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Abstract

Approximate computing is a popular field where accuracy is traded with energy. It can

benefit applications such as multimedia, mobile computing and machine learning which are

inherently error resilient. Error introduced in these applications to a certain degree is beyond

human perception. This flexibility can be exploited to design area, delay and power efficient

architectures. However, care must be taken on how approximation compromises the correct-

ness of results. This research work aims to provide approximate hardware architectures with

error metrics and design metrics analyzed and their effects in image processing applications.

Firstly, we study and propose unsigned array multipliers based on probability statistics

and with approximate 4-2 compressors, full adders and half adders. This work deals with a

new design approach for approximation of multipliers. The partial products of the multiplier

are altered to introduce varying probability terms. Logic complexity of approximation is

varied for the accumulation of altered partial products based on their probability. The

proposed approximation is utilized in two variants of 16-bit multipliers. Synthesis results

reveal that two proposed multipliers achieve power savings of 72% and 38% respectively

compared to an exact multiplier. They have better precision when compared to existing

approximate multipliers. Mean relative error distance (MRED) figures are as low as 7.6%

and 0.02% for the proposed approximate multipliers, which are better than the previous

state-of-the-art works. Performance of the proposed multipliers is evaluated with geometric

mean filtering application, where one of the proposed models achieves the highest peak signal

to noise ratio (PSNR).

Second, approximation is proposed for signed Booth multiplication. Approximation is

introduced in partial product generation and partial product accumulation circuits. In this

work, three multipliers (ABM-M1, ABM-M2, and ABM-M3) are proposed in which the

modified Booth algorithm is approximated. In all three designs, approximate Booth partial

product generators are designed with different variations of approximation. The approxima-

tions are performed by reducing the logic complexity of the Booth partial product generator,

and the accumulation of partial products is slightly modified to improve circuit performance.

Compared to the exact Booth multiplier, ABM-M1 achieves up to 15% reduction in power
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consumption with an MRED value of 7.9 � 10
�4

. ABM-M2 has power savings of up to 60%

with an MRED of 1.1 � 10
�1

. ABM-M3 has power savings of up to 50% with an MRED of

3.4 � 10
�3

. Compared to existing approximate Booth multipliers, the proposed multipliers

ABM-M1 and ABM-M3 achieve up to a 41% reduction in power consumption while exhibit-

ing very similar error metrics. Image multiplication and matrix multiplication are used as

case studies to illustrate the high performance of the proposed approximate multipliers.

Third, distributed arithmetic based sum of products units approximation is analyzed.

Sum of products units are key elements in many digital signal processing applications. Three

approximate sum of products models which are based on distributed arithmetic are proposed.

They are designed for different levels of accuracy. First model of approximate sum of prod-

ucts achieves an improvement up to 64% on area and 70% on power, when compared to

conventional unit. Other two models provide an improvement of 32% and 48% on area and

54% and 58% on power, respectively, with a reduced error rate compared to the first model.

Third model achieves MRED and normalized mean error distance (NMED) as low as 0.05%

and 0.009%. Performance of approximate units is evaluated with a noisy image smoothing

application, where the proposed models are capable of achieving higher PSNR than existing

state of the art techniques.

Fourth, approximation is applied in division architecture. Two approximation models

are proposed for restoring divider. In the first design, approximation is performed at circuit

level, where approximate divider cells are utilized in place of exact ones by simplifying the

logic equations. In the second model, restoring divider is analyzed strategically and number

of restoring divider cells are reduced by finding the portions of divisor and dividend with

significant information. An approximation factor p is used in both designs. In model 1, the

design with p � 8 has a 58% reduction in both area and power consumption compared to exact

design, with a Q-MRED of 1.909 � 10
�2

and Q-NMED of 0.449 � 10
�2

. The second model

with an approximation factor p � 4 has 54% area savings and 62% power savings compared

to exact design. The proposed models are found to have better error metrics compared to

existing designs, with better performance at similar error values. A change detection image

processing application is used for real time assessment of proposed and existing approximate

dividers and one of the models achieves a PSNR of 54.27 dB.

iii



Acknowledgements

I am grateful to my supervisor Dr. Seok-Bum Ko for his continuous guidance, his unfailing

moral and emotional support and giving me the freedom I needed. He was always there for

me to overcome any obstacle I was facing during my research. I would not have reached the

end of this journey if it is not for him.

Thank you, Hao Zhang, for lending me a helping hand whenever I needed one. It was a

great learning and sharing experience with my lab mates Juan Yepez, Yi Wang, Elizabeth

Adams, Riel Castro Zunti and Zhexin Jiang during the last four years. It was a fantastic

experience in my lab 2C60 and at the University of Saskatchewan. My special thanks to my

committee members for their valuable feedback.

A special gratitude to my mom, my dad and my daughter for their patience and encour-

aging words. They made it possible for me to reach this milestone. My special thanks to

Harrison Kunkel and Anup Reddy for their unwavering emotional support throughout my

program.

My gratitude to Natural Sciences and Engineering Research Council of Canada (NSERC)

and the Department of Electrical and Computer Engineering, University of Saskatchewan.

iv



Dedicated to my family and friends

v



Contents

Permission to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Saturation in Rate of Progress in Chip Technology . . . . . . . . . . 1
1.1.2 Power Hungry and Error Tolerant Applications . . . . . . . . . . . . 5
1.1.3 Other External Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Flexible Quality as a Function of Performance . . . . . . . . . . . . . 9

1.2 Challenges in Approximate Computing . . . . . . . . . . . . . . . . . . . . . 9
1.3 Other Computing Strategies for Error Resilient Applications . . . . . . . . . 9

1.3.1 Stochastic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Current Research on Approximate Computing . . . . . . . . . . . . . . . . . 13
1.4.1 Hardware Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Publications and Submissions during Ph.D. Study . . . . . . . . . . . . . . . 16

1.6.1 Published/Accepted Journals . . . . . . . . . . . . . . . . . . . . . . 16
1.6.2 Published Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.3 Submitted Journal and Conferences . . . . . . . . . . . . . . . . . . . 16

1.7 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Review on Approximate Computing of Arithmetic Circuits . . . . . . . 19
2.1 Approximate Works on Adders . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Approximate Works on Multipliers . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Approximate Works in Partial Product Generation . . . . . . . . . . 21
2.2.2 Approximate Works in Partial Product Accumulation . . . . . . . . . 22

2.3 Approximate Works on Composite Units . . . . . . . . . . . . . . . . . . . . 25
2.4 Approximate Works on Dividers . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



2.5 Accuracy Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Motivation Behind Our Works . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Power and Area Efficient Approximate Multipliers . . . . . . . . . . . . . 31
4.1 Proposed Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Approximation of Altered Partial Products gm,n . . . . . . . . . . . . 35
4.1.2 Approximation of Other Partial Products . . . . . . . . . . . . . . . . 36

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Application- Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Design and Analysis of Approximate Booth Multipliers . . . . . . . . . . 49
5.1 Radix-4 Booth multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Proposed Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 ABM-M1 Approximate Multipliers . . . . . . . . . . . . . . . . . . . 52
5.2.2 ABM-M2 Approximate Multipliers . . . . . . . . . . . . . . . . . . . 56
5.2.3 ABM-M3 Approximate Multipliers . . . . . . . . . . . . . . . . . . . 60

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Hardware Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Image Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Approximate Sum of Products Designs based on
Distributed Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Sum of Products Units Based on Distributed Arithmetic . . . . . . . . . . . 70
6.2 Proposed Approximate Sum of Products Architectures . . . . . . . . . . . . 73

6.2.1 Proposed Approximate Sum of Products Model ASOP1 . . . . . . . . 73
6.2.2 Proposed Approximate Sum of Products Model ASOP2 . . . . . . . . 74
6.2.3 Proposed Approximate Sum of Products Model ASOP3 . . . . . . . . 76

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Image Processing - Gaussian Filtering . . . . . . . . . . . . . . . . . . 80
6.4.2 Color Compression- K-means Clustering . . . . . . . . . . . . . . . . 84

7 Design of Approximate Restoring Dividers . . . . . . . . . . . . . . . . . . 88
7.1 Proposed Models of Approximate Restoring Division . . . . . . . . . . . . . 89

7.1.1 Exact Restoring Divider . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1.2 Approximate Restoring Divider - Model 1 . . . . . . . . . . . . . . . 91
7.1.3 Approximate Restoring Divider - Model 2 . . . . . . . . . . . . . . . 94

7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Application- Change Detection . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.1 Approximation in Deep Learning Applications . . . . . . . . . . . . . 103

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



List of Tables

4.1 Probability statistics of generate signals . . . . . . . . . . . . . . . . . . . . . 33
4.2 Truth table of approximate half adder . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Truth table of approximate full adder . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Truth table of approximate 4-2 compressor . . . . . . . . . . . . . . . . . . . 40
4.5 Synthesis results of exact, existing and proposed approximate multipliers . . 42
4.6 Error metrics for 16-bit multipliers . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Ranking of approximate multipliers in terms of design and error metrics . . . 45

5.1 Recoding of multiplier bit groups and corresponding operation in exact radix-4
multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Error distance of proposed approximate partial product generator based on
two signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 MRED and NMED values of proposed and existing approximate multipliers 63
5.4 Area, power, and area-power product values of proposed and existing approx-

imate multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 MRED values of proposed and existing approximate multipliers used in matrix

multiplication application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Lookup table contents of sum of products for K=3 . . . . . . . . . . . . . . 73
6.2 Implementation results of exact, existing and proposed approximate sum of

products units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Error metrics, area power product and power delay product of exact, existing

and proposed approximate sum of products units . . . . . . . . . . . . . . . 81
6.4 Error metrics and PSNR of exact, existing and proposed approximate sum of

products units used in K-means application . . . . . . . . . . . . . . . . . . 86

7.1 Comparison of outputs for exact cell and approximate cell. . . . . . . . . . . 93
7.2 MRED and NMED values of proposed and competing approximate 16-bit

dividend and 8-bit divisor dividers . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Area, power, and area-power product values of proposed and competing 16-bit

dividend and 8-bit divisor approximate dividers . . . . . . . . . . . . . . . . 98

ix



List of Figures

1.1 Prediction of Moore in 1975 [3] . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Number of tranistors on integrated chips in five decades [5] . . . . . . . . . . 3

1.3 CPU scaling comparing transistor density, limit trends in maximum clock
speed, power consumption and efficiency [11] . . . . . . . . . . . . . . . . . . 6

1.4 Grayscale image with its pixel values . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Different shades of green with its pixel values . . . . . . . . . . . . . . . . . 8

1.6 Stochastic computing of multiplication [27] . . . . . . . . . . . . . . . . . . . 11

1.7 Stochastic computing of addition [27] . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Truth table and structure of approximate 2 � 2 multiplier of UDM [51] . . . 22

2.2 Accurate and approximate PPP with perforated third and fourth partial prod-
uct rows [54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Approximate adder in radix-8 Booth multiplier of [78] (a) Truth table (b)
Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Static segment multiplier of [64] . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Transformation of generated partial products into altered partial products . 32

4.2 Reduction of altered partial products . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Full adder (a) Exact version (b) Approximate version . . . . . . . . . . . . . 38

4.4 4-2 compressor (a) Exact version (b) Approximate version . . . . . . . . . . 41

4.5 MRED distribution of (a) Multiplier1 (b) Multiplier2 . . . . . . . . . . . . . 44

4.6 (a) Input image-1 with Gaussian noise. Geometric mean filtered images and
corresponding PSNR and energy savings in µJ using (b) Exact multiplier (c)
Multiplier1 (d) Multiplier2 (e) ACM1 (f) ACM2 (g) SSM (h) PPP (i) UDM
(j) VOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 (a) Input image-2 with Gaussian noise. Geometric mean filtered images and
corresponding PSNR and energy savings in µJ using (b) Exact multiplier (c)
Multiplier1 (d) Multiplier2 (e) ACM1 (f) ACM2 (g) SSM (h) PPP (i) UDM
(j) VOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Circuit schematic for exact partial product generator . . . . . . . . . . . . . 53

5.2 k-map of approximate partial product generator . . . . . . . . . . . . . . . . 53

5.3 Circuit schematic for approximate two-signal partial product generator PPG-2S 53

5.4 Partial product matrix of an exact radix-4 Booth multiplier (c: indicates a
partial product, b: indicates a sign-extension term, u: refers to a correction
term). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Partial product matrix of a 16-bit ABM-M1 multiplier with p � 14 (c: a
partial product, b: a sign-extension term, v: an approximate partial product
generated with PPG-2S, j: term resulting from OR-ing the least-significant
bit of a partial product with its correction term). . . . . . . . . . . . . . . . 57

x



5.6 Partial product matrix of a 16-bit ABM-M1 multiplier with p � 16 for radix-16
operation (c: a partial product, b: a sign-extension term, v: an approximate
partial product generated with PPG-2S). . . . . . . . . . . . . . . . . . . . . 58

5.7 Partial product matrix of a 16-bit ABM-M2 multiplier with p � 8. The width
of the matrix is reduced by adding the p least significant bits of each partial
product, comparing the result to p, and then using the resulting 1-bit or 0-bit
as an input to PPG-2S (c: a partial product, b: a sign-extension term, v:
approximate partial product generated using PPG-2S). . . . . . . . . . . . . 59

5.8 Circuit schematic for approximate single-signal partial product generator PPG-
1S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Partial product matrix of a 16-bit ABM-M3 multiplier with p � 14. The width
of the matrix is reduced by OR-ing together for each partial product all bits
with a significance less than p and then using the result of the OR operation
as an input into PPG-1S (c: a partial product, b: a sign-extension term, u:
a correction bit, v: approximate partial product generated using PPG-1S). . 61

5.10 (a) Input image. Images after image multiplication using (b) exact multiplier,
the proposed multipliers with their PSNR values in dB (c) ABM-M1 (p=12)
(d) ABM-M1 (p=14) (e) ABM-M1 (p=16) (f) ABM-M2 (p=6) (g) ABM-M2
(p=8) (h) ABM-M2 (p=10) (i) ABM-M3 (p=12) (j) ABM-M3 (p=14) (k)
ABM-M3 (p=16), the existing comparison multipliers (l) R4ABM1 [56] (p=12)
(m) R4ABM1 [56] (p=14) (n) R4ABM1 [56] (p=16) (o) ABM1 [78] (p) ABM-
C9 [78] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Lookup table and corresponding exact sum of products structure for K=3 and
N=16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Approximate lookup table and corresponding approximate sum of products
(ASOP1) structure for K=3 and N=16 . . . . . . . . . . . . . . . . . . . . 72

6.3 Approximate lookup table and corresponding approximate sum of products
(ASOP2) structure for K=3 and N=16 . . . . . . . . . . . . . . . . . . . . 74

6.4 Least significant part of the approximate sum of products (ASOP3) structure 75

6.5 Ranked (a) APP (b) MRED . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Ranked PSNR of approximate sum of products units in Gaussian filtering
application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.7 (a) Input noisy image. Images after gaussian smoothing using (b) exact mul-
tiplier (c) ASOP1 (m=8) (d) ASOP1 (m=6) (e) ASOP1 (m=4) (f) ASOP2
(m=8) (g) ASOP2 (m=6) (h) ASOP2 (m=4) (i) ASOP3 (m=8) (j) ASOP3
(m=6) (k) ASOP3 (m=4) (l) TRUNC1 (m) TRUNC2 (n) PROB-SOP (o)
PERF-SOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 (a) Input image. Image after K-means clustering using (b) exact multiplier
(c) ASOP1 (m=8) (d) ASOP1 (m=6) (e) ASOP1 (m=4) (f) ASOP2 (m=8)
(g) ASOP2 (m=6) (h) ASOP2 (m=4) (i) ASOP3 (m=8) (j) ASOP3 (m=6)
(k) ASOP3 (m=4) (l) TRUNC1 (m) TRUNC2 (n) PROB-SOP (o) PERF-SOP 87

7.1 Circuit schematic for exact divider with 8-bit dividend and 4-bit divisor. . . 90

7.2 Circuit diagram for exact cell EC. . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



7.3 Circuit schematic for AD-M1 with 8-bit dividend and 4-bit divisor for p � 4. 92
7.4 Circuit schematic for AD-M2 with 8-bit dividend and 4-bit divisor for p � 2. 95
7.5 Two input images for change detection application . . . . . . . . . . . . . . . 97
7.6 Change detection results using (a) Exact divider. Approximate divider models

with the corresponding PSNR values (b) AD-M1 (p=4) (c) AD-M1 (p=6)
(d) AD-M1 (p=8) (e) AD-M2 (p=2) (f) AD-M2 (p=3) (g) AD-M2 (p=4) (h)
AXDr1 (p=8) (i) AXDr2 (p=8) (j) AXDr3 (p=8) . . . . . . . . . . . . . . . 99

xii



List of Abbreviations

ABM-M1 Approximate Booth Multiplier-Model1

ABM-M2 Approximate Booth Multiplier-Model2

ABM-M3 Approximate Booth Multiplier-Model3

ACM Approximate Compressors based Multipliers

AD-M1 Approximate Divider-Model1

AD-M2 Approximate Divider-Model2

APP Area Power Product

ASOP Approximate Sum Of Products

AVC Advanced Video Coding

DCT Discrete Cosine Transform

DRAM Dynamic Random Access Memories

DSP Digital Signal Processing

ED Error Distance

ETA Error Tolerant Adder

HEVC High Efficiency Video Coding

JPEG Joint Photographic Experts Group

LOA Lower part OR Adder

LVA Load Value Approximation

MAC Multiply and Accumulate

MOSFET Metal Oxide Semiconductor Field Effect Transistors

MPEG Motion Pictures Expert Group

MRED Mean Relative Error Distance

MSE Mean Square Error

NMED Normalized Mean Error Distance

PDP Power Delay Product

PERF-SOP Perforated multiplier based SOP

xiii



PIM Processor In Memory

PPP Partial Product Perforation

PROB-SOP Probabilistic multiplier based SOP

PSNR Peak Signal to Noise Ratio

R4ABM Radix-4 Approximate Booth Multiplier

SIMD Single Instruction Multiple Data

SNG Stochastic Number Generator

SSM Static Segment Multiplier

UDM Under Designed Multiplier

VOS Voltage Over Scaling

xiv



1 Introduction and Motivation

Approximate computing is producing imprecise results instead of perfect precise results,

with varying differences in the efforts of producing them. It is about replacing guaranteed

exact results with viable inexact results.

“ If I asked you to divide 500 by 21 and I asked you whether the answer is greater
than one, you would say yes right away. You are doing division but not to the full
accuracy. If I asked you whether it is greater than 30, you would probably take a
little longer, but if I ask you if it’s greater than 23, you might have to think even
harder. The application context dictates different levels of effort, and humans
are capable of this scalable approach, but computer software and hardware are
not like that. They often compute to the same level of accuracy all the time [1]. ”

Dr. A. Raghunathan,
Purdue University

Similar to scalable efforts in human thinking, modern computing devices can too choose to

have varying strain in its computing resources with help of approximate or inexact computing.

Some main motivational factors behind approximate computing are discussed in the following

section.

1.1 Motivation

The key motivational factors to maximize the opportunity for approximate computing are

listed in this section.

1.1.1 Saturation in Rate of Progress in Chip Technology

Gordon Moore, founder of Fairchild electronics and co-founder of Intel made some interesting

observations and projections based on historical trends. He made a prediction in 1965 that
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integrated circuits leading to home computers and personal portable, powerful computing

systems with the number of components in integrated circuit double every year and this con-

tinued to be true for a decade [2]. After a decade, he revised his prediction that approximated

a doubling of transistors every 24 months in 1975 [3]. In the Figure 1.1 of [3], Moore had

taken chip area into consideration and the components density that can be packed in the

chip area and even with the reduced slope, he expected integrated circuits to have several

million components in the future years. This led to another prediction by David House, an

Intel executive at the time, that the computer performance would double every 18 months.

These predictions foretold the infiltration of technology in a common man’s life ranging from

iPods, mobile phones to play stations, and Moore’s law served as a rule of thumb to reach in

technological treadmill [4]. Trends in digital electronics and goals in engineering and technol-

ogy are strongly associated with Moore’s law for many decades. Shrinking transistors have

enabled advance in computing for around five decades, as shown in Figure 1.2.
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spaces are a micrometer or less. This allows for an additional 

factor of improvement at least equal to the contribution  

from the finer geometries of the last fifteen years. Work in  

non-optical masking techniques, both electron beam and  

X-ray, suggests that the required resolution capabilities will  

be available. Much work is required to be sure that defect  

densities continue to improve as devices are scaled to take  

advantage of the improved resolution. However, I see no  

reason to expect the rate of progress in the use of smaller  

minimum dimensions in complex circuits to decrease in  

the near future. This contribution should continue along  

the curve of Figure 3.   

With respect to the factor contributed by device and circuit 

cleverness, however, the situation is different. Here we are  

approaching a limit that must slow the rate of progress. The 

CCD structure can approach closely the maximum density 

practical. This structure requires no contacts to the compo-

nents within the array, but uses gate electrodes that can be  

at minimum spacing to transfer charge and information  

from one location to the next. Some improvement in overall 

packing efficiency is possible beyond the structure plotted as 

the 1975 point in Figure 1, but it is unlikely that the packing  

efficiency alone can contribute as much as a factor of four,  

and this only in serial data paths. Accordingly, I am Inclined  

to suggest a limit to the contribution of circuit and device 

cleverness of another factor of four in component density.

With this factor disappearing as an important contributor,  

the rate of increase of complexity can be expected to change

slope in the next few years as shown in Figure 5. The new 

slope might approximate a doubling every two years, rather 

than every year, by the end of the decade.

Even at this reduced slope, integrated structures containing  

several million components can be expected within ten  

years. These new devices will continue to reduce the cost of  

electronic functions and extend the utility of digital electronics 

more broadly throughout society.   

Figure 5 Projection of the complexity curve reflecting the limit on  
increased density through invention.

Figure 1.1: Prediction of Moore in 1975 [3]

Manufacturers were able to fit twice as many transistors roughly every 24 months, since

1970s. This leads to the possibility of smart phones, efficient data mining and data processing,

and breakthroughs in powerful deep learning machines. However, shrinking of transistors has

been slowing down. In the regulatory filing in 2016 [6, 7], Intel disclosed that gap between

successive newer, smaller chips will widen. Transitioning to smaller feature sizes is becoming

increasingly difficult, starting at 22 nm feature size in 2012, Intel’s latest chips have feature
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Figure 1.2: Number of tranistors on integrated chips in five decades [5]

size of 14 nm released in 2014, and in future Intel has pushed back on delivering its next

transistor technology 10 nm silicon to the end of 2019. It is evident that it is becoming

increasingly hard to shrink the sizes further down. The increasing gap of Moore’s law is

discussed in [8, 9]. In 2015, Gordon Moore predicted that the rate of increase in transistor

density will reach saturation.

