1,992 research outputs found

    Predicativity, the Russell-Myhill Paradox, and Church's Intensional Logic

    Full text link
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church's intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms of Church's intensional logic that have been criticized by Parsons and Klement: this, it turns out, is due to resources which also permit an interpretation of a fragment of Gallin's intensional logic. Finally, the relation between the predicative response to the Russell-Myhill paradox of propositions and the Russell paradox of sets is discussed, and it is shown that the predicative conception of set induced by this predicative intensional logic allows one to respond to the Wehmeier problem of many non-extensions.Comment: Forthcoming in The Journal of Philosophical Logi

    Quotient completion for the foundation of constructive mathematics

    Get PDF
    We apply some tools developed in categorical logic to give an abstract description of constructions used to formalize constructive mathematics in foundations based on intensional type theory. The key concept we employ is that of a Lawvere hyperdoctrine for which we describe a notion of quotient completion. That notion includes the exact completion on a category with weak finite limits as an instance as well as examples from type theory that fall apart from this.Comment: 32 page

    W-types in setoids

    Full text link
    W-types and their categorical analogue, initial algebras for polynomial endofunctors, are an important tool in predicative systems to replace transfinite recursion on well-orderings. Current arguments to obtain W-types in quotient completions rely on assumptions, like Uniqueness of Identity Proofs, or on constructions that involve recursion into a universe, that limit their applicability to a specific setting. We present an argument, verified in Coq, that instead uses dependent W-types in the underlying type theory to construct W-types in the setoid model. The immediate advantage is to have a proof more type-theoretic in flavour, which directly uses recursion on the underlying W-type to prove initiality. Furthermore, taking place in intensional type theory and not requiring any recursion into a universe, it may be generalised to various categorical quotient completions, with the aim of finding a uniform construction of extensional W-types.Comment: 17 pages, formalised in Coq; v2: added reference to formalisatio

    Elementary quotient completion

    Get PDF
    We extend the notion of exact completion on a weakly lex category to elementary doctrines. We show how any such doctrine admits an elementary quotient completion, which freely adds effective quotients and extensional equality. We note that the elementary quotient completion can be obtained as the composite of two free constructions: one adds effective quotients, and the other forces extensionality of maps. We also prove that each construction preserves comprehensions

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure
    • …
    corecore