are still useful,
domain-specific approximation can achieve impressive performance improvements, and
thus there is a growing interest in the development of application-specific approximate
hardware.

A number of works featuring domain-specific techniques were discussed in Section 1.2,
where these works mostly featured acceleration techniques for use in neural network ap-
plications [20]–[25]. While the aforementioned works are historically the most prevalent
examples of approximate accelerators in the literature, recent literature features a num-
ber of neural network architectures which utilize a variety of approximation techniques to
achieve impressive hardware reduction. Quantization is a popular technique for reducing
precision in which data is mapped to a smaller set of quantization levels. Quantization
can be applied to just the network weights, or to both the weights and activations. Addi-
tionally, quantization can be uniform, meaning that quantization levels are evenly spaced,
or it may be nonuniform with varying space between values. Neural networks typically
require less precision during inference than is needed during training, so quantization is of-
ten performed once the network training is complete. A very simple quantization scheme
involves mapping floating-point data to dynamic fixed-point data of a smaller width [88],
[89], where 8 bits seems to be a good choice for maintaining reasonable precision. Some
works have employed very aggressive quantization schemes resulting in ternary [90], [91]
or even binary [89], [90], [92]–[96] values. Other works feature the use of floating-point
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data during training, which is then quantized to integer values for use in inference [97].
A popular nonuniform quantization technique is pruning, in which it is assumed a large
number of weights in the network are redundant and can therefore be set to zero [98],
[99].

While quantization is generally quite effective in reducing the data load, there are a
number of more sophisticated approximation techniques that may be utilized in neural ac-
celerators. In [100], an approximate training technique is proposed in which two methods
are executed simultaneously. While one method actively searches for a network param-
eter distribution with high error tolerance, the other passively learns resilient weights
by numerically incorporating the noise distribution associated with the inexact hardware
during the forward pass. This framework is then incorporated into an accuracy-scalable
accelerator with the aim of achieving high energy efficiency. The design presented in [101]
utilizes a combination of several approximation techniques including quantization, the use
of an approximate multiplier architecture, and the solving of optimization algorithms to
determine the decisions to make that will correspond with the smallest amount of error.

While there are numerous applications that are well-suited to approximation, it seems
that neural networks are notably receptive to the use of approximation techniques. Even if
state-of-the-art hardware is available, the performance of neural network applications can
be continuously improved by identifying and removing unnecessary computation through
the use of approximate computing techniques.
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