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resumo 
 

 

Com o presente trabalho pretendeu-se explorar soluções de sensores em fibra 
ótica para a aplicação em meios desafiantes. Novas estruturas sensoras 
baseadas em pós-processamento de fibra ótica foram abordadas, tendo em 
consideração a sua sensibilidade a variações do meio externo.  
Numa primeira etapa, foram embebidas redes de Bragg no interior de baterias 
de lítio, para monitorizar variações de temperatura in situ e operando. Devido 
ao complexo meio químico da bateria, os sensores em fibra ótica revelaram 
ser uma alternativa mais vantajosa em relação aos sensores elétricos, não só 
pela sensibilidade e rápida resposta, mas também pelo fato de não afetarem o 
desempenho da bateria. Além disso, os sensores usados revelaram ser pouco 
invasivos e quimicamente estáveis.  
Ainda no âmbito deste tema, e com o objetivo de monitorizar possíveis 
deformações e variações de pressão no interior da bateria de lítio, foram 
desenvolvidos novos sensores baseados em cavidades de Fabry-Perot do tipo 
in-line. Esses sensores foram caraterizados em pressão lateral, deformação e 
temperatura. 
Numa fase posterior, o estudo centrou-se no desenvolvimento de 
configurações que permitissem a obtenção de sensores com elevada 
resolução e/ou sensibilidade. Uma das configurações consistiu na formação de 
uma microesfera oca na ponta de uma fibra ótica. Esse sensor foi utilizado 
para detetar variações de concentração e índice de refração de misturas de 
glicerina e água. A influência do tamanho do diafragma na resposta do sensor 
também foi estudada, assim como a resposta em temperatura. 
Em seguida, desenvolveram-se novos sensores baseados em interferência 
multimodo, utilizando para tal uma ponta de fibra de sílica sem núcleo. Numa 
primeira abordagem analisou-se a influência de diferentes parâmetros, como o 
comprimento e o diâmetro dos sensores. Os sensores foram expostos a 
diferentes soluções de glucose e água. Verificou-se que o diâmetro do sensor 
é um fator decisivo para a obtenção de dispositivos mais sensíveis ao índice 
de refração e, consequentemente, à concentração. 
Foi também desenvolvido um sensor baseado em interferência multimodo que 
permitiu determinar o coeficiente termo-ótico de misturas de etanol e água. 
Por fim, procedeu-se à funcionalização de um sensor baseado em interferência 
multimodo através da deposição de agarose ao longo da estrutura, permitindo 
assim otimizar a sua resposta a variações do meio externo.  
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abstract 

 
With the present work, the development of fiber optic sensor solutions for the 
application in challenging media was intended. New sensor structures based 
on the post-processing of optical fibers were addressed, taking into account 
their sensitivity to variations in the external environment. 
In a first stage, fiber Bragg gratings were embedded in lithium batteries, to 
monitor temperature in situ and operando. Due to the harsh chemical 
environment of the battery, fiber optic sensors revealed to be the most 
advantageous alternative, when comparing to the electronic sensors. Fiber 
sensors exhibited good sensitivities and fast responses, besides being less 
invasive, thus they did not compromise the battery response. Furthermore, they 
were chemically stable.  
Still in the framework of this theme, and with the objective of monitoring 
possible strain and pressure variations inside the batteries, new sensors based 
on in-line Fabry-Perot cavities have been proposed. These sensors were 
characterized in lateral load, strain, and temperature. 
In a later stage, the study focused on the development of configurations that 
allowed to obtain high-resolution and/or sensitivity sensors. One of such 
configurations was obtained by creating a hollow microsphere at the fiber tip. 
The sensor was used to detected concentration variations and refractive index 
of glycerin and water mixtures. The influence of the diaphragm size in the 
sensor response was also studied, as well as the temperature response. 
New sensors based on multimode interference have also been characterized, 
using a coreless silica fiber tip. First, the influence of different parameters, such 
as length and diameters were analyzed. The sensors were tested in different 
solutions of glucose and water. It was observed that the sensor diameter is a 
decisive factor in obtaining devices that are more sensitive to refractive index 
and, consequently, to concentration. 
The determination of the thermo-optic coefficient of water/ethanol mixtures was 
also addressed using a multimode fiber interferometer sensor. 
Finally, a multimode interferometer sensor was functionalized by depositing 
agarose throughout the structure, allowing to optimize the response of the 
sensors to the external environment. 
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1. Optical fiber sensors – a brief overview 

The request for detection of environmental changes, through physical, chemical or 

biological parameters, has grown rapidly over the last decades. There is a great interest, 

not only in the scientific community, but also in industry, to develop new sensing devices 

based on optical fibers, to exploit their intrinsic characteristics, and to find new 

application fields. In order to compete with conventional sensors, these sensors need to be 

trustworthy, robust, highly sensitive, and economical. 

 In response to the increasing need to create non-destructive techniques that can 

monitor specific parameters in harsh environments, or in areas of difficult access, various 

techniques are being developed, and some of the most promising are based on the use of 

optical fiber sensors. The ability to have small devices in direct physical contact with the 

challenging media to be sensed brings new opportunities to observe and act on the world, 

for example, in chemical, biological or pharmaceutical applications, both in lab scale and 

in industry. 

There are several advantages of using optical fiber sensors, such as, small dimensions, 

capability of multiplexing, possibility for simultaneously measurement of different 

parameters with a single fiber, chemical inertness, and immunity to electromagnetic 

fields. Furthermore, this kind of sensors usually presents good linearity, rapid response 

for real time monitoring, high sensitivity to external perturbations, and ability to be 

embedded into materials [1]. Due to all these characteristics, optical fiber sensors present 

several features that make them extremely attractive to be used in a wide variety of 

applications, namely in the medical, aerospace, and wind energy industries. They have 

also been applied in the oil and gas industry, taking advantage of distributed sensing 

capability, and in several fields such electrical engineering, materials science, biology, 

chemistry, physics, and optics [2]. There is no doubt that depending on the application, 

the parameter or the configuration for which the sensors are developed, the possibilities 

are extremely vast [3, 4]. Currently, the fiber sensing field is immense, and there is a wide 

variety of methods for classifying the sensors, according to: 
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o The application: temperature, strain, displacement, current, magnetic fields, 

pressure, torsion, bending, vibration, humidity, lateral load, refractive index, 

detection of bio-molecules or chemical species [2]; 

o The measurable spatial scope: point sensors, quasi-distributed sensors, and fully 

distributed sensors [4]; 

o The modulation process: intensity, phase, state of polarization, and wavelength 

(frequency) [2]; 

o The working principle: optical fiber gratings (fiber Bragg grating (FBG), chirped 

fiber Bragg grating, tilted fiber Bragg grating (TFBG) and long period grating), 

interferometry (Fabry-Perot (FP), Mach-Zehnder, Michelson, Sagnac, high 

birefringence fiber loop mirror sensors, and multimode interferometer) [5-8], 

distributed sensors (Raman scattering, Rayleigh scattering and Brillouin 

scattering) [6], or polarization-optical time domain reflectometry sensors [9, 10].  

Given the variety of technologies available today, only those related and used in the 

context of this Thesis will be addressed in the following Sections. 

1.1. Fiber Bragg gratings 

In 1978, the physicist Kenneth O. Hill reported the first work on FBGs and their 

applications both in optical communications and optical sensor systems [11]. Since then, 

this type of sensors has been widely applied in the measurement of different parameters, 

such as physical, chemical, biomedical and electrical ones. They are simple, intrinsic 

sensing elements, which can be photo-inscribed into silica fiber and they have all the 

advantages associated with fiber optic sensors. Typically, a FBG sensor can be seen as a 

selective photo-induced modulation of the optical fiber core refractive index. The FBG 

resonant wavelength (Bragg wavelength), λB, is related to the effective refractive index of 

the core mode (neff) and to the grating period (Λ), according to Eq. 1 [12]: 

                                                       
B eff

n2   ,                                                               (1) 
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When the grating is illuminated with a broadband optical source, the reflected 

spectrum presents a sharp peak, which is caused by the interference of light reflected on 

the planes of the grating. Any perturbation on the grating (e.g., external strain or 

temperature variation) results in a shift in the Bragg wavelength, which can be detected 

either in the reflected or in the transmitted spectra [4].  

As already mentioned, optical fiber sensors can be easily embedded in different 

materials. One of the works reported in this Thesis consists on the integration of FBGs in 

lithium-ion pouch cells to monitor temperature in-situ and operando. Temperature is one of 

the parameters with higher impact on the performance, safety, and cycle lifetime of 

lithium-ion batteries. The operating temperature of batteries must be well controlled, due 

to the high local current densities that can result in a massive heat release, decomposition 

of the electrolyte, gas evolution or even explosion of the battery cell. However, the 

corrosive chemical environment in the batteries is a challenge to monitor internal 

variations of this measurand [13-16]. The insertion of FBGs has proven to be a good 

method for measurement due to the aforementioned advantages [17]. It is important to 

note that when fiber sensors are embedded, their sensitivities to temperature and strain 

change due to the mechanical stresses produced by the surrounding material, so a new 

internal calibration is always required [18]. Over the last four years, most of the works 

reported in the literature were focused on monitoring external temperature using 

thermocouples attached to the surface of batteries, in strategic locations [19-25] or 

internally,  however, not in direct contact with the chemical medium [26-29]. Recent 

works proposed the use of FBG sensors to perform this kind of measurements in different 

types of batteries and considering different locations [17, 30-35].  

1.2. Fabry-Perot interferometer sensors 

Interferometric optical fiber sensors are based on the principle of optical interference 

for the measurement of chemical or physical properties. These sensors can be a great 

solution for sensing because they can exhibit great sensitivity, a wide dynamic range, 

multiplexing capacity and low losses [36].  
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One of the first works reporting a fiber optic sensor based on FP interferometry was 

published in 1982, by Yoshino et al. [37]. Since then, a great and rapid evolution occurred 

in this field. The FP interferometers are normally constituted by two parallel reflecting 

surfaces, with reflectance R1 and R2, separated by a determined distance, L, as exemplified 

in Figure I.1 [38]. The FP interferometer can be developed by intentionally building up 

reflectors externally to the fibers (Figure I.1 a), or internally (Figure I.1 b), being classified 

into two categories: extrinsic and intrinsic sensors [39, 40].  

Fiber

L

Air

Core

Cladding

Supporting Structure

L

R1 R2

b)
a)

R2R1

Figure I.1. a) Extrinsic and b) intrinsic FP interferometer sensor, with reflectance R1 and R2, 

separated by a determined distance (L) (adapted from [38]). 

In the case of extrinsic sensors, the air cavity can be formed through a supporting 

structure, such as the one shown in Figure I.1a). These sensors are advantageous for 

obtaining high finesse interference signals [41], bearing in mind that high reflecting 

mirrors may be used and yet the manufacturing process is simple and no expensive 

equipment is needed. However, they have reduced coupling efficiency and careful and 

precise alignment is required [42].  

The intrinsic FP interferometer fiber sensor has reflecting components within the fiber 

itself. There are several ways to form this type of sensors, such as micro machining [43-

46], by using two FBGs in series [47, 48], through chemical etching [49, 50], by thin film 

deposition [51, 52], by using special fibers [53] or even creating an air bubble in fibers [54]. 

In the simplest form, when the cavity has low-reflectivity mirrors, it can be approximated 

to a two-wave interferometer. In such case, the reflection spectrum is essentially 

determined by the phase difference, δFP, between the waves generated in the two 

reflections [55], which is described by: 
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where neff, LFP and the λ are the effective refractive index of cavity material, the physical 

length of the cavity and the wavelength of incident light, respectively. When there is an 

external perturbation, such as variation of strain, temperature or other parameter 

detectable by the sensors, both the cavity length and effective refractive index can change, 

translating into a shift of the phase difference. This shift can be easily monitored, by using 

a suitable interrogation system [38, 55]. Table I.1 presents the main characteristics of the 

different intrinsic FP sensors reported in the literature in the period between 2014 and 

2018.  

Table I.1. Different configurations of the intrinsic FP sensors reported from 2014 to 2018. 

Year Configuration 
Length 

(µm) 
Measurand Range Sensitivity Ref 

2014 

Air cavity between 2 

single mode fibers 

(SMFs) 

46 
Strain 

Temperature 

0 - 1100 με 

100 - 600 °C 

6.0 pm/με 

1.1 pm/°C 
[56] 

2014 

Air bubble and 

liquid in hollow core 

fiber, with taper plug 

31 Temperature 25 - 39 °C -6.71 nm/°C [57] 

2014 

SMF + etched P-

doped fiber + 

coreless multimode 

fiber (MMF) and  

focused ion beam 

post-processing 

172 Temperature 100 - 300 °C 11.5 pm/K [58] 

2014 
SMF + microfiber + 

SMF 
21 

Strain 

 

0.05 - 0.35 N 

 

~200 pm/ με 

 
[59] 

2014 

Silica & spheroidal 

cavities, both formed 

in a hollow annular 

core fiber 

392 
Strain 

Temperature 

0 - 1500 με 

23 - 500 °C 

1.1 pm/με 

13 pm/°C 

[60] 

 

2015 
SMF + dual hollow 

core fibers 
33.84 

Temperature 

in liquids 
20 - 60 °C -0.4810 nm/°C [61] 

2015 
Polymer capped on 

the end face of SMF 
35.1 

Pressure 

Temperature 

0 - 2.8 MPa 

40 - 90 °C 

1.13 nm/MPa 

0.249 nm/°C 
[62] 

2015 Rectangular air ~61 Strain 0 - 500 με 43 pm/με [63] 
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bubble between 

SMFs 

Temperature 25 - 100 °C 2.0 pm/°C 

2015 SMF + silicon pillar 200 Temperature 20 - 100 °C 84.6 pm/°C [64] 

2015 
MMF + Pyrex glass + 

silicon diaphragm 
~32 Temperature -50 - 100 °C 6.07 nm/°C [65] 

2016 

Air bubbles with 

capillary fiber 

between 2 SMFs 

~25-200 
Strain 

Temperature 

0 - 1200 με 

50 - 400 °C 

max: 9.5 

pm/µε 

0.8 pm/°C 

[66] 

2016 

SMF + 2 capillary 

tubes with different 

inner diameters  

~75-308 RI 
1.00054 -

1.00217 RIU 
1127.5 nm/RIU [67] 

2016 
SMF + hollow-core 

photonic crystal 
75 Temperature 17 - 900 °C 0.94 pm/°C [53] 

2016 
SMF + hollow-core 

photonic crystal fiber 
94 Temperature 20 - 90 °C 9.17 pm/°C [68] 

2017 SMF+ MMF (GIF 625) 161 Strain 0 - 1000 με 9.12 pm/με [69] 

2017 

FP between a FBG 

and the fiber end-

face 

 RI 
1.3380 -

1.4765 RIU 
-1.94 RIU-1 [70] 

2017 
Etched MMF filled 

with UV adhesive 
37.7 

Temperature 

RI 

55 - 85°C 

1.332 - 1.372 

RIU 

213 pm/°C 

-73.54 nm/RIU 
[71] 

2017 SMF+ MMF (GIF 625) 161 Lateral load 0 - 4N 2.11 nm/N [72] 

2018 
Tapered fiber tip into 

the capillary + SMF 
100 Strain 0 - 2000 με 2.1 pm/με [73] 

2018 
SMF + Hollow core 

tube + SMF 
~100 

Temperature 

Strain 

50 - 450 °C 

0 - 1000 με 

0.902 pm/°C 

2.97 pm/με 
[74] 

2018 

Fiber core near the 

end of a standard 

SMF 

60 Temperature 500 - 1000 °C 18.6 pm/°C [75] 

2018 
Air bubble tip SMF+ 

MMF (GIF 625) 
29 RI 

1.3154 -

1.4571 RIU 
-5.49 nm/RIU [76] 

2018 
SMF +capillary + 

nafion film 
200 Temperature -30 - 85 °C 2.71 nm/°C [77] 
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1.3. Multimode fiber interferometer sensors 

A scheme of a typical multimode fiber interferometer (MMI) sensor is presented in 

Figure I.2, where a section of mutimode fiber (MMF) is sandwiched between two single-

mode fibers (SMFs) [78]. This is the so-called single-mode-multimode-single mode (SMS) 

fiber structure; however, MMIs can also be obtained using a single-mode-multimode fiber 

configuration. It has a series of advantages that allows it to be used as sensor, such as 

simple structure, low cost, small size, and high stability. Some of the parameters that have 

been monitored with this kind of sensors are strain and temperature [79], displacement 

[80], refractive index [81], and microbend [82]. 

