4 research outputs found

    On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing

    Get PDF
    Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32113 LiFePO4_4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.Comment: 11 pages, 8 figures, submitted to the Journal of Power Source

    A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries

    No full text
    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future

    In-situ instrumentation for smart energy storage

    Get PDF
    Lithium-ion technology is an increasing choice for battery powered systems, offering long-lasting, reliable and efficient energy storage. However, significant safety and performance challenges within the technology are still apparent. The current state of the art for monitoring cells performance is typically based on observing full cell voltage and occasional temperature sensor on the skin of a cell. Consequently, it is extremely difficult to track cells’ health within complex, especially high-performance, battery systems. Therefore, a new way of characterising cells’ is required. Here we show the design and manufacturing methods of transforming normal cells into smart systems. The sensor topologies embedded into the cells were electrical temperature, electro-chemical and optical temperature sensors. This enabled in-situ and operando thermal and electrochemical data collection during cells’ real-life operations. In this work, the impact of the sensors upon the cells performance has been shown to be negligible, with over 100 cycles conducted, versus unmodified cells for both pouch and cylindrical formats. This was validated using time and frequency domain analysis. A significant temperature difference was identified between the cell’s core and can temperatures of up to 6 °C during discharge and 3 °C during charge phase. Therefore, this work illustrates the necessity of internal cell temperature measurements for thermal management and safety validation. Lastly, with the aid of the in-situ measurement tools, certain cells can be further optimised without compromising thermal safety limits, while under particular scenarios safety limits can be breached earlier than the external sensors would indicate, showing how paramount in-situ data is to the operational safety

    Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis

    Full text link
    [EN] In this paper, an application for the management, supervision and failure forecast of a ship¿s energy storage system is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. Here, the NMEA 2000 network sensor devices for the measurement and supervision of the parameters inherent to energy storage and energy supply are reviewed. The importance of energy storage systems in ships, the causes and models of battery aging, types of failures, and predictive diagnosis techniques for valve-regulated lead-acid (VRLA) batteries used for assisted and safe navigation are discussed. In ships, battery banks are installed in chambers that normally do not have temperature regulation and therefore are significantly conditioned by the outside temperature. A specific method based on the analysis of the time-series data of random and seasonal factors is proposed for the comparative trend analyses of both the battery internal temperature and the battery installation chamber temperature. The objective is to apply predictive fault diagnosis to detect any undesirable increase in battery temperature using prior indicators of heat dissipation process failure¿to avoid the development of the most frequent and dangerous failure modes of VRLA batteries such as dry out and thermal runaway. It is concluded that these failure modes can be conveniently diagnosed by easily recognized patterns, obtained by performing comparative trend analyses to the variables measured onboard by NMEA sensors.García Moreno, E.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2019). Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis. Sensors. 19(20):1-24. https://doi.org/10.3390/s19204480S1241920Dudojc, B., & Mindykowski, J. (2019). New Approach to Analysis of Selected Measurement and Monitoring Systems Solutions in Ship Technology. Sensors, 19(8), 1775. doi:10.3390/s19081775Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 3(4), 9. doi:10.3390/batteries3010009IEEE P1451.6—Proposed Standard for a High-Speed CANopen- Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe Applications http://grouper.ieee.org/groups/1451/6/Song, E., & Lee, K. (2008). Understanding IEEE 1451-Networked smart transducer interface standard - What is a smart transducer? IEEE Instrumentation & Measurement Magazine, 11(2), 11-17. doi:10.1109/mim.2008.4483728Signal K Signalk.org/overview.htmlLead Acid Battery Working–Lifetime Study http://www.power-thru.com/documents/The%20Truth%20About%20Batteries%20-%20POWERTHRU%20White%20Paper.pdfLee, C.-Y., Peng, H.-C., Lee, S.-J., Hung, I.-M., Hsieh, C.-T., Chiou, C.-S., … Huang, Y.-P. (2015). A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries. Sensors, 15(5), 11485-11498. doi:10.3390/s150511485Hong, J., Wang, Z., & Liu, P. (2017). Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles. Energies, 10(7), 919. doi:10.3390/en10070919Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D., & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861. doi:10.1016/j.energy.2018.12.218Salameh, Z. M., Casacca, M. A., & Lynch, W. A. (1992). A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion, 7(1), 93-98. doi:10.1109/60.124547Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems, 15(4), 1184-1190. doi:10.1109/59.898088Chen, M., & Rincon-Mora, G. A. (2006). Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Transactions on Energy Conversion, 21(2), 504-511. doi:10.1109/tec.2006.874229Gomadam, P. M., Weidner, J. W., Dougal, R. A., & White, R. E. (2002). Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 110(2), 267-284. doi:10.1016/s0378-7753(02)00190-8Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 196(15), 6007-6014. doi:10.1016/j.jpowsour.2011.03.101Cho, S., Jeong, H., Han, C., Jin, S., Lim, J. H., & Oh, J. (2012). State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model. Computers & Chemical Engineering, 41, 1-9. doi:10.1016/j.compchemeng.2012.02.003Xu, J., Wang, J., Li, S., & Cao, B. (2016). A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles. Sensors, 16(8), 1328. doi:10.3390/s16081328Osaka, T., Momma, T., Mukoyama, D., & Nara, H. (2012). Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. Journal of Power Sources, 205, 483-486. doi:10.1016/j.jpowsour.2012.01.070Guenther, C., Barillas, J. K., Stumpp, S., & Danzer, M. A. (2012). A dynamic battery model for simulation of battery-to-grid applications. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). doi:10.1109/isgteurope.2012.6465855Worwood, D., Kellner, Q., Wojtala, M., Widanage, W. D., McGlen, R., Greenwood, D., & Marco, J. (2017). A new approach to the internal thermal management of cylindrical battery cells for automotive applications. Journal of Power Sources, 346, 151-166. doi:10.1016/j.jpowsour.2017.02.023Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680-689. doi:10.1016/j.jpowsour.2013.05.040Modelisation du Vieillissement et Determination de l’Etat de Sante de Batteries Lithium-Ion pour Application Vehicule Electrique et Hybride https://tel.archives-ouvertes.fr/tel-00957678Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C., Besenhard, J. O., … Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1-2), 269-281. doi:10.1016/j.jpowsour.2005.01.006Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494. doi:10.1021/ed061p494Schmalstieg, J., Käbitz, S., Ecker, M., & Sauer, D. U. (2014). A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 257, 325-334. doi:10.1016/j.jpowsour.2014.02.012Guena, T., & Leblanc, P. (2006). How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries. INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference. doi:10.1109/intlec.2006.251641Sarasketa-Zabala, E., Laresgoiti, I., Alava, I., Rivas, M., Villarreal, I., & Blanco, F. (2013). Validation of the methodology for lithium-ion batteries lifetime prognosis. 2013 World Electric Vehicle Symposium and Exhibition (EVS27). doi:10.1109/evs.2013.6914730Niehoff, P., Kraemer, E., & Winter, M. (2013). Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells. Journal of Electroanalytical Chemistry, 707, 110-116. doi:10.1016/j.jelechem.2013.08.032Goebel, K., Saha, B., Saxena, A., Celaya, J., & Christophersen, J. (2008). Prognostics in Battery Health Management. IEEE Instrumentation & Measurement Magazine, 11(4), 33-40. doi:10.1109/mim.2008.4579269Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688. doi:10.1016/j.jpowsour.2012.11.146Zou, Y., Hu, X., Ma, H., & Li, S. E. (2015). Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources, 273, 793-803. doi:10.1016/j.jpowsour.2014.09.146Dai Haifeng, Wei Xuezhe, & Sun Zechang. (2009). A new SOH prediction concept for the power lithium-ion battery used on HEVs. 2009 IEEE Vehicle Power and Propulsion Conference. doi:10.1109/vppc.2009.5289654Zainuri, A., Wibawa, U., Rusli, M., Hasanah, R. N., & Harahap, R. A. (2019). VRLA battery state of health estimation based on charging time. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(3), 1577. doi:10.12928/telkomnika.v17i3.12241May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. doi:10.1016/j.est.2017.11.008Megger Batery Testing Guide. art.nr. ZP-AD01E Doc. AD0009AE 2009 https://us.megger.com/support/technical-library?searchtext=&searchmode=anyword&application2=0&type=6;&application=0&order=0Catherino, H. A. (2006). Complexity in battery systems: Thermal runaway in VRLA batteries. Journal of Power Sources, 158(2), 977-986. doi:10.1016/j.jpowsour.2005.11.005Culpin, B. (2004). Thermal runaway in valve-regulated lead-acid cells and the effect of separator structure. Journal of Power Sources, 133(1), 79-86. doi:10.1016/j.jpowsour.2003.09.078Uddin, K., Moore, A. D., Barai, A., & Marco, J. (2016). The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178, 142-154. doi:10.1016/j.apenergy.2016.06.033Piętak, A., & Mikulski, M. (2009). On the adaptation of CAN BUS network for use in the ship electronic systems. Polish Maritime Research, 16(4), 62-69. doi:10.2478/v10012-008-0058-9Maretron NBE100 Network Bus Extender (NMEA 2000 Bridge) User’s Manual. Revision 1.5 https://www.maretron.com/support/manuals/NBE100UM_1.0.htmlOneNet https://www.nmea.org/content/STANDARDS/OneNetMaretron Press Kit https://www.maretron.com/company/presskit.phpDCM100 User’s Manual https://www.maretron.com/support/manuals/DCM100UM_1.5.htmlAirmar Technology Corporation www.airmar.comGarcía, E., Quiles, E., Correcher, A., & Morant, F. (2018). Sensor Buoy System for Monitoring Renewable Marine Energy Resources. Sensors, 18(4), 945. doi:10.3390/s18040945TMP100 Temperature Module User’s Manual https://www.maretron.com/support/manuals/TMP100UM_1.2.htmlN2KExtractor User’s Manual https://www.maretron.com/support/manuals/N2KExtractor_UM_3.1.6.htmlVDR100 Vessel Data Recorder User’s Manual https://www.maretron.com/support/manuals/VDR100UM_1.2.htmN2KView User’s Manual https://www.maretron.com/support/manuals/N2KView%20User%20Manual%206.0.12.htmlDSM250 User’s Manual https://www.maretron.com/support/manuals/DSM250UM_1.6.2.htmlMunoz-Condes, P., Gomez-Parra, M., Sancho, C., San Andres, M. A. G., Gonzalez-Fernandez, F. J., Carpio, J., & Guirado, R. (2013). On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Transactions on Industrial Electronics, 60(7), 2750-2759. doi:10.1109/tie.2012.2196895He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. doi:10.1016/j.jpowsour.2011.08.04
    corecore