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Abstract

Semiconductor feature size has been shrinking significantly in the past decades. This decreasing

trend of feature size leads to faster processing speed as well as lower area and power consumption. Among

these attributes, power consumption has emerged as the primary concern in the design of integrated circuits in

recent years due to the rapid increasing demand of energy efficient Internet of Things (IoT) devices. As a re-

sult, low power design approaches for digital circuits have become of great attractive in the past few years. To

this end, approximate computing in hardware design has emerged as a promising design technique. It provides

design opportunities to improve timing and energy efficiency by relaxing computing quality. This technique

is feasible because of the error-resiliency of many emerging resource-hungry computational applications such

as multimedia processing and machine learning. Thus, it is reasonable to utilize this characteristic to trade an

acceptable amount of computing quality for energy saving.

In the literature, most prior works on approximate circuit design focus on using manual design

strategies to redesign fundamental computational blocks such as adders and multipliers. However, the man-

ual design techniques are not suitable for system level hardware due to much higher design complexity. In

order to tackle this challenge, we focus on designing scalable, systematic and general design methodologies

that are applicable on any circuits. In this paper, we present two novel approximate circuit design methods

based on machine learning techniques. Both methods skip the complicated manual analysis steps and primar-

ily look at the given input-error pattern to generate approximate circuits. Our first work presents a framework

for designing compensation block, an essential component in many approximate circuits, based on feature

selection. Our second work further extends and optimizes this framework and integrates data-driven consid-

eration into the design. Several case studies on fixed-width multipliers and other approximate circuits are

presented to demonstrate the effectiveness of the proposed design methods. The experimental results show

that both of the proposed methods are able to automatically and efficiently design low-error approximate

circuits.
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Chapter 1

Introduction

Moor’s law predicts that the numbers of transistors in a dense integrated circuit doubles every two

years [1]. Shrinking feature size enables transistors to consume less power so that they can conduct more

operations without dissipating much heat, which often is the constraint of CPU performance. At the same

time, a higher transistor density indicates smaller chips and in return smaller devices. The 7nm process of

TSMC achieves 20% performance gain and 40% power reduction comparing to its previous 10nm technology

[2]. This motivates the semiconductor industry to push the limit of the feature size. In 2016, Samsung became

the first company to start their production of 10nm mobile chips for its flagship smartphone, Galaxy S8 [3].

Two years later, Apple released its 7nm mobile processor, A12 Bionic chip which is the first chip using

7nm technology for mass market use [4]. Furthermore, the tremendous computational power improvement

resulted from significant feature size reduction also facilitates the evolution of many other computational

intensive applications, such as the prevailing deep learning. Neural network, a technique first introduced in

the 1950s, is a class of machine learning that imitate the activity of layers of neurons, which compose around

80% of the brain [5]. Early neural networks were built very simple mainly because of the computational

limitations. As a result, they cannot be used to capture complex patterns. The stumbling progress of neural

network did not see a significant development until nearly 20 years ago, when computers started to become

more powerful at computational tasks and GPU (graphics processing units) were developed [6]. However,

as the size of technology reaches the deep nanometer realm, the advancement of feature size is seeing an

end. The improvements in area, power, and timing resulting from scaling have started to see a decrease. In

addition, due to the exponential demand growth of portable IoT devices, energy efficiency in hardware design

has become a major design bottleneck.
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Under this circumstance, approximate computing in hardware design has become a promising paradigm

in recent years, which explores design space to achieve energy-efficient hardware circuits [7–26]. Specifi-

cally, this technique relaxes the output accuracy of a circuit to an acceptable extent in exchange for area/power

saving. The underlying reason behind this approximation is that many modern computational tasks are error

resilient or the errors can be tolerated internally and not perceived by the end user. For example, applica-

tions such as machine learning and image processing sometimes do not require a completely accurate result.

Therefore, approximate computing essentially takes advantage of this computing characteristic to achieve

hardware consumption reduction. In addition, in order to meet the rising performance demands confronting

with plateauing resource budgets, approximate computing has become, not merely attractive, but even imper-

ative.

The main research focus of approximate computing at the logic level has been the basic arithmetic

elements of a processor: adder [11–23] and multiplier [24–43]. In most of these prior works, approximate

versions of the arithmetic elements are manually designed to exploit the trade-off space to achieve the best

performance. Manual design strategies are suitable on these basic arithmetic elements since their structures

are organized and well studied. These basic arithmetic elements are then used to build large approximate

hardware systems. However, such scheme may be inefficient and erroneous due to the unpredictable error

propagation within the large system, which will also be illustrated in a case study in our research. Meanwhile,

many computational tasks nowadays are data-oriented (data-driven) such that they mainly operate on specific

data patterns. In fact, capturing input distribution currently is a very popular problem in machine learning

[44]. In additional, most of the existing approximate logic designs in the literature assume a uniform input

distribution, which might not always be the case in the real-world scenario. Therefore, it is also imperative

to develop data-driven approximate logic design methods, which may create better opportunity to tradeoff

between computation accuracy and power consumption.

With the advent of machine learning and data mining algorithms, it is plausible to utilize these

algorithms to help design approximate circuits, as projected in Fig 1.1. In this dissertation, we specifically

consider the design of error compensation blocks in approximate logic circuits. Error compensation is a

commonly used scheme in approximate computing, which aims at correcting the errors generated from logic

simplification or voltage over-scaling. For example, in the context of a truncated approximate multiplier, we

can save a significant amount of area and power by completely eliminating the computing units for lower

bits in the multiplier and then use a small number of logic gates as error compensation blocks to mitigate the

resulted errors. Conventional compensation blocks are designed either theoretically or empirically according

2
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Figure 1.1. Design data-oriented approximate circuits using machine learning techniques

to the circuits’ structures and error distribution. In comparison, our goal in this work is to generate data-driven

compensation circuits in a systematic manner with the help of machine learning and data mining techniques.

We propose two novel methods in this dissertation that can automatically generate data-oriented

compensation circuits for a given approximate circuit under different input distributions. Comparing to the

previous works, both of the proposed methods skip all the complicated theoretical analysis steps and solely

look into the input and error patterns to design the corresponding error compensation circuits. We use hard-

ware complexity saving and error performance as the design metrics to evaluate our methods.

In our first work, we propose a novel systematic and scalable method of using feature selection

methods to design compensation blocks for approximate circuits [45]. We employ the χ2 feature selection,

which is a well known univariate feature selection approach. We illustrate the proposed design flow on a case

study of radix-4 modified booth multipliers, which are one of the most popular schemes for signed multi-

plication. The experimental results show that the proposed approach could achieve better area/power saving

and comparable error performance comparing with the existing manually designed approximate multipliers.