SMFMMF

Core

L

SMF

Core

Cladding

 

Figure I.2. Schematic configuration of the single-mode-multimode-single-mode fiber structure 

(adapted from [78]). 

The subjacent operating principle of this kind of sensors is the interference of the 

excited modes in the MMF section, which can be influenced by external perturbations [83, 

84], i.e, the fundamental mode that propagates along the SMF will couple into the MMF, 

exciting many modes, each of which has a different propagation constant [4]. After 

passing through the MMF section, they reconnect to the SMF. Since each mode has 

already experienced a different phase shift, the modes interfere. 

The main configurations of the MMI structures are simple and enable the detection of 

a change in the refractive index of the surrounding medium, due to the high interaction of 

the evanescent field with the external environment. The manufacture of new concepts of 

MMIs can be greatly enhanced through the combination of fiber optics with the nano-

structure technology and the use of sensitive thin films [85]. The sensors based on MMI, 

allied with the functionalization with thin films as sensitive elements, could open new 

fields for optical fiber sensor applications. Functional materials can be deposited on the 
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side- or end-face of fiber with different techniques, such as, spin-coating, dip-coating, 

thermal evaporation or sputtering [86]. The use of polymeric sensitive materials in optical 

fiber sensors has the advantage of enhancing the response time with a better sensitivity 

and selectivity [4, 87]. Table I.2 collects the main configurations and parameters reported 

over the last 4 years using MMI sensors. 

Table I.2. Multimode interference sensors reported in the literature since 2014 until 2018. 

Year Configuration 
Length 

(mm) 
Measurand Range Sensitivity Ref 

2014 

SMF + MMF 

(40 µm core 

diameter) + SMF 

27 RI 
1.3300 - 

1.3775 RIU 
286.2 nm/RIU [88] 

2014 

SMF + offset 

SMF+ MMF + 

offset SMF 

25 
Temperature 

Liquid- level 

25 - 60 °C 

10 - 20 mm 

0.0815 nm/°C 

0.29 nm/mm 
[89] 

2014 

SMF + MMF 

(40 µm core 

diameter) + SMF 

30 Temperature 25 - 80 °C 358 pm/°C [90] 

2014 
SMF + offset 

MMF + SMF 
1 Temperature 39.8 - 83.0 °C -64.889 nm/RIU [91] 

2015 
SMF + MMF + no 

core fiber + SMF 
58.3 

RI 

Strain 

1.3370 - 

1.3645 RIU 

0 - 1600 με 

131.71 nm/RIU 

-1.21 pm/με 
[92] 

2015 

SMF + no core 

fiber (diameter of 

96 µm) + SMF 

34.43 Temperature -30 - 100 °C 38.7 pm/°C [93] 

2015 
SMF + offset SMF 

+ SMF 
46 

Temperature 

 
30 - 270 °C 0.0449 nm/°C [94] 

2015 
SMF + no core 

fiber  + SMF 
40 

Temperature 

 
10 - 100 °C 5.15 nm/°C [95] 

2016 

SMF + 4.5 μm 

offset coreless 

fiber + SMF 

6.3 Liquid- level 21 - 33 mm 
681 pm/mm/ 

RIU 
[96] 

2016 

SMF + coreless 

fiber (25 mm) + 

SMF + coreless 

fiber (30 mm) + 

SMF 

25 RI 
1.3288 - 

1.3666 RIU 
148.60 nm/RIU [97] 
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2016 

SMF + no core 

fiber (diameter of 

125 µm) + SMF 

15 Liquid - level 0 - 500 mm 108.8 pm/mm [98] 

2016 
SMF + MMF (core 

of 105 µm) + SMF 
80 

Compressive 

strain 
42 - 44 kN 

-1411.2 

nm/(mm/mm) 
[99] 

2017 
SMF + MMF (core 

of 105 µm) + SMF 
44 

Strain 

Temperature 

0 - 1200  με 

15 - 75 °C 

42.5 pm/με 

29.33 pm/°C 
[100] 

2017 

SMF + tapered 

multicore fiber + 

SMF 

170 RI 1.345 - 1.377 171 nm/RIU [101] 

2018 
SMF + MMF (core 

of 105 µm) + SMF 
68 

Compressive 

strain 
0  - 31 kN 0.014 nm/kN [102] 

2018 

SMF + no core 

fiber (with alcohol 

solution within a 

silica capillary 

tube) + SMF 

40 Temperature 20 - 45 °C 0.49 dB/°C [103] 

2018 

SMF + triple 

cladding quartz 

specialty fiber + 

SMF 

35 RI 
1.3466 - 

1.3350 RIU 

543.7527  

nm/RIU 
[104] 

2018 

SMF + Coreless 

(diameters 

between 65.15 -

27.73 µm) + SMF 

60 pH 4 - 6 15 nm/pH [105] 

2018 

SMF + etched 

coreless 

(diameters 

between 24-125 

µm) 

24 RI 
1.364 - 1.397 

RIU 
1467.59 nm/RIU [106] 

2018 

SMF + coreless 

(diameter 125 

µm) 

~30 
Relative 

humidity 
20.0 - 98.5% 44.2 pm/%RH [107] 

2018 

SMF + etched 

coreless (diameter 

24.4 µm) 

5.1 RI 
1.315 - 1.365 

RIU 
627.9 nm/RIU [108] 
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2. Motivation and objectives 

The motivation for the work developed in the framework of the PhD programme 

relied on the development and characterization of optical fiber sensors for application in 

challenging media. Optical sensors offer a versatile solution for detection purposes due to 

the wide range of independent parameters that can be accessed. Through the interaction 

between the light and the surrounding liquid medium, it is possible to infer the variation 

of certain parameters, and the feasibility of performing accurate and non-invasive 

measurements makes the development of new sensing techniques one of the great 

motivations of this work.  

New sensing structures based on the post processing of optical fibers were developed 

and as the research progressed and different challenges and obstacles emerged, there was 

an increase in the motivation to learn new concepts and provide solutions to those 

obstacles. In addition, there was also the desire to contribute with new approaches to 

configurations and studies of physical and chemical parameters, and therefore, to 

contribute to the development of the optical fiber sensing field. 

The main objectives were based on: 

o the study of integration and monitorization of optical fiber sensors in Li-ion 

batteries; 

o the manufacturing and characterization of interferometric structures based on 

microspheres for high sensitivity lateral load and strain measurements; 

o the development of optical fiber Fabry-Perot tip sensor for detection of water-

glycerine mixtures; 

o the improvement of an optical fiber sensor tip based in multimode interference 

and the respective characterization; 

o the study and determination of the thermo-optic coefficient of ethanol-water 

mixtures; 
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o the post-processing of optical fibers through the deposition of materials 

through the technique of dip-coating, thus obtaining the functionalization of 

the fiber and allowing the detection of relative humidity. 

 

3. Thesis organization 

This document is divided in eight Chapters describing the process of development 

and characterization of the fiber optic solutions developed for application in challenging 

media, accordingly to the proposed PhD work plan.  

Chapter I describes an overview of the concepts and sensing elements explored in this 

Thesis. It also contains the main scientific contributions, finalizing the list of works 

published during the PhD.  

Chapter II proposes the integration of fiber Bragg grating sensors in lithium-ion cells 

for in-situ and operando temperature monitoring. This Chapter intends to contribute for 

the detection of a temperature gradient in real time inside a cell, which can determine 

possible damage in the battery performance when it operates under normal and abnormal 

operating conditions, as well as to demonstrate the technical feasibility of the integration 

of fiber sensors inside Li-ion pouch cells. 

Chapter III presents a Fabry-Perot air bubble microcavity fabricated between a section 

of SMF and a MMF using a fusion splicer. The study of the microcavities growth with the 

number of applied arcs is performed. The sensors are used for the measurement of lateral 

load and temperature. Further information about the sensors response to strain in also 

given. 

In Chapter IV, a fiber sensor based on a Fabry-Perot cavity is reported for measuring 

mixtures of water and glycerin. The sensor is fabricated by producing an air bubble near 

the end face of a multimode fiber section and reshaping the tip in order to produce a thin 

silica diaphragm. 
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Chapter V is dedicated to the measurement of refractive index variations in glucose 

aqueous solutions. The sensor is fabricated by splicing a short section of coreless silica 

fiber to standard single mode fiber and influence of the coreless fiber dimensions on the 

sensor performance is analysed. In this Chapter, the conversion of the refractive index 

values for water-glucose mixtures to the 1550 nm using a fiber sensor was done for the 

first time, to the best of our knowledge. 

In Chapter VI, the thermo-optic coefficient of ethanol-water mixtures, through 

refractive index and temperature measurements, is determined using an etched optical 

fiber tip based on a multimode interferometer. The proposed probe is fabricated by 

fusion-splicing a 5.2 mm long coreless fiber section to single mode fiber. To reduce the 

sensor dimensions and improve its sensitivity towards external medium variations, the 

fiber tip is subjected to wet chemical etching using a solution of 40% hydrofluoric acid. 

The Chapter VII is dedicated to the measurement of relative humidity. The sensor is 

based on a structure with multimode interference and a hydrophilic agarose gel is coated 

on the sensor, using the dip coating technique. The proposed sensor has a great potential 

in real time relative humidity monitoring, exhibiting a large range of operation with good 

stability, and can be of interest for applications where a control of high levels of relative 

humidity is required. 

The Chapter VIII presents some lines summarizing the main results achieved during 

the PhD and describes the opportunities of future work that this investigation has created. 

 

4. Main contributions and publications 

From the works presented in this Thesis, it is my opinion that three of them stand out 

as main contributions to the field. Due the corrosive chemical environment in the 

batteries, it is a challenge to monitor internal parameters in real time. However, an 

accurate monitoring can prevent possible damage in the battery, and the proposed 

sensors can have a large impact in this field. The second most relevant work was the one 

based on manufacturing and characterization of interferometric structures based on tip 
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microspheres. The third was the determination of thermo-optic coefficient of ethanol-

water mixtures with optical fiber tip sensor. To my knowledge, this was the first time that 

this coefficient was determined for solutions with different concentrations of ethanol in 

water using a fiber sensor. 

From the activity developed in the framework of this PhD, a total of 6 articles were 

published as first author in scientific journals. Besides, still within the scope of this Thesis, 

one Book Chapter was also published and one paper was published as co-author.  A total 

of 8 communications in international conferences were published, being 4 of them oral 

presentations. The list of published works is presented below. 

Book Chapter 

Susana Novais, Micael Nascimento, Marta S. Ferreira, M. Fátima Domingues, Stephan 

Koch, Gang Yang, Stefano Passerini and João L. Pinto, Lithium batteries monitoring with 

fiber Bragg gratings, Advances in Sensors: Reviews' Book Series, Vol. 5, 2018. 

Papers in International Journals 

Susana Novais, Marta. S. Ferreira and João L. Pinto, Relative humidity fiber sensor based on 

multimode interferometer coated with agarose-gel, Coatings, Vol. 8, no. 453, 2018. 

Susana Novais, Catarina I. A. Ferreira, Marta S. Ferreira and João L. Pinto, Optical fiber tip 

sensor for the measurement of glucose aqueous solutions, Photonics Journal, Vol. 10, no. 5, 2018. 

Susana Novais, Marta S. Ferreira and João L. Pinto, Determination of thermo-optic coefficient 

of ethanol-water mixtures with optical fiber tip sensor, Optical Fiber Technology, Vol. 45, 

pp. 276-279, 2018.  

Susana Novais, Marta S. Ferreira and João L. Pinto, Optical fiber Fabry Perot tip sensor for 

detection of water-glycerin mixtures, Journal of Lightwave Technology, Vol. 36, no. 9, 

pp. 1576-1582, 2018.  
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Micael Nascimento, Susana Novais, Markus S. Ding, Marta S. Ferreira, Stephan Koch, 

Stefano Passerini, João L. Pinto, Internal strain and temperature discrimination with optical 

fiber hybrid sensors in Li-ion batteries, Journal Power Sources, Vol. 410-411, pp. 1-9, 2019. 

Susana Novais, Marta S. Ferreira and João L. Pinto, Lateral load sensing with an optical fiber 

inline microcavity, Photonics Technology Letters, Vol. 29, no. 17, pp. 1502-1505, 2017. 

Susana Novais, Micael Nascimento, Lorenzo Grande, M. Fátima Domingues, Paulo 

Antunes, Nélia Alberto, Cátia Leitão, Ricardo Oliveira, Stephan Koch, Guk Tae Kim, 

Stefano Passerini and João Pinto, Internal and external temperature monitoring of a Li-ion 

battery with fiber Bragg grating sensors, Sensors, Vol. 16, no.1394, pp. 1-9, 2016. 

Communications in International Conferences 

Susana Novais, Catarina I. A. Ferreira, Marta S. Ferreira, João L. Pinto, Glucose 

Measurements with Optical Fiber Sensor based on Coreless Silica Fiber, 26th International 

Conference on Optical Fibre Sensors, OFS-26, 24-28 September, Lausanne, Switzerland, 

2018. 

Marta S. Ferreira, Susana Novais, Catarina I. A. Ferreira, João L. Pinto, Optical fiber tip 

sensor for determining the thermo-optic coefficient of ethanol-water mixtures, 26th International 

Conference on Optical Fibre Sensors, OFS-26, 24-28 September, Lausanne, Switzerland, 

2018. 

Susana Novais, Marta S. Ferreira, João L. Pinto, Fabry-Perot cavity based on air bubble in 

multimode fiber for sensing applications, Proc. SPIE 10680, Optical Sensing and Detection V, 

106801C, SPIE Photonics Europe, 9 May, Strasbourg, France, 2018.  

Cátia J. Leitão, M. Fátima Domingues, Susana Novais, Cátia Tavares, João L. Pinto, Paulo 

André, Carlos Marques, Paulo Antunes, Arterial pulses assessed with FBG based films: a smart 

skin approach, Proc. SPIE 10685, Biophotonics: Photonic Solutions for Better Health Care 

VI; 106852S, SPIE Photonics Europe, 17 May, Strasbourg, France, 2018.  
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Susana Novais, Marta S. Ferreira and João L. Pinto, Fabry-Perot cavity based on air bubble for 

high sensitivity lateral load and strain measurements, III International Conference on 

Applications of Optics and Photonics, 104532V, 22 August, Faro, Portugal, 2017. 

Susana Novais, Micael Nascimento, Marta S. Ferreira, Lorenzo Grande, Stephan L. Koch, 

M. Ding, Stefano Passerini, Vallentina Gentilic, John Forgie, João L. Pinto, Bragg sensors 

operating within Li-ion pouch cells, SIRBATT Workshop "Controlling Lithium Battery 

Interfaces" in Orlando, Florida, USA, May, 2016. 

Micael Nascimento, Susana Novais, Cátia Leitão, M. Fátima Domingues, Nélia Alberto, 

Paulo Antunes, João L. Pinto, Lithium batteries temperature and strain fiber monitoring, 

Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 96347, 28 

September, Curitiba, pp. 9634V-1-9634V-4, 2015. 

