
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Winter 2007

Power-Aware Design Methodologies for FPGA-
Based Implementation of Video Processing
Systems
Hau Trung Ngo
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds
Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted
for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Ngo, Hau T.. "Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems" (2007). Doctor of
Philosophy (PhD), dissertation, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/j6kw-q685
https://digitalcommons.odu.edu/ece_etds/185

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/185?utm_source=digitalcommons.odu.edu%2Fece_etds%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

POWER-AW ARE DESIGN METHODOLOGIES FOR FPGA-BASED

IMPLEMENTATION OF VIDEO PROCESSING SYSTEMS

B. S. May 2001, Old Dominion University
M. S. May 2003, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2007

By

Hau Trung Ngo

Approved by:

i K. Asari (Direc(Director)Vijayan

Shirshak K. Dhali (Member)

Min Song (Member)

Ravi Mukkdmala (Member)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

POWER-AWARE DESIGN METHODOLOGIES FOR FPGA-BASED

IMPLEMENTATION OF VIDEO PROCESSING SYSTEMS

Hau Trung Ngo
Old Dominion University

Director: Dr. Vijayan Asari

The increasing capacity and capabilities of FPGA devices in recent years provide an

attractive option for performance-hungry applications in the image and video processing

domain. FPGA devices are often used as implementation platforms for image and video

processing algorithms for real-time applications due to their programmable structure that

can exploit inherent spatial and temporal parallelism. While performance and area remain

as two main design criteria, power consumption has become an important design goal

especially for mobile devices. Reduction in power consumption can be achieved by

reducing the supply voltage, capacitances, clock frequency and switching activities in a

circuit. Switching activities can be reduced by architectural optimization of the

processing cores such as adders, multipliers, multiply and accumulators (MACs), etc.

This dissertation research focuses on reducing the switching activities in digital circuits

by considering data dependencies in bit level, word level and block level neighborhoods

in a video frame.

The bit level data neighborhood dependency consideration for power reduction is

illustrated in the design of pipelined array, Booth and log-based multipliers. For an array

multiplier, operands of the multipliers are partitioned into higher and lower parts so that

the probability of the higher order parts being zero or one increases. The gating technique

for the pipelined approach deactivates part(s) of the multiplier when the above special

values are detected. For the Booth multiplier, the partitioning and gating technique is

integrated into the Booth recoding scheme. In addition, a delay correction strategy is

developed for the Booth multiplier to reduce the switching activities of the sign extension

part in the partial products. A novel architecture design for the computation of log and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

inverse-log functions for the reduction of power consumption in arithmetic circuits is also

presented. This also utilizes the proposed partitioning and gating technique for further

dynamic power reduction by reducing the switching activities.

The word level and block level data dependencies for reducing the dynamic power

consumption are illustrated by presenting the design of a 2-D convolution architecture.

Here the similarities of the neighboring pixels in window-based operations of image and

video processing algorithms are considered for reduced switching activities. A

partitioning and detection mechanism is developed to deactivate the parallel architecture

for window-based operations if higher order parts of the pixel values are the same. A

neighborhood dependent approach (NDA) is incorporated with different window

buffering schemes. Consideration of the symmetry property in filter kernels is also

applied with the NDA method for further reduction of switching activities.

The proposed design methodologies are implemented and evaluated in a FPGA

environment. It is observed that the dynamic power consumption in FPGA-based circuit

implementations is significantly reduced in bit level, data level and block level

architectures when compared to state-of-the-art design techniques. A specific application

for the design of a real-time video processing system incorporating the proposed design

methodologies for low power consumption is also presented. An image enhancement

application is considered and the proposed partitioning and gating, and NDA methods are

utilized in the design of the enhancement system. Experimental results show that the

proposed multi-level power aware methodology achieves considerable power reduction.

Research work is progressing in utilizing the data dependencies in subsequent frames in a

video stream for the reduction of circuit switching activities and thereby the dynamic

power consumption.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

iv

ACKNOWLEDGEMENTS

My deepest gratitude is to my advisor, Dr. Vijayan K. Asari for his advice and support

during my study at Old Dominion University. He has spent countless hours patiently

guiding me throughout these years. His encouragement has helped me overcome many

challenges during my research work.

I am sincerely grateful to members of my dissertation committee, Dr. Shirshak K. Dhali,

Professor and Chair of the Department of Electrical and Computer Engineering; Dr. Min

Song, Associate Professor of the Department of Electrical and Computer Engineering;

and Dr. Ravi Mukkamala, Professor of the Department of Computer Science. Their

invaluable comments and suggestions are greatly appreciated.

I would also like to thank my family for their encouragement and support. They are the

greatest source of happiness.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION... 1

1.1 Low Power Design A pproach... 3

1.2 Specific O bjectives... 5

1.3 Organization.. 6

II LITERATURE R EV IEW .. 8

2.1 System-Level Power-Aware Design Techniques....................... 8

2.2 Architecture-Level Power-Aware Design Techniques............. 10

2.3 Logic/Arithmetic-Level Power-Aware Design Techniques 12

2.4 FPGA-Based Power-Aware Design Techniques........................ 17

III POWER-AW ARE DESIGN TECHNIQUES FOR MULTIPLIERS

IN VIDEO PROCESSING APPLICATIONS...................................... 19

3.1 Array M ultiplier.. 19

3.2 Recoding for Parallel M ultiplier.. 23

3.3 Partitioning and Gating Technique for Multiplier Design for

Video Processing Applications... 26

3.4 Experimental R esults... 35

3.5 Sum m ary... 40

IV DESIGN OF LOGARITHMIC DOMAIN ARITHMETIC UNITS

FOR LOW POWER CONSUMPTION.. 42

4.1 Approximation of Binary Logarithm .. 43

4.2 Error Correction For Binary Logarithm Approximation 47

4.3 Proposed Error Correction for Binary Logarithm

Approximation... 49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

v i

Chapter Page

4.4 Design and Implementation of a Log-Based M ultiplier 53

4.4.1 Design of the Leading Bit Detection U n it....................... 56

4.4.2 Design of a Power-Aware Log-Based M ultiplier 62

4.5 Experimental R esults.. 64

4.6 Sum m ary.. 67

V POWER-AWARE DESIGN TECHNIQUE FOR WINDOW-

BASED OPERATION IN VIDEO PROCESSING APPLICATIONS 69

5.1 Window-Based O perations... 69

5.2 On-Chip Window Buffering Schem es... 71

5.3 Symmetry Consideration for Reduced Computations................ 75

5.4 Neighborhood Dependent Approach (NDA) for Power

Reduction in Window-Based O perations..................................... 80

5.5 Experimental R esults.. 87

5.6 Sum m ary.. 89

VI MULTI LEVEL POWER-AWARE DESIGN TECHNIQUES

FOR REAL-TIME VIDEO ENHANCEM ENT.................................... 91

6.1 Image Enhancement A lgorithm .. 91

6.1.1 Illuminance Estimation and Reflectance Extraction 91

6.1.2 Dynamic Range Compression of Illuminance and

Contrast Enhancem ent... 93

6.1.3 Image Restoration and Adjustm ent.................................. 94

6.2 Architecture Design for the Image Enhancement Algorithm 95

6.2.1 Illuminance Enhancement M odule................................... 96

6.2.2 Contrast Enhancement M odule.. 98

6.2.3 Color Restoration and Adjustment M odule................... 98

6.3 Experimental R esults.. 100

6.4 Sum m ary.. 105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

v ii

Chapter Page

VII CONCLUSION AND FUTURE W O R K S... 110

REFERENCES... 113

V IT A ... 124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

v ii i

LIST OF FIGURES

Figure Page

3.1 CSA array m ultiplier... 20

(a) 4x4 CSA multiplier architecture

(b) Processing element (PE) in CSA multiplier

3.2 Bypassing concept for a 4x4 CSA m ultiplier................................... 21

3.3 Block diagram of 1-D gating technique for a pipelined multiplier 22

3.4 Block diagram of 2-D gating technique for a pipelined multiplier 23

3.5 Multiplier with DRD unit proposed in [5 7] 26

3.6 Partitioning method for multiplier design .. 28

(a) Multiplication with partitioned data

(b) Gating technique for individual smaller multipliers

3.7 Circuits for generating gating signals.. 31

3.8 Proposed design of the pipelined m ultiplier..................................... 31

3.9 Circuits to generate recoding signals.. 32

3.10 Proposed design of the 8-bit Booth m ultiplier................................. 34

3.11 Circuit for the complement unit (com p).. 34

3.12 Schematic of the multiplication operation with SM

representation.. 35

3.13 Test im ages... 37

(a) Peppers (128x128 resolution)

(b) Island (160x106 resolution)

4.1 An example to illustrate the concept of log2 approximation

m ethod.. 45

4.2 Actual values and Mitchell’s approximated values of log2 (/V).... 46

4.3 Actual values and Mitchell’s approximated values of inverse-

log2(A0.. 46

4.4 Error percent curves of Mitchell’s and proposed m ethods 51

4.5 Schematic of a log-based m ultiplier... 54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ix

Figure Page

4.6 Architecture for binary logarithm computation of an 8-bit

num ber.. 55

(a) Binary logarithm approximation with correction

(b) Correction circuit for proposed 1-bit approach

4.7 An architecture for a 8-bit left barrel sh ifter.................................... 57

4.8 4-bit leading bit detector (LBD 4).. 58

(a) Symbol

(b) Logic circuit

4.9 8-bit leading bit detector (LBD 8)... 60

(a) Symbol

(b) Logic circuit

4.10 16-bit leading bit detector (LBD1 6).. 61

4.11 32-bit leading bit detector (LBD 32).. 62

4.12 Circuits for generating gating signals in log-based multiplier

design.. 64

4.13 Design of a log-based multiplier with partitioning and gating

technique.. 65

5.1 Concept of a window-based operation.. 70

5.2 Full-window buffering (FWB) scheme for a parallel processing

architecture... 73

5.3 Single-window partial buffering (SWPB) schem e.......................... 74

5.4 Neighboring windows with overlapped p ixels 74

5.5 Multiple-window partial buffering (MWPB) schem e..................... 75

5.6 Types of symmetry in kernel m ask ... 76

5.7 Gaussian convolution kernel with symmetry property 77

5.8 Parallel architecture for 2-D convolution with an even symmetry

kernel... 79

5.9 Parallel architecture for 2-D convolution with an odd symmetry

kernel.. 80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

X

Figure Page

5.10 A window of neighboring pixels in an im age.................................. 81

5.11 Circuit of an m-bit com parator... 84

5.12 NDA is incorporated with SWPB schem e....................................... 85

5.13 NDA is incorporated with MWPB schem e..................................... 86

5.14 NDA is incorporated with SWPB scheme and quadrant

symmetry property .. 87

6.1 Block diagram of the illuminance enhancement m odule............... 97

6.2 Block diagram of the contrast enhancement m odule 98

6.3 Block diagram of the color restoration and adjustment module ... 99

6.4 Comparison between enhanced images obtained by a software

program in Matlab and enhanced images obtained by the

hardware architecture... 101

(a) Original images

(b) Enhanced images by software mean

(c) Enhanced image by hardware architecture

6.5 Error analysis between the software and hardware

implementations for the first test im age.. 102

(a) Intensity differences between resulting images

(b) Histogram of intensity differences

6.6 Error analysis between the software and hardware

implementations for the second test image...................................... 103

(a) Intensity differences between resulting images

(b) Histogram of intensity differences

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x i

LIST OF TABLES

Table Page

3.1 Recoding scheme for radix-2 Booth algorithm 24

3.2 Recoding scheme for radix-4 Booth algorithm 25

3.3 Recoding scheme for the proposed n-bit radix-4 Booth multiplier .. 32

3.4 Correction terms used in the proposed Booth m ultiplier................... 33

3.5 Implementation results with various multiplier designs with

Altera’s F P G A .. 36

3.6 Experimental results for a Gaussian filter for array multiplier 38

3.7 Experimental results for a Laplacian filter for array m ultiplier 38

3.9 Experimental results for a Gaussian filter for Booth m ultiplier 39

3.10 Experimental results for a Laplacian filter for Booth m ultiplier 40

4.1 Operations in normal (linear) binary and logarithmic dom ains 42

4.2 Error evaluation and overhead of proposed correction methods for

binary logarithm approximation... 52

4.3 Comparisons with other error correction m ethods............................. 53

4.4 Implementation results for log-based m ultipliers................................ 66

4.5 Experimental results for a Gaussian f ilte r.. 66

4.6 Simulation results for a Laplacian f ilte r ... 67

5.1 Implementation results for parallel architecture with various

buffering schemes for 2-D convolution with a 3x3 filtering kernel 88

5.2 Simulation results for a Gaussian smoothing f ilte r 89

6.1 Implementation results for the proposed architecture designs of

IRME image enhancement algorithm .. 100

6.2 Performance comparison of the proposed FPGA based

enhancement system with three estimated DSP-based

enhancement implementations (for 256x256 fram es)....................... 104

6.3 Test images and the respective enhanced im ages.............................. 107

6.4 Experimental results of IRME enhancement algorithm 109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

Chapter I

INTRODUCTION

As the capacity of VLSI chips keeps growing, more processing units are being integrated

in1 to a single chip. It is possible to fit an entire signal processing system in a single chip

in order to significantly improve the performance. However, these signal processing

systems also consume a considerable amount of energy. While performance and area are

still very important considerations for system designers, power consumption has become

an increasingly critical concern. Operating frequency and chip capacity have grown

steadily as technology continues to improve. With increased capacity and higher

operating frequency, more capabilities are added to portable electronic devices that

enable these devices to integrate more computationally intensive applications such as

multimedia and image and video processing applications. Since portable devices are

operated with a battery, it is particularly important to incorporate low power design

methodologies in order to prolong battery life.

Most existing low power design methodologies for video processing systems focus on the

design techniques for functional and computational units. Many researchers have

presented low power design techniques for multiplication which is one of the

fundamental and frequently used operations in signal processing applications. Since

power consumption is directly related to switching activities of each computational

module in a system, most low power design techniques for functional units consider the

input data switching patterns to reduce the switching rate. Image and video frame pixels

have a very high spatial redundancy such that the higher bits in the binary representations

of the pixels in a block are usually the same (only the lower bits are different). In

addition, the difference in the pixel values in the same neighborhood is usually small.

Window-based operations, such as two-dimensional convolution (2-D convolution) and

image filtering, are the most common operations in image and video processing

applications, which have high redundancy in magnitude variations of neighboring pixels.

The reference model o f this work is IEEE Transactions on Circuits and Systems fo r Video Technology

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2

Computations for video processing algorithms require a large number of complex

operations on every pixel in an image. Although processing speed in general purpose

computers has increased significantly in recent years, these systems have processing

power only to support real-time processing of very small size video frames. For larger

image size, real-time processing in general purpose computers is not possible because

these systems can only process data sequentially with significant memory overhead.

Digital Signal Processors (DSPs) can be used to support real-time video processing

applications. The use of DSPs for a video processing application provides some

improvement compared to software means in general purpose computers, by employing

‘limited’ parallelization in the core processor and utilizing the optimized DSP library for

some complex operations. Still, the approach using DSPs does not take full advantage of

the inherent parallelism in the video processing algorithms. Hence, processing of 25 to 30

large size video frames (such as 1024x1024 frames) per second in DSPs is still not

possible.

The intensive computations in many video processing applications require massive

parallel processing capabilities to support real-time processing of a large size video

stream. Field Programmable Gate Array (FPGA) provides an attractive solution to this

problem because of its high density, high performance and re-configurability to support

specific applications. An FPGA is a semiconductor device with programmable logic

components and programmable interconnect networks. Logic components within an

FPGA can be programmed to perform standard logic gates, such as AND, XOR, etc., or

more complex combinational logic components such as decoders, adders, etc. An FPGA

offers a good combination of the flexibility of a general purpose computer and hardware-

based high speed operation that is comparable to an Application Specific Integrated

Circuit (ASICs). In recent years, a new generation of FPGA with embedded DSP

modules has become a preferred choice for professional video processing systems. An

architecture design for FPGA technology can fully exploit the data and I/O parallelism in

video processing applications. Furthermore, FPGA technology allows developers to

upgrade designs promptly and easily to satisfy new standards and requirements.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3

This dissertation addresses a multi-level, power-aware design methodology for video

processing applications. The multi-level methodology refers to techniques for design of

low power computational units, such as a multiplier in the logic/arithmetic level, and the

design of low power functional modules such as a 2-D convolution module in the

architecture level with neighborhood data dependency considerations. The main

hypothesis of this research is that the proposed multi-level power-aware design

approaches produce an effective and more power-efficient video processing system.

1.1. Low Power Design Approach

Digital CMOS circuits have two major types of power dissipation — dynamic and static

power. Dynamic power is related to the switching activities or the logic changes of the

circuits. Static power is mostly related to the fabrication technology parameters. The total

power consumption is described in the following equations:

p = p + p
total dynamic static

P = P + Pdynamic cap sckt

Kop &' f elk ' Q , ' VDD

Psckt ~ ® ' f elk ' I
l r

peak r DD

P =1 •Vstatic static DD

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

where Pcap is the dynamic power due to capacitance charging and discharging, PSCkt is the

average power due to short circuit current, Cl is the capacitance of the load, f cik is the

clock frequency, a is the switching activity probability, V d d is the supply voltage, Ipeak is

the peak current, I static is the static current, and tr and tf are the rise time and fall time of

the short circuit current, respectively.

In general, static power consumption in CMOS circuits is much lower than dynamic

power consumption. Typically, dynamic power consumption is the dominant variable in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

CMOS circuits when they are in active mode during operations. The leakage power

occurs mostly when the CMOS circuits are in idle mode so that very little or no switching

activities are present. Since static power is mainly dependent on the fabrication

technology, the research focus in this dissertation is on the reduction of dynamic power

consumption. Low power design techniques must be developed to reduce one or more

variables in equation (1.3) while maintaining functionality, without sacrificing the speed,

performance of the circuits. The objective for the design of low dynamic power

consumption circuits is now primarily the task of minimizing switching activity a,

loading capacitance C l , clock frequency/ê or supply voltage Vd d • Reducing the loading

capacitance (C l) can be done by low level (transistor level) design. The capacitance can

be reduced by reducing the transistor sizes and wire lengths, but this can degrade the

performance. Reduction of the operating clock frequency when the computational load

does not require full capacity of the processor is a common approach to reduce dynamic

power. This approach will also degrade the performance and it is difficult to implement

in custom architectures. With fabrication technology supporting multiple supply voltages,

a lower voltage can be used in non-critical computational modules. This approach is used

commonly in modem, low-power microprocessors. New generations of FPGA devices

also begin to offer multiple-voltage operating modes for low power applications. Of all

the variables in equation (1.3), architecture designers have the most control over the

switching activity, a. There have been extensive research works in developing techniques

to reduce switching activities. Some of the most common approaches include clock and

data gating control to disable data-path units when outputs are not used, re-timing and

pipelining to reduce glitches on large data buses, and recoding techniques to reduce the

amount of combinational logic blocks in multipliers.

All of these low-power design techniques consider the immediate input data patterns to

fine tune the design for the reduction of dynamic power consumption. Characteristics of

the data stream to the input of the computational modules as well as the dependency of

pixels in the neighboring window within the image are considered in this dissertation

research for the reduction of dynamic power consumption.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5

1.2. Specific Objectives

The research works in this dissertation address power-aware design methodologies by

reducing switching activities in computational modules at various design levels. The

proposed power-aware design technique exploits the special characteristics of high

correlation in the bit presentations, the repeated values, zero values, and insignificant bits

to reduce switching activities.

The characteristics in the bit representation of the input data stream to computational

modules such as adders, multipliers, dividers, etc. are considered for the design of power-

aware arithmetic units. At this logical/arithmetic level, special bit patterns in the inputs

are detected, and decisions are made to disable computational units and data buses. A

partitioning and gating technique is developed and applied to the design of pipelined

array and Booth multipliers, and their performance and power consumption are analyzed

and compared with those of conventional design architectures. Approximation techniques

for logarithm and inverse-logarithm of base two are developed and implemented in an

FPGA environment. Error analysis and performance evaluations are carried out for the

approximation methods. The log-based multiplier incorporating the partitioning and

gating technique is also designed, and its performance and power consumption are

analyzed and compared with those with conventional designs.

Secondly, the power-aware technique based on a neighborhood dependent approach is

considered at the architecture level where window-based operations are employed. The

architectural level approach refers to the overall computation of the window-based

operation where the block of pixels in the neighborhood is examined for possible

redundant computations. A technique to analyze pixels in a neighboring window is

developed to detect higher bit redundancy based on on-chip buffering schemes.

Furthermore, symmetry property in filtering operations is considered to further reduce the

number of operations thereby reducing the switching activities. Standard 2-D

convolutions with common kernels are used to evaluate the performance and overhead

and dynamic power consumption of the proposed approach.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

The proposed design methodologies are implemented with VHDL descriptions utilizing

commercial FPGA development software environments from Altera. The VHDL modules

are mapped onto newer generations of FPGA devices such as Cyclone II and Stratix III

from Altera, and the power consumption of the implementation is evaluated using power

analyzer tools such as PowerPlay from Altera. Several test images are used as input

vectors for accurate estimation of power consumption. Experimental results are analyzed,

and comparisons with different techniques are presented.

1.3. Organization

This dissertation is organized as follows. Chapter II presents a literature review of current

and existing low power design methodologies for arithmetic modules and multimedia

systems. Existing techniques in physical, logic, architectural and system levels are

studied and discussed in this chapter. A detailed discussion of design methodologies to

reduce dynamic power consumption by minimizing switching activities in computational

logic blocks is also presented.

Chapter III presents the proposed low power design for arithmetic modules, which

includes the design of a pipelined array multiplier and radix-4 multiplier. This chapter

also presents a comparison of the performance and power consumption of the proposed

multipliers with respective conventional designs. Logarithmic domain computations for

power-aware design are presented in chapter IV. The approximation methods for

logarithm and inverse-logarithm of base two are discussed and analyzed. Design of log-

based multipliers and their implementations in the FPGA environment and performance

comparison with state-of-the art techniques are also presented in this chapter.

The neighborhood dependent approach for the design of a low power window-based

operation is addressed in chapter V. The proposed design technique considers the

neighboring pixels in the processing windows to detect and eliminate redundant or

unnecessary computations for power reduction. A novel on-chip detection technique is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

developed for this approach. Data partitioning methodology is employed in the procedure

to eliminate unnecessary operations. Experimental results and comparisons are also

presented in this chapter.

Chapter VI discusses the power-aware design methodology in an application-specific

architecture. A nonlinear video enhancement application is used to apply the

neighborhood-dependent approach with the low power arithmetic units proposed in this

dissertation research. Discussion of hardware algorithm development and implementation

is provided in this chapter. Experimental results are provided for analysis in terms of

performance, area and power dissipation.

Chapter VII concludes this dissertation with a summary of various contributions and

suggestions for future work. Proposed methodologies for power-ware design of FPGA-

based implementation of video processing systems are summarized. The description of

the ongoing research activities on power reduction methodologies based on data

dependencies in subsequent frames of a video stream is also presented in this chapter.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

Chapter II

LITERATURE REVIEW

Many design techniques have been developed for power dissipation minimization at

various design levels ranging from high-level software programming to technological

innovations. All methods aim to reduce one of the variables in equation (1.3). Common

approaches include methods to scale voltage or clock frequency in processors, compress

instructions to reduce logic toggle in buses, reduce load capacitance by balancing layout,

and minimize switching activities within a clock cycle in circuits. In general, reducing

clock frequency, voltage or load capacitance requires careful analysis of the target

applications because it might degrade performance of the overall system. A general

survey of various techniques that have been developed to reduce power dissipation in

different levels of the design cycle is presented in this chapter.

2.1. System-Level Power-Aware Design Techniques

At the system level, designers generally address the power-aware design issue by

employing programming techniques to minimize external memory accesses. This relies

on compiler and power management software to scale voltage and clock frequency and to

pack multiple instructions in an instruction package to reduce logic toggle on the

instruction bus and instruction cache.

In [1], the authors provide a survey of some general methods for system-level power-

aware design in real-time systems. These methods primarily apply to microprocessor-

based designs. The survey covers techniques that deal with communication between

caches and buses, instruction set utilization, voltage and frequency scaling, network and

operating system model. One of the most common approaches is to scale voltage and

clock frequency. This approach is known as dynamic voltage scaling (DVS). Many

commercial processors, including Pentium M, mobile Pentium 4, AMD’s Athlon and

Transmeta’s Crusoe and Efficieon processors, use this approach. These processors allow

software to monitor the activities and adjust the clock frequency and voltage settings

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

accordingly. For example, Transmeta’s Crusue and Efficieon processors use a software

layer known as the Code Morphing Software and a power management unit (LongRun)

to dynamically change voltage and frequency to provide the performance needed by the

application at any moment [2-3]. These are Very Long Instruction Word (VLIW)

processors that require Code Morphing Software to translate multiple x86 instruction

words into a long instruction that maps to multiple functional units. Krishna et al. [4]

proposed a scheduling technique for optimizing voltage and clock frequency by a two-

phase procedure to reduce energy consumption. The offline phase of the procedure

computes the estimated worst case execution time for the tasks, and the online phase

monitors. It adjusts the voltage level to guarantee the duration of all tasks that will not

exceed the worst case time. Another DVS approach is presented in [5]. In this method,

the authors proposed double-sample pipeline latches to adjust clock frequency in the

pipelined processor. An error detection mechanism is needed to decide if error occurs and

a fall-back procedure is needed. Most of the techniques following the DVS approach

require direct control of the power distribution network and clock frequency

management. This might degrade performance.

Many techniques consider manipulation of instruction sequences in the instruction cache

to reduce toggle activities. One popular approach is to compress the instructions with

minimal hardware overhead on the existing Instruction Set Architecture (ISA). Benini et

al. [6] proposed a design of a compressor/de-compressor that is inserted between the

memory and the CPU to pack most frequently used instructions into a shorter format.

This approach saves power by issuing fewer fetch commands to the instruction memory.

A similar method that compresses shorter instructions into 32-bit words is presented in

[7]. The authors used a Finite-State-Machine (FSM) that relies on the Markov model to

make transitions to approximate the compressed code. Each state in the Markov model is

assigned to a specific bit in the instruction word and probability of the transition can be

computed. Since compressing instructions can cause increased toggles on the instruction

bus, the authors proposed a mechanism to invert bits to reduce bit-toggling between

consecutive instruction fetches. Stan and Burleson [8] proposed a similar approach that

deals the bit-transitions on the address bus with a bit-inversion mechanism. In this

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

method, the number of bit transitions with respect to the previous data on the bus is

computed in advance, and the decision is made whether to invert the bits. If the number

of transitions is greater than half the bus width, data is inverted. An additional bit is

attached to indicate an inversion condition. Mamidipaka et al. [9] realized that logic

transitions in large buses are a significant source of power dissipation in embedded

systems. They proposed an address encoding scheme that exploits temporal and spatial

locality in the applications. The encoding scheme employs self-organizing lists to

maintain frequently used data. Considerable power savings were observed for both data

and address buses.

Other approaches in the high level design phase consider modifying program behaviors to

better utilize instructions and memory accesses. One of the methods is presented in [10]

where a heuristic model is used to determine the best design for the data path of the

algorithm. This technique reduces power by three main methods: (/) reusing operands of

the arithmetic modules by rearranging the execution codes in the algorithm, (ii) unrolling

codes in loops and (iii) maximizing parallel execution with common operands. Lee et al.

[11] proposed a method to keep loops compact so that instructions can be maintained in a

small loop cache. This technique utilizes a special class of branch instructions, called

backward branch instructions, to support the small cache design.

2.2. Architecture-Level Power-Aware Design Techniques

Techniques to achieve low power consumption in the architectural design level refer to

methods that incorporate novel mechanisms to the existing architectures to reduce

switching activities in the system. Similar to approaches that minimize bit toggles on the

instruction cache and bus, two approaches that deal with switching activities on data

buses are presented in [12-13], In [12], the authors proposed a methodology to disable

control signals to registers, multiplexers and tri-states to stop data from large data buses.

This technique is based on the Boolean equations of all control signals in the data-path.

The complexity of the control units increases as the logic depth of the data-path

increases. This is a good approach given that a careful analysis is performed to balance

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

the logic depth and the complexity of the control unit. In [13], the authors proposed a

memory-interface architecture that reduces the read-write request commands for video

processing applications. The method exploits the regular memory-accessing patterns to

develop an array address-translation algorithm for microprocessor-based processing. The

first step is to determine the size of the loops in the programs so that data can be arranged

in the memory for more efficient accessing. The pixel values are assigned to locations in

different banks of the memory based on a set of conditions.

Other researchers studied the characteristics of input data and proposed computational

units that can exploit those characteristics to reduce switching activities. Gandhi and

Mahapatra [14] proposed integer functional units that operate on operand sub-words.

This approach exploits the frequently occurring operand sub-words to reduce the

switching activities in the microprocessor. The functional units perform three basic

integer operations: addition, multiplication and multiplexing. The controlling unit detects

sub-words for a special value and generates signals to bypass data within the functional

units when necessary. Benini et al. [15] presented a methodology to replace

combinational logic block with equivalent cells which can be “frozen” by asserting a

controlling signal. This “frozen” unit can eliminate glitches in the combinational blocks

and the “frozen” cell is implemented at the layout level.

A considerable amount of research work has been performed on design methodologies

for low power components of DSP processors [16-22]. DSP applications are

computationally intensive and require massive parallel processing capabilities to support

real-time applications. The issue is that more parallel processing capability means more

power dissipation. In [16], the authors presented an implementation of an FFT processor

core that operates on order-based coefficients. The processing scheme is based on the

minimization of the Hamming distance between successive coefficients that are fed to the

core. The proposed implementation achieves good reduction rate when a smaller number

of coefficients are used. The reduction rate decreases significantly when a large number

of coefficients (512 points) are considered. Wu et al. [17] presented a data switching

scheme based on the dynamic range of input data to achieve a low power design for a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

Multiply-and-Accumulator (MAC). The switching activities are reduced for both Booth

multiplier and adder by selecting an operand with a smaller dynamic range for the Booth

encoding algorithm. The proposed design achieves a reduction rate of 17% to 21% of the

power dissipation.

In [18-20], the authors presented an analysis of the Finite Response Filter (FIR) design

that utilizes the differential coefficients method in the computational procedure. This

approach requires more on-chip storage, but it reduces computations. A larger data set

might have a negative impact on the performance; therefore, a tradeoff study needs to be

considered before implementation. Yu et al. [21] proposed another method to analyze

input data patterns for a possible reduction of dynamic power dissipation in FIR filters.

The main contribution of this work is the reduced representation of the 2 ’s complement

number to avoid sign extension bits. This method has more impact when more data

changes sign between consecutive operations. Many considered the design of arithmetic

units within FIR filters to reduce power dissipation [22-24]. In [22], the authors proposed

a VLSI architecture design of a configurable adder/subtractor and a configurable shifter

be used in the FIR filter instead of multipliers. Alternatively, a segmented scheme for

coefficient decomposition for an FIR core is presented in [23]. The coefficients are

segmented with fixed bit widths to be fed to arithmetic units. This technique replaces a

large multiplication with smaller multiplication and shifter operations. In addition, more

data are packed into a block for simultaneous processing to reduce switching activities. In

[24], the authors perform an architecture analysis to evaluate different standard types of

multipliers to be used in the MAC units for DSP applications. The goal is to study the

trade-offs between power consumption and performance. The authors conclude that the

Booth multiplier is the best candidate for high speed applications with decent power

consumption.

2.3. Logic/Arithmetic-Level Power-A ware Design Techniques

Most of the research work to reduce switching activities is done in the logic and

arithmetic modules. Many researchers have proposed circuit designs to reduce switching

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

activities in computational modules such as multipliers, adder/subtractor units, etc. In

[25], the authors proposed a method to reduce switching activities in combinational logic

design using k-maps to modify logic equations. This technique introduces a large

overhead to spread the terms in the sum-of-products expression into smaller and simpler

expressions. In [26], several different types of adders are analyzed and compared for their

performances and power consumption. In this work, the authors indicated that the adders

proposed in [27-28] have good performances in terms of delay and power consumption.

Design of low-power carry skip adder is presented in [29]. In this method, the authors

divide the adder into variable-size blocks to achieve balance in the delay which helps to

reduce glitches in the adders. In [30], a multiplexer-based full adder design is presented.

The proposed design reduces the number of transistors needed to implement a full adder.

In addition, there is no direct connection to a power-supply which helps to minimize

short-current power consumption.

One of the common approaches in designing low-power multipliers is to partition the

input operands into sub-words so that some of these sub-words can be ignored in the

computational procedure [14, 31-32], The research works presented in [31-32] focus

exclusively on multiplication operations. These approaches also partition the input

operands into smaller sub-words to possibly reduce the number of switching activities. In

[31], the main idea presented is to utilize the identity (-1)2=1 and the sign bits of the

operands of two consecutive multiplications and conditionally exchange the sub-words.

The exchange methodology is not trivial in this approach. In [32], the authors proposed a

decomposition methodology of the operands to utilize shifting operations. Both of these

methodologies reduce switching activities but increase circuit complexity and additional

delay.

Inserting pipelining registers to reduce glitches in computational and arithmetic modules

is also a common approach [33-35], In [33], the authors study the effect of inserting

pipelined registers in the FPGA-based multipliers, and it is proven that the pipelining

technique is a very effective way to reduce glitches. Furthermore, the authors presented

additional pipelining at the bit level for digit-serial multipliers. The effect of a digit-serial

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

multiplier is that it allows a faster clock rate, but throughput is reduced as each bit is

considered serially. The reduction in glitches is modest. The approaches in [34-35] are

similar to [33] where both of these methods consider inserting pipelining stages for

combinational logic blocks. The effect of these methods is the reduction of glitches at the

cost of increased area consumption. Analysis has to be performed to determine the trade­

offs of area and power consumption. An extensive study of the impact of pipelining on

the power consumption in FPGA is presented in [36], The authors concluded that

pipelining can reduce the amount of energy per operation in an algorithm in the range of

40% to 90%.

Approximation methods for logical and arithmetic units are also a very common

approach for reducing switching activities. Approximation methods for multiplications

through truncation of the input operands are presented in [37-39]. In these techniques,

truncation of the insignificant portion of operands is considered to reduce the number of

bits in the multiplication process. Because parts of the operands are ignored in the

multiplication, errors exist in the results. The common idea is to ignore the least

significant bits (LSBs) of the operands because they have low impact on the precision of

the computational results. These methods can reduce as much as 60% of the switching

activities. Another truncation approach for a multiplier is presented in [40]. In this

approach, a right shift operation is performed on the operands in conjunction with

truncation to reduce word-length. This technique requires a sign extension unit to fill in

the most significant bits after the right shifting operation, which might present problems

for large multipliers. Another approximation method is presented in [41] where the

author proposed a subtraction of two’s complement data via variable truncation of the

most significant bits (MSBs). The idea is to detect a block of sign bits that can be

truncated in the subtraction operation of two’s complement data. This, in effect, will

reduce the unnecessary switching activities in the subtractor unit which is mostly due to

the two’s complement transformation and carry bit propagation. The method is designed

and implemented efficiently at the transistor level. Some more designs of low power

adders at the transistor level are presented in [42]. These methods are effective but not

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

very useful for FPGA-based designs because FPGA-based designs are realized through

the use of look-up-tables (LUTs) and flip-flops (FFs).

Transforming input data to a power-efficient format for multipliers is also a common

approach. Fujino et al. [43] proposed a technique to detect a sign change from

consecutive operation in a multiplier. When the condition is detected, data is transformed

to a two’s complement form. The condition in the proposed scheme is determined by the

number of bit changes in consecutive data. This approach requires significant overhead

for a relatively small multiplier. Another approach that manipulates input data before

computation is presented in [44]. In this method, input data is complemented if the

Hamming distance is greater than a predefined threshold. The combination of all input

data and its decision is stored in a look up table. Therefore, this approach is not very

suitable for the design of large multipliers.

The use of registers and latches in the design of multipliers is well studied. For example,

Liu et al. [45] proposed a design of an asynchronous multiplier for low power

consumption [45]. In this approach, the authors presented a split register technique that

partitions the register as master and slave registers to reduce load capacitance for control

wires. Furthermore, asynchronous control signals are utilized in the radix-2 multiplier for

a reduction in the number of glitches. The use of pipeline registers for low power design

of multipliers is presented in [46-47]. In [46], the authors presented the design of a

multiplier with programmable pipeline stages that can be configured for 2, 4, or 8 cycles.

The longer latency is used for non-critical operations in the array multiplier. A similar

method is proposed in [47] where a 2-D pipeline gating technique is used to stop data

from propagating through the pipeline stage when zero bits are detected.

Many researchers have proposed low power techniques for high performance multipliers.

One of the most commonly implemented types of multiplier is the carry-save-adder

(CSA) multiplier. The CSA multiplier is sometimes preferred over other types because of

its regular structure which makes it easier to realize in the prototype implementation.

Many have proposed techniques to reduce the power dissipation of the CSA multiplier

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

[48-51]. In [48], the authors presented a column bypass method in the adder array to

disable blocks of logic when a ‘O’ bit is detected in the operand. A similar approach is

proposed in [49] where each functional unit is integrated with a multiplexer to provide a

bypass path through the column of the array. Both approaches provide improvement with

insignificant overhead to the regular structure of the CSA array. Other researchers

proposed ways to arrange the fast carry save adders to achieve low switching activities in

the multipliers [50-51]. The authors of [50] have studied different arrangements of the

adders in the hybrid multiplier using both carry-save adders and ripple carry adders. In

[51], the researchers proposed a method to integrate the final carry-save adder into an

array structure. All these design methodologies are applied to radix-2 operations.

One of the most widely adopted implementations of the high performance multiplier is

the implementation of the well-known modified Booth algorithm (or radix-4 Booth

algorithm). This algorithm is commonly used because it reduces the number of partial

products; therefore, it can perform the accumulation faster with less switching activities.

Some researchers have proposed simple ways to improve the modified Booth multiplier

including Yu et al [52] and Khoo et al [53]. In [52], a simple modification to the Booth

encoding logic is proposed to increase the probability of a zero in the partial products. Yu

et al. [53] proposed to arrange the carry-save adder array in the most significant bits first

to utilize the sign extension zero-encoding to reduce the switching activities in the array.

Input data manipulation is also very common in the low power design techniques

presented in the literature [54-55]. In these methods, operands are dynamically

interchanged to increase the probability of the zero-encoding property in the modified

Booth algorithm. In [54], the authors proposed methods to evaluate sign changes in

consecutive operations to determine if operands should be interchanged. Chen et al. [55]

proposed a method to compare the two operands for each operation by determining the

effective dynamic range of each operand and deciding to switch operands based on the

comparison result. By using the multiplier operand with smaller dynamic range for Booth

encoding procedure, the partial products have a greater chance to be zero; hence, it

reduces the switching activities. The authors presented an implementation of a parallel

architecture for generating the partial products. The research presented in [56-57] has a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

similar approach to [55]; however, the input data is partitioned into smaller parts to

increase the chances of data interchanging.

2.4. FPGA-Based Power-Aware Design Techniques

The new generation of FPGA devices with more dedicated DSP resources, such as

multipliers and embedded configurable processors is attracting more interest in the image

and video processing market. The increasing capacity and capability of FPGA devices

provide an attractive option for performance-hungry applications in the image and video

processing domain. FPGAs are often used as an implementation platform for image

processing algorithms for real-time applications because of their programmable structure

which can be used to exploit data I/O, spatial and temporal parallelism. Some of the most

current research works that employ FPGA for general image processing algorithms are

presented in [58-60], Draper et al. [58] studied different architecture approaches with

various constraints for image processing algorithms on FPGAs. The authors analyzed the

available compilation technology that can map point, window and globally process in a

high level language to dedicated architecture design for FPGAs. Similarly, research work

presented in [59-60] deal with a mapping technology that can translate an algorithm level

design to a parallel architecture design of real-time applications in the image processing

domain. Results shown in these research works show many difficulties in task realization

of high level image processing algorithms in specific real-time parallel architecture.

Furthermore, general compilation techniques might not fully exploit the inherent

parallelism in specific algorithms.

With increasing capacity, all computational modules can be fitted in an FPGA device that

forms a complete processing system on chip. The integration of more components on a

chip also leads to the issue of heat and power dissipation in FPGA-based designs. In [61-

62], the authors presented different algorithmic-level optimizing techniques to achieve

energy-efficient designs for signal processing applications. These techniques include the

appropriate selection of types of architecture to support parallel processing, methods to

disable computational units when necessary and algorithmic implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

methodologies. Two typical operations, which are FFT and matrix multiplication, in

signal processing applications are used to illustrate the design techniques and to evaluate

the performance. Estimations and low level simulations are used to compute energy

consumption for evaluation. Results reported in [61-62] show significant reduction in

energy consumption when these algorithmic-level optimizing techniques are employed.

Another optimization technique for FPGA-based design is presented in [63]. In this

technique, the author proposed a reprogramming technique to re-map FPGA’s look-up-

tables (LUTs) to balance delay and to reduce glitches. The method analyzes the local

LUTs within a neighborhood and generates Boolean functions for reprogramming the

LUTs without changing the layout of the design.

A comparative study of the impact on logic depth on power consumption in FPGA and

standard CMOS cells is presented in [64], Pipelined registers are inserted in the design of

multiplication using Xilinx, Altera FPGA and standard CMOS cells. While the use of

pipeline stages helps to reduce power consumption in all devices, the relative higher off-

chip power consumption for CMOS devices makes the improvement in FPGA more

dominant. The study of the dynamic power consumption and some basic optimizing

techniques in a Xilinx Virtex FPGA family is presented in [65-66], Similarly, techniques

to reduce dynamic power consumption and low power design options in a new generation

of Altera FPGA are presented in [67-68]. For FPGA devices, all basic optimizing

techniques for CMOS design such as clock gating, pipelining, retiming, voltage and

frequency scaling are applicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Chapter III

POWER-A WARE DESIGN TECHNIQUES FOR MULTIPLIERS

IN VIDEO PROCESSING APPLICATIONS

Previous research works for low power design of arithmetic units were mainly carried out

in the circuit and logic level [25-33, 37-57]. Such research does not consider the data

characteristics in the operands in the design. Since dynamic power dissipation is directly

related to the switching activities of the circuits, it is desirable to consider the

characteristics of the data in the design to reduce power consumption more effectively.

Multiplication is one of the fundamental and most widely used operations in image and

video processing applications. A partitioning and data gating technique for the design of

pipelined multipliers is proposed to reduce switching activities exploiting characteristics

of the input data in video processing applications. FPGA-based implementation and

simulation results of the proposed multiplier design technique are presented in this

chapter.

3.1. Array Multiplier

An array multiplier refers to an efficient layout of interconnected topology for

combinational processing modules to perform vector multiplication. One of the most

well-known array multipliers is the carry-save-adder (CSA) array multiplier. Carry save

adder is one of the widely used adder designs for fast arithmetic, which is desirable for

video processing applications. The layout of the CSA array multiplier makes it a

preferred choice for implementation in FPGA due to its regular structure. The drawback

of this design is that the carry bits are propagated through all stages of the array

multiplier. Hence, the propagated carry bits generate more switching activities and

thereby more power is dissipated. Architecture of a 4x4 CSA array multiplier is shown in

Figure 3.1 where each PE consists a full adder (FA) and an AND gate. Other array

multipliers include ripple carry, Braun, and Baugh-Wooley array multipliers [69].

Pipeline stages are inserted in the array multipliers to reduce switching activities due to

long propagation delays in the array layout.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PE PE PE PE

PEPE PE PE

PE PE PE PE

PE PE PE PE

Ripple Carry Adder

PoP7 P4 P3P 6 Ps P2 P i

(a) 4x4 CSA multiplier architecture.

FA

Cin: Carry-in bit
Coui: Carry-out bit
S in: Sum-in bit

Soui: Sum-out bit
FA: Full adder

(b) Processing element (PE) in CSA multiplier.

Figure 3.1. CSA array multiplier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Some of the previous research to reduce power consumption in array multipliers includes

data bypassing and signal gating techniques such as those presented in [48-49, 70], In

data bypassing techniques, the common approach is to provide a bypassing route to the

next level in the array through a multiplexer or a latch when a ‘0’ bit is detected in the

operand. An example of such a bypassing concept is illustrated in Figure 3.2. This

approach in general requires more overhead since a bypassing mechanism has to be

included in each processing module.

PEPE PE

PE

PE

PE

PEPE

PE

PEPEPE

Ripple Carry Adder

yo

x0
0

X1

x2

x3

P? Pe Ps P a Ps P2 P i Po

Figure 3.2. Bypassing concept for a 4x4 CSA multiplier.

For the signal/data gating approach, when a gating signal is active, the output port of the

logic block maintains the current data; hence, no transitions occur. The gating technique

is generally used as a mechanism to stop unnecessary switching in the sign extension part

of the two’s complement data [70]. The gating technique can also be applied to pipeline

registers to stop unwanted data from propagating through stages. One such approach is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2

proposed in [47]. A block diagram for illustrating the concept of gating pipeline stages

4.3 and that for the 2-D gating of individual registers is shown in Figure 3.4.

Dataclock

Gating Signal
Pipeline stage 1

Processing Module

Gating Signal
Pipeline stage 2

Processing Module

Gating Signal
Pipeline stage 3

Figure 3.3. Block diagram of 1-D gating technique for a pipelined multiplier.

Inserting pipelining registers in parallel array multipliers is a widely used technique to

reduce glitches due to imbalance in layout of the interconnected topology. The proposed

multiplier design uses this approach as a baseline design for gating technique based on

characteristics of the input data patterns. Pipelining is particularly beneficial for FPGA-

based design since logic elements of FPGA devices have embedded flip-flops which can

be used without high overhead penalty. Furthermore, inserting pipeline stages in the large

array multiplier circuits reduces propagation delays which results in increased operating

clock frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3

clock
Gating Signal 1
Gating Signal 2
Gating Signal 3

Data

Reg Reg Reg Reg Reg Reg

Processing Module

£
§ 3 e g

1
Reg Reg

\ / \
Reg

/ N /

Reg

\ /

Reg Reg a
Processing Module

- ^ e g Reg Reg Reg Reg Reg Reg W]
Figure 3.4. Block diagram of 2-D gating technique for a pipelined multiplier.

3.2. Recoding for Parallel Multiplier

Recoding a multiplication operand is a popular approach for high performance because

that reduces the number of partial products (PPs). The most common recoding technique

is the Booth algorithm, which does not generate PP for a group of consecutive 0 ’s or l ’s.

The basic radix-2 Booth multiplication algorithm evaluates two bits at a time and

generates a PP that is one digit of the set {-1, 0, 1} multiplying with the multiplicand. For

example, let P be the result of the multiplication of a multiplier X and the multiplicand Y

where X and Y are represented in two n-bit two’s complement numbers as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

* <3 1 >
i=0

y = -y„-, 2- ' f i y,2‘ (3.2)
<=0

The recoding scheme for radix-2 Booth algorithm is shown in Table 3.1.

Table 3.1. Recoding scheme for radix-2 Booth algorithm.

Xi Xi-l PP

0 0 0

0 1 Y

1 0 -Y

1 1 0

where i - 0,1,2, ,n .

The radix-2 Booth multiplication algorithm works quite well if multiplier X has a group

of consecutive 0’s or l ’s. For instance, if X=“00111110”, then the Booth algorithm will

only generate two PPs instead of five as in conventional multiplication. However, if the

multiplier X has isolated l ’s, the algorithm becomes inefficient. For example, if

X=“01010101”, then eight PPs are generated instead of four as in the conventional

approach. The problem can be addressed with radix-4 Booth multiplication where three

bits are used for the recoding scheme. The basic radix-4 Booth multiplication algorithm

evaluates three bits at a time and generates a PP that is one digit of the set (-2, -1, 0, 1,2}

multiplying with the multiplicand. Radix-4 recoding scheme can reduce up to half of the

PPs compared to the radix-2 method. The recoding scheme for radix-4 Booth

multiplication algorithm is shown in Table 3.2. For discussion, an n-bit multiplier is

considered, and n is an even number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5

Table 3.2. Recoding scheme for radix-4 Booth algorithm.

X2i+1 X 2i X2i-1 P P

0 0 0 0

0 0 1 Y

0 1 0 Y

0 1 1 2 Y

1 0 0 - 2 Y

1 0 1 - Y

1 1 0 - Y

1 1 1 0

flwhere / = 0,1,2,........ 1.
2

Many techniques have been proposed to modify the Booth multiplier design to achieve

low-power dissipation [43, 52, 56, 57]. These techniques include new recoding schemes,

bit inversion, dynamic range detection and operand switching and efficient layout of

parallel adders. One of the effective methods is the one that computes the dynamic ranges

of the operands and uses the operand with smaller dynamic range for the multiplier. This

effectively increases the chance for more PPs to be zero. When a PP is zero, an

appropriate controlling sequence is activated to reduce switching activities in the

multiplier circuit. The block diagram for this approach with a dynamic range detection

(DRD) unit presented in [57] is shown in Figure 3.5. In this approach, two register stages

(master and slave) are used before the Booth encoding step to support data switching. A

sign extension unit is used to align the sum of all the partial products to match the

number precision used in the systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6

X Y

DRD unit

Slave FF

Booth decoders

Adder tree

Sign extension unit

P

Figure 3.5. Multiplier with DRD unit proposed in [57].

3.3. Partitioning and Gating Technique for Multiplier Design for Video

Processing Applications

While existing design techniques usually focus on the bit-level of the multiplier structure

or interconnect topology, most of these techniques do not take into account the data

characteristics of the application data. Since power consumption is directly related to the

switching activities of the processing systems, it is intuitively logical to consider data

characteristics in the multiplier design for reduced switching activities. While data in

image processing applications may have large dynamic ranges, one operand of the

multiplication frequently has small magnitudes in data representations. This characteristic

occurs fairly commonly in window-based operations such as digital filtering operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7

These are some of the most frequently used operations in image and video processing

algorithms. The data characteristics of these operations are that magnitudes of the filter

coefficients are usually small and dynamic ranges of the pixel values within a

neighborhood block are small. To illustrate the exploitation of this characteristic, a

multiplier design that partitions the operands into smaller parts by which the

computations can be performed with multiple smaller multiplier units is proposed. With

this approach, one or more smaller multipliers, adders and supported modules can be

deactivated when the special conditions such as a zero or a one in input data is detected.

Let’s consider the multiplication of 2 n-bit numbers X and Y, the partitioning process of

the operands in the multiplication P= XxY into m-bit higher and (n-m)-bit lower parts is

described as:

P = X x Y (3.3)

P = (X h x 2 ' + X l) (y„ x 2"+Yl) (3.4)

P = (x „ x Y Hx 2 ‘") + (X llx Y L + X LxYH)2" + X LxYL (3.5)

where,

X x„_2,.xn_3,....,x0)

Y = {yn-vyn-2’yn-3’- - ^y 0)

X - H = (X n - l ’ X n - 2 ' ’ X n - 3 ’ " ' - ’ X m)

= { X m - l ’ X m - 2 ’ X m - 3 ’ - - - - ’ X o)

~ (^n-1’ 3^-2’ yn-3 >"">)

^ = (y»-i.ym-2.y„-3.—.yo)

The main approach is to detect a zero in each of these partitioned data parts, namely Yh,

Yl , Xh and XL, and to disable the appropriate multiplier units. In [71], the authors

proposed an architecture design for partitioning data into halves and employing a clock

gating technique to disable input and output registers that are connected to the

multipliers. This method is illustrated in Figure 3.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8

Yh Yl

Xh XL

XlYl

XlYh

+
XhYl

XhYh

(a) Multiplication with partitioned data.

Y
'n

Reg

/ 'n/2 /
m/2

\ / \ /

Reg |-| Reg

/
V

'n 12 /
/ V

m / 2 /
/ S

0
4 m / 2

/

Reg

/n/2 m/2

XhxYw XhxY XlxYh Xi xYi

Shift and add

(b) Gating technique for individual smaller multipliers.

Figure 3.6. Partitioning method for multiplier design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 9

In the proposed design technique, in addition to partitioning the data into smaller parts to

increase the chance of obtaining smaller operands to be zero, the data characteristics of

the filter coefficient operands with smaller magnitudes is also utilized in the design. In

addition, the gating technique is also applied to the subsequent adder stages in the

pipelined multiplier design. While the partitioning method can be employed with

different word-lengths, operands are partitioned into halves for discussion here. That is

m-n/2. One of the design goals is to provide a standard I/O interface such that the

multiplier can be connected to any system without pre-conditions. So, the full-width

input/output data interfaces are used. The partitioning mechanism is considered as part of

the multiplier design. Considering multiplications in image filtering operations, let’s

consider X ’s to be the pixel values and F s to be the filter coefficients. Initially, zero

conditions are detected in both Xh and XL of the pixel values. The gating signals zxn and

Z x l are set to logic ‘V if Xh and Xi are zero respectively. The signals z x h and zxi. are

generated based on:

Z x n X n - \ ' X n - 2

“XL ' X m - l ' X m - 2

/
X -

/
• Xn - 3 m

/ /

i U) • • • * 0

(3.6)

(3.7)

Since most of the coefficients in different filter kernels have small magnitudes, detection

of zero and one conditions in the higher half of the coefficient Y is performed. Conditions

of one are not considered for X because the pixel values vary from different images

captured under different environments. Two conditions in the Yu operands are considered

in the gating technique. These conditions set the gating control bits to logic ‘ 1 ’ when an

input is zero or one is detected. The gating signals z y h and o Yh are generated as:

t™P = y'n-l-yn -2 -y'n-l.... -y'm+l (3 -8)

zm = tmp • ym (3.9)

oYH = tmp • ym (3.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 0

There are many ways to implement gating logic that prevents data from propagating

through the depth of the data paths. The simplest way is to use the basic AND gate, and

set the control signal to ‘0’ when data is not needed. This approach is simple, but the

switching to ‘O’ still has the effect on the subsequent computational modules that might

toggle unnecessarily due to this condition. Another way to implement gating logic is to

insert a latch or a register to hold the data if a control signal to turn it off is given. This

approach prevents unnecessary switching activities to the downstream modules. The

disadvantage of this method is the overhead and additional latency. Other common

approaches to implement the gating technique include the use of a tri-state buffer and a

transmission gate instead of a latch or a register. For these two approaches, the main

concern is the charge leakage and large current that may occur. Since FPGA devices

provide embedded flip-flops within logic elements, the latch and register implementation

is used in this research work.

The circuits for detection of z x n , Z x u Z y h and o y h are shown in Figure. 3.7. Figure 3.8.

shows the architecture design for a pipelined multiplier which utilizes the partitioning and

gating technique based on the characteristics of the multiplier operands. The smaller

multipliers can be implemented with conventional multipliers such as CSA array

multiplier or Booth multiplier. The gating signals Ixhyh, Ixhyl, Ixlyh and Ixlyl shown in

Figure 3.8. are determined based on the input data patterns and the expressions for

generating these signals are:

IxHYH

IXHYL

IxLYH

IxLYL

_ / / /
— ZXH ' ZYH ' °YH (3.11)

= ZXH (3.12)

_ / / /
~ zxl ' Zyh ' ° yh (3.13)

= %XL (3.14)

Each of the smaller multiplier units in Figure 3.7 are implemented as CSA array

multiplier or Booth multiplier in the experiments. Since previous research has shown that

multiplications in radix-4 consume less power than multiplication in radix-2, a radix-4

Booth multiplier design is considered in this section. The proposed design is based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

standard three signal recoding scheme and gating signals are generated based on the

conditions shown in Table 3.3.

ZxnX _

O y h

Z X H .
Z y h -
O y h - > I x h y h z x h - T > — I x h y l z y h -

O y h -
IXLYH Z x t - $ > - l x i Y L

Figure 3.7. Circuits for generating gating signals.

e lk —

Pattern
Detection

and
Signals

Generation

Ix h y h Ix h y l •XLYH 'XLYL

a l ig n

& s h if t

6:1 Multiplexer

P=XY

Figure 3.8. Proposed design of the pipelined multiplier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 2

Table 3.3. Recoding scheme for the proposed n-bit radix-4 Booth multiplier.

X2i+1 X 2i x 2i-l PP zero two neg

0 0 0 NC 1 0 0

0 0 1 Y 0 0 0

0 1 0 Y 0 0 0

0 1 1 2 Y 0 1 0

1 0 0 -2 Y 0 1 1

1 0 1 -Y 0 0 1

1 1 0 -Y 0 0 1

1 1 1 NC 1 0 0

NC: no change

The expressions for the three signals zero, two and neg are:

zero, = [x1M • 4 • 4 _ x) + (x2i+i ■ x2i ■ x2w)

twoi = (x 2, © x2i_,) zero

negi =(x2i-x2i_l) -x2M

(3.15)

(3.16)

(3.17)

The circuits to generate these signals are shown in Figure 3.9.

zero
x2i

*2M
zero

two
Xsi -
X21-1—
X2,+ l-

neg

Figure 3.9. Circuits to generate recoding signals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 3

These signals are used in the gating technique that is incorporated in the proposed Booth

multiplier design. The architecture of an 8-bit Booth multiplier design is shown in Figure

3.10. The shifting («) and sign extension (ext.) modules are provided for illustration

only since these operations can be done by bus shifting. The complement unit (comp) is

used to invert all bits in the input data when at least one of the ‘neg’ signals is active. The

expression for the complement operation of an n-bit input number Y is:

compi = n eg @ yj fo r / = n - T , n - 2 , n - 3 , ,0 (3.18)

The circuit for the complement unit is shown in Figure 3.11. The correction unit is used

to adjust the negative PPs. When a negative PP is produced, it is generated by the

complement unit (comp), and the correcting term is added with the correction unit. The

correction terms (CT) generated for different possible combinations of neg signals are

listed in Table 3.4.

Table 3.4. Correction terms used in the proposed Booth multiplier.

neg3 neg2 CT neg! nego CT

0 0 0 0 0 0

0 1 16 0 1 1

1 0 64 1 0 4

1 1 80 1 1 5

While pixel values are always positive numbers, filter coefficients might be negative

numbers in many applications. The use of two’s complement (2C) numbers is most

common in digital systems because addition of signed numbers is a straightforward

operation. However, for multiplications, sign bits in the number representations may be

dominant parts which would propagate through the multipliers; hence more switching

activities are performed. There has been a lot of research that uses sign magnitude (SM)

representation to reduce switching activities for multiplications [72, 73]. In general,

numbers represented with SM have a lower switching rate than numbers represented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 4

2C especially for multimedia applications [12]. In the proposed design, the I/O interface

is implemented with two’s complement representation and multiplication is performed

with sign magnitude representation. Thus, the approach is to include a 2C-to-SM

converter at the input for the multiplicand Y only because pixel values X will always be

positive numbers. Then, the result P is converted back to 2C by a SM-to-2C converter

before it is outputted. This procedure is illustrated in Figure 3.12.

Y=multiplicand

zeroo
comp

zero,

z&roi zeroozero3 zero2

zeroo,

zeror
ZQfOz

zero3
zero 2

zerofzeroo

zero,-
zeroo correctioncorrection

zero2i
16

P

Figure 3.10. Proposed design of the 8-bit Booth multiplier.

Figure 3.11. Circuit for the complement unit (comp).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 5

X

i .
Reg

' n

Y

Reg

sign 2C-SM
converter

n-1
w \

Mult

/ N f

iplier

sign
\/ >

'2n-1

SM-2C
converter

l 2 n
P

Figure 3.12. Schematic of the multiplication operation with SM representation.

3.4. Experimental Results

The proposed design for a partition and gating technique based on data characteristics is

implemented and applied with two standard multiplier designs: (1) pipelined CSA array

multiplier (CSA) and (2) radix-4 Booth multiplier (Booth). These two multiplier

implementations are used as baseline schemes for evaluation purposes. The proposed

CSA array and Booth multiplier designs with consideration of data characteristics are

referred in the evaluation as CSA_PG and Booth_PG respectively. In addition, two’s

complement and sign magnitude representations for the proposed Booth multiplier design

are also studied. Booth_PG2C refers to the proposed design which uses two’s

complement representation while Booth_PGSM refers to the proposed sign-magnitude

Booth multiplier. These design schemes are implemented in VHDL using Altera’s

Quartus II design tool. The designs are fitted and evaluated in a Cyclone II (2C35) FPGA

in the Altera’s DE2 developmental and educational board. A summary of resource

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 6

utilization and maximum speed achieved from the implementation along with latency for

each design is provided in Table 3.5.

Table 3.5. Implementation results with various multiplier designs with Altera’s FPGA.

Scheme Logic elements Fmax (MHz) Latency

Array CSA 174 257 3

multiplier
CSA_PG 193 202 4

Booth Booth 243 184 4

multiplier
Booth_PG2C 291 153 4

Booth_PGSM 308 140 5

Two other existing and related Booth multipliers are implemented and evaluated for

comparison of power consumption with the proposed multiplier designs. The first related

design [55] considers the dynamic range of the input data and switches the multiplier and

multiplicand if conditions are met. This design is referred to as Booth_DRD in this

evaluation. The second related research work [57] also considers the dynamic range of

the data. In addition, the operands are partitioned into 2 sub-words to increase the chance

of a zero partial product [56]. This approach is referred to as Booth_DRDPAR. A 12x12

multiplier is designed and implemented for each scheme. Multiplications for two image

filters are considered in the evaluations. The two filters are: (1) a low pass filter with a

Gaussian kernel and (2) a Laplacian filter for edge detection. Pixel values are extracted

from the test images and fed to the multiplier while filter coefficients are connected to the

multiplicand. Simulation tools from Altera Quartus II software are used, and logic

transitions are recorded to the Signal Activity File (SAF). The SAF file is used in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 7

PowerPlay tool to corhpute the dynamic power consumption of the designs. Power

consumption for pipelined CSA array multiplier (CSA) and the proposed pipelined CSA

array multiplier with a partitioning and gating technique (CSA_PG) for a low pass filter

and Laplacian filter is shown in Tables 3.6 and 3.7 respectively. The power consumption

in these experiments is measured at 50MHz. The two test images used to extract pixel

values for the multipliers are shown in Figure 3.13.

(a) Peppers (128x128 resolution).

(b) Island (160x106 resolution).

Figure 3.13. Test images.

As shown in Tables 3.6 and 3.7, the results for CSA_PG improve the power consumption

of the CSA multiplier considerably. The proposed technique achieves more than 17%

power reduction in the smoothing operation. For the edge detection operation, the

proposed partitioning and gating technique for a CSA multiplier achieves 14% and 12%

power reduction for the two test images. Results for CSA_PG in smoothing operations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 8

(Gaussian kernel) are better compared to those in edge detection operations (Laplacian

kernel). This is due to sign changes in the kernel of the second application. Sign changes

in the coefficients propagate through the entire sign extension part in the binary

representation of the data.

Table 3.6. Experimental results for a Gaussian filter for array multiplier.

N. Test Image Peppers (128x128) Island (160x106)

Method
Power
(mW)

Normalized
ratio

Power
(mW)

Normalized
ratio

CSA 40.73 1.00 38.56 1.00

CSA_PG 32.99 0.81 32.01 0.83

.Table 3.7. Experimental results for a Laplacian filter for array multiplier.

n. Test Image Peppers (128x128) Island (160x106)

Method N.
Power
(mW)

Normalized
ratio

Power
(mW)

Normalized
ratio

CSA 33.47 1.00 35.57 1.00

CSA_PG 28.78 0.86 31.27 0.88

The power consumptions for pipelined Booth multiplier (Booth), Booth multiplier with

dynamic range determination (Booth_DRD), Booth multiplier with partition and dynamic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 9

range determination (Booth_DRDPAR), the proposed two’s complement Booth

multiplier with partitioning and gating technique (Booth_PG2C) and the proposed sign

magnitude Booth multiplier (Booth_PGSM) with partitioning and gating technique for

low pass filter and Laplacian filter are shown in Tables 3.8 and 3.9 respectively. For the

smoothing operation, both the proposed Booth_PG2C and Booth_PGSM multipliers

achieve significant power reduction that ranges from 16% to 28%. For the edge detection

operation, the proposed Booth_PG2C and Booth_PGSM multipliers achieve a power

reduction in the range of 10 to 18% compared to the baseline design. For this operation,

the design of sign magnitude representation achieves better results than the design with

two’s complement representation due to the sign changes in the kernel coefficients. In

both operations, the proposed multiplier designs have favorable results compared to other

existing methods as shown in Tables 3.8 and 3.9.

Table 3.8. Experimental results for a Gaussian filter using Booth multiplier.

\ v Test Image Peppers (128x128) Island (160x106)

Method
Power
(mW)

Normalized
ratio

Power
(mW)

Normalized
ratio

Booth 31.82 1.00 28.42 1.00

BoothDRD 25.71 0.81 24.74 0.87

B ooth_DRDP AR 29.76 0.94 29.01 1.02

Booth_PG2C 23.19 0.72 21.35 0.75

Booth_PGSM 24.51 0.77 23.82 0.84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 0

Table 3.9. Experimental results for a Laplacian filter using Booth multiplier.

\ . Test Image Peppers (128x128) Island (160x106)

Method n.
Power
(mW)

Normalized
ratio

Power
(mW)

Normalized
ratio

Booth 27.31 1.00 30.32 1.00

BoothDRD 30.67 1.12 32.72 1.09

Booth_DRDPAR 31.35 1.15 34.00 1.12

Booth_PG2C 24.64 0.90 25.80 0.85

Booth_PGSM 23.09 0.85 24.85 0.82

3.5. Summary

In this chapter, we have developed, implemented and evaluated a power-aware design

technique that integrates the partitioning and gating methods to reduce switching

activities in digital circuits. Image and video processing applications such as digital

filtering have special characteristics such that the magnitudes of the coefficients in the

filters are usually small. The proposed power-aware design technique employs the

partitioning of the multiplier operands so that smaller multipliers are used. When the

special condition such as the higher order part of one of the operands is zero or one, the

corresponding multiplier and its data path are disabled by the gating technique. The

proposed partitioning and gating technique is applied to the pipelined CSA array

multiplier. The evaluation results show an average 18 % and 12% power reduction for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 1

smoothing operation and edge detection operation respectively when compared to the

baseline CSA array multiplier.

A design of radix-4 Booth multiplier that incorporates the partitioning and gating

technique in the recoding scheme has also been presented in this chapter. Design of a sign

magnitude Booth multiplier with the proposed partitioning and gating technique has been

presented. Simulation results show that both Booth_PG2C and Booth_PGSM achieve

good power reduction compared to the baseline designs and other existing techniques.

The Booth_PG2C multiplier design achieves better power reduction in smoothing

operation while the Booth_PGSM has better results in the edge detection operation. The

Booth_PG2C multiplier has an average of 44% power reduction compared to the baseline

CSA multiplier and 26% power reduction compared to the baseline Booth multiplier for

smoothing operation. The Booth_PGSM has an average 30% power reduction compared

to the baseline CSA multiplier and 18% power reduction compared to the baseline Booth

multiplier for edge detection operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Chapter IV

DESIGN OF LOGARITHMIC DOMAIN ARITHMETIC UNITS

FOR LOW POWER CONSUMPTION

In recent years, there has been increased interest in employing logarithmic number

systems (LNS) for multimedia applications in handheld devices [74-75]. Multimedia and

signal processing applications frequently use complex arithmetic operations such as

multiplication, division, powering, etc. LNS offer an alternative to calculate equivalent

computations with much simpler arithmetic operations. However, computations in the

logarithmic domain suffer some loss of accuracy. For signal processing applications that

can tolerate a small amount of error, logarithmic arithmetic can simplify many complex

computations. Table 4.1 shows some of the equivalent computations with normal (linear)

and logarithmic arithmetic operations.

Table 4.1. Operations in normal (linear) binary and logarithmic domains.

Operations Linear domain Logarithmic domain

Multiplication xXy log(x) + log(y)

Division x - y log(x)-log(y)

Powering xy yxlog(x)

Logarithmic arithmetic modules also have advantages over the modules in linear and

fixed-point systems in terms of area, delay and power dissipations. Paliouras et al. [74]

have shown that computations in LNS reduce bit activities significantly compared to

fixed-point systems. In [75], the authors show that LNS is an attractive alternative for

arithmetic modules in handheld devices due to the low utilization of area and power. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 3

this chapter, an improved approximation method for computation of binary logarithm that

can be used to compute complex operations such as multiplication and division with

reduced area and power consumption is proposed. An efficient architecture design for the

log2 and inverse- log2 approximation and a log-based multiplier design are presented.

Partitioning and gating technique are also applied to the proposed log-based multiplier

design for reduced power consumption.

4.1. Approximation of Binary Logarithm

The logarithm of different bases can be obtained from the logarithm of base two with an

additional multiplication operation. The logarithm of base two can be calculated with

existing techniques such as look up tables, successive iterations, series expansions and

polynomial approximations. However, these algorithms are costly in terms of

computational complexity and hardware resources. The algorithm presented in this

section utilizes a binary numeric system to logically compute log2 and inverse-log2

(power of 2) values in a very efficient procedure. By providing an approximation

technique for computing log2 and inverse log2 , the complicated and computationally

intensive tasks such as logarithm, division and powering operations can be closely

approximated by simple operations such as additions, subtractions, multiplications and

shifting.

The approximation method based on the idea of locating the index of the leading ‘1’ bit

in the binary number was first proposed by Mitchell [76]. The index is actually a

weighted factor corresponding to a bit position in the polynomial form of a binary

number; therefore, it is in decreasing order from left to right. The index of the leading ‘ 1 ’

bit in the binary number is interpreted as the integer part of the logarithm result and the

remaining bits after the leading ‘1 ’ bit are considered as the fractional part of the result.

Consider a fixed point number N that is in the interval 2J < N < 2k+l where k > j , N can

be expressed as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 4

N = (nk,nk_v , n ^ v n})

N = t? n i

(4.1)

(4.2)
l = J

where n,= ‘0 ’ or ‘1’. If we assume the most significant bit is as a ‘1’, then we can re-write

equation (4.2) as:

N = 2k l + E ^ n ,
V i=i

(4.3)

k -1
Let the term J] 2' kni = F , then F is in the interval 0 < F < 1 since k > j and N is:

N - 2 k (1 + F) (4.4)

Then, log2 (A0 is:

l°g 2 (N) = k + log2 (1 + F) (4.5)

The approximation method that Mitchell proposed in [76] is expressed as:

10 g2 (N) m =k + F (4.6)

So, the error due to the approximation method can be described as:

Errm = log 2 (l - F) - F (4.7)

The maximum error occurs when the fractional part F is 0.5. For example, if the integer

number N=6 , the binary representation for N would be 110. Using the approximation

method described above, the index for the leading ‘1 ’ bit (most significant ‘1 ’ bit) would

be 2 and the fractional part in binary would be 0.10 or 0.50 in decimal; therefore, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 5

result log2(N) obtained by the estimation method is 2.50. The actual value of log2 (6) is

2.5850, so the error is about 0.0850. The approximation concept is illustrated in Figure

4.1 where an 8 -bit number N is equal to 254. Using the index locating mechanism, the

integer part of the log2 (N) is extracted as 7 and the remaining bits “1111110” are

appended to the result as a fractional part as shown in Figure 4.1. For this example, the

approximated log2 (/V) is equal to 7.98438 in decimal whereas the actual value of log2 (A)

is 7.98868; hence, the error is approximately 0.00430 as illustrated in Figure 4.1.

N=

index

1 0

111
integer part k

1 0

Actual log2(N)=7.98868

1111110 =7.98438
fractional part F Error=0.0043C

Figure 4.1. An example to illustrate the concept of log2 approximation method.

Similarly, the inverse log2 can be found based on the approximation technique. The

approximation method for inverse-log2 implements the reverse-procedure of the log2

approximation where the integer part of the input number is interpreted as the index for

the leading ‘1 ’ bit in the result and the fractional part is appended to the result after the

leading ‘1’ bit. Figure 4.2 shows the approximated curve obtained from the Mitchell’s

method and the actual curve (obtained by Matlab program) for the log2 of an integer N.

As shown in Figure 4.2, the approximation method has no error when the number A is a

perfect power-of-two number such as 128 and 256. The maximum error of the binary

logarithm approximation method occurs at the mid-point between the two consecutive

power-of-two numbers such as 192. Correction methods for the binary logarithm

approximation method are investigated in the next section. The approximated inverse log2

curve and the actual inverse-log2 (or 2N) curve (obtained by Matlab program) input an

number N are shown in Figure 4.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Po
w

2(
N

)
Lo

g2

(N
)

46

Actual and Mitchell's Approximated Log2{N)

8.2

Actual

Mitchell

7.4

6.8
120 140 160 160 20Q 220 240 260

N

Figure 4.2. Actual values and Mitchell’s approximated values of log2 (./V).

Actual and Mitchell's Approximated Pow2(N)
80

70

60

SO

40

30

5 S.2 5.6 5.8 6.2
N

Figure 4.3. Actual values and Mitchell’s approximated values of inverse-log2 (A/).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 7

4.2. Error Correction for Binary Logarithm Approximation

While Mitchell’s method provides a fast and efficient way to compute log2 (A0 , it also

introduces a large error range, which is 0 < Errm < 0.08496. The error percent

ErrPercentMit is in the range of 0 < ErrPerUit < 5.3605. Many correction methods have

been proposed to improve Mitchell’s approximation technique. These methods include

operand decomposition and look-up table (LUT) based and region-based approaches [77-

81]. Mahalingam et al. [77] proposed an operand decomposition method to improve the

accuracy of Mitchell’s method in multiplication operations. This approach requires the

generation of four intermediate numbers and performs Mitchell’s approximation for each

of them before summing the results. Two inverse-log operations are required before the

final adder for the multiplication result. In addition, to achieve significant error reduction,

one of the correction methods is needed to combine with this operand decomposition

approach. A LUT-based approach achieves good correction results but the drawback is

that it needs large storage overhead [78]. The region based correction approaches are very

effective with low overhead [79-81].

In [79], Hall et al. proposed a method to divide the fractional parts into four sub-intervals

and use different correction coefficients for each sub-interval. The correction coefficients

are obtained from trial and error techniques. The four correction equations for four sub­

intervals are:

l°g2a + F)„ „ , = F + 2 L F + 2 _ for F e [0.00,0.25) (4.8)

log2a + F) „ = F + ^ F + i , for F e [0.25,0.50)

l°g2d + F) „ = F + ^ - F '+ ^ - for F e [0.50,0.75)
64 32

(4.10)

(4.9)

log2(l + F)Hall= F + ~ F ' for F e [0.75,1.00) (4.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 8

where F ' = (l - F) . This approach reduces the error percentage ErrPercentnaii to a

fraction within the range of -0.7812 < ErrPerHall < 0.1258.

SanGregory et al. [80] proposed a method that divides the fraction into two sub-regions

that use a straight line with increased slope in the upper half and a straight line with

decreased slope in the lower half. The slopes of the lines are adjusted such that the

midpoint of each line intersects with the actual log2 (AT) curve forcing the error to be zero

at the midpoint. This correction method reduces error percent of Mitchell’s

approximation method within the range of -1.5403 < ErrPerSanGreg < 0.4314.

Abed and Siferd [81] presented another region-based approach to compensate for the

error in Mitchell’s approximation method. In this method, the authors proposed

correction equations for different sub-intervals. While Hall et al. use all the fractional bits

in the correction procedure, Abed and Siferd use three or four most significant bits in

their correction equations. The equations for a two-region correction strategy are:

log2(l + F) , , „ = F + - j - F „ „ for F e [0.00,0.50) (4.12)

log2a + n ^ = f ' + i l v M for F e [0.50,1.00) (4.13)

where F' = 1 - F - -1 1 3 MSB3 MSB j m o o q

<v
This correction method reduces the error percentage of

Mitchell’s approximation method within the range of -0.9299 < ErrPerAbed2 < 0.5544.

Similarly, Abed and Siferd proposed another correction method with consideration of

three sub-regions. The correction equations for these three sub-regions are:

log2(l + F) , w = F + i / 4„ , for F e [0.00,0.25) (4.14)

log2(l + F) , „ = F + i + J - for F e [0.25,0.75) (4.15)
4 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 9

log2(l + F) Abed= F + ± F ; MSB for F g [0.75,1.00) (4.16)

where F'msb =
r 1 '\

. This correction method reduces the error percentage of\ - F - J -1 1 4 MSB , s;16v AU/

Mitchell’s approximation method within the range of -0.4314 < ErrPerAbed3 < 0.2684.

4.3. Proposed Error Correction for Binary Logarithm Approximation

The proposed method to correct error due to the approximation technique for binary

logarithm is similar to the previous region-based approaches. As discussed in the

previous section, no error due to Mitchell’s approximation occurs for power-of-two

numbers such as four, eight etc., and the maximum error occurs at mid point between two

consecutive power-of-two numbers. The proposed method considers the maximum error

which occurs in Mitchell’s approximation technique as the starting correction coefficient.

To reduce arithmetic operations, a coefficient is chosen such that the correction

procedure can be performed with a small number of inversion, shifting and addition

operations. The general expressions for the correction method with consideration of all

the bits in the fraction F are:

F = (U U f . , , / ,) (4.17)

log2(l + F) , „ = F + F , „ 1 (4.18)

(4.19)

F , ' = (0 , ©/ . , 9 f j) (4.20)

As shown in equations (4.17) to (4.20), this approach requires (j-1) XOR operations for

bit inversion when the most significant bit (MSB) /_, of the fraction F is ‘1’. The

correction procedure has two shift operations and two add operations. This correction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 0

method reduces the error percentage of Mitchell’s approximation method within the

range of 0 < ErrPerpml < 1.4154.

Next, bit f _2 of the fraction F is considered to further reduce the error in the

approximation method. The expressions for this approach which considers two bits in the

fraction to generate correction terms are:

This method requires the same number of operations as in the previous method when the

bit / . j is considered. Furthermore, additional (j-2) XOR operations for bit inversion

when bit f _2 of the fraction F is ‘1 ’, two shift operations and two add operations are

required. This correction method reduces the error percentage of Mitchell’s

approximation method within the range of -0.0441 < ErrPerpm2 < 0.5743.

The error percentage curves of the Mitchell’s approximation method and the two

proposed methods are shown in Figure 4.4. The errors of the proposed correction method

are generated for 1 0 0 0 0 consecutive numbers and the numbers are shown in log scale in

Figure 4.4. With the 1-bit consideration for region division, the proposed correction

method reduces error range by more than 84% compared to that of the baseline Mitchell’s

approximation method. Similarly, the correction method that considers two bits for

region division achieves more than 8 8 % error reduction compared to the baseline

approximation method.

log2(l + F) pro = F + Fprol + Fpro2 (4.21)

(4.22)

(4.23)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Error Percentage for Mitchell (blue), Proposed-1 bit(red) and Proposed-2 bit(green)

Mitchell
Pro1-bit

P ro -b it
Mitchell’s method

Proposed 1-bit correction
Proposed 2-bit correction

Value N

Figure 4.4. Error percent curves of Mitchell’s and proposed methods.

Table 4.2 provides a summary of error percentage peak, ranges and mean square error

percentage (MSEP) for Mitchell’s method and the two proposed correction methods. The

numbers in parentheses are the normalized number. The additional operations due to

correction procedures for each proposed method are also provided in Table 4.2. For video

processing applications that can tolerate small errors, methods with consideration for 1 -

bit and 2 -bits are good candidates for performing log-based computations because of their

simplicity and low overhead. Table 4.3 shows the result comparisons of the peak error

percentages and error percentage ranges of the proposed methods with other methods by

Mitchell [76], SanGregoiy et al. [80], Hall et al. [79] and Abed et al. [81]. As shown in

Table 4.3, for methods that consider 1 bit for dividing the fractional parts into two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 2

regions, the proposed method in this research work has the lowest error percentage range.

Similarly, the proposed 2-bits approach also has the smallest error percentage range

among all other methods that use 2 bits for region partitioning.

Table 4.2. Error evaluation and overhead of proposed correction methods for binary

logarithm approximation.

Method Mitchell
method

Proposed 1-bit
method

Proposed 2-bit
method

Number of
parallel additions

None 2 5

Max. number of
bit inversion

None 7-1 27-3

Max. (+) error
percentage

5.3605 1.4154 0.5743

Max. (-) error
percentage

0 0 -0.0441

Error percentage
range

5.3605 (1.00) 1.4154(0.26) 0.6184(0.12)

MSEP 0.2848 (1.00) 0.0333 (0.12) 0.0092 (0.03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 3

Table 4.3. Comparisons with other error correction methods.

Method Bits used for
regions
identification

Max. (+)
error
percentage

Max. (-)
error
percentage

Error
percentage
range

Mitchell None 5.3605 0 5.3605

SanGregory et al. 1 0.4314 -1.5403 1.9717

Abed2 et al. 1 0.9299 -0.5544 1.4843

Proposed 1-bit 1 1.4154 0 1.4154

Hall et al. 2 0.1258 -0.7182 0.9071

Abed3 et al. 2 0.4314 -2684 0.6998

Proposed 2-bit 2 0.5743 -0.0441 0.6184

4.4. Design and Implementation of a Log-Based Multiplier

In this section, a fast and efficient design of a log-based multiplier that can be used for

signal processing applications is presented. The bit-level partitioning and gating

technique is used to detect a special condition in the higher half of the operand in the

window-based operation and deactivate the architecture appropriately to reduce power

dissipation. For implementation, Mitchell’s approximation algorithm is used as a baseline

method to compute binary logarithm. The block diagram for the log-based multiplier

(P=XxY) is shown in Figure. 4.5. Since log2 of any number less than or equal to 0 is not

valid, data adjustment modules such as two’s complement to sign magnitude conversion

module and zero detection and adjustment module are included to make sure that valid

results are produced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2C-SM
converter

2C-SM
converter

inverse log2

SM-2C
Converter

 ik____
Zero

Adjustment

P

Figure 4.5. Schematic of a log-based multiplier.

The main computational modules in the log-domain multiplier are the binary logarithm

and inverse-logarithm modules. The approximation method requires a leading ‘1’ bit

detection and a shifting mechanism to compute the integer and fractional parts of the

binary logarithm result. The block diagram of a hardware architecture to approximate a

binary logarithm of an 8 -bit number X is shown in Figure 4.6. The architecture consists

of an 8 -bit leading bit detection (LBD8) module, a 3-bit complement unit (comp) and an

8 -bit barrel shifter. The LBD 8 module detects the position of the leading ‘1’ bit and

outputs the 4-bit word k that indicates the position of the leading ‘ 1 ’ bit. The three least

significant bits (LSBs) of k are inverted to generate a 3-bit control bus (Ctrl) that directs

the number of bits to be shifted in the barrel shifter. An additional bus shift operation is

performed on the output of the barrel shifter to obtain the fractional part F of the binary

logarithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 5

LBD8 Barrel
Shifter

comp

correction

(a) Binary logarithm approximation with correction.

f - 1 f - 2 f - 3 f - 4 f - 5 f - 6 f - 7 f - 8

X X X X X X X X

HA HA HA HA FA FA FA

U f .2 f-3 f-4 f-5 f-6 f-7 f-8

(b) Correction circuit for proposed 1-bit approach.

Figure 4.6. Architecture for binary logarithm computation of an 8 -bit number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 6

A barrel shifter is used to generate the fractional part of the binary logarithm as shown in

Figure 4.6. For an m-bit input number x, the barrel shifter generates an m-bit output

number xs which is the value x shifted by a number of bit position specified by log2 (m)-

bit control bus cntrl. An architecture design which consists of log2 (m) stages of m

multiplexers is used for the design of an m-bit barrel shifter in this work. Figure 4.7

shows the architecture for an 8 -bit left barrel shifter. As the length of the data words

become larger, propagation delay of the barrel shifter increase considerably which causes

more switching activities in a parallel structure. Pipeline stages can be used to store

intermediate results of the multiplexer stages to reduce propagation delay and switching

activities. The drawback is that the latency increases as additional register stages are

inserted. In this research work, additional pipeline stages are added in the implementation

of a barrel shifter if the data length is larger than eight.

4.4.1. Design o f the Leading Bit Detection Unit

The leading bit detector used in the binary logarithm must be fast and simple to take

advantage of the approximation method. While leading bit detecting circuits are common

in floating point arithmetic, they are usually too complex for the approximation method.

Mitchell and others used the standard shifter and down counter to determine the leading

‘1’ bit [76]. This is the simplest approach but it requires a maximum of m cycles for an

m-bit number. The latency varies depending on the actual position of the leading ‘1’ bit.

SanGregory et al. [80] presented a serial evaluating circuit with a look-ahead mechanism

to compute the integer part of the binary logarithm. This approach is efficient, but the

propagation delay for the entire circuit increases as m becomes larger, which reduces the

operating frequency. Abed et al. [81] addresses this propagation delay issue with a

modular approach where multiple 4-bit leading ‘1’ detectors can be used in parallel. This

approach combines both serial and parallel processing in the circuit. Each individual 4-bit

leading ‘ 1 ’ detector performs operations serially and multiple 4-bit leading ‘ 1 ’ detectors

perform in parallel. This approach is one of the most efficient methods suitable for the

binary logarithm approximation technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 7

x6

x s4

X i

ctrl2ctrl0

Figure 4.7. An architecture for a 8 -bit left barrel shifter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 8

The proposed design of the leading bit detector in this work is similar to that of Abed et

al. [81] in which a modular approach is employed with multiple 4-bit leading bit

detectors (LBD4) for larger data words. The LBD4 units perform operations in parallel,

and the results are used in subsequent units that generate final results. The operations in

each LBD4 are performed serially. While methods developed by Abed et al. and

SanGregory et al. require a separate ROM based decoder to generate the integer part k,

the decoder design for computing k in this work is incorporated in the LBD4 units with

small additional logic gates. With the proposed design, multiple LBD4 units can be used

for different length data words without significant modification to the circuit. For custom

ROM based decoders such as those used in Abed et al. and SanGregory et al., each data

length requires a separate ROM decoder. The circuit design for a 4-bit leading bit

detector is shown in Figure 4.8, where the 4-bit input word is r and the 2-bit position of

the leading ‘1 ’ bit is s.

Leading

Detection
(LBD4)

(a) Symbol.

LOD4

* Si

So

V

(b) Logic circuit.

Figure 4.8. 4-bit leading bit detector (LBD4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 9

The valid bit v is included to indicate whether all bits in the input word r are ‘O’. In the

circuit design, two logic stages are shown. The first stage is a circuit to determine the

leading ‘1’ bit using a LOD4 unit which generates 3-bit results for three MSBs. No more

than one bit can be set to ‘1’ at a given time. A logic ‘1’ at any output bit of the LOD4

unit indicates that the leading ‘1’ bit is present at that position. The 3-bit result of the

LOD4 unit is used in the second stage, which is a decoder to generate the position s of the

leading ‘1’ bit. For example, if a ‘1’ is set for the MSB at the output of the LOD4, the

decoder generates a ‘ 11’ for s. A ‘ 1’ is set for the middle bit of the output of the LOD4

unit which triggers the decoder to generate a ‘10’ for 5 . Similarly, a ‘01’ is generated by

the decoder if a ‘1’ is detected at the LSB of the output of the LOD4 unit.

For data words with larger bit lengths such as 8 , 16 or 32, multiple LBD4 units are used

in parallel. The block diagram of an 8 -bit leading bit detector (LBD8) is shown in Figure

4.9. In this Figure, two LBD4 units are used for the most significant 4 bits and the least

significant 4 bits of the input r respectively. The valid bit v; of the higher order LBD4

unit is used to select the results of the higher or lower order LBD4 for the final output via

a 2-bit 2:1 multiplexer. In addition, the valid bit vj of the higher order LBD4 unit is also

used as the MSB of the result s. An OR gate with inputs v/ and vo is used to generate the

valid bit for the LBD8 as shown in Figure 4.9. The propagation delay of this LBD8

design is the sum of the propagation delays of a LBD4 and a multiplexer.

Similarly, a 16-bit leading bit detector (LBD16) is designed with a combination of five

LBD4 units and a 2-bit 4:1 multiplexer as shown in Figure. 4.10. In the first stage of the

LBD16, four LBD4 units process data simultaneously to generate four 2-bit results ts ’s

and four valid bits v ’s. The four valid bits are then used to feed the second stage LBD4

unit to determine which block has the leading ‘ 1 ’ bit. The result 5 from the second stage

LBD4 unit is then used as select lines for the 4:1 multiplexer. The 2-bit s of the second

stage LBD4 unit are also the most significant two bits of the final result s (S3S2). The

output of the multiplexer contains the least significant two bits of the result s (s]So). The

valid bit from the second stage LBD4 unit indicates if the input r is zero (when v is ‘0’).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 0

r7

Leading

Detection
(LBD8)

(a) Symbol.

s2

s,

> s 0

V

Leading
Bit

Detection
(LBD4)

re

r4)

Leading
Bit

Detection
(LBD4)

(b) Logic circuit.

Figure 4.9. 8 -bit leading bit detector (LBD8).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

fis

f-to >

Leading
Bit

D etection
(LBD4)

Leading
Bit

Detection
(LBD4)

Detection
(LBD4)

Leading

Leading
Bit

D etection
(LBD4)

V3

t s 7

tse

. v 2

• t s 5

t s 4

V 1

t s 3

t s 2

v 0

tSi

tso

v 3

v 2

Vi

Vo

Leading
Bit

Detection
(LBD4)

00

■> v

* s2

Figure 4.10. 16-bit leading bit detector (LBD16).

Similarly, two LBD16 can be used to detect leading ‘1’ bit for 32-bit word as shown in

Figure 4.11. Each LBD16 unit generates a 4-bit result to indicate the position of the

leading ‘1 ’ bit in that unit, and a valid bit to indicate that the input bits are not all zeros.

Two valid bits obtained from two LBD16 units are used to generate the valid bit for the

LBD32 unit as shown in Figure 4.11. The valid bit obtained from the higher order

LBD16 unit is used as a controlling bit for a 4-bit multiplexer which selects the

appropriate 4-bit result from one of the LBD16 units as the least significant four bits of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 2

the final results. In addition, the valid bit from the higher order LBD16 is also used as the

MSB of the final result.

Leading
Bit

Detection
(LBD16)

f l6)

Hs— j
Leading

Detection
(LBD16)

Figure 4.11. 32-bit leading bit detector (LBD32).

4.4.2. Design o f a Power-Aware Log-Based Multiplier

Similar to the approach considered in the low power design of a multiplier in the linear

domain, the proposed design for the log-based multiplier considers the special

characteristic of image and video processing applications. That is, one operand of the

multiplication frequently has a small magnitude in data representation. This characteristic

occurs regularly in window-based operations such as digital filtering. The data

characteristics of these applications are that magnitudes of the filter coefficients are

usually small. To take advantage of this characteristic, the proposed log-based multiplier

design partitions the coefficient operand into smaller parts that can be computed with

multiple smaller computational units. With this approach, the computational modules can

be disabled when the special conditions such as input data equals to zero or one is

detected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 3

Let’s consider the multiplication of two n-bit numbers X and Y in the multiplier which is

used in a digital filtering operation. Assume that Y is the coefficient that is partitioned

into smaller part and X is the pixel value. The partitioning procedure for the

multiplication of P = X x F i s described as

P = X x Y (4.27)

P=(YHx 2 m +Yl) x X (4.28)

P = (X x Y Hx 2 m) + (X x Y L) (4.29)

where,

^ ~ (y n - \ 5 y n —2 ’ y n - 3 3^0)

y h = (y n - v y n - 2 ’ y n- 3 ’ ~ ~ ’ y m)

YL = (ym- ŷm-2̂ ym-3̂ -̂ yo)

Since most of the coefficients in different filter kernels have small magnitude, detection

of zero and one conditions in the higher half of the coefficient Y is performed. The gating

technique is based on two conditions in the Yh and Yl operands. These conditions are set

to logic ‘ 1 ’ when an input is zero or one is detected and the gating signals z h , Zh , o h and

ol are generated as:

= ■y 'm+1 (4.30)

zH = tmp ■ y'm (4.31)

oH = tmp ■ ym (4.32)

tmp2 =) / • ym_2 ■ ym_3„ / (4.33)

zL — tmp2 • y '0 (4.34)

oL =tmp2 -y0 (4.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 4

The circuits for detection of z,u, Zu oh and o L are shown in Figure. 4.12. Figure 4.13

shows the architecture design for a pipelined log-based multiplier which utilizes the

partitioning and gating technique based on the characteristics of the multiplier operands.

The special value detection (SVD) module in Figure 4.13 is the component to generate

Zh, z,l, oh and o L signals for the gating technique. Pipelined flip-flops (ff) are included to

propagate these control signals to subsequent pipeline stages as shown in Figure 4.13.

Figure 4.13 does not show the data conversion and zero adjustment modules since these

are needed for all log-based multipliers.

Figure 4.12. Circuits for generating gating signals in log-based multiplier design.

4.5. Experimental Results

The proposed log-based multiplier is implemented with Altera’s Quartus II software tool.

Mitchell’s binary logarithm approximation method is also implemented as a baseline

design for comparison. Multiplications in 2-D convolution with a Gaussian kernel for

image smoothing and Laplacian kernel for edge detection are used in the simulation. The

implementation results are shown in Table 4.4 where Mitchell_REG is the

implementation for regular Mitchell’s method, and Mitchell_PG is the implementation of

the proposed partitioning and gating technique applied to Mitchell’s algorithm. Pixel

values are extracted from the test images and kernel coefficients are fed to the multiplier

through a vector simulation file. The power consumption results for two applications are

shown in Tables 4.5 and 4.6 respectively. Results of the simulations of a standard CSA

array multiplier and a Booth multiplier are also shown in Tables 4.5 and 4.6 for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 5

comparison between multiplication in the linear and logarithmic domain. The log-based

multiplier achieves more than 50% power reduction compared to the conventional CSA

array and Booth multipliers. The partitioning and gating techniques have significant

impact or power consumption in the edge detection application compared to the baseline

log-based multiplier, as shown in Table 4.6. This is due to smaller magnitude values of

the kernel coefficients.

SVD

Reg —d —Reg

Oh

Oh -

Oh

« 4

MUX

P

Figure 4.13. Design of a log-based multiplier with partitioning and gating technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Table 4.4. Implementation results of log-based multipliers.

Method Logic elements Fmax (MHz) Latency

MitchelLREG 244 91 5

Mitchell_PG 434 89 6

Table 4.5. Experimental results of a Gaussian filter.

n. Test Image Peppers (128x128) Island (160x106)

Method
Power (mW) Normalized

ratio
Power (mW) Normalized

ratio

CSA 40.73 — 35.56 —

Booth 31.82 — 28.42 —

MitchelLREG 19.40 1 . 0 0 18.35 1

MitchelLPG 18.86 0.97 17.63 0.96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 7

Table 4.6. Simulation results for a Laplacian filter.

N. Test Image

Method n.

Peppers (128x128) Island (160x106)

Power (mW) Normalized
ratio

Power (mW) Normalized
ratio

CSA 35.57 — 33.47 —

Booth 30.32 — 27.31 —

MitchelLREG 21.32 1 20.63 1

Mitchell_PG 15.08 0.71 14.07 0.68

4.6. Summary

In this chapter, a log-based multiplier has been developed, implemented and evaluated for

digital filtering operations in video processing algorithms. An approximation method for

binary logarithm with fast and efficient operations is used in the architecture design of the

proposed log-based multiplier. Various error correction methods to improve the accuracy

of the binary logarithm approximation technique have been investigated. A correction

technique that uses one or two bits for region division in the correction procedure has

been proposed to improve accuracy of the approximation method. Simulation results

show that the proposed method performs favorably when compared to other correction

methods. A novel design for fast and efficient leading bit detection has been presented

and implemented for the binary logarithm approximation. The leading bit detection

strategy is based on a modular approach that reduces the serial operations to a four-bit

baseline LBD4 block. Multiple LBD4 units are combined to perform the operation on

larger data words. The partitioning and gating technique has also been applied to the log-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

based multiplier (Mitchell-PG). Simulation results show that the log-based multiplier

reduces more than 50% in power consumption compared to the linear pipelined CSA

array and Booth multipliers. The proposed Mitchell-PG multiplier achieved more than

29% power reduction compared to the baseline Mitchell-based multiplier in the edge

detection operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Chapter V

POWER-AWARE DESIGN TECHNIQUE FOR WINDOW-BASED OPERATION

IN VIDEO PROCESSING APPLICATIONS

Window-based operations such as two dimensional (2-D) convolution operations are

commonly used in image and video processing applications. In this chapter, a new

design technique that considers the neighborhood pixels within the window to detect and

eliminate redundant or unnecessary computations for power reduction is presented. A

novel on-chip detection technique is developed for the proposed neighborhood depended

approach (NDA) to reduce computations. Similar to the techniques presented for the

multiplier design in the previous chapters, data partitioning methodology is employed in

the on chip buffer design to eliminate redundant computations. This NDA method is

applied to different window buffering schemes and experimental results are presented.

5.1. Window-Based Operations

Window-based operations require a large number of repetitive computational operations

on a fixed window of neighboring pixels centered on a reference pixel (pixel under

consideration). A window-based operation is performed when a window with an area of

K xL pixels for a K x L mask is extracted from an input image and is transformed

according to the kernel mask to produce an output pixel. The concept of a window-based

operation is illustrated in Figure 5.1, where a 3x3 kernel mask is used to compute the

values of the output pixels by performing the required function with values in the kernel

masking with the pixel values in the input image. To compute the pixel value of an output

pixel, each reference pixel in the window of the input image is extracted and multiplied

with the corresponding weight in kernel mask and the results are summed to produce the

value of the output pixel. Some of the most frequently used window-based operations

include smoothing, edge detection, template matching and morphological operations.

Window-based operation is one of the most computationally intensive operations in

image processing applications. These operations require (KxL) multiplications and (KxL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 0

-1) additions to compute one pixel of the image where the size of the kernel mask is KxL.

Due to the repetitive nature in the applications, these window-based operations present a

high degree of processing parallelism that can be exploited to achieve higher

performance. Maximum utilization of the inherent parallelism in window-based

operations is considered to satisfy the demand of real-time processing. Parallel processing

is necessary to achieve demand throughput for real-time applications.

Input Image

w m .

Kernel
Mask

Output im a g e /> ® ^

Reference
pixels

Weights

Output
Pixel

Figure 5.1. Concept of a window-based operation.

Architecture design techniques for parallel processing such as systolic, pipeline or

parallel architectures often require a large amount of extra resources to support multiple

processing elements (Pfes). For example, in a systolic design that consists of a large

number of interconnected homogeneous processing elements, considerable resources are

needed to implement delay lines for partial results as data traverse through the

architecture. This is a particularly important issue for FPGA-based designs in which area

resource is a constraint. Some of the latest research approaches address this problem with

a configurable option in their design to provide a capability to re-use the PEs for various

window-based operations [22, 82-84], While approaches in [22, 82-83] address the

problems in VLSI design for application specific integrated circuits (ASICs), the

technique proposed in [84] targets the FPGA environment for quick prototyping. The

approaches proposed in [22, 82-83] generally exploit different ways of interconnecting

the processing cores such that data is retrieved more efficiently. The main application for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 1

these approaches is computation of the Fast-Fourier-Transform (FFT) to calculate the

frequency response of a filter. In [84], the authors proposed an architecture design for

processing element cores in a systolic architecture. The core is designed with a

configurable capability to support re-using of PEs for larger kernels. In addition, the

authors used the unrolling technique to compute the result in favor of overlapped data.

This is done for reducing I/O communication with external memory.

A similar technique of unrolling computation is employed in [85-86]. Loop rolling is a

procedure to replace iterations with straight-line executions. These approaches focus on

general purpose computing with support for image processing algorithms; therefore,

these two approaches do not fully exploit the inherent parallelism in the algorithms.

Another FPGA-based approach that considers the overlapped data in window-based

processing is proposed in [87]. The authors presented a generalized addressing mode that

fetches a block of data from memory based on the window-operation accessing sequence.

The main goal is to maximize the sharing of data among a sequence of operations. To

support parallel processing for real-time applications, efficient on-chip buffering schemes

must be employed to reduce I/O bandwidth with external memory.

5.2. On-Chip Window Buffering Schemes

For discussion of the on-chip buffering scheme design, 2-D convolution is considered to

be the typical window-based operation. Spatial convolution operations are computational

and memory intensive. For a 2-D convolution with a K x L kernel mask, (KxL)

multiplications, (KxL-1) additions and (KxL) memory accesses to pixels in the reference

window are required for one output pixel. In order to take advantage of the inherent

parallelism in the operations, accesses to the reference pixels must be achieved

simultaneously. This demands efficient on-chip buffering schemes to support a parallel

architecture.

Generally, 2-D convolution can be computed by dividing the operation into separate 1-D

convolutions based on either column-wise or row-wise directions. These 1-D convolution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 2

modules are operated in parallel, and each of these 1-D convolution modules can also be

designed as parallel or systolic pipelined architecture. 1-D convolutions are performed for

all the rows (or columns) and the intermediate results are summed to obtain the final

result for the output pixel. Systolic design can achieve a throughput rate of one output per

cycle in raster scan order when the operation reaches steady state; however, this approach

needs considerable resources to implement delay elements to synchronize with the input

data stream [8 8]. A full-window buffering (FWB) scheme proposed by Bosi et al. [82] for

parallel processing is also capable of producing an output per cycle in steady state. For

the column-based 1-D module, with a K xL kernel and an image size of RxS, this

approach requires (K-l) delay lines, each of which is a FIFO buffer with length (R-L).

Figure 5.2 shows the block diagram of this scheme. Each of the 1-D convolution modules

shown in Figure 5.2 consists of L multipliers and an adder tree to sum all the products.

The advantage of this approach is the single input dataflow that requires only one

memory access per pixel. The disadvantage of this scheme is the large area overhead of

the delay lines.

To eliminate the delay lines in the buffering schemes, a smaller number of pixels is

maintained in the FIFO buffer with increased memory bandwidth demand [82, 89-90].

One approach is to maintain K number of FIFO buffers which feed the data to the shift

registers for each 1-D convolution module. This approach is known as a single window

partial buffering (SWPB) scheme. In each clock cycle, K pixels are shifted from the FIFO

buffers to the shift registers. Shift registers in a particular row provide parallel access to

all pixels in that row so that parallel computation in a 1-D convolution module can be

performed simultaneously. This approach eliminates the need for delay lines, but it

requires K memory accesses to maintain the dataflow in the buffer. Figure 5.3 shows the

block diagram of this SWPB scheme. K FIFO queues are needed to support parallel

loading of K rows in one clock cycle. The FIFO queues are interfaced directly with the

external memory for inputting pixel values. While the SWPB scheme utilizes the

overlapped pixels in the rows, Zhang et al. [91] proposed a multi-window partial

buffering (MWPB) scheme to extend the SWPB approach for utilization of overlapped

pixels in columns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 3

The idea is to utilize the data already in the FIFOs to reduce external memory accesses.

The concept is illustrated in Figure 5.4. For each window winx,y to compute an output

pixel (x,y), there are two neighboring windows winx>y+i and winx+i,y for output pixel

(x,y+l) and (x+l,y) respectively, which have overlapped data (shaded areas) with winx>y.

The window winx,y+i has (L-l) columns overlapped with the window winx,y while

window winx+i,y has (AM) overlapped rows as shown in Figure. 5.4. The approach

proposed in [91] has (2 AM) FIFO buffers to support (2 AM) row operations. This method

requires accesses to a column of (2 AM) pixels to be fed to the FIFOs, and (2 AM) values

are passed to the shift registers at a time to support parallel processing. In this method, a

single datum from shift registers of each row is accessed at a time whereas the SWPB and

FWB approaches access all data from a row simultaneously. The required memory

bandwidth for this approach is (2AM)AS per cycle. The block diagram of this MWPB

scheme is shown in Figure 5.5.

Input
from

m em ory

2-D Parallel Processing Architecture

1-D
ConvolutionRow KA

Delay line
(k -l) length

Convolution Adder
Row K-2

Delay line
(R-L) length 1-D

Convolution

O utput

Row 0

Figure 5.2. Full-window buffering (FWB) scheme for a parallel processing architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 4

Input
from

memory

Z -u Parallel Processing Architecture

1-D
ConvolutionRow K-1

1-D
Convolution Adder

TreeRow K-2

Convolution

Output

Row 0

Figure 5.3. Single-window partial buffering (SWPB) scheme.

K

, L-1
i ---- —-—?

K

K-1

Figure 5.4. Neighboring windows with overlapped pixels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 5

2-D Parallel Processing Architecture

i '! « ! '
— Hi Convolution r - — Accumulator

Input
from

memory

1-D
Convolution Accumulator

1-D
Convolution Accumulator

Figure 5.5. Multiple-window partial buffering (MWPB) scheme.

5.3. Symmetry Consideration for Reduced Computations

Some of the most commonly used 2-D convolution operations possess a special

characteristic that can be exploited to reduce computations and area resources. This

special characteristic is the symmetry property in the computational operations. A kernel

with symmetry property has repetitive weight values in the window arranged in a

symmetric pattern. The symmetry property of a kernel can be classified as one of three

main categories: horizontal symmetry, vertical symmetry or quadrant symmetry. These

types of symmetry are shown in Figure 5.6 where same color squares represent same

weight values in the kernel. Since the computational operations/procedures for the

weights in the kernel are identical, repetitive values in the kernel weights present an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 6

opportunity to reduce computations and area resources by reusing the results or re­

arranging the computational procedure to eliminate redundant operations.

Vertical
Symmetry

Horizontal
Symmetry

Quadrant
Symmetry

Figure 5.6. Types of symmetry in kernel mask.

An example of an operation with quadrant symmetry property is the smoothing operation

by a 2-D convolution with a Gaussian kernel. For example, consider a 4x4 Gaussian

kernel in Figure 5.7. It is observed that weights wn, W |4 , w4i and w4 4 have the same

value, weights W 12, wi& w 42 and w 43 have the same value, weights W 21, W 24 , W 31 and W 34

have the same value, and weights W 22, W 23, W 32 and W 33 have the same value. Therefore,

the weights in the Gaussian kernel can be partitioned into four quadrants as shown in

Figure 5.7 and only one quadrant needs to be considered in the computational procedure.

This arrangement effectively eliminates 75% of the redundant computations. For

example, if we consider the weights in quadrant one (e.g. weights w n , W 12 , W21 and W 22

in Figure 5.7), we cah eliminate three multiplication operations for each weight in

quadrant one being prdeessed. This is achieved by reading values of four pixels at the

same time and performing one parallel addition operation and then one multiplication

operation. One of the on-chip buffering schemes are employed to support parallel reads

of four pixel values at a time. In this research work, the SWPB scheme is utilized in the

implementation of the 2-D convolution with consideration of the symmetry property in

the kernels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 7

Quadrant 1 Quadrant 2

Wr W’2 wia . w,.

W22 Wsa
. l i - .Si'-. .1

V w V

m W32 w33
m s?*

W z

w4i w42 W 4 3 w«

Quadrant 4 Quadrant 3

Figure 5.7. Gaussian convolution kernel with symmetry property.

Equations (4.1) and (4.2) define the basic 2-D convolution operation with a K x K

Gaussian kernel where the center pixel of the kernel is overlapped with the center pixel of

the image under the window of consideration. Equation (4.1) is used for an even-sized

kernel and equation (4.2) is used for an odd-sized kernel.

K - I K -1 f K K
DU,y) = I I l k (/ , ; > / x - i + - - i , y - j + - - i

i=o y=o \ 2 2

K -\ K - l f
0(x,y) = Y lY lW(i,J) - l \x - i+— , y - j + —

i=o j =o \ 2 2

(4.1)

(4.2)

where O is the output pixel, W is the weight of the kernel, (x, y) is the position of the

pixel under consideration, and (K, K) is the size of the kernel. With consideration of the

symmetry property in the kernel, summations of the pixels in four quadrants are

performed first to reduce three multiplication operations. The general expression for even

kernel becomes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 8

2 2

/=o 7=0

. K , . K .
X + 7 h 1, V + 7--------- + 1

2 2

\ /
+ /

v
X -7+ — ,y + 7------+ 1

2 2 ,
+ /

. K , . TsT
x + 7------ + 1 , y - / H—

2 2y V

\ f
+1

(4.3)
. K . K

x - i + — , y - i H----
2 2

For an odd kernel, the expression is described in equation (4.4).

K - 1 t K -l
2 2

0 (x ,y)= X Z
i=0 7=0

X + 7 -

+7

+7

x - i +

x + i

+7 x - i +

K - 1
-1

+ I
7=0

W (x , j)
x , y + j-

' K - l "

+7

+ 7

+ 7

^ 7 - 7 +
' K - l "

x + j -

x - j +

K - l

K - 1

■\ ^
.y

y
\ ̂

y y

7sT-l i^ -1

(4.4)

The block diagrams for the implementations of the symmetry approach are shown in

Figures 5.8 and 5.9. In Figure 5.8, an even sized kernel with quadrant symmetry property

is considered. In this implementation, pixels at locations in the window that overlap with

kernel weights whose values are the same are fed to the parallel adder first and the sum of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 9

this operation is multiplied with the corresponding weight. With this method, a larger

multiplier is used in place of the four smaller multipliers in the conventional approach.

While the implementation for an even sized kernel is straightforward, implementation for

an odd sized kernel requires more resources arranged in a more complicated structure.

The block diagram of the parallel architecture for the 2-D convolution with odd size

kernel is shown in Figure 5.9. For pixel values that are not in the center row and column,

the same structure is used. For the pixels in the center column and row, a different set of

computational modules is used. The center pixel of the window requires a dedicated

multiplier as shown in Figure 5.9.

2-D Parallel Processing Architecture

Adder

Adder

Adder
Tree

~->Output

Adder

Figure 5.8. Parallel architecture for 2-D convolution with an even symmetry kernel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 0

2-D Parallel Processing Architecture

Adder

A d d i - r

Adder
Tree

Adder

Adder

Figure 5.9. Parallel architecture for 2-D convolution with an odd symmetry kernel.

5.4. Neighborhood Dependent Approach (NDA) for Power Reduction in

Window-Based Operations

Most of the previous low power design techniques for window-based operations focus on

the optimization methods in the processing cores and efficient I/O interfaces with

external memory [9, 13-14, 16, 18-24, 43, 55-57, 75], No existing technique considers the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

data characteristic in neighborhood windows to reduce computations and power

dissipation. Image and video frame pixels have a very high spatial redundancy such that

higher bits in the binary representations of the pixels in the same window are usually the

same. The architecture design technique proposed in this chapter exploits the special

characteristic of high redundancy in higher bits, the repeated values, and zero values to

reduce switching activities. The red, green and blue color band values in a neighborhood

(square) of an image are shown in Figure 5.10. As shown in the window of the

neighboring pixels in Figure 5.10, many pixels have the same value. The difference in the

consecutive pixel values in the same neighborhood is usually small; therefore, only a

small number of lower bits will be changed in consecutive operations. This characteristic

can be exploited in the design of processing elements for the kernel-based operation to

reduce switching activities.

L— ’’ 108 105 105

106 104 106

108 105 107

137 134 134

134 133 133

*1*35 :i;i32 133

\ *

153 150 150

1 & ,150 152

\ 154 151 152

Red

Green

Blue

Figure 5.10. A window of neighboring pixels in an image.

To take advantage of the high redundancy in higher bits of the pixel values, a partitioning

method similar to the method applied to the multiplier design is employed to partition the

pixel buffer to higher ahd lower parts. For instance, the pixel values in the window-based

operation with a K x L mask can be partitioned into halves as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 2

K - 1 L- 1
0 = Y ' Z W (i , j) x I (i , j) (4.5)

i=0 7=0

0 = I X r (^ 0 '. j) x ̂ o, 7) X 2Nn) + (W(i, j) x IL (/ ,;))]
(=0 7=0

/sT-1 L~ 1
(4.6)

where Ih and 7l are the higher and lower halves of pixel values I respectively. Once the

pixels are read, partitioned and stored in the appropriate on-chip buffers, a detection

scheme is applied to determine if all values in the higher half of the pixels are the same.

If this is the case, the 2-D convolution architecture can be disabled and only one

multiplication operation is needed to compute the output result. Assume that the pixel

values are represented with Ih and 4 , and Ih is an m-bit binary number. For a K xL mask,

the detection scheme proposed in this chapter can be summarized as:

//To determine if all values in a row are the same

®J+l(m)

end

bri =bv0 -bvl -,...-bvL_2

end

//To determine if all values in first column are the same

fo r i = 0 , l , - - , K - 2

be = bu0 ■bux •....•buK:_2

//To determine if all values in a window are the same

bw = br0 -brx •-brK_x -be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Each bvj bit is determined by comparing two consecutive numbers in the same row. This

computation is achieved by bit-wise XNOR operations and a parallel AND operation of

the XNOR results. So, for each number in the same row, an extra bit is maintained for

bvjS. A logic ‘1’ indicates that the j pixel has the same value as the (j+1) pixel in row i.

Bit bri indicates if all numbers in row i has the same value. This bit is generated by a bit­

wise AND operation of all bvjs in the same row. In addition, a comparison of all pixel

values in the first column of the window is also performed. This operation is achieved by

comparing the first value in a row i with the first value in row (i+1) and the result bui is

set. Then, (K - l) buis results of the comparisons are ANDed to determine value be. A

logic ‘1’ for be means that all values in the first row are the same. Similarly, bit bw

indicates that the current window has the same value for all elements. Bit bw is computed

by a bit-wise AND operation of all br{s and be in the window. Bit bw is set to ‘1’ if all

numbers in the window have the same value. If this condition is detected the parallel

architecture for 2-D convolution is disabled and a multiplication is carried out with the

pixel value I h o .o and the sum of the kernel mask which is pre-computed and stored in a

register.

This neighborhood dependent approach (NDA) can easily be incorporated with different

buffering schemes such as FWB, SWPB and MWPB. Since full window buffering

approach requires large on-chip storage for multiple pixel delay lines, the switching

activities increase significantly as the pixels propagate through these delay lines without

any actual computations. In this research work, the partial buffering schemes are

considered for storing the window on-chip to support parallel processing. In the SWPB

scheme, values in one window is maintained in the shift registers. As the pixels are fed to

the shift registers or each row in the window, the incoming pixels are compared with the

pixel values in the last position (L - l) in a row. The result of this comparison is stored

with an additional bit at pixel location (L-2) as the new pixel is shifted in. The circuit for

an m-bit comparator of two values a and b is shown in Figure 5.11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 4

output

Figure 5.11. Circuit of an m-bit comparator.

The block diagram for the parallel 2-D convolution architecture with consideration of the

proposed NDA technique and SWPB scheme is shown in Figure 5.12. For each row of L

values, additional (L-l) bits are needed for comparison. An (L-i)-bit AND gate is used

for each row to compute the bcj which indicates if pixel values in row j are the same. For

the first column comparisons, (K-l) m-bit comparators are needed for generating (K - l)

huts. A (K-l)-bit AND gate is used to compute bit be. A AT-bit AND gate is then used to

determine if the entire window consists of the same pixel value. This is achieved by

ANDing all (K-l) brt values and be. If this condition is detected (indicated by bw which

is equal to ’1’), then all the (K-l) 1-D convolution modules are disabled and the result is

computed by a multiplication of the first pixel in the widow with a pre-stored sum value

of the kernel weight. An additional ‘Delay’ module is added to synchronize output data

with the pipelined 1-D convolution and adder tree as shown in Figure 5.12. If the

condition is not detected, normal operations are performed in the parallel architecture and

the additional pipelined multiplier and delay module are disabled. Since all processing

modules are designed as pipelined structure, enabling and disabling the processing

component are achieved by de-activating the latching signals for the registers in the first

pipelined stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 -D Parallel P r o c e ss in g A rch itecture

1-D
C onvolu tion

Input
from _

m em ory

A dder
T ree

1-D
C onvolu tion

—» O utput

P ip elin ed
Multiplier

Figure 5.12. NDA is incorporated with SWPB scheme.

The NDA approach is applied to the multiple-window buffering scheme (MWPB) in a

similar way as in the SWPB scheme. Pixel values within a row are compared as pixels

are fed from the FIFO queue to the shift registers. For each row, {L-l) additional bits for

comparison results are stored within the {L-l) shift registers for the detection scheme.

These {L-l) bits are ANDed to indicate if values in each row are the same. Since this

approach evaluates multiple windows at the same time, it requires multiple detection

modules. For processing K windows simultaneously, K detection units and K additional

multipliers are needed as shown in Figure 5.13. Each processing path for a window

requires a dedicated control line {eri) as shown in Figure 5.13 because data in each row is

processed serially. Once the window is determined to have the same value, the entire

processing path for that window is disabled for {KxL) cycles and the pipelined multiplier

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

is disabled for (KxL-1) cycles. This ensures that K results are available at the same time

without unnecessary computations.

2 -D Parallel P ro cess in g Architectu

Input
from

m em ory
1-D

C onvolution A ccum ulator

Output
(K-1)

P ipelined
Multiplier

1-D
C onvolution A ccum ulator

Output 0

Pipelined
Multiplier

Figure 5.13. NDA is incorporated with MWPB scheme.

The proposed NDA technique can also be applied to the parallel architecture that

incorporates the symmetry method to further reduce the computations in the 2-D

convolution with symmetry kernel masks. With symmetry approach, either an SWPB or

MWPB scheme is suitable. Figure 5.14 shows the block diagram of the parallel

architecture for 2-D convolution with consideration of symmetry property and

neighborhood dependent approach. The SWPB buffering scheme and even kernel size are

used in this implementation. The operating strategy for detection of special conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 7

remains the same as in the conventional SWPB approach. When the system is in normal

operating mode, the parallel processing architecture is active as in the conventional

approach. When the special condition for NDA method is detected the entire parallel

architecture is disabled and a single multiplication is performed with the pipelined

multiplier.

 : FIFO

In p u t

2 -D P ara lle l P r o c e s s in g A rch itectu re

Wrc

Adder
T re e

P ip e lin e d
Multiplier

Output

Figure 5.14. NDA is incorporated with SWPB scheme and quadrant symmetry property.

5.5. Experimental Results

The proposed NDA method for window-based operation is applied to the parallel

architecture for the 2-D convolution operation with different filter kernels. The evaluation

is performed for two on-chip buffering schemes: (1) SWPB and (2) MWPB. The parallel

architecture is implemented with a VHDL hardware description language. The designs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

are synthesized with Altera’s Quartus II software environment for Cyclone II FPGA.

Table 5.1 gives a summary of resource utilization, maximum speed achieved for the

implementation and latency for six designs: (1) parallel architecture with SWPB scheme

(SWPB), (2) parallel architecture with SWPB scheme and the proposed NDA approach

(SWPB_NDA), (3) parallel architecture with MWPB scheme (MWPB), (4) parallel

architecture with MWPB scheme and the proposed NDA approach (MWPB_NDA), (5)

parallel architecture with SWPB scheme and quadrant symmetry property (QUAD) and

(6) parallel architecture with SWPB scheme and quadrant symmetry property with the

proposed NDA approach (QUAD_NDA). All implementations use 3x3 filtering kernel.

A smoothing filter with a Gaussian kernel is used as the application for the simulations.

Pixel values are extracted from the test images and fed to the FIFO queues of the parallel

architectures with different buffering schemes. The simulation tool of Altera Quartus II

software is used and logic transitions are recorded to the Signal Activity File (SAF). The

SAF file is used in the PowerPlay tool to compute the dynamic power consumption of the

designs. The power consumptions for various design schemes are shown in Table 4.2.

Table 5.1. Implementation results for parallel architecture with various buffering schemes

for 2-D convolution with a 3x3 filtering kernel.

Scheme Logic elements F m a x (MHZ)

SWPB 882 198

SWPB_NDA 1026 183

MWPB 956 195

MWPB_NDA 1215 181

QUAD 428 194

QUAD_NDA 524 178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Table 5.2. Simulation results of a Gaussian smoothing filter.

N. Test Image Peppers (128x128) Island (160x106)

Method
Power (mW) Normalized

ratio
Power (mW) Normalized

ratio

SWPB 69.72 1 . 0 0 63.22 1 . 0 0

SWPB_NDA 34.59 0.50 31.35 0.50

MWPB 63.10 1 . 0 0 54.55 1 . 0 0

MWPB_NDA 33.17 0.53 28.45 0.52

QUAD 45.82 1 . 0 0 40.17 1 . 0 0

QUAD_NDA 29.12 0.64 25.26 0.63

As shown in Table 5.2, the proposed NDA method incorporated in the architecture

designs with various buffering schemes achieved significant power reduction. For SWPB

scheme, the proposed design achieves 50% power reduction when the NDA method is

utilized. For the MWPB scheme, more than 47% power reduction is achieved when the

NDA method is incorporated. In the implementations of parallel architecture for 2-D

convolution with consideration of the symmetry property, the proposed design with the

NDA method achieved more than a 36% power reduction for both the test images.

5.6. Summary

In this chapter, a neighborhood dependent approach to reduce power consumption in 2-D

convolution in image and video processing applications has been proposed and evaluated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 0

Pixel values in the same window and neighboring windows have high correlation in

higher bits that is utilized to reduce switching activities in the proposed NDA method.

Pixel values are partitioned and stored in the higher half and lower half buffers in the

proposed NDA method. Various on-chip buffering schemes to support parallel processing

in 2-D convolution were used in the implementations. The proposed NDA method was

incorporated with SWPB, MWPB buffering schemes for power reduction. The NDA

method was also incorporated along with the quadrant symmetry property in 2-D

convolution design. Experimental results show that the proposed NDA method can be

used to support high performance of the parallel architecture, and the designs achieved

more than 36% power reduction in all schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Chapter VI

MULTI LEVEL POWER-AWARE DESIGN TECHNIQUES

FOR REAL-TIME VIDEO ENHANCEMENT

In this chapter, a nonlinear image enhancement algorithm developed in ODU Vision Lab

is used as an application for which the proposed multi-level power-aware design

techniques can be applied to reduce power consumption. The image enhancement

algorithm used for this purpose is the Illuminance-Reflectance Model for Enhancement

(IRME) [92-93]. The IRME algorithm deals with the issue of mapping high dynamic

range images to low dynamic range renditions, which is similar to human eyes observing

a scene. The algorithm is based on illuminance perception and processing to achieve

dynamic range compression while retaining or even enhancing visually important

features. A parallel and pipelined architecture design for real time processing of this

image enhancement algorithm is presented. Power-aware techniques utilized for the

reduction of power dissipation include the design of the proposed Booth multiplier, log-

based divider, log-based powering unit, and NDA approach for 2-D convolution with a

Gaussian kernel.

6.1. Image Enhancement Algorithm

The IRME algorithm is composed of three major steps: (1) illuminance estimation and

reflectance extraction, (2) dynamic range compression and contrast enhancement on

illuminance, and (3) image restoration step which uses illuminance and reflectance to

recover the intensity image, color recovery and white balance adjustment for color

images.

6.1.1. Illuminance Estimation and Reflectance Extraction

To accurately estimate the illuminance of a scene from an image is a difficult task. In this

algorithm, the low-pass result of the intensity image through a Gaussian filter is used as

the illuminance estimation. In the spatial domain, this filtering process is a 2-D discrete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 2

convolution with a Gaussian kernel (of size KxK), which can be mathematically

expressed as:

L(x, = j)W O', j) (6 .1)
i=0 7=0

where L is the illuminance, I is the intensity image (of size MxN) and W is the 2-D

Gaussian function. W is defined as:

f-OMl
W (x, y) = P.e~ (6 .2)

where P is determined by

~(x2+y2) '

i i P ' eK)dxdy = 1 (6.3)

and c is the scale (Gaussian surround space constant), which determines the size of the

neighborhood. In this algorithm, c = 1-4 is commonly used. For color images, the

intensity images are obtained as:

I(x, y) = max [r(x, y), g(x, y),b(x, y)] (6.4)

where r(x,y), g(x,y) and b(x,y) are the red, green and blue components of color images in

the RGB color space. This method is the definition of the value component in the HSV

color space. Once the illuminance L(x,y) is found, the reflectance R/x,y) is computed

using the relationship:

I(x, y) = L(x, y)Rf (x, y) (6.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 3

It is observed from those images that the illuminance is comprised of the mid and low-

frequency information of the image, which is an approximated illuminance that contains

both the illuminance and the low-frequency part of reflectance. However, the

discontinuity of illumination is maintained leading to the elimination of halo artifacts.

The visually important features (high frequency reflectance) and a small part of the

illuminance information are contained in the reflectance in which the major illumination

effect is removed. Therefore, important image features will be kept after the dynamic

range compression of illuminance. Based on these observations, reflectance and

illuminance are also regarded as details.

6.1.2. Dynamic Range Compression o f Illuminance and Contrast Enhancement

Dynamic range compression of illuminance is realized in the algorithm by gamma

compression that is described as:

where L'(x,y) is the illuminance after dynamic range compression. In equation (6 .6), y is

the low frequency information of reflectance which can be degraded during dynamic

range compression. For the original image with a low contrast or slow-varying

reflectance map, the degradation of mid-frequency features may be obvious in the output

images. Therefore, a center-surround type of contrast enhancement method is utilized to

compensate this degradation. First, a low-pass result of L'(x, y), denoted as L"(x, y), with

a larger scale c (lower cut-off frequency) is computed through the same operations as in

equations (6.1) to (6.3). Then, a local contrast enhancement is performed on L'(x,y) based

on:

(6 .6)

generally in the range of 0.3 to 0.7. It has been noted that the illuminance also contains

fo r L \ x , y) > L \ x , y)

otherwise
(6.7)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

where L's(x,y) is the illuminance after contrast enhancement, Pi and P2 are the adjustment

factors which determine the strength of the contrast enhancement. Typical value for Pi

and Pi are 0.3 and 0.6 respectively.

6.1.3. Image Restoration and Adjustment

After the dynamic range compression of illuminance procedure has been completed,

illuminance L'E(x,y) and reflectance Rj(x,y) are combined using equation (6 .8) to produce

an intensity image T(x,y) with compressed dynamic range as:

I \ x , y) = L'E(x ,y) -R f (x ,y) (6 .8)

For color images, a color restoration process based on the chromatic information of the

original image is applied on the output intensity image to recover the red, green and blue

color bands as:

R(x,y) = ^ ^ - r (x , y) (6.9)
I(x, y)

G(x,y) = ̂ ^ - g (x , y) (6 .10)
l (x , y)

B(x,y) = 1 ^X,y^ b(x, y) (6 .1 1)
I(x, y)

The effect of this step is that the ratio among color components in the original image is

preserved in the enhanced image. The output color images produced by the color

restoration procedure may have an unnatural appearance with their color hue and

saturation. However, their colors can be adjusted through a color saturation and white

balance adjustment operation, which is explained as:

R '(x, y) = R(x, y) + Hr(A{x, y) - R(x, y)) (6.12)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 5

G \ x , y) = G(x, y) + H g (A (x , y) - G (x , y)) (6.13)

B \ x , y) = B(x, y) + H b (A(x, y) - B(x, y)) (6.14)

where a (x , y) = 0.33x[/?(*, y) + G(x, y) + B(x, y)]. Coefficients H r, H s and H b are used for color

saturation adjustment and white balance correction of each color band. According to

equations (6.12) to (6.14), color saturation is realized by comparing the intensity of each

band and the average color value of the pixel and compensating the value of that intensity

in that band if it is less than the average; otherwise, the value of the intensity in that band

will be suppressed.

6.2. Architecture Design for the Image Enhancement Algorithm

As in many other image processing applications, the real-time image enhancement

application presented in this chapter provides a high level of data parallelism where

computations involving each pixel in the image are identical. It is essential to take

advantage of the parallelism in the application to achieve maximum throughput. The

architecture for IRME image enhancement algorithm is designed to exploit the inherent

parallelism in the technique by partitioning computations to various modules in pipelined

stages. Pixel values are transformed into the logarithmic domain by utilizing the proposed

architectural design of the approximation technique to avoid complex and

computationally intensive operations such as division, logarithm and powering. The

enhancement architecture consists of three main computational modules: (1) illuminance

enhancement module, (2) contrast enhancement module, and (3) color

restoration/adjustment module. To achieve efficient computations for the enhancement

algorithm, some of the equations in the previous section are modified into a hardware-

efficient algorithm to better suit the architecture design. The implementation of the image

enhancement algorithm utilizes parallel and pipelined architecture design techniques for

real-time processing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 6

6.2.1. Illuminance Enhancement Module

This module is designed to perform the dynamic range compression of the illuminance

operation described in equation (6 .6). The fast and efficient approximation method for

computing the log2 operation is utilized to approximate the powering operation. The

procedure for the dynamic range compression of the illuminance step is transformed to

operate in the logarithmic domain where the powering operation in equation (6 .6) is

achieved by a multiplication operation. The actual operation for compressing the dynamic

range of the illuminance is defined as:

Division by 255 and multiplication by 255 are approximated very closely by fast

arithmetic shift operations. Intensity I(x,y) of the pixel is first passed through the 2-D

convolution unit which is implemented using a parallel architecture design with

consideration of quadrant symmetry to obtain illuminance L(x,y). The SWPB buffering

scheme is utilized in this work. The block diagram of the illuminance enhancement

module is shown in Figure 6.1. The parameter y is latched into the system at

initialization. Equation (6.15) is carried out by a log2 operation, a multiplication, an

inverse-log2 operation, and two arithmetic shift operations. Reflectance R/x,y) is also

computed in this module by performing operations defined as:

The division operation is avoided for higher performance and reduced resource

consumption by utilizing the approximation technique to transform a division operation

to a subtraction operation in the logarithmic domain as shown in equation (6.17):

(6.15)

where Ln(x,y) is the normalized illuminance which is computed by Ln(x ,y)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 7

Rf (x, y) = log"1 [log2 (/(* , y)) - lo g 2 (L (x , y))] (6.17)

Implementation of the log-based divider using the approximation method significantly

reduces the resource utilization compared to the fully pipelined divider generated by a

core generator. A typical pipelined divider obtained from the commercial core generator

consumes more than 80% of the resources compared to the proposed log-based divider

used in this implementation.

7

■> R (* ,y)

Delay

inverse
log2

inverse
log2

Delay

2-D
Convolution

Figure 6.1. Block diagram of the illuminance enhancement module.

The intensity of a pixel in the logarithmic domain is passed along the illuminance

enhancement module for future operations in subsequent modules shown in Figure 6.1.

Delay elements are inserted in the pipelined stages as shown in Figure 6.1 to synchronize

data paths for enhanced illuminance L'(x,y), pixel reflectance value R /x,y) and the

intensity in the logarithmic domain /z/x,y) at the output of the module,. Delay elements

are configured as FIFO queues with embedded RAM blocks in an FPGA. Parallel design

with quadrant symmetry property presented in Chapter 4 is used for the implementation

of the 2-D convolution unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 8

6.2.2. Contrast Enhancement Module

The contrast enhancement module considers surrounding pixels to adjust the enhanced

illuminance obtained from the illuminance enhancement module. First, the enhanced

illuminance L'(x,y) is passed through a convolution module to obtain the low-pass result

L"(x,y) which contains the local information necessary to increase or decrease the

enhanced illuminance as described in equation (6.7). Similar to the parameter y in the

illuminance enhancement module, contrast adjustment factors Pi and which determine

the strength of contrast enhancement are pre-stored in registers upon system initialization.

The architecture design for the contrast enhancement module is very straightforward and

the block diagram for this module is shown in Figure 6.2. For this contrast enhancement

module, a larger Gaussian kernel is used to consider the information from surrounding

pixels.

P A

L'(x,y)

sign \ 1 o

Convolution

+)— > L'E(x,y)

Figure 6.2. Block diagram of the contrast enhancement module.

6.2.3. Color Restoration and Adjustment Module

Enhanced illuminance L'px.y) obtained after performing the illuminance and contrast

enhancement is used with the original reflectance value R/x,y) to compute the intensity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 9

of the enhanced pixel. This is achieved by a multiplication operation. The color

restoration procedure is carried out in this module based on equations (6.9)-(6.11) to

obtain three color bands (red, green and blue) for the enhanced pixels. Data in equations

(6.9)-(6.11) are transformed to the logarithmic domain to reduce the computational

complexity of the division operation. Equations (6.9) to (6.11) are modified as:

R(x, y) = log"1 [log2 (/'(* , y)) - lo g 2 (/(* , y))] r (6.17)

G(x, y) = log:;1 [log2 (I'(x , y)) - log2 (I(x, y))] g (6.18)

B(x, y) = log"1 [log2 (/'(* , y)) - lo g 2(l(x , y)] \b (6.19)

Computation of color restoration and the white balance adjustment step are also included

in this module. The block diagram of the color restoration and adjustment module is

shown in Figure 6.3. Color justification coefficients Hr, Hg and Hb for red, green and blue

color bands are latched into registers in this module at the system initialization stage.

Enhanced color components R', G' and B' at the outputs of this module are written to an

output RAM module for interfacing with the video encoder.

0.33
inverse

log2Delay

R'(x,y)
Delayr

9 Delay

b Delay +) -» B'(x,y)

Figure 6.3. Block diagram of the color restoration and adjustment module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

6.3. Experimental Results

The video enhancement system design is implemented with VHDL utilizing Altera’s

Quartus II software tool. The design is fitted in a Cyclone II FPGA in the Altera’s DE2

developmental and educational board. Table 6.1 gives a summary of resource utilization

and maximum speed achieved from the implementation. Two SDRAM banks are used as

input and output frame buffers.

Table 6.1. Implementation results for the proposed architecture designs of IRME image

enhancement algorithm.

Description Implementation without
power-aware techniques

Implementation with
power-aware techniques

Device Cyclone II2C35 FPGA Cyclone II2C35 FPGA

Logic elements 5317 (~ 17%) 6256 (~ 19%)

SDRAMs 3 (75%) 3 (75%)

Max. clock freq. 65 MHz 62 MHz

A set of test images captured under various lighting environments is used to evaluate the

proposed design. Two typical test images shown in Figure 6.4a are used in this chapter to

compare the enhanced results of the hardware system and the software program. The first

test image is captured in an extremely dark environment and the second test image is

captured in a complex lighting condition. Figure 6.4b shows the enhanced images

obtained by the simulation using software program written in Matlab that uses double­

precision floating point number format. Images in Figure 6.4c show the enhanced results

obtained by the hardware architecture that uses an 18-bit fixed point number format. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

enhanced images obtained from the hardware system have minor degradation due to the

approximation procedure and the fixed point arithmetic. The average error for the first

test image (uniform and extreme dark image) is approximately 0.1078 in terms of pixel

intensity. Similarly, the average error for the second test image (captured in complex and

nonlinear lighting condition) is about 0.1278. The intensity difference between Matlab

and FPGA implementations for the first test (uniform dark) image is shown in Figure

6.5a and the histogram of the differences is shown Figure 6.5b. Similarly, Figure 6.6

shows the intensity difference and histogram of the differences for the second test image

(captured in nonlinear lighting environment). Fixed point representation understandably

shows limitation in dynamic range.

(a) Original images.

(b) Enhanced images by software mean.

(c) Enhanced image by hardware architecture.

Figure 6.4. Comparison between enhanced images obtained by a software program in

Matlab and enhanced images obtained by the hardware architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H
is

to
g

ra
m

102

Intensity Difference Between Software and Hardware Simulation of IRME Algorithm

14000

12000

10000

8000

6000

4000

2000

0
a 50 100 150 200 250 300

Intensity Level

(b) Histogram of intensity differences.

Figure 6.5. Error analysis between the software and hardware implementations for the

first test image.

(a) Intensity differences between resulting images.

Histogram of Intensity Difference

Ik.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H
is

to
g

ra
m

1 0 3

Intensity Difference Between Sotware and Hardware Simulations of IRME Algorithm

(a) Intensity differences between resulting images.

Histogram o f Intensity Difference

10000 -

8000 -

sooo -

4000 •

2000 -

Intensity Level

(b) Histogram of intensity differences.

Figure 6.6. Error analysis between the software and hardware implementations for the

second test image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 4

For performance evaluation, three implementations for real-time video enhancement of

the IRME algorithm using DSP processors are estimated. These implementations use

Texas Instrument (TI) DSP processors that are based on the advanced Very Long

Instruction Word (VLIW) architecture which has eight independent functional units to

support parallel processing. In addition, a DSP library with optimized DSP functions such

as FFT and IFFT is used to support real-time applications. Table 6.2 lists the

configurations and performance of the proposed system for IRME algorithm and other

DSP-based implementations of IRME algorithm. As shown in Table 6.2, even though the

proposed architecture operates with a much lower clock frequency, it outperforms other

implementations by as much as 26 folds. The main reason for the difference in

performance is that the proposed system utilizes maximum parallel operations inherent in

the enhancement algorithm while DSP processors have a fixed number of functional units

which limit parallel processing to a certain bound.

Table 6.2. Performance comparison of the proposed FPGA based enhancement system

with three DSP-based enhancement implementations (for 256x256 frames).

Device TMS3026711
(DSP-based)

TMS3026713
(DSP-based)

TMS302DM642
(DSP-based)

Cyclone II
(FPGA-based)

F max 150 MHz 225 MHz 600 MHz 60 MHz

External
memory

100 MHz
SDRAM

90 MHz
SDRAM

133 MHz
SDRAM

133 MHz
SDRAM

Architecture
design

VLIW
(8 func. units)

VLIW
(8 func. units)

VLIW
(8 func. units)

Parallel-pipeline

Number
system

32-bit
floating point

32-bit
floating point

32-bit fixed
point

18-bit fixed
point

Frame rate 39 fps 59 fps 157 fps 1022 fps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 5

For power consumption analysis, a simulation tool from Altera Quartus II software is

used and logic transitions are recorded to the Signal Activity File (SAF). The SAF file is

used in the PowerPlay tool to compute the dynamic power consumption of two designs:

(1) enhancement system without the proposed power-aware techniques and (2)

enhancement system with the proposed power-aware techniques for Booth multiplier,

binary logarithm and NDA scheme for 2-D convolution. Table 6.3 shows 10 test images

captured under various lighting and background environments, and the respective

enhanced images using the proposed system architecture. Table 6.4 provides the dynamic

power consumed by the architectures with and without applying the multi-level power

design methodologies while enhancing the images shown in Table 6.3. The architecture

design without utilizing the multi-level power-aware design methodologies is referred to

as “Design without NDA” in Table 6.3. Similarly, the architecture design that

incorporates the multi-level power-aware design methodologies is referred to as “Design

without NDA” in Table 6.3. It can be observed that the power saving due to the

application of the power-aware design methodologies can be reasonably predicted based

on the statistical nature of the input image.

6.4. Summary

The multi-level power-aware design methodologies presented in this dissertation have

been successfully applied to a real-time architecture design for a practical application of

video enhancement. A pipelined and parallel architecture design has been implemented

and evaluated for the IRME enhancement algorithm. The architecture consists of three

main modules: (1) the illuminace enhancement module, (2) the contrast enhancement

module and (3) the color restoration and adjustment module. The NDA method is utilized

in the design and implementation of the 2-D convolution unit in the illuminance

enhancement and contrast enhancement modules. The proposed Booth multiplier design

is used in all three modules. Division and powering operations in the IRME algorithm are

transformed to log-based subtraction and multiplication operations in the architecture

design. The binary logarithm approximation technique is used for this transformation.

Simulation results of two typical test images for the IRME algorithm show minor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 6

difference in pixel intensities between the results obtained by software and hardware

means. The proposed design and implementation of the parallel pipelined architecture

with utilization of multi-level low power design methodologies achieved more than 29%

power reduction compared to the baseline implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 7

Table 6.3. Test images and the respective enhanced images.

Test image Original image Enhanced image

1

2

-̂
«v> ^H| ■■1

3 3 W ^ K M

W p p E

4
■■■

5 ■ ■
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 8

Test image

6

Original image

w

Enhanced image

w

7

8 M * w * vi

9 1 *■ ■ 1 s " ■' VttPflW— MIW

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 9

Table 6.4. Experimental results of IRME enhancement algorithm.

n. Method Design without NDA Design With NDA

Image n.
Power (mW) Normalized

ratio
Power (mW) Normalized

ratio

1 122.95 1.00 81.68 0.66

2 150.24 1.00 100.86 0.67

3 160.16 1.00 105.04 0.66

4 154.14 1.00 103.17 0.67

5 160.43 1.00 104.76 0.65

6 144.89 1.00 102.16 0.71

7 121.93 1.00 78.26 0.64

8 187.01 1.00 122.33 0.65

9 158.65 1.00 103.51 0.65

10 145.40 1.00 96.21 0.66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Chapter VII

CONCLUSION AND FUTURE W ORKS

In this dissertation, a multi-level approach for power-aware design of real-time video

processing systems has been developed, implemented and evaluated. A novel power-

aware partitioning and gating technique for pipelined CSA array, Booth and log-based

multipliers at the arithmetic and logic level has been presented. At the architectural level,

a novel neighborhood dependent approach has been proposed in this dissertation for

window-based operations in video processing applications. The power-aware design

techniques were utilized in the design of a real-time video enhancement application at the

system level. The main contributions of this dissertation can be summarized as follows.

• A partitioning and gating technique to handle special values in higher order parts

of the multiplier operands has been proposed to deactivate part(s) of the

multipliers for reduced switching activities. Pipelined CSA array multiplier with

the new partitioning and gating technique has achieved over 17% power reduction

compared to the baseline pipelined CSA array multiplier.

• A radix-4 recoding technique with consideration of the partitioning and gating

method has been proposed for radix-4 Booth multiplier. A delayed correction

technique for negative partial products has also been presented for the Booth

multiplier design to reduce the effect of sign bit extension in the data

representation. The new Booth multiplier design achieved over 15% power

reduction compared to the baseline Booth multiplier. In addition, the sign

magnitude representation of the multiplier operand was incorporated and the

proposed Booth_PGSM achieved better results in edge detection compared with

the proposed Booth_PG2C.

• Logarithmic domain arithmetic units have been designed and evaluated for power

reduction in place of complex operations in the linear domain such as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

multiplication, division, powering, etc. A fast and efficient approximation method

for binary logarithm and inverse-logarithm was used. An error correction method

has been proposed for the binary logarithm approximation technique. The new

correction method considers one and two bits to determine regions of interests for

correction. The results show significant improvement in accuracy over the

baseline Mitchell method, and the results are comparable with other existing

methods.

• A new modular design technique for leading bit detection to be used in the binary

logarithm approximation method has been proposed. The new detection method

integrates a leading one detection unit and a decoder to determine the bit position.

The new technique has been used for data words of various lengths by combining

multiple functional blocks without significant custom adjustment to the

architectural structure. A log-based multiplier with consideration of the

partitioning and gating technique has also been presented. The log-based

multiplier achieved more than 50% power reduction compared to the linear

multipliers (CSA array and Booth). The proposed Mitchell-PG multiplier

achieved more than 29% power reduction compared to the Mitchell based

multiplier in the edge detection application.

• A novel neighborhood dependent approach has been proposed for low power

design and evaluated for window-based operation in video processing

applications. The proposed NDA method utilizes the partitioning method to

reduce computations for the higher order bits of the pixel values in a window. The

NDA method was incorporated in the parallel architecture for 2-D convolution

with SWPB and MWPB on-chip buffering schemes. In addition, the proposed

NDA method was also applied to the 2-D convolution with quadrant symmetry

property. The 2-D convolution with proposed the NDA method achieved over

36% power reduction compared to implementations without NDA method for all

implementations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

• A high performance pipelined and parallel architecture for IRME image

enhancement algorithm has been presented and implemented. The design utilized

the proposed Booth multiplier with partitioning and gating technique in all three

main computational modules of the image enhancement system. The NDA

method was applied to the parallel architecture design of 2-D convolution

modules. In addition, division and powering operations were computed in the

logarithmic domain utilizing the proposed binary logarithm approximation

technique. The multi-level approach for power-aware design of the image

enhancement system achieved more than a 29% power reduction compared to the

baseline implementation without consideration of the proposed multi-level power

aware design.

Research work in this dissertation considered radix-2 and radix-4 computations for

multipliers because they are commonly used in digital systems. As we observed, the

radix-4 computations reduce power consumption due to the reduced number of partial

products generated. Research work is progressing to consider higher radix arithmetic for

power reduction such as radix-8 Booth multiplier design. Another extension of this work

is to consider a hybrid system design with fixed point representation and logarithmic

representation for multimedia systems. Research work is also progressing in utilizing the

data dependencies in subsequent frames in a video stream for the reduction of circuit

switching activities and thereby the dynamic power consumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

REFERENCES

[1] O. Unsal and I. Koren, “Sysetm-level power-aware design techniques in real-time

systems,” Proc. o f IEEE, vol. 91, no. 7, pp. 1-15, 2003.

[2] A. Klaiber, “The technology behind crusoe processors,” White Paper - Transmeta

Corporation, pp. 1-18, 2000.

[3] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Mattson,

“The Transmeta code morphing software: using speculation, recovery, and adaptive

retranslation to address real-life challenges,” Proc. o f Intl. Symp. on Code

Generation and Optimization , pp. 15-24, 2003.

[4] C. M. Krishna and Y. H. Lee, “Voltage-clock-scaling adaptive scheduling

techniques,” IEEE Trans, on Computers, vol. 52, no. 12, pp. 1586-1593, 2003.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

Austin, K. Flautner, and T. Mudge, “Razor: a low power pipelined based on circuit

level timing speculation,” Proc. o f 36th Intl. Symp. on Microarchitecture, pp. 7-18,

2003.

[6] L. Benini, A. Macii, and M. Poncino, “Selective instruction compression for

memory energy reduction in embedded systems,” Proc. o f Intl. Symp. on Low

Power Electronics and Design, pp. 206-211, 1999.

[7] H. Lekatsas, J. Henkel, and W. Wolf, ’’Approximate arithmetic coding for bus

transition reduction in low power designs,” IEEE Trans, on VLSI Systems, vol. 13,

no. 6, pp. 696-707, 2005.

[8] M. R. Stan and W. P. Burleson, “Bus-invert coding for low power I/O,” IEEE

Trans, on VLSI, vol. 3, issue 1, pp. 49-58, 1995.

[9] M. Mamidipaka, D. Hirschberg and N. Dutt, “Low power address encoding using

self-organizing lists,” Proc. o f Intl. Symp. on Low Power Electronics and Design,

pp. 188-193,2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 4

[10] R. Henning and C. Chakrabarti, “An approach to switching activities consideration

during high-level, low-power design space exploration,” IEEE Trans, on Circuits

and Systems II: Analog and Digital Signal Processing, vol. 49, no. 5, pp. 339 - 351

2002 .

[11] L. H. Lee, B. Moyer and J. Arends, “Instruction fetch energy reduction using loop

caches for embedded applications with small tight loops,” Proc. o f Intl. Symp. on

Low Power Electronics and Design, 1999, pp. 267-269, 1999.

[12] H. Kapadia, L. Benini and G. D. Mecheli, “Reducing switching activity on datapath

buses with control-signal gating,” IEEE Journal o f Solid State Circtuis, vol. 34, no.

3, pp. 405-414, 1999.

[13] H. Kim, I. C. Park, “High-performance and low-power memory interface

architecture for video processing applications,” IEEE Trans, on Circuits and

Systems fo r Video Technology, vol. 11, no. 11, pp. 1160-1170, 2001.

[14] K. Gandhi and N. Mahaptra, “Dynamically exploiting frequent operand values for

energy efficiency in integer functional units,” Proc. o f 18th Intl. Conf. on VLSI

Design, pp. 570-575, 2005.

[15] L. Benini, G. D. Micheli, A. Macii, E. Macii, M. Poncino and R. Scarsi, “Glitch

power minimization by selective gate freezing,” IEEE Trans, on VLSI, vol. 8, no. 3,

pp. 287-298, 2000.

[16] M. Hasan and T. Arslan, “Implementation of low-power FFT processor cores using

a novel order-based processing scheme,” IEE Proc. o f Circuits, Devices and

Systems, vol. 150, no. 3, pp. 149-154, 2003.

[17] Y. -W. Wu, O. T.-C. Chen and R.-L. Ma, “A low power digital signal processor

core by minimizing inter-data switching activities,” Proc. o f 44th IEEE Midwest

Symp. on Circuits and Systems, vol. 1, pp 172-175, 2001.

[18] N. Sankarayya, K. Roy and D. Bhattacharya, “Algorithms for low power and high

speed FIR filter realization using differential coefficients,” IEEE Trans, on Circuits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 5

and Systems - II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 488-

497,1997.

[19] A. P. Vinod and I. Setiawan, “A minimal-difference differential coefficients method

for low complexity FIR filter realization,” Proc. o f 8th Intl. Symp. on Signal

Processing and Its Applications, pp. 155-158, 2005.

[20] C. -Y . Han, H. -J . Park and L. -S . Kim, “A low power array multiplier using

separated multiplication technique,” IEEE Trans, on Circuits and Systems - II:

Analog and Digital Signal Processing, vol. 48, no. 9, pp. 866-871, 2001.

[21] Z. Yu, M. -L . Yu, K. Azadet and A. N. Wilson, “A low power FIR filter design

technique using dynamic reduced signal representation,” Proc. o f Intl. Symp. on

VLSI Technology, Systems, and Applications, pp. 113-116, 2001.

[22] E. F. Stefatos, H. Wei, T. Arslan and R. Thomson, “Low-power reconfigurable

VLSI architecture for the implementation of FIR filters,” Proc. o f 19th IEEE Intl.

Parallel and Distributed Processing Symposium, pp. 4-7, 2005.

[23] A. T. Erdogan, M. Hasan and T. Arslan, “Algorithmic low-power FIR cores,” IEE

Proc. o f Circuits, Devices and Systems, vol. 150, no. 3, pp. 155-160, 2003.

[24] A. T. Erdogan, E. Zwyssig, and T. Arslan, “Architectural trade-offs in the design of

low power FIR filtering cores,” IEE Proc. o f Circuit Devices and Systems, vol. 151,

no. l,p p . 10-17,2004.

[25] V. Menon, S. Chennupati, N. K. Samala, D. Radhakrishman, and B. Izadi,

“Switching activity minimization in combinational logic design,” Proc. o f the Intl.

Conf. on Embedded Systems and Applications, pp. 47-53, 2004.

[26] M. Vratonjic, B. R. Zeydel, and V. G. Oklobdzija, “Low and ultra-low power

arithmetic units: design and comparison,” Proc. o f Intl. Conf. on Computer Design,

pp. 249-252, 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 6

[27] K. Chirca and M. Schulte, “A static low power, high performance 32-bit carry skip

adder,” Euromicro Symp. on Digital System Design, pp. 615-619, 2004.

[28] S. Mathew, “A 4GHz 130nm address generation unit with 32-bit sparse-tree adder

core,” IEEE JSSCC, vol. 38, no.5, pp. 689-695, 2003.

[29] M. Schulte, K. Chirca, J. Glossner, H. Wang, S. Mamidi, B. Balzola and S.

Vassiliadis, “A low-power carry skip adder with fast saturation,” Proc. o f the Intl.

Conf. on Application-Specific Systems, Architectures and Processors, pp. 269-279,

2004.

[30] Y. Jiang, A. A-Sheraidah, Y. Wang, E. Sha and J. -G . Chung, “A novel

multiplexer-based low-power full adder,” IEEE Trans, on Circuits and Systems -

II: Express Briefs, vol. 51, no. 7, pp. 345-348, 2004.

[31] P. M. Seidel, “Dynamic operand modification for reduced power multiplication,”

Proc. o f 36th Asilomar Conf. on Signals, Systems and Computers, pp. 52-56, 2002.

[32] M. Ito, D. Chinnery, and K. Keutzer, “Low power multiplication algorithm for

switching activity reduction through operand decomposition,” Proc. o f the 21st Intl.

Conf. on Computer Design, pp. 21-26, 2003.

[33] N. Rollin and M. J. Wirthlin, “Reducing energy in FPGA multipliers through glitch

reduction,” Proc. o f the 7th Intl. Conf. on Military Applications o f Programmable

Logic Devices, pp. 1-10, 2005.

[34] R. Fisher, K. Buchenrieder, and U. Nageldinger, “Reducing the power consumption

of FPGAs through retiming,” Proc. o f the 12th IEEE Intl. Conf. and Workshops on

Engineering o f Computer-Based Systems, pp. 89-94, 2005.

[35] Y. L. Hs and S. J. Wang, “Retiming-based logic synthesis for low power,” Proc. o f

Intl. Symp. on Low Power Elect, and Design, pp. 275-278, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 7

[36] S. Wilton, S. Ang, and W. Luk, “The impact of pipelining on energy per operation

in field-programmable gate arrays,” Proc. o f 14th Intl. Conf. on Field

Programmable Logic and Application, pp. 719-728, 2004.

[37] E. J. King and E. E. Swartzlander, “Data-dependent truncated scheme for parallel

multiplication,” Proc. o f Asilomar Conf. Circuits and Systems, pp. 1178-1182,

1998.

[38] M. J. Schulte , J. E. Stine , and J. G. Jansen, “Reduced power dissipation through

truncated multiplication,” Proc. o f the IEEE Alessandro Volta Memorial Workshop

on Low-Power Design, p.61-69, 1999.

[39] C. -H . Chang, R. K. Satzoda and S. Sekar, “A novel multiplexer based truncated

array multiplier,” Proc. o f the IEEE Intl. Symp. on Circuits and Systems, pp. 85-88,

2005.

[40] K. Han, B. L. Evans and E. E. Swartzlander, “Low-power multiplier with data

wordlength reduction,” Proc. o f 39th Asilomar Conf. on Signals, Systems and

Computers, pp. 1615-1619, 2005.

[41] V. Moshnyaga, “Reducing switching activity of subtraction via variable trucaction

of the most-significant bits,” Journal o fV SL I Signal Processing, no. 33, pp. 75-82,

2003.

[42] . Mudassir and Z. Abid, “New parallel multipliers based on low power adders,”

Proc. o f Canadian Conf. on Electrical and Computer Engineering, pp 694-697,

2005.

[43] M. Fujino and V. Moshnyaga, “Dynamic operand transformation for low power

multiplier-accumulator design,” Proc. o f Intl. Symp. on Circuits and Systems, vol. 5,

pp. V-345 - V-348, 2003.

[44] M. Riazati, A. Sobhani, M. M. Dastjerdi, A. A. Kusha and A. Khakifirooz, “Low-

power multiplier with static decision for input manipulation,” Proc. o f Intl. Symp.

on Circuits and Systems, pp. 2721-2724, 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11 8

[45] Y. Liu and S. Furber, “The design of a low power asynchronous multiplier,” Proc.

o f Intl. Symp. on Low Power Electronic and Design, pp. 301-306, 2004.

[46] S. Kim and M C. Papaefthymiou, “Reconfigurable low energy multiplier for

multimedia system design,” Proc. o f IEEE Workshop on VLSI, pp. 129-134, 2000.

[47] J. Di and J. S. Yuan, “Power-aware pipelined multiplier design based on 2-

dimensional pipeline gating,” Proc. o f the 13th ACM Great Lakes Symp. on VLSI,

pp. 64-67, 2003.

[48] G. Economakos, K. Anagnostopoulos, “Bit level architectural exploration technique

for the design of low power multipliers,” Proc. o f IEEE Intl. Symp. on Circuits and

Systems, pp. 1483-1486, 2006.

[49] M. C. Wen, S. J. Wang, and Y. N. Lin, “Low power parallel multiplier with column

bypassing,” Electronics Letters, vol. 41, no. 10, pp. 581 - 583, 2005.

[50] M. Fonseca, E. Costa, S. Bambi and J. Monteiro, “Design of a radix-2 hybrid array

multiplier using carry save adder,” Proc. o f 18th Symposium on Integrated Circuits

and Systems Design, pp. 172-177, 2005.

[51] L. Ciminiera and P. Montuschi, “Carry save multiplication schemes without final

addition,” IEEE Trans, on Computers, vol. 45, no. 9, pp. 1050-1055, 1996.

[52] K. Y. Khoo, Z. Yu and A. N. Wilson Jr., “Improved Booth encoding for low power

multipliers,” Proc. o f IEEE Intl. Symp. On Circuits and Systems, pp, 162-165, 2006.

[53] Z. Yu, L. Wasserman and A. N. Wilson Jr., “A painless way to reduce power

dissipation by over 18% in Booth-encoded carry-save array multipliers for DSP,”

Proc o f IEEE workshop on Signal Processing Systems, pp. 571-580, 2000.

[54] T. Ahn and K. Choi, “Dynamic operand interchange for low power,” Electronic

Letters, vol.33, no. 25, pp. 2118-2120, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 9

[55] O. T-C Chen, S. Wang and Y-W Wu, “Minimization of switching activities of

partial product for designing low-power multipliers,” IEEE Trans, on Very Large

Scale Integration (VLSI) System, vol. 11, no.3, pp. 418-433, 2003.

[56] J. Park, S. Kim and Y-S Lee, “A low power Booth multiplier using novel data

partition method,” Proc. o f IEEE Asia-Pacific Conf. on Advanced System

Integrated Circuits, pp. 54-57, 2004.

[57] O. T-C Chen, N. -Y . Shen and C. -C . Shen, “A low-power multiplication

accumulation calculation unit for multimedia applications,” Proc. o f IEEE Intl.

Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. H-645-II-648, 2003.

[58] K. T. Gribbon, C. T. Johnston, and D. G. Bailey, “A real-time FPGA

implementation of a barrel distortion correction algorithm with bilinear

interpolation,” Proc. o f Image and Vision Computing, pp. 402-407, 2003.

[59] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and M. Chawathe,

“Accelerate image processing on FPGAs,” IEEE Trans, on Image Processing, vol.

12, no. 12, pp. 1543 - 1551, 2003.

[60] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and M. Chawathe,

“Implementing image applications on FPGAs,” Proc. o f 16th Intl. Conf. on Pattern

Recognition, vol. 3, pp. 265-268, 2002.

[61] S. Choi, R. Scrofano, V. K. Prasanna and J. W. Jang, “Energy-efficient signal

processing using FPGAs” Proc. o f the 2003 ACM/SIGDA 11th Intl. Symp. on

FPGA, pp. 225-234, 2003.

[62] V. K. Prasanna, “Energy-efficient computations on FPGAs,” The Journal o f

Supercomputing, vol. 32, issue 2, pp. 139-162, 2005.

[63] B. Kumthekar, L. Benini, E. Macii and F. Somenzi, “Power optimization of FPGA-

based designs without rewiring,” IEE Proc. o f Computers and Digital Techniques,

vol. 147, issue 3, pp. 167-174, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

[64] E. Boemo, S. L. -Buedo, C. S. Perez, J. Jauregui and J. Meneses, “Logic depth and

power consumption: a comparative study between standard cells and FPGAs,”

Proc. o f XIII Design o f Circuits and Integrated Systems Conf., pp. 1-5,1998.

[65] J. Becker, M. Huebner and M. Ullmann, “Power estimation and power

measurement of Xilinx Virtex FPGAs: trade-offs and limitations,” Proc. o f 16th

Symp. on Integrated Circuits and Systems Design), pp. 283-288, 2003.

[66] L. Shang, A. S. Kaviani and K. Bathala, “Dynamic power consumption in Virtex II

FPGA family,” Proc. o f 2002 ACM/SIGDA 11th Intl. Symp. on FPGA, pp. 157-164,

2002.

[67] Altera Inc., “Power optimization,” Quartus II Handbook Volume 2: Design

Implementation and Optimization, chapter 9, pp. 9_l-9-40, 2007.

[68] Altera Inc., “Power optimization in Stratix III FPGAs,” Applications Note 437, pp.

1-13, 2007.

[69] R. C. Baugh and B. A. Wooley, “A two’s complement parallel array multiplication

algorithm,” IEEE Trans, on Computer, vol. C-22, pp. 1045-1047, 1973.

[70] Z. Huang and M. Ercegovac, “Two dimensional gating for low power array

multiplier design,” Proc. Intl. Symp. on Circuits and Systems, vol. 1, pp. 1-489 - I-

492, 2002.

[71] A. A. Fayed and M. A. Bayoumi, “A novel architecture for low-power design of

parallel multipliers,” Proc. o f IEEE Computer Society Workshop on VLSI, pp. 149-

154,2001.

[72] S. Ramprasad, N. R. Shanbha and I. N. Hajj, “Analytical estimation of signal

transition activity from word-level statistics,” IEEE Trans, on Comp. Aided Design

o f Integrated Circuits and Systems, vol. 16, no. 7, pp. 718-733, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

[73] M. Zheng and A. Albicki, “Low power and high speed multiplication design

through mixed number representations,” Proc. o f 1995 IEEE Intl. Conf. Computer

Design, pp. 566-570, 1995.

[74] V. Paliouras and T. Stouraitis, “Low-power properties of the logarithmic number

system,” Proc. o f 15th IEEE Symp. on Computer Arithmetic, pp. 229-236, 2001.

[75] B. -G . Nam, H. Kim and H. -J . Yoo, “A low-power unified arithmetic unit for

programmable handheld 3-D graphics systems,” IEEE Journal o f Solid-State

Circuits, vol. 42, no. 8, pp. 1767-1778, 2007.

[76] J. N. Mitchell, “Computer multiplication and division using binary logarithms,” IRE

Transactions on Electronic Computers, pp. 512-517, 1962.

[77] V. Mahalingam and N. Ranganathan, “Improving accuracy in Mitchell’s

logarithmic multiplication using operand decomposition,” IEEE Trans, on

Computers, vol. 55, no. 12, pp. 1523-1535, 2006.

[78] M. J. Duncan, “Improve Mitchell based logarithmic multiplier for low power DSP

applications,” Proc. o f IEEE Intl. System on a Chip Conf, pp. 17-20, 2003.

[79] E. L. Hall, D. D. Lynch and S. J. Dwyer III, “Generation of products and quotients

using approximate binary logarithms for digital filtering applications,” IEEE Trans,

on Computers, vol. 19, issue 3, pp. 97-105, 1970.

[80] S.L. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, “A fast, low-power

logarithm approximation with CMOS VLSI implementation”, Proc. o f Midwest

Symp. on Circuits and Systems, vol. 1, pp. 388-391, 1999.

[81] K. H. Abed and R. Siferd, “CMOS VLSI implementation of a low power

logarithmic converter,” IEEE Trans, on Computers, vol. 52, no. 11, pp. 141-1433,

2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

[82] B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-D convolvers for fast

digital signal processing,” IEEE Trans, on VSLI System, vol. 7, no. 3, pp. 299-308,

1999.

[83] S. Hong and S. Chin, “Domain specific reconfigurable processing core architecture

for digital filtering applications,” Journal o f VLSI Signal Processing, no. 40, pp.

239-259, 2005.

[84] C. T. Huitzil and M. A. Estrada, “FPGA-based configurable systolic architecture for

window-based image processing,” EURASIP Journal on Applied Signal Processing,

vol. 7, pp. 1024-1034, 2005.

[85] R. Managuli, G. York, D. Kim, and Y. Kim, “Mapping of two dimensional

convolution on very long instruction word media processor for real-time

processing,” Journal o f Elect. Imaging, vol. 7, no. 3, pp. 327-335, 2000.

[86] D. Draper, W. Najjar, and W. Bohm, “Compiling and optimizing image processing

algorithms for FPGA’s,” proc. Intl. Workshop on Comp. Architecture fo r Machine

Performance, pp. 240-246, 2000.

[87] M. A. Estrada and C. T. Huitzil, “Real-time field programmable gate array

architecture for computer vision,” Journal o f Electronic Imaging, vol. 10, no. 1, pp.

57-59, 2001.

[88] K. Doshi and P. Varman, “A modular systolic architecture for image convolutions,”

Proc. o f 14th Intl. Symp. on Computer Architecture, pp. 56-63, 1987.

[89] X. Liang, J. S. N. Jean and K. Tomko, “Data buffering and allocation in mapping

generalized template matching on reconfigurable systems,” Journal o f

S u p erco m p u ter , vol. 19, vol. 1, pp. 77-91, 2001.

[90] F. C. Tormo and P. Molinet, “Area-efficient 2-D shift-variant convolvers for

FPGA-based digital image processing,” IEEE Trans, on Circuits and Systems II:

Express Briefs, vol. 53, no. 2, pp. 105-109, 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

[91] H. Zhang, M. Xia and G. Hu, “A Multiwindow partial buffering scheme for FPGA-

based 2-D convolvers,” IEEE Trans, on Circutis and Systems II: Express Briefs,

vol. 54, no. 2, pp. 200-204, 2007.

[92] L. Tao and V. K. Asari, “An efficient illuminance-reflectance nonlinear video

stream enhancement model,” Proc. o f IS&T/SPIE Symp. on Electronic Imaging:

Real-Time Image Processing III, vol. 6063. pp. 606301-1-12, 2006.

[93] Hau T. Ngo, Ming Z. Zhang, Li Tao and K. Vijayan Asari, “Design of a digital

architecture for real-time video enhancement based on illuminance-reflectance

model,” Proc. o f 49th IEEE Intl. Midwest Symp. on Circuits and Systems, pp. 3179-

1-5, 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

VITA
(December 2007)

Hau Trung Ngo
http://www.lions.odu.edu/~hngox001

EDUCATION

MS in Computer Engineering, Old Dominion University, Norfolk VA, 2003.
BS in Computer Engineering, Old Dominion University, Norfolk VA, 2001.
AS in Engineering, Tidewater Community College, Virginia Beach, VA, 1999.

RESEARCH PUBLICATIONS

1. Hau T. Ngo, Vijayan K. Asari, Ming Z. Zhang, and Li Tao “Design of a systolic-
pipelined architecture for real-time enhancement of color video stream based on an
illuminance-reflectance model,” Journal o f VLSI Integration (accepted for
publication).

2. Ming Z. Zhang, Hau T. Ngo, Adam R. Livingston, and Vijayan K. Asari, “A high
performance architecture for implementation of 2-D convolution with quadrant
symmetric kernels,” International Journal o f Computers and Applications (accepted
for publication).

3. Hau T. Ngo, Ming Z. Zhang, Li Tao and Vijayan K. Asari, “An architecture design
for real-time video enhancement based on a luma-dependent nonlinear approach,”
International Journal o f Embedded System, Special Issue on Media and Stream
Processing (in print).

4. Hau T. Ngo and Vijayan K. Asari, “Design of a FPGA-based high performance,
power-aware architecture for real-time radial lens distortion correction of video
streams,” International Journal o f Programmable Devices, Circuits, and Systems -
Special Issue on FPGA-Based Digital Signal and Image Processing Systems, vol. 7,
no. 1, pp. 33-41, May 2007.

5. Ming Z. Zhang, Hau T. Ngo and Vijayan K. Asari, “Multiplier-less VLSI architecture
for real-time computation of multi-dimensional convolution” Journal o f
Microprocessors and Microsystems, vol. 31, pp. 25-37, February 2007.

6. Rajkiran Gottumukkal, Hau T. Ngo and K. Vijayan Asari, ’’Multi-lane architecture
for eigenface based real-time face recognition” Journal o f Microprocessors and
Microsystems, vol. 30, no. 4, pp. 216-224, June 2006.

7. Hau T. Ngo and K. Vijayan Asari, "A pipelined architecture for real-time correction
of barrel distortion in wide-angle camera images," IEEE Transactions on Circuits and
Systems fo r Video Technology, vol. 15, no. 3, pp. 436-444, March 2005.

8. Ming-Jung Seow, Hau T. Ngo, and K. Vijayan Asari, "Systolic implementation of 2-
D block based Hopfield neural network for efficient pattern association" Journal o f
Microprocessors and Microsystems, vol. 27, no. 8, pp. 359-366, August 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.lions.odu.edu/~hngox001

	Old Dominion University
	ODU Digital Commons
	Winter 2007

	Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems
	Hau Trung Ngo
	Recommended Citation

	tmp.1571163554.pdf.bwhcV