However, the design complexity and work load are significantly reduced using our approach.

Our second work builds upon the first work’s idea of using feature selection and introduces a more

robust method while incorporating the consideration of input data distribution into the approximate circuit

3



design. Compared to the first work, the second one yields a less hardware overhead especially from the timing

perspective. We also improve the compensation accuracy significantly by proposing a modified Forward

Stepwise Selection (FSS). Lastly, as opposed to the first work that only uses primary inputs of a circuit as

features, we expand the candidate features to the circuit’s internal wires to further optimize the performance.

Our experimental results show that the proposed method achieves significantly better accuracy than the prior

data-independent designs, while maintaining relatively minimal hardware overheads for the compensation

block.

4



Chapter 2

Related Work

2.1 Approximate Computing

Reliability and accuracy are the elementary principles in all engineering design. However, at certain

circumstances such pursuit can be redundant and unnecessary. The reason is that many modern applications

may tolerate some extent of errors [46–50]. For example machine learning applications have accepted and

incorporated some inaccuracy into model training and inference. There are several reasons behind this. First

of all, the data we import into these models can not be completely precise and contains outliers inevitably [51–

53]. As a result, the first procedure for data mining is always data cleaning [53], which usually takes a

majority of the overall design time. However, with plenty of time and effort spent on this task, error data or

outliers still cannot be eliminated due to the nature of man-made mistakes and the limitations of data cleaning

techniques. Under such circumstance, error resilient applications are built to tolerate some amount of error.

Secondly, some computational applications do not require a complete accurate result for every single data

element [54, 55]. Large scale data analytic algorithms aim to get an overall trend instead of the complete

correctness of an individual data, e.g., the model of stock market prediction. For such cases, values within a

certain range rather than a fixed value are considered as acceptable results.

Since many nowaday applications can be error resilient, we may not need every step of their op-

erations to be completely accurate or with equal importance. In other words, we can possibly trade some

applications’ computational accuracy for potential run time or energy reduction. A popular design paradigm

for such error resilient applications is approximate computing, which includes both software [56–58] and

hardware [7–26]. We take the design of an approximate 2-bit multiplier in [8] as an introductory example

5
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Figure 2.1. Accurate 2-bit multiplier (a) Karnaugh map (b) circuit schematic.

of approximate computing in hardware design. Fig. 2.1 shows the accurate 2-bit multiplier’s Karnaugh map

and schematic. We notice that there is only 1 minterm whose most significant bit (MSB) output bit is 1,

indicated in red. We can take advantage of this characteristic and simplify this circuit with a small cost of

output accuracy. If we change this minterm from 1001 to 111 (creates an error of 2) and eliminate the MSB

as shown in Fig. 2.2(a), we obtain its approximate version with 37.5% saving on gate number while only

introducing a 6.25% error rate. The approximate 2-bit multiplier is shown in Fig. 2.2(b).

2.1.1 Approximate Computing in Hardware Design: Logic Simplification and Volt-

age Over Scaling

Approximate computing in hardware design can be achieved using various techniques, which can be

broadly classified into: logic simplification [21–43] and voltage over scaling (VOS) [59–66]. In this section,

we will introduce several existing approximate logic design methods. .
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Figure 2.2. Approximate 2-bit multiplier [8] (a) Karnaugh map (b) circuit schematic.

2.1.1.1 Logic Simplification

Logic simplification reduces power/area consumption by redesigning the conventional computing

circuits, which can be at the transistor-level [9, 10] or the gate-level [11–20]. Designing approximate circuit

at transistor level especially requires sufficient knowledge of the target circuit’s architecture. The work in [9]

proposes an approximate XOR/XNOR-based adder, which is based on the accurate design of a 10-transistor

full adder in [67], as shown in Fig 2.3. The approximate design is shown in Fig 2.4. This design achieves the

goal of logic simplification while not introducing much error.

Logic simplification at the gate-level achieves hardware cost reduction by relaxing the accuracy of

the circuit’s functionality. Most prior works focus on manually redesigning fundamental computation units

(e.g., adder [11–23] and multiplier [24–43]) at the gate level. We first take the design of an approximate adder

in [11] as an example. This scheme first truncates the computing units that calculate n least significant bits

(LSBs). The selection of number n is a tradeoff between output accuracy and hardware consumption. The

larger the n is, the more hardware consumption the approximate adder can save. The preserved bit length

7



Figure 2.3. Accurate full adder with 10 transistors [67]

is m, while the total bit length is p (i.e. p = m + n). In order to compensate the truncation error, [11]

applies bitwise OR to approximate the truncated LSB’s output value, while the carry in from the n-th bit is

approximated using an AND gate. The overall structure is shown in Fig. 2.5.

Next, we move on to the design of an approximate fixed-width multiplier, whose output bit-length is

the same as the input bit-length. Similar to the multi-bit approximate adder design, in most approximate n-bit

fixed-width multiplier designs, we first truncate the logic cells computing the least significant n−2 bits of the

product, and then introduce an error compensation block to reduce the errors due to truncation. One approach

to compensate the error is to manually add a constant error-compensation bias [33]. This methods leads to

very simple logic and small implementation cost; however, the compensated error is still considerably large

as the bias cannot adjust according to the input signals. An improved approach is to add an adaptive error-

compensation bias to the retained adder cells. In [25], the Booth encoded inputs are transformed into a new

set of variables which are then used to design the compensation circuit. The compensation circuit designed

in [25] is shown in Fig. 2.6. The inputs of the compensation circuits are the transformation of booth encoded

results, the outputs are two carries that are added to the n − 1 adder cells. In [28], an adaptive conditional-

8



Figure 2.4. Approximate full adder with 8 transistors [9]

probability estimator is proposed to compensate the fixed-width Booth multiplier error. In [26], the sign bit

of the Booth encoded multiplier is applied to conditional probability to generate compensation values. For

the non-truncated scheme, the approximate designs can be achieved by altering internal components [24].

For example, an approximate 2× 2 multiplier is utilized as the building block to construct a larger multiplier

to elevate computation efficiency in [8]. In [24], the Booth encoders are approximated to a simpler logic by

selectively complementing minterm to reduce circuit complexity.