 Susana Novais, Cell diagnosis and prognosis of lithium ion batteries through optical fiber 

sensors, SIRBATT Workshop "Understanding Lithium Battery Interfaces" in Bilbao, Spain, 

September, 2015. 
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Internal and external temperature monitoring of a Li-ion 

battery with fiber Bragg grating sensors 

Susana Novais, Micael Nascimento, Lorenzo Grande, M. Fátima Domingues, Paulo Antunes, Nélia 

Alberto, Cátia Leitão, Ricardo Oliveira, Stephan Koch, Guk Tae Kim, Stefano Passerini and João 

Pinto 

Abstract: The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and 

operando temperature monitoring is presented herein. The measuring of internal and external 

temperature variations was performed through four FBG sensors during galvanostatic cycling at 

C-rates ranging from 1 C to 8 C. The FBG sensors were placed both outside and inside the cell, 

located in the center of the electrochemically active area and at the tab-electrode connection. The 

internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5 C and 4.7 ± 0.1 °C at 8 C at the 

center of the active area, and 3.9 ± 0.1 °C at 5 C and 4.0 ± 0.1 °C at 8 C at the tab-electrode 

connection, respectively. This study is intended to contribute to detection of a temperature 

gradient in real time inside a cell, which can determine possible damage in the battery performance 

when it operates under normal and abnormal operating conditions, as well as to demonstrate the 

technical feasibility of the integration of operando microsensors inside Li-ion cells. 

Keywords: Embedded sensors; Li-ion batteries; temperature monitoring; performance; safety. 

1. Introduction 

Lithium-ion batteries have a widespread use as power sources in portable electronics, 

as well as in hybrid and pure electric vehicles, due to their high specific energy, long life 

cycle and low self-discharge [1, 2]. The first and utmost challenge in designing a Li-ion 

battery system is to ensure its inherent safety under both normal and abuse operating 

conditions. To this goal, knowledge of the internal thermal behavior is therefore critical 

[3–5]. The main underlying concern is related to the significant temperature variation 

under high charge/discharge rates [2]. The excess heat generated during over-

charge/discharge or in the presence of short circuits may cause irreversible damage in 

cells and eventually lead to explosion or combustion [6,7]. 
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It is known from the literature that the temperature near the positive electrode is 

higher than that near the negative one, due to the lower electrical conductivity of most 

cathode active materials [4]. In order to develop a satisfactory thermal management 

strategy and to increase the performance and lifetime of Li-ion batteries, it is essential to 

monitor and manage both the internal and external temperature [8, 9]. Normally, the 

thermal monitoring of batteries is performed on their surface through the use of 

thermocouples or electro-mechanical sensors [10, 11]. 

Internal monitoring, however, is challenging due to the chemically aggressive and 

electrically noisy environment, for which sensors with low invasiveness, mechanical 

robustness, immunity to electromagnetic radiation, and resistance to corrosion are 

required. Sensors based on fiber Bragg gratings (FBG) are an effective method to perform 

both static and dynamic measurements of temperature, pressure, refractive index, strain, 

and bending [12]. FBG-based sensors have the advantages of being very small, flexible, 

immune to electromagnetic interference and electrostatic discharge and also present 

multiplexing capabilities. All these features make them a suitable solution for the 

monitoring of lithium batteries and fuel cells, as previously explored in [5, 13–16]. FBG 

sensors have also been used to monitor the strain evolution of electrodes in lithium-ion 

batteries [17]. 

In this study, the operando monitoring of a Li-ion cell’s internal and external 

temperature variations, using FBG sensors, is presented. The analysis of the internal 

temperature evolution during galvanostatic cycling at different C-rates provides a step 

forward in the understanding and safety improvement of future Li-ion battery systems. 

2. Experimental setup and testing 

2.1. Silica fiber stability test 

To test the silica fibers chemical stability1 when immersed in conventional Li-ion 

battery electrolytes, some 2-3 cm long fiber samples were stored in polyethylene (PE) vials 

                                                
1 Please see the Additional Information Section at the end of this Chapter for more details. 
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together with a solution of LiPF6 in 50:50 wt. % EC: DMC (LP30, Sigma Aldrich, Munich, 

Germany). The LiPF6 salt contained in the electrolyte is known to react with water 

impurities and form hydrofluoric acid (HF), which has both a detrimental effect on the 

battery performance and poses a hazard risk. Given the reactivity of HF towards silicon 

oxide, which the FBG sensors are constituted of, small amounts of water were added to 

probe the sensors’ chemical reactivity and their degree of dissolution into the cell 

environment. Deionized water (Milli-Q, Merck Millipore) was added in ppm (100, 500 

and 1000) amounts to simulate different levels of electrolyte contamination. The amount 

of dissolved Si was determined by means of ICP-OES (5100, Agilent Technologies, Santa 

Clara - California, USA). 

2.2. Fiber Bragg grating sensors 

The FBG sensors were inscribed on commercially available photosensitive optical 

fiber (Fibercore PS1250/1500) by the phase mask method2. The UV radiation system used 

was a pulsed excimer laser (KrF) (Industrial BraggStar, Coherent), emitting at a 

wavelength of 248 nm, 4 mJ/pulse (20 ns duration) and 500 Hz repetition rate. Two 

different fiber cables were prepared, each with two 0.3 cm length FBGs, spaced by 2 cm. 

The Bragg wavelength variations were monitored using an interrogation system (sm 

125-500, Micron Optics Inc., Atlanta, USA) with a sample rate of 2 Hz and a wavelength 

accuracy of 1 pm. 

2.3. Li-ion cell assembly and microsensor integration  

Li-ion pouch cells were assembled using a commercial lithium iron phosphate (LFP, 

Clariant) cathode (91:4:5 LFP:Super C65:JSR, 12 mg·cm−2 active mass loading) and a 

graphite anode (92:3:5 SBG-1:Super C65:CMC, supplied by SGL Carbon, 5.6 mg·cm−2 

active mass loading) with an active area of 16 cm2, following a procedure already 

described in literature [18]. Aluminum and nickel tabs were used as cathode and anode 

current collectors, respectively. The Li-ion pouch cell assembly was carried out inside the 

                                                
2 More information regarding the FBG inscription method is given in the Additional Information Section at the end of 

this Chapter. 
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dry room (relative humidity < 0.1 % at 20 °C), where all materials were stored prior to 

usage. Two sheets of a single layer polyolefin membrane (Hipore SV718, 10 µm, Asahi 

Kasei, Tokyo, Japan) drenched in a 1 M solution of LP30 were used as separator3. The cells 

showed a capacity at 1 C of 20 ± 1 mAh. 

The internal FBG sensors were placed between the two separators layers, at the center 

of the electrochemically active area and near the tab-electrode connection, and named IC 

(Internal Center) and IT (Internal Tab-electrode), respectively. The Li-ion pouch cells were 

heat-sealed under vacuum. 

The external sensors were laid down in direct contact with the surface of the pouch 

cell, parallel to the above mentioned internal ones and named EC (External Center) and 

ET (External Tab-electrode), as presented in Figure II.1. To increase both the contact area 

and the thermal conductivity, a thermal paste (Amasan Heat transfer compounds, T12) 

was used to attach them to the pouch cells. It should be noted that, as the cells’ thickness 

is very small (~1 mm), any possible strain variations were considered null, with 

temperature variations being the only source of the Bragg wavelength oscillations. The 

tests were repeated on two different cells and similar results were obtained.  

 Figure II.1. Schematic diagram of internal and external FBG sensors positions. Photograph of a 

pouch cell with the embedded sensors. 

 

 

                                                
3 Please see the Additional Information Section at the end of this Chapter for more details. 
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2.4. Thermal calibration of FBG sensors 

The FBG sensors were calibrated on a thermal chamber (Model 340, Challenge 

Angelantoni Industry) between 10 °C and 35 °C, in 5 °C steps. Sensitivities of 

8.55 ± 0.12 pm/°C (r2 = 0.999) and 8.25 ± 0.12 pm/°C (r2 = 0.994), for ET and EC, 

respectively, were obtained for the external FBG sensors. To the internal FBG sensors, 

sensitivities of 10.24 ± 0.10 pm/°C (r2 = 0.992) and 10.27 ± 0.10 pm/°C (r2 = 0.983) were 

determined for IT and IC, respectively. 

2.5. Electrochemical testing 

The cycling tests were performed using a potentiostat/galvanostat (SP-150, Bio-Logic) 

at different C rates (1 C, 2 C, 5 C and 8 C)4. The influence of the room temperature 

variations was reduced using a Peltier plate connected to a temperature controller (5305 

TEC Source), thus maintaining the battery at the selected temperature 20.0 ± 0.5 °C. The 

corresponding experimental setup is illustrated in Figure II.2. 

The subsequent step was the identification of the FBG sensors response to different 

electrochemical inputs. For this reason, the assembled cells were subjected to a cycling 

protocol involving a series of differing galvanostatic/potentiostatic and open circuit 

voltage steps, presented in Table II.1. 

Table II.1. Electrochemical test protocol. 

(1) Constant Current Constant Voltage (CCCV) charge 

(2) Two cycles each composed of Constant Current (CC) discharge followed by CCCV charge 

(3) Open Circuit Voltage (OCV) 

(4) CC discharge 

 

 

                                                
4 More information regarding the electrochemical testing in the Additional Information Section at the end of this Chapter. 
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Figure II.2. Experimental setup diagram. 

3. Results and discussion 

3.1. Silica fiber chemical inertness study 

Four polyethylene vials containing differing amounts of deionized water (0, 100, 500 

and 1000 ppm) were analyzed5 . By the amount of Si dissolved from the fiber into the 

LP30 electrolyte after two weeks of storage, only small Si amounts were detected through 

ICP-OES (0.5–1.1 wt. %). Assuming uniform fiber dissolution, this only corresponds to the 

removal of a few atomic layers from the fiber surface. The optical fibers were also 

inspected under the microscope and no changes were observed. Taking this into 

consideration, the FBG sensor sensitivity and response is not expected to be altered, since 

the Bragg grating itself is recorded at the fiber core. A possible small attack of the 

cladding would not influence the FBG signal; hence, the findings confirm the suitability of 

glass fiber–based sensors to be used in a Li-ion pouch cell environment. 

 

                                                
5 More information regarding silica fiber chemical inertness study, in the Additional Information Section at the end of 

this Chapter. 
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3.2. Analysis of the FBG sensors response under different 

operating conditions 

The typical response of FBG sensors during constant current (CC) discharge and 

constant current constant voltage (CCCV) charge half-cycles is shown in Figure II.3. It is 

clear that the temperature rises steadily during CC charge as well as CC discharge. It is 

also worth noting the presence of at least two shoulders in the peak related to the CC 

discharge, possibly related to the different staging levels of graphite during intercalation. 

As soon as the applied current is lowered during the subsequent open circuit voltage 

(OCV) and constant voltage (CV) charge step, the temperature returns to the initial value. 

The baseline of the sensor signal was experimentally found to vary by ± 0.1 °C in all 

experiments. The origin of those slight fluctuations is not very clear, but is assumed to be 

correlated with external temperature variations (imperfect temperature conditioning due 

to the Peltier element only) and strain signals, which are neglected in this study.  

 
Figure II.3. Temperature changes observed with all four sensors before, during and after a CC 

discharge or CCCV charge half cycle (C-rate was 5 C) followed by an OCV step. 
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The temperature increase during CC charge was observed to be similar to CC 

discharge. However, there is a strong difference of the ΔT values detected by internal vs. 

external sensors (Figure II.3, left-hand side vs. right-hand side). The internal sensors 

directly measure the heat generated inside the battery. The external sensor’s signal was 

not only found to be slightly delayed with respect to the internal signal, but also the 

observed temperature variations are significantly lower outside the pouch bag due to the 

heat dissipation to the outside. Still, the general trend observed with the internal sensors 

is also detected by the external ones (heating during CC vs. relaxation during CV steps 

and at OCV). 

The sensors implemented in the cell recorded a larger ΔT (4.0 ± 0.1) °C, while only 

(1.5 ± 0.1) °C was observed for external measurements at the center of the active area (IC 

vs. EC). This proves that, even in the thin single-layer cells studied here, heat dissipation 

does not happen immediately and, hence, is not negligible [19]. Thus, internal 

temperature measurements provide much more insight and a more reliable basis for the 

modeling of the thermal behavior of Li-ion cells. Cells used commercially, especially for 

mobile device applications, are rarely under the OCV condition, but are often subjected to 

continuous cycling. In fact, strong heating of the batteries inside smartphones is an 

everyday experience. This is not only unpleasant, but also deleterious to the cell life as 

high temperatures favor electrolyte decomposition. A better understanding of the 

temperature variations in Li-ion cells under heavy-duty cycling, accessible with the 

sensors presented in this work, is key for the improvement of cell components as well as 

battery management systems. 

Figure II.4 shows the temperature changes upon CC discharge followed directly by 

CCCV charge. The temperature curve of the initial CC discharge is the same as that 

shown before in Figure II.3. However, a direct CC charging does not lead to an ongoing 

temperature rise. In contrast, reversing the current induces an initial temperature drop 

followed by another increase after a short time, resulting in an overall higher ΔT 

(3.0 ± 0.1) °C than that observed during OCV separated half-cycles.  
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Figure II.4. Temperature changes observed with the four sensors during cycling with a CC 

discharge followed directly by a CCCV charge (C-rate was 5 C), where 4a) is for the internal 

sensors, and 4b) for the external ones. 

During the CV charge step, where the current density decays exponentially, the 

temperature falls back to the surrounding temperature (controlled with the Peltier 

element). It can safely be assumed that this peculiar shape of the temperature curve is 

correlated with the concentration gradient inside the Li-ion cell. A relaxation of the 

gradient due to current reversing (from discharge to charge) or less current density (CV 

step) undoubtedly leads to thermal relaxation, i.e., faster heat dissipation than generation. 

To further investigate the role of the current density, which determines the extent of 

cell polarization, a C-rate test was performed, comprising a series of five cycles (CC 

discharge + CCCV charge) at each C-rate. Figure II.5 shows the correlation of the C-rate 

with the maximum ΔT recorded during cycling. 

As Figure II.5 highlights, the proximity of the internal sensors to the areas where 

electrochemical processes occur and heat is generated yields ΔT values that are higher 

than those recorded by the external sensors. The latter are unable to detect variations as 

high as 4.0 °C in this test setup. 
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Figure II.5. Correlation of the C-rate with the maximum ΔT recorded during cycling. 

The cells studied in this work were sealed inside an aluminum pouch bag foil much 

larger than the cell active area (100 cm2 vs. 16 cm2). It is possible that the heat generated 

inside the cell, which is directly recorded by the internal sensors, is dissipated over the 

whole pouch bag, leading to the smaller temperature changes observed with the external 

sensors. However, the difference in absolute ΔT values for internal and external 

measurements is expected to be higher for commercial cells with a high degree of 

electrode layer stacking, hence a more difficult way for heat dissipation. Optimized cell 

packaging (both casing materials and cell arrangement in full battery packs) and active 

cooling (especially for large batteries such as those in automotive applications) are 

therefore crucial to avoid dangerous temperatures inside Li-ion battery cells. In addition, 

permanent and immediate control of the internal temperature, as is feasible with the FBG 

sensor technology presented in this work, offers the possibility of the safe operation of Li-

ion batteries by early detection of heat generation. Such direct temperature control is not 

possible with any other existing technology. 

In Figure II.6, the temperature variations observed internally and externally at 5 C 

and 8 C, respectively, are illustrated.  
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Figure II.6. Temperature variations observed internally and externally at 5 C and 8 C. 

