In-situ instrumentation of cells and power line communication data acquisition towards smart cell development

Abstract

The internal core temperature of cells is required to create accurate cell models and understand cell performance within a module. Pack cooling concepts often trade off temperature uniformity, vs cost/weight and complexity. Poor thermal management systems can lead to accelerated cell degradation, and unbalanced ageing. To provide core temperature an internal array of 7 thermistors was constructed; these in conjunction with cell current, via bus bar mounted sensors, and voltage sensor measurements, we have developed instrumented cells. These cells are also equipped with power line communication (PLC) circuitry, forming smart cells. We report upon data from these miniature sensors during cell cycling, demonstrating successful operation of the PLC system (zero errors compared to a reference wired connection) during typical cell cycling (C/2 discharge, C/3 charge) and the application of automotive drive cycle, providing a transient current test profile. Temperature variation within the cell of approximately 1.2 °C gradients, and variation of >2.8 °C during just 30 min of 2C discharging demonstrate the need for internal sensing and monitoring throughout the lifetime of a cell. Our cycling experimental data, along with thorough cell performance tracking, where typically <0.5% degradation was found following instrumentation process, demonstrate the success of our novel prototype smart cells

    Similar works