It should be noted that Moore’s law predicts the transistor count doubling, not the raw

performance. Although transistor count kept on increasing in last few decades, there has been

not much improvement in performance. Manufacturers have focused more on reducing power

consumption. On a parallel note, in a scaling law known as Dennard scaling coined in 1974

and originally formulated for metal oxide semiconductor field effect transistors (MOSFETs)

[10], Robert H. Dennard observed that with reduction of transistors in size, their power

density remains constant, i.e., power being in proportion to the area, even though size of
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transistors is being reduced. This would allow the transistors to be packed denser, as the

heat generated by any transistor is reduced. It can be said that performance per watt growing

exponentially at the same rate as the rate of fitting more transistors per chip at cost-effective

optimum. Power in a integrated circuit chip can be given as

Total power � Pdynamic � Pleakage (1.1)

Pdynamic � α �Q � f � C � V
2

(1.2)

where α is the switching activity factor, Q is the number of transistors, f represents the

frequency of operation, C is the capacitance, V stands for operating voltage and Pleakage is

the leakage power.

Power in the chip for a given area size remained almost same from process generation

to process generation. Dynamic power consumption is directly proportional to frequency.

When there is drastic increase in clock frequencies, overall power consumption remained

almost same because of the transistor power reduction. Feature size continued to shrink,

but with feature sizes below 65 nm, these rules could no longer remain sustained, since

the leakage power exponentially increased with smaller feature sizes. In general, industry

consensus is that Dennard scaling broke down around 2006 [11] as shown in Figure 1.3. The

graph shows the trend from increasing clock speed to limited clock speed. Higher clock

speeds became increasingly difficult mainly due to too high power consumption, heat too

hard to dissipate and current leakage. At small feature sizes, leakage power causes chip to

heat up and thermal runaway, thus resulting in inability to increase clock frequencies [12].

With shrinking of transistors, energy dissipation issue is becoming harder. Rather focusing

on highly integrated chips to meet the demands, it is time to look for alternatives at different

angles. One of the alternative to the end of Dennard scaling is to use multicore processors.

Still, individual switching activities of each core will result in overall power consumption and

more issues with power dissipation [13].

The way to overcome these issues is that companies need to get creative. Alternative ways

include making specialized chips to fasten particular applications. The end of Moore’s law

and Dennard’s scaling will pave way to new era of computer architecture. When the existing
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strategies are no longer sufficient to meet future needs in the industry, new technologies

have to be analyzed. This leads to trying new ideas rather than basing their relentless

improvements on shrinking of transistors. In recent years, we are seeing more specialized

architectures catered for specific applications. It is safe to say that industry shifted its focus

from semiconductor scaling to meeting the demands of major computing applications. For

example, Google has had their own chips TPUs- TensorFlow Units optimized for deep learning

networks. The significant factor in this chip is that fixed point values are used instead of

single or double precision floating point values of traditional deep learning neural networks

and network is trained to required precision thereby reducing computational complexity. In

a typical mobile phone, there are ARM processor cores and special purpose processors in

the same silicon. The special purpose processors serve needs like managing and processing

images and videos from the camera and perform face detection and audio signal processing.

In similar fashion, special purpose processors with approximate computing can be designed

for specific applications which are discussed in next section.

1.1.2 Power Hungry and Error Tolerant Applications

There are numerous applications that do not need precise answer. This phenomenon of a

particular application being tolerant to deviation from accurate results is termed as error re-

silience. There exists wide spectrum of applications which fits into above mentioned category-

digital signal processing for multimedia signals, data mining, data analytics, computer vision,

deep neural networks and so on.

Digital signal processing involves processing information such as images, video and audio

processing. To understand the error resilience of these applications, let us take few examples.

A grayscale image consists of shades of gray ranging from black to white and each shade of

gray can be represented using a 8-bit pixel value ranging from 0 to 255, as shown in Figure

1.4. In the Figure 1.4, from perception of human vision, shade of gray represented by pixel

value 102 would be same as the shade of gray represented by pixel value 120. A color image

consists typically of three pixel values of basic colors contributing to red, green and blue

planes. When three values in each pixel ranges from 0 to 255, the combination (0, 0, 0)

stands for a black pixel and the group (255, 255, 255) stands for white color. Any value in
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Figure 1.3: CPU scaling comparing transistor density, limit trends in maximum clock
speed, power consumption and efficiency [11]

between would represent different combination of red, green and blue colors. As can be seen

from Figure 1.5, shade of green with values (64, 255, 0), (0, 255, 0) and (0, 255, 64) are

similar. This concept of human visual perception is taken into account while implementing

our approximate arithmetic circuits in image processing application.

Analog audio signals are digitally represented after sampling in range of digital steps. Bit

depth is the number of bits of information representing each sample. There are audio coding

formats for storage and transmission of digital audio. Analogous to digital images and videos,

number of bits can be carefully reduced or altered with minimum loss in quality impercep-

tible to human senses. In [14], resilience characterization is performed for 12 applications

from recognition, computer vision, data mining, search and digital signal processing. In

this work, resilient and sensitive computation portions are identified. Applications including
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document and image search, hand written digit recognition, data classification, data cluster-

ing are analyzed for dominant units, resilient units and their contribution to percentage of

runtime. Main dominant units of error resilient applications are dot product computation,

distance computation and matrix vector multiplication. In [14], it is shown that the popular

applications spend 83% of the runtime in error resilient computations and emphasizes the

prospective of approximate computing in these areas.

In popular video coding standard called High Efficiency Video Coding (HEVC) [15],

motion estimation blocks which essentially finds the best block to match with next frame

while compressing the video takes about 80% of the total energy consumption of the encoder.

It should be noted that motion estimation block primarily consists of adders, multipliers

and dividers. On a similar note, machine learning algorithms primarily employ distance

computation units which return values, and based on the maximum or minimum value,

the match is found. In these cases, the result of distance computation unit does not have

direct impact on the result, rather it decides the match. These applications are highly error

resilient. In a machine learning algorithm such as K-means clustering application, Euclidean

distance computation can be replaced with approximate units and will result in no effects

or negligible effects in the results. Iterative nature of machine learning algorithms can make

use of approximation.

Similarly, in image transforms such as discrete cosine transforms (DCT) in Joint Pho-

tographic Experts Group (JPEG), DCT converts time domain information into frequency

domain information which is later quantized to reduce the size during storage and transmis-

sion of images. Since quantization error is going to be introduced after DCT in JPEG, DCT

can be taken as a candidate for approximation.

Data mining is about extracting information in large data sets and is at the intersec-

tion of machine learning, statistics and database systems. In case of results from search

engines, there are no right compilation of answers. Multiple sets of results in different com-

binations are permissible, the base challenge being relevance of the results to the search key

terms. Approximate computing can be implemented in these scenarios. It should be noted

that dominant units in most of the resilient applications are made of basic arithmetic units

comprising addition, multiplication and division.
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Approximate computing replaces traditional exact logic with carefully analyzed inexact

logic [16]. Overall, applications such as image and video processing, deep learning, data min-

ing and image recognition are computationally expensive and their major arithmetic blocks

include addition, multiplication, sum of product units and division units which account for

large extent of energy consumption, and in turn there is always an increasing interest to

increase their energy efficiency. Taking advantage of this robustness, to reduce the hardware

complexity of such applications, significant amount of research works was proposed. Ap-

proximate computing is one promising solution to reduce design complexity and to improve

performance. Approximation offers an effective solution for energy efficient system designs

[16].

Figure 1.4: Grayscale image with its pixel values

Figure 1.5: Different shades of green with its pixel values

1.1.3 Other External Factors

Defects in hardware during the manufacturing process [18] is a factor to employ approxi-

mation. Faulty hardware need not be tossed off and can still be used in applications with
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inherent tolerance. In case of processing intrinsic noisy nature of the data such as informa-

tion collected from global positioning system sensors [17], approximate computing can be

implemented.

1.1.4 Flexible Quality as a Function of Performance

Approximate computing enables to configure quality as a trade-off to energy efficiency. Based

on the required quality, consumption of energy can be dictated.

1.2 Challenges in Approximate Computing

The nature of approximate computing poses certain challenges. Some key challenges can be

stated as

� Limitations in applications: Approximation cannot be applied to applications which

involves sensitive data such as encryption and decryption in cryptography, defense

applications, avionics and other hard real-time systems.

� Threshold of approximate computing and optimal trade-off: The degree of incorrectness

in result after approximate computing plays an important role in the quality perceived

by the end user. Trade-off space between quality and performance has to be optimized.

� Finding the right approximation approach: There is no one approximation approach

for all the applications. Each application can utilize one or combination of different

approximation schemes and efforts have to be taken to optimize the approximation

strategies per application basis.

1.3 Other Computing Strategies for Error Resilient Ap-

plications

Some other computing models which are existing for error tolerant applications, and how

they differ from approximate computing are discussed here.
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1.3.1 Stochastic Computing

Stochastic computing is an unconventional computing method, first introduced in 1967 [19].

Stochastic computing offers an alternative approach for traditional binary computing. It

converts binary numbers to bit-streams which are processed using basic logic units. Digi-

tized probabilities can be derived from the bit-streams independent of their structure and

length. Arithmetic operations such as addition, subtraction, multiplication and division are

replaced by simplified and basic logic elements. To multiply two numbers, binary represen-

tation is converted to stochastic representation and multiplication arithmetic is replaced by

AND gates. To add two numbers, addition arithmetic is replaced by a multiplexer. Mul-

tiplication and addition of two stochastic numbers using AND logic and multiplexer logic

respectively are depicted in Figure 1.6 and Figure 1.7 respectively [27]. A stochastic number

generator (SNG) is used to generate stochastic number from input binary number and a

random number generator. Different kinds of stochastic number generators are discussed in

[20], [21]. Stochastic numbers are processed by logically simple circuits rather than complex

arithmetic hardware.

Applications which have fault tolerance can benefit from stochastic computing and its

inherent faulty nature and simplified circuits. In [22], stochastic computing is used in im-

plementing distance computations in vector quantization for image compression application.

Distances are calculated based on L1 norm, squared L2 norm and p
th

law in [22]. Stochastic

error calculators are designed based on XOR gates and multiplexers, replacing arithmetic

subtractors and adders. Stochastic computing also finds its applications in reliablility anal-

ysis [23], polynomial arithmetic [24] and neural networks [25, 26].

Advantages of stochastic computing are

� High degree of error tolerance, specifically when there are soft errors or transient errors

due to process variation or cosmic radiation. For instance, when the error output

is 10001100 instead of 00001100 in stochastic computing, it results in small error in

arithmetic distance from 2/8 to 3/8. In binary computing, similar bit flip located at

most significant part will result in large error.

� Complex arithmetic modules are replaced with simple circuits made of basic logic gates
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and/or multiplexers. The bit streams can be implemented in series or parallel.

Stochastic computing has several issues such as

� For increase in precision, longer bit stream is required and an exponential increase

would result in huge increase in computation time. To increase the precision from 4

bits to 8 bits, length of stochastic bit stream increases from 16 to 256.

� Identical bit streams would result in large deviation from correct result, for example,

a stochastic stream ’s’ multiplied with stream ’s’ with AND logic would result in ’s’

instead of s
2
.

� Stochastic number generators and conversion processes itself are computationally ex-

pensive.

Although stochastic computing has its merits [27], the major drawback is increased com-

plexity in the implementation of stochastic computing itself and exponential increase in the

number of bits to increase the precision. Due to these factors, stochastic computing is not

an ideal candidate to apply in error intrinsic applications when we are looking for less com-

putational complexity. The main difference between approximate computing and stochastic

computing is that approximate computing has a deterministic design nature that produce

imprecise results, but not non-deterministic random results. Although it utilizes the statis-

tical properties of the data, approximate computing does not have to generate stochastic bit

streams.

�
�

�
�

�
�

�
�
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Fig. 1. AND gate used as a stochastic multiplier: (a) exact and (b) approximate computation of 4/8 × 6/8.

for example, (1,0,0,0), (0,1,0,0), and (0,1,0,0,0,1,0,0) are all possible representations of
0.25. Note that p depends on the ratio of 1s to the length of the bit-stream, not on their
positions, which can, in principle, be chosen randomly. We will refer to bit-streams of
this type and the probabilities they represent as stochastic numbers.

The main attraction of SC when it was first introduced in the 1960’s [Gaines 1967;
Poppelbaum et al. 1967; Ribeiro 1967] is that it enables very low-cost implementations
of arithmetic operations using standard logic elements. For example, multiplication
can be performed by a stochastic circuit consisting of a single AND gate. Consider two
binary bit-streams that are logically ANDed together. If the probabilities of seeing a 1
on the input bit-streams are p1 and p2, then the probability of 1 at the output of the
AND gate is p1 × p2, assuming that the two bit-streams are suitably uncorrelated or
independent. Figure 1 illustrates the multiplication of two stochastic numbers in this
way. As can be seen, the inputs to the AND gate represent the numbers 4/8 and 6/8
exactly. In the case of Figure 1(a), we get an output bit-stream denoting 4/8 × 6/8 =
3/8. Figure 1(b) shows two of the many possible alternative SC representations of the
same input numbers 4/8 and 6/8. In this case, the output bit-stream denotes 2/8, which
can be interpreted as an approximation to the exact product 3/8. This example illus-
trates a key problem which we will examine later: How do we generate “good” stochas-
tic numbers for a particular application?

Another attractive feature of SC is a high degree of error tolerance, especially for
transient or soft errors caused by process variations or cosmic radiation. A single bit-
flip in a long bit-stream will result in a small change in the value of the stochastic num-
ber represented. For example, a bit-flip in the output of the multiplier of Figure 1(a)
changes its value from 3/8 to 4/8 or 2/8, which are the representable numbers closest
to the correct result. But if we consider the same number 3/8 in conventional binary
format 0.011, a single bit-flip causes a huge error if it affects a high-order bit. A change
from 0.011 to 0.111, for example, changes the result from 3/8 to 7/8. Stochastic num-
bers have no high-order bits as such since all bits of a stochastic bit-stream have the
same weight.

On the other hand, SC has several problems that have severely limited its practical
applicability to date. An increase in the precision of a stochastic computation requires
an exponential increase in bit-stream length, implying a corresponding exponential
increase in computation time. For instance, to change the numerical precision of a
stochastic computation from 4 to 8 bits requires increasing bit-stream length from 24 =
16 bits to 28 = 256 bits. As illustrated by Figure 1, variations in the representation of
the numbers being processed can lead to inaccurate results. An extreme case occurs
when identical bit-streams denoting some number p are applied to the AND gate: the
result then is p, rather than the numerically correct product p × p = p2.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

Figure 1.6: Stochastic computing of multiplication [27]

1.3.2 Data Compression

Data compression is a method of converting bit structure of the data to optimize the storage

space and it is achieved by leveraging on the statistical redundancy in the data. Degree of
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Fig. 2. Multiplexer used as a scaled stochastic adder.

Nepal et al. [2005] and Vigoda [2003]. The terms “stochastic numbers” and “stochastic
arithmetic” appear in Alt et al. [2006] which, however, is concerned with numerical
errors in conventional binary computation.

In this article, we attempt to survey and critique SC from a modern perspective.
After reviewing the basic ideas behind SC, we examine its major advantages and
disadvantages with emphasis on accuracy issues. Then, some recent representative
applications of SC, including LDPC decoding, are discussed. Finally, we draw some
conclusions and suggest topics for future research.

2. BASIC CONCEPTS

Since stochastic numbers are treated as probabilities, they fall naturally into the in-
terval [0,1]. This makes the normal add operation inconvenient because the sum of two
numbers from [0,1] lies in [0,2]. For this reason, special scaled add operations are used
in SC in order to map results from [0,2] to [0,1]. As illustrated in Figure 2, a two-way
multiplexer can compute the sum of two stochastic numbers p(S1) and p(S2) applied to
its data inputs S1 and S2. A third number with the constant value p(S3) = 1/2 is also
required, and is applied to the multiplexer’s third (select) input; this can be supplied
by a (pseudo) random number generator. The probability of a 1 appearing at the output
S4 is then equal to the probability of 1 at S3 multiplied by probability of 1 at S1, plus
the probability of 0 at S3 multiplied by the probability of 1 at S2. More formally,

p(S4) = p(S3)p(S1) + (1 − p(S3))p(S2) = (p(S1) + p(S2))/2,

so that S3 effectively scales the sum by 1/2. For the stochastic numbers shown in
Figure 2, we obtain the result p(S4) = (7/8 + 3/8)/2 = 5/8.

Circuits that convert binary numbers to stochastic numbers, and vice versa, are
fundamental elements of SC. Figure 3(a) illustrates a widely used binary-to-stochastic
conversion circuit, which we will refer to as a stochastic number generator (SNG). The
conversion process involves generating an m-bit random binary number in each clock
cycle by means of a random or, more likely, a pseudorandom number generator, and
comparing it to the m-bit input binary number. The comparator produces a 1 if the
random number is less than the binary number and a 0 otherwise. Assuming that the
random numbers are uniformly distributed over the interval [0,1], the probability of a
1 appearing at the output of the comparator at each clock cycle is equal to the binary
input of the converter interpreted as a fractional number.

Converting a stochastic number to binary is much simpler. The stochastic number’s
value p is carried by the number of 1s in its bit-stream form, so it suffices to count these
1s in order to extract p. Figure 3(b) shows a counter that performs this conversion.

Figure 4 shows a stochastic circuit that implements the arithmetic function z =
x1x2x4 +x3(1 − x4) [Li et al. 2009]. The inputs x1, x2, x3, and x4 are provided in conven-
tional binary form and must be converted to stochastic numbers via SNGs. Suppose

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

Figure 1.7: Stochastic computing of addition [27]

compression decides the amount of distortion in the results. Lossless and lossy compression

techniques are two major fields in data storage and transmission. Compression algorithms

based on converting frequency domain to time domain such as discrete cosine transform,

discrete wavelet transform, pulse code modulation are used in popular standards such as

JPEG, Motion Pictures Expert Group (MPEG)-4, Advanced Video Coding (AVC) and High

Efficiency Video Coding (HEVC). Compression techniques developed especially for computer

vision applications are discussed in [28]. In [31], compression is used in efficient market

analysis. Choice of compression algorithm resulting in definable representation of data within

a feature space and its use in machine learning are discussed in [32].

Compression and decompression are computationally intensive and require expensive

hardware. They are mainly proposed for saving the storage and transmission bandwidth

and more computational effort is taken while encoding and decoding the compression algo-

rithms. The main objective of data compression schemes is to save to memory bandwidth,

while approximate computing looks to reduce energy consumption, while the common theme

of both data compression schemes and approximate computing is to produce results without

heavily degrading the quality perceived. Considering these factors, approximate computing

can be used as complementary technique for better performance with these data compression

algorithms [29, 30].
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1.4 Current Research on Approximate Computing

Approximate computing is currently researched across two broad domains- hardware systems

and software systems. Approximate computing has attracted attention from researchers

in hardware architecture and circuit designs, software engineering, programming languages

and computer organization and software designers. Our thesis focuses on approximation in

hardware architecture on basic arithmetic circuits widely used in intrinsic error applications.

In this section, approximate computing researches going on in different domains are briefly

reviewed.

1.4.1 Hardware Systems

Most of the research work in hardware is happening on arithmetic and logic units (ALU) level.

It focuses on redesigning the arithmetic circuits into inexact versions to get high performance.

Addition, multiplication and division are fundamental components in ALU. Since our thesis

focuses on approximation at ALU level, detailed review on this topic is done in next chapter.

There are other hardware approximation strategies applied at memory level [33, 34] and

hardware accelerator cores such as neural network accelerator [35, 36]. In [33], an applica-

tion level technique is proposed where different refresh rates are used for critical and non-

critical sections of the data reducing the energy used by Dynamic Random Access Memories

(DRAM). In [34], approximation techniques are proposed for solid-state memories to address

the challenges due to wear-out and slow writes. Voltage over-scaling (VOS) is discussed in

[37, 38]. Lowering supply voltage creates paths failing to meet delay constraints leading to

early termination of results.

1.4.2 Software Systems

In software systems, approximations include proposals of approximate programming lan-

guages, compilers, libraries and cache fetching optimizations. Modifications at the program-

ming language level to conserve energy is introduced in [39], where approximation features

are built on a new language Eon for self-adapting perpetual systems. In [40], approximate
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data types are proposed and implemented on top of Java and tested with image processing,

gaming and scientific computing applications. A language called Rely is presented in [41]

which makes efficient use of unreliable components exhibiting soft errors.

Semantics of the programs are altered to reduce the consumption of hardware resources

thereby reducing energy consumption [45, 46]. For example, non-sensitive kernels of an

application can be made to execute on approximate hardware while sensitive kernels can

choose to execute on exact hardware [43]. In iteration based methods, more number of

iterations increases accuracy. But, in most cases after initial iterations, improvement in

accuracy does not happen or negligible. Program can be modified to execute fewer iterations

when requisite quality is obtained [45, 44].

Approximate library called UncertainT [17] encapsulates approximate data under object

oriented programming language constructs. In [42], a framework supporting energy conscious

programming is introduced. Load Value Approximation (LVA) is a technique to hide cache

miss latency. When applications do not require exact data, instead of fetching the data from

main memory or next level of cache, load value can be estimated, and stalling of the processor

can be prevented. Spatially and temporally correlated data is the motivation behind LVA.

LVA in [47] uses block fetching to train the approximator and is based on graphics applications

which can tolerate errors. LVA in [48] reduces memory stalls in graphics processing units by

interpolating the cache entries.

Memoization is a technique where results of a function are stored and reused for repeated

task having similar functions. In [49], a spatial memoization is used in single instruction

multiple data (SIMD) architecture. The result of an instruction is memoized and reused.

Number of reuses is inversely proportional to the precision of the computation. In [50],

precision of the value cache is monitored.

1.5 Contributions of the Thesis

Novel approximations are proposed for arithmetic circuits. Main contributions of this thesis

are

� Design of approximate arithmetic circuits: Approximation in array based multiplier
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design is presented. Partial product matrix of an array multiplier is split into low

information and more relevant information regions. To accumulate the partial products,

new approximate adders and compressors with fast sum and carry generations are used.

Approximation in modified Booth multipliers is analyzed. Widely used three signal

encoding scheme is taken as the basis of approximation. Two signal encoding and one

signal encoding approximations are presented.

Approximation for sum of products units based on distributed arithmetic is presented.

Distributed arithmetic algorithm is altered to minimize the hardware resources con-

sumption. Number of lookup tables, adders and length of the multipliers are reduced.

Approximation for restoring division is presented. Restoring division is analyzed at

circuit level and strategy level and two new approximations are presented.

� Error characterization: Accuracy of all the presented approximations are mathemat-

ically characterized using MRED and NMED. The error characterizations when com-

pared with area, delay and power characterizations give a better idea about the trade-off

between accuracy and quality. Peak signal to noise ratio (PSNR) is used as the quality

metric in applications of approximate circuits. Proposed approximate circuits generate

results with acceptable values of PSNR.

� Real-time implementations: Proposed architectures are implemented in real time ap-

plications including machine learning algorithm - K-means clustering for color image

compression, and mainly image processing applications such as image smoothing, ge-

ometric mean filtering for noise reduction, matrix multiplication, image multiplication

and motion detection. The proposed architectures are compared with respective exist-

ing architectures.