By comparing the FBG signals, no time delay related to the temperature variations is 

observed for any of the sensors, indicating that the response is always nearly instantaneous, 

irrespective of the positioning. Additionally, while it is still possible to distinguish two ΔT 

peaks corresponding to discharge and charge at 5 C, respectively (Figure II.6, top), at 8 C 

these two features are merged into one single broad peak (Figure II.6, bottom). This might 

be a direct result of the short time that separates the establishment of the two opposite 

concentration gradients. However, it is possible that the short cycle duration at 8 C 

(caused by the poor rate capability of the tested cells) does not actually lead to a full 

establishment of the concentration gradient, hence mitigating possible relaxation effects 

upon the current reversing. During the first cycle at 8 C, the maximum temperature 

variation of 4.0 ± 0.1 °C was detected by the IC sensor, while the IT sensor detected a 

value of about 4.7 ± 0.1 °C. Externally, the values detected by ET and EC are in the range 

of 1.5 ± 0.1 °C, indicating that the aluminum pouch bag foil allows the cell to equilibrate 

with the ambient temperature. 
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4. Conclusions 

FBG sensors were successfully integrated in Li-ion pouch cells in order to monitor 

temperature changes during electrochemical testing at different C-rates (1 C, 2 C, 5 C and 

8 C). Two different areas (the tab-electrode connection and the center of the 

electrochemical active area) were monitored, both on the inside and the outside of the 

pouch cell. The changes in temperature showed a direct correlation with the applied 

current gradient, with the highest peaks being detected always at the end of charge and 

discharge. This is in accordance with the fact that, over both charge and discharge, Li-ions 

migrate inside the cell to establish a concentration gradient, which generates heat as a 

function of the applied current. The results show that, internally, the cell temperature 

increased as much as 4.7 ± 0.1 °C. This outcome needs to be taken into account for battery 

modeling and battery management system purposes, since cell damage caused by 

overheating is an important reason for capacity fading in Li-ion batteries and thermal 

runaways are the major source of safety concerns. The FBG sensors were able to detect 

such temperature changes with a superior response rate, making them useful tools for 

failure detection in batteries. Their low invasiveness and high tolerance to the chemically 

aggressive environment inside Li-ion batteries makes them an interesting possibility for 

integration in commercial Li-ion cells as well as for research purposes for the in-situ study 

of temperature variations. The goal of the study was to show the functionality of the 

sensor and the positioning for monitoring the internal and external temperature 

variations in the active area of lithium batteries. In the near future the authors intend to 

perform an extension of this work on packs of lithium cells. A relationship between 

internal and external temperatures either through tables or equations is also expected to 

be established. 
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IIA - Additional Information 

The work presented in this Chapter has been complemented with other experiments, 

whose results were published in a Book Chapter in Advances in Sensors: Reviews' Book 

Series, vol. 5, 2018. In this Section, relevant additional information is given, which is based 

on that publication. 

Fiber Bragg gratings inscription 

The FBGs used in the first work were written into a 125 µm cladding diameter 

photosensitive SMF using the interferometric configuration shown in Figure II.7. The laser 

used to write the FBGs was an excimers laser, emitting at 248 nm, with energy of 

5 mJ/pulse, 20 ns pulse duration and 500 Hz repetition rate. Light from the excimers laser 

is focused by the converging lens and passes through the phase mask, which acts as a 

beam splitter. The split light is then recombined at the core of the optical fiber, where a 

modulation of the effective refractive index occurs, originating the FBG.  

The estimated length of the grating was of ~3 mm, derived from the laser spot length 

and the slit aperture.  

UV 
Laser

Mirrors

Slit

Converging 
Lens

    Phase mask

Optical Fiber
 

Figure II.7. Scheme setup of the FBG inscription. 
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Silica fiber chemical inertness study 

The integration of sensors in Li-ion pouch cells can be a very interesting solution to 

better understand the temperature variations within the cell and for a more accurate 

monitoring. However, considering the chemically active environment inside a battery, the 

insertion of an optical fiber in such medium requires a previous analysis of its chemical 

inertness. The silica fibers chemical stability was tested by immersing 2-3 cm long fiber 

samples in a solution of LiPF6 in 50:50 wt. % EC: DMC. The LiPF6 salt contained in the 

electrolyte is known to react with water impurities and form hydrofluoric acid (HF), 

which has both a detrimental effect on the battery performance and poses a hazard risk. 

Given the reactivity of HF towards silicon oxide, which the optical fibers are constituted 

of, small amounts of water (100, 500, and 1000 ppm) were added to probe the sensors 

chemical reactivity and their degree of dissolution into the cell environment. After two 

weeks of storage, the amount of dissolved silica was determined by means of ICP-OES. 

Only small amounts of Si were detected, as can be seen from Figure II.8. Assuming 

uniform fiber dissolution, this only corresponds to the removal of a few atomic layers 

from the fiber surface. Consequently, it can be concluded that the battery chemical 

constitution should not affect a FBG sensor sensitivity and response, since the FBG itself is 

recorded at the fiber core, and there is an average distance of 58.5 µm between the FBG 

and the optical fiber outer diameter, hence, confirming their suitability to be used in a 

Li-ion pouch cell environment. 
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Figure II.8. Amount of Si dissolved from the fiber into the electrolyte after two weeks. 
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Li-ion pouch cells assembly 

The Li-ion pouch cells were assembled using an anode, cathode and an electrolyte 

solution. All these components and the operation range are shown in Table II.2. All cell 

assembly operations were carried out inside a dry room (relative humidity < 0.1 % at 

20 °C), where all materials were stored prior to usage (Figure II.9).   

 
Electrodes Electrolyte Separators Pouch foil

Pouch cells assembly Pouch cell with 

micro-sensors
Pouch cells assembly Pouch cell with microsensor

Electrodes Electrolyte Separators Pouch foil

 

Figure II.9. Experimental procedure for the pouch cells assembly with integrated FBGs.  

Table II.2. Chemistry, voltage range, dimensions and capacity at 1 C of the cells. 

Chemistry 

Cathode 

Anode 

Electrolyte 

Lithium iron phosphate 

Graphite 

LP30 without additives 

Voltage Range (V) 
Minimum 

Maximum 

2.0 

3.8 

Dimensions (cm) 
Length 

Width 

15.0 

12.0 

Capacity at 1 C (mAh) 20 

Electrochemical testing 

To study the FBG sensors response under different electrochemical inputs, the 

assembled cells were subjected to a cycling protocol involving a series of different 

galvanostatic/potentiostatic and open circuit voltage steps. 

When varying the external temperature, the FBG response arises due to the inherent 

thermal expansion of the fiber material and the corresponding temperature dependence of 
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the refractive index [20]. Through Eq. 1 (previously shown in Chapter 1), the effects of this 

measurand are accounted for in the Bragg wavelength shift by,   
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                           (1) 

where α and   are the thermal expansion and thermo-optic coefficient of the fiber 

material, respectively. For a wavelength in the range of 1550 nm, the typical temperature 

is ~13.0 pm/°C [21]. Figure II.10 shows the results obtained for the cell under study, using 

the following protocol: 5 CCCV cycles at 1 C, 2 C, 5 C, 8 C, and 1C.  
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Figure II.10. Temperatures detected by all FBG sensors during the galvanostatic cycling tests. 

The cell voltage and current variation are presented on Figure II.10 (a). The 

temperatures detected, both externally and internally, near the tab and in the center of the 
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cell are shown in Figure II.10 b) and c), respectively. Comparing the FBG signals, no time 

delay related to the temperature variations is observed for all sensors, indicating that the 

sensors response is nearly instantaneous, regardless of their position. The highest 

temperature variations are, as expected, detected by the internal sensors (IT and IC), 

larger than their external counterparts (ET and EC) by a factor of 2 to 4. Also, the 

temperature inside the cell becomes higher as the C-rates increases, as it was expected. 
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Lateral load sensing with an optical fiber inline microcavity 

Susana Novais, Marta S. Ferreira, João L. Pinto 

Abstract: A Fabry-Perot air bubble microcavity fabricated between a section of single mode fiber 

and a multimode fiber that requires only the use of a commercial fusion splicer is proposed. The 

study of the microcavities growth with the number of applied arcs is performed and several 

sensors are tested. The sensors are tested for lateral load measurements, and it is observed that 

there is dependence between the sensor dimensions and its sensitivity. The maximum sensitivity of 

2.11 nm/N was obtained for the 161 µm long cavity. Moreover, given the low temperature 

sensitivity (<1 pm/°C), the proposed cavity should be adequate to perform temperature 

independent measurements. The accurate technique control leads to the fabrication of reproducible 

cavities with the sensitivity required for the application. The way of manufacturing using a 

standard fusion splicer and given that no oils or etching solutions are involved, emerges as an 

alternative to the previously developed air bubble based sensors. 

Keywords- Optical fibers, Fabry-Perot, microcavities, sensing. 

1. Introduction 

The first works based on the use of spherical air bubbles as sensing elements were 

applied for strain sensors [1,2]. The cavities were formed by splicing a standard single-

mode fiber (SMF) with an index-guiding photonic crystal fiber. Since then, several works 

with air bubbles have been presented. These cavities can be fabricated at the fiber tip [3, 4] 

or inline [5-10]. Several fabrication methods have been proposed in the literature. For 

instance, the Fabry-Perot (FP) interferometers have been fabricated by fusion splicing a 

segment of hollow-core photonic bandgap fiber to the SMF [6, 10] or two sections of SMF 

[5, 8, 9], by ablating a groove in a SMF by use of a femtosecond laser [7], by the 

catastrophic fuse effect [11], and by applying chemical etching [4]. 

Lateral load sensing has been done with different configurations [4, 12-16]. Compared 

with the strain sensing, the lateral load is applied in the direction perpendicular to the 

fiber longitudinal axis. In the last years, lateral load sensing has been realized by using 

fiber Bragg gratings [12] or long period gratings [17], and more recently with FP 
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microcavities fabricated at the fiber tip [4, 16].  

In the present work, the development of a FP air cavity made by splicing a section of 

single mode fiber and multimode fiber is proposed. The sensor is employed for lateral 

load measurements. It is observed that there is a dependence between the sensor 

dimensions and its sensitivity. Besides, given the low temperature sensitivity, the 

proposed cavity can be a good candidate to perform temperature independent 

measurements.   

2. Sensor microfabrication  

The Fabry-Perot (FP) cavities developed in this work were obtained by producing an 

air bubble between a section of single mode fiber (SMF 28e) and multimode fiber 

(MMF GIF625). The procedure used to fabricate the sensing devices is shown in 

Figure III.1. Initially the two fibers were placed in the splicing machine (Fujikura 62S) and 

aligned using the manual mode (Figure III.1a). The parameters were set to an arc power of 

20 arb. units, and the arc duration was 700 ms. The SMF was removed and an arc 

discharge was applied to the MMF tip (Figure III.1b). The electrical discharge high power 

was transferred to the MMF tip, causing a partial melting. As a result of the surface 

tension, the fiber acquired a round shape (Figure III.1c). The parameters of the splicing 

machine were then changed to an arc power of 10 arb. units and the duration was 400 ms. 

Both fibers were aligned once again and a small amount of compression was applied 

between them (Figure III.1d). After one arc, the energy transferred to the fiber tips will 

cause their melting and, as the temperature in the fibers outer region decreases faster than 

on the inside, some air is trapped, forming a microbubble [5]. The microcavity volume can 

be increased by applying successive electrical arcs, using the same parameters. The 

microscope photograph of one of the cavities produced is shown in Figure III.1e). 
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Figure III.1. Schematic of the procedures used to fabricate the FP cavity. 

Using this technique several devices were fabricated, with cavity lengths that ranged 

from ~50 μm up to ~200 μm. The air FP cavities growth with the increase of the number of 

arcs is shown Figure III.2. With the successive electrical arcs, it can be observed that the 

cavity tends to grow into the MMF side, whereas SMF surface preserves a flat surface. The 

parameters used to produce the microcavities were found empirically. However, once 

they were set, it was possible to reproduce the sensors and fabricate them with the desired 

dimensions. By changing the parameters, similarly shaped cavities with different 

dimensions can also be fabricated. 

 
Figure III.2. Microscope photographs of the sensing structure after the fabrication process, with 

increasing number of arc discharges.  

The microcavities diameter, corresponding to the FP length, was measured after each 

electric-arc discharge and depicted in Figure III.3. There is stronger growth at the 

beginning of the fabrication (first five arc discharges). After that point the microcavities 

growth tends to stabilize, as can be seen in Figure III.3. A final diameter of ∼160 μm was 

attained, after 11 electric arc discharges. Above this value, the microcavities thickness 

became very thin (Figure III.2f), damaging the sensors. In the inset of Figure III.3, it was 
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observed that the insertion loss increases with the increase of the number of electrical arcs, 

and consequently with the cavity length. The insertion loss values shown were measured 

in transmission at 1550 nm for each electric arc applied. 
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Figure III.3. Dependence of the cavity size and insertion losses at 1550 nm (inset) with the number 

of electric arcs. 

3. Experimental results 

The spectral response of this sensing structure was observed by connecting it to an 

optical circulator6. A broadband optical source (bandwidth of 80 nm, centered at 

1570 nm), and an optical spectrum analyzer (OSA Anritsu MS9740A) were connected to 

the other two ports of this optical component, in a typical reflection scheme, as shown in 

Figure III. 4. The readings were done with a resolution of 0.2 nm.  

Source

OSA

Load

Mass (~50 g)
Dummy fiber
FP sensor  

Figure III.4. Scheme of the experimental setup with a zoom of the cross-section view. 

                                                
6 Please see the Additional Information Section at the end of this Chapter for more results. 
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The reflection spectra of the first 5 cavities are shown in Figure III.5 and can be 

approximated to a two-wave interferometer. The subtraction of the wavelengths of two 

adjacent peaks, ∆λ=λ2-λ1, corresponds to the free spectral range (FSR). This parameter is 

related to the length of the cavity, LFP, through the Eq. )2(21 FPeff Ln  , where it was 

considered that the effective refractive index, neff (λ), was constant. The length of each 

sensing device was measured through the microscope photographs, whereas the two 

adjacent peak wavelengths were obtained from the sensing heads spectral response. Thus, 

from this relationship it is possible to estimate the neff inside the cavity to be 1.00.  
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Figure III.5. Spectral response of FP cavity with different number of electrical arcs. 

As the number of electrical arcs increases (until 9) the signal visibility diminishes 

(Figure III.6). However, for 10 electrical arcs this parameter increases once again, and for 

11 discharges, the increase is even more significant. This can be due to the fact that the 

interface air/MMF changes as the cavity expands.  For the first 9 arcs the interface presents 

a curvature increase and the diffraction effects are significant. After that value, the 

interface becomes more flat, diminishing the light diffraction and improving the quality of 

the mirrors. 
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Figure III.6. Spectral response of visibility with different number of electrical arcs. 

The lateral load measurements were carried out by placing the sensor in flat platform, 

so that the stress was applied evenly throughout the structure. As shown in the 

Figure III.4, a dummy fiber was placed parallel to the sensor (~1 cm apart) to provide full 

leveling as the weights were placed on top of the sensor. Cylindrical weights of ~50 g and 

a base diameter of 2.0 cm were sequentially positioned on top of the sensor, translating 

into a lateral load ranging from 0.0 N to ~4.0 N. Due to experimental constraints, it was 

not possible to estimate the maximum loading of the sensors. This is still a matter under 

study. Lateral load tests were carried out in several sensors, whose cavities dimensions 

ranged from 47 µm up to 161 µm, using the experimental setup depicted in Figure III.4. 

 The sensors response towards this parameter is shown in Figure III.7. It can be seen 

that there is a wavelength shift towards longer wavelengths, for all sensors. The 

experimental data was well adjusted for a linear function (with a correlation factor higher 

than 0.99). All the experiments were performed several times and by considering both the 

increase and decrease of lateral load. There was good reproducibility of the results, 

evidencing the reversibility of the structure.  
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Figure III.7. Sensors response to the applied lateral load. 

From these results, there appears to be a relationship between the cavity size and the 

lateral load sensitivity (Figure III.8). In fact, the longer the cavity, the higher the sensitivity 

is. This behavior occurs due to the larger volume of the cavity, a parameter that plays an 

important role in air bubble based FP cavities [10]. A minimum sensitivity to the lateral 

load of the 0.32 nm/N was obtained, for the smallest cavity manufactured (47 µm), 

whereas a maximum sensitivity of the 2.11 nm/N was obtained for the largest cavity 

(161 µm). A resolution of ~0.1 N was estimated, considering the sensor with the highest 

sensitivity, and taking into account that the readings resolution. The dependence between 

the sensitivity and sensors size presents a nonlinear response as shown in Figure III.8. 

40 50 60 70 80 90 100 110 120 130 140 150 160 170
0.0

0.4

0.8

1.2

1.6

2.0

2.4

 

 

L
at

er
al

 lo
ad

 s
en

si
ti

vi
ty

 (
n

m
/N

)

Cavity size (m)  

Figure III.8. Relation between cavity size and lateral load sensitivity. 
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Compared with the fiber Bragg grating or long period grating based lateral load 

sensors that typically have a lateral load sensitivity of 2.93×10-2 nm/N [15] and 1.02 nm/N 

[17], respectively, the microcavity lateral load sensor shows a higher sensitivity of 

2.11 nm/N. To the best of our knowledge, this is the highest lateral load sensitivity 

reported for inline sensors. 

