155 research outputs found

    Coil geometry models for power loss analysis and hybrid inductive link for wireless power transfer applications

    Get PDF
    This paper presents a hybrid inductive link for Wireless Power Transfer (WPT) applications. Achieving better power transfer efficiency over a relatively wider distance across coils is the prime objective in most of the WPT systems, but often suffers from power loss in the near field area of inductively coupled coils. One of the reasons for this power loss is the pattern of the magnetic field produced by the source coil used in the WPT system. Mostly the nature of magnetic field produced by the source coil is distributed radially over the coil, in which the produced magnetic field is not fully utilized. Achieving better efficiency and load current by reducing power loss is the main driving force of this work. One of the viable methods to reduce the power loss is by increasing the field intensity thereby redirecting the flux lines flow to be directional. With this aim, three coils such as solenoid, spiral and conical are designed and simulated to determine the magnetic field strength using Finite Element Method. The conical coil produces the highest self-inductance of 8.63 lH and a field strength of 1.542 Wb with the coil thickness of 3.20 mm. Then, WPT system is demonstrated with the inclusion of Maximum Power Point Tracking algorithm for improving efficiency. The schematic of flux generation of both in the transmitter and receiver sections are demonstrated and analyzed graphically. The efficiency of both simulation and experimental measurements are matched well with similar progression. The effect of parameters (angle, distance, and load resistance) on the efficiency is explored. The outcomes conclude that the inductive coupling has achieved 73% (average case) power transfer wirelessly over a distance of 5 cm with an input voltage of 5 V and 5 MHz frequency

    Life Cycle Analysis and Optimization of Wireless Charging Technology to Enhance Sustainability of Electric and Autonomous Vehicle Fleets

    Full text link
    The transportation sector is undergoing a major transformation. Emerging technologies play indispensable roles in driving this mobility shift, including vehicle electrification, connection, and automation. Among them, wireless power transfer (WPT) technology, or commonly known as wireless charging technology, is in the spotlight in recent years for its applicability in charging electric vehicles (EVs). On one hand, WPT for EVs can solve some of the key challenges in EV development, by: (1) reducing range anxiety of EV owners by allowing “charging while driving”; and (2) downsizing the EV battery while still fulfilling the same trip distance. More en-route wireless charging opportunities result in battery downsizing, which reduces the high EV price and vehicle weight and improves fuel economy. On the other hand, WPT infrastructure deployment is expensive and resource-intensive, and results in significant economic, environmental, and energy burdens, which can offset these benefits. This research aims to develop and apply a life cycle analysis and optimization framework to examine the role of wireless charging technology in driving sustainable mobility. This research highlights the technology trade-offs and bridges the gap between technology development and deployment by establishing an integrated life cycle assessment and life cycle cost (LCA-LCC) model framework to characterize and evaluate the economic, environmental, and energy performance of WPT EV systems vs. conventional plug-in charging EV systems. Life cycle optimization (LCO) techniques are used to improve the life cycle performance of WPT EV fleets. Based on case studies, this research draws observations and conditions under which wireless charging technology has potential to improve life cycle environmental, energy, and economic performance of electric vehicle fleets. This study begins with developing LCA-LCC and LCO models to evaluate stationary wireless power transfer (SWPT) for transit bus systems. Based on a case study of Ann Arbor bus systems, the wirelessly charged battery can be downsized to 27–44% of a plug-in charged battery, resulting in vehicle lightweighting and fuel economy improvement in the use phase that cancels out the burdens of large-scale infrastructure. Optimal siting strategies of WPT bus charging stations reduced life cycle costs, greenhouse gases (GHG), and energy by up to 13%, 8%, and 8%, respectively, compared to extreme cases of “no charger at any bus stop” and “chargers at every stop”. Next, the LCA-LCC and LCO model framework is applied to evaluate the economic, energy, and environmental feasibility of dynamic wireless power transfer (DWPT) for charging passenger cars on highways and urban roadways. A case study of Washtenaw County indicates that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables downsizing of the EV battery capacity by up to 48% compared to the non-DWPT scenarios and boosts EV market penetration to around 50% of all vehicles in 20 years. Finally, synergies of WPT and autonomous driving technologies in enhancing sustainable mobility are demonstrated using the LCA framework. Compared to a plug-in charging battery electric vehicle system, a wireless charging and shared automated battery electric vehicle (W+SABEV) system will pay back GHG emission burdens of additional infrastructure deployment within 5 years if the wireless charging utility factor is above 19%.PHDNatural Resources & EnvironmentUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147602/1/bizc_1.pd

    Subsea inspection and monitoring challenges

    Get PDF
    Master's thesis in Offshore technology : industrial asset managementThis paper uncovers and suggests solutions for the challenges to control change over time more reliable and cost effective. Front-end concept engineering, design, inspection and monitoring strategies, technologies, systems and methods for Life-of-Field are recommended. Autonomous underwater vehicles (AUV) are identified as a possible cost- efficient opportunity to reduce cost of inspections and monitoring operations while safeguarding asset integrity. A recognized design spiral methodology is used to perform a front-end concept evaluation of an AUV system. Investigation of key technological limitations and new developments within underwater communication, energy storage and wireless power transmission is performed. It further enables opportunities such as AUV recharging station on the seafloor for better utilization. One major learning point is through the use of numerical models and the outcome being a better and more hydro effective hull design. One expectation from this paper may be the aid to collaborating partners in their design work

    PV Charging and Storage for Electric Vehicles

    Get PDF
    Electric vehicles are only ‘green’ as long as the source of electricity is ‘green’ as well. At the same time, renewable power production suffers from diurnal and seasonal variations, creating the need for energy storage technology. Moreover, overloading and voltage problems are expected in the distributed network due to the high penetration of distributed generation and increased power demand from the charging of electric vehicles. The energy and mobility transition hence calls for novel technological innovations in the field of sustainable electric mobility powered from renewable energy. This Special Issue focuses on recent advances in technology for PV charging and storage for electric vehicles

    Automatic RADAR Target Recognition System at THz Frequency Band. A Review

    Get PDF
    The development of technology for communication in the THz frequency band has seen rapid progress recently. Due to the wider bandwidth a THz frequency RADAR provides the possibility of higher precision imaging compared to conventional RADARs. A high resolution RADAR operating at THz frequency can be used for automatically detecting and segmenting concealed objects. Recent advancements in THz circuit integration have opened up a wide range of possibilities for on chip applications, like of security and surveillance. The development of various sources and detectors for generation and detection of THz frequency has been driven by other techniques such as spectroscopy, imaging and impulse ranging. One of the central vision of this type of security system aims at ambient intelligence: the computation and communication carried out intelligently. The need for higher mobility with limited size and power consumption has led to development of nanotechnology based THz generators. In addition to this some of the soft computing tools are used for detection of radar target automatically based on some algorithms named as ANN, RNN, Neuro-Fuzzy and Genetic algorithms. This review article includes UWB radar for THz signal, its characteristics and application, Nanotechnology for THz generation and issues related to ATR

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation
    corecore