� Comparative study: Proposed architectures are compared with state-of-the-art approxi-

mate architectures and exact architectures. Circuit level models are designed in Verilog

language, implemented in 65 nm TSMC technology using Synopsys design compiler.

Modelsim, Python and Matlab are used to run simulations and for finding and com-

paring the error characteristics.
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1.6 Publications and Submissions during Ph.D. Study

1.6.1 Published/Accepted Journals

1. Suganthi Venkatachalam and Seok-Bum Ko, “Design of Power and Area Efficient Ap-

proximate Multipliers,” in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 5, pp. 1782-1786, May 2017. doi: 10.1109/TVLSI.2016.2643639.

Major portion of this paper is included in Chapter 4: Power and Area Efficient Ap-

proximate Multipliers

2. Suganthi Venkatachalam and Seok-Bum Ko, “Approximate Sum-of-Products Designs

Based on Distributed Arithmetic,” in IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 26, no. 8, pp. 1604-1608, Aug. 2018.

doi: 10.1109/TVLSI.2018.2818980

Major portion of this paper is included in Chapter 6: Approximate Sum of Products

Designs based on Distributed Arithmetic

1.6.2 Published Conference

1. Suganthi Venkatachalam, H. J. Lee and Seok-Bum Ko, “Power Efficient Approximate

Booth Multiplier,” 2018 IEEE International Symposium on Circuits and Systems (IS-

CAS), Florence, Italy, 2018, pp. 1-4. doi: 10.1109/ISCAS.2018.8351708.

Some portion of this paper is included in Chapter 5: Design and Analysis of Approxi-

mate Booth Multipliers

1.6.3 Submitted Journal and Conferences

1. Suganthi Venkatachalam, Elizabeth Adams and Seok-Bum Ko, “Design and Analysis

of Approximate Booth Multipliers,” IEEE Transactions on Computers.

Major portion of this paper is included in Chapter 5: Design and Analysis of Approxi-

mate Booth Multipliers
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2. Suganthi Venkatachalam, Elizabeth Adams and Seok-Bum Ko, “Design of Approximate

Restoring Dividers,” 2019 IEEE International Symposium on Circuits and Systems

(ISCAS), Japan, 2019.

Major portion of this paper is included in Chapter 7: Design of Approximate Restoring

Dividers

3. Elizabeth Adams, Suganthi Venkatachalam and Seok-Bum Ko, “Energy Efficient Ap-

proximate MAC Design,” 2019 IEEE International Symposium on Circuits and Systems

(ISCAS), Japan, 2019.

1.7 Organization of the Thesis

This thesis is organized as follows.

� Chapter 1: Introduction and Motivation: presents the introduction, motivation behind

approximate computing, challenges faced in approximations, current research in ap-

proximate computing, contributions, our publication and submissions in journals and

conferences and organization of this thesis.

� Chapter 2: Review on Approximate Computing of Arithmetic Circuits: presents the

existing works on arithmetic units such as adders, compressors, counters, multipliers,

dividers and sum of products units.

� Chapter 3: Motivation Behind Our Works: gives the motivation behind our works -

array multiplier approximation in chapter 4, Booth multiplier approximation in chapter

5, approximation of sum of products based on distributed arithmetic in chapter 6 and

approximate restoring division in chapter 7.

� Chapter 4: Power and Area Efficient Approximate Multipliers: presents an approximate

multiplier based on probability of the partial product matrix and verifies the proposal

with a noise reduction image processing application.
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� Chapter 5: Design and Analysis of Approximate Booth Multipliers: presents three

approximate models based on signal encoding of Booth algorithm. The architectures

are used in image multiplication and matrix multiplication applications.

� Chapter 6: Approximate Sum of Products Designs Based on Distributed Arithmetic:

presents three models on sum of products approximations by altering the distributed

arithmetic, thereby saving hardware resources. Sum of product units are applied in

Gaussian filtering and K-means clustering application.

� Chapter 7: Design of Approximate Restoring Dividers: presents two variation of ap-

proximation in restoring dividers. Real life implementation is verified using a change

detection application.

� Chapter 8: Conclusions and Future Research: includes a summary of this thesis and

thoughts on related future research.
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2 Review on Approximate Computing of Arith-

metic Circuits

In this chapter, previous works on major arithmetic blocks of digital signal processing

algorithms- adders, array multipliers, Booth multipliers, sum of products units and dividers

are discussed. Also, error metrics used to verify the inexactness of approximate circuit are

discussed.

2.1 Approximate Works on Adders

There exist many variations in hardware implementation of addition- ripple carry adder

works on basic addition principle, carry skip or bypass adder improves the delay of ripple

carry by skipping the carry bit over a block, carry lookahead adders uses the concept of

generating and propagating carries, carry speculative adders uses carry predictor circuit to

reduce computational time and carry select adder has a multiplexer to select a carry out once

correct carry in is known. Many approximation schemes for addition are discussed widely

in literature. Approximation in carry-select adder based on speculation with error detection

and recovery is proposed in [59]. In this work, a speculateve carry select adder (SCSA) is

proposed, with the main idea being long carry chains are an rare event in addition of large

block of inputs. Input bits of width n are segmented into same size blocks of width k with total

number of blocks m � *n©k0 and carry-out of a block is speculated with k input bits of the

block, resulting in reduced latency. An error tolerant adder 2 (ETA2) based on segmentation

is analyzed and compared with their previous work ETA1 in [60]. ETA1 eliminates the entire

carry propagation, whereas ETA2 approximates carry at block level increasing accuracy,

while sum computation depends on carry in, carry out computation does not need the carry

of previous block. In [58], four imprecise adders are designed at transistor level by reducing
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the number of transistors and are then used in digital signal processing applications. Inexact

full adders in [58] are further used in accumulation of partial products in multipliers. In

[61], Lower part OR Adder (LOA) segments p bits of inputs into significant upper part using

a precise adder and insignificant lower part using approximation. The proposed circuits of

[61] are implemented in neural networks and fuzzy logic. In [67], multi-bit adder is divided

into sub adders and conditional bound signals are used to improve accuracy. It proposes

a timing starved adder model representing implementations of different adder types- ripple

carry adders and tree adders. The proposed adders are demonstrated in a DCT application

of image decompression and an image sharpening application.

2.2 Approximate Works on Multipliers

Multipliers are an integral part and more resources consuming operation in applications such

as digital signal processing. Approximation is applied in two types of multipliers, namely

AND array multipliers and Booth multipliers. AND array multipliers use AND-gates in

partial product generation to produce a partial product matrix with n rows for n � n inputs.

In Booth multipliers, the input combination is recoded and then used in the partial product

generator to produce signed and plural values of the multiplicand. Booth multiplication

reduces number of partial product rows in partial product matrix and suitable for signed

multiplication. In radix-4 Booth multipliers, partial product generation produces values of 0,

�1, and �2 � multiplicand and reduces the size of the partial product matrix by nearly half.

Radix-8 multipliers further reduce the number of rows in partial product matrix where the

encoding signals are 0, �1, �2, �3 and �4. Partial product generation of array multipliers is

made of AND gates, whereas Booth multipliers has comparatively more complicated partial

product generation circuits.

Two main approximation approaches used in multipliers are approximation in partial

product generation and approximation in partial product accumulation. In many cases,

approximation in partial product accumulation also means reducing hardware complexity of

partial product genereation. For instance, if n least significant columns are truncated during

partial product accumulation stage of a multiplier, partial products need not to be generated

20



for those columns. In array multipliers, partial product accumulation is compute expensive

and in Booth multipliers, both generation and accumulation are compute expensive.

2.2.1 Approximate Works in Partial Product Generation

In [51], an approximate multiplier is constructed by changing one of the values in the K-map

of a 2 � 2 multiplier and the 2 � 2 approximate multiplier is used as fundamental block

to construct larger approximate multipliers. This multiplier is referred as under designed

multiplier (UDM). UDM multipliers achieve a mean error ranging from 1.39% to 3.35%

with power savings from 30% to 50%. They are implemented in JPEG application and

in image filtering application. The truth table of the UDM and the multiplier structure

of UDM are given in Figure 2.1. Similar to approximation of segmented adders in ETA1

and ETA2, multiplier based on segmentations of multiplicand and multiplier is introduced

in [68]. In [68], multiplier is split into most significant and least significant sections, and

conventional multiplication is performed in higher order bits while approximation is applied

in the remaining part by finding the first leading one of either multiplicand or multiplier.

A control block is also used to utilize accurate multiplier for least significant part if most

significant part does not have any information. If n bits multiplication is split into two

n©2 parts, approximate partial product generation is reduced to one fourth of actual partial

products.

Partial product perforation (PPP) multiplier in [54], omits q consecutive partial products

starting from pth position, where p " [0, n-1] and q " [1, minimum (n-p, n-1)] of a n-bit

multiplier. [54] targets approximation in generation by reducing the number of operands in

one of the inputs and also reduces complexity in partial product matrix. Approximations are

analyzed in Wallace and Dadda tree structures, with 3-2 compressors and 4-2 compressors.

In case of radix-4 Booth multiplier approximation, the approximate technique used in [54]

relies on approximation by eliminating the group of recoded signals and thereby reducing the

accumulation hardware. They are implemented in image processing domain applications-

Canny edge detection to find optimal edges, geometric mean filtering and K-mean clustering

to cluster 100000 four dimensional data points into 100 clusters. Partial product perforation

of accurate and approximate 8 � 8 Dadda multiplier is given in Figure 2.2.
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In [78], approximation is applied in the generation of partial products of radix-8 Booth

multipliers. Approximation is applied in the adder when adding 1 � multiplicand and 2 �

multiplicand to form 3 � multiplicand. The truth table and circuit of the proposed approx-

imate 2-bit adder is shown in Figure 2.3. The proposed multipliers are then implemented in

a finite impulse response filter application.

(a) (b)

Figure 2.6: (a) K-Map for the 2x2 underdesigned multiplier block and (b) a 4x4 multiplier built on
2x2 blocks [17]

2.2.1 Approximation in Generating Partial Products

The Underdesigned Multiplier (UDM)

[17] proposes an approximate 2x2 multiplier block by altering one entry in the K-Map of a 2x2

multiplier. Based on the 2x2 block, larger underdesigned multipliers (UDMs) can be built (Fig.

2.6). This multiplier design introduces error in generating partial products while the adder tree

remains accurate.

2.2.2 Approximation in the Partial Product Tree

Fixed-Width Multipliers

[34] presented an error compensation method for a modified Booth fixed-width multiplier, where

quantization error is compensated using Booth encoder outputs. Another high-accuracy error

compensation circuit for the fixed-width modified Booth multiplier was presented in [39]. This

error compensation method significantly reduces the mean and mean-square errors by making the

errors symmetric as well as centralizing error distribution in zero errors. Even though the authors

did not explicitly name their designs as “approximate,” these two fixed-width multipliers can be

considered as approximate designs.

Brocken-Array Multiplier (BAM) and Broken-Booth Multiplier (BBM)

A bio-inspired imprecise multiplier referred to as the Broken-Array Multiplier (BAM) is proposed

in [27]. BAM operates by omitting certain lines of carry-save adder cells in the carry-save adder

tree both horizontally and vertically (Fig. 2.7).

Based on BAM, a Broken-Booth Multiplier (BBM) was presented in [8]. Compared to BAM,

BBM uses modified Booth algorithm to generate partial products and only omits carry-save adders

to the right of a vertical line. According to [8], BBM has a smaller power-delay-product (PDP)

than BAM when they have the same mean squared error (MSE).
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Figure 2.1: Truth table and structure of approximate 2 � 2 multiplier of UDM [51]

In [56], the complexity of exact radix-4 partial product generation is reduced by modifying

the truth table and two approximate Booth partial product generators are proposed. In the

first approximate generator, 4 out of 32 cases in the truth table are altered. In the second

partial product generator, 8 out of 32 cases are altered. This multiplier is referred as Radix-4

approximate Booth multiplier (R4ABM) in this thesis. In this multiplier, the inputs are

grouped as three bits at a time and each group decides one of partial product value from

r�2A,�1A, 0,�1A,�2Ax. The exact partial product generator of [56] uses five XOR gates,

one inverter and one four-input AND gate. First approximate generator uses two XOR gates

and one AND gate and second approximation uses one XOR gate. The proposed multipliers

are implemented in a image multiplication application where they achieve PSNR values up

to 57 dB.

2.2.2 Approximate Works in Partial Product Accumulation

Approximation in partial product accumulation can include using approximate compressors

in partial product matrix or truncating and rounding the partial products based on their
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Fig. 1. Partial product reduction process for 8 × 8 multiplication with (a) accurate array, (b) approximate array, (c) accurate Wallace, (d) approximate
Wallace, (e) accurate compressor 4:2, (f) approximate compressor 4:2, (g) accurate Dadda 4:2, and (h) approximate Dadda 4:2. Approximation is performed
by perforating the third and fourth partial products. The boxes with four dots are 4:2 compressors, those with three are full adders and those with two are
full- or half-adders.

in contrast to related works. In addition, the error imposed by
perforation depends only on the configuration parameters and,
in contrast to existing work, can be analytically calculated
without the need for exhaustive simulations. The latter is
critical, as, given the application’s inputs, a precise estimation
of the output quality can be extracted. Finally, the knowledge
of the induced error permits the selection of the configuration
that maximizes the power savings for a specific error bound.

III. ANALYZING PARTIAL PRODUCT PERFORATION

A. Method Analysis

In this section, the partial product perforation method for
the design of approximate hardware multipliers is described.
Consider two n-bit numbers A and B. The result of their
multiplication A × B is obtained after summing all the partial
products Abi , where bi is the i th bit of B. Thus

A × B =
n−1∑

i=0

Abi2
i , bi ∈ {0, 1}. (1)

The partial product perforation technique omits the genera-
tion of k successive partial products starting from the j th one.
A perforated partial product is not inserted in the accumulation
tree, and hence n full adders can be eliminated. Applying the
product perforation with j and k configuration values on the
multiplication, A × B produces the approximate result

A × B| j,k =
n−1∑

i=0,
i /∈[ j, j+k)

Abi 2
i , bi ∈ {0, 1}. (2)

Note that j ∈ [0, n − 1] and k ∈ [1, min(n − j, n − 1)].
Similarly, when modified booth encoding (MBE) [19] is

used for generating the partial products, the result of the

approximate multiplication is given by

A × B| j,k =
n/2−1∑

i=0
i /∈[ j, j+k)

AbM B
i 4i , bM B

i ∈ {0,±1,±2}. (3)

Fig. 1 shows an example of applying the partial product
perforation method on different 8-bit multipliers with j = 2
and k = 2 configuration values. For each architecture, the dot
diagrams [19] of the accurate and the respective perforated tree
are presented. The dots represent the bits of the partial prod-
ucts that have to be accumulated, while the stages represent
the delay of the reduction process followed by each tree. The
dashed boxes with four dots are 4:2 compressors, those with
three are full adders and those with two are either full- or
half-adders. Through the proposed approximation technique,
the power, area, and delay of the multiplication circuit are
decreased, making, though, the computation imprecise. The
higher the order of a perforated partial product, the greater the
error imposed at the final result. In addition, since the addition
is an associative and commutative operation, when more than
one partial products are perforated, the total error results from
the addition of the errors produced from the perforation of
each partial product separately.

We use the notation D[j,k,c] to label the different approxi-
mate multiplier architectural configurations. The parameter D
refers to the tree architecture, j is the order of the first per-
forated partial product, and k is the number of the perforated
partial products. If no j and k are specified, the respective
notation refers to the exact design. Finally, c corresponds to
the partial product generation technique and takes the value s
for simple partial products (SPPs) or m for MBE. For example,
Fig. 1(a) shows the array[s] configuration, while Fig. 1(b)
shows the array[2,2,s] configuration.

The partial product perforation should not be confused
with the truncation technique. Truncation eliminates the circuit

Figure 2.2: Accurate and approximate PPP with perforated third and fourth partial
product rows [54]

position in partial product matrix or a combination of both.

In [62], two designs of approximate 4-2 compressors are presented and used in partial

product reduction tree of four variants of 8�8 Dadda multiplier. Four multipliers are further

implemented in a image multiplication application and they achieve PSNR up to 54 dB. The

proposed compressors are used in four designs of multipliers in [63]. Their proposed 8 � 8

multiplier designs perform a recursive multiplication of 4 � 4 multiplications. The inputs A

and B are divided into two segments L and H and partial products are generated. Based on

the required quality, approximate and accurate smaller multipliers are used in HH, HL, LH

and LL sections. The proposed multipliers are tested with image sharpening applications.

It should be noted that in [63], even though inputs are split into segments, all partial prod-

ucts are generated and approximation is applied only in partial product accumulation using

approximate compressors.

In [52], approximate compressors for the use in high performance multipliers are intro-

duced. In [53], inaccurate 4-2 counter design has been proposed which is utilized in power

efficient 4 � 4 Wallace tree multiplier, and larger blocks are built recursively from smaller

blocks. An error recovery module with slight overhead is introduced. The multiplier in [53]

reduces power and delay consumption by 11% and 10% on average, with a high pass rate. In

[65], a new approximate adder is presented for the use in partial product accumulation of the
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approximate multiplier are described in Section 3. Section 4 shows
the simulation results in comparison with the accurate and other
approximate Booth multipliers. In Section 5, the approximate
multiplier designs are applied to an FIR filter operation to show
the applicability of the proposed designs. Finally, the paper is
concluded in Section 6.

2 PROPOSED APPROXIMATE RECODING ADDER

The partial products in the radix-2 and radix-4 algorithms can be
easily generated by shifting or 2’s complementing; 2’s complement-
ing is implemented by inverting each bit and then adding a ‘1’ in the
partial product accumulation stage. However, in the radix-8 algo-
rithm, an odd multiple of the multiplicand Y (i.e., ð3Y Þ) is required
andmust be calculated. A preliminary addition is required to calcu-
late 3Y by implementing Y þ 2Y , which incurs additional delay
and power cost. Therefore, a high speed approximate recoding
adder is designed for performing Y þ 2Y in this section.

2.1 Design of the Approximate Recoding Adder

Consider a 16-bit signed multiplier, the preliminary addition is
shown in Fig. 1 (sign bits are shown in bold) [12]. The least signifi-
cant bit of 3Y ðS0Þ is the same as y0, and the sign bit of 3Y is given
by y15, because the sign does not change when the multiplicand is
multiplied by 3. Therefore, only the 16 bits in the middle are proc-
essed. The carry propagation in a 16-bit adder takes a significant
time compared with shifting.

To reduce the ripple carry propagation, two adjacent bits are
added (instead of adding just one bit each time as in a conven-
tional scheme) to take advantage of the duplication of the same
bit, as shown in the box in Fig. 1. Take any 2-bit addition
(yiþ1yi þ yiyi�1, where i is 1; 3; . . . ; 15) as an example; the addi-
tion result is given by

2iþ2Cout þ 2iþ1Siþ1 þ 2iSi

¼ 2iCin þ 2iyi�1 þ 3� 2iyi þ 2iþ1yiþ1;
(1)

where yi�1, yi and yiþ1 are the 3 bits of the multiplicand, yi is the
duplicated bit, Cin is the carry-in from the previous addition, Si

and Siþ1 are the first and second sum bits of the 2-bit addition, and
Cout is the carry-out of the 2-bit adder. The accurate truth table is
shown in Table 1. Fig. 2 shows the K-Maps of these three outputs.
The following functions can be obtained

Cout ¼ ððyi�1 _ yiþ1 _ CinÞ ^ yiÞ
_ ðCin ^ yiþ1 ^ yi�1Þ;

(2)

Siþ1 ¼ ðððyi _ yi�1Þ _ ðCin ^ yi�1ÞÞ ^ yiþ1Þ_
ðððCin ^ yi ^ yi�1Þ _ ðCin ^ yi ^ yi�1ÞÞ ^ yiþ1Þ;

(3)

Si ¼ Cin � yi � yi�1; (4)

where “_” and “^” are OR and AND operations, respectively.
The circuit implementations of (2) and (3) are rather complex, so

some approximations are made on Siþ1 and Cout. As shown in
Fig. 2, Cout becomes the same as yi if 2 out of its 16 outputs are
changed (shown in bold in Fig. 3). Hence, the computation and
propagation of the carry are ignored. Similarly, Siþ1 can also be
simplified to yiþ1 when 4 output values are changed (Fig. 3). Thus,
the accurate truth table is changed to Table 2 for the approximation
scheme. The output functions of the approximate 2-bit adder are
simplified to

Cout ¼ yi; (5)

Siþ1 ¼ yiþ1; (6)

Si ¼ Cin � yi � yi�1: (7)

The approximate 2-bit adder can be implemented by just one 3-
input XOR gate as shown in Fig. 4. The probability of generating
an error in this approximate 2-bit adder is given by

P ðerrorÞ ¼ P ðCinyiþ1yiyi�1 ¼ 0010Þ
þ P ðCinyiþ1yiyi�1 ¼ 0110Þ
þ P ðCinyiþ1yiyi�1 ¼ 1101Þ
þ P ðCinyiþ1yiyi�1 ¼ 1001Þ:

(8)

Assume that any input of an adder is equally likely to occur,
i.e., the occurrence probability of ‘1’ or ‘0’ at the input is 1/2;
then, the probability of obtaining any value of Cinyiþ1yiyi�1 is
1/16. Therefore, the error rate of the approximate 2-bit adder
is 1/4.

Fig. 1. 16-bit preliminary addition.

TABLE 1
Truth Table of the 2-Bit Adder

CoutSiþ1Si

yiyi�1

00 01 11 10

Cinyiþ1

00 000 001 100 011
01 010 011 110 101
11 011 100 111 110
10 001 010 101 100

Fig. 2. K-Maps of the 2-bit addition.

Fig. 3. K-Maps of the approximate 2-bit addition.

TABLE 2
Truth Table of the Approximate 2-Bit Adder

CoutSiþ1Si

yiyi�1

00 01 11 10

Cinyiþ1

00 000 001 100 101
01 010 011 110 111
11 011 010 111 110
10 001 000 101 100
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Due to the approximation, a +2 error (i.e., the difference
between the approximate output and the accurate output) occurs
when the input of the 2-bit adder is either “0010” or “0110”; the
error is -2 when the input is either “1101” or “1001”. These four
errors are detected by the circuit in Fig. 5a (ei is ‘1’ when errors are
detected). As revealed in Table 1 and Table 2, an error can be par-
tially compensated by +1 or �1 when the least significant output
bit Si is flipped on the condition that ei is ‘1’. This is accomplished
by using an XOR gate as shown in Fig. 5b, i.e., Si is inverted when
ei is ‘1’, otherwise Si does not change. To fully correct these errors,
Cout must be the same with yiþ1, and Siþ1 must be inverted when
error is detected. The error recovery circuit is shown in Fig. 5c.

The approximate 2-bit adder cannot be used to add the entire 16
bits in the operands, because a large error would occur when the
partial product 3Y is required in the multiplier’s most significant
part. However, the approximate adder can be used to implement
the less significant part of the recoding adder and the most signifi-
cant part can be implemented by a precise adder. Fig. 6 shows the
circuit of the approximate recoding adder with eight approximated
bits; four approximate 2-bit adders and a 7-bit precise adder are
utilized in the lower and higher parts, respectively. For the 16th bit
(S16), S16 ¼ y15 � y15 � Co ¼ Co, where Co is the carry-out of the 7-
bit precise adder. In total, four XOR gates and a 7-bit adder are
used in the approximate design; this is simpler than the circuit of a
ripple-carry adder; moreover, the critical path delay is given only
by the delay of the 7-bit adder. The pass rate of the approximate
adder (defined as the probability of obtaining a correct result [8]) is

ð1� 1=4Þ4 ¼ 31:64%.

2.2 Simulation Results for the Approximate
Recoding Adder

Six types of approximate recoding adders are implemented in
VHDL and synthesized by the Synopsys Design Compiler in STM
28 nm CMOS process. Simulations are performed at a temperature
of 25�C and a supply voltage of 1 V. Critical path delay and area
are then reported by the Synopsys Design Compiler. The power
dissipation is estimated by the PrimeTime-PX tool using the value
change dump file. The inputs for each design are 10 million ran-
dom 16-bit binary numbers, and the clock period is 2 ns. Addition-
ally, the values of power-delay product (PDP) and area-delay
product (ADP) are calculated as comprehensive metrics.

To quantify the quality of the approximate designs, different
metrics have been proposed, such as the error and pass rate, the
error distance (ED), the mean error distance (MED) and the nor-
malized mean error distance (NMED) [13]. ED is the arithmetic dis-
tance between an erroneous result and the corresponding correct
result. MED is the mean value of the EDs for all possible inputs.
The accuracy characteristics are obtained in MATLAB by simulat-
ing the functions of the approximate designs.

For assessing the best 3Y calculation, the following approximate
recoding adders are considered: the approximate recoding adder
with eight approximated bits (ARA8), ARA8 with error compensa-
tion (using Fig. 5b) for the most significant approximate 2-bit adder
(ARA8-2C), ARA8 with error recovery (using Fig. 5c) for the most
significant approximate 2-bit adder (ARA8-2R), and the approxi-
mate recoding adder with six approximated bits (ARA6). Accord-
ing to [14], the lower part OR adder (LOA) [15] and the error
tolerant adder type II (ETAII) [16] outperform the other approxi-
mate adders when an acceptable accuracy loss is considered. More-
over, the input pre-processing approximate adder (IPPA) in [10]
shows good performance in accumulating partial products. There-
fore, the following approximate adders are simulated for compari-
son: LOA whose lower bits are implemented by OR gates , ETAII,
the modified ETAII [16] (ETAIIM), IPPA and the truncated ripple-
carry adder (TRCA). Fig. 7 shows a cell of IPPA, where Ai and Bi

are the ith least bits of the adder’s operands, Si is the sum, and Ei

is the error signal required for error compensation. No carry propa-
gation is needed for IPPA unless an error compensation is consid-
ered. ETAII is shown in Fig. 8, where a conventional adder is
divided into several segments. Hence, the carry propagation chain
is significantly reduced by operating different segments in parallel.

The acronyms of these approximate adders used hereafter are
shown in Table 3. As the recoding adder is only utilized for calcu-
lating the value of 3� multiplicand (i.e., 2Y þ Y ), all other

Fig. 4. Circuit of the proposed approximate 2-bit adder.

Fig. 5. (a) Error detection, (b) Partial error compensation and (c) Full error recov-
ery circuits for the approximate 2-bit adder.

Fig. 6. Approximate recoding adder with eight approximated bits.

Fig. 7. The circuit of the input pre-processing adder cell [10].
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(b)

Figure 2.3: Approximate adder in radix-8 Booth multiplier of [78] (a) Truth table (b)
Circuit

multiplier. The proposed multiplier of [65] shows a delay reduction of 20% and power savings

up to 69%. In [66], an approximate 15-4 compressor using four designs of approximate 5-3

compressor is analyzed for 16� 16 multiplier. The multipliers provide a pass rate up to 40%

with no significant power improvement.

Broken array multiplier is implemented in [61], where the adder cells are omitted along

the rows and columns while forming partial products to reduce hardware complexity. The

proposed multiplier in [61] saves few adder circuits in partial product accumulation. In static

segment multiplier (SSM) proposed in [64] as shown in Figure 2.4, the number of bits in

inputs is reduced thereby m-bit segments are derived from n-bit operands based on leading

one bit of the operands. Then m�m multiplication is performed instead of n�n multipli-

cation, where m<n. With overhead of static circuit being small, SSM shows better energy

savings. Approximation of 8-bit Wallace tree multiplier due to voltage over-scaling (VOS) is

discussed in [69]. This work analyzes multiple values of over-scaling and corresponding error

distribution.

To reduce hardware complexity of multipliers, truncation is widely employed in fixed-

width multiplier designs. Fixed width multipliers produce n most significant bits output for

n � n inputs. Truncation and rounding are performed to produce fixed word size output

introducing quantization error. Various techniques are applied to reduce the quantization

error after truncation in fixed point multipliers [70, 71, 72, 73, 75, 74, 76, 77]. A post-

truncated fixed width Booth multiplier designed using a compensation vector is discussed

24



3

Fig. 5. Probability distribution of compute accuracy of AM2 × 2, DSM8 × 8, DSM6 × 6, SSM8 × 8, ESSM8 × 8, and 8 × 8 (truncated) for random vectors,
audio/image processing, and recognition applications.

to extract an m-bit segment indicated by the dotted arrow in

Figure 2. This will be able to effectively capture operand pairs

similar to one shown in Figure 4.

Figure 5 illustrates an SSM allowing to take an m-bit

segment from two possible bit positions of an n-bit operand.

The key advantage is its scalability for various m and n,

because the complexity (i.e., area and energy consumption)

of auxiliary circuits for choosing/steering m-bit segments and

expanding a 2m-bit result to a 2n-bit results scales linearly

with m.

For applications where one of operands of each multiplica-

tion is often a fixed coefficient, we propose to pre-compute the

bit-wise OR value of B[n − 1:m] and pre-select between two

possible m-bit segments (i.e., B[n − 1:n − m] and B[m − 1:0])

in Figure 5, and store them instead of the native B value in

memory. This allows us to remove the n − m input OR gate

and the m-bit 2-to-1 multiplexer denoted by the dotted lines

in Figure 5.

Finally, to support three possible starting bit positions for

picking an m-bit segment where m = n/2, the two 2-to-1

multiplexers at the input stage and one 3-to-1 multiplier at the

output stage are replaced with 3-to-1 and 5-to-1 multiplexers,

respectively, along with some minor changes in logic functions

generating multiplexer control signals; we will show this

enhanced SSM design for m = 8 and n = 16 (denoted by

ESSM8 × 8) can provide as good accuracy as SSM10 × 10 at

notably lower energy consumption later.

III. EVALUATION

Evaluation Methodology: In this section we describe

the methodology for evaluating computational accuracy and

energy consumption of precise and various approximate mul-

tipliers. All the multipliers are described to support two 16-bit

inputs and 32-bit output with Verilog HDL and synthesized

using Synopsys Design Compiler®and a TSMC 45nm stan-

dard cell library at the typical process corner. We repeatedly

synthesize each multiplier until it achieves the highest operat-

ing frequency. Then we choose the frequency of the slowest

one (i.e., 2GHz) to re-synthesize all other multipliers.

To evaluate computational accuracy, we take four sets

of 16-bit operand pairs from: all possible pairs of 16-bit

Fig. 6. Proposed approximate multiplier architecture; the logic and wires
denoted by the dotted lines are not needed if B is pre-processed as proposed.

values (denoted by “random”), noise cancelling algorithm

[9] (denoted by “audio”), 2-dimensional optical coherence

tomography (2D OCT) [10] (denoted by “image”), and isolated

spoken digit recognition [11] (denoted by “recognition”);

where each set is comprised of billions of operand pairs. To

evaluate energy consumption, we use Synopsys PrimeTime-

PX®, which can estimate energy consumption of a synthesized

design based on annotated switching activities from gate-level

simulation. The input vectors for energy estimation are directly

taken from the execution of multiplication intensive kernels in

each application. We observe that the extracted input vectors

exhibit inherent periodicity in the operand values applied to

the multiplier. Thus, we take many such periods such that the

number of vectors is 10,000 at least.

Computational Accuracy: Figure 6 plots the probability

distribution of computational accuracy of AM, DSM8 × 8,

DSM6×6, SSM8×8, SSM10×10, ESSM8×8, and TRUN8×8

for four sets of operand pairs. We observe that the average

computational accuracy of all these approximate multipliers is

very high. For “random,” AM, DSM8×8, DSM6×6, SSM8×8,

SSM10 × 10, ESSM8 × 8, and TRUN8 × 8 exhibit average

compute accuracy of 96.7%, 99.7%, 97.8%, 98.0%, 99.6%,

Figure 2.4: Static segment multiplier of [64]

in [70]. In [71], quantization error is compensated with approximate carry values. An error

compensation circuit composed of simplified sorting networks is proposed in [72]. An adap-

tive estimator based on conditional probability theory is studied in [73]. In [74], a simple

truncation and rounding technique for fixed point multiplier is introduced. In [76], a self-

compensation fixed width multiplier with a Fast Fourier Transform application is discussed.

A probabilistic estimation bias derived from probabilistic analysis of partial product array is

introduced to reduce the truncation error in [77].

2.3 Approximate Works on Composite Units

Composite units such as sum of products units and multiply accumulate units are key compo-

nents in dot product computations in error tolerant applications. Sum of products is a widely

used arithmetic unit in signal processing and machine learning applications. Distributed

arithmetic is a well-known method to save resources in sum of products structures for im-

plementing DSP functions. Distributed arithmetic trades lookup tables with combinational
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circuits especially multipliers and adders. Bit-parallel versions of distributed arithmetic are

proposed in [83, 84]. Approximate sum of products model based on truncation is discussed

in [85]. Their scheme involves truncation in the number of lookup tables, by eliminating

the least significant part of distributed arithmetic operation. In [86], two approximations

are proposed for sum of products unit. In the first approach, a single multiplication is used

instead of two multiplications when one result is significantly larger than other one and two

error modes are analyzed. In second approach, 16 � 16 multiplier is used instead of 32 � 32

multiplier, based on a combination of leading one prediction and 32-bit multiplexers. In [87],

an approximate multiply and accumulate (MAC) is proposed. Approximate compression and

column deletion are applied in partial product matrix of the proposed circuits achieving area

improvement ranging from 39% to 69% and power improvement ranging from 40% to 71%.

The proposed MAC units are targeted towards 2D-convolution operation with 3� 3 or 5� 5

kernel.

2.4 Approximate Works on Dividers

Division, one of the fundamental arithmetic operations, is computationally expensive. Differ-

ent kinds of division algorithms have been discussed in literature. They might be using single

or combination of techniques such as digit recurrence, functional iteration, high radix and

look-up tables [102]. In digit recurrence method, the error is reduced by incremental use of

operand [89]. Functional iteration based Newton-Raphson method uses multiplication as its

principal operation [90]. Look-up table methods are mostly used in initial approximation and

can be used in combination with other techniques [91]. Combinational array division circuits

based on restoring division and non-restoring division are discussed in [92]. Depending upon

the requirement of an application, a suitable division algorithm is chosen.

Division being the energy hungry unit, approximation in division is gaining attention. A

dynamic divider is designed to select the most relevant bits and implemented in applications

–change detection, foreground extraction and JPEG compression in [93]. Three approximate

subtractor cells are proposed to design restoring and non-restoring dividers in [94]. Higher-

radix division is investigated in [95]. Exact cells being replaced with approximate cells in
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binary signed-digit adder, cell truncation and error compensation in higher radix division

is analyzed in [95]. In [96], 2n©n divider is replaced with 2k©k dynamic divider, where

k $ n. [97] introduces a rounding based approximate divider where division is performed by

rounding the value of divisor.

2.5 Accuracy Measurement

In approximate computing, design metrics such as area, delay and power are traded against

error metrics like error distance (ED), mean relative ED (MRED) and normalized mean ED

(NMED). Distances are based on differences in arithmetic values of exact and approximate

outputs. In [98], approximate adders are evaluated and NMED is proposed as nearly invari-

ant error measure regardless of the size of the approximate circuit. Also, traditional error

analysis, MRED is found for existing and proposed multiplier designs. The errors introduced

by approximate designs must be carefully analyzed because the results can be significantly af-

fected by the approximate design. To understand the effects of the approximate unit, MRED

and NMED are to be used.

NMED is an effective metric to quantify the approximation irrespective of the size of

the circuit [98]. Also, traditional MRED error metric is used to evaluate the impact of

approximation. Error distance is the difference between exact value and approximate value,

whereas relative error is the value of error distance divided by the exact value. NMED

is calculated by normalizing the error distance by maximum possible exact output. Mean

relative error is calculated from mean of relative errors of all possible values.

Analysis of approximate circuits would not be complete if they are not tested with relevant

applications. In multimedia applications, peak signal to noise ratio (PSNR) is used to find the

effects between exact and approximate design. In machine learning applications, accuracy of

classification is to be used. Thanks to the abundant redundancy in multimedia and machine

learning applications, where approximate computation often does not severely deteriorate

the quality while it can significantly reduce the power consumption.

In our work, we investigated novel design approaches for approximation in arithmetic

circuits, studied the effect of approximation in power and accuracy, and evaluated their
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performance in image processing applications. Major arithmetic circuits used in such com-

putations include accumulators (adders and compressors), multipliers and composite units

such as dividers, multiply accumulate units and sum of product units. In our work, using

approximate circuits had resulted in significant power savings compared with exact designs.

28



3 Motivation Behind Our Works

In this chapter, motivation behind each of arithmetic circuit approximation presented in

the following chapters are presented.

Previous works on logic complexity reduction of multipliers [75, 51, 53, 54] have focused on

truncation, approximation in generation of partial products and straight forward application

of approximate accumulators to the partial products. In our first work based on array

multipliers which uses AND gates to generate partial product matrix, the partial products

are altered to introduce terms with different probabilities. Probability statistics of the altered

partial products are analyzed, which is followed by systematic approximation. Simplified

arithmetic units (half adder, full adder and 4-2 compressor) are proposed for approximation.

The arithmetic circuits are reduced in logic complexity, while error distance is kept low.

Better accuracy is achieved using systemic approximation.

In our second work, novel approximation techniques are introduced in partial product

generation and partial product accumulation circuits of Booth multiplier. Booth multipli-

ers reduce number of partial products in the partial product matrix and are widely used.

While the complexity of partial product matrix is reduced, there is an increase in complexity

in partial product generation compared to array multiplier. When it comes to applying ap-

proximation to Booth multipliers, an efficient approximation would include approximation at

partial product generation. Although truncation of fixed point Booth multipliers has received

its due attention, approximation methods of Booth multipliers are being explored [56, 78]. In

our work, approximation is introduced by reducing the number of signals and hardware com-

plexity of partial product generation circuit. After approximating the generation of partial

products and corresponding correction terms, Booth multipliers are implemented in image

multiplication and matrix multiplication application.

In the third work, approximations are applied to sum of products units. Sum of products
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units are main components in dot product computations between vectors. Distributed arith-

metic is an effective means to compute sum of products [55]. Distributed arithmetic replaces

multiplication with a set of look-up tables and shift-accumulate operation. Approximate

sum of products units have not received much attention. Due to the flexibility of the level of

parallelism in the distributed arithmetic structure, the area-speed trade-off can be adjusted.

Distributed arithmetic [55] is a bit-serial operation that computes the inner product of two

vectors in parallel. It requires no multiplication and it has an efficient mechanism to perform

sum of products operation. Diverse set of sum of products units based on parallel distributed

arithmetic are proposed and extensively analyzed with their approximation errors.

Different kinds of division algorithms have been discussed in literature. Division incurs

more latency because of not being able to perform shift subtract operations in parallel.

When compared with multipliers which have a latency of O�n�, Dividers have a latency

of O�n
2
�. Several research works can be found on division strategies. Approximation in

division is gaining attention. There is much existing literature on approximation in adders

and multipliers, while more works on approximation of dividers have to be analyzed.

The objectives of this thesis are twofold- to design approximate circuits and analyze its

performance trade-off with accuracy and to test the approximate units in image processing

applications.
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4 Power and Area Efficient Approximate Mul-

tipliers
1

In this chapter, approximate array multipliers are proposed. Two multiplier models, Mul-

tiplier1 and Multiplier2 with different approximation factors are proposed. Partial product

matrix is split into low information and high information sections. While OR gates are used

for compression of low information sections, high information sections are compressed using

proposed approximate half adder, full adder and 4-2 compressor. Proposed approximate mul-

tipliers, state-of-the-art existing approximate multipliers and exact multiplier are analyzed in

terms of area, power, delay, MRED and NMED. Further, approximate multipliers are tested

with geometric mean application.

In section 4.1, proposed architectures are discussed. In section 4.2, proposed multipliers

are compared with existing multipliers and found to have better area, power and error metrics.

In section 4.3, the approximate multipliers are implemented in noise reduction of images and

found to have reasonable quality metrics.

4.1 Proposed Architectures

Implementation of multiplier comprises three steps: generation of partial products, partial

products reduction tree and finally, a vector merge addition to produce final product from the

sum and carry rows generated from the reduction tree. Second step consumes more power.

In this work, approximation is applied in reduction tree stage.

A 8-bit unsigned multiplier is used for illustration to describe the proposed method in

1
Major part of this work has been published in “Design of Power and Area Efficient Approximate Multi-

pliers,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 5, pp. 1782-1786,
May 2017. Authors: Suganthi Venkatachalam and Seok-Bum Ko.
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approximation of multipliers. Consider two 8-bit unsigned input operands α � <7

m�0 αm2
m

and β � <7

n�0 βn2
n

. The partial product am,n � αm � βn in Figure 4.1 is the result of AND

operation between the bits of αm and βn.

From statistical point of view, αm and βn has a probability of 1©2 and the partial product

am,n has a probability of 1©4 of being 1. In the columns containing more than three partial

products, the partial products am,n and an,m are combined to form propogate and generate

signals as given in equation 4.1. The resulting propogate and generate signals form altered

partial products pm,n and gm,n. From column 3 with weight 2
3

to column 11 with weight 2
11

,

the partial products am,n and an,m are replaced by altered partial products pm,n and gm,n.

The original and transformed partial product matrices are shown in Figure 4.1.

pm,n � am,n � an,m

gm,n � am,n � an,m

(4.1)

The probability of am,n being 1 is 1©4 and being 0 is 3©4. The probability of the altered

partial product gm,n being one is 1©16 (1©4 � 1©4), which is significantly lower than 1©4 of

am,n. The probability of altered partial product pm,n being one is 1©16� 3©16� 3©16 � 7©16

(1©4� 1©4� 1©4� 3©4� 3©4� 1©4), which is higher than gm,n. These factors are considered

while applying approximation to the altered partial product matrix.

Table 4.1: Probability statistics of generate signals

m
Probability of the generate elements being

Perr

all 0’s one 1 two 1’s
three 1’s

and more

2 0.8789 0.1172 0.0039 - 0.00390

3 0.8240 0.1648 0.0110 0.00024 0.01124

4 0.7725 0.2060 0.0206 0.00093 0.02153
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4.1.1 Approximation of Altered Partial Products gm,n

The accumulation of generate signals is done column wise. As each element has a probability

of 1©16 of being one, two elements being 1 in the same column even decreases. Let pr be the

probability of the element being 1, and 1 � pr be the probability of element being 0, where

pr is 1©16.

In a column of 2 generate elements,

The probability of all elements being 0 is Pall0 � �1 � pr�
2

The probability of one element being 1 is Pone1 � 2pr�1 � pr�

The probability of all elements being 1 is Pall1 � pr
2

In a column of 3 generate elements,

The probability of all elements being 0 is Pall0 � �1 � pr�
3

The probability of one element being 1 is Pone1 � 3pr�1 � pr�
2

The probability of two elements being 1 is Ptwo1 � 3pr
2
�1 � pr�

The probability of all elements being 1 is Pall1 � pr
3

In a column with 4 generate signals,

The probability of all elements being 0 is Pall0 � �1 � pr�
4

The probability of one element being 1 is Pone1 � 4pr�1 � pr�
3

The probability of two elements being 1 is Ptwo1 � 6pr
2
�1 � pr�

2

The probability of three elements being 1 is Pthree1 � 4pr
3
�1 � pr�

The probability of all elements being 1 is Pall1 � pr
4

The probability statistics for number of generate elements m in each column are given

in Table 4.1. The probability of error when OR gate is used for accumulation would be

Perr � 1 � �Pall0 � Pone1�.

Based on Table 4.1, using OR gate in the accumulation of column wise generate elements

in the altered partial product matrix provides exact result in most of the cases. The prob-

ability of error (Perr) while using OR gate for reduction of generate signals in each column
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is also listed in Table 4.1. As can be seen, the probability of mis-prediction is very low. As

the number of generate signals increases, the error probability increases linearly. However,

the value of error also rises. To prevent this, the maximum number of generate signals to be

grouped by OR gate is kept at 4. For a column having m generate signals, *m©40 OR gates

are used.

4.1.2 Approximation of Other Partial Products

The accumulation of other partial products with probability 1©4 for am,n and 7©16 for pm,n

uses approximate circuits. Approximate half-adder, full-adder and 4-2 compressor are pro-

posed for their accumulation. Carry and Sum are two outputs of these approximate circuits.

Since Carry has higher weight of binary bit, error in Carry bit will contribute more by pro-

ducing error difference of two in the output. Approximation is handled in such a way that the

absolute difference between actual output and approximate output is always maintained as

one. Hence Carry outputs are approximated only for the cases, where Sum is approximated.

In adders and compressors, XOR gates tend to contribute to high area and delay. For

approximating half-adder, XOR gate of Sum is replaced with OR gate as given in equation

4.2. This results in one error in the Sum computation as seen in the truth table of approx-

imate half-adder in Table 4.2. A tick mark denotes that approximate output matches with

correct output and cross mark denotes mismatch.

Sum � x1 � x2

Carry � x1 � x2
(4.2)

In the approximation of full-adder, one of the two XOR gates is replaced with OR gate in

Sum calculation. This results in error in last two cases out of 8 cases. Carry is modified as in

equation 4.3 introducing one error. This provides more simplification, while maintaining the

difference between original and approximate value as one. An exact full adder and proposed

approximate version are shown in figure 4.3.The truth table of approximate full-adder is given

in Table 4.3.
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Table 4.2: Truth table of approximate half adder

Inputs
Exact

Outputs

Approximate

Outputs
Absolute

Difference
x1 x2 Carry Sum Carry Sum

0 0 0 0 0 4 0 4 0

0 1 0 1 0 4 1 4 0

1 0 0 1 0 4 1 4 0

1 1 1 0 1 4 1 7 1

W � �x1 � x2�

Sum � W h x3

Carry � W � x3

(4.3)

Two approximate 4-2 compressors in [62] produce non-zero output even for the cases

where all inputs are zero. This results in high error distance and high degree of precision loss

especially in cases of zeros in all bits or in most significant parts of the reduction tree. The

proposed 4-2 compressor overcomes this drawback.

In 4-2 compressor, three bits are required for the output only when all the four inputs

are 1, which happens only once out of 16 cases. This property is taken to eliminate one of

the three output bits in 4-2 compressor. To maintain minimal error difference as one, the

output “100” (the value of 4) for four inputs being one has to be replaced with outputs “11”

(the value of 3). For Sum computation, one out of three XOR gates is replaced with OR

gate. Also, to make the Sum corresponding to the case where all inputs are ones as one, an

additional circuit x1 � x2 � x3 � x4 is added to the Sum expression. This results in error in

five out of 16 cases. Carry is simplified as in equation 4.4. The corresponding truth table is

given in Table 4.4. An exact 4-2 compressor and proposed approximate version are shown in

Figure 4.4.
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Figure 4.3: Full adder (a) Exact version (b) Approximate version

W1 � x1 � x2

W2 � x3 � x4

Sum � �x1h x2� � �x3h x4� �W1 �W2

Carry � W1 �W2

(4.4)

Figure 4.2 shows the reduction of altered partial product matrix of 8�8 approximate

multiplier. It requires two stages to produce sum and carry outputs for vector merge addition

step. Four 2-input OR gates, four 3-input OR gates and one 4-input OR gates are required

for the reduction of generate signals from columns 3 to 11. The resultant signals of OR

gates are labeled as Gi corresponding to the column i with weight 2
i
. For reducing other

partial products, 3 approximate half-adders, 3 approximate full-adders and 3 approximate

compressors are required in the first stage to produce Sum and Carry signals, Si and Ci
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Table 4.3: Truth table of approximate full adder

Inputs
Exact

Outputs

Approximate

Outputs

Absolute

Difference

x1 x2 x3 Carry Sum Carry Sum

0 0 0 0 0 0 4 0 4 0

0 0 1 0 1 0 4 1 4 0

0 1 0 0 1 0 4 1 4 0

0 1 1 1 0 1 4 0 4 0

1 0 0 0 1 0 4 1 4 0

1 0 1 1 0 1 4 0 4 0

1 1 0 1 0 0 7 1 7 1

1 1 1 1 1 1 4 0 7 1

corresponding to column i. The elements in the second stage are reduced using 1 approximate

half-adder and 11 approximate full-adders producing final two operands xi and yi to be fed

to ripple carry adder for the final computation of the result.

4.2 Results and Discussion

All approximate multipliers are designed for n � 16. The multipliers are described in Verilog

HDL and synthesized using Synopsys compiler DC with a TSMC 65nm cell library under the

typical process corner, with temperature 25
`
C and supply voltage 1V. From the Synopsys DC

reports, we get area, delay, dynamic power and leakage power. Multiplier1 applies approxi-

mation in all columns, whereas in Multiplier2, approximation is applied in 15 least significant

columns during partial product reduction. For the proposed multipliers, the altered partial
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Table 4.4: Truth table of approximate 4-2 compressor

Inputs
Approximate

outputs

Absolute

Difference

x1 x2 x3 x4 Carry Sum

0 0 0 0 0 4 0 4 0

0 0 0 1 0 4 1 4 0

0 0 1 0 0 4 1 4 0

0 0 1 1 1 4 0 4 0

0 1 0 0 0 4 1 4 0

0 1 0 1 0 7 1 7 1

0 1 1 0 0 7 1 7 1

0 1 1 1 1 4 1 4 0

1 0 0 0 0 4 1 4 0

1 0 0 1 0 7 1 7 1

1 0 1 0 0 7 1 7 1

1 0 1 1 1 4 1 4 0

1 1 0 0 1 4 0 4 0

1 1 0 1 1 4 1 4 0

1 1 1 0 1 4 1 4 0

1 1 1 1 1 7 1 7 1
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Figure 4.4: 4-2 compressor (a) Exact version (b) Approximate version
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products are generated and compressed using half adder, full adder and 4-2 compressor struc-

tures to form final two rows of partial products. The efficiency of the proposed multipliers is

compared with existing approximate multipliers [62, 64, 54, 51]. Inexact compressor design

2 of [62] is used to design compressor based multipliers- ACM1, where all columns are ap-

proximated and ACM2, where only 15 least significant columns are approximated. SSM [64]

for m � 12 and n � 16 is designed for implementation. Partial product perforation design

discussed in [54] for j � 2, k � 2 is designed and implemented under Dadda tree structure. In

[51], the partial product matrix of 16-bit under designed multiplier (UDM) comprises approx-

imate 2�2 partial products accumulated together with exact carry save adders. Exhaustive

error analysis of the approximate multipliers is done using MATLAB.

Table 4.5: Synthesis results of exact, existing and proposed approximate multipliers

Multiplier

Type

Area

(µm
2
)

Delay

(ns)

Power

(µW )

PDP

(fJ)

APP

(µm
2
� µW )(10

5
)

Exact 4859.28 0.68 1776.49 1208.01 86.32

Multiplier1 2158.56 0.47 503.15 236.48 10.86

Multiplier2 3319.20 0.66 1102.03 727.34 36.57

ACM1 [62] 2871.72 0.4 435.31 174.12 12.50

ACM2 [62] 3782.16 0.63 1250.70 787.94 47.30

SSM [64] 3953.88 0.69 1225.29 845.45 48.44

PPP [54] 4547.52 0.64 1570.79 1005.31 71.43

UDM [51] 3938.00 0.67 1318.51 883.40 51.92

Exact 16-bit multiplier is designed using Dadda tree structure. Table 6.2 compares all

designs in terms of area, delay, power, power delay product (PDP) and area power product

(APP). NMED and MRED of the approximate multipliers are listed in Table 7.2. If high

approximation can be tolerated for saving more power, Multiplier1 and ACM1 are the can-

didates to be considered. It can be seen that Multiplier1 has better APP, whereas ACM1
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Table 4.6: Error metrics for 16-bit multipliers

Multiplier MRED NMED

Multiplier1 7.63�10
�2

1.78�10
�2

Multiplier2 2.44 �10
�4

7.10�10
�6

ACM1 [62] 16.6 4.96�10
�2

ACM2 [62] 2.30�10
�3

6.36�10
�6

SSM [64] 6.34�10
�4

1.07�10
�4

PPP [54] 8.98�10
�4

4.58�10
�5

UDM [51] 3.32�10
�2

1.39�10
�2

has better PDP. However, Multiplier1 has 64% lower NMED and three orders of magnitude

lower MRED, compared to ACM1. It should be noted that high values of MRED for ACMs

are due to non-zero output for inputs with all zeros.

Multiplier2 offers 32% area savings and 38% power savings, over the exact multiplier.

ACM2 provides 22% and 30% area and power savings, respectively. SSM has 19% area and

31% power savings over accurate multiplier. Perforated multiplier has 6% and 12% area and

power savings, respectively. UDM provides 19% and 26% area and power savings. Multiplier2

has one order of lower MRED than ACM2, two orders of lower MRED than UDM, 73% lower

MRED than PPP, and 62% lower MRED than SSM. NMED of Multiplier2 outperforms all

approximate multipliers except ACM2. ACM2 exhibit 10% lower NED than Multiplier2.

Multiplier2 produces large error distance relative to ACM2. However, lower MRED indicates

that Multiplier2 has smaller relative error values.

Table 4.7 gives a comprehensive comparison of approximate multipliers to get an idea

of trade-off between design metrics and error metrics. Multiplier1 delivers the lowest APP,

Multiplier2 delivers the lowest MRED value. Overall, Multiplier2 has better PDP, APP and

MRED over ACM2, SSM, Perforated multiplier and UDM, with lower NMED in most cases

as well. For applications where high power savings are desired with more error tolerance,
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Figure 4.5: MRED distribution of (a) Multiplier1 (b) Multiplier2
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Table 4.7: Ranking of approximate multipliers in terms of design and error metrics

Approximate

Multiplier

Type

APP

Gain

PDP

Gain

NMED MRED

Multiplier1 1 2 6 6

Multiplier2 3 3 2 1

ACM1 [62] 2 1 7 7

ACM2 [62] 4 4 1 4

SSM [64] 5 5 4 2

PPP [54] 7 7 3 3

UDM [51] 6 6 5 5

Multiplier1 can be used. For moderate power savings with better performance, Multiplier2

is suggested.

MRED distribution of 16-bit versions of Multiplier1 and Multiplier2 are shown in Figure

4.5. All possible outputs ranging from 0 to 65535
2

are categorized into 255 intervals. MRED

of Multiplier2 is significantly low at higher product values, as exact units are used in most

significant part of the multiplier.

4.3 Application- Noise Reduction

Geometric mean filter is widely used in image processing to reduce Gaussian noise [99]. When

compared to arithmetic mean filter, geometric mean filter preserves more edge features. Two

16-bits per pixel gray scale images with Gaussian noise are considered. 3�3 mean filter is used,

where each pixel of noisy image is replaced with geometric mean of 3�3 block of neighboring

pixels centered around it. The algorithms are coded and implemented in MATLAB. Exact

and approximate 16-bit multipliers are used to perform multiplication between 16-bit pixels.

45



PSNR is used as figure of merit to assess the quality of approximate multipliers. PSNR is

based on mean square error (MSE) found between resulting image of exact multiplier and the

images generated from approximate multipliers. Energy required by exact and approximate

multiplication process while performing geometric mean filtering of the images are found

using Synopsys Primetime. Further, exact multiplier is voltage scaled from 1 V to 0.85 V

(VOS), and its impact in energy consumption and image quality is computed.

The noisy input image and resultant image after denoising using exact and approximate

multipliers, with their respective PSNRs and energy savings in µJ are shown in Figure 4.6

and Figure 4.7, respectively. Energy required for exact multiplication process for image-1

and image-2 is 3.24µJ and 2.62µJ respectively. Although ACM1 has better energy savings

compared to Multiplier1, Multiplier1 has significantly higher PSNR than ACM1. Multiplier2

shows the best PSNR among all the approximate designs. Multiplier2 has better energy

savings, compared to ACM2, PPP, SSM, UDM and VOS. The intensity of image-1 being

mostly on the lower end of the histogram causes poor performance of ACM multipliers. As

the switching activity impacts most significant part of the design in VOS, PSNR values are

affected.
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(a) (b) (c) 37.7, 1.90

(d) 87.6, 1.04 (e) 16.1, 2.06 (f) 43.0, 0.96

(g) 81.3, 0.45 (h) 73.3, 0.50 (i) 38.8, 0.43

(j) 38.05, 0.76

Figure 4.6: (a) Input image-1 with Gaussian noise. Geometric mean filtered im-
ages and corresponding PSNR and energy savings in µJ using (b) Exact multiplier (c)
Multiplier1 (d) Multiplier2 (e) ACM1 (f) ACM2 (g) SSM (h) PPP (i) UDM (j) VOS
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(a) (b) (c) 36.6, 2.38

(d) 95.1, 1.21 (e) 23.0, 2.56 (f) 51.1, 1.10

(g) 79.7, 0.74 (h) 83.7, 0.58 (i) 37.5, 0.68

(j) 37.34, 0.94

Figure 4.7: (a) Input image-2 with Gaussian noise. Geometric mean filtered im-
ages and corresponding PSNR and energy savings in µJ using (b) Exact multiplier (c)
Multiplier1 (d) Multiplier2 (e) ACM1 (f) ACM2 (g) SSM (h) PPP (i) UDM (j) VOS
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5 Design and Analysis of Approximate Booth

Multipliers
1

In this chapter, three approximate Booth multipliers models (ABM-M1, ABM-M2 and

ABM-M3) are proposed. The ABM-M1 multiplier uses an approximate Booth partial product

generator that produces error cases of 4 out of 32, resulting from the �2 � multiplicand

being replaced by �1 � multiplicand. In ABM-M2, the same approximate Booth partial

product generator in ABM-M1 is used, but the multiplicand input in consolidated and the

set of partial products are replaced by single partial product in each row. In ABM-M3, a

partial product generator based on the zero values of the encoded signal and multiplicand is

proposed.

This work is an extension of our conference work [82]. The main improvements and novel

contributions of this work include:

1. Error distance of the partial product generator in the ABM-M1 multipliers is discussed

and analyzed using 16-bit multipliers.

2. ABM-M2 multipliers are introduced, where partial product generation and accumula-

tion is further simplified based on a consolidated value of the multiplicand and replacing

a set of partial product generators with a single partial product generator.

3. A partial product generator based on zero values of the multiplicand and encoded signal

is proposed. The proposed partial product generator is used in ABM-M3 multipliers.

4. An approximation factor p is used to implement and analyze the design metrics and

error metrics of all the proposed multipliers.

1
Major part of this work has been published in “Power Efficient Approximate Booth Multiplier,” 2018

IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018, pp. 1-4. Authors:
Suganthi Venkatachalam, H. J. Lee and Seok-Bum Ko.
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The proposed techniques are compared with state-of-the-art approximate Booth multi-

pliers. In each design, approximation factor p refers to the number of columns in the partial

product matrix to which approximation is applied, in order of increasing significance. As

p increases, a higher number of columns make use of the approximate partial product gen-

erator, and the inexactness of the multiplier increases. In all the proposed multipliers, the

partial product accumulation is performed using a dadda tree structure composed of exact

4-2 compressors, full-adders, and half-adders. The exact, proposed, and existing approximate

multipliers are evaluated with image multiplication and matrix multiplication applications.

The rest of the work is organized as follows. In section 5.1, Radix-4 Booth multipliers

are explained. In section 5.2, three approximate designs ABM-M1, ABM-M2, and ABM-M3

are presented. In section 5.3, design and error metrics of proposed and approximate Booth

multipliers are compared and analyzed. In section 5.4, approximate multipliers are used in

image multiplication and matrix multiplication applications.

5.1 Radix-4 Booth multipliers

The output Pout from two signed inputs A and B, can be given as

A � �aN�12
N�1

�

N�2

=
n�0

an2
n

B � �bN�12
N�1

�

N�2

=
n�0

bn2
n

Pout � �P2N�12
2N�1

�

2N�2

=
n�0

Pn2
n

(5.1)

The input B is grouped into bits {b2i�1, b2i, b2i�1} and the radix-4 Booth encoder encodes

these three consecutive bits into three signals negi, twoi, and zeroi as shown in Table 5.1.

negi refers to the sign of each partial product operation, twoi indicates whether the generated

partial product is to be shifted, and zeroi is marked high if the partial product is zero.

Based on the signals negi, twoi, and zeroi, the corresponding row-wise partial product PP i

is selected from r�2A,�1A, 0,�1A,�2Ax.
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Table 5.1: Recoding of multiplier bit groups and corresponding operation in exact
radix-4 multiplier

b2i�1 b2i b2i�1 negi twoi zeroi PPi

0 0 0 0 0 1 0

0 0 1 0 0 0 �A

0 1 0 0 0 0 �A

0 1 1 0 1 0 �2A

1 0 0 1 1 0 �2A

1 0 1 1 0 0 �1A

1 1 0 1 0 0 �1A

1 1 1 0 0 1 0
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5.2 Proposed Architectures

Booth multipliers are suitable candidates for approximation partial product accumulation in

addition to partial product generation. An exact radix-4 partial product generator requires

all three signals negi, twoi, and zeroi, to generate the partial product. In our work, a partial

product generator is designed using only two of the three signals, namely negi and twoi.

This partial product generator is used in proposed multipliers ABM-M1 and ABM-M2. In

ABM-M3, a partial product generator is proposed which uses only the signal zeroi. In all

three designs, approximation is applied in partial product accumulation in addition to partial

product generation.

5.2.1 ABM-M1 Approximate Multipliers

The exact partial product generator is shown in Figure 5.1. The logic equation of the partial

product pij outputted from the exact partial product generator is given by

mi � �aj � twoi� � �aj�1 � twoi�

pij � zeroi � �negi hmi� (5.2)

where mi is the output of the multiplexer and aj is the multiplicand input. The partial

product generator circuit is approximated by changing 4 of 32 entries in the corresponding

k-map, as shown in Figure 5.2, where 1 represents a change from ‘0’ to ‘1’ and 0 represents

a change from ‘1’ to ‘0’. This results in an approximate partial product generator based on

two signals, negi and zeroi, subsequently referred to as PPG-2S. The circuit schematic for

this approximate partial product generator is shown in Figure 5.3 and can be expressed as

pij � aj � negi � aj � negi � zeroi (5.3)

When compared to the exact partial product generator, the PPG-2S circuit does not

require a multiplexer or an XOR-gate and the output can be expressed using only AND

and OR-gates. The error distance between the exact partial product generator and PPG-2S
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is given in Table 5.2. Since the twoi signal is absent in PPG-2S, the �2A and �2A cases are

replaced with �1A and �1A, respectively, which results in two cases with an error distance

of �1.

twoi

pij

zeroinegi

aj

aj–1

mi

Figure 5.1: Circuit schematic for exact partial product generator

0 0 X 0

0 0 X

11 0 X

11 0 X

0

ajaj-1

twoizeroi

1 X X

11 X X

0

0 X X 0

0 X X

1

twoizeroi
negi negi

ajaj-1

00

01

11

10

00 01 11 10 00 01 11 10

Figure 5.2: k-map of approximate partial product generator

negi
zeroi

aj

aj
pij

negi

Figure 5.3: Circuit schematic for approximate two-signal partial product generator
PPG-2S

The proposed approximate partial product generator PPG-2S is implemented in the ABM-

M1 multipliers. For these multipliers, approximation factors p = 12, 14, and 16 are chosen.

The partial product matrix for a 16-bit exact multiplier is shown in Figure 5.4, while the

partial product matrix for a 16-bit ABM-M1 multiplier is shown in Figure 5.5. In the
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Table 5.2: Error distance of proposed approximate partial product generator based
on two signals

negi twoi zeroi

Exact ppij for

ajaj�1 Exact OP

Approx. ppij for

ajaj�1 Approx. OP Error

00 01 10 11 00 01 10 11

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 �1A 0 0 1 1 �1A 0

0 0 0 0 0 1 1 �1A 0 0 1 1 �1A 0

0 1 0 0 1 0 1 �2A 0 0 1 1 �1A 1

1 1 0 1 0 1 0 �2A 1 1 0 0 �1A �1

1 0 0 1 1 0 0 �1A 1 1 0 0 �1A 0

1 0 0 1 1 0 0 �1A 1 1 0 0 �1A 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0
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ABM-M1 design, all partial products with a significance less than p are generated using the

approximate PPG-2S circuit and all remaining partial products are generated using the exact

circuit. To reduce the height of the matrix, each correction term is combined with a partial

product in its respective column using an OR-gate. Further, PPG-2S can be used in higher

radix approximation. For radix-16 operation, AND operation of two zero signals of two

consective rows is performed to find combined zero signal. It is then fed to PPG-2S and a

partial product matrix as shown in Figure 5.6 is generated.

5.2.2 ABM-M2 Approximate Multipliers

The ABM-M2 multipliers differ from ABM-M1 in that the set of exact partial product gen-

erators in each row i of the partial product matrix is replaced with a single PPG-2S. Three

approximation factors p = 6, 8, and 10 are chosen. The least-significant p bits of input A

are added and a value asum is found. Based on asum, a value a¾j"�0,p�1� is found as given

in equation 5.4. Partial product pi,¾j"�0,p�1� for each row is found by inputting a¾j"�0,p�1�,

and negi and zeroi into PPG-2S. Small approximation factors were chosen because the ap-

proximation mechanism in ABM-M2 is more drastic, meaning that smaller values of p are

required to generate reasonable error metrics.

asum �

p�1

=
j�0

aj

a¾j"�0,p�1� �

~����������

1, asum % p©2

0, asum & p©2
(5.4)

An example with approximation factor p � 8 is illustrated in Figure 5.7, which depicts

the transformation of the exact partial product matrix to an approximate partial product

matrix. For p � 8, the least 8 bits of input A are added and a value asum is found. From

asum, a value from a¾j"�0,7� is found as per equation 5.4, which is then used to generate the

approximate partial product pi,¾j"�0,7� using negi and zeroi in the row i.
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5.2.3 ABM-M3 Approximate Multipliers

In the ABM-M3 multiplier design, an approximation is proposed based on the zero-values

of input A and signal zeroi. Three approximation factors p = 12, 14, and 16 are chosen.

For approximation factor p, all partial products with significance less than p are reduced

to a single approximate partial product. Considering the exact partial product matrix in

Figure 5.4, for a row i, let l be the number of bits with a significance less than p. For a row

i, a¾j"�0,p��2i�1�� is generated by OR-ing the l least-significant bits of A. The approximate

partial product for the row i is then generated by the use of PPG-1S as shown in Figure 5.8.

PPG-1S takes in the result of the OR operation and the single signal zeroi to produce the

approximate partial product for that row.

pij

zeroi

aj

Figure 5.8: Circuit schematic for approximate single-signal partial product generator
PPG-1S

An example with p � 14 is given in Figure 5.9. For the fourth row with i � 3, a ranging

from 0 to p� 7 are given to the p� 6 input OR-gate. The output of this OR-gate a¾j"�0,p�7�

and the signal zero3 are given to the AND-gate. Based on these values, the partial product

pi,¾j"�0,p�7� is found. Similarly, for the first row, input a from 0 to p � 1 and zero0 are

considered. In the second row, the value of the first row, input a from 0 to p � 3, and zero1

are considered. In the third row, input a from 0 to p � 5 and zero2 are considered, and so

on.

5.3 Results and Discussion

The proposed approximate multipliers (i.e. ABM-M1, ABM-M2, and ABM-M3) and existing

approximate multipliers are implemented in Verilog HDL and are verified using the ModelSim
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HDL simulator. The multipliers are then synthesized with the Synopsys compiler DC using

the TSMC 65 nm library at typical process corner. The largest critical path delay of all

designs, i.e. exact radix-8 multiplier was measured to be 1.19 ns and that delay was then

used as the timing constraint for all following simulations.

The error characteristics of the proposed multipliers are reported in Table 7.2, along with

the error metrics of other contemporary multipliers used as comparison designs. Area, power

and area power product (APP) metrics of both the proposed multipliers and the comparison

multipliers are reported in Table 7.3.

Comparison multipliers include the ABM1 and ABM2-C9 designs proposed by Jian et

al. in [78], as well as the R4ABM1 multiplier proposed by Liu et al. in [56]. ABM1 and

ABM2-C9 of [78] utilizes an approximate adder with error recovery and error compensation

modules. In R4ABM1 design of [56], the input groups of multiplier are used in exact and

approximate partial product generation and to reduce the logic complexity of exact partial

product generator, �2 � multiplicand is replaced by zero.

5.3.1 Error Analysis

A SystemVerilog testbench and a Python script were used to compare the output of the

proposed multipliers with the result of the exact multiplication operation for one million

randomly-generated pairs of inputs. MRED and NMED were calculated for all multipliers

as summarized in Table 7.2.

The ABM-M1 and ABM-M3 designs exhibit the most competitive error characteristics.

When comparing the proposed designs to R4ABM1 for each value of p, the NMED values of

both ABM-M1 and ABM-M3 are significantly lower and the MRED values are less than half

of those measured for R4ABM1. The error values of ABM-M1 for p � 14 are competitive with

ABM1, in which MRED values are similar but NMED of ABM-M1 is an order of magnitude

less than that of ABM1. All three designs of ABM-M1 achieve better error characteristics

than ABM2-C9. ABM-M3 exhibits error metrics competitive with ABM1 for p � 12 and

p � 14, and all three versions of ABM-M3 exhibit lower NMED than ABM2-C9. NMED

values of ABM-M2 are comparatively large, but MRED of ABM-M2 for p � 6 is within

the same order of magnitude as R4ABM1 for p � 14 and p � 16. When partial product
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Table 5.3: MRED and NMED values of proposed and existing approximate multipliers

Approximate

Design

(16-bit)

p
MRED

(10
�2

)

NMED

(10
�5

)

ABM-M1

12 0.016 0.549

14 0.030 0.766

16 0.079 2.080

ABM-M2

6 0.663 26.611

8 2.689 108.727

10 10.723 441.429

ABM-M3

12 0.020 0.200

14 0.082 0.853

16 0.340 3.615

R4ABM1 [56]

12 0.038 0.843

14 0.124 1.844

16 0.473 6.419

ABM1 [78] – 0.040 1.936

ABM2-C9 [78] – 0.089 4.450
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Table 5.4: Area, power, and area-power product values of proposed and existing
approximate multipliers

Design

(16-bit)

p
Area

(µm
2
)

Power

(mW)

APP

(µm
2
�mW)

Exact radix-4 – 3904 1.309 5110

Exact radix-8 – 4401 1.369 6025

ABM-M1

12 3375 1.183 3993

14 3371 1.162 3917

16 3129 1.108 3467

ABM-M2

6 2379 0.835 1986

8 2040 0.700 1428

10 1596 0.529 844

ABM-M3

12 2625 0.941 2470

14 2262 0.805 1821

16 1848 0.649 1199

R4ABM1 [56]

12 3822 1.217 4651

14 3610 1.148 4144

16 3466 1.106 3833

ABM1 [78] – 3399 1.149 3905

ABM2-C9

[78]

– 3025 1.083 3276
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accumulation of the multiplier is performed with approximate adders and compressors for

p=16, it has MRED and NMED values similar to ABM-M3 of p=16.

5.3.2 Hardware Measures

The three proposed designs are based off the radix-4 Booth multiplication algorithm. All

three proposed designs exhibit significant area and power savings over the exact radix-4

multiplier. The proposed ABM-M1 designs allow for APP savings in the range of 22% to

32%, and the ABM-M3 designs provide APP savings in the range of 52% to 77%. ABM-M2

exhibits the most substantial APP reduction, with p values of 12, 14, and 16 corresponding

to APP savings of 61%, 72%, and 83%, respectively.

The proposed designs also exhibit significant power and area savings over the R4ABM1

designs. As described in the error analysis, ABM-M1 and ABM-M3 compete best with the

R4ABM1 design. ABM-M1 designs exhibit APP savings in the range of 5% to 14% and

ABM-M3 in the range of 52% to 77% when compared to R4ABM1. The ABM1 and ABM2-

C9 designs are based off the radix-8 Booth multiplication algorithm. Even when compared to

the larger APP of the exact radix-8 multiplier, the APP reductions of ABM-M1 and ABM-M3

described previously are substantially larger than the ABM1 savings of 35% and ABM2-C9

savings of 36%. When partial product accumulation of the multiplier is performed with

approximate adders and compressors for p=16, it has a APP saving of 61% when compared

to radix-8 multiplier.

5.4 Applications

In this section, the proposed and existing approximate multipliers are tested with two appli-

cations—image multiplication and matrix multiplication.

5.4.1 Image Multiplication

The discussed approximate Booth multipliers are applied to image multiplication. A 16-bit

image is taken and its pixel values are shifted from the range �0, 65535� to ��32768, 32767�.
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The image is then multiplied by a constant on a pixel-by-pixel basis in order to brighten the

image. The exact Booth multiplier, existing approximate Booth multipliers, and the proposed

multipliers are used in this application by the use of MATLAB. To compare the image quality

of exact and approximate Booth multiplier units, PSNR is used as a performance metric.

The resulting images of exact, proposed and existing multipliers and their corresponding

PSNR values are shown in Figure 5.10. For all the models, the image quality deteriorates

with increasing approximation factor. The results of this application show that ABM-M1

and ABM-M3 with approximation factors p = 12, 14, and 16 outperform R4ABM1 with

equivalent approximation factors, ABM1, and ABM2-C9. Similarly, ABM-M2 exhibits better

PSNR values for approximation factors p = 6 and 8. ABM-M1 with p = 12, 14, and 16,

ABM-M3 with p = 12, 14, and 16, and ABM-M2 with p = 6 are suitable candidates for

image processing applications which require negligible loss in image quality.

5.4.2 Matrix Multiplication

Matrix multiplication is a basic computing operation used in applications such as deep learn-

ing, convolution, and transforms in image and video processing, graphics, and robotic ap-

plications. Matrix multiplication is one of the most important kernel operations in these

applications. In this work, 2� 2 matrices are chosen for matrix multiplication. The existing

and proposed multipliers are tested by taking 50,000 matrix multiplication test cases. MRED

is taken as the error metric to assess the quality of approximate multipliers. MRED is the

result of absolute difference between matrix multiplication results of approximate multiplier

and exact multiplier, scaled by actual value of exact matrix multiplication result. The MRED

values are listed in Table 5.5. It can be seen that the proposed multipliers perform better

than existing state-of-the-art approximate Booth multipliers. The findings are consistent

with MRED values discussed in Table 7.2.
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(a) (b) (c) 98 dB (d) 93 dB

(e) 83 dB (f) 61 dB (g) 49 dB (h) 36 dB

(i) 98 dB (j) 90 dB (k) 81 dB (l) 94 dB

(m) 83 dB (n) 71 dB (o) 77 dB (p) 71 dB

Figure 5.10: (a) Input image. Images after image multiplication using (b) exact
multiplier, the proposed multipliers with their PSNR values in dB (c) ABM-M1 (p=12)
(d) ABM-M1 (p=14) (e) ABM-M1 (p=16) (f) ABM-M2 (p=6) (g) ABM-M2 (p=8) (h)
ABM-M2 (p=10) (i) ABM-M3 (p=12) (j) ABM-M3 (p=14) (k) ABM-M3 (p=16), the
existing comparison multipliers (l) R4ABM1 [56] (p=12) (m) R4ABM1 [56] (p=14) (n)
R4ABM1 [56] (p=16) (o) ABM1 [78] (p) ABM-C9 [78]
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Table 5.5: MRED values of proposed and existing approximate multipliers used in
matrix multiplication application

Approximate

Design

(16-bit)

p
MRED

(10
�2

)

ABM-M1

12 0.028

14 0.034

16 0.104

ABM-M2

6 1.830

8 9.540

10 21.800

ABM-M3

12 0.018

14 0.048

16 0.317

R4ABM1 [56]

12 0.058

14 0.148

16 0.514

ABM1 [78] – 0.062

ABM2-C9 [78] – 0.153
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6 Approximate Sum of Products Designs Based

on

Distributed Arithmetic
1

In this chapter, approximate sum of product units based on distributed arithmetic are

proposed. Novel approximate sum of products designs are proposed using efficient distributed

arithmetic structure. Approximation involves changes with respect to word length, number of

lookup tables, and number of elements in the final accumulator. Three models are proposed.

First model provides significant power reduction with lower MRED and NMED. Second

and third models with increased area and power compared to first model provides better

accuracy. In the proposed approximate structures, reductions in number of lookup tables,

length of adders and accumulator size are employed for approximation. Compared to the

exact sum of products unit, the proposed models have reduced circuit complexity.

Section 6.1 describes distributic arithmetic based sum of products computation. In section

6.2, three architectures are proposed. Section 6.3, approximate architectures are comparted

with state of the art existing architectures. In section 6.4, one application on smoothing

and one machine learning application - K-means clustering for color image compression are

discussed.

1
Major part of this work has been published in “Approximate Sum-of-Products Designs Based on Dis-

tributed Arithmetic,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 8,
pp. 1604-1608, Aug. 2018. Authors: Suganthi Venkatachalam and Seok-Bum Ko.
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6.1 Sum of Products Units Based on Distributed Arith-

metic

Distributed arithmetic is a popular technique for implementing sum of products computations

without the use of multipliers. Sum of products units based on distributed arithmetic are

frequently used in filters and other DSP applications. The main advantage of distributed

arithmetic is its high computational efficiency. Distributed arithmetic distributes multiply

and accumulate operations across adders, lookup tables and final accumulation in such a way

that conventional multipliers are not required.

Consider unsigned K elements of N -bits a1, a2, . . . , aK and b1, b2, . . . , bK . To implement

sum of products a1b1 � a2b2 � � � � � aKbK , the result y can be defined as

y �
N�1

=
n�0

xn2
n

(6.1)

where xn � <K

k�1 akbkn represents summation of inputs a1, a2, . . . , aK based on the ele-

ments b1n, b2n, . . . , bKn for bit position n. For example, for k=1, 2, 3 (three elements of inputs

a and b) for bit position n, selection of summation of a inputs based on b is shown in Table

6.1. In Table 6.1, aij represents ai�aj. To implement this table, a lookup table can be used.

All possible 2
K

combinations of inputs a are stored in a lookup table. For a bit width of N ,

N lookup tables are required. To implement sum of products using distributed arithmetic,

initially N -bit adders are required to perform <K

k�1 akbkn. Then N lookup tables are re-

quired. The contents are chosen based on bkn for n=0, 1, 2, . . . , N �1. All contents are placed

in final accumulator structure. The final accumulator stage has N elements. Hence sum of

products structure based on distributed arithmetic requires adders to perform summation

of ak, lookup tables and a final accumulator. A general lookup table and its structure of

sum of products based on distributed arithmetic for K=3 and N=16 is shown in Figure 6.1.

Approximation in [85] involves changing the limits of equation 6.1 from m to N -1, where m

is the number of lookup tables to be truncated.
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Table 6.1: Lookup table contents of sum of products for K=3

b1n b2n b3n Contents

0 0 0 0

0 0 1 a3

0 1 0 a2

0 1 1 a23

1 0 0 a1

1 0 1 a13

1 1 0 a12

1 1 1 a123

6.2 Proposed Approximate Sum of Products Architec-

tures

In our work, K is 3 and N is 16. For conventional implementation of sum of products unit

based on parallel distributed arithmetic [84], three two-input 16 bit adders, one three-input

16 bit adder, 16 lookup tables with 8 cases, and final accumulator with 16 elements are

required. In our approximation models, hardware requirements are considerably reduced.

Three models of approximate sum of products (ASOP) - ASOP1, ASOP2 and ASOP3 are

proposed.

6.2.1 Proposed Approximate Sum of Products Model ASOP1

In approximate model 1, K is 3 and N is reduced. m bits at the least significant part of ak and

bk for k=1, 2, 3 are truncated. m=8, 6, and 4 bits are implemented. For this implementation,

three two-input 16-m bit adders, one three-input 16-m bit adder, 16-m lookup tables with

8 cases, and final accumulator with 16-m elements are required. This considerably reduces

the hardware utilization at all the levels. The approximate model with reduced elements is
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LUT
n=15-LZB

LUT
n=14-LZB

LUT
n=m+1-
LZB

LUT
n=m-LZB

215-LZB

214-LZB

2m+1-LZB

2m-LZB

ACCUMULATOR
(16-m) × (18-m) y

<< (m-LZA)

Figure 6.3: Approximate lookup table and corresponding approximate sum of prod-
ucts (ASOP2) structure for K=3 and N=16

shown in Figure 6.2. In [85], by implementing equation 6.1 with limits m to N -1, the number

of look up tables reduces to 16-m and 16-m elements are sent to the final accumulator (16-m

� 18). It should be noted that in ASOP1, the number of input bits to the adders is reduced,

which further reduces complexity of accumulator (16-m � 18-m), compared to [85].

6.2.2 Proposed Approximate Sum of Products Model ASOP2

ASOP2 is similar to ASOP1 with the addition of m-bit leading one predictor. This increases

the accuracy, and more suitable for DSP application which will be discussed later in this

section. In our method, leading one prediction of ak and bk for k=1, 2, 3 requires OR
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LUT
n=m-1|m-2

LUT
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n=3|2
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n=1|0

2m-1

2m-3
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21

ACCUMULATOR
(m/2) × (m)

Least
significant
part of y

m

m

m

m

Figure 6.4: Least significant part of the approximate sum of products (ASOP3) struc-
ture

operation of most significant m bits of ak and bk for k=1, 2, 3 followed by priority encoder.

The function of OR gates can be given as amor
� a1m¶a2m¶a3m and bmor

� b1m¶b2m¶b3m where

km represents first m bits of kth element, for m=4, 6 or 8. After the leading one prediction,

ASOP1 structure is used for the computation of elements starting from the leading one

position. Steps followed in ASOP2 can be illustrated with example as follows

� Consider the input elements as

a1=“0011001000101110”

a2=“0001011000101011”

a3=“0010011001101000”

b1=“0001001011101001”
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b2=“0001101000101110”

b3=“0000101011101011”.

� For m=4, the combination of first four bits using OR gate is computed.

amor
=0011

� In this example, leading one predictor predicts zeros in first two bits of bit positions

‘15’ and ‘14’ of a1, a2 and a3. From the next consecutive bit position ‘13’, information

is trimmed.

� 12-bit (16-m) information starting from bit position ‘13’ to ‘2’ of a1, a2 and a3 (“110010001011”,

“010110001010”, “100110011010”) are taken and fed to the inputs of the lookup tables.

� For m=4, bmor
=0001, leading one predictor detects zeros in first three bits of bit posi-

tions ‘15’, ‘14’ and ‘13’ of b1, b2 and b3.

� 12-bit (16-m) information starting from bit position ’12’ to ’1’ of b1, b2 and b3 (“100101110100”,

“110100010111”, “010101110101”) are taken and fed as control signals of lookup tables.

The overall structure of ASOP2 is given in Figure 6.3, where LZA refers to leading zeros

in amor
and LZB refers to leading zeros in bmor

. ASOP2 reduces the negative effects of

truncation, especially when there is information only in least significant parts of the inputs.

In DSP applications, pixel values are highly correlated and number of initial zeros of ak and

bk for k=1, 2, 3 have high chances of being same. Using OR gate for combining the elements

and using a leading one predictor afterward reduces hardware resources to be used.

6.2.3 Proposed Approximate Sum of Products Model ASOP3

In ASOP1, the least significant part m=8, 6, and 4 bits are truncated. In ASOP1, m bits are

truncated from the 18 bit outputs of the lookup table contents. And also, m control signals

b1n, b2n, b3n of the lookup table for n � 0, 1, ..m � 1 are truncated.

In ASOP3, instead of truncation, approximation is employed. Lookup table output con-

tents are divided into 18 � m bits and m bits. The inputs b are divided to 16 � m group

and m group. ASOP1 is used for the first 16 �m group. For the least m bits group of bk

76



for k=1, 2, 3, the control signals are grouped in pair. m lookup tables are reduced to m©2

tables. The additional hardware required for ASOP3 is given in Figure 6.4.

� Consider the input elements as

a1=“0011001000101110”

a2=“0001011000101011”

a3=“0010011001101000”

b1=“0001001011101001”

b2=“0001101000101110”

b3=“0000101011101011”.

� For m=4, a23, a13, a12 and a123 are calculated.

� Except for least m bits, other bits are given to ASOP1 structure, and 12-bit (16-m)

information starting most significant bit of b1, b2 and b3 are taken and fed as control

signals of lookup tables.

� For the least significant bits calculation, least significant m bits of a23, a13, a12 and a123

are used as inputs to the lookup table.

� The number of lookup tables are reduced by half, by ORing each pair of control signals.

In this scenario, for lookup table of n � 1 ¶ 0, the control signals would be 111.

6.3 Results and Discussion

Exact and approximate sum of products units described in Verilog HDL are implemented

in TSMC 65nm library using Synopsys compiler at the typical process corner. The exact

and approximate sum of products units are modeled for N=16. The efficiency of the pro-

posed sum of products units is compared with existing approximate sum of products models

[85, 62, 100, 54]. Approximate design model of parallel implementation of [85] is used to

design truncated sum of products unit with least significant bits truncated in the lookup

tables part. Two versions of truncation- with 10 bits truncated and 8 bits truncated are

designed (TRUNC1 and TRUNC2). [62, 100, 54] propose approximate multipliers. These
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Table 6.2: Implementation results of exact, existing and proposed approximate sum
of products units

Sum of Products

Type

Area (µm
2
) Delay (ns) Power (mW )

Exact unit 11120 0.9 4.72

ASOP1 (m=8) 4030 0.7 1.44

ASOP1 (m=6) 5648 0.7 2.28

ASOP1 (m=4) 7030 0.8 2.92

ASOP2 (m=8) 7526 0.9 2.15

ASOP2 (m=6) 8960 1 3.17

ASOP2 (m=4) 10167 1 3.98

ASOP3 (m=8) 5790 0.7 1.97

ASOP3 (m=6) 6484 0.8 2.39

ASOP3 (m=4) 8812 0.8 3.56

TRUNC1 [85] 5538 0.7 2.11

TRUNC2 [85] 7110 0.7 2.72

ACM-SOP [62] 9779 0.6 2.06

PROB-SOP [100] 9784 0.6 2.94

PERF-SOP [54] 7185 0.7 2.44
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approximate multipliers are used in construction of sum of products units. In [62], approx-

imate compressor is used to construct 16- bit multipliers, approximate compressors based

multipliers (ACM) and they are added to compute SOP (ACM-SOP). In [100], probabilistic

multiplier of Chapter 4 is analyzed (PROB). For our comparison, three 16-bit probabilistic

multipliers are designed and they are added to form SOP (PROB-SOP). Partial product

perforation technique discussed in [54] is used to design perforated multiplier for j=2, k=8

and a Dadda tree structure is used to accumulate reduced partial product structure. The 16

bit multipliers are constructed using this technique for SOP (PERF-SOP). Error analysis of

the approximate sum of products models are done using MATLAB with inputs of 1 million

uniform random variable combination.

Table 6.2 compares all designs in terms of area, delay and power. ASOP1 with m=8

offers area, delay and power savings upto 64%, 22% and 70% respectively over the exact sum

of product unit. ASOP2 saves up to 32% in area and 54% in power. ASOP3 saves up to

48%, 22% and 58% in area,delay and power respectively. While ASOP1 and ASOP3 version

has delay improvement ranging from 11% to 22%, ASOP2 versions has increase in delay due

to leading one prediction. However, they have significant reduction in area and power, and

better accuracy as seen in Table 6.3.

From Table 6.3, error metrics MRED and NMED of approximate units along with their

area power product (APP) and delay power product (PDP) can be seen. When compared to

TRUNC1 unit, ASOP1 (m=8) has improved APP and PDP of 50% and 30% respectively,

whereas ASOP3 (m=8) have slightly better APP and PDP. MRED of ASOP1 (m=8) and

ASOP3 (m=8) are one order of magnitude better than TRUNC1 whereas their NMEDs are

50% and 61% lower respectively. Compared to TRUNC2, ASOP1 (m=6) has a 33% better

APP, 16% better PDP, 51% and 49% lower MRED and NMED, respectively. All versions

of ASOP have better MRED and NMED than ACM-SOP, PROB-SOP and PERF-SOP.

Compared to ACM-SOP, PROB-SOP and PERF-SOP, ASOP1 (m=8, 6), ASOP2 (m=8),

ASOP3 (m=8,6) have improved APP, and ASOP1 (m=8) have improved PDP. ASOP1,

ASOP2 and ASOP3 of m=4 have the best MRED and NMED values. Considering all the

cases, proposed sum of products units has better area and power savings and better accuracy

compared to existing approximate designs.

79



ASOP1 (m=8) has the least APP and PDP of all, with its MRED and NMED better than

TRUNC1, ACM-SOP, PROB-SOP and PERF-SOP. ASOP1 (m=6) and ASOP3 (m=6) have

better APP, MRED and NMED compared to TRUNC2, ACM-SOP, PROB-SOP and PERF-

SOP. ASOP1 (m=8,6) and ASOP3 (m=8) perform better than PROB-SOP and PERF-SOP

in all four aspects. While other ASOPs have higher APP and PDP, compared to existing

designs, they are to be used in applications demanding reduced error. However with ASOP1

of m=8,6, ASOP2 of m=8 and ASOP3 of m=8,6, it is proved that the proposed model has

better results in design and error metrics compared to existing designs.

In Figure 6.5, APP and MRED for uniform random variables are sorted in ascending

order for the proposed 9 approximate sum of products designs and five approximate models

from the literature. ASOP1 (m=8) has the best area power product, whereas ASOP3 (m=4)

has the best MRED in terms of uniform random variables.

6.4 Applications

6.4.1 Image Processing - Gaussian Filtering

Gaussian filtering [101] is a popular filtering technique used in signal processing applications

such as image smoothing, edge detections and texture segmentation. Image smoothing is

performed to reduce the image noise by using convolution. In this work, 3�3 gaussian filter

is used to reduce noise of input image. The hardware of 3�3 filter requires 3 sum of products

units.16- bit image with gaussian noise is taken for analysis. Smoothing is performed by

performing 2-dimensional convolution operation over every pixel of image. 3�3 gaussian

filter can be given as

Ẑ
^̂
^̂
^̂
^̂
^̂
^̂
\̂

0.077847 0.123317 0.077847

0.123317 0.195346 0.123317

0.077847 0.123317 0.077847

[______________]

Exact and approximate sum of products units are used to gaussian convolution operation

on the image. Mean square error is found between the smoothed image using exact sum of
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Table 6.3: Error metrics, area power product and power delay product of exact,
existing and proposed approximate sum of products units

Sum of Products

Type

MRED NMED APP PDP

Exact unit - - 52486.4 4.248

ASOP1 (m=8) 9.76 � 10
�3

1.94 � 10
�3

5803.2 1.008

ASOP1 (m=6) 2.42 � 10
�3

4.80 � 10
�4

12877.4 1.596

ASOP1 (m=4) 5.76 � 10
�4

1.14 � 10
�4

20527.6 2.336

ASOP2 (m=8) 8.37 � 10
�3

1.81 � 10
�3

16180.9 1.935

ASOP2 (m=6) 2.07 � 10
�3

4.48 � 10
�4

28403.2 3.17

ASOP2 (m=4) 4.88 � 10
�4

1.06 � 10
�4

40464.7 3.98

ASOP3 (m=8) 7.94 � 10
�3

1.54 � 10
�3

11406.3 1.379

ASOP3 (m=6) 1.97 � 10
�3

3.80 � 10
�4

15496.8 1.912

ASOP3 (m=4) 4.69 � 10
�4

9.06 � 10
�5

31370.7 2.848

TRUNC1 [85] 1.95 � 10
�2

3.90 � 10
�3

11685.2 1.477

TRUNC2 [85] 4.89 � 10
�3

9.73 � 10
�4

19339.2 1.904

ACM-SOP [62] 3.30 � 10
�1

3.89 � 10
�2

20144.7 1.236

PROB-SOP [100] 5.30 � 10
�2

1.35 � 10
�2

28765 1.764

PERF-SOP [54] 1.95 � 10
�2

3.89 � 10
�3

17531.4 1.708
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Figure 6.6: Ranked PSNR of approximate sum of products units in Gaussian filtering
application

products unit and approximate sum of products units. To compare the image compression

quality of exact and approximate sum of products units, PSNR is used.

The original input image and resultant images after image smoothing using exact and ap-

proximate sum of product units with their PSNR values are shown in Figure 6.7. ACM-SOP

has a tendency to produce non-zero results for zero inputs, and produces sum of products

output value exceeding 65535, so it is not included in the figure and tables. ASOP versions

have significantly higher PSNR compared to existing approximate units, and it can be no-

ticed that ASOP2 in particular achieves the high PSNR values. ASOP2 versions perform

significantly better than other designs due to the presence of leading one predictor. Also,

ASOP1 and ASOP3 versions where approximation is applied to 6 bits and 4 bits (m=6 and

m=4), perform better than TRUNC1 and TRUNC2, where 10 bits and 8 bits are truncated

respectively. Compared to sum of products units made of individual 16- bit approximate

multipliers i.e., ACM-SOP, PROB-SOP and PERF-SOP, proposed ASOP units, TRUNC1

and TRUNC2 have better PSNR. ASOP2 (m=4) version has the highest PSNR of all ap-

proximate designs.

In Figure 6.6, PSNR of image smoothing application are sorted in descending order for the

approximate units. ASOP2 (m=4) has the best PSNR in terms of Gaussian image processing

application.
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6.4.2 Color Compression- K-means Clustering

K-means clustering algorithm is a well known machine learning algorithm. It is used to group

similar multi-dimensional data points based on the a distance measure. Sufficient number of

initial cluster points are chosen from the input, and the distance between existing points and

chosen cluster points are calculated. Based on minimum distance, each point is allocated to

a cluster. In our application, K-means steps can be given as

� Colored images are stored with color information of 3 bytes in each pixel. In this work,

an RGB (Red, Green, Blue) image is taken. These images are stored as compressed

image after K-means clustering color compression.

� Random initialization of K-clusters from the data points in the input image is per-

formed.

� With Euclidean distance measurement, each data point is assigned to the nearest cluster

value.

� The final compressed image has pixel values from one of the cluster points where it

finds its closest match.

K-means algorithm is widely used in image processing for compression of color images.

Approximate sum of products units are used to perform distance measures. PSNR is based

on MSE found between resulting image of exact input image before compression and the

images generated from k-means algorithm after compression.

The original input image and resultant images after color compression using exact and

approximate sum of product units are shown in Figure 6.8. Their NMED, MRED and PSNR

values are given in Table 6.4. ASOP versions have significantly higher PSNR compared

to existing approximate units, and it can be noticed that they achieve the same PSNR as

achieved by the exact unit. ASOP2 versions behave better in this application, whereas

ASOP3 has better results with uniforms random variables. ASOP2 (m=4) version has lower

MRED and NMED of all approximate designs.

84



(a) (b) (c) 37.23 dB (d) 52.37 dB

(e) 65.01 dB (f) 51.90 dB (g) 64.50 dB (h) 75.36 dB

(i) 37.83 dB (j) 53.24 dB (k) 65.90 dB (l) 23.88 dB

(m) 38.45 dB (n) 27.79 dB (o) 23.89 dB

Figure 6.7: (a) Input noisy image. Images after gaussian smoothing using (b) exact
multiplier (c) ASOP1 (m=8) (d) ASOP1 (m=6) (e) ASOP1 (m=4) (f) ASOP2 (m=8)
(g) ASOP2 (m=6) (h) ASOP2 (m=4) (i) ASOP3 (m=8) (j) ASOP3 (m=6) (k) ASOP3
(m=4) (l) TRUNC1 (m) TRUNC2 (n) PROB-SOP (o) PERF-SOP
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Table 6.4: Error metrics and PSNR of exact, existing and proposed approximate sum
of products units used in K-means application

Sum of Products Type MRED NMED PSNR (dB)

Exact unit — — 31.65

ASOP1 (m=8) 5.52x10
�2

1.29x10
�3

31.65

ASOP1 (m=6) 1.66x10
�2

3.23x10
�4

31.65

ASOP1 (m=4) 5.23x10
�3

8.16x10
�5

31.65

ASOP2 (m=8) 6.22x10
�3

1.10x10
�3

31.65

ASOP2 (m=6) 1.41x10
�3

2.72x10
�4

31.65

ASOP2 (m=4) 2.82x10
�4

6.42x10
�5

31.65

ASOP3 (m=8) 4.40x10
�2

9.58x10
�4

31.65

ASOP3 (m=6) 1.33x10
�2

2.38x10
�4

31.65

ASOP3 (m=4) 3.40x10
�3

5.66x10
�5

31.65

TRUNC1 [85] 1.15x10
�1

2.61x10
�3

31.56

TRUNC2 [85] 3.41x10
�2

6.50x10
�4

31.65

PROB-SOP [100] 4.83x10
�2

6.57x10
�3

31.64

PERF-SOP [54] 1.14x10
�1

2.60x10
�3

31.61
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 6.8: (a) Input image. Image after K-means clustering using (b) exact multiplier
(c) ASOP1 (m=8) (d) ASOP1 (m=6) (e) ASOP1 (m=4) (f) ASOP2 (m=8) (g) ASOP2
(m=6) (h) ASOP2 (m=4) (i) ASOP3 (m=8) (j) ASOP3 (m=6) (k) ASOP3 (m=4) (l)
TRUNC1 (m) TRUNC2 (n) PROB-SOP (o) PERF-SOP
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7 Design of Approximate Restoring Dividers

1

In this work, two approximation models are proposed for restoring divider. In the first

design, approximation is performed at circuit level, where approximate divider cells are uti-

lized in place of exact ones by simplifying the logic equations. In the second model, restoring

divider is analyzed strategically and number of restoring divider cells are reduced by finding

the portions of divisor and dividend with significant information. Two models of hardware-

efficient approximate dividers AD-M1 and AD-M2 are proposed. AD-M1 is based on replac-

ing the exact individual restoring cell in the restoring divider, which is a combination of a

subtractor and multiplexer, with an approximate cell. In AD-M2, the number of bits in the

dividend and divisor are reduced based on the leading one position in divisor.

Some contributions of this work can be listed as

� Circuit based approximation is proposed in AD-M1. Restoring division is analyzed at

the basic cell level, logic table of each cell is analyzed and approximation is proposed

at the cell level, by altering few entries in the truth table.

� Strategy based approximation is proposed in AD-M2. Input bits are reduced by con-

sidering only the more relevant bits in divisor and dividend and the overflow error in

the quotient is reduced by using an equality detector.

� An approximation factor p is used. Three values of p are used in each model, which

enables the designer to adopt a scalable approach and comprehensive analysis. In the

first model, p is the number of columns where exact cells are replaced with approximate

1
Major part of this work has been submitted in “Design of Approximate Restoring Dividers,” 2019 IEEE

International Symposium on Circuits and Systems (ISCAS), Japan, 2019. Authors: Suganthi Venkatachalam,
Elizabeth Adams and Seok-Bum Ko.
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ones. In the second model, p is the number of bits reduced in dividend and divisor by

using a leading-one predictor in divisor.

� The proposed and existing approximate divider structures are tested with an image

division application to detect changes from one scenario to another.

In section 7.1, design of the exact restoring divider is analyzed and proposed circuit based

and strategy based approximate models are discussed. Design and error metrics of proposed

models are compared with existing approximate models and exact design in section 7.2.

In the context of application, proposed approximate division models are utilized in motion

detection application in section 7.3 and found to exhibit high quality results.

7.1 Proposed Models of Approximate Restoring Divi-

sion

7.1.1 Exact Restoring Divider

Restoring division consists of series of subtraction and shifting operations. Dividend A of 2n

bits and divisor B of n bits can be given as

A � a2n�1 � a2n�2 � � � a0

B � bn�1 � bn�2 � � � b0

(7.1)

An 8-bit dividend/4-bit divisor version of restoring array divider is shown in Figure 7.1,

where each row performs a trial subtraction. The result of trial subtraction being positive or

negative determines the quotient bit and the partial remainder. Although the array divider

looks similar to an array multiplier, the latency of the array divider is much higher because

of ripple-borrow subtraction in each row, and each row has to wait for the execution of the

previous row.

In a 2n©n restoring divider with a quotient of n bits, the basic rule to avoid overflow is

that the most significant n bits of the 2n bits wide dividend should be less than n bits of

divisor [92]. As shown in Figure 7.1, in each row, n bits of subtrahend are subtracted from
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n � 1 bits of minuend. Subtrahend is always the n-bit divisor B. In the first row, most

significant n � 1 bits of dividend A are taken as minuend. The quotient bit is 1 if there

is no borrow after subtraction or if the most significant bit of minuend is 1, otherwise the

quotient is 0. Each quotient bit decides whether the partial remainder of the respective stage

is the result of subtraction (when the quotient bit is 1) or the least n bits of minuend. In the

following row, the partial remainder with the consecutive dividend bit forms the minuend

and steps are repeated until n bits of quotient are obtained.

7.1.2 Approximate Restoring Divider - Model 1

Full Subtractor

a b

binbout 1 0

rout

qs

diff

Figure 7.2: Circuit diagram for exact cell EC.

In the first approximation model of the restoring divider, some of the exact restoring cells

are replaced with approximate restoring cells. Each exact cell in restoring division is made

of a full subtractor and a 2-1 multipliexer as shown in Figure 7.2. The two outputs of the

exact cell can be given by equations 7.2 and 7.3.

bout � bin�ah b� � ab (7.2)

rout � qsdiff � qsa (7.3)
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Table 7.1: Comparison of outputs for exact cell and approximate cell.

Exact Approximate

qs a b bin diff bout rout bout rout

0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 0 1 0

0 0 1 0 1 1 0 1 0

0 0 1 1 0 1 0 1 0

0 1 0 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 0 1

0 1 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 1

1 0 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 0 1 1 0 1 0 1 1

1 1 0 0 1 0 1 0 0

1 1 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0
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where bout is the borrow-out of the restoring cell and rout is the partial remainder bit.

The exact results are given in the table 7.1. As it can be seen from the table, when some

values of bout and rout are modified, logic equations can be simplified as given in equations

7.4 and 7.5. Modified cells are represented in square boxes in table 7.1. For approximate

divider model 1 (AD-M1) with approximation factor p, p�p � 1�©2 exact restoring cells are

replaced with approximate restoring cells. A 8/4 AD-M1 with p � 4 is shown in Figure 7.3.

bout � a (7.4)

rout � qsa � qsa � qs h a (7.5)

7.1.3 Approximate Restoring Divider - Model 2

In approximate divider model 2 (AD-M2), a 2n©n divider is reduced to a �2n � p�©�n � p�

divider. p number of cells are reduced in each row by reducing the number of bits in the

divisor by a factor p. The first step is reducing the n-bit divisor to a n � p-bit divisor. A

leading-one detector is used in first p bits of B to truncate p bits. After finding the leading-one

starting bit-position (sbp), B can be trimmed to

Bmod � bsbp � bsbp�1 � bsbp�2 � � � �bsbp���n�p��1� (7.6)

Similarly, A is trimmed as

Amod � a�sbp�n� � a�sbp�n��1 � a�sbp�n��2 � � � �a�sbp�n����2n�p��1� (7.7)

The number of bits trimmed at the beginning and end of the divisor and dividend are the

same, since the first n bits of 2n bits wide A are less than n bits wide B. After trimming

the bits, overflow is possible if the most significant n � p bits of A are equal to n � p bits of

B. To compensate for overflow, an equality detector is used and, when equality is detected,

quotient bits are set to 1. The remainder is shifted left by sbp � ��n � p� � 1� bits. A 8/4

AD-M2 with p=2 is shown in Figure 7.4.
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7.2 Results and Discussion

This section compares the error and design metrics of the proposed divider designs as well as

the primary competitor design introduced in [94]. All designs were implemented in Verilog

and verified using the ModelSim HDL simulator. Error metrics were generated using a

SystemVerilog testbench and a Python script. Area and power consumption metrics were

generated using Synopsys Design Compiler using the TSMC 65 nm library at typical process

corner.

Table 7.2: MRED and NMED values of proposed and competing approximate 16-bit
dividend and 8-bit divisor dividers

Design p
Q-MRED Q-NMED R-MRED R-NMED

(10
�2

) (10
�2

) (10
0
) (10

0
)

AD-M1

4 0.226 0.037 1.662 0.088

6 0.494 0.101 2.269 0.175

8 1.909 0.449 2.893 0.261

AD-M2

2 0.702 0.343 1.465 0.157

3 1.764 0.858 1.808 0.190

4 3.958 1.900 1.926 0.207

AXDr1 [94] 8 1.207 0.292 3.103 0.292

AXDr2 [94] 8 3.378 0.717 3.183 0.273

AXDr3 [94] 8 0.961 0.257 2.542 0.278

The error metrics calculated for all designs are summarized in Table 7.2. The models
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AXDr1, AXDr2 and AXDr3 of [94] are implemented with a triangle replacement scheme and

compared with proposed models. The accuracy evaluation for AD-M1 produces a competitive

quotient MRED that is significantly lower than that of all competitor designs. Notably, the

Q-MRED for approximation factors p � 4, 6 are an order of magnitude smaller than that of

competitor designs AXDr1 and AXDr2. Quotient NMED values for p � 4, 6 are similarly

competitive, and p � 4 produces a Q-NMED an order of magnitude smaller than that of

all competitor designs. All three approximation factors for AD-M1 have remainder NMED

values lower than all competitor designs. R-NMED for p � 4 is notably an order of magnitude

smaller than any other design.

Although the quotient error metrics for AD-M2 are larger than AD-M1, they are still

competitive for approximation factors of p � 2, 3. AD-M2 exhibits notably small error

metrics for the remainder; designs for all three approximation factors produce R-MRED and

R-NMED values smaller than all competitor designs.

Table 7.3 describes the area, power, area-power product and power-delay product for

proposed and competitor designs, synthesized at critical path delay of each design. AD-

M1 exhibits APP reduction up to 83% and PDP reduction up to 71% when compared to

the exact divider. Approximation factors p � 6, 8 for AD-M1 have smaller APP and PDP

than all competitor designs. AD-M2 has area and power values that are competitive for

approximation factors p � 3, 4. Notably, AD-M2 with p � 4 has an area-power product of

672, which is an 83% reduction from the exact design and a reduction of at least 56%.

(a) (b)

Figure 7.5: Two input images for change detection application

97



Table 7.3: Area, power, and area-power product values of proposed and competing
16-bit dividend and 8-bit divisor approximate dividers

Design p
Area

(µm
2
)

Delay

(ns)

Power

(mW )

APP

(µm
2
�mW )

PDP

(pJ)

Exact - 3448 1.8 1.12 3848 2.02

4 2585 1.6 0.84 2178 1.34

AD-M1 6 1946 1.5 0.68 1326 1.03

8 1426 1.3 0.46 662 0.58

2 2294 2.0 0.74 1688 1.43

AD-M2 3 2327 1.7 0.67 1568 1.13

4 1587 1.7 0.42 672 0.74

AXDr1 [94] 8 2885 1.7 0.95 2754 1.63

AXDr2 [94] 2 1877 1.9 0.79 1490 1.51

AXDr3 [94] 8 2137 1.7 0.69 1482 1.19
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(a) (b) 54.27 dB (c) 47.20 dB

(d) 34.04 dB (e) 39.79 dB (f) 26.60 dB

(g) 24.27 dB (h) 38.52 dB (i) 31.41 dB

(j) 38.65 dB

Figure 7.6: Change detection results using (a) Exact divider. Approximate divider
models with the corresponding PSNR values (b) AD-M1 (p=4) (c) AD-M1 (p=6) (d)
AD-M1 (p=8) (e) AD-M2 (p=2) (f) AD-M2 (p=3) (g) AD-M2 (p=4) (h) AXDr1 (p=8)
(i) AXDr2 (p=8) (j) AXDr3 (p=8)
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7.3 Application- Change Detection

Change detection is to detect relative motion of an object with respect to its surroundings

or vice-versa. In general, change detection is an initial pre-processing step in computer

vision and is used in applications such as intrusion detection, smart environment, activity

localization, tracking, medical diagnosis and remote sensing. Changes can be short-term

as in intrusion detection or long-term as in rate of growth in remote sensing, and change

detection helps in finding region of interest. Here, exact and approximate dividers are used

to find changes in two given images. Input images are given in Figure 7.5. The first image is

multiplied by 64 and divided by the second image on a pixel-by-pixel basis, which results in

highlighting the region of interest. A Matlab environment is used to process the images.

Final images after division are shown in Figure 7.6 with their corresponding PSNR values.

As the approximation factor increases, the quality decreases for each model. AD-M2 with

p � 3, 4 has poor performance with loss of quality especially in arms and legs of the change

detected armchair region. AD-M1 with p � 4 and AD-M2 with p � 2 exhibits better PSNR

than other designs and can be used in applications demanding high quality.
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8 Conclusions and Future Research

8.1 Summary and Conclusions

Motivated by the advantages of approximation in power hungry, error tolerant applications

and the need of mobile energy efficient designs in today’s world, designs of approximate

arithmetic circuits are investigated in this thesis. The major areas covered in this thesis are

investigation of approximate designs for arithmetic circuits and their real-life applications,

mostly focusing on image processing applications including convolution operations and a

machine learning algorithm - K-means clustering. In addition, our approximate arithmetic

circuits designs also find wide range of applications in artificial intelligence, data mining,

object recognition and computer vision. Investigation of approximation in deep learning is

to be conducted in near future.

Previous approximate designs of arithmetic circuits and possible improvements on existing

designs are studied during this research. Our ideas to further improve the performance of

approximate arithmetic circuits are investigated during the research. One main challenge

was to find areas of performance optimization with a better trade-off of accuracy.

In the proposed approximation in array multiplication, two variants of approximate mul-

tipliers are proposed, where approximation is applied in all n bits in Multiplier1 and only

in n � 1 least significant part in Multiplier2. Multiplier1 and Multiplier2 achieve significant

reduction in area and power consumption compared with exact designs. With area power

product savings being 87% and 58% for Multiplier1 and Multiplier2 with respect to exact

multipliers, they also outperform in area power product in comparison with existing ap-

proximate designs. They are also found to have better precision when compared to existing

approximate multiplier designs. The proposed multiplier designs can be used in error tolerant

applications saving significant area and power with negligible loss in output quality.
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Three models of approximate Booth multipliers are proposed, differing according to the

signals used in the partial product generator. An exact partial product generator requires

at least three encoded signals resulting from multiplier bit groupings to generate an exact

partial product matrix. Here, we investigate reducing the number of recoded signals, re-

duced complexity of the partial product generator, and introducing approximation in the

partial product matrix. In ABM-M1, the depth of the partial product matrix is reduced to

simplify the partial product accumulation. A partial product generator that uses only two

signals is used in ABM-M1 and ABM-M2, and a partial product generator that uses only

one signal is used in ABM-M3. An approximation factor p is used to indicate the imprecision

of each model of the proposed multipliers. When compared to the exact Booth multiplier,

ABM-M1 exhibits power savings ranging from 9.6% to 15% with corresponding MRED val-

ues in the range of 1.6 � 10
�4

to 7.9 � 10
�4

. Similarly, ABM-M2 has a reduction of power

consumption in the range of 36% to 60% for MRED values of 6.6 � 10
�3

to 1.1 � 10
�1

, and

ABM-M3 exhibits power savings of 28% to 50% for MRED values in the range of 2.0 � 10
�4

to 3.4 � 10
�3

. Furthermore, the proposed multipliers are tested using image multiplication

and matrix multiplication applications. It is found that of all the proposed multipliers, ABM-

M1 and ABM-M3 have better accuracy and provide better results than existing approximate

multipliers.

Three models of efficient approximate sum of products are proposed in this work. Model

1 (ASOP1) employs truncation, model 2 (ASOP2) employs leading one predictor for ap-

proximation, and model 3 (ASOP3) provides approximation in lower significant part. Area

power trade-off with error analysis is analyzed and it is found that our proposed models have

better area power product compared to exact and existing approximate designs and with

lower error metrics compared to existing models. ASOP1, ASOP2 and ASOP3 models with

highest accuracy achieve up to 61%, 23% and 40% improved area power product respectively

compared to the exact sum of products unit. The proposed sum of products designs can be

used in applications where some loss of precision in the computation is possible with higher

improvement in area and power.

Two approximate restoring dividers AD-M1 and AD-M2 are proposed. AD-M1 intro-

duces approximation to the p least-significant columns by replacing p�p � 1�©2 exact cells
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with approximate cells. The approximate cells have simplified circuitry which therefore al-

lows for reduction of design metrics in the AD-M1 divider. The AD-M2 design introduces

approximation by eliminating p cells of each row by reducing in the divider and making use

of an equality-detector circuit for the most-significant n � p bits of a and b. Reducing the

number of cells in the divider design reduces energy consumption. Both dividers are used to

demonstrate a change detection application.

8.2 Future Research

8.2.1 Approximation in Deep Learning Applications

Deep learning networks are machine learning models which are on the rise. They are made

of cascaded structures of many processing layers, with different levels of abstraction [103].

Deep networks have been proven to be effective in a wide spectrum of computationally in-

tensive tasks including image processing [104, 105], medical imaging [106], audio processing

[107], big-data analytics [108], machine translation [109], recommender systems [111], and

speech recognition [110]. They achieve excellent accuracy with their larger increased network

depths. For example, in [105], when the network depth is increased from 11 layers to 19

layers, error rate significantly drops in image recognition tasks. This improvement comes

with a price. Larger network results in more parameters, memory bandwidth and hardware

resources. As the depth increases, training deep networks becomes a problem. Deep archi-

tecture uses millions of parameters. In a MNIST dataset experiment, deep networks such as

Fitnets networks uses up to 9M (million) parameters and Highway networks uses up to 2.3M

parameters [112]. Various thin networks called FitNets to reduce number of computations

are analyzed in [113]. In [113], training complexity of deep networks are compared. A deep

network called Teacher network with 5 layers which uses around 9M parameters with 725M

multiplications is compared with proposed FitNets. Even the thin networks consume millions

of parameters and operations, for instance, FitNet 1 with 11 layers consume 250K parameters

with 30M multiplications and FitNet4 with 19 layers uses around 2.5M parameters and 382M

multiplications.
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The main operation during training and inference is matrix multiplication which consists

of multiplications and additions. With massive demand of hardware resources, network band-

width of storage and transmission, deep computing becomes an ideal candidate for approx-

imation. Considering these limitations of deep learning, the plan is to analyze combination

of approximations including

� Hardware level approximation in multiply accumulate units in matrix multiplication

operations which can be efficient during training and inference.

� Huge memory requirement in deep learning causes latency when data being transferred

from memory to main processor. To solve this issue, research on Processor In Memory

(PIM) is going on in our current research.

� Loop perforation approximations where number of iterations are reduced with a trade-

off of negligible precision for efficiency are to be researched in different image recognition

applications.

� Sparsity in deep learning is to be analyzed, which means to differentiate necessary and

unnecessary forwarding of activations to succeeding layers in deep networks. Finding

out sparse kernels can be used to apply relaxed approximations.

Deep learning finds various range of applications and has numerous bottlenecks. It can

benefit to a large extent from approximate computing.

104



Bibliography

[1] https://www.purdue.edu/newsroom/releases/2013/Q4/approximate-computing-

improves-efficiency,-saves-energy.html

[2] G. E. Moore, “Cramming more components onto integrated circuits,” Reprinted from

Electronics, volume 38, number 8, April 19, 1965 in IEEE Solid-State Circuits Society

Newsletter, vol. 11, no. 3, pp. 33-35, Sept. 2006.

[3] G. E. Moore, “Progress in digital integrated electronics,” Reprinted from Technical

Digest, International Electron Devices Meeting, IEEE, 1975, pp. 11-13, in IEEE Solid-

State Circuits Society Newsletter, vol. 11, no. 3, pp. 36-37, Sept. 2006.

[4] https://www.seattletimes.com/business/forty-years-of-moores-law/

[5] https://en.wikipedia.org/wiki/Moore%27s law

[6] https://www.technologyreview.com/s/601102/intel-puts-the-brakes-on-moores-law/

[7] “INTEL CORP, FORM 10-K (Annual Report), Filed 02/12/16 for the Period Ending

12/26/15”

[8] E. Track, N. Forbes and G. Strawn, “The End of Moore’s Law,” in Computing in

Science & Engineering, vol. 19, no. 2, pp. 4-6, Mar-Apr. 2017

[9] https://steveblank.com/2018/09/12/the-end-of-more-the-death-of-moores-law/

[10] R. H. Dennard, F. H. Gaensslen, Hwa-Nien Yu, V. L. Rideout, E. Bassous and A.

R. Leblanc, “Design Of Ion-implanted MOSFET’s with Very Small Physical Dimen-

sions,” in Proceedings of the IEEE, vol. 87, no. 4, pp. 668-678, April 1999. This paper

is reprinted from IEEE Journal of Solid state circuits, vol. SC-9, no. 5, pp-256-268,

October 1974.

105



[11] http://www.gotw.ca/publications/concurrency-ddj.htm

[12] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper,” in IEEE

Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11-13, Winter 2007.

[13] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger, “Dark

Silicon and the End of Multicore Scaling,” in IEEE Micro, vol. 32, no. 3, pp. 122-134,

May-June 2012.

[14] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, “Analysis and char-

acterization of inherent application resilience for approximate computing,” 2013 50th

ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, 2013, pp. 1-9.

[15] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz and M. Shafique,

“Embracing approximate computing for energy-efficient motion estimation in high ef-

ficiency video coding,” Design, Automation & Test in Europe Conference & Exhibition

(DATE), Lausanne, 2017, pp. 1384-1389.

[16] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” 2013 18th IEEE European Test Symposium (ETS), Avignon,

2013, pp. 1-6.

[17] J. Bornholt, T. Mytkowicz and K. S. McKinley, “Uncertain T: A first-order type for

uncertain data,” in ACM SIGARCH Computer Architecture News ASPLOS’14, vol. 42,

issue 1, pp. 51-66, March 2014.

[18] C. H. Stapper and R. J. Rosner, “Integrated circuit yield management and yield analy-

sis: development and implementation,” in IEEE Transactions on Semiconductor Man-

ufacturing, vol. 8, no. 2, pp. 95-102, May 1995.

[19] B. R. Gaines, “Stochastic computing,” Proceedings of the AFIPS Spring Joint Com-

puter Conference, Atlantic city, New Jersy, 1967, pp. 149–156.

[20] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN sequences,” in IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 4, pp. 603-606,

April 1988.

106



[21] M. van Daalen, P. Jeavons, J. Shawe-Taylor and D. Cohen, “Device for generating

binary sequences for stochastic computing,” in Electronics Letters, vol. 29, no. 1, pp.

80-, Jan 1993.

[22] R. Wang, J. Han, B. F. Cockburn and D. G. Elliott, “Stochastic Circuit Design and

Performance Evaluation of Vector Quantization for Different Error Measures,” in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3169-

3183, Oct. 2016.

[23] H. Aliee and H. R. Zarandi, “Fault tree analysis using stochastic logic: A reliable

and high speed computing,” 2011 Proceedings - Annual Reliability and Maintainability

Symposium, Lake Buena Vista, FL, 2011, pp. 1-6.

[24] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arithmetic with

stochastic logic,” 2008 45th ACM/IEEE Design Automation Conference, Anaheim,

CA, 2008, pp. 648-653.

[25] B. D. Brown and H. C. Card, “Stochastic neural computation. I. Computational ele-

ments,” in IEEE Transactions on Computers, vol. 50, no. 9, pp. 891-905, Sept. 2001.

[26] J. A. Dickson, R. D. McLeod and H. C. Card, “Stochastic arithmetic implementations

of neural networks with in situ learning,” IEEE International Conference on Neural

Networks, San Francisco, CA, USA, 1993, pp. 711-716, vol.2.

[27] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing”, ACM Transactions

on Embedded Computing Systems (TECS) - Special Section on Probabilistic Embedded

Computing, vol. 12, no. 92, May 2013.

[28] K. Rana and S. Thakur, “Data compression algorithm for computer vision applica-

tions: A survey,” 2017 International Conference on Computing, Communication and

Automation (ICCCA), Greater Noida, 2017, pp. 1214-1219.

[29] Z. Vasicek, V. Mrazek and L. S. Brno, “Towards low power approximate DCT ar-

chitecture for HEVC standard,” Design, Automation & Test in Europe Conference &

Exhibition (DATE), Lausanne, 2017, pp. 1576-1581.

107



[30] H. A. F. Almurib, T. N. Kumar and F. Lombardi, “Approximate DCT Image Com-

pression Using Inexact Computing,” in IEEE Transactions on Computers, vol. 67, no.

2, pp. 149-159, Feb. 2018.

[31] A. Shmilovici, Y. Kahiri, I. Ben-Gal and S. Hauser, “Measuring the Efficiency of the

Intraday Forex Market with a Universal Data Compression Algorithm,” Computational

Economics, Springer, vol. 33, issue 2, pp. 131-154, March 2009.

[32] D. Sculley and C. E. Brodley, “Compression and machine learning: a new perspective

on feature space vectors,” Data Compression Conference (DCC’06), Snowbird, UT,

2006, pp. 332-341.

[33] S. Liu, K. Pattabiraman, T. Moscibroda and B. Zorn, “Flikker: Saving dram refresh-

power through critical data partitioning,” Proceedings of the Sixteenth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS XVI, ACM, California, USA, 2011, pp. 213–224.

[34] A. Sampson, J. Nelson, K. Strauss and L. Ceze, “Approximate storage in solid-state

memories,” 2013 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), Davis, CA, 2013, pp. 25-36.

[35] H. Esmaeilzadeh, A. Sampson, L. Ceze and D. Burger, “Neural Acceleration for

General-Purpose Approximate Programs,” 2012 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Vancouver, BC, 2012, pp. 449-460.

[36] L. Leem, H. Cho, J. Bau, Q. A. Jacobson and S. Mitra, “ERSA: Error Resilient System

Architecture for probabilistic applications,” 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010), Dresden, 2010, pp. 1560-1565.

[37] Y. Liu, T. Zhang and K. K. Parhi “Computation error analysis in digital signal pro-

cessing systems with overscaled supply voltage,” in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 18, no.4, pp. 517–526, April 2010.

108



[38] D. Mohapatra, V. K. Chippa, A. Raghunathan and K. Roy, “Design of voltage-scalable

meta-functions for approximate computing,” 2011 Design, Automation & Test in Eu-

rope, Grenoble, 2011, pp. 1-6.

[39] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner and E. D. Berger

“Eon: A language and runtime system for perpetual systems,” Proceedings of the 5th

International Conference on Embedded Networked Sensor Systems, SenSys’07, ACM,

Sydney, Australia, 2007, pp. 161–174.

[40] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,

“Enerj: Approximate data types for safe and general low-power computation,” in Pro-

ceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI’11, ACM, San Jose, California, 2011, pp. 164–174.

[41] M. Carbin, S. Misailovic and M. C. Rinard, “Verifying quantitative reliability for pro-

grams that execute on unreliable hardware,” in Proceedings of the 2013 ACM SIG-

PLAN International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA’13, ACM, Indiana, USA, 2013, pp. 33–52.

[42] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-conscious

programming using controlled approximation,” ACM SIGPLAN Notices, vol. 45, no.

6, pp. 198-209, June 2010.

[43] S. Misailovic, M. Carbin, S. Achour, Z. Qi and M. C. Rinard, “Chisel: Reliability

and accuracy-aware optimization of approximate computational kernels,” Proceedings

of the 2014 ACM International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA’14, Oregon, USA, 2014, pp. 309–328.

[44] S. Misailovic, S. Sidiroglou, H. Hoffmann and M. Rinard, “Quality of service profiling,”

2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town,

2010, pp. 25-34.

[45] M. Samadi, D. Jamshidi, J. Lee and S. Mahlke, “Paraprox: Pattern-based approxima-

tion for data parallel applications,” Proceedings of the 19th International Conference

109



on Architectural Support for Programming Languages and Operating Systems, ASP-

LOS’14, ACM, Utah, USA, 2014, pp. 35–50.

[46] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computations that discard

tasks,”Proceedings of the 20th Annual International Conference on Supercomputing,

ICS’06, ACM, 2006, pp. 324–334.

[47] J. S. Miguel, M. Badr and N. E. Jerger, “Load Value Approximation,” 2014 47th

Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, 2014,

pp. 127-139.

[48] M. Sutherland, J. S. Miguel and N. E. Jerger, “Texture Cache Approximation on

GPUs,” Workshop on Approximate Computing Across the Stack (WAX), Portland,

Oregan, 2015.

[49] A. Rahimi, L. Benini and R. K. Gupta, “Spatial Memoization: Concurrent Instruction

Reuse to Correct Timing Errors in SIMD Architectures,” in IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 60, no. 12, pp. 847-851, Dec. 2013.

[50] G. Keramidas, C. Kokkala and I. Stamoulis “Clumsy Value Cache: An Approximate

Memoization Technique for Mobile GPU Fragment Shaders,” Workshop On Approxi-

mate Computing (WAPCO), Amsterdam, 2015.

[51] P. Kulkarni, P. Gupta and M. Ercegovac, “Trading Accuracy for Power with an Under-

designed Multiplier Architecture,” 2011 24th Internatioal Conference on VLSI Design,

Chennai, 2011, pp. 346-351.

[52] J. Ma, K. Man, T. Krilavicius, S. Guan and T. Jeong, “Implementation of High Per-

formance Multipliers Based on Apprxoimate Compressor Design”, International Con-

ference on Electrical and Control Technologies (ECT), 2011.

[53] C.-H. Lin and C. Lin, “High accuracy approximate multiplier with error correction,”

in IEEE 31st International Conference on Computer Design, Asheville, NC, 2013, pp.

33-38.

110



[54] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris and K. Pekmestzi, “Design-efficient

approximate multiplication circuits through partial product perforation,” IEEE Trans-

actions on VLSI systems, vol. pp , no. 99, pp. 1-13, 2016.

[55] S. A. White., “Applications of distributed arithmetic to digital signal processing: A

tutorial review,” in IEEE ASSP Magazine, vol. 6, pp. 4-19, Jul. 1989.

[56] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han and F. Lombardi, “Design of Approximate

Radix-4 Booth Multipliers for Error-Tolerant Computing,” in IEEE Transactions on

Computers, vol. 66, no. 8, pp. 1435-1441, Aug. 1 2017.

[57] H. Jiang, J. Han, F. Qiao and F. Lombardi, “Approximate Radix-8 Booth Multipliers

for Low-Power and High-Performance Operation,” in IEEE Transactions on Comput-

ers, vol. 65, no. 8, pp. 2638-2644, Aug. 1 2016.

[58] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal pro-

cessing using approximate adders,” IEEE Trans. Comput. Aided Design Integr. Circuits

Syst., vol. 32, no. 1, pp. 124-137, 2013.

[59] K. Du, P. Varman and K. Mohanram,, “High performance reliable variable latency carry

select addition,” 2012 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2012, pp. 1257-1262.

[60] Ning Zhu, W. L. Goh and K. S. Yeo, “An enhanced low-power high-speed Adder For

Error-Tolerant application,” Proceedings of the 2009 12th International Symposium on

IC, Singapore, 2009, pp. 69-72.

[61] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise

computational blocks for efficient VLSI implementation of soft-computing applica-

tions,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 4, pp. 850-862, 2010.

[62] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of approxi-

mate compressors for multiplication,” IEEE Transactions on Computers,, vol. 64, no.

4, pp. 984-994, 2015.

111



[63] N. Maheshwari, Z. Yang, J. Han and F. Lombardi, “A Design Approach for Compressor

Based Approximate Multipliers,” 2015 28th International Conference on VLSI Design,

Bangalore, 2015, pp. 209-214.

[64] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park and N. S. Kim, “Energy-

efficient approximate multiplication for digital signal processing and classification ap-

plications,” IEEE Transactions on VLSI systems, vol. 23, no. 6, pp. 1180-1184, 2015.

[65] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate mul-

tiplier with configurable partial error recovery,” in 2014 DATE Conference and Exhi-

bition, Dresden, 2014, pp. 1-4.

[66] R. Marimuthu, Y.E. Rezinold, and P. Mallick, “Design and Analysis of Multiplier Using

Approximate 15-4 Compressor,” IEEE Access, vol. 5, pp. 1027-1036, 2017

[67] J. Miao, K. He, A. Gerstlauer and M. Orshansky, “Modeling and synthesis of quality-

energy optimal approximate adders,” 2012 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), San Jose, CA, 2012, pp. 728-735

[68] Khaing Yin Kyaw, Wang Ling Goh and Kiat Seng Yeo, “Low-power high-speed mul-

tiplier for error-tolerant application,” 2010 IEEE International Conference of Electron

Devices and Solid-State Circuits (EDSSC), Hong Kong, 2010, pp. 1-4.

[69] R. Venkatesan, A. Agarwal, K. Roy and A. Raghunathan, “MACACO: Modeling and

analysis of circuits for approximate computing,” in 2011 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2011, pp. 667-673.

[70] S. J. Jou, M. Tsai, and Y. Tsao, “Low-error reduced-width Booth multipliers for DSP

applications,” IEEE Transactions on Circuits and Systems, vol. 50, no. 11, pp. 1470-

1474, 2013.

[71] K. J. Cho, K. C. Lee, J. G. Chung and K. K. Parhi, ”Design of low-error fixed-width

modified Booth multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 12, no. 5, pp. 522-531, May 2004.

112



[72] J. Wang, S. Kuang and S. Liang, ”High-Accuracy Fixed-Width Modified Booth Mul-

tipliers for Lossy Applications,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, no. 1, pp. 52-60, Jan. 2011.

[73] Y. Chen and T. Chang, ”A High-Accuracy Adaptive Conditional-Probability Estimator

for Fixed-Width Booth Multipliers,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 59, no. 3, pp. 594-603, March 2012.

[74] M. J. Schulte and E. E. Swartzlander, “Truncated multiplication with correction con-

stant,” Proceedings of IEEE Workshop on VLSI Signal Processing, Veldhoven, 1993,

pp. 388-396.

[75] E. J. King and E. E. Swartzlander Jr., “Data dependent truncated scheme for parallel

multiplication,” in Proc. 31st Asilomar Conf. Signals, Circuits Syst., 1998, pp. 1178-

1182.

[76] Hong-An Huang, Yen-Chin Liao and Hsie-Chia Chang, “A self-compensation fixed-

width Booth multiplier and its 128-point FFT applications,” 2006 IEEE International

Symposium on Circuits and Systems, Island of Kos, 2006, pp. 4 pp.-3541.

[77] C. Y. Li, Y. H. Chen, T. Y. Chang and J. N. Chen, “A Probabilistic Estimation

Bias Circuit for Fixed-Width Booth Multiplier and Its DCT Applications,” in IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 4, pp. 215-219,

April 2011.

[78] H. Jiang, J. Han, F. Qiao and F. Lombardi, “Approximate Radix-8 Booth Multipliers

for Low-Power and High-Performance Operation,” in IEEE Transactions on Comput-

ers, vol. 65, no. 8, pp. 2638-2644, Aug. 1 2016.

[79] N.H.E. Weste, K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley Pub-

lishing Company, 1993.

[80] E. de Angel and E. E. Swartzlander, “Low power parallel multipliers,” VLSI Signal

Processing, IX, San Francisco, CA, 1996, pp. 199-208.

113



[81] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine Transform,” in IEEE Trans-

actions on Computers, vol. C-23, no. 1, pp. 90-93, Jan. 1974.

[82] S. Venkatachalam, H. J. Lee and S. B. Ko, “Power Efficient Approximate Booth Mul-

tiplier,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Flo-

rence, Italy, 2018, pp. 1-4.

[83] Lingfeng Yuan, Sridhar Sana, Hardy J Pottinger and Vittal S Rao, “Distributed arith-

metic implementation of multivariable controllers for smart structural systems,” IOP-

science, Jan. 2000.

[84] W. Li, J. B. Burr and A. M. Peterson, “A fully parallel VLSI implementation of dis-

tributed arithmetic,” IEEE International Symposium on Circuits and Systems, Espoo,

Finland, 1988, vol.2, pp. 1511-1515.

[85] R. Amirtharajah and A. P. Chandrakasan, “A micropower programmable DSP using

approximate signal processing based on distributed arithmetic,” IEEE Journal of Solid-

State Circuits, vol. 39, no. 2, pp. 337-347, Feb. 2010.

[86] S. W. Heo, “Power Optimization of Sum-of-Products Design in Signal Processing Ap-

plications,” Ph. D Thesis, University of California, 2014 .

[87] D. Esposito, A. G. M. Strollo and M. Alioto, “Low-power approximate MAC unit,”

2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME),

Giardini Naxos, 2017, pp. 81-84.

[88] S. F. Obermann and M. J. Flynn, “Division algorithms and implementations,” in IEEE

Transactions on Computers, vol. 46, no. 8, pp. 833-854, Aug 1997.

[89] M. D. Ercegovac and J. Muller, “Digit-recurrence algorithms for division and square

root with limited precision primitives,” The Thrity-Seventh Asilomar Conference on

Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 1440-1444

Vol.2.

[90] M. Ercegovac and T. Lang, “Digital Arithmetic”. Morgan Kaufmann Publishers, 2004.

114



[91] M.J. Schulte, J. Omar, and E.E. Swartzlander, “Optimal Initial Approximations for

the Newton-Raphson Division Algorithm,” Computing, vol. 53, pp. 233-242, 1994.

[92] B. Parhami, “Computer Arithmetic- Algorithms and Hardware designs”, published by

Oxford University Press, 2000.

[93] S. Hashemi, R. I. Bahar and S. Reda, “A low-power dynamic divider for approximate

applications,” 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),

Austin, TX, 2016, pp. 1-6.

[94] L. Chen, J. Han, W. Liu and F. Lombardi, “On the Design of Approximate Restoring

Dividers for Error-Tolerant Applications,” in IEEE Transactions on Computers, vol.

65, no. 8, pp. 2522-2533, Aug. 1 2016.

[95] L. Chen, W. Liu, J. Han, P. A. Montuschi and F. Lombardi, “Design, Evaluation and

Application of Approximate High-Radix Dividers,” in IEEE Transactions on Multi-

Scale Computing Systems. Accepted for inclusion in a future issue of this journal.

[96] H. Jiang, L. Liu, F. Lombardi and J. Han, “Adaptive approximation in arithmetic

circuits: A low-power unsigned divider design,” 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Dresden, 2018, pp. 1411-1416.

[97] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari and M. Pedram,

“SEERAD: A high speed yet energy-efficient rounding-based approximate divider,”

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,

2016, pp. 1481-1484.

[98] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of approximate and

probabilistic adders,” IEEE Transactions on Computers, vol. 63, no. 9, pp. 1760-1771,

2013.

[99] S. Suman, F. A. Hussain, A. S. Malik, N. Walter, K. L. Goh, I. Hilmi, and S. Ho, “Image

enhancement using geometric mean filter and gamma correction for WCE iamges,”

in 21st International Conference, Neural Information Processing, ICONIP, Springer,

2014, pp. 276-283.

115



[100] S. Venkatachalam and S. B. Ko, “Design of Power and Area Efficient Approximate

Multipliers,” IEEE Transactions on VLSI systems, vol. 25, no. 5, pp. 1782-1786, May

2017.

[101] J. Babaud, A. P. Witkin, M. Baudin and R. O. Duda, “Uniqueness of the Gaussian

Kernel for Scale-Space Filtering,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-8, no. 1, pp. 26-33, Jan. 1986.

[102] S. F. Obermann and M. J. Flynn, “Division algorithms and implementations,” in IEEE

Transactions on Computers, vol. 46, no. 8, pp. 833-854, Aug 1997.

[103] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444,

May 2015.

[104] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las

Vegas, NV, 2016, pp. 770-778.

[105] K. Simonyan and A. Zisserman “Very deep convolutional networks for large-scale image

recognition,” arXiv:1409.1556, 2014.

[106] A. A. A. Setio et al., “Pulmonary Nodule Detection in CT Images: False Positive

Reduction Using Multi-View Convolutional Networks,” in emphEEE Transactions on

Medical Imaging, vol. 35, no. 5, pp. 1160-1169, May 2016.

[107] K. M. Hermann et al., “Teaching Machines to Read and Comprehend,”

arXiv:1506.03340, 2015.

[108] M. A. Alsheikh, D. Niyato, S. Lin, H. P. Tan and Z. Han, “Mobile big data analytics

using deep learning and apache spark,” IEEE Network, vol. 30, no. 3, pp. 22-29, May-

June 2016.

[109] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging

the gap between human and machine translation,” arXiv:1609.08144, 2016.

116



[110] W. Xiong et al., “The microsoft 2016 conversational speech recognition system,” 2017

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

New Orleans, LA, 2017, pp. 5255-5259.

[111] https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-

systems-d66ae0681775

[112] R. K. Srivastava, K, Greff and J. Schmidhuber “Training Very Deep Networks,”

arXiv:1507.06228, 2015.

[113] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio, “FitNets: Hints

for Thin Deep Nets”, arXiv:1412.6550, 2014.

117