During the experiments, it was observed that the air bubbles were not fully symmetric 

(see the inset Figure III.9), which means that the thickness of the silica walls is not 

constant. This feature comes as a consequence of the manufacturing process and so far it 

is not fully controllable. This is still a matter under study.  

Depending on the position of the sensor, the mass will be exerting load in a region 

that may have more or less silica, resulting in variation of the sensor sensitivity. In Figure 

III.9, the 131 µm sensor response to lateral load is shown. Two different positions were 

considered by slightly turning the fiber, under a 5× magnifying lens. The fiber was kept 

straight, without tension or distortion. A sensitivity enhancement from 0.83 nm/N (solid 

red dots) to 1.01 nm/N (open black dots) was determined. 
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Figure III.9. Response of the 131 µm long sensor to lateral load considering two different positions. 

The temperature response of the 131 µm long microcavity sensor was measured by 

using a thermal chamber (Model 340, Challenge Angelantoni Industry) and the 
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wavelength variations were monitored using the same interrogation scheme as shown in 

Figure III.4. The temperature was raised in steps of 10 °C, from 0 °C until 100 °C, and 

maintained for about 30 min at each step to make sure that the temperature in the thermal 

chamber had stabilized. The same process for the cooling was followed. The sensor 

response to the temperature variations is shown in Figure III.10. The proposed sensor 

exhibited very low thermal dependence (< 1 pm/°C), which is in good agreement with the 

results found in the literature for air cavities inside an optical fiber [10]. In principle, with 

this sensing device there is no need to perform temperature compensation, as the cross-

sensitivity between this parameter and lateral load was lower than 3.14×10-3 N/°C. 
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Figure III.10. Response of the 131 µm long sensor to temperature. 

4. Conclusions 

In summary, a microcavity sensor was fabricated by using the electric arc discharge 

technique to create an air bubble between a section of single mode fiber and multimode 

fiber. It was observed that with the increasing number of arcs both the cavity length and 

volume increase, which also has influence on the sensitivity to lateral load. Larger cavities 

exhibit higher sensitivities. The sensor with a smaller cavity length presented a sensitivity 

of 0.32 nm/N, for loads ranging from 0.0 N to 4.0 N, whereas the sensor with a higher 
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cavity length achieved a maximum sensitivity of 2.11 nm/N. Besides, given the low 

temperature sensitivity (< 1 pm/°C), the proposed cavity can be a good candidate to 

perform temperature independent measurements. To the best of our knowledge, the 

obtained sensitivity is higher than the reported in the literature, for inline reflection fiber 

sensors. This way of manufacturing the sensors using only standard single mode and 

multimode fibers, a fusion splicer and given that no liquids, oils or etching solutions are 

involved, emerges as an alternative to the previously developed air bubble based sensors. 
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IIIA - Additional Information 

The sensor described in this Chapter was developed to be integrated in Li-ion 

batteries, in the framework of the European Project SIRBATT. The final goal was to obtain 

a hybrid structure, by inscribing a fiber Bragg grating close to the FP cavity and therefore, 

to be able to discriminate strain and temperature. 

To complement the results previously discussed, the sensors were also used to 

measure strain. The results from this study were published in the Proceedings of SPIE 

10453, 3rd International Conference on Applications of Optics and Photonics, 

DOI: 10.1117/12.2276342. 

 

Experimental Results 

The spectral response of this sensing structure was observed by connecting it to an 

optical circulator. A broadband optical source (bandwidth of 80 nm, centered at 1570 nm), 

and an optical spectrum analyzer (OSA Anritsu MS9740A) were connected to the other 

two ports of this optical component, in a typical reflection scheme, as shown in 

Figure III.11. The readings were done with a resolution of 0.2 nm. Figure III.11 present 

experimental setup for strain sensing.  

Fixed points Moving platform

Source

FP sensor
OSA

 

Figure III.11. Scheme of the experimental setup for strain measurements. 

To characterize the strain sensors sensitivity, a translation stage was used. The sensors 

were fixed between a rigid fixed support and the translation stage as shown in 

Figure III.11. The data acquisition system was the same used for the lateral load tests 

already explained. The sensor reflection spectrum was obtained for each sensor, as 
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function of the imposed elongation. In Figure III.12a), it can be seen that there is a 

wavelength shift towards longer wavelengths for all sensors. The experimental data was 

well adjusted to a linear function (with a correlation factor higher than 0.99).  
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Figure III.12. Sensors response to the applied strain (a) and relation between cavity size and strain 

sensitivity (b). 

The sensors response to strain also exhibited a dependence on the cavities dimension, 

as shown in Figure III.12b). A minimum sensitivity of 4.49 pm/µɛ was obtained, for the 

smallest cavity manufactured (47 µm), whereas the maximum sensitivity of the 

9.12 pm/µɛ, was obtained for the largest cavity (161 µm). Note that the microcavity radial 

dimension is much higher than the optical fiber core diameter, implying that a large 

number of transversal optical modes are allowed. Moreover, due to the limited size of the 

fiber diameter, when compared to the cavity width, a strain applied along the fiber 

longitudinal axis also imposes a reduction of the cavity width. 
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Optical fiber Fabry-Perot tip sensor for detection of water-

glycerin mixtures 

Susana Novais, Marta S. Ferreira, João L. Pinto 

Abstract: A fiber sensor based on a Fabry-Perot cavity is reported for measuring mixtures of water 

and glycerin. The sensor is fabricated by producing an air bubble near the end face of a multimode 

fiber section, and reshaping the tip in order to produce a thin silica diaphragm. It is observed that 

there is dependence between diaphragm dimensions and the structure sensitivity. The sensor with 

a 20 µm thick diaphragm presents a sensitivity of 7.81 pm/wt.% regarding the variation of water 

mass fraction in glycerin. With this sensing head, an experimental resolution of 2.5 wt.% is 

estimated. By converting the mass fraction into refractive index variations, a maximum sensitivity 

of 5.49 nm/RIU is obtained. Moreover, given the low temperature sensitivity (1.6 pm/°C), the 

proposed cavity should be adequate to perform temperature independent measurements. The 

purity degree of glycerin is one of the most important parameters to be determined in applications 

such as in pharmaceutical or cosmetic area. The proposed sensor can be an alternative to the 

previously developed ones. 

Keywords- Fiber optics sensors, Fabry-Perot interferometer, graded-index fiber, glycerin-water 

mixtures. 

1. Introduction 

The water-cosolvent mixtures have been broadly used in pharmaceutical industry in 

order to enhance the solubility of drugs scarcely soluble in water during the plan of 

homogeneous pharmaceutical dosage forms, such as elixirs and syrups, suppositories, 

anesthetics, antibiotics and antiseptics [1]. Ethanol and glycerin are two of the cosolvents 

used nowadays, intended for elaboration of peroral and parenteral medications and as an 

evaporation regulator in several formulations [2]. The increase of the interactions between 

unlike molecules and the large differences in molar volumes of the pure components lead 

to non-additive volumes on mixing. In this way, the mixtures obtained using these 

cosolvents and water show highly non-ideal behaviors [3, 4]. Thus, it is essential to 

characterize the volumetric behavior of such binary mixtures in order to extend all 
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physicochemical information as well as to understand the intermolecular interactions 

present in cosmetic and pharmaceutical liquid systems [1].  

The degree of purity of crude glycerin from biodiesel can only be achieved through 

complex and costly processes such as distillation and, in the case of glycerin, from the 

transesterification of waste oils and fats. The process is technically complex and its 

economic viability needs to be very well evaluated [5]. Therefore, it is of utmost 

importance to find sensing solutions that can bring accurate information in real-time, 

during the purification process. In the last years, several optical fiber sensors were 

reported in the literature, where glycerin-water mixtures were realized to induce the 

environmental refractive index variations. Usually, the sensors response in terms of mass 

fraction it is not addressed a valuable information in practical applications. 

For instance, a Mach-Zehnder interferometer based on a photonic crystal fiber section 

coated with hafnium oxide was reported [6]. The simultaneous measurement of refractive 

index and temperature using a multimode-singlemode-multimode structure coated with 

polydimethylsiloxane and gold was proposed [7]. A different configuration was proposed 

by Qi et al., based on a highly reflective long period fiber grating located near the fiber tip, 

which was coated with a layer of silver and quartz [8]. The Fabry-Perot (FP) based 

interferometers were also explored for the measurement refractive index based on 

glycerin-water mixtures. For example, the proposed sensors were obtained by splicing a 

section of suspended hollow core fiber with a single mode fiber (SMF) [9], or by 

selectively etching a special designed fiber, which was spliced between a SMF and a 

coreless fiber [10]. 

Spherical air bubbles produced inside the optical fiber and used as sensing elements 

were firstly proposed for strain sensing [11]. Over the last years, this type of configuration 

has been subject of extensive research. These FP cavities were mainly applied in strain and 

temperature sensing, and astonishing sensitivities were reported [12-17]. Regarding 

refractive index sensing, it was proposed by using a hollow core fiber ended with a 

hollow core silica sphere tip [18]. On the other hand, a biconically tapered fiber 

concatenated to an air bubble based FP was also presented [19]. Recently, a FP fiber tip 
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sensor based on an inner air-cavity produced between a section of SMF and hollow core 

photonic crystal fiber (HC PCF) has been proposed [20]. 

In this work, a fiber sensor based on a Fabry-Perot cavity is reported for measuring 

water-glycerin mixtures. The sensors fabrication method is an adaptation of the one 

described in [21], where the bubble was obtained between a SMF and MMF fiber section. 

Here, only MMF is used and the sensing head is fabricated at the fiber tip. The structure is 

robust and easy to manufacture. When the sensing head is placed in a liquid medium, the 

visibility of the reflected signal diminishes, causing a variation in the phase of the optical 

signal, which becomes sensitive to variations of the external medium. Furthermore, the 

structure is also characterized for temperature variations. 

2. Principle of operation and simulation 

The schematic diagram of the fiber tip Fabry-Perot (FP) sensor developed in this work 

is shown in Figure IV.1. The sensing head was obtained by producing an air bubble near 

the tip of a multimode fiber, which was then reshaped to create a thin silica diaphragm. 

The proposed device contains three reflection mirrors, M1, M2, and M3, respectively, as 

shown in Figure IV.1, which form three cavities. The first cavity, with a physical length L1, 

results from the reflections occurring between M1 and M2. The second cavity, with a 

length L2, corresponds to the diaphragm formed between M2 and the MMF end face, M3. 

The third cavity results from the conjunction of the two previous cavities, being its length 

of L1 + L2.  

M1 M2 M3

Cavity 2: MMF, L2

Cavity 1: Air, L1

 

Figure IV.1. Scheme of the fiber tip FP sensor, where the M1, M2, M3 are the sensors mirrors. L1 and 

L2 are the lengths of cavity 1 and 2, respectively. 
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The reflection coefficients at each interface, R1, R2, and R3, are given by: 
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where nMMF, nair, and ns are the refractive indices of the multimode fiber, the air cavity, and 

the surrounding medium, respectively. The total reflected electric field at the detector, Er, 

is given approximately by the sum of all the reflected electric fields from the three 

surfaces. Given the low reflectivity of the reflective surfaces, the sensor can be simplified 

as a low-finesse FPI and Er can be derived as follows [22]: 
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where E0 is the input field, whereas α1 and α2 are the transmission loss factors due to the 

mode mismatching and surface imperfections at M1 and M2, respectively. ϕ1 and ϕ2 are the 

phase shifts in the cavity given by: 
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where LFP corresponds to the high frequency signal cavity length, L2 is the cavity length of 

the low frequency signal. For simplicity, the spherical shape of the cavity was not taken 

into consideration in this simulation. The π-phase shift introduced in Eq. 2 is originated at 

M2, where the reflection occurs at a medium with higher refractive index. Furthermore, it 

was considered the situation where ns < nMMF. 

From Eq. 2, the total reflective intensity can be described by the intensity ratio of the 

reflected electric field to the incident electric field: 
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The simulated spectra for air, water, and glycerin shown in Figure IV.2 were obtained 

by using (4) and considering the following parameters: nair = 1.000 RIU, nMMF = 1.513 RIU, 

nwater = 1.3154 RIU, nglycerin = 1.4571 RIU, L1 = 147 µm, L2 = 20.1 µm, α1 = 0.5 and α2 = 0.7.  
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Figure IV.2. Simulated spectra for three different surrounding media (air, water, and glycerin). 

When the sensor is surrounded by air, the reflection coefficients are the same at the 

three interfaces. According to the experimental observation, the interferometric behavior 

was essentially determined by the reflections occurring at M1 and M3. Thus, in this case, 

the length considered in the simulations was LFP = L1 + L2. However, when the sensor is 

submerged in a liquid, R3 diminishes and the amplitude of the wave reflected at M3 is 

reduced, which indicates that the reflection at M2, whose coefficient of reflection has 

remained unaltered, becomes dominant. The larger the surrounding medium refractive 

index, the more pronounced is this reduction in amplitude [23]. The combination between 

the two waves reflected at M2 and M3 leads to a variation not only in the spectrum 

visibility, but also in wavelength [24]. In this case, the simulations were performed 

considering that LFP = L1.  

3. Mass fraction and refractive index relationship 

The variation of mass fraction in a mixture of water and glycerin translates in a 

change of the medium refractive index. This parameter was determined for all the 
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solutions tested in this work, using an Abbe refractometer (Krüss optronic refractometer). 

This equipment provides information in the spectral visible range (λ = 589 nm). However, 

the sensing device used during the experiments operated in the 1550 nm region. 

Therefore, it was necessary to consider the refractive index at this wavelength range. 

Saunders et al. reported on the near-infrared refractive indices of common solvents [25]. 

Through the third order polynomial function present in Eq. 5, and using the parameters 

A, B, C, and D shown in Table IV.1, it was possible obtain the numerical values for 

refractive index at 1550 nm, for the different weight fractions, ω, considered in this work.  

                                            ( ) DCBAn   23 ,                                                     (5) 

Figure IV.3 presents the refractive index dependence on the mass fraction, where 0 

corresponds to a solution of 100 % glycerin and 1 is relative to 100 % water. Both the 

experimental and numerical values at 589 nm and 1550 nm, respectively, are shown in the 

Figure IV.3. Notice that the behavior is similar in both cases. The experimental data was 

also fitted to a third order polynomial, whose parameters can be found in Table IV.1. 
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Figure IV.3. Refractive index dependence on mass fraction, for two different wavelengths: 589 nm 

(experimental data) and 1550 nm (numerical values [25]).  
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Table IV.1. Polynomial fitting parameters of n @ 589 nm (experimental) and n @ 1550 nm 

(numerical [25]). 

 λ = 589 nm λ = 1550 nm 

A 0.0139 0.0216 

B -0.0121 -0.0136 

C -0.1377 -0.1486 

D 1.4683 1.4571 

4. Sensor fabrication 

The FP cavities developed in this work were obtained by producing an air bubble at 

the tip of a multimode fiber (MMF) section (GIF625). The procedure used to fabricate the 

sensing devices is shown in Figure IV.4.  

x, y x, y

x, y
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b)
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 c)
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 h)

 f)
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Figure IV.4.  Scheme of the optical fiber tip fabrication steps. 

Initially, the two MMFs were placed in the splicing machine (Fujikura 40S) and 

aligned using the manual mode (Figure IV.4a). The parameters, found empirically, were 

set to an arc power of 20 arb. units, and an arc duration of 700 ms. One of the fibers was 

removed and an arc discharge was applied to the remaining MMF tip (Figure IV.4b). The 

high power of the electrical discharge was transferred to the fiber tip, causing a partial 

melting. As a result of the surface tension, it acquired a round shape (Figure IV.4c). The 

parameters of the fusion splicer were then changed to an arc power of 10 arb. units and 
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duration of 400 ms. Both fibers were aligned once again and a small amount of 

compression was applied between them (Figure IV.4d). This compression was produced 

manually by moving the fiber holders towards each other. Even though this step is 

currently not fully controlled, efforts are being made to develop an automatization 

procedure. After one arc discharge, the energy transferred to the tips causes their melting 

and, as the temperature in the fibers outer region decreases faster than on the inside, some 

air is trapped, forming a microbubble (Figure IV.4e) [15]. To illustrate the influence of the 

splicing parameters in the air bubbles production, several structures were fabricated. 

