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ABSTRACT 

 

Energy consumption has become one of the most critical design challenges in 

integrated circuit design. Arithmetic computing circuits, in particular array-based 

arithmetic computing circuits such as adders, multipliers, squarers, have been widely 

used. In many cases, array-based arithmetic computing circuits consume a significant 

amount of energy in a chip design. Hence, reduction of energy consumption of array-

based arithmetic computing circuits is an important design consideration. To this end, 

designing low-power arithmetic circuits by intelligently trading off processing precision 

for energy saving in error-resilient applications such as DSP, machine learning and 

neuromorphic circuits provides a promising solution to the energy dissipation challenge 

of such systems.  

To solve the chip’s energy problem, especially for those applications with 

inherent error resilience, array-based approximate arithmetic computing (AAAC) 

circuits that produce errors while having improved energy efficiency have been 

proposed. Specifically, a number of approximate adders, multipliers and squarers have 

been presented in the literature. However, the chief limitation of these designs is their 

un-optimized processing accuracy, which is largely due to the current lack of systemic 

guidance for array-based AAAC circuit design pertaining to optimal tradeoffs between 

error, energy and area overhead. 

Therefore, in this research, our first contribution is to propose a general model 

for approximate array-based approximate arithmetic computing to guide the 
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minimization of processing error. As part of this model, the Error Compensation Unit 

(ECU) is identified as a key building block for a wide range of AAAC circuits. We 

develop theoretical analysis geared towards addressing two critical design problems of 

the ECU, namely, determination of optimal error compensation values and identification 

of the optimal error compensation scheme. We demonstrate how this general AAAC 

model can be leveraged to derive practical design insights that may lead to optimal 

tradeoffs between accuracy, energy dissipation and area overhead. To further minimize 

energy consumption, delay and area of AAAC circuits, we perform ECU logic 

simplification by introducing don't cares.  

By applying the proposed model, we propose an approximate 16x16 fixed-width 

Booth multiplier that consumes 44.85% and 28.33% less energy and area compared with 

theoretically the most accurate fixed-width Booth multiplier when implemented using a 

90nm CMOS standard cell library. Furthermore, it reduces average error, max error and 

mean square error by 11.11%, 28.11% and 25.00%, respectively, when compared with 

the best reported approximate Booth multiplier and outperforms the best reported 

approximate design significantly by 19.10% in terms of the energy-delay-mean square 

error product (𝐸𝐷𝐸𝑚𝑠). 

Using the same approach, significant energy consumption, area and error 

reduction is achieved for a squarer unit, with more than 20.00% 𝐸𝐷𝐸𝑚𝑠 reduction over 

existing fixed-width squarer designs. To further reduce error and cost by utilizing extra 

signatures and don't cares, we demonstrate a 16-bit fixed-width squarer that improves the 

energy-delay-max error (𝐸𝐷𝐸𝑚𝑎𝑥) by 15.81%. 
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1. INTRODUCTION  

 

1.1 Motivation 

As the CMOS technology and VLSI design complexity scale, delivering desired 

functionalities while managing chip power consumption has become a first-class design 

challenge. To remedy this grand energy-efficiency challenge, approximate arithmetic 

circuits, in particular array-based approximate arithmetic computing (AAAC) circuits, 

have been introduced as a promising solution to applications with inherent error 

resilience including media processing, machine learning and neuromorphic systems. 

AAAC may allow one to trade off accuracy for significant reduction of energy 

consumption for such error tolerant applications. 

To this end, approximate multipliers and squarers have been a focus of a great 

deal of past and ongoing work. Two types of approximate multipliers exist: approximate 

AND-array multipliers, which utilize AND gates for partial product generation [1]-[2] 

and approximate Booth multipliers [3]-[8], which use the modified Booth algorithm to 

reduce the number of partial products. For squarer units, a series of approximate squarers 

have been proposed [9]-[11]. 

While a diverse set of array-based approximate arithmetic unit designs exist, 

what is currently lacking is systemic design guidance that allows one to optimally 

tradeoff between error, area and energy. While the area and energy of a given design can 

often be easily reasoned or estimated, getting insights on error and thereby providing a 
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basis for optimally trading off between error, area and energy consumption appears to be 

challenging and not well understood. 

To this end, the main contributions of this research are twofold. First, a general 

AAAC model is proposed for reasoning about different ways of controlling 

approximation errors and present optimal error compensation schemes under ideal 

design scenarios. The proposed model is general in the sense that it captures the key 

design structure that is common to a major class of array-based approximate arithmetic 

units (e.g., multipliers, squarers, dividers, adders/subtractors and logarithmic function 

units). The proposed model offers critical insights of optimized error compensation 

schemes and the corresponding signatures generation logic that is the key to error 

compensation. 

Second, as two specific applications, by leveraging the design insights obtained 

from the proposed model, this thesis presents a new approximate Booth multiplier and 

squarer design that achieve noticeable reduction of error compared with existing designs 

while maintaining significant benefits in terms of delay, area and energy consumption 

due to the approximate nature of computation. 

The proposed approximate 16-bit fixed-width Booth multiplier consumes 44.85% 

and 28.33% less energy and area compared with theoretically the most accurate fixed-

width Booth multiplier. Furthermore, it reduces average error, max error and mean 

square error by 11.11%, 28.11% and 25.00%, respectively, when compared with the best 

reported approximate Booth multiplier and outperforms the best reported approximate 

design significantly by 19.10% in terms of the energy-delay-mean square error product  



 

3 

 

(𝐸𝐷𝐸𝑚𝑠). For the proposed approximate 16-bit fixed-width squarer, a 18.18%, 21.67% 

and 31.25% reduction is achieved on average error, max error and mean square error, 

respectively. Furthermore, 𝐸𝐷𝐸𝑚𝑠 is improved by more than 20.00%, when compared 

with existing designs. By utilizing extra signatures and don’t cares, the energy-delay-

max error product (𝐸𝐷𝐸𝑚𝑎𝑥) is further reduced by 15.81% for the proposed 16-bit fixed-

width squarer. Additionally, when operated in the full-width mode, the proposed 

multiplier and squarer have an even greater improvement of accuracy. 

1.2 Previous work 

1.2.1 Approximate multipliers 

As mentioned in Sub-section 1.1, there are mainly two types of approximate 

multipliers existing: approximate AND-array multipliers, which utilize AND gates for 

partial products generation and approximate Booth multipliers, which use the modified 

Booth algorithm to reduce the number of partial products. Constant correction [1] and 

variable correction [2] schemes are proposed for approximate AND-array multipliers. 

Constant correction scheme suggests adding one constant to compensate for the 

truncated error and variable correction multipliers add some signals in the partial product 

table to make compensation. 

However, since Booth multipliers are much more efficient than AND-array 

multipliers, approximate Booth multipliers have been intensively investigated [3]-[8]. In 

particular, statistical linear regression analysis [3], estimation threshold calculation [4] 

and self-compensation approach [5] have been utilized to compensate the truncation 

error. Accuracy is increased by using certain outputs from Booth encoders [6] [7]. To 



 

4 

 

decrease energy consumption, a probabilistic estimation bias (PEB) scheme [8] is 

presented. 

1.2.2 Approximate squarers 

A series of approximate squarers have been proposed [9]-[11]. For instance, the 

designs of [9] and [10] compensate truncation error by utilizing constant and variable 

correction scheme, respectively. A LUT-based squarer [11] is proposed by employing a 

hybrid LUT-based structure. 
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2. ARRAY-BASED APPROXIMATE ARITHMETIC COMPUTING (AAAC) MODEL 

 

Fig. 1 contrasts an Error-Free Computing Unit (EFCU) with n-bit inputs and an 

m-bit output (a) with its approximate counterpart modeled using the proposed AAAC 

model (b). The AAAC model consists of three units: Low-Precision Computing Unit 

(LPCU), Error Compensation Unit (ECU) and Combine Unit (CU). 

 
(a) 

 

(b) 

Figure 1. Arithmetic computing unit models: (a) Error-Free Computing Unit 

(EFCU) model (large energy consumption, area and delay), (b) Proposed AAAC 

model (small energy consumption, area and delay). 
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The LPCU in the AAAC circuit produces a low-precision approximate output, 

for example, based upon truncation or a fraction of the input bits, with lowered energy, 

delay and/or area overheads compared with the error-free EFCU. 

To reduce the error produced by the LPCU, a low-cost ECU may be included for 

error comparison. Finally, the CU combines the error compensation produced by the 

ECU with the result outputted by the LPCU, generating the final output of the AAAC 

unit with reduced approximate error. 

The generality of the AAAC model lies in the fact it reflects the key computing 

principles behind a wide range of array-based arithmetic units, for example, approximate 

adders [12]-[14], approximate multipliers [1]-[8] and approximate squarers [9]-[11]. For 

instance, many approximate adders employ carry prediction from low input bits, which 

can be thought as a particular way of implementing the ECU. Similarly, error 

compensation is a common scheme in approximate multipliers and squarers. 

Clearly, the key AAAC design problem is to develop an efficient LPCU and, in 

particular, an ECU so as to significantly reduce energy, delay and/or area overhead while 

achieving a low degree of approximation error. While the area and energy of a given 

design can often be easily reasoned or estimated, the key challenge is to develop insights 

on error or error distribution so as to optimize the error compensation scheme, which is 

focused on in the following sections. 

2.1 Error Metrics 

This research evaluates a given AAAC design with n-bit inputs by defining 

average error 𝐸𝑎𝑣𝑒, maximum error 𝐸𝑚𝑎𝑥 and mean square error 𝐸𝑚𝑠, respectively as 
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                                   𝐸𝑎𝑣𝑒 =
1

2𝑛·𝑁
∑ |𝑂𝐴𝐴𝐴𝐶,𝑖 − 𝑂𝐸𝐹𝐶𝑈,𝑖|

𝑁
𝑖=1                                     (1) 

                                    𝐸𝑚𝑎𝑥 =
1

2𝑛 |𝑂𝐴𝐴𝐴𝐶,𝑖 − 𝑂𝐸𝐹𝐶𝑈,𝑖|𝑖    
𝑚𝑎𝑥                                        (2) 

                                   𝐸𝑚𝑠 =
1

22𝑛·𝑁
∑ (𝑂𝐴𝐴𝐴𝐶,𝑖 − 𝑂𝐸𝐹𝐶𝑈,𝑖)²𝑁

𝑖=1                                   (3) 

where N, 𝑂𝐴𝐴𝐴𝐶,𝑖 and 𝑂𝐸𝐹𝐶𝑈,𝑖  denote the number of all possible input combinations, 

output of the AAAC, and output of EFCU (error-free result), respectively, for each input 

combination i. Note that the above error metrics are normalized with respect to the range 

of the output 22𝑛.  