2.1.1.2 Voltage Over Scaling (VOS)

The second type of approximation is VOS, which dynamically reduces the supply voltage of hard-

ware near threshold to achieve reduction on power at the cost of accuracy [59–66]. As shown in Equation

2.1, a transistor’s dynamic power is proportional to the supply voltage square. Thus, lowering only a small

number of supply voltage can reduce hardware power consumption significantly. However, when the supply

voltage is lowered to an extent such that the critical path is longer than the clock period, timing violation will

be introduced to the circuits, which needs to be compensated. The work in [59] introduces the algorithmic

9
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Figure 2.5. Lower-Bit-OR approximate adder [11]

noise-tolerance (ANT) specifically targeting at digital signal processing (DSP) circuits to compensate the

error due to VOS. [65] proposes dynamic segmentation with multi-cycle error compensation and delay bud-

geting for chained data path components to scale computing functions in a constraint manner. [66] explores

the trade-off between image processing quality and power consumption under VOS. While VOS can save a

great amount of power, it will increase the area overhead due to the introduction of compensation circuits.

Power = CL ∗ V dd2 ∗ f (2.1)

2.1.2 Approximate Computing in Hardware Design: Manual Design and Automatic

Design

The design of approximate computing hardware can also be broadly divided into two categories

according to design strategies: manual designs and automatic approaches. Manual design strategies have

achieved excellent performance on arithmetic elements ((e.g. adder [11–23] and multiplier [24–43])). These

design strategies usually require analyzing the resiliency of each component in a circuit, which are difficult

10
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Figure 2.6. Compensation block for 10-bit fixed-width approximate booth multiplier [25]

to generalize to a wide variety of circuits. On the other hand, automatic design strategies focus on developing

general methodologies for designing approximate circuits [68–75]. For instance, the concept of approximate

logic synthesis (ALS) [69–73] has been developed to automatically synthesize a Boolean function into either

a two-level [70] or multi-level [69, 71] approximate version under given error constraints. [70] introduces

some algorithms to identify the minterm complements that result in an approximate circuit with least num-

ber of literals. [69] utilizes Boolean network simplifications allowed by external don’t cares and effectively

synthesizes the approximate networks in an error-constrained approach. In [71], the problem of approximate

synthesis is mapped into a conventional don’t care based optimization problems. Other techniques such as

probabilistic pruning has also been proposed to obtain approximate circuits by iteratively pruning circuits’

internal nodes at the gate-level [75–79].

2.1.3 Our Contribution in Approximate Computing in Hardware Design

Our work focuses on the automatic design of approximate computing circuits for both logic simpli-

fication and VOS. We propose two novel approaches that can systematically generate compensation blocks

for any given approximate circuits, while incorporating with data-driven considerations. Our work treats the

approximate circuit prior compensation as a black box and use machine learning based methods to system-

atically design its compensation circuit. Our methodologies offer significant design load reduction as a step

toward the design of optimized system-level approximate circuits.

11



2.2 Feature Selection

Feature selection is the process of selecting a subset of relevant features to reduce the size of the

structure without significantly decreasing the accuracy of the computation, and is widely-used in machine

learning and statistics [80–82]. Feature selection can even improve the prediction accuracy by eliminating

irrelevant features. This technique can be mainly divided into three categories [83]: filter methods [84–86],

wrapper methods [87–89], and embedded methods [90, 91]. Filter methods select features regardless of the

model. They are solely based on the correlation between each individual feature and the response. On the

other hand, wrapper methods evaluate subsets of features instead of a single feature. In other word, they take

potential feature interaction into consideration when selecting feature subsets. Embedded methods are the

combination of both feature selection techniques, which leverage the advantages from both methods.

For an approximate circuit, the error is dependent on the input data pattern. In addition, we assume

that the size of the compensation block is proportional to the number of inputs to this block. As a result, the

quality and quantity of the compensation block inputs are critical to the error mitigation performance of the

approximate logic circuit design. In general, the desired performance can be achieved by using only a few

but highly correlated inputs to design the error compensation block.

2.2.1 χ2 feature selection

In our first proposed approach, we use the χ2 feature selection, which is a commonly used uni-

variate feature selection approach, to detect the most informative features [92]. Univariate feature selection

examines each feature separately to determine the degree of correlation between the feature and the given

response labels. Thus it is one of the filter methods. The χ2 algorithm can automatically discretize the con-

tinuous attributes and removes irrelevant attributes based on the χ2 statistic and the inconsistency found in

the data [93]. The calculation of χ2 is shown in Equation 2.2, where n is the number of observations; k is

the number of mutually exclusive classes; Ok is the observed frequency and Ek is the expected frequency.

The value χ2 is used to indicate the correlation between feature and response under the hypothesis that they

are independent. If the value of χ2 is comparably large, it indicates that this feature and response is highly

correlated statistically, and vice versa.

χ2 =

n∑
k=1

(Ok − Ek)
2

Ek
(2.2)
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2.2.2 Foward Stepwise Selection

In our second proposed approach, we use and modify the Foward Stepwise Selection (FSS) [94] in

the feature selection process. FSS belongs to the wrapper method, since adding a new feature is determined

by the previously selected features. The pseudo code of the algorithm is shown in Algorithm 1. At the

beginning of the algorithm, FSS starts with an empty feature subset. Then, for the rest of the steps, FSS

repeats the process of adding a new feature that help to reduce the cost function the most by joining with the

selected features. In Algorithm 1, the stopping criteria for FSS is a pre-defined maximum number of features

to be selected. Notice that a threshold of cost function can also be the stopping criteria.

Algorithm 1 Forward Stepwise Selection
INPUT: Candidate feature pool F, number of selected features m, cost function C (·);
OUTPUT: Selected feature subset F̂ ;

let F̂0 denote the null subset;
for y ← 0 to m− 1 do

ft = argminF(F̂y ∪ ft);
F̂y+1 ← F̂y ∪ ft;

end
return F̂

In contrast to FSS, Backward Stepwise Selection (BSS) uses the opposite feature selection steps of

the FSS. It starts with all the features included in the feature subset, and then eliminates a least significant

feature at each step. Similar to Algorithm 1, the pseudocode of BSS, as shown in Algorithm 2, also uses the

number of selected features as the stopping criteria.