Figure IV.5 shows the FP cavity length (LFP) as a function of the arc discharge time and 

power, after applying one arc discharge. 
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Figure IV.5. Variation of the FP cavity length with the fusion splicer parameters (time and electric 

power). 

As expected, the increase of both parameters leads to larger cavities. However, in all 

cases the behavior is non-linear, as evidenced by the tendency curves. Above 600 ms, the 

cavities became damaged and could not be used for the sensor fabrication. Notice that all 

sensors presented in this work were fabricated using an arc power of 10 bits and duration 

of 400 ms (steps shown in Figure IV.4e and IV.4g). The fiber with the air bubble was then 

cleaved as close to the cavity as possible, under a 5x magnifying lens (Figure IV.4f). The 

final step consisted in placing the fiber tip in the splice machine with a considerable 
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lateral offset, after which successive arcs were applied until the desired round shape was 

obtained (Figure IV.4g). The arc discharge was not applied directly to the fiber to prevent 

the collapsing of the structure. With this final step, the influence of possible issues during 

cleaving (such as scratches, undesired cleaving angle or other surface imperfections) was 

minimized as the electrical arc discharges reshaped the sensing structure to attain the 

desired spherical cavity with thin diaphragm. The microscope photograph of one of the 

cavities produced is shown in Figure IV.4h. 

5. Experimental results and discussion 

Figure IV.6 displays the experimental setup used in this work. The spectral response 

of this sensing structure was observed in a typical reflection scheme, by connecting the 

broadband optical source (bandwidth of 50 nm), the optical spectrum analyzer (OSA 

Anritsu MS9740A), and the sensing head to the three ports of an optical circulator7. The 

readings were performed with a resolution of 0.02 nm. 

Optical Source Optical Circulator

OSA

Capillary 
Glass Tube

FP Cavity

 

Figure IV.6. Scheme of the experimental setup.  

A series of mixtures consisting of different mass fractions of deionized water in 

glycerin were prepared under a controlled laboratory environment, from 0 to 100 wt.%, 

translating into a refractive index variation between 1.4571 RIU and 1.3165 RIU. The 

solutions were prepared by adding different amounts of water to 25 g of glycerin. A 

                                                
7 Please see the Additional Information Section at the end of this Chapter for more results. 
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magnetic stirrer (NAHITA, magnetic stirred, model nº 690/1) was used to dilute the 

deionized water in the glycerin. After the preparation, the samples were stored during 24 

hours, to allow their stabilization. The sensing tip was inserted vertically in the different 

solutions with the aid of capillary glass tube, as shown in Figure IV.6. This ensured the 

sensor robustness as well as the stability of the fiber inside the liquid. Notice that the 

cavity was kept outside this tube, in direct contact with the solutions.  

Three sensors with different diaphragm thicknesses were fabricated through the 

method described in section IV. The dimensions presented in Figure IV.7 were obtained 

taking into consideration the microscope images as well as the spectral characteristics 

(Figure IV.8). The associated uncertainty was of ±3 µm. 

 

Figure IV.7. Microscope images of three sensing heads with respective cavity and diaphragms 

dimensions.  

The sensors spectral response in different media (air, water and glycerin) is shown in 

Figure IV.8. For smaller diaphragm thicknesses (Figure IV.8b-c), there is a change of the 

visibility when the sensing head is placed in a liquid media. Besides the fringe period also 

changes, which corroborates with the numerical simulation previously presented. This 

behavior is highly dependent on the diaphragm thickness. The spectrum of the sensor 

with larger diaphragm does not present any significant dependence on the surrounding 

medium. 
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Figure IV.8. Spectra of the different sensing heads in air, water and glycerin. L2 corresponds to the 

diaphragm thickness.  

The wavelength shift dependence with water mass fraction in glycerin is shown in 

Figure IV.9. There is an approximately linear behavior in all cases. Sensitivities 

of -0.29 pm/wt.%, 3.61 pm/wt.%, and 7.81 pm/wt.%, were achieved for the sensors 1, 2, 

and 3, respectively. As expected, the thickness of the diaphragm influences the sensor 

sensitivity: sensors with smaller diaphragms present higher sensitivities to the water 

presence in glycerin. Comparing sensor 2 and 3, the air cavity lengths are very 

approximate. However, sensor 3, which has a thinner diaphragm, is 2.2 times more 

sensitive than sensor 2. Considering the sensor with the highest sensitivity, and taking 

into account the OSA resolution, an experimental resolution of 2.5 % of water weight in 

glycerin was estimated.  
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Figure IV.9. Sensors response to mass fraction variations. 

The influence of the air cavity length in the sensor response was evaluated by 

comparing the responses of sensor 2 (LFP=162 µm and L2=29 µm) with a new sensor, whose 

image is depicted in Figure IV.10 (LFP=196 µm and L2=32 µm). The sensor with the largest 

cavity presented a lower sensitivity (2.75 pm/wt.%) than the other one (3.61 pm/wt.%). 

This means that the behavior of this sensing structure does not depend significantly on 

the microbubble cavity length.  
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Figure IV.10. Sensors response to mass fraction variations. L2 corresponds to the diaphragm 

thickness and LFP is the air cavity length. 
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Using the relationship between refractive index and mass fraction described in section 

3 the sensing heads responses towards the changes in the solutions refractive index were 

determined (Figure IV.11).  
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Figure IV.11. Sensors response to external refractive index variations. 

Once again, sensor 3 presents the highest sensitivity, being of -5.49 nm/RIU followed 

by the sensor with the 29 µm long diaphragm, with the sensitivity of -2.54 nm/RIU. Sensor 

1 revealed to be insensitive towards this parameter (0.20 nm/RIU).  

The temperature response of the microcavity sensor was measured by immersing the 

sensor 3 in water, which was heated up to 80 °C, using a hot plate. The wavelength 

variations were monitored using the same interrogation scheme as shown in Figure IV.6. 

The temperature was raised in steps of 5 °C, from room temperature up to 80 °C. The 

same process for the cooling was followed. The sensor response to the temperature 

variations is shown in Figure IV.12. A sensitivity of 1.6 pm/°C, was determined, which is 

in good agreement with the sensitivity found in the literature for a hollow silica sphere tip 

[18]. A temperature cross sensitivity of 0.2 wt.%/°C was estimated for this sensor. 
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Figure IV.12. Response of sensor 3 to water temperature variations. 

There are a number of advantages associated with this sensing device. As the 

microbubble is fabricated between two sections of standard multimode fiber, the sensor is 

cost effective. Given its reduced dimensions, it can be used for punctual detection, 

requiring low volume samples. Also, as shown in Table IV.2, the FP air cavities at the fiber 

tip are usually sensitive in visibility. In this work, the variations also occur in wavelength.  

Table IV.2. Comparison between the results reported in the literature and this work regarding FP 

air cavities at the fiber tip. 

Configuration 
FP Cavity 

Length (µm) 
Range (RIU) 

Sensitivity/ 

Resolution 
Ref. 

SMF + etched graded-index fiber 515 1.32-1.45 ~160 dB/RIU [26] 

SMF + etched graded-index fiber 25 1.32-1.47 ~45.05 dB/RIU [27] 

Ellipsoidal cavity between SMF + 

photonic crystal fiber (PCF) 
~14 1.332-1.45 ~61.74 dB/RIU [9] 

Simplified hollow core fiber with 

hollow silica sphere tip 
~119.7 1.33-1.457 

6.2 ×10-5 RIU 

(visibility) 
[18] 

Air cavity between SMF + HC 

PCF 
--- 1.333-1.413 -54.409 dB/RIU [20] 

Air cavity between two sections 

of MMF 
~147 1.316-1.457 -5.49 nm/RIU 

Present 

work 
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Notice that in this Table were only included sensing configurations where the cavity 

is enclosed in the fiber and the liquid does not enter in direct contact with the fiber core. 

Furthermore, as it does not require any special fibers, hazardous chemicals or oils to be 

fabricated, this sensor can be a good alternative to the sensors reported in the literature. 

6. Conclusions 

A fiber-optic sensor based on a Fabry-Perot interferometer formed at the tip of a 

multimode fiber was proposed for the detection of water in glycerin. Three sensing heads 

with different diaphragm thicknesses were fabricated using only the splicing technique. It 

was observed that the diaphragm thickness influences the sensor sensitivity. The sensor 

with the thinner diaphragm presented the highest sensitivity of 7.81 pm/wt.% regarding 

the variation of water mass fraction in glycerin. This parameter was converted into 

refractive index variations and a maximum sensitivity of -5.49 nm/RIU was achieved. 

Furthermore, the sensing head was characterized towards temperature, with a cross 

sensitivity of 0.2 wt.%/°C. This kind of measurements can be considered an added value 

both for industry and medicine, since one of the most important parameters in the 

glycerin characterization process is its purity degree, especially when it is used in the 

pharmaceutical and cosmetic area. 
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IVA - Additional Information 

To complement the results previously discussed, inline FP sensors created between 

two sections of MMF using the same fabrication process as shown in Chapter IV were 

developed. The inline sensors were used to measure strain, and the results from this study 

were presented during the conference Photonics Europe, in May 2018, 

DOI: 10.1117/12.2307609. 

 

Experimental Results 

The spectral responses of these sensing structures were observed in the same way that 

in previous results (Figure IV.13).  

 

Figure IV.13. Scheme of the experimental setup with tip FP and inline FP.  

The air spectra of the two configurations were compared and presented in 

Figure IV.14. The spectral behavior of the cavity, and consequently the spatial frequency 

spectra, are related not only to the air bubble dimensions, but also to the quality of the 

splices and the end face cleave. The visibility of an interferometric cavity can be 

determined by two adjacent maxima and minima of the interference signal.  The tip FP 

presents a higher spectrum visibility (~61%), when compared to the inline configuration 

(~36%), as can been seen in Figure IV.14.  
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Figure IV.14. Spectra of the two developed sensing configurations. 

Strain sensing 

To perform the strain measurements, the inline FP sensor was fixed to a translation 

stage with a resolution of 10 µm. It can be seen in Figure IV.15a) that there is a 

wavelength shift towards longer wavelengths for all sensors. The experimental data were 

well adjusted to a linear function (with a correlation factor higher than 0.99). A minimum 

sensitivity of 1.25 pm/µɛ was obtained, for the smallest cavity (with a length of ~40 µm), 

whereas the maximum sensitivity of 6.48 pm/µɛ, was achieved for the largest cavity 

(297 µm long). A non-linear relationship between the strain sensitivity and the cavities 

lengths was observed, as shown in Figure IV.15b). Table IV.3 presents the sensitivities 

obtained for each sensor. It was observed that larger cavities exhibited higher sensitivities 

to strain. 

Table IV.3. Sensitivities obtained for each sensor. 

Sensor characteristics Sensitivity 

LFp= 40 µm 1.25 pm/με 

LFp= 127 µm 1.76 pm/με 

LFp= 218 µm 2.71 pm/με 

LFp= 297 µm 6.48 pm/με 
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Figure IV.15. a) Sensors response to the applied strain and b) relation between cavity size and 

strain sensitivity. 

The temperature response of both sensing configurations was evaluated by placing 

the 218 µm long inline sensor (Figure IV.16) in a thermal chamber. The temperature was 

raised in steps of 5 °C, from 10 °C until 65 °C, and maintained for about 30 min at each 

step to make sure that the temperature in the thermal chamber had stabilized. The 

proposed inline and tip sensor exhibited very low thermal dependence (< 1.8 pm/°C), 

meaning that with these sensing devices there are no need to perform temperature 

compensation. The cross-sensitivity between this parameter and strain for inline sensor 

was 0.8 µɛ/°C.  
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Figure IV.16. Inline sensor response to temperature variations. 
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Optical fiber tip sensor for the measurement of glucose 

aqueous solutions  

Susana Novais, Catarina I. A. Ferreira, Marta S. Ferreira, João L. Pinto  

Abstract: A reflective fiber optic sensor based on multimode interference for the measurement of 

refractive index variations in glucose aqueous solutions is proposed. The sensor is fabricated by 

splicing a short section of coreless silica fiber to standard single mode fiber. The influence of the 

coreless fiber dimensions on the sensor performance is analyzed. By changing the sensor length, no 

significant impact is observed. However, the reduction of the sensing head diameter leads to a 

large improvement of the sensitivity. The smaller sensor, with a length of 5 mm and a diameter of 

24 µm, presents a maximum sensitivity of 1467.59 nm/RIU, for the refractive index range between 

1.364 RIU and 1.397 RIU. Taking into account the acquisition system, a maximum theoretical 

resolution of 6.8x10-5 RIU is achieved. 

Keywords: Fiber optic sensors, multimode interferometry, refractive index sensing, chemical 

analysis. 

1. Introduction  

The multimode interference (MMI), as typically example the single mode-multimode-

single mode (SMS) structure, has been explored as an attractive technology on optical 

communications and sensing. Due to the clear advantages of simplicity, low-cost, facility 

of manufacture, and high repeatability, it emerges as an alternative to existing fiber-based 

refractometers [1], or for strain measurement with temperature compensation [2], 

curvature sensing [3] or in edge filtering for wavelength measurement [4]. The subjacent 

operating principle of this kind of sensors is the MMI excited between modes in the 

multimode fiber (MMF) section, which can be influenced by external perturbations [5, 6]. 

To perform refractive index sensing based on the SMS fiber structure, different techniques 

have been reported. For instance, a MMF core section was sandwiched between two 

single mode fibers (SMFs), where the MMF cladding was removed through chemical 

etching [1]. Zhao et al. proposed a sensor composed by two sections of SMF and one 

section MMF, with high sensitivity to refractive index [7]. Jung et al. reported a compact 
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surrounding refractive-index sensor using a multimode-coreless-multimode structure [8]. 

A SMS fiber structure used in combination with a uniform Bragg grating [9] and an 

enhanced evanescent field fiber sensor based on a tapered MMF sandwiched between two 

SMFs [10] have also been reported for refractive index measurement. Regarding the use of 

a coreless silica fiber as sensing device, some works have also been reported for the 

measurement of refractive index [11] and temperature [12], however the measurements 

were usually based on a transmission scheme [13, 14]. 

In many fields such as disease diagnosis, clinical analysis and quality monitor in food 

industry, the rapid and precise detection of glucose concentration is vital. In particular, 

the abnormal body blood glucose level monitoring is critically essential for human health 

[15]. The significance of glucose detection and potential commercial value has attracted 

constant effort on research. One of the used key methods for glucose sensing is centered 

on fluorescently labeled sensing schemes, which employ changes in fluorescent intensity 

to reflect sample concentration [16], but the short lifetime of fluorescent agents and the 

high cost of enzymes limit their further development and application in biosensing [17]. 

For that reason, the development of low-cost and robust sensing methods is highly 

desirable. A surface plasmon resonance fiber sensor based on a multimode plastic clad 

silica fiber was coated with silver and silicon films. Glucose oxidase was immobilized at 

the fiber surface for the detection of low levels of glucose [18]. A long period fiber grating 

coated with enzyme was firstly proposed by Deep et al. for the measurement of glucose. A 

linear relationship was found in the range of 10-300 mg dL-1 [19]. The same 

immobilization technique was used on a fiber with an 81° tilted Bragg grating (TFBG). A 

low temperature cross-talk, good linearity and Q-factor was achieved in the proposed 

glucose sensor [20]. A glucose sensor based on enzymatic graphene oxide functionalized 

TFBG was also proposed. The analytical range considered was of 0-8 mM, which contains 

the biological region for human blood glucose levels [21]. 

In this work, a multimode fiber tip interferometer based on an etched coreless silica 

fiber is proposed for the measurement of the refractive index variations of glucose 

aqueous solutions. A comparison between the performance of sensors with similar 
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diameters and different lengths, and similar lengths and different diameters is performed.  

The reflection configuration has several advantages over the inline MMIs. On one 

hand, the length is reduced by half, since light is reflected at the coreless end face and 

recoupled to the single mode fiber. On the other hand, the cleaning procedure is easier, 

smaller amounts of analyte can be employed, the sensing structure becomes less fragile, 

even after etching, and it can be placed at a long distance regarding the acquisition 

system, thus becoming a good alternative in harsh environments where refractive index 

or concentration variations need to be monitored. 

2. Sensor and operation principle 

The sensing device developed in this work consists on a short section of coreless silica 

fiber (CSF) spliced to single mode fiber (SMF), as shown in Figure V.1. Light is guided 

through the SMF and when it enters the coreless fiber section, several modes are excited 

and guided until the fiber end section is achieved. Due to the Fresnel reflection, a small 

fraction of the light is reflected and recoupled once again to the SMF fundamental mode.  

LCSF

DCSF DCSF + 2Z

SMF CSF
Evanescent Field

n1n1

n2

ns

q1

 

Figure V.1. Schematic diagram of the sensor structure, where n1 is both the refractive index of the 

SMF cladding and the coreless fiber, n2 and ns are the refractive index of SMF core and surrounding 

medium; LCSF and DCSF are the coreless fiber length and diameter, respectively, and Z is the 

evanescent field penetration depth. 

 

The interference wavelength, λ0, can be expressed according to Eq. 1 [22]: 

                                                                                

2

1 CSF

0

CSF

n D
λ = p

2L
,                                                                             (1) 

where n1, DCSF, and LCSF are the CSF refractive index, diameter, and length, respectively, 
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whereas p is the interference number. One of the important characteristics of a multimode 

interferometer (MMI), is that λ0 can be easily designed to be in the wavelength region 

used, by selecting the appropriate dimensions [22]. When p = 4, the self-image is formed 

due to the constructive interference between several guided modes, and the sensor 

presents lowest losses [13]. However, at different interference numbers, even though no 

self-image is present, the constructive interference between two consecutive modes with 

high coupling efficiency can originate a spectrum that, although with higher losses, is still 

suitable to perform measurements.  

From Eq. 1, there is no obvious dependence of the wavelength with the external 

medium. However, if one considers the evanescent field generated at the CSF/external 

media interface, the diameter can be considered as an effective value of D + 2Z, where Z 

corresponds to the penetration depth. This parameter is given by Eq. 2 [12], 

                                             
( )s

Z

n n n

0

22

1 1
2 sin



 q





,                                                      (2) 

 

where ns is the surrounding medium refractive index and θ is the incident angle at the 

CSF/surrounding medium interface, as shown in Figure V.1. As the environmental 

refractive index changes, the propagation constants for each guided mode within the CSF 

will change too, which leads to shifts in the output spectra, owing to the direct exposure 

of the CSF [23].  

To determine the influence of both CSF length and diameter on the sensitivity of the 

developed sensors, the previous equations were combined and solved in order to obtain 

the wavelength dependence on refractive index. The CSF refractive index was considered 

to be 1.444 at 1550 nm, and θ was estimated to be 84.94° [24]. In the first part of the 

simulation, the diameter was fixed to be 125 µm, and the length varied between 28.2 mm 

and 50.0 mm (Figure V.2a). In the second part, the length parameter was kept constant 

(5 mm), and the diameter was changed between 125 µm and 24 µm (Figure V.2b). The 

interference order p was estimated using Eq. 1, for an operation wavelength within the 

1550 nm range. 
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Figure V.2. Simulated wavelength shift dependence on external media refractive index, 

considering a) constant diameter and different lengths and b) constant length and different 

diameters. 

As can been seen in the simulation results, the wavelength shift increases non-linearly 

with the surrounding refractive index. This behavior is expected until the refractive index 

of the external medium becomes close to the one of the CSF. In this case, the total internal 

reflection condition ceases to exist, and no light is expected to be reflected at in the sensor 

region. In Figure V.2a), there is no direct correlation between the CSF length and the 

wavelength shift. However, if the ratio between LCSF and p is taken into account, the 

relationship becomes clearer: larger values of LCSF/p lead to lower sensitivities. For 

instance, a 36.8 mm long sensor (LCSF/p = 7.36) has a similar response to the one with a 

length of 43.9 mm (LCSF/p = 7.32), whereas the sensors with lengths of 50.0 mm 

(LCSF/p = 7.14) and 28.2 mm (LCSF/p = 7.05) are more sensitive than in the previous cases. 

This ratio can be used to maximize the sensors sensitivity, according to the desired 

application. Nevertheless, in this case no significant changes are observed in the sensors 

response, meaning that the variation of length does not play a decisive role in the 

sensitivity. However, the smaller the diameter, the more significant becomes the 

evanescent field, which translates into higher sensitivities. 
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3. Results  

Figure V.3 presents the scheme of the experimental setup used in this work, both for 

the refractive index measurements in liquid media and for the temperature experiments. 

The sensing structure spectral response was observed in a typical reflection scheme, by 

connecting the broadband optical source (bandwidth of 80 nm, centered at 1570 nm), the 

sensing head, and the optical spectrum analyzer (OSA Anritsu MS9740A) to the three 

ports of an optical circulator. The readings were performed with a resolution of 0.1 nm.  

 

 

Figure V.3. Scheme of the experimental setup. 

A series of glucose aqueous solutions were prepared under a controlled laboratory 

environment, with glucose mass fractions ranging from 0 wt.% to ~45 wt.%.  A magnetic 

stirrer (NAHITA, magnetic stirred, model nº 690/1) was used to dilute the glucose in the 

deionized water. After the preparation, the samples were stored for 24 hours, to allow 

their stabilization. The refractive index experiments were carried out at room temperature 

(~23 °C), under a controlled environment. The sensor was inserted vertically in the 

different solutions with the aid of capillary glass tube. However, the sensing area was 

kept outside this tube, in direct contact with the measurand. This setup ensured the 

sensor robustness as well as the stability of the fiber inside the liquid. 

Figure V.4 presents the shifts in the reflection spectra due to the direct exposure of the 

CSF under different percentages of glucose, for one sensing head with a diameter of 

125 µm and a length of 59.6 mm (sensor 1). With the increase of the mass fraction, not 
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only the amplitude of the reflected spectra changes, but there is also a notorious 

wavelength shift. This is related to the increase of the solutions refractive index, ie with 

the increase of glucose concentration in the aqueous solution. 
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Figure V.4. Output spectra of sensor 1 under different mass fraction percentages of glucose. 

The refractive index of each solution was measured using an Abbe refractometer 

(Krüss optronic refractometer), that provides information in the spectral visible range 

(λ = 589 nm). Since the optical source used in the experiments was centered in the 

1550 nm region, it was necessary to first calibrate the solutions and thus estimate the 

refractive index at this wavelength range.  

This was achieved by subjecting sensor 1 to previously calibrated glycerin aqueous 

solutions, where the refractive index at 1550 nm has been determined [25]. The 

wavelength shift (Δλ) dependence on refractive index (n), shown in Figure V.5a), was 

adjusted by the second order polynomial (Eq. 3): 

                                                    n n22725.11 1604.23                                                    (3) 

with a correlation factor of 0.998. The same sensor was then evaluated for each 

glucose-water mixture and, by using the previous equation, it was possible to convert 

wavelength variations into refractive index. Figure V.5b) shows the relation between 

refractive index and mass fraction for the glucose solutions at the two wavelength regions 

considered. It is possible to observe that in both cases the behavior is similar. A third-
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order polynomial fit was applied to the data, according to Eq. 4: 

 

                                                   n w A Bw Cw Dw2 3( )     ,                                                                (4) 

 

where w indicates the solubility range as weight fraction, whereas A, B, C, and D are the 

fitting parameters. The values are gathered in Table V.1. 
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Figure V.5. Sensor calibration to refractive index measurements. a) wavelength shift dependence 

on refractive index of glycerin aqueous solutions, for an operating wavelength of 1550 nm and b) 

refractive index variation with mass fraction for glucose aqueous solutions, at 589 nm, measured 

through the Abbe refractometer and 1550 nm, determined from the calibration. 

Table V.1. Parameters for third order polynomial fits of the refractive index dependence on mass 

fraction for glucose solutions, at 589 nm and 1550 nm. 

 Glucose (1550 nm) Glucose (589 nm) 

w 0 - 0.45 0 - 0.45 

A 1.3166 1.3320 

B 0.00287 0.0019 

C -3.0260 x 10-5 2.8140 x 10-5 

D 1.8666 x 10-7 -7.1865 x 10-7 

Four sensors with lengths ranging from 28.2 mm to 50.0 mm were fabricated. 

Considering the refractive index of the CSF to be 1.444, and the operation wavelength in 

air of ~1530 nm, p was estimated to be between 4 and 7. Although the self-image occurs at 

p = 4, and lower losses are obtained, the sensors revealed to be adequate to perform 

refractive index measurements. The results are shown in Figure V.6. As expected, in all 



Optical fiber sensors for challenging media 

Susana Novais, University of Aveiro 

99 

 

 

cases the behavior is non-linear, following the tendency described in Section 2. 

Furthermore, it is observed that there are no significant changes regarding the sensor 

sensitivity. Two different linear regions were considered to estimate the sensors 

sensitivity, kn. The first region, for lower refractive index variations, ranges from 1.316 RIU 

and 1.353 RIU, whereas the higher refractive index variations were considered between 

1.364 RIU and 1.397 RIU. The sensitivities attained are shown in Table V.2, where DCSF and 

LCSF are the CSF diameter and length, respectively. 
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Figure V.6. Sensors response to refractive index variations for sensors with different lengths. 

Table V.2. Sensitivities obtained for each sensor. 

Sensor characteristics 1.316 – 1.353 1.364 – 1.397 

p DCSF (µm) LCSF (mm) kn (nm/RIU) r2 kn (nm/RIU) r2 

4 

125 

28.2 114.42 0.976 266.53 0.997 

5 36.8 73.49 0.971 228.68 0.998 

6 43.9 96.49 0.989 236.93 0.994 

7 50.0 113.29 0.952 255.44 0.995 

 

The length of the sensing device can be a limiting factor in practical applications. 

When using sensors with several centimeters in length, not only the sensors become more 

fragile, but also larger sampling volumes are required, since the liquid must be in contact 

with the whole sensing structure. However, in order to have a reflection spectrum with a 
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peak in the 1550 nm region, and considering smaller lengths, it is necessary to reduce the 

fiber diameter as well. Besides, as it was observed in Section 2, an increase of the sensor 

sensitivity is expected with the decrease of the diameter. To further test the sensing 

performance and evaluate the practicability of these sensors, four different samples with a 

length of ~5 mm were produced. Three of these sensors were subjected to wet chemical 

etching using a 40% hydrofluoric acid (HF) solution. To obtain a structure with a nearly 

constant core diameter over its length, as well as a smooth surface, the HF solution was 

placed inside an ultrasound bath at room temperature. 

A preliminary experiment was performed to determine the etching rate8. A sample of 

CSF was submerged in liquid HF, at room temperature, for a few minutes, after which it 

was removed from the solution and cleaned thoroughly with ethanol. A microscope 

picture was taken to estimate the CSF diameter. The sample was once one again placed in 

the etching solution for a few additional minutes and the process was repeated. An 

etching rate of 1.63 μm/min was determined. Figure V.7 presents the wavelength 

dependence with the refractive index variations for the sensors with different CSF 

diameters, which ranged from 125 µm to 24 µm, translating into p values between 1 and 

19.  
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Figure V.7. Sensors response to refractive index variations. 

                                                
8 More information regarding the etching rate in the Additional Information Section at the end of this Chapter. 
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As observed for the non-etched sensors, a non-linear response is obtained. However, 

in this case, the difference between each sensor response is more significant and, as 

expected, the sensor with a smallest diameter presented the highest sensitivity. Once 

again, two different ranges can be considered, between 1.316 RIU and 1.353 RIU, and 

between 1.364 RIU and 1.397 RIU. Table V.3 summarizes the sensitivities to refractive 

index (kn) obtained for each sensor, in both regions considered. As can be seen from the 

results, as the diameter of the CSF decreases, the sensitivity increases, in both ranges 

presented. The thinnest sensor is 8.3× more sensitive than the one with largest diameter, 

for the higher refractive index range. Considering the sensor with the highest sensitivity 

and the OSA resolution, a maximum theoretical resolution of 6.8×10-5 RIU is achieved [26]. 

The results indicate that it is possible to tailor the sensor dimensions according to the 

desired sensitivity and to the application. Larger sensors, on one hand, do not exhibit high 

sensitivities, and require higher volume samples. On the other hand, smaller sensors 

present better responses. However, as the diameter decreases, the fiber becomes more 

fragile. In such case, and considering a practical application, a suitable package should be 

developed to ensure robustness of the sensor. Nevertheless, in all cases the sensors 

presented a fast response and were very stable in the liquid media. 

Table V.3. Sensitivities obtained for each sensor. 

 Sensor characteristics 1.316 – 1.353 1.364 – 1.397 

p LCSF (mm) DCSF (µm) kn (nm/RIU) r2 kn (nm/RIU) r2 

1 

5 

125 102.42 0.959 177.69 0.999 

3 65 197.84 0.903 582.54 0.945 

7 39 338.23 0.972 1012.66 0.974 

19 24 544.88 0.956 1467.59 0.995 

 

The temperature response was measured by placing the sensor with a diameter of 

125 µm and with a length of 43.9 mm, in a tubular oven with a resolution of 1 °C. The 

temperature was increased in steps of 100 °C, until 700 °C, and maintained for about 

20 min at each step to make sure that the temperature in the oven had stabilized. 

Figure V.8a) presents the sensor response towards this parameter. It exhibited thermal 

dependence of 6.8 pm/°C, with a correlation factor of 0.978. The sensitivity towards 
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temperature is essentially due to the silica thermal expansion, being comparable to that of 

a fiber Bragg grating [27]. The sensor stability was evaluated by placing the sensor in the 

water solution, at room temperature, for 90 minutes. The spectrum was acquired every 

30 seconds. The peak wavelength variations with time, is shown in Figure V.8b). The 

mean value was of 1535.86 nm and the standard deviation was of 0.01 nm. During the 

experiment, the temperature fluctuations were of 0.2 °C. The proposed sensor revealed 

high stability, the results are reproducible, and the cross-sensitivity was determined to be 

7.1 × 10-5 RIU/°C. 
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Figure V.8. Response of the sensor with a diameter of 125 µm to temperature variations a) and 

long term stability experiment, using a solution of water at room temperature b). 

4. Conclusions  

In summary, a high-sensitivity reflective optical fiber sensor based on coreless silica 

fiber (CSF) for the measurement of refractive index variations in glucose aqueous 

solutions was proposed. The sensor was fabricated by splicing standard single mode fiber 

to a short section of CSF. Firstly, four sensors with the same diameter and different 

lengths were used to perform refractive index measurements. It was observed that the 

CSF length has no significant influence on the sensitivity to external medium variations. 

The influence of the sensor diameter was studied by using four samples with similar 

lengths. Three of such samples were subjected to wet chemical etching using a 40% 

hydrofluoric acid solution, to decrease their diameter. It was observed that as the 
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diameter decreased, the sensitivity increased significantly. In fact, the sensor with the 

smaller diameter presented a maximum sensitivity of 1467.59 nm/RIU, for the refractive 

index range between 1.364 RIU and 1.397 RIU. By reducing the structure diameter, an 

enhancement of ~8.3× was achieved. In practical applications, the sensitivity to 

temperature should be compensated with a suitable method. The developed structure has 

attractive advantages, such as simple structure, fast response and stability. It has 

possibilities to expand in various sensing applications, where the use of only a fiber tip 

can be a better alternative to inline multimode interference sensors. 
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VA - Additional Information 

In this Section, more information is provided regarding the sensors chemical etching. 