As shown in Fig. 1 (b), for each input combination i, the ECU outputs error 

compensation, denoted by 𝐶𝑜𝑚𝑝𝑖. Hence the output of the AAAC circuit is: 𝑂𝐴𝐴𝐴𝐶,𝑖 =

𝑂𝐿𝑃𝐶𝑈,𝑖 + 𝐶𝑜𝑚𝑝𝑖, where 𝑂𝐿𝑃𝐶𝑈,𝑖 is the output of the LPCU. Importantly, the error of the 

LPCU, i.e., the error of the AAAC before compensation (𝐸𝐵𝐶,𝑖) and after compensation 

(𝐸𝐴𝐶,𝑖) is given simply by 

                                           𝐸𝐵𝐶,𝑖 = 𝑂𝐸𝐹𝐶𝑈,𝑖 − 𝑂𝐿𝑃𝐶𝑈,𝑖                                               (4) 

                                           𝐸𝐴𝐶,𝑖 = |𝐸𝐵𝐶,𝑖 − 𝐶𝑜𝑚𝑝𝑖|                                                (5) 

2.2 Model of Error Compensation Unit (ECU) 

Ideally, a specific 𝐶𝑜𝑚𝑝𝑖 can be computed by the ECU to perfectly zero out the 

error for each input pattern i. However, this does not serve any purpose for approximate 

computing as we are essentially re-implementing the error-free operation. We present a 

practical yet general ECU model, which consists of a Signature Generator (a) and a K-

to-1 Mux (b), as shown in Fig. 2. Conceptually, for a given input pattern i, the signature 

generator produces several signatures that encode certain essential information about the 
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inputs. Based on the actual values of the extracted signatures, this input pattern is 

classified into one of the K predetermined input classes with each having a 

predetermined error compensation 𝐶𝑜𝑚𝑝𝑗  (j = 1,2, ..., K). The compensation for this 

input pattern is produced by using the signature values to select the constant 

compensation of its corresponding input group via the K-to-1 mux. 

 

 

(a) 

 

(b) 

Figure 2. ECU model: (a) Signature generator, (b) Fixed compensation per input 

group. 
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It is important to note that the structure of the ECU model may not immediately 

correspond to the specific logic implementation of the ECU. Nevertheless, it captures the 

general working principle of error compensation for AAAC. 

2.3 Ideal Error Compensation & ECU Design 

To shed light on the ECU according to the proposed model, we visualize the 

classification of the input space based on the chosen signature for the case of two inputs 

in Fig. 3, where the input groups may overlap. In the extreme case, if each input group 

has only one input pattern, then the optimal compensation for each group/input would be 

simply the corresponding 𝐸𝐵𝐶,𝑖 (eqn. 4). However, in practical cases, we would need to 

consider the 𝐸𝐵𝐶,𝑖 distribution within each group. 

 

 

Figure 3. Classification of the inputs based on the signatures. 

 

Now it is evident that the key ECU design problem is to find an optimal signature 

generation scheme that minimizes one or more error metrics (i.e., 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 ) 

under a given set of cost constraints (e.g., area, delay and energy). Note that the cost of 
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the ECU often strongly correlates with the number of input groups K. We show several 

provable results for optimal selection of error compensation constants for a given 

compensation scheme. We also show an optimal error compensation scheme under an 

ideal scenario with specific illustration for each. We first denote the number of input 

patterns that fall in the 𝑗𝑡ℎ group by 𝑁𝐺𝑗
. 

 Theorem 1: The optimal error compensation 𝐶𝑜𝑚𝑝𝑗  for the 𝑗𝑡ℎ  group that 

minimizes 𝐸𝑎𝑣𝑒 is the median of 𝐸𝐵𝐶,𝑖 (eqn. 4) of the group if 𝑁𝐺𝑗
 is odd; otherwise it can 

be any value that falls in the inclusive interval between the two medians of 𝐸𝐵𝐶,𝑖. 

For 𝑗𝑡ℎ  group, minimizing 𝐸𝑎𝑣𝑒  leads to minimization of the sum of distances 

from each 𝐸𝐵𝐶,𝑖 to 𝐶𝑜𝑚𝑝𝑗 , which makes the value of 𝐶𝑜𝑚𝑝𝑗 the median of 𝐸𝐵𝐶,𝑖 of the 

group if 𝑁𝐺𝑗
 is odd. On the other hand, when 𝑁𝐺𝑗

 is even, 𝐶𝑜𝑚𝑝𝑗 can be any value that 

falls in the inclusive interval between the two medians of 𝐸𝐵𝐶,𝑖. 

Theorem 2: The optimal error compensation 𝐶𝑜𝑚𝑝𝑗 for the 𝑗𝑡ℎ  group that minimizes 

𝐸𝑚𝑎𝑥 is the mean of 𝐸𝐵𝐶,𝑚𝑖𝑛 and 𝐸𝐵𝐶,𝑚𝑎𝑥, where 𝐸𝐵𝐶,𝑚𝑖𝑛 and 𝐸𝐵𝐶,𝑚𝑎𝑥 are the minimum 

and maximum values of 𝐸𝐵𝐶,𝑖 in the group, respectively. 

Assume that 𝐸𝐵𝐶,𝑚𝑖𝑛 and 𝐸𝐵𝐶,𝑚𝑎𝑥 are the minimum and maximum values of 𝐸𝐵𝐶,𝑖 

in the group. We have h = (𝐸𝐵𝐶,𝑚𝑎𝑥 - 𝐸𝐵𝐶,𝑚𝑖𝑛)/2 is the minimum 𝐸𝑚𝑎𝑥 value that can be 

achieved when 𝐶𝑜𝑚𝑝𝑗 is the mean of 𝐸𝐵𝐶,𝑚𝑖𝑛 and 𝐸𝐵𝐶,𝑚𝑎𝑥. Otherwise, either (𝐶𝑜𝑚𝑝𝑗 -

 𝐸𝐵𝐶,𝑚𝑖𝑛) or (𝐸𝐵𝐶,𝑚𝑎𝑥 - 𝐶𝑜𝑚𝑝𝑗 ) is greater than h. 

Theorem 3: The optimal error compensation 𝐶𝑜𝑚𝑝𝑗  for the 𝑗𝑡ℎ  group that 

minimizes 𝐸𝑚𝑠 is the mean of all 𝐸𝐵𝐶,𝑖  in this group. 
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To see how Theorem 3 may be proven, consider the 𝑗𝑡ℎ  group, for which we 

have 

                                   𝐸𝑚𝑠 = ∑ (𝐸𝐵𝐶,𝑖 − 𝐶𝑜𝑚𝑝𝑗)
2

/𝑁𝐺𝑗

𝑁𝐺𝑗

𝑖=1
                                     (6) 

To minimize 𝐸𝑚𝑠, let 
𝜕𝐸𝑚𝑠

𝜕𝐶𝑜𝑚𝑝𝑗
 = 0, we have 

                                          𝐶𝑜𝑚𝑝𝑗 = ∑ 𝐸𝐵𝐶,𝑖/𝑁𝐺𝑗

𝑁𝐺𝑗

𝑖=1
                                               (7) 

Eqn. 7 indicates that to minimize 𝐸𝑚𝑠  for one group, the best compensation is the 

average of all 𝐸𝐵𝐶,𝑖 in this group. 

The above three theorems suggest the following important design guidance. For a 

given compensation scheme, the compensation 𝐶𝑜𝑚𝑝𝑗  for each input group can be 

optimally determined according to the results above to minimize the targeted error 

metric.  

Now we turn into the other design problem by presenting the optimal error 

compensation scheme under an ideal scenario. 

Theorem 4: Assume that 𝐸𝐵𝐶,𝑖  is uniformly and continuously distributed from 

𝐸𝐵𝐶,𝑚𝑖𝑛 to 𝐸𝐵𝐶,𝑚𝑎𝑥,where 𝐸𝐵𝐶,𝑚𝑖𝑛 and 𝐸𝐵𝐶,𝑚𝑎𝑥 are the minimum and maximum values 

of 𝐸𝐵𝐶,𝑖, in the entire input range, then the optimal 𝐸𝑚𝑠 -minimizing error compensation 

scheme with K input groups partitions the entire 𝐸𝐵𝐶,𝑖 range into K non-overlapping 

equal-length intervals with one interval corresponding to a specific input group. 

 To set some intuition of the theoretical result presented in Theorem 4, let us 

consider a 4-group example. Assume 𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4 and 𝐷𝑆5 are bounds of four 

non-overlapped groups on the 𝐸𝐵𝐶,𝑖  axis, where 𝐷𝑆1 < 𝐷𝑆2 < 𝐷𝑆3 < 𝐷𝑆4 < 𝐷𝑆5 , as 
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shown in Fig. 4. 𝐷𝑆1 and 𝐷𝑆5 are the lower and upper bound of all 𝐸𝐵𝐶,𝑖 and fixed when 

input cases are given. 𝐸𝑚𝑠 can be written as 

𝐸𝑚𝑠 = [∫ (𝐸𝐵𝐶,𝑖 − 𝐶𝑜𝑚𝑝𝑗)
2

𝑑𝐸𝐵𝐶,𝑖 + ∫ (𝐸𝐵𝐶,𝑖 − 𝐶𝑜𝑚𝑝𝑗)
2

𝑑𝐸𝐵𝐶,𝑖 +
𝐷𝑆3

𝐷𝑆2
∫ (𝐸𝐵𝐶,𝑖 −

𝐷𝑆4

𝐷𝑆3

𝐷𝑆2

𝐷𝑆1

𝐶𝑜𝑚𝑝𝑗)
2

𝑑𝐸𝐵𝐶,𝑖 + ∫ (𝐸𝐵𝐶,𝑖 − 𝐶𝑜𝑚𝑝𝑗)
2

𝑑𝐸𝐵𝐶,𝑖
𝐷𝑆5

𝐷𝑆4
] /(𝐷𝑆5 − 𝐷𝑆1), 

where to minimize 𝐸𝑚𝑠, according to Theorem 3, the optimal compensation for the 𝑗𝑡ℎ 

group is given by 𝐶𝑜𝑚𝑝𝑗 = (𝐷𝑆𝑗 + 𝐷𝑆𝑗+1)/2. Then, let 
𝜕𝐸𝑚𝑠

𝜕𝐷𝑆𝑗
 = 0 (j = 2, 3, 4), we have 

𝐷𝑆3 − 𝐷𝑆2 = 𝐷𝑆2 − 𝐷𝑆1 

𝐷𝑆4 − 𝐷𝑆3 = 𝐷𝑆3 − 𝐷𝑆2 

𝐷𝑆5 − 𝐷𝑆4 = 𝐷𝑆4 − 𝐷𝑆3 

Therefore, 

                              𝐷𝑆2 − 𝐷𝑆1 = 𝐷𝑆3 − 𝐷𝑆2 = 𝐷𝑆4 − 𝐷𝑆3 = 𝐷𝑆5 − 𝐷𝑆4                    (8) 

Eqn. 8 indicates that the four input groups are non-overlapping and in equal 

length. Note that 𝐸𝐵𝐶,𝑖 is discrete and hence not continuously distributed in reality. This 

continuous assumption is a good approximation when the error is densely populated 

between min,BCE  and max,BCE . 

 

 

Figure 4. A 4-group example for Theorem 4. 
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2.4 Further Reduction of Error and Cost 

In practice, the above theoretical results can be used to come up with a good 

error compensation scheme and the corresponding optimal compensation value for each 

input group while considering logic implementation complexity. For a given application, 

this process may help us identify a highly compact set of signatures. With a good initial 

set of signatures chosen, to further reduce error, one effective way may be to add extra 

signatures by directly considering certain input bits. Such signatures can further divide 

the K predetermined input classes into groups with each group having a predetermined 

error compensation. For example, seven input bits might be chosen as extra signatures to 

sub-divide each of the K predetermined classes into 128 groups. 

Considering about logic complexity, if the compensations for all the groups are 

implemented precisely, an ECU with a complex logic will be generated through logic 

synthesis, though the error may be minimized. Therefore, tradeoff between logic 

complexity and error should be made. In order to simplify ECU design, we can set 

compensation values of some groups which don’t contribute much of the overall error to 

be don’t cares so that the overall error won’t be increased dramatically. 

According to the principle of logic synthesis [15], don't care set may contribute 

significantly for logic minimization. Specifically, the groups whose compensations not 

set to be don't cares belong to on-set (contains all input cases leading to output ‘1’) and 

those set to be don't cares belong to dc-set (don’t care set, contains all input cases 

leading to output “don’t care”). Standard logic synthesis algorithms such as Quine-

McCluskey Algorithm [15] calculate all prime implicants of the union of the on-set and 
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dc-set, omitting prime implicants that only cover points of the dc-set, and finds the 

minimum cost cover of all minterms in the on-set from the obtained prime implicants. 

Clearly, the dc-set helps simplify the resulting logic. 

It's necessary to mention how we set don't cares in Verilog HDL. In logic 

synthesis, don't cares can be expressed using special non-Boolean values, such as ‘x’ 

[16]. When having the design synthesized by synthesis tools such as Synopsis Design 

Compiler [17], we set constraints of minimizing power (both dynamic and leakage 

power) and area, so an optimal logic will be generated through logic synthesis. In this 

way, we are able to simplify the design with the help of synthesis tools by setting some 

groups to be don't cares. 

The method of introducing don't cares for designs in Verilog HDL is shown in 

the following example. If power (both dynamic and leakage power) constraints and area 

constraint are set to Synthesis Tools such as Synopsis Design Compiler [17], to simplify 

the logic and minimize power and area, when In is “0001”, “0010”, “1001” or “1010”, 

Out is set to be ‘1’ in these four cases, so the overall logic becomes 

𝑂𝑢𝑡 = 𝐼𝑛[3] · 𝐼𝑛[2] · 𝐼𝑛[1] · 𝐼𝑛[0]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

which generates the simplest logic. Otherwise, the logic will be much more complex, 

thus consuming more power and area accordingly. 

//An example of introducing don’t cares in Verilog HDL 

//In: 4-bit variable 

//Out: 1-bit variable 

Case (In) is 
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 When “0000” => Out = ‘1’ 

 When “0001” => Out = ‘x’ 

 When “0010” => Out = ‘x’ 

 When “0011” => Out = ‘1’ 

 When “0100” => Out = ‘1’ 

 When “0101” => Out = ‘1’ 

 When “0110” => Out = ‘1’ 

 When “0111” => Out = ‘1’ 

When “1000” => Out = ‘1’ 

 When “1001” => Out = ‘x’ 

 When “1010” => Out = ‘x’ 

 When “1011” => Out = ‘1’ 

 When “1100” => Out = ‘1’ 

 When “1101” => Out = ‘1’ 

 When “1110” => Out = ‘1’ 

 When “1111” => Out = ‘0’ 

End Case 

//End example 

The issue now becomes how to determine which groups should be given high 

priority to be set as don't cares. We come up with an idea to rank all the groups based on 

their impact on the target error metric when set to be don't cares. For example, when 

targeting on minimizing 𝐸𝑚𝑎𝑥 of a given group, we rank all the groups by the greatest 
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value of 𝐸𝑚𝑎𝑥 because the compensation value which is the output of a group can be 

assigned to be any value of a specific range for logic complexity simplification when set 

to be don't cares. Then, the groups which have smaller greatest 𝐸𝑚𝑎𝑥 are given higher 

priority to be set as don't cares, while other groups are implemented precisely because 

they have comparatively larger 𝐸𝑚𝑎𝑥. 

2.5 Practical ECU Design Guidance 

The above theoretical analysis provides optimal design strategies for minimizing 

a particular error metric. In practice, minimization of one error metric may often lead to 

near-optimal minimization of other error metrics. We summarize the practical ECU 

design guidance that is directly resulted from these results: 

1) Different input groups shall have no or little overlap on the 𝐸𝐵𝐶,𝑖  axis to 

minimize approximation error; 

2) The 𝐸𝐵𝐶,𝑖 spread of each group shall be largely of equal length; 

3) Non-uniformity of 𝐸𝐵𝐶,𝑖  spread may be reduced by splitting groups with a 

large spread into smaller groups; 

4) For a given compensation/grouping scheme, the optimal compensation values 

for all groups can be determined to minimize a given error metric according 

to Theorems 1-3. 

5) Better accuracy performance can be achieved by introducing extra signatures 

of certain input bits to divide large classes into small groups with different 

compensation value for each group. Energy consumption and area can be 
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further reduced by introducing don't cares to some of the groups which have 

comparatively small impact on the overall error. 
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3. PROPOSED MULTIPLIER DESIGN 

 

The AAAC model is applied to approximate fixed-width Booth multiplier design 

and its extension to full-width multipliers. 

3.1 Fundamentals of Booth Multipliers 

Booth multipliers are ideal for high speed applications and the Radix-4 Modified 

Booth multipliers are most widely applied [18] [19]. The main blocks of a Radix-4 

Modified Booth multiplier are shown in Fig. 5. The encoding block applies the Radix-4 

Booth Algorithm to encode the multiplier B, allowing the selection block to generate 

only half number of partial products needed for array multipliers with each partial 

product being one of the following: 0, A, 2A, -A, -2A. Then, the compressors in the 

compression block compress the number of partial products to two [20] [21]. Finally, a 

2n-bit adder is used to generate the final product. 

 

 

Figure 5. Error-Free Booth multiplier blocks. 
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3.2 The Basic Idea 

In this work, we use nxn fixed-width Booth multipliers to refer to approximate 

Booth multipliers that operate on two n-bit inputs while outputting only an n-bit product 

[4]. For convenience of discussion, we assume the higher and lower n bits of the 

multiplicand and multiplier correspond to the integer and fractional parts of the inputs, 

respectively. In this regard, a fixed-width multiplier outputs, possibly in an approximate 

manner, the n-bit integer part of the exact product. 

Fig. 6 shows the schematics of Radix-4 Booth encoding block applied in this 

research, the outputs of encoding block are 𝑠𝑖, 𝑑𝑖, 𝑛𝑖, 𝑧𝑖 and 𝑐𝑖: (a) is the schematic of 𝑠𝑖, 

𝑑𝑖 generation. (b) is the schematic of 𝑛𝑖 generation. (c) is the schematic of 𝑧𝑖 generation. 

(d) is Schematic of 𝑐𝑖 generation. 

𝑧𝑖 signifies whether the partial product is zero or not, 𝑛𝑖 specifies the sign of each 

partial product, {𝑑𝑖 , 𝑠𝑖 } determines magnitude of the value multiplied by A for the 

partial product (0, A or 2A), where 𝑑𝑖  is the more significant bit and 𝑠𝑖  is the less 

significant bit. 𝑐𝑖  is the correction constant required to generate the negative partial 

product. 

𝑠𝑖, 𝑑𝑖, 𝑛𝑖, 𝑧𝑖 and 𝑐𝑖are generated by three consecutive input bits of multiplier B, 

which are 𝑏2𝑖−1, 𝑏2𝑖 and 𝑏2𝑖+1. 

Fig. 7 presents the schematic of the selection block applied in this research, 

where 𝑝𝑝𝑖,𝑗 represents the 𝑗𝑡ℎ bit of 𝑖𝑡ℎ partial product. 



 

20 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Schematics of Radix-4 Booth encoding block: (a) Schematic of 𝒔𝒊 , 𝒅𝒊 

generation, (b) Schematic of 𝒏𝒊  generation, (c) Schematic of 𝒛𝒊  generation, (d) 

Schematic of 𝒄𝒊 generation. 
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Figure 7. Schematic of the selection block. 

 

Fig. 8 shows the full 8-partial product array for a full-precision 16x16 bits Booth 

multiplier where each dot row (𝑃𝑃0 to 𝑃𝑃7) is a partial product. The 16 dots (bits) in 

each 𝑃𝑃𝑖 are denoted by 𝑝𝑝𝑖,15𝑝𝑝𝑖,14... 𝑝𝑝𝑖,10 from left to right. The vertical dashed line 

splits the array at the position of the binary (radix) point. A fixed-width multiplier 

outputs an integer output by approximating the carry-out produced by the fractional part 

of the array, which is also labeled as the truncation part (TP). On the other hand, the 

contribution of the bits left of the binary point, i.e., ones in the accurate part (AP), is not 

approximated. 

 

 
Figure 8. Partial product diagram for fixed-width 16x16 bits Booth multipliers 

(n=16). 
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Direct-Truncated Booth multipliers (DTM) [5], which are an extreme case of 

fixed-width multipliers, output an n-bit integer product by simply neglecting the bits in 

the TP part of the array without forming them in the first place, thus potentially 

producing a large error. As another extreme, Post-Truncated Booth multipliers (PTM) 

[3] form the complete partial product array, compress all the bits, compute with full 

precision, add an extra “1” to the 𝑛 − 1𝑡ℎ column to exactly round the carry-out to the 

𝑛𝑡ℎ  column, and finally output the exact n-bit integer part of the final product (with 

rounding), as shown in Fig. 8. As such, PTMs are the most accurate fixed-width 

multipliers. 

Our goal in approximate fixed-width multiplier design is to approach the 

accuracy of a PTM without incurring its high overhead that is commensurate with that of 

a full-precision multiplier. Under the AAAC model, we associate the accurate part (AP) 

and the truncation part (TP) of the array in Fig. 8 with the LPCU and ECU, respectively. 

More specifically, the bits in AP are processed by the LPCU while the effects of the ones 

in TP are approximated by the ECU in the form of error compensation. The exact 

product (EFCU output) is 

𝑂𝐸𝐹𝐶𝑈 = 𝑂𝐿𝑃𝐶𝑈 + 𝑆𝑇𝑃 

where 𝑆𝑇𝑃 is the partial sum of TP, and 𝑂𝐿𝑃𝐶𝑈 is the LPCU output corresponding to AP. 

To reduce the amount of approximate error, we further divide TP into 𝑇𝑃𝐻  (i.e., the 

𝑛 − 1𝑡ℎ column) and 𝑇𝑃𝐿 and have 

𝑆𝑇𝑃,𝐻 =
1

2
𝑆𝑈𝑀𝑛−1 
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                        𝑆𝑇𝑃,𝐿 =
1

4
𝑆𝑈𝑀𝑛−2 +

1

8
𝑆𝑈𝑀𝑛−3 + ⋯ + (

1

2
)𝑛𝑆𝑈𝑀0                        (9) 

where 𝑆𝑇𝑃,𝐻  and 𝑆𝑇𝑃,𝐿  correspond to the partial sums of 𝑇𝑃𝐻  and 𝑇𝑃𝐿 , and 𝑆𝑈𝑀𝑖 

represents the sum of all bits in the 𝑖𝑡ℎ  column, respectively. Now it is clear that 

𝑆𝑇𝑃 = 𝑆𝑇𝑃,𝐻 + 𝑆𝑇𝑃,𝐿 

The main objective in the design of ECU is to well approximate 

𝑆𝑇𝑃 ≈ 𝑂𝐸𝐶𝑈 

such that a fixed-width n-bit output is produced, i.e.,  

𝑂𝐸𝐹𝐶𝑈 = 𝑂𝐿𝑃𝐶𝑈 + 𝑆𝑇𝑃 ≈ 𝑂𝐿𝑃𝐶𝑈 + 𝑂𝐸𝐶𝑈 

Note again that the ECU of a PTM (most accurate fixed-width multiplier) produces as 

the output (with rounding) 

                                𝑂𝐸𝐶𝑈,𝑃𝑇𝑀 = 𝑖𝑛𝑡(𝑆𝑇𝑃 + 1) = 𝑖𝑛𝑡(𝑆𝑇𝑃,𝐻 + 𝑆𝑇𝑃,𝐿 + 1)                       (10) 

where int(·) returns the integer part of its argument. To approach the PTM, we design 

our ECU's output to be 

                                                       𝑂𝐸𝐶𝑈 = 𝑖𝑛𝑡(𝑆𝑇𝑃,𝐻 + 𝑆𝑇𝑃,𝐿̃ + 1)                                     (11) 

where 𝑆𝑇𝑃,𝐿̃ is a good approximation to 𝑆𝑇𝑃,𝐿. In (11), only 𝑆𝑇𝑃,𝐿̃ is approximated by the 

ECU while 𝑆𝑇𝑃,𝐻 is computed exactly. Regarding to (11), we denote the carry-out from 

𝑇𝑃𝐿 to 𝑇𝑃𝐻 by θ 

                                                     𝜃 = 𝑖𝑛𝑡(2 · 𝑆𝑇𝑃,𝐿)                                                     (12) 

(10) can now be simplified to 

                                         𝑂𝐸𝐶𝑈,𝑃𝑇𝑀 = 𝑖𝑛𝑡(𝑆𝑇𝑃,𝐻 +
1

2
θ + 1)                                              (13) 
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Going back to (11), it is now clear that the main task of the ECU design is to well 

approximate 𝜃. Since 𝑆𝑇𝑃,𝐻 is kept exact in (11), it is also natural to associate both AP 

and 𝑆𝑇𝑃,𝐻 with the LPCU, and process them with the LPCU's encoding and selection 

blocks. In this case, the ECU only produces an approximate 𝜃. 

3.3 Design of Error Compensation Unit 

According to Section 2.5, the key problem in the ECU design is to classify all 

input patterns into largely equally sized groups with none or little overlap according to 

values of 𝐸𝐵𝐶,𝑖, which is the error before compensation (in this case 𝜃). 

To start, we first examine the standard Booth encoding that encodes each set of 

three consecutive bits of multiplier B into five signals and determines the corresponding 

partial product in terms of multiplicand A in Table 1, where 𝑧𝑖  signifies whether the 

partial product is zero or not, 𝑛𝑖  specifies the sign of each partial product, {𝑑𝑖 , 𝑠𝑖 } 

determines magnitude of the value multiplied by A for the partial product (0, A or 2A), 

𝑐𝑖 is the correction constant required to generate the negative partial product and added 

to the end of the partial product and 𝑃𝑃𝑖 is the actual 𝑖𝑡ℎ partial product generated from 

the selection block. 

As in Fig. 8, it is worth noting that Booth encoding is applied across the entire 

partial product array including the TP part, which is associated with the error.  

By following the ECU design guidance in Section 2.5, we identify a set of error 

compensation signatures of low cost from Table 1, which shows signals of Radix-4 

Booth encoding, to compensate for the error due to TP. 
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Input bits of Multiplier B 

(for 𝑖𝑡ℎ partial product) 
Booth Encoder Outputs 

(for 𝑖𝑡ℎ partial product) 

Partial 

Product 

𝑏2𝑖+1 𝑏2𝑖 𝑏2𝑖−1 𝑧𝑖 𝑐𝑖 𝑛𝑖 𝑑𝑖 𝑠𝑖 𝑃𝑃𝑖 

0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 1 A 

0 1 0 0 0 0 0 1 A 

0 1 1 0 0 0 1 0 2A 

1 0 0 0 1 1 1 0 -2A 

1 0 1 0 1 1 0 1 -A 

1 1 0 0 1 1 0 1 -A 

1 1 1 1 0 1 0 0 0 

Table 1. Signals of Radix-4 Booth encoding. 

 

Our key idea is to use encoded sign and magnitude information of the partial 

products to classify the input patterns into largely equally sized non-overlapping groups 

according to the 𝐸𝐵𝐶,𝑖 value. In the following, we first present a set of error signatures 

for each partial product, and then compress them for the entire ECU. 

1) The first signature to be chosen is 𝑧𝑖. It is effective since a non-zero value of 

𝑧𝑖  signifies the zero-valued corresponding partial product 𝑃𝑃𝑖 , thereby 

classifying the inputs into two 𝐸𝐵𝐶,𝑖  (zero vs. non-zero error) groups 

independently of the multiplicand A. 

Starting from these two input groups, we select our second signature to be 

𝑛𝑖, which encodes the sign of 𝑃𝑃𝑖, allowing us to further partition the large 

non-zero 𝐸𝐵𝐶,𝑖 input group into two smaller groups of positive vs. negative 

error. 

To further reduce the approximation error, we introduce the third 

signature to split the large signed error input groups by using the magnitude 
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information of each partial product. For this, we count the number of non-

zero bits in multiplicand A 

𝑛𝑛𝑧𝑎 = ∑ 𝑎𝑖

𝑛−1

𝑖=0

 

2) Note that 𝑛𝑖  and 𝑧𝑖  are defined for each partial product and there are n/2 

partial products for nxn bits multiplication. In addition, 𝑛𝑛𝑧𝑎 ranges from 0 to 

n. Utilizing these signatures for the ECU would create a huge number of 

input groups and lead to significant area and energy overhead. To simplify 

the design of the signature generator, we first sum up 𝑛𝑖 and 𝑧𝑖 to produce 

CA and CB, respectively, and then introduce a Boolean variable FA that 

indicates whether 𝑛𝑛𝑧𝑎 is above n/2 or not 

𝐶𝐴 = ∑ 𝑧𝑖

𝑛
2

−1

𝑖=0

 

𝐶𝐵 = ∑ 𝑛𝑖

𝑛
2

−1

𝑖=0

 

                                                𝐹𝐴 = {
0, ∑ 𝑎𝑖 <

𝑛

2

𝑛−1
𝑖=0

1, ∑ 𝑎𝑖 ≥
𝑛

2

𝑛−1
𝑖=0

                                       (14) 

CA, CB and FA are the final set of compressed signatures we use 

for the ECU. These signatures can be implemented with low-cost in 

hardware. Fig. 9 illustrates the design of the proposed signature generator 

that consists of  two carry propagation adders (CPAs) for generating CA, 

CB and an n-input odd-even sorting network [22] (Fig. 10) for FA 
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generation. Note that 𝑛𝑖 and 𝑧𝑖 are already computed by the encoders in 

the LPCU. 

 

 

Figure 9. Blocks and schematics of Signature Generator. 

 

min max min max

min max min max  

Figure 10. Blocks of sorting network. 
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3.4 The Complete Fixed-Width Multiplier 

With the selected signatures and classified input groups, next, we need to 

determine the actual error compensation for each group, i.e., an approximate to 𝜃 in (12). 

As discussed in Section 2.3, one can follow Theorems 1-3 to choose a fixed 

compensation for each input group to minimize a targeted error metric. For example, to 

minimize 𝐸𝑚𝑠 , the optimal compensation is the average 𝑖𝑛𝑡(2 · 𝑆𝑇𝑃,𝐿) value for each 

group. The ECU is designed to run in parallel with the selection block and part of 

compression block so that it causes little extra delay during runtime. 

We take 16x16 bits fixed-width Booth multiplier design as an example to 

illustrate the signature and compensation generation schemes, and additional possible 

simplifications. To further simplify the ECU, we consider different ranges and 

combinations of the signature values in Table 2, where ∧ denotes AND operation. In 

Table 2, the conditions of five cases are mainly determined by CA.  

For CA in range [0, 1], when (𝐶𝐴 = 1)⋀(𝐶𝐵 < 3)⋀(𝐹𝐴 = 0) , the 

corresponding input patterns belong to Case 1. The rest of input patterns when CA in 

range [0, 1] belong to Case 2. 

For CA in range [2, 5], when (𝐶𝐴 = 2)⋀(𝐶𝐵 > 3)⋀(𝐹𝐴 = 0)  or (𝐶𝐴 =

2)⋀(𝐶𝐵 < 3)⋀(𝐹𝐴 = 1), the corresponding input patterns belong to Case 3. The rest of 

input patterns when CA in range [2, 5] belong to Case 4. 

For CA in range [6, 8], all input patterns belong to Case 5. 

The goal is to identify a smaller set of refined input groups with controlled error 

spread. 𝑆𝑇𝑃,𝐿 is the average of 𝑆𝑇𝑃,𝐿 in each input group.  
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Case 𝜃 𝑆𝑇𝑃,𝐿 

1 1 0.9853 

2 2 1.1259 

3 2 1.0188 

4 1 0.8580 

5 0 0.4001 

Table 2. Compensation for input groups of 16x16 multiplier. 

 

To minimize 𝐸𝑚𝑠 , the optimal integer error compensation 𝜃  is set to be the 

average of (8) in the group. 

To further simplify, as shown in Table 3, the cases which have the same 𝜃 are 

merged into the same group. Therefore, Case 2 and Case 3 are merged to form Group 1 

(G1). Group 2 (G2) consists of Cases 1 and 4. Finally, Case 5 forms Group 3 (G3). Each 

merged group has the same 𝜃 (average compensation value for all input cases in one 

group) and error selection is realized by a simple 3-to-1 mux. 

Group Number Case Number 𝜃 𝑆𝑇𝑃,𝐿 

1 2, 3 2 1.1153 

2 1, 4 1 0.8608 

3 5 0 0.4001 

Table 3. Optimal compensation for the refined input groups. 

 

3.5 Proposed Full-Width Booth Multiplier 

Approximate full-width multipliers, i. e., ones that approximate accurate nxn 

Booth multipliers by outputting a full-width 2n-bit approximate product, are also useful 

for many practical applications. 



 

30 

 

The presented fixed-width design can be readily extended to facilitate full-width 

operation with the difference being that in this case we would like to approximate 𝑆𝑇𝑃,𝐿 

by 𝑆𝑇𝑃,𝐿̃ as in (11).  

Again, to minimize 𝐸𝑚𝑠, for instance, the optimal compensation for each input 

group would be the average of 𝑆𝑇𝑃,𝐿, denoted by 𝑆𝑇𝑃,𝐿, in that group. For n=16, we show 

the values of 𝑆𝑇𝑃,𝐿  for the same three input groups in the last column of Table 3. 
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4. PROPOSED SQUARER DESIGN 

 

4.1 The Basic Squarer Design 

We demonstrate the application of the AAAC model to approximate fixed-width 

squarers and its extension to full-width squarer designs. 

Fig. 11 shows the full 8-partial squaring array (𝑃𝑆0 to 𝑃𝑆7) for a full-precision 

16-bit squarer, where the input is denoted by A(𝑎𝑛−1 ... 𝑎0) [9].  

 

Figure 11. Squaring diagram for 16-bit fixed-width squarers. 

 

Here, we use the method in [9] to implement squarers instead of using Booth 

algorithm as applied to multiplier design in Section 3 [9] because squarers implemented 

by using the method in [9] are more energy-efficient and faster since most partial 

products bits are implemented by simple AND operation of two input bits instead of 

more complex Booth encoding and selection blocks. 
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The squarer design process is similar to the one presented for the proposed 

multipliers (e.g., based on eqn. (9 - 13). Again, the key problem is to design an ECU to 

well approximate 𝜃. By following the ECU design guidance in Section 2.5, we consider 

the signals on the 𝑛 − 2𝑡ℎ column as signatures since they have the highest weight on 

𝑇𝑃𝐿 and include all input bits which contribute to 𝑇𝑃𝐿.  

To simplify the design of the signature generator, we sum up the signals on the 

𝑛 − 2𝑡ℎ  column to produce the first signature CA. We introduce one input bit as the 

second signature (CB) to further split the large input groups formed by CA. Accordingly, 

input bit 𝑎6 is chosen as the second signature CB for the proposed 16-bit squarer. 

The final input cases of the 16 bit squarer classified by CA and CB are show in 

Table 4. CA is generated by an odd-even sorting network [22], which has a low 

hardware overhead, and CB is selected directly from the input A. The error 

compensations 𝜃 for the fixed-width squarer are shown in the second last column of 

Table 4. The values of 𝑆𝑇𝑃,𝐿 (error compensation) of different input cases for the full-

width squarer are shown in the last column of Table 4. 

Case Condition 𝜃 𝑆𝑇𝑃,𝐿 

1 𝐶𝐴 = 0 0 0.2197 

2 (𝐶𝐴 = 1)⋀(𝐶𝐵 = 0) 0 0.4539 

3 (𝐶𝐴 = 1)⋀(𝐶𝐵 = 1) 1 0.6210 

4 (𝐶𝐴 = 2)⋀(𝐶𝐵 = 0) 1 0.8133 

5 (𝐶𝐴 = 2)⋀(𝐶𝐵 = 1) 2 1.0134 

6 𝐶𝐴 = 3 2 1.2902 

7 𝐶𝐴 = 4 3 1.6966 

8 𝐶𝐴 = 5 4 2.1278 

9 𝐶𝐴 = 6 5 2.5838 

10 𝐶𝐴 = 7 6 3.0645 

Table 4. Compensation for input cases of 16-bit squarer. 
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According to 𝜃 in different input cases, for 16-bit fixed-width squarer design, we 

combine them into seven groups, which are shown in Table 5. Case 1 and case 2 are 

merged to group 1. Case 3 and Case 4 form group 2. Group 3 consists of case 5 and case 

6. Then case 7 becomes group 4, case 8 becomes group 5, case 9 becomes group 6 and 

finally, case 10 becomes group 7. 

Group Case 𝜃 

1 1, 2 0 

2 3, 4 1 

3 5, 6 2 

4 7 3 

5 8 4 

6 9 5 

7 10 6 

Table 5. Compensation for input groups of 16-bit squarer. 

 

4.2 Further Error and Cost Reduction for Fixed-Width Squarers 

As described in Section 2.4, we may introduce extra signatures of certain input 

bits to sub-divide each of the large input classes into groups to further reduce one or 

more error metrics. To further simplify the logic, thus decreasing energy consumption 

and area of ECU after introducing extra signatures, don't cares are added for certain 

input groups.  

Now we introduce extra signatures and don't cares to further decrease 𝐸𝑚𝑎𝑥 as 

well as energy consumption and area for the proposed 16-bit fixed-width squarer. To 

give an overall evaluation of designs, an energy-delay-max error product is defined as 

𝐸𝑛𝑒𝑟𝑔𝑦 · 𝐷𝑒𝑙𝑎𝑦 · 𝐸𝑚𝑎𝑥 (𝐸𝐷𝐸𝑚𝑎𝑥). 
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First, we introduce extra input signatures. In the proposed 16-bit fixed-width 

squarer design, input bit 𝑎6  is utilized as one signature because it can further divide 

some of the large eight classes formed by signature CA into groups. Specifically, we try 

each input bit from 𝑎0  to 𝑎15  according to the design guidance in Section 2 that an 

efficient signature should be able to divide input cases into groups largely of equal 

length (sub-dividing large input classes formed by the first signature CA in this case). 

The simulation results indicate that selecting 𝑎6as a signature can divide more large 

original groups formed by the first signature CA and achieve better overall accuracy 

performance than other input bit from 𝑎0 to 𝑎15. Using the same method, the second 

extra signature is chosen after the generation of the signatures of CA and 𝑎6. 

Table 22 lists the number of extra signatures and the corresponding signatures 

chosen from 16 input bits (𝑎0 to 𝑎15). Note that for 16-bit fixed-width squarer design, 

the number of extra signatures considered is no more than seven because when the 

number of extra signatures reaches eight or goes beyond eight, energy consumption and 

area increase very rapidly. At the same time, the obtained improvement on 𝐸𝑚𝑎𝑥  is 

limited such that 𝐸𝐷𝐸𝑚𝑎𝑥 becomes much bigger. 

Second, to further decrease energy consumption and area, as illustrated in Sub-

section 2.4, don't cares are introduced to some of groups. Considering about logic 

complexity, if the compensations for all the groups formed by signatures of CA and 

extra signatures are implemented precisely, an ECU with a complex logic will be 

generated through logic synthesis, though the error may be minimized. In order to 

simplify ECU design and tradeoff between cost and error, we set compensation values of 
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some groups which don’t contribute much of the overall error to be don’t cares so that 

the overall error won’t be increased dramatically. 

For example, to minimize overall 𝐸𝑚𝑎𝑥, we may rank the groups based on their 

greatest 𝐸𝑚𝑎𝑥 , which is defined as the biggest 𝐸𝑚𝑎𝑥  that the groups can reach when  

𝜃 is any value in its range. Since 𝜃 has three bits in this case, it ranges from 0 to 7 in 

decimal number. After the groups are ranked by greatest 𝐸𝑚𝑎𝑥, those which have smaller 

greatest 𝐸𝑚𝑎𝑥 are given a higher priority to be set as don't cares. 

In practice, the more don't cares we set, the less energy consumption and area the 

design can achieve with the use of a logic synthesis tool such as Synopsis Design 

Compiler [22], and the bigger 𝐸𝑚𝑎𝑥 it is likely to have. Therefore, the number of don't 

care set for groups should be chosen by jointly considering based on the specifications of 

energy, delay, area and 𝐸𝑚𝑎𝑥 (or other targeted error metric). 
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5. COMPRESSORS FOR MULTIPLIER AND SQUARER DESIGN 

 

Fig. 12 shows the complete design of the proposed multiplier (a), the details of 

which is presented in Section 3, and the proposed squarer (b), the details of which is 

presented in Section 4. For proposed multiplier design, the encoding block applies the 

Radix-4 Booth Algorithm to encode the multiplier B, allowing the selection block to 

generate only half number of partial products needed for array multipliers with each 

product being one of the following: 0, A, 2A, -A, -2A (shown in Fig. 8). For the 

proposed squarer design, the similar partial product table shown in Fig. 11 is generated. 

After the dots which stand for partial products and contain AP, 𝑇𝑃𝐻  and  

𝜃  (for fixed-width designs) or 𝑆𝑇𝑃,𝐿  (for full-width designs), shown in Fig. 8 for 

multipliers and Fig. 11 for squarers, are generated, they are compressed to only two 

partial products by compressors in the compression block. Finally, the two partial 

products are fed into the final adding block and the final result is generated using a Carry 

propagation adder (CPA). 

The purpose of using compressors in the compression block is that multiple 

compressors can run in parallel, thus speeding up the compression process. In this 

section, we discuss three types of comparatively low-cost compressors (2:2 Compressors 

[20], 3:2 Compressors [20] and 4:2 Compressors [21]) that are used in the proposed 

multiplier and squarer design because they have comparatively less energy and delay 

overhead. We also discuss the processing steps involved in compression in which 

multiple compressors run in parallel. 
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(a) 

 

(b) 

Figure 12. Complete designs blocks: (a) the proposed multipliers, (b) the proposed 

squarers. 

 

5.1 2:2 Compressors 

2:2 Compressors have the same function as half adders. 2:2 Compressors help to 

compress two 1-bit inputs into one 2-bit output. The logic function of 2:2 compressors is 

presented below 

         in1 

+       in2 

out2    out1 

𝑜𝑢𝑡1 =  𝑖𝑛1 ⨁𝑖𝑛2 

𝑜𝑢𝑡2 =  𝑖𝑛1 ∧ 𝑖𝑛2 
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where in1, in2 are 1-bit inputs, {out2, out1} is the 2-bit output and ⨁ denotes ‘xor’ 

operation, the block of 2:2 compressors is shown in Fig. 13. 

Half Adder

(HA)

in1

in2

{out2,out1}

 

Figure 13. Block diagram of a 2:2 compressor. 

 

5.2 3:2 Compressors 

3:2 Compressors [20] have the same function as full adders. 3:2 Compressors 

help to compress three 1-bit inputs into one 2-bit output. The logic function of 3:2 

compressors is presented below 

         in1 

         in2 

+       in3 

out2    out1 

𝑜𝑢𝑡1 =  𝑖𝑛1 ⨁𝑖𝑛2⨁𝑖𝑛3 

𝑜𝑢𝑡2 =  𝑖𝑛1 ∧ 𝑖𝑛2 ∧ 𝑖𝑛3 

where in1, in2 and in3 are 1-bit inputs, {out2, out1} is the 2-bit output, the block of 3:2 

compressors is shown in Fig. 14. 

Full Adder

(FA)

in1

in3

{out2,out1}in2

 

Figure 14. Blocks of a 3:2 compressor. 
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5.3 4:2 (5:3) Compressors 

The logic function of 4:2 (5:3) compressors [21] is presented below. 4:2 

compressors have better speed performance than 2:2 and 3:2 compressors but with 

higher energy consumption and area overhead. 

         in1 

         in2 

         in3 

         in4 

+      in5 

out2    out1 

                                                        out3   

𝑜𝑢𝑡1 =  𝑖𝑛1 ⨁𝑖𝑛2⨁𝑖𝑛3⨁𝑖𝑛4⨁𝑖𝑛5 

𝑜𝑢𝑡2 = (𝑖𝑛4 ∧ 𝑖𝑛5) ∨ (𝑖𝑛1 ⨁𝑖𝑛2⨁𝑖𝑛3) ∨ ((𝑖𝑛1 ⨁𝑖𝑛2⨁𝑖𝑛3) ∧ 𝑖𝑛5) 

𝑜𝑢𝑡3 = (𝑖𝑛1 ∧ 𝑖𝑛2) ∨ (𝑖𝑛2 ∧ 𝑖𝑛3) ∨ (𝑖𝑛1 ∧ 𝑖𝑛3) 

where in1, in2, in3, in4 and in5 are 1-bit inputs, {out2+out3, out1} is the output and ∨ 

denotes ‘or’ operation. 

5.4 Using Compressors to Compress Array-Based Partial Product Table 

2:2, 3:2 [20] and 4:2 [21] compressors are applied to the compression block 

shown in Fig. 13 to compress array-based partial product table such as those shown in 

Fig. 8 and Fig. 11. 

As is presented in early this section, the reason why compressors are used in the 

compression block is that multiple compressors can run in parallel so that the 
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compression process can be sped up significantly. Fig. 15 gives an example of using 2:2 

and 3:2 compressors to compress an array-based partial product table (similar with the 

partial product table in Fig. 8 for the multiplier design and Fig. 11 for the squarer 

design), where c1, c2, c3, c4 and c5 are compressors. Again, the purpose of compression 

process is to compress the number of partial products to only two. Specifically, from 

right to left, c1 is a 2:2 compressor, c2 is a 3:2 compressor, c3 is a 3:2 compressor, c4 is 

a 3:2 compressor and c5 is a 2:2 compressor. The dots above the solid line are inputs of 

the compression block and the dots below the solid line are outputs of the compression 

block in this case. 

c1c2c3c4c5

From

c1

From

c2

From

c3

From

c4

From

c5
 

Figure 15. Using 2:2 and 3:2 compressors to compress an array-based partial 

product table. 

 

As is shown in this example, by using 2:2 and 3:2 compressors, the three partial 

products (represented by three rows above the solid line) are compressed into a two 

partial products (represented by two rows below the solid line) and compressors of c1, 

c2, c3, c4, c5 run in parallel. If no compressors are used and the compression process is 

made to run in serial, signals on the third column from right can’t be compressed until 
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the carry-out of the second column from the right is calculated and added to the third 

column from right, the compression of the fourth column from the right is delayed by the 

third column from the right, and the compression of the fifth column from the right has 

to wait for the carry-out generated by the compression of fourth column from the right. 
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6. EXPERIMENTAL RESULTS 

 

The proposed 16-bit fixed-width Booth multiplier and squarer are designed in 

Verilog HDL, synthesized using Synopsis Design Compiler [17] with a commercial 90 

nm CMOS technology and standard cell library. From Synopsis Design Compiler 

synthesis (Design Vision) reports, we get the pre-layout delay, dynamic power, leakage 

power and area. 

We also implement four additional fixed-width Booth multipliers: DTM (Direct 

Truncated Booth Multiplier) [5], PEBM (with probabilistic estimation bias 

compensation) [8], ZSM (uses sum of iz  as signatures) [7] and PTM (Post Truncated 

Booth Multiplier — —  most accurate/expensive fixed-width multiplier) [3] for 

comparison purposes. 

Four additional squarers are implemented: DTS (Direct Truncated Squarer), CCS 

(with a constant compensation) [9], VCS (the signals on the 𝑛 − 2𝑡ℎ  column as the 

compensation) [10] and PTS (Post Truncated Squarer —— most accurate/expensive 

fixed-width squarer). 

For all Booth multiplier and squarer designs implemented in this research, partial 

products are generated and then compressed to two partial products using 2:2, 3:2 [20] 

and 4:2 [21] compressors. As demonstrated in Section 5, 2:2, 3:2 and 4:2 compressors 

provide an efficient method for compressing the number of partial products to two 

because they enable the compression process to run in parallel. 
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Finally, the two compressed partial products are added up by a carry propagation 

adder (CPA) to produce final results. 

6.1 Comparison of Different Multipliers 

In Table 6, five fixed-width multipliers are compared in terms of area, delay, 

power (sum of dynamic power and leakage power), energy and 𝐸𝑚𝑠. 

The energy consumption and area of the proposed 16-bit fixed-width multiplier 

are slightly larger than PEBM and ZSM, but are much smaller than PTM, with a 44.85% 

and 28.33% reduction respectively. On the other hand, the proposed design has a 

significantly reduced 𝐸𝑚𝑠 compared with DTM, PEBM and ZSM. This indicates that our 

design delivers a much improved accuracy with a very small amount of additional 

overhead compared with PEBM and ZSM. A detailed accuracy comparison will be given 

in the next section. 

Multiplier Area 

(𝑢𝑚2) 

Delay 

(ns) 

Power 

(mW) 

Energy 

(pJ) 
𝐸𝑚𝑠 

DTM 2,645 2.61 0.86 2.24 9.85 

PTM 5,239 3.72 1.75 6.51 0.08 

PEBM 2,937 2.79 0.98 2.73 0.35 

ZSM 3,256 2.99 1.11 3.32 0.20 

Proposed 3,755 2.99 1.20 3.59 0.15 

Table 6. Implementation results of different 16x16 bits fixed-width Booth 

multipliers. 

 

In order to give an overall comparison between the proposed fixed-width 16x16 

multiplier design and other approximate fixed-width Booth multipliers, an energy-delay-

mean square error product 𝐸𝑛𝑒𝑟𝑔𝑦 · 𝐷𝑒𝑙𝑎𝑦 · 𝐸𝑚𝑠 (𝐸𝐷𝐸𝑚𝑠)  is introduced to evaluate 

different approximate designs.  
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 Table 7 lists the 𝐸𝐷𝐸𝑚𝑠 of DTM, PTM, PEBM, ZSM and the proposed 16-bit 

fixed width Booth multiplier. Fig. 16 lists the 𝐸𝐷𝐸𝑚𝑠 reduction of the proposed 16x16 

bits fixed-width multipliers over DTM, PTM, PEBM and ZSM.  

Multiplier 𝐸𝐷𝐸𝑚𝑠 
(pJ ∙ ns) 

DTM 57.59 

PTM 1.94 

PEBM 2.67 

ZSM 1.99 

Proposed 1.61 

 

Table 7. 𝑬𝑫𝑬𝒎𝒔 of 16x16 fixed-width multipliers. 

 

 

Figure 16. 𝑬𝑫𝑬𝒎𝒔 reduction of the proposed 16x16 bits fixed-width multipliers over 

DTM, PTM, PEBM and ZSM. 
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The proposed multiplier has a significantly reduced 𝐸𝐷𝐸𝑚𝑠  compared with 

DTM, PTM, PEBM and ZSM, with 97.20% reduction over DTM, 17.01% reduction 

over PTM, 39.70% reduction over PEBM and 19.10% reduction over ZSM, respectively. 

Therefore, the proposed 16-bit multiplier has the best overall performance among the 

five existing approximate Booth multiplier designs. 

6.2 Accuracy Analysis for the Approximate Multipliers 

In this section, we provide a more detailed accuracy comparison among different 

approximate multipliers. Error reduction or accuracy improvement of the proposed 

design over the existing designs is defined as 
|𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔−𝐸𝑝𝑟𝑝𝑜𝑠𝑒𝑑|

𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
× 100%, where 𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 

is one of error metrics (𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 ) of the compared existing design and  

𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  is defined as one of error metrics (𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 ) of the proposed 

design. 

6.2.1 Fixed-Width Booth Multipliers 

We evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 

and 𝐸𝑚𝑠 (Section 2.1) for n = 8 (bits) in Table 8.  

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTM 1.50 4.00 2.69 

PTM 0.25 0.50 0.08 

PEBM 0.35 1.50 0.18 

ZSM 0.30 1.17 0.14 

Proposed 0.29 1.00 0.13 

 

Table 8. Error metrics of 8x8 fixed-width Booth multipliers. 
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Fig. 17 shows the error reductions of the proposed fixed-width Booth multiplier 

over DTM, PEBM and ZSM for n = 8 (bits). The achieved reductions are 3.33%, 

14.53% and 7.14% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

ZSM. 

 

Figure 17. Error reduction of the proposed 8x8 fixed-width Booth multiplier over 

DTM, PEBM, ZSM. 

 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTM 2.25 6.00 5.71 

PTM 0.25 0.50 0.08 

PEBM 0.40 2.00 0.25 

ZSM 0.33 1.67 0.17 

Proposed 0.30 1.46 0.14 

Table 9. Error metrics of 12x12 fixed-width Booth multipliers. 
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Then, we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 

𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 12 (bits) in Table 9. 

Fig. 18 shows the significant error reductions of the proposed fixed-width 

multipliers over DTM, PEBM and ZSM for n = 12 (bits). The achieved reductions are 

9.09%, 12.57% and 17.65% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when 

compared with ZSM. 

 

Figure 18. Error reduction of the proposed 12x12 fixed-width Booth multiplier over 

DTM, PEBM, ZSM. 

 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTM 3.00 8.00 9.85 

PTM 0.25 0.50 0.08 

PEBM 0.48 2.50 0.35 

ZSM 0.36 2.17 0.20 

Proposed 0.32 1.56 0.15 

Table 10. Error metrics of 16x16 fixed-width Booth multipliers. 
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Besides, we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 

𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 16 (bits) in Table 10. 

 Fig. 19 shows the significant error reductions of the proposed fixed-width 

multipliers over DTM, PEBM and ZSM for n = 16 (bits). The achieved reductions are 

11.11%, 28.11% and 25.00% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when 

compared with ZSM. 

 

Figure 19. Error reduction of the proposed 16x16 fixed-width Booth multiplier over 

DTM, PEBM, ZSM. 

 

Lastly, to evaluate the performance of our approach for much wider multipliers, 

we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 

(Section 2.1) for n = 32 (bits). Since the number of input cases is very large, exact error 
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analysis becomes extremely time-consuming. To alleviate the computational challenge 

while getting decent error estimates, we evaluate each error metric by averaging over a 

large number of input combinations as follows. For example, for 𝐸𝑎𝑣𝑒  evaluation, we 

first randomly generate one data set of 400 million input combinations and calculate 

𝐸𝑎𝑣𝑒  for this set. To give a more decent and accurate error estimates, we randomly 

generate 10 such data sets in total, with 400 million input combinations for each set, and 

calculate the average 𝐸𝑎𝑣𝑒 of the ten sets and get the final 𝐸𝑎𝑣𝑒 result. 

Fig. 20 shows the significant error reductions of the proposed fixed-width 

multipliers over DTM, PEBM and ZSM for n = 32 (bits). The achieved reductions are 

19.89%, 33.79% and 36.90% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when 

compared with ZSM. 

 

Figure 20. Error reduction of the proposed 32x32 fixed-width Booth multiplier over 

DTM, PEBM, ZSM. 
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6.2.2 Full-Width Booth Multipliers 

We further evaluate the accuracies of the five different designs operated in full-

width mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 8 (bits) in Table 11. 

 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

PEBM 0.28 1.25 0.12 

ZSM 0.21 0.95 0.07 

Proposed 0.17 0.59 0.04 

Table 11. Error metrics of 8x8 full-width Booth multipliers. 

 

 Fig. 21 shows the significant error reductions of the proposed full-width 

multipliers over PEBM and ZSM for n = 8. The achieved reductions are 19.05%, 

37.89% and 42.86% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

ZSM.  Additionally, the proposed full-width outperforms the most accurate fixed-width 

PTM with an error reduction of 32.00% and 50.00% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 8 (bits). 

 

Figure 21. Error reduction of the proposed 8x8 full-width Booth multiplier over 

PEBM, ZSM. 
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Then, we evaluate the accuracies of the five different designs operated in full-

width mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 12 (bits) in Table 12. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

PEBM 0.33 1.88 0.17 

ZSM 0.25 1.48 0.10 

Proposed 0.22 1.10 0.07 

Table 12. Error metrics of 12x12 full-width Booth multipliers. 

 

 Fig. 22 shows the significant error reductions of the proposed full-width 

multipliers over PEBM and ZSM for n = 12. The achieved reductions are 12.00%, 

25.68% and 30.00% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

ZSM. Additionally, the proposed full-width outperforms the most accurate fixed-width 

PTM with an error reduction of 12.00% and 12.50% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 12 (bits). 

 

Figure 22. Error reduction of the proposed 12x12 full-width Booth multiplier over 

PEBM, ZSM. 
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We evaluate the accuracies of the five different designs operated in full-width 

mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 16 (bits) in Table 13. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

PEBM 0.38 2.50 0.22 

ZSM 0.29 2.00 0.13 

Proposed 0.22 1.25 0.07 

Table 13. Error metrics of 16x16 full-width Booth multipliers. 

 

Fig. 23 shows the significant error reductions of the proposed full-width 

multipliers over PEBM and ZSM for n = 16 (bits). The achieved reductions are 24.14%, 

37.50% and 46.15% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

ZSM. Additionally, the proposed full-width outperforms the most accurate fixed-width 

PTM with an error reduction of 12.00% and 12.50% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 16 (bits). 

 

Figure 23. Error reduction of the proposed 16x16 full-width Booth multiplier over 

PEBM, ZSM. 
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Lastly, to evaluate the performance of our approach for much wider multipliers, 

we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 

(Section 2.1) for n = 32 (bits). Similar to the proposed 32x32 fixed-width multiplier, 

since the number of input cases is very large, exact error analysis becomes extremely 

time-consuming. To alleviate the computational challenge while getting decent error 

estimates, we evaluate each error metric by averaging over a large number of input 

combinations as follows. For example, for 𝐸𝑎𝑣𝑒 evaluation, we first randomly generate 

one data set of 400 million input combinations and calculate 𝐸𝑎𝑣𝑒 for this set. To give a 

more decent and accurate error estimates, we randomly generate 10 such data sets in 

total, with 400 million input combinations for each set, and calculate the average 𝐸𝑎𝑣𝑒 of 

the ten sets and get the final 𝐸𝑎𝑣𝑒 result. 

 

Figure 24. Error reduction of the proposed 32x32 full-width Booth multiplier over 

PEBM, ZSM. 
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Fig. 24 shows the significant error reductions of the proposed full-width 

multipliers over DTM, PEBM and ZSM for n = 32, The achieved reductions are 27.09%, 

37.09% and 44.93% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

ZSM. 

6.3 Comparison of Different Squarers 

In Table 14, five fixed-width squarers are compared in terms of area, delay, 

power (sum of dynamic power and leakage power), energy and 𝐸𝑚𝑠. 

The energy consumption and area of the proposed multiplier are slightly larger 

than CCS and VCS, but are much smaller than PTS, with a 42.43% and 30.70% 

reduction respectively. On the other hand, the proposed design has a significantly 

reduced 𝐸𝑚𝑠 compared with DTS, CCS and VCS. This indicates that our design delivers 

a much improved accuracy with a very small amount of additional overhead. A much 

detailed accuracy comparison will be given in the next section. 

Multiplier Area 

(𝑢𝑚2) 

Delay 

(ns) 

Power 

(mW) 

Energy 

(pJ) 
𝐸𝑚𝑠 

DTS 1,566 2.21 0.36 0.80 4.34 

PTS 3,016 2.93 0.70 2.05 0.08 

CCS 1,891 2.22 0.44 0.98 0.28 

VCS 1,997 2.34 0.46 1.08 0.16 

Proposed 2,090 2.45 0.48 1.18 0.11 

Table 14. Implementation results of different 16x16 bits fixed-width squarers. 

 

In order to give an overall comparison between the proposed fixed-width 16x16 

bits squarer design and other approximate fixed-width squarers, an energy-delay-mean 

square error product 𝐸𝑛𝑒𝑟𝑔𝑦 · 𝐷𝑒𝑙𝑎𝑦 · 𝐸𝑚𝑠 (𝐸𝐷𝐸𝑚𝑠)  is utilized to evaluate different 

approximate designs.  
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 Table 15 lists the value of 𝐸𝐷𝐸𝑚𝑠 of DTS, PTS, CCS and VCS and the proposed 

16-bit fixed-width squarer. 

Multiplier 𝐸𝐷𝐸𝑚𝑠 
(pJ ∙ ns) 

DTS 7.67 

PTS 0.48 

CCS 0.61 

VCS 0.40 

Proposed 0.32 

Table 15. 𝑬𝑫𝑬𝒎𝒔 of 16x16 bits fixed-width squarers. 

 

 Fig. 25 lists the 𝐸𝐷𝐸𝑚𝑠  reduction of the proposed 16x16 bits fixed-width 

squarers over DTS, PTS, CCS and VCS. The proposed squarer has a significantly 

reduced 𝐸𝐷𝐸𝑚𝑠 compared with DTS, PTS, CCS and VCS, with 95.83% reduction over 

DTS, 33.33% reduction over PTS, 47.54% reduction over CCS and 20.00% reduction 

over VCS. Therefore, the proposed 16-bit squarer has the best overall performance 

among the five existing approximate squarer designs. 

 

Figure 25. 𝑬𝒎𝒂𝒙reduction of the proposed 16-bit fixed-width squarer over DTS, 

PTS, CCS and VCS. 
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6.4 Accuracy Analysis for Squarers 

In this section, we provide a more detailed accuracy comparison among different 

approximate squarers. Similar to multipliers, error reduction or accuracy improvement of 

the proposed squarer design over the existing designs is defined as 
|𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔−𝐸𝑝𝑟𝑝𝑜𝑠𝑒𝑑|

𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
×

100%, where 𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is one of error metrics (𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠) of the compared 

existing design and  𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 is defined as one of error metrics (𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠) of 

the proposed squarer design. 

6.4.1 Fixed-Width Squarers 

We evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 

and 𝐸𝑚𝑠 (Section 2.1) for n = 8 (bits) in Table 16. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTS 0.83 3.00 1.10 

PTS 0.23 0.50 0.08 

CCS 0.28 1.10 0.13 

VCS 0.29 0.88 0.13 

Proposed 0.24 0.75 0.09 

Table 16. Error metrics of 8-bit fixed-width squarers. 

 

 Fig. 26 shows the significant error reductions of the proposed fixed-width 

squarers over DTS, CCS and VCS for n = 8 (bits). The achieved reductions are 17.24%, 

14.77% and 30.77% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

VCS. 

Then, we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 

𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 12 (bits) in Table 17. 
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Fig. 27 shows the significant error reductions of the proposed fixed-width 

squarers over DTS, CCS and VCS for n = 12 (bits). The achieved reductions are 16.13%, 

15.38% and 33.33% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

VCS. 

 

Figure 26. Error reduction of the proposed 8-bit fixed-width squarer over DTS, 

CCS, VCS. 

 

 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Average Error Max Error Mean Square Error

DTS

CCS

VCS



 

58 

 

 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTS 1.33 5.00 2.46 

PTS 0.25 0.50 0.08 

CCS 0.40 1.57 0.24 

VCS 0.31 1.04 0.15 

Proposed 0.26 0.88 0.10 

Table 17. Error metrics of 12-bit fixed-width squarers. 

 

 

Figure 27. Error reduction of the proposed 12-bit fixed-width squarer over DTS, 

CCS, VCS. 

 

Lastly, we evaluate the accuracies of the five different designs in terms of 𝐸𝑎𝑣𝑒, 

𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 16 (bits) in Table 18. 
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Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

DTS 1.83 7.00 4.34 

PTS 0.25 0.50 0.08 

CCS 0.42 2.56 0.28 

VCS 0.33 1.20 0.16 

Proposed 0.27 0.94 0.11 

Table 18. Error metrics of 16-bit fixed-width squarers. 

 

Fig. 28 shows the significant error reductions of the proposed fixed-width 

squarers over DTS, CCS and VCS for n = 16 (bits). The achieved reductions are 18.18%, 

21.67% and 31.25% in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠, respectively, when compared with 

VCS. 

 

Figure 28. Error reduction of the proposed 16-bit fixed-width squarer over DTS, 

CCS, VCS. 
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6.4.2 Full-Width Squarers 

We further evaluate the accuracies of the five different designs operated in full-

width mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 8 (bits) in Table 19. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

CCS 0.21 0.76 0.07 

VCS 0.15 0.43 0.03 

Proposed 0.09 0.35 0.01 

Table 19. Error metrics of 8-bit full-width squarers. 

 

 Fig. 29 shows the significant error reductions of the proposed full-width squarers 

over CCS and VCS for n = 8 (bits). The achieved reductions are 40.00%, 18.60% and 

66.67% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when compared with VCS. 

Additionally, the proposed full-width design outperforms the most accurate fixed-width 

PTS with an error reduction of 60.87% and 87.50% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 8 (bits). 

 

Figure 29. Error reduction of the proposed 8-bit full-width squarer over CCS, 

VCS. 
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Then, we evaluate the accuracies of the five different designs operated in full-

width mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 12 (bits) in Table 20. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

CCS 0.30 1.49 0.14 

VCS 0.17 0.60 0.05 

Proposed 0.12 0.54 0.02 

Table 20. Error metrics of 12-bit full-width squarers. 

 

Fig. 30 shows the significant error reductions of the proposed full-width squarers 

over CCS and VCS for n = 12 (bits). The achieved reductions are 29.41%, 10.00% and 

60.00% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when compared with VCS. 

Additionally, the proposed full-width design outperforms the most accurate fixed-width 

PTS with an error reduction of 52.00% and 75.00% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 12 (bits). 

 

Figure 30. Error reduction of the proposed 12-bit full-width squarer over CCS, 

VCS. 

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

Average Error Max Error Mean Square Error

CCS

VCS



 

62 

 

Finally, we evaluate the accuracies of the five different designs operated in full-

width mode in terms of 𝐸𝑎𝑣𝑒, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑠 (Section 2.1) for n = 16 (bits)  in Table 21. 

Multiplier 𝐸𝑎𝑣𝑒 𝐸𝑚𝑎𝑥 𝐸𝑚𝑠 

CCS 0.37 2.23 0.21 

VCS 0.19 0.77 0.06 

Proposed 0.13 0.68 0.03 

Table 21. Error metrics of 16-bit full-width squarers. 

 

Fig. 31 shows the significant error reductions of the proposed full-width squarers 

over CCS and VCS for n = 16 (bits). The achieved reductions are 31.58%, 11.69% and 

50.00% in terms of 𝐸𝑎𝑣𝑒 , 𝐸𝑚𝑎𝑥  and 𝐸𝑚𝑠 , respectively, when compared with VCS. 

Additionally, the proposed full-width design outperforms the most accurate fixed-width 

PTS with an error reduction of 48.00% and 62.50% for 𝐸𝑎𝑣𝑒  and 𝐸𝑚𝑠 , respectively, 

when n = 16 (bits). 

 

Figure 31. Error reduction of the proposed 16-bit full-width squarer over CCS, 

VCS. 
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6.5 Further Reduction of Error and Cost For the 16-bit Fixed-Width Squarer 

As illustrated in Section 4.2, we choose extra signatures from input bits (𝑎0 to 

𝑎15) and set don't cares to some of the groups to further reduce max error and cost. 

𝐸𝐷𝐸𝑚𝑎𝑥, which is the energy-delay-max error product, provides an overall evaluation 

for 16-bit fixed-width squarer designs. 

Table 22 shows the optimal extra signatures from input bits (𝑎0 to 𝑎15), given the 

number of extra signatures. As described in Section 4.2, for example, to choose one 

optimal extra signature from the 16 input bits, we try each input bit from 𝑎0 to 𝑎15 based 

on the design guidance in Section 2 that efficient signatures should be able to divide 

input cases into groups largely of equal length (sub-dividing large input groups). The 

simulation results indicate that selecting 𝑎6 as a signature can divide more original 

groups formed by the first signature CA and achieve better overall accuracy performance 

than other input bit from 𝑎0 to 𝑎15. Using the same method, the other extra signatures 

are chosen. 

Number of Extra Signatures Optimal Extra Signature 

1 𝑎6 

2 𝑎6𝑎7 

3 𝑎6𝑎7𝑎13 

4 𝑎6𝑎7𝑎13𝑎0 

5 𝑎6𝑎7𝑎13𝑎0𝑎4 

6 𝑎6𝑎7𝑎13𝑎0𝑎4𝑎5 

7 𝑎6𝑎7𝑎13𝑎0𝑎4𝑎5𝑎8 

Table 22. Optimal extra signatures for given number of extra signatures. 

 

The resulting area, delay, power (sum of dynamic power and leakage power), 

energy consumption and 𝐸𝐷𝐸𝑚𝑎𝑥  as a function of the number of extra signatures are 
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listed in Table 23. Correspond to the last row of the table, when introducing seven extra 

signatures, to tradeoff between energy consumption and 𝐸𝑚𝑎𝑥 , we set 110 groups as 

don't cares.  

Number of Extra Signatures Area 

(𝑢𝑚2) 

Delay 

(ns) 

Power 

(mW) 

Energy 

(pJ) 
𝐸𝐷𝐸𝑚𝑠 

1 2,090 2.45 0.48 1.18 2.72 

2 2,095 2.45 0.48 1.18 2.66 

3 2,129 2.45 0.48 1.18 2.46 

4 2,137 2.45 0.48 1.18 2.43 

5 2,156 2.46 0.48 1.18 2.38 

6 2,202 2.48 0.48 1.19 2.36 

7 2,295 2.49 0.49 1.22 2.40 

7 (introducing don’t cares) 2,167 2.46 0.48 1.18 2.29 

Table 23. 𝑬𝑫𝑬𝒎𝒂𝒙 of 16-bit fixed-width squarers with extra signatures. 

 

 

Figure 32. Comparison of 𝑬𝑫𝑬𝒎𝒂𝒙 of 16-bit fixed-width squarers with extra input 

signatures. 
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Fig. 32 shows the error reduction of optimized 16-bit fixed-width squarer design 

(seven extra signatures from input bits and setting don't  cares for the compensations of 

110 groups) to designs with the number of extra signatures ranges from one to seven 

with no don’t cares introduced. As shown in Fig. 32, further optimizing the squarer by 

introducing seven extra signatures and don't cares decreases 𝐸𝐷𝐸𝑚𝑎𝑥 significantly, with 

15.81% reduction, when compared with the proposed 16-bit fixed-width squarer design 

which uses only one extra signature and not introducing any don't cares (the first bar). 
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7. CONCLUSION 

 

In this research, a general model is presented for array-based approximate 

arithmetic computing to guide the design of approximate Booth multipliers and squarers. 

To shed light on the design of ECU, which is the key of AAAC design, we develop four 

theorems to address two critical design problems of the ECU design, namely, 

determination of optimal error compensation values and identification of the optimal 

error compensation scheme. To further reduce energy consumption and area, we 

introduce don’t cares for ECU logic simplification. 

Our proposed 16x16 bits fixed-width Booth multiplier consumes 44.85% and 

28.33% less energy and area compared with the most accurate fixed-width Booth 

multiplier. Additionally, a 11.11%, 28.11%, 25.00% and 19.10% reduction is achieved 

for average error, max error, mean square error and 𝐸𝐷𝐸𝑚𝑠 , respectively, when 

compared with the best reported approximate design. Using the same approach, our 

approximate 16-bit fixed-width squarer reduces average error, max error, mean square 

error and 𝐸𝐷𝐸𝑚𝑠  by more than 18.18%, 21.67%, 31.25% and 20.00%, respectively, 

when compared with existing designs. Error and cost are further reduced by utilizing the 

method of introducing extra signatures and don't cares, with 15.81% reduction for 

𝐸𝐷𝐸𝑚𝑎𝑥 . Significant error improvements have also been achieved for proposed 

multipliers and squarers when operated in full-width mode. 
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