Algorithm 2 Backward Stepwise Selection
INPUT:Candidate feature pool F, total number of feature N , number of selected features m, cost function C
(·);
OUTPUT: Selected feature subset F̂ ;

let F̂N denote the full feature subset;
for y ← N to N −m do

ft = argminF(F̂y \ ft);
F̂y−1 ← F̂y \ ft;

end
return F̂

The reason behind adopting FSS instead of BSS in our second proposed approach is that the former

algorithm has significantly shorter running time comparing to that of the later one. In our case of hardware

design, we usually have a large amount of candidate features. Thus, it would be very time consuming to

13



use BSS in the feature selection process. Secondly, since we aim to design a compensation circuit with low

hardware overhead, we seek to minimize the number of features. Therefore, we use and modify FSS in our

design flow, which will be presented in Chapter 4.
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Chapter 3

Design Approximate Circuit Using

Feature Selection

3.1 Introduction

In this work, we propose a systematic and general design flow for designing approximate circuits

with specific focus on designing their compensation circuits. Our method uses feature selection, which aims at

generating compensation circuits with low hardware cost. Unlike aforementioned manual design techniques,

this method is able to skip all the theoretical analysis on circuits’ structures, while only relying on given

input-error data to automatically design compensation circuits to mitigate the error.

The overall design flow of the proposed methodology for designing approximate logic circuit us-

ing feature selection is shown in Fig. 3.1, which consists of five steps: Error Generation, Compensation

Bits Insertion, Compensation Input Selection, Reduced Truth Table Generation and Compensation Circuit

Synthesis.

In our proposed method, we assume the truncation error is given. In other words, error generation is

achieved either due to logic simplification or voltage overscaling. We use the ideal output, truncated output

and compensated output to represent the outputs of the original circuit, the primitive approximate circuit

(PAC), and the compensated approximate circuit, respectively. The final circuit essentially consists of the

PAC and the generated compensation circuit.
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3.2 Design Flow

3.2.1 Error Generation

The first step is to compute the pre-compensation error of the approximate circuit. The errors are

generated due to the logic simplification of the original circuit or the timing errors in voltage over-scaling

applications. If we consider a truncated scheme in approximate circuit design, errors are basically calculated

by taking the differences between the ideal output and truncated output without adding error compensation,

i.e., the output of PAC, as shown in Fig. 3.1. Choosing the appropriate methods to provide the best sim-

plification opportunity is another important research topic in approximate computing, which is peripheral to

this work. Intuitively, if the truncation in a truncated approximate circuit is too large, it would be difficult to

implement a simple compensation circuit to offset the errors; on the other hand, if the truncation is too small,

the area/power saving would be minimal. In this work, we consider the error patterns are given and focus on

the design of the error compensation block. Future work will be directed towards using machine learning al-

gorithms to automatically determine the appropriate logic simplification without significantly compromising

the accuracy of the computation.

3.2.2 Compensation Bits Insertion

We insert compensation bits into the approximate circuit at the second stage. After logic simpli-

fication, there are 2N input-error pairs for an approximate circuit with an N -bit input, if every input bit is

independent. We determine the number and the locations of compensation bits to insert based on the error

distribution. Generally, at least dlog2Ree compensation bits are required for an error dynamic range of Re.

However, since the errors are usually distributed unevenly across the dynamic range, it is possible to reduce

the number of compensation bits to log2Re and approximate the Re − 2log2Re least frequent error values to

the nearest value in the reduced dynamic range, which can be considered as another step of logic simplifica-

tion. For example, most truncation-based logic simplification methods lead to all positive errors and tend to

have less probability for larger magnitude errors. Therefore, we can assign compensation value cpi to each

input-error pair according to Equation 3.1, where the threshold T is equal to 2log2Re − 1.

cpi =


ei ei ≤ T

T ei > T

(3.1)
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Consequently, the overall complexity of the compensation block is also reduced, while the errors

would increase only slightly. In this work, we construct the compensation bits in different bit positions, i.e.,

N compensation bits could generate 2N values. However, it is important to note that it is not necessary to

always put all compensation bits in distinct bit positions. For example, if the error only ranges from 0 to 2,

we can put two compensation bits both in the LSB of the circuit, which may result in better compensation

block design compared to inserting the bits into two consecutive positions.

3.2.3 Compensation Input Selection

We then apply feature selection algorithms to identify the inputs that are most correlated with the

compensation values. We use the χ2 univariate feature selection to select the inputs for each compensation

bit. The total number of compensation input bits K should be picked based on the accuracy requirements

or the error constraints. We can either select the inputs for all compensation bits simultaneously based on

the overall feature selection rankings and scores or use logic synthesis tools to optimize the multiple-output

combinational error compensation circuit automatically. The more features selected, the more accurate result

the circuit will generate, however, the hardware cost and the power consumption of the error compensation

block will be higher.

In this work, we apply feature selection directly on the primary inputs of a logic circuit. Ongoing

work includes the investigation of using feature extraction algorithms to generate higher-order features as the

inputs to the compensation blocks, which might be more informative and non-redundant and hence facilitate

the subsequent compensation block synthesis steps to produce better performance. In fact, the Booth encoded

inputs can be considered as higher-order features for designing an approximate multiplier.

3.2.4 Reduced Truth Table Generation

After we determined the highest correlated K inputs by using feature selection, the truth table of the

input and the compensation value will be reduced from 2N rows to 2K rows. Thus, each row in the reduced

truth table corresponds to 2N−K rows in the original truth table. The compensation value cpj for each row in

the reduced truth table should be selected such that the overall error for this row is minimized, as expressed

in Equation 3.2:

cpj = argmin
cpj

(
∑
i∈Re

ef(cpi, cpj)× pi), (3.2)

18



where pi is the percentage appearance of cpi in the corresponding 2N−K rows of the original truth table and

ef() represents the error metric. For example, if we use the mean squared error as the error metric, Equation

3.2 can be reduced to

cpj = argmin
cpj

(
∑
i∈Re

(cpi − cpj)2 × pi) (3.3)

We repeat this for all 2K reduced input combinations to generate the complete reduced truth table.

When K is large (i.e., 2N−K is small), it is possible to have multiple cpj with the same minimum value of

Equation 3.2 for certain inputs. In this case, we can assign don’t care terms to these rows in the reduced truth

table, which could help to minimize the logic in the final step.

3.2.5 Compensation Circuit Synthesis

The last stage is to use logic synthesis tool to optimize the combinational error compensation circuit

that is specified by the reduced truth table from the previous step. State-of-the-art approximate logic synthesis

(ALS) algorithms [69–71] can also be applied on top of the error compensation circuit to further improve the

hardware implementation efficiency.

3.3 Case Study and Experimental Results

Our proposed methodology will be extremely suitable for large and complex approximate circuit

designs that are not feasible for manual analysis or simplifications, as only the input and error patterns are

required for the design flow described in Section 3.1. In this section, we apply our methodology to design

a relatively small but well-studied circuit (i.e., an approximate multiplier) for the purposes of demonstration

and comparison.

3.3.1 Experimental Setup

In our experiment, we use the Scikit-learn toolkit to perform the χ2 univariate feature selection,

which is an open source machine learning library in Python that includes a wide range of machine learning

tools [95]. All the circuits are synthesized using Synopsys Design Compiler and mapped to a 32 nm standard

cell library to evaluate the performance of their hardware implementations.
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3.3.2 Approximate Multiplier Architectures

We employ the proposed methodology on a 10-bit fixed-width multiplier and use the radix-4 modi-

fied Booth encoding scheme to reduce the number of partial products. We consider a truncated scheme where

the adder cells for calculating the 9 LSBs are deleted from the original circuit, as shown in Fig. 3.2(a). The

corresponding truncation error distribution is shown in Fig. 3.2(b). It can be seen that the dominant errors are

1 and 2, and the maximum error is 3. Therefore, we insert two compensation bits, λ1 and λ0, to the 2 LSBs of

the PAC output product. The two compensation bits can be easily integrated into the Wallace tree or Dadda

tree architecture. Next, we use feature selection to rank the inputs. We select 4, 6, 8, 10 features respectively

in our experiment and then generate the reduced truth table based on the selected inputs accordingly.
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Figure 3.2. 10-bit fixed-width approximate multiplier: (a) truncation and bit insertion scheme, (b) error
distribution after truncation

3.3.3 Experimental Results

We use the mean error εmean and mean squared error εmse to evaluate the arithmetic performances

of different approximate multiplier designs, which are calculated by:

εmean = mean(Poc − Pcac)/2
n, (3.4)

εmse = mean(Poc − Pcac)
2/2n, (3.5)
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Figure 3.3. Synthesized compensation circuit for PAC (k=4)

where Poc and Pcac represent the output products of the original booth modified multiplier and the com-

pensated approximate booth modified multiplier, respectively. The mean error is an important metric for

approximate multiplier design which captures the performance of systems that consist of a large number of

multipliers, especially for multimedia and digital signal processing (DSP) applications where the final output

results are usually accumulated by a series of multiplication products.

The performances are summarized in Table 3.1 and Table 3.2, along with comparisons to existing

approximate fixed-width multiplier designs [26,27,96]. The area and power consumptions are normalized to

the original circuit It can be seen that the error can be significantly reduced from PAC by using the proposed

methodology, while achieving 30% to 40% saving in power consumption of the original circuit when we

select 4, 6, 8, or 10 input bits for designing the compensation circuit. When we use more features, error is

decreased, while the area/power consumption will be increased. For example, when we increase the number

of input bits K from 4 to 10, the mean squared error is decreased by 15.7%; however, the area consumption

is increased significantly, i.e., from 59.97% to 82.56% of the original circuit. In this particular case of

approximate multiplier, K = 4 already achieves a very good performance, which only involves a very simple

combinational circuit. The mean error is almost zero when K = 4. Fig. 3.3 shows the synthesized circuit.

The input of this compensation circuit should be connected with corresponding selected features ( inputs );

the output of this compensation circuit is connected to the λ1 and λ0 shown in Fig. 3.2(a).

Compared to existing approximate fixed-width multiplier designs, the proposed methodology gen-

erally leads to slightly worse mean squared error than the designs in [26, 27, 96] but comparable mean error,
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Table 3.1. Comparison of the error performance of different fixed-width multipliers

multiplier εmean εmse

PAC 1.4375× 2−9 2.3166× 2−18

[96] −0.0039× 2−9 0.1542× 2−18

[27] 0.0689× 2−9 0.1544× 2−18

[26] −0.0039× 2−9 0.1498× 2−18

proposed (K = 4) 0.0000× 2−9 0.2714× 2−18

proposed (K = 6) 0.0313× 2−9 0.2549× 2−18

proposed (K = 8) 0.0078× 2−9 0.2394× 2−18

proposed (K = 10) 0.0098× 2−9 0.2287× 2−18

Table 3.2. Normalized area and power consumptions of different fixed-width multipliers

multiplier NormArea NormPower

Original Circuit 100% 100%

[96] 66.95% 64.91%

[27] 65.45% 64.31%

[26] 66.10% 63.66%

proposed (K = 4) 59.97% 60.14%

proposed (K = 6) 61.64% 60.79%

proposed (K = 8) 65.30% 62.69%

proposed (K = 10) 82.56% 68.46%

while achieving better performance in area/power reduction for K from 4 to 8. Further more, the main ad-

vantage of the proposed methodology is that it significantly reduces the design complexity and provides a

large design space of approximate circuit architectures with different values K. The number of features used

for designing the compensation circuit needs to be selected based on the specific application requirement.

Besides, it is important to note that compared to other existing manual design techniques, it is much easier to

apply the proposed methodology on large-scale systems.
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Chapter 4

Data-Driven Approximate Circuit

Design

4.1 Introduction

In this chapter, we propose an automatic data-driven compensation circuit design technique, which

takes circuits’ input data into design consideration. The reason is that in the real-world scenario, we expect

input patterns to vary across different tasks. Approximate circuits should also be adapted accordingly to better

fit specific computational tasks. We also demonstrate the necessity of data-driven design via experimental

results.

In addition, the proposed novel error correction structure is able to minimize the timing overhead

comparing to our first method [45]. The motivation is that our previous work takes the difference between the

erroneous output and the original output as the compensation value, which yields an additive compensation

circuit that may incur non-negligible timing overhead. Therefore, it is not suitable for applications where

speed is a major concern.

The other contributions of this work include: we propose a modified Forward Stepwise Selection

(FSS) technique for selecting feature subset, which significantly improves the accuracy of feature selection;

we also include internal wires into constructing compensation circuits, which achieves better performance in

terms of error mitigation.

In our proposed approximate logic design methodology, both the input samples and the netlist of the
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PAC are required for initiating the proposed method. The overall design flow is shown in Fig. 4.1, whose

details will be explained in the next section.

4.2 Design Flow

4.2.1 Compensation Scheme

According to the input-error patterns of the PAC, the proposed methodology first determines the bit-

length of the compensation output by analyzing the error statistics. As opposed to the additive compensation

circuit [45], we propose to correct k bits in a pairwise manner with each control signal (cti) indicating

whether a correction to a PAC output bit (paci) is necessary and k is determined by the error dynamic range.

An XOR gate is introduced for each individual bit that needs correction. A basic block for the compensation

scheme is shown in Fig. 4.2, where cti and paci are the two inputs of the XOR gate and the corrected

bit opi is the output. According to the XOR logic, if paci needs a correction (i.e., from 1 to 0 or from 0

to 1), cti will be set to 1. In order to correct the output of each sample as close to the original output as

possible, without loss of generality, we use the following procedure to construct the paci’s compensation

vector, Gi = (g1, g2, ..., gn)i, where n is the total number of samples. Assume the bit-length of the PAC

is w, then we denote the output of PAC as P̃ = (p̃1, p̃2, ..., p̃n) and the corresponding w-bit output of the
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original circuit as P = (p1, p2, ...pn). Then ∀ j ∈ [1, ..., n]:

gj =


pj [i] pj [w − 1 : i] = p̃j [w − 1 : i]

1 pj [w − 1 : i] > p̃j [w − 1 : i]

0 pj [w − 1 : i] < p̃j [w − 1 : i]

(4.1)

where pj [w − 1 : i] represents the partial binary number from the MSB to the i-th bit of pj .

The next step is to calculate the control value vector of each bit, Ci = (c1, c2, ...cn)i with Gi and

P̃. ∀ j ∈ [1, ..., n]:

cj = gj ⊕ p̃j . (4.2)

4.2.2 Modified Forward Stepwise Selection

For the purpose of reducing the hardware complexity, we only select a small subset of nodes (fea-

tures) to generate each control logic. χ2 univariate feature selection technique is used in [45], which ranks

each feature individually according to its correlation with the output. Thus, due to its greedy nature, it may

not be able to capture the inter-correlation among the features in the subset. To address this problem, we pro-

pose a modified Forward Stepwise Selection (FSS) algorithm as described in Algorithm 3 for feature subset
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selection. We denote the overall candidate feature pool as F and a single feature in F as ft. The conventional

FSS begins with a null feature subset, and then adds features to the subset one by one, until meeting a stop

criteria [82]. In our experiments, we set the max number of features as the stop criteria. Note that this value

can also be considered as a user-defined parameter for trading off between error and hardware complexity.

In order to evaluate the performance of a selected feature subset as a whole, we use a cost function, C(·), as

expressed by Equation 4.3:

C(F̂ ) = ‖Ci − T T (F̂ )‖0 (4.3)

where F̃ is the selected feature subset and T T is the generated truth table for F̃ , which will be

explained in Section 4.2.3.

Algorithm 3 Modified Forward Stepwise Selection
Input: Candidate feature pool F, control value vector Ci, number of subsets h, number of selected features

m, cost function C (·)
Output: Selected feature subset F̂

1 for x← 1 to h do
2 reset F to initial;
3 let F̂x,0 denote the null subset;
4 for y ← 0 to m− 1 do
5 if y 6= 0 and C (F̂x,y) = C (F̂x,y−1) then
6 remove last added feature from both F̂x,y and F;
7 y ← y − 1;
8 end
9 else

10 ft = argminF(F̂x,y ∪ ft);
11 F̂x,y+1 ← F̂x,y ∪ ft;
12 end
13 end
14 end
15 Select F̂x,y with lowest C as F̂ ;
16 return F̂

Based upon the conventional FSS, we modify the feature selection procedure specifically for our

approximate logic design methodology based on the following two observations.

4.2.2.1 Observation 1

For a model whose features and response variables are both binary, conventional FSS sometimes

settles at a local minimum. In particular, we have seen many such cases in our experiments that the feature

26



 
Cost Function 

Value 

A 

B C 

0.236 
 

 

 
0.234 
 

 

 0.232 
 

 

 0.230 
 

 

 0.228 
 

 

 

14 
12 

10 
8 

6 
4 

2 
0 0 

2 
4 

6 
8 

10 
12 

14 

Figure 4.3. Observation 1 example: cost function distribution for pairwise coupling 15 features

with the highest score (i.e., cost function reduction) converge to a local minimum where no further reduction

on the cost function is possible by adding any additional feature thus terminating the conventional FSS. In

addition, due to the binary representations, many features yield the same scores. Thus, we argue that always

selecting one feature with the highest score as in the χ2 univariate feature selection might not be optimal for

approximate logic design. Fig. 4.3 illustrates a case in our experiments of the cost function distribution from

exhaustively pairing 15 feature candidates. Each of the features can individually reduce the cost function

value to 0.236. In other words, any of these features may be selected at the first iteration of FSS. However,

it can be seen that feature #13 (point A) is a local minimum, since pairing any additional features does

not reduce the cost function, which is indicated by the black dash line. Neither feature #10 (point B) nor

feature #7 (point C) is a local minimum, as the cost function can be further lowered by adding an additional

feature into the feature subset. As shown in Algorithm 3, we propose a modification such that when a local

minimum is found, the algorithm removes the previously added feature from both the feature subset (F̂ ) and

the candidate feature pool (F) to escape the local minimum. Through this approach, bad local minimums are

gradually avoided, which eventually results in a better feature subset.
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4.2.2.2 Observation 2

As we mentioned above, there are usually multiple candidate features that achieve a same cost

function reduction under Boolean logic applications. Since we find it difficult to predict which feature could

yield the best performance in the subsequent steps, we repeat the modified FSS for h times and hence build

h different feature subsets at each step. In general, the larger h is, a better feature subset can be obtained;

however, the time complexity of the algorithm will increase. In the example of Fig. 4.4, we generated

3 different feature subsets with 5 selected features in each subset. It can be seen that although the first 2

selected features for all the 3 feature subsets have the same cost function values, they progress differently in

the subsequent steps. In our algorithm, we select the feature subset with the lowest cost function among the

h subsets at the last step as the final F̂ (i.e., the 3rd feature subset in this example).

4.2.3 Control Logic Design

We introduce the procedure of generating the reduced truth table for the control logic of each output

bit, cti, which is used in selecting feature subset as well as in constructing the final control logic (cti) truth

table.

After given the selected feature subset, F̂ , we construct the reduced control bit truth table, T T , with

m selected features. The control bit value for each feature pattern in this truth table is determined by the

28



Table 4.1. Reduced truth table generation

(a) Original Ci truth table

Feature F Response
ftw ftx fty ftz Ci

0 1 1 0 1
0 0 0 0 0
0 0 1 1 1
0 0 1 0 0

(b) Reduced truth table

Feature F̂ Response
ftw ftz cti

0 0 0
0 1 1

larger appearance between 0’s and 1’s to minimize the overall error as expressed in Equation 4.4:

T T (j) =


0 Pr(0) > Pr(1)

1 Pr(0) < Pr(1)

X Pr(0) ≈ Pr(1)

. (4.4)

where TT (j) represents the response value for the feature pattern j, and Pr(0), Pr(1) are the

appearance percentages of 0’s and 1’s, respectively. We assign don’t cares when Pr(0) and Pr(1) are equal

or close, which could be exploited in logic optimization for reducing the hardware cost. We use an example

in Table 4.1 to illustrate the basic idea. In this table, we have a total number of 4 candidate features and 1

response, which is the control value vector of the i-th bit, Ci. Suppose features ftw and ftz are selected

to build a reduced truth table for cti. As it can be seen in Table 4.2 that when {ftw, ftz} = 01, cti is 1,

regardless the values of ftx and fty . When {ftw, ftz} = 00, Pr(0) = 2
3 , which is larger than Pr(1) = 1

3 .

Therefore, when {ftw, ftz} = 00, we choose cti to be 0. In this example, there is one row out of four rows

in the original true table does not match to the reduced truth table. Thus, C({ftw, ftz}) = 1
4 .

4.2.4 Correction Data Update

After the logic for the current control bit is determined, we need to update PAC’s corresponding out-

put bit, i.e., P̃ , since the current bit may not be corrected completely thus may affect lower bits’ compensation

scheme. We update these compensation values as: ∀ j ∈ [1, ..., n]:

p̃j [i] = p̃j [i]⊕ T T (F̂ ) (4.5)

Then, the algorithm iterates on to the next lower bit. The overall algorithm is presented in Algorithm

4. After the logic for all the control bits is determined, the compensation circuit is synthesized and connected
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Algorithm 4 Compensation Block Generation

INPUT: P, P̃ and F;
OUTPUT: T T and F̂ for all correction bit;

for i = k − 1 to 0 do
for each sample do

assign Gi according to Equation 4.1;

end
for each sample do

assign Ci according to Equation 4.2;

end
Feature Selection: Modified FSS;
Construct truth table T T for ctj ;
if i = 0 then break
;
for each sample do

Update P̃ by Equation 4.5;

end
end

to the PAC as shown in Fig. 4.2.

4.3 Case Study and Experimental Results

4.3.1 Experimental Setup

We implement the proposed algorithm on Python Jupyter Notebook. For comparison, we also use

scikit-learn [95], a well-known machine learning library in Python, to perform the χ2 feature selection. We

use two real-world datasets, ALYA and GADGET [97], to demonstrate the advantage of the proposed data-

driven compensation circuit design. We randomly select 10000 samples from ALYA and all of the 601

samples from GADGET to generate input-error patterns. All the circuits including the PAC and the final

approximate circuits in our experiments are synthesized into netlists using a 32nm technology node. The

features are obtained from the Value Change Dump (VCD) file, which is generated by Synopsys Verilog

Compiler and Simulator (VCS). The VCD file is an ASCII-based format used to store circuit signal transition

information. Fig. 4.5 is a screenshot of the signal transition information we extracted from the VCD file for

the 4-tap FIR filter netlist. The rows indicates time steps while columns indicate the features (wires). As it

can be seen, this table record 1142 features with a total of 5 samples (transitions). 1.0 and 0.0 indicates the
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Figure 4.5. Signal transition information from VCD file

Figure 4.6. Extracted signal state information from VCD file

signal transit to 1.0 (vdd) and 0.0 (gnd), respectively. From this table, we can extract signal state information

shown in Fig. 4.6. Mean absolute error (MAE) and error rate (ER) are used as the error metrics to evaluate

the performance of the generated approximate logic circuits.

4.3.2 Comparison between the Modified FSS and χ2 Feature Selection

We first compare the performance on the feature subset selection between the proposed modified

FSS and χ2 used in [45]. Fig. 4.7 shows the cost function trends for the 3rd and 2nd LSBs during the

design of a 12-bit approximate multiplier. As we expected, both the proposed modified FSS and χ2 feature

selection achieve better performance than randomly selecting features. However, due to the greedy nature of

the χ2 feature selection, it might converged to a bad local minima, as the highlighted point in Fig. 4.7(b).

In contrast, the proposed modified FSS could escape these local minima to achieve lower cost functions by

gradually eliminating these features from the candidate pool.

4.3.3 Approximate Fixed-width Multiplier Design

To illustrate the effectiveness as well as for the comparison purpose, we apply the proposed method-

ology to compensate truncated fixed-width radix-4 booth multipliers under various settings based on 3 input

data: ALYA, GADGET and UNIFORM (uniformly distributed inputs). UNIFORM is used to build reference
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Figure 4.7. Comparison between the modified FSS and χ2 feature selection on a 12-bit truncated fixed-width
multiplier: (a) the 3rd LSB, (b) the 2nd LSB.

circuits, which correspond to the data-independent compensation circuits. Since different input data result in

different error distributions, the number of compensation bits is determined by the error dynamic range and

then we follow the algorithm described in Section 4.2 to generate the final approximate logic circuits.

The performances on different input data are summarized in Table 4.2, where DD-ALYA represents

the approximate multiplier generated from the ALYA dataset. The corresponding hardware costs are shown

in Fig. 4.8. As it can be seen that by using the proposed method, the error can be significantly reduced from

the PAC while only incurring very small hardware overheads. If we constrain the candidate feature pool as in

designing DD-AYLA to the internal nodes that are close to the primary inputs, the delay of the compensated

circuit would not increase. However, if we want to find the optimal feature subset by including all the internal

nodes in the candidate feature pool, the delay might be increased slightly (e.g., DD-GADGET and DD-

UNIFORM) when the selected features are close to the output of the circuit. In this case, the propagation

delay of the compensation block added into the path from the primary inputs to the selected internal nodes

might exceed the critical path of the PAC. Therefore, for applications that delay is the primary concern, we

should limit the candidate feature pool to only internal nodes that close to the primary inputs.

All of the approximate logic circuits designed using the proposed data-driven methodology show

superior performance in terms of accuracy when tested on their own data, which is indicated by the bold

numbers in Table 4.2. It can also be observed that the approximate circuits designed without considering data

patterns are sub-optimal in applications that have specific input distributions. For example, both ALYA and

GARGET datasets yield larger errors on the 10-bit DD-UNIFORM approximate multiplier than the uniformly

distributed data. Thus, it can be concluded from these results that it is important to consider the input data

distribution in designing approximate logic circuits for data-driven tasks.
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Table 4.2. Comparison of the approximate multipliers on different input data: MAE (ER%)

(a) ALYA

Truncate
Circuits

DD-ALYA
Circuits

DD-GADGET
Circuits

DD-UNIFORM
Circuits

10-bit 0.9114 (84.94%) 0.4613 (39.93%) 0.5452 (48.32%) 1.4636 (70.55%)
12-bit 0.9242 (85.46%) 0.4641 (39.63%) 1.0924 (94.05%) 0.548 (48.04%)
16-bit 0.9242 (86.27%) 0.4623 (40.08%) 1.3041 (93.91%) 1.4492 (70.43%)

(b) GADGET

Truncate
Circuits

DD-ALYA
Circuits

DD-GADGET
Circuits

DD-UNIFORM
Circuits

10-bit 1.4792 (96.38%) 1.444 (94.84%) 0.6772 (49.75%) 1.0183 (70.38%)
12-bit 1.6855 (96.33%) 1.7154 (96.83%) 0.8136 (56.57%) 0.9617 (76.04%)
16-bit 2.7704 (99.8%) 2.7221 (98.66%) 0.9417 (62.56%) 1.0881 (72.21%)

(c) UNIFORM

Truncate
Circuits

DD-ALYA
Circuits

DD-GADGET
Circuits

DD-UNIFORM
Circuits

10-bit 1.8653 (97.53%) 1.8586 (93.72%) 2.4257 (84.21%) 1.0525 (65.38%)
12-bit 2.2464 (99.03%) 2.2474 (98.05%) 1.8789 (83.77%) 1.0907 (68.72%)
16-bit 2.9999 (99.8%) 2.9836 (99.36%) 1.6411 (77.66%) 1.1342 (70.84%)

Table 4.3. Performance of further compensating the approximate multiplier design in [26]

Original
Circuit

Truncate
Circuit

[26]
Circuit

DD-GADGET
Circuit

Area 1221.01 612.28 792.68 881.40
Power 193.49 88.74 120.67 135.13
Delay 2.62 1.95 2.26 2.39

MAE (ER%) 0 (0%) 1.4792 (96.38%) 0.2379 (23.79%) 0.1697 (16.97%)

4.3.3.1 Further Compensation on the Existing Approximate Multipliers

Since only the input-error patterns and the netlist are required, the proposed methodology is also

capable of further compensating the existing approximate logic circuit to improve the error. In this exper-

iment, we employ the proposed method on a manually designed 10-bit approximate multiplier [26] which

has achieved a low error rate already. We use GADGET as the input data. The performance is presented in

Table 4.3. It can be seen that based on the design in [26]. As it can be seen in this table, the manually com-

pensated [26] circuit already achieves a good performance on reducing error. However, with the proposed

method, we can further compensate [26] circuit with low hardware overhead and reduce both MAE and ER

by 29%.

33



Table 4.4. Compensation performance on an approximate 4-tap FIR filter

Original
FIR

[26]
Multiplier

[26]
FIR

DD-GADGET
FIR

Area 5074.94 792.68 3640.77 3906.90
Power 902.075 120.67 682.69 737.89

MAE (ER%) 0 (0%) 0.2379 (23.79%) 0.4732 (39.96%) 0.2558 (20.90%)

4.3.4 Approximate FIR Filter

In this experiment, we demonstrate the effectiveness of the proposed method on designing large and

complex approximate circuits, which is one advantage of the proposed data-driven methodology compared

to manual analysis. Alternatively, if we construct a large circuit with approximate arithmetic elements, the

final output may accumulate to an intolerable error magnitude. As an example for demonstration, we build

an approximate 10-bit 4-tap finite impulse response (FIR) filter circuit whose multipliers are replaced by

the manually designed approximate multiplier in [26]. For a single 10-bit approximate multiplier, the MAE

and ER are 0.2379 and 23.79%, respectively, as shown in Table 4.4. However, the MAE and ER of the

corresponding approximate 4-tap FIR filter are aggravated to 0.4732 and 39.96%, respectively, which in-

deed proves that the straightforward implementation of building large approximate circuits with approximate

arithmetic elements may not achieve a satisfied performance.

A significantly better performance can be achieved by using the proposed data-driven method to

design the approximate FIR filter. As presented in Table 4.4, our method leads to a design with about a 50%

error reduction and only a 8% hardware overhead. In addition, the design workload is also greatly reduced,

compared to manual design. The synthesized correction circuit is shown in Fig. 4.9. As it can be seen, such

complicated circuit will be very hard to generated via manual design strategies.
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Figure 4.8. Hardware consumption comparison between different compensated fixed-width multipliers (nor-
malized to the original circuits)
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Figure 4.9. Synthesized correction circuit for approximating the FIR in [26]
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Chapter 5

Conclusion and Future Work

This dissertation is motivated by the challenge of the recent significantly increased demand in com-

putational intensive applications and their requirement on low power consumption. Our work focuses on a

promising design paradigm, approximate computing to solve this obstacle. As apposed to most prior works

that focus on designing approximate versions of fundamental computing elements, such as multipliers and

adders, using manual design strategies, our work aims to introducing systematic and salable methodologies

to design system-level approximate architectures using machine learning approaches.

In this dissertation, we proposed two novel approaches based on feature selection techniques to

design approximate circuits in a systematic and data-driven manner. We demonstrated that our proposed

approaches are extremely feasible and suitable for efficiently designing large scale approximate circuits. In

particular, our approaches are able to mitigate approximate circuit’s error for a wide range of circuits without

including much design complexity. In Chapter 3, we presented a detailed framework of using input-error pat-

tern to design compensation circuits. Our case study on designing fixed-width multiplier showed comparative

results with other designs in the literature. In Chapter 4, we improved the previously proposed framework

by incorporating data-driven design ideas, reducing compensation timing overhead and introducing a more

accurate feature selection technique. We demonstrated that this approach can be implemented on a broad

types of circuits including manually designed approximate multipliers and large approximate circuits.

Future research will focus on three tasks. The first task is to refine the details of the proposed

approaches. For example, we can incorporate error and hardware overhead constraints into the design flow so

that the target circuits can derive towards approximation in a constrained manner. The second task involves

developing new schemes to simplify original circuits into approximate versions while providing the best
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compensation opportunity based on our current work. The third task is to link and optimize our proposed

methods to VOS and wire pruning techniques. In other words, our current work can be adjusted to fit better

to these two techniques or other emerging approximation logic design techniques.
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