The fiber sensors were subjected to wet chemical etching using a 40 % hydrofluoric acid 

(HF) solution. To obtain a structure with a nearly constant core diameter over its length, 

as well as a smooth surface, the HF solution was placed inside an ultrasound bath at room 

temperature. The reduction of the CSF diameter was observed after submerging the 

sample in liquid HF for a few minutes, removing it from the solution and cleaning it 

thoroughly with ethanol. A microscope image of the fiber tip was taken, to estimate its 

diameter. The sensing head was once again placed in the etching solution for a few 

additional minutes and the process was repeated. Figure V.9 (left) presents the 

microscope images taken at different times and Figure V.9 (right) shows the diameter 

variation with the etching time. The data was adjusted to a linear fitting and an etching 

rate of 1.63 µm/min was determined. 
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Figure V.9. Left: Microscope photos of CSF tip, at different etching times. Right: CSF diameter vs. 

time. 
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Determination of thermo-optic coefficient of ethanol-water 

mixtures with optical fiber tip sensor 

Susana Novais, Marta S. Ferreira, João L. Pinto 

Abstract: In this work, the thermo-optic coefficient (TOC) of ethanol-water mixtures, through 

refractive index and temperature measurements are determined using an etched optical fiber tip 

based on a multimode interferometer. The proposed probe is fabricated by fusion-splicing a 

5.2 mm long coreless fiber section to a single mode fiber. To reduce the sensor dimensions and 

improve its sensitivity towards external medium variations, the fiber tip is subjected to wet 

chemical etching using a solution of 40% hydrofluoric acid, presenting a final diameter of 24.4 μm. 

The TOC of each solution is estimated and, in the case of deionized water and pure ethanol, its 

value is of -1.128 × 10-4 °C-1 and -3.117 × 10-4 °C-1, respectively. 

Keywords: Fiber optic sensors; interferometry; temperature; thermo-optic coefficient.  

1. Introduction 

The fact that ethanol is an element miscible in non-polar and polar substances makes 

the ethanol a versatile solvent used in several industrial sectors such as chemical, 

pharmaceutical or fuel. Due to the inevitable depletion of the world’s petroleum supply 

(in the fuel sector), there is an increasing worldwide interest in alternative, non-

petroleum-based sources of energy. In order to preserve the product quality, the water-

ethanol proportion must be periodically monitored and compared to standardized 

conditions taking into account that the ethanol production process is characterized by 

sequential procedures, and in several cases the water is a constituent of the final product 

[1]. 

According Nish et al, the refractometric analysis of ethanol-water mixtures is 

hampered because this kind of mixtures presents deviations from a linear behavior, and 

the existence of anomalous physical-chemical properties. During the process of the 

mixture of water and ethanol the entropy of the system increases differently from that 

expected for an ideal solution of randomly mixed molecules. Thereby, the refractive index 
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of the ethanol-water mixture shows a non-linear dependence with the ethanol 

concentration, and it is expected that as the ethanol concentration rises beyond a critical 

value, the refractive index relation becomes a two-valued function, presenting an 

ambiguous region for the determination of the ethanol proportion in the mixture [2]. 

Nowadays, a huge variety of optical fiber sensors to determine the concentration in liquid 

mixtures has been suggested, since de concentration is correlated to the refractive index 

and temperature of the samples [3], and several methods have been used in the literature 

to study and measure water and ethanol mixtures.  

The measurement of the refractive index dependence with temperature, at a given 

wavelength in liquid solutions (thermo-optic coefficient (TOC)) has attracted a lot of 

attention, due to its importance in chemical and bio-chemical analysis [4]. As for water-

ethanol mixtures, due to the high TOC of ethanol, the temperature fluctuations contribute 

to the uncertainty in the refractive index measurements [5]. 

Several optical fiber-based configurations have been already proposed for the TOC 

determination, using etched fiber Bragg gratings [6,7], long period gratings (which have 

also demonstrated high sensitivity to the refractive index of surrounding medium) [8, 9], 

surface plasmon resonance effects [10], a two-mode interferometric probe based on a 

special fiber [4] and using a hollow core Fabry-Perot interferometer [11]. 

The use of coreless fiber has also been addressed for sensing applications, namely for 

high sensitivity refractive index [12] and temperature [13] measurements. The 

configurations reported are usually based on a transmission scheme, where the coreless 

fiber is spliced between two sections of single mode fiber [14]. The reflection scheme, 

where the coreless fiber tip is spliced to one section of single mode fiber, has also been 

proposed. Typically, a metal coating is applied to the sensor to increase its reflectivity and 

performance [15]. 

In this work, an etched coreless fiber tip is proposed for measurement of refractive 

index of ethanol aqueous mixtures as well as for the determination of their thermo-optic 

coefficient. The sensing device is previously calibrated using water-glycerin mixtures with 
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known refractive index at the 1550 nm wavelength range. The TOC for each solution is 

estimated through refractive index and temperature measurements. 

2. Experimental results 

The sensor head was obtained by fusion splicing a section of coreless fiber (with an 

initial diameter of 125 µm, supplied by Thorlabs) to standard single mode fiber (SMF), 

using the manual program of the splicing machine (Fujikura 62S). Afterwards, the fiber 

was cleaved, presenting a length of 5.2 mm. The tip was then subjected to wet chemical 

etching for 61 minutes, using a solution of 40% hydrofluoric acid. After the chemical 

etching procedure, the sensor presented a final length of 5.1 mm and a diameter of 

~24.4 m.  

To determine the thermo-optic coefficient of ethanol-water mixtures, a set of 5 

solutions with ethanol mass fractions ranging from 0 wt.% to 100 wt.% were prepared 

under a controlled laboratory environment. After stirring the solutions for 60 minutes 

with a magnetic stirrer (NAHITA, model no. 690/1), they were stored for 24 hours, to 

allow their stabilization. The sensing device was inserted vertically in the 5 different 

solutions with aid of capillary glass tube, to ensure the sensor robustness as well as the 

stability of the fiber. The spectral response of this sensing structure was observed in a 

typical reflection scheme, as shown in Figure VI.1. The experimental setup consisted on a 

broadband optical source, an optical spectrum analyzer (OSA Anritsu MS9740A) and the 

sensing head, connected by means of an optical circulator. The optical source was 

centered at 1570 nm, with a bandwidth of 80 nm. All readings were done with a 

resolution of 0.1 nm. 
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Figure VI.1. Scheme of the experimental setup. 

When the light guided through the SMF enters the coreless fiber section, several 

modes are excited. These modes are reflected at the coreless fiber/surrounding medium 

interface, and recoupled to the SMF fundamental mode. The reflected wavelength, λ0, can 

be tailored according to Eq. 1: 

                                                             2

0 1
/ (2 )n D p L  ,                                                        (1) 

where n1, D, L and p are the coreless fiber refractive index, the fiber diameter, the 

length, and the interference order number, respectively [13]. For the present work, given 

the sensor dimensions and the reflected wavelength in air, p was estimated to be 19. 

According to the literature, the self-image of the multimode interferometer occurs at 

multiples of p = 4, and lower losses are obtained. However, at other interference order 

numbers (no self-image), two consecutive modes with high coupling efficiency can 

constructively interfere, originating a spectrum that is suitable to perform measurements. 

This sensor revealed to be adequate to perform high sensitivity measurements and it 

presented a fast response and high stability in the liquid media. The thinner the coreless 

fiber section, the larger the evanescent field in the sensing area, which interacts with the 

external medium. Therefore, a large sensitivity is expected, when compared to an 

unetched fiber section [13]. 

In Figure VI.2a) and VI.2b) it is possible to observe the spectra obtained at room 

temperature for each ethanol aqueous solution, and the wavelength shift dependence 

with the mass fraction for all solutions, respectively. The sensor response to temperature 
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and refractive index variations was determined by following the shift of the dip 

wavelength (located at ~1551 nm for pure deionized water). The decrease in the 

wavelength shift exhibited for 100 wt.% ethanol, evidenced in Figure VI.2b) is related to 

the decrease of the refractive index at that concentration. 
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Figure VI.2. Fiber tip sensor a) spectra and b) wavelength shift, considering water-ethanol 

mixtures with different mass fractions. 

The variation of mass fraction in a mixture of water and ethanol translates in a change 

of the medium refractive index. This parameter was determined for each solution and 

measured with an Abbe refractometer (Krüss optronic refractometer) operating at 589 nm. 

However, since the optical source was centered in the 1550 nm region, it was necessary to 

calibrate the sensor, thus estimating the refractive index of each solution in this 

wavelength range. This was achieved by placing the sensor in glycerin aqueous solutions 

that ranged from 0 wt.% to 51 wt.% glycerin, which were previously calibrated for the 

proper operation wavelength [16]. Figure VI.3 presents the wavelength shift dependence 

with the refractive index variations. As expected, a non-linear response is observed. 

Nevertheless, the behavior for the refractive index range between 1.315 RIU and 

1.365 RIU, is approximately linear. The ethanol-water mixtures refractive index range is 

expected to be located within this region [5]. The sensor presented a linear sensitivity 

of 627.9 nm/RIU, with a fitting correlation factor of 0.994.  
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Figure VI.3. Sensor calibration to refractive index measurements: wavelength dependence with 

refractive index for glycerin-water mixtures. 

Once the relationship between wavelength shift and refractive index was established, 

the sensor spectral response was evaluated for each water-ethanol solution. The 

correspondent refractive index was determined through the sensitivity obtained in the 

calibration procedure. Figure VI.4 presents the refractive index dependence with mass 

fraction for the ethanol-water mixtures, for the experimental (589 nm) and calibrated 

(1550 nm). 
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Figure VI.4. Refractive index dependence on mass fraction for ethanol-water mixtures, for two 

different wavelengths: 589 nm (experimental data) and 1550 nm (calibrated data). 
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As can be seen from the results when the ethanol mass fraction increases, the 

refractive index also increases, until a mass fraction of ~80% [17], after this value, there is a 

decrease of the refractive index. It is also possible to observe that the behavior is 

consistent for both wavelengths. 

To perform the experiments, the sensor device was inserted vertically in the ethanol-

water solutions which were placed in a temperature controlled hot plate (resolution of 

0.1 °C) and subjected to temperature variations from 30 °C until 80 °C, with steps of 5 °C. 

Figure VI.5 presents the wavelength shift with temperature, for each solution. A shift 

towards shorter wavelengths (blue shift) with temperature increase is observed in all 

cases. On the other hand, it is observed that with the increase of ethanol mass fraction, the 

wavelength shift becomes more pronounced, which indicates that the sensor sensitivity 

also increases. Notice that the response is non-linear for the solutions with a mass fraction 

of 0 wt.%, 21 wt.%, and 44 wt.% ethanol. For higher concentrations, the behavior becomes 

linear. This is consistent with the behavior already reported in the literature [1, 5, 10]. 

To improve the TOC determination, the silica TOC and thermal expansion effects 

were compensated by performing temperature measurements in air, in the same 

wavelength range as for the liquids measurements. The sensor was placed in a thermal 

chamber (Model 340, Challenge Angelantoni Industry), and the readings were done with 

a resolution of 0.1 °C. Figure VI.5a) also shows the sensor response in air (red solid 

circles), from which a linear sensitivity,
1 1T

T k   =12.75 pm/°C was attained. On the 

other hand, when the sensor is placed in the liquid, the wavelength shift can be attributed 

to two components: one due to the coreless thermal expansion, kT1, previously 

determined, and the other one due to the liquids TOC. The wavelength shift can be 

estimated through the expression ( )2 1 2T Tk k T    . Using the two equations, the 

sensitivity due to the liquid contribution can be determined through 2 1 2T
k T     . 

Figure VI.5b) presents the calculated wavelength shift due the liquids contribution. 
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Figure VI.5. a) Wavelength shift dependence with temperature variations, b) calculated 

wavelength shift due the liquids contribution with temperature variations. 

Table VI.1 summarizes the sensitivities to refractive index (kn), and to temperature 

(either polynomial or linear fitting) attained for each solution, after compensating the 

effects due to the sensing head. 

Table VI.1. Refractive index and temperature sensitivity for each solution. λ corresponds to the 

wavelength, in nm, and T to the temperature, in °C. The correlation coefficient, r2 is also show. 

wethanol (wt.%) kn (nm/RIU) Polynomial and linear fitting r2 

0 

627.93 

Δλ2 - Δλ1 = 8.699 ×10-5 T2 – 0.093 T + 2.821 0.995 

21 Δλ2 - Δλ1 = –0.002 T2 + 0.055 T – 0.064 0.998 

44 Δλ2 - Δλ1 = –0.002 T2 + 0.084 T  –  0.350 0.993 

70 Δλ2 - Δλ1 = – 0.224 T + 6.689 0.999 

100 Dλ2 - Δλ1  = – 0.209 T + 6.348 0.998 

 

Taking into account the refractive index measurements made, it was possible to 

convert the wavelength shifts into refractive index, by using the expression /
n

n k   . 

Thus, the refractive index dependence on temperature for each solution was obtained 

(Figure VI.6). The values were adjusted by a second-order polynomial fitting for the three 

solutions with smaller mass fraction, and by a linear fitting for the measurements of the 

last two solutions. The TOC coefficient was determined through the derivative of each 

fitting equation. The higher TOC obtained for the 70 wt.% solution when compared to the 
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TOC for pure ethanol can be due to the larger refractive index of the solution at that 

concentration. Notice that if one considers a linear fitting to the experimental data in the 

case of deionized water, as a first approximation, TOC of -1.128 × 10-4 °C-1 is determined. 

The TOCs obtained for pure deionized water and pure ethanol in our experiments are in 

good agreement with the values found in the literature for this wavelength range [6, 11]. 

To the best of our knowledge, there is no information in the literature regarding the TOC 

of water-ethanol mixtures in the wavelength range here studied. Table VI.2 reports the 

thermo-optic coefficient for each ethanol aqueous solution. 
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Figure VI.6. Refractive index shift dependence with temperature. 

Table VI.2. Thermo-optic coefficient for each ethanol aqueous solution. 

wethanol( wt.%) dn/dT (TOC) °C-1 r2 

0 –1.543 × 10-7 T – 1.044 × 10-4 0.993 

21 –6.018 × 10-6 T + 1.310 × 10-4 0.997 

44 –8.089 × 10-6 T + 1.777 × 10-4 0.991 

70 –3.358 × 10-4 0.999 

100 –3.117 ×  10-4 0.998 
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3. Conclusions 

An etched coreless fiber tip multimode interferometer was proposed for the 

determination of the thermo-optic coefficient of water-ethanol mixtures. The sensing 

device was firstly calibrated using glycerin-water mixtures with refractive indices known 

in the 1550 nm region. A set of ethanol-water solutions was characterized using the 

proposed sensor, by varying the temperature in a range of ~60 °C. The response was 

determined by following the shift of the dip wavelength. A spectral blue shift was 

observed in all cases, which was mainly attributed to the liquid TOC. Through the 

relationship between refractive index and temperature, the TOC of each solution was 

determined. In the case of deionized water and pure ethanol, the estimated TOC value 

was of -1.128 × 10-4 °C-1 and -3.117 × 10 -4 °C-1, respectively. Consistently, negative TOC 

values indicated decrease in refractive index with increasing temperature, which is in 

good agreement with the values found in the literature.  It should be highlighted that the 

sensor was stable, did not require any coating to operate or any specially designed optical 

fiber, being an alternative solution to the sensing configurations proposed in the 

literature. 
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Relative humidity fiber sensor based on multimode 

interferometer coated with agarose-gel 

Susana Novais, Marta S. Ferreira, João L. Pinto 

Abstract: In this work, a relative humidity (RH) sensor based on a structure with multimode 

interference is proposed and experimentally demonstrated. The multimode sensor is fabricated by 

fusion splicing a coreless fiber section to a single mode fiber. A hydrophilic agarose gel is coated on 

the coreless fiber, using the dip coating technique. By changing the surrounding RH, the refractive 

index of the coated agarose gel will change, causing a wavelength shift of the peak in the reflection 

spectra. For RH variations in the range between 60.0%RH and 98.5%RH, the sensor presents a 

maximum sensitivity of 44.2 pm/%RH, and taking in consideration the interrogation system, a 

resolution of 0.5%RH is acquired. This sensor has a great potential in real time RH monitoring and 

can be of interest for applications where a control of high levels of relative humidity is required. 

Keywords: Fiber optics sensors; relative humidity; agarose gel.    

1. Introduction  

The measurement of relative humidity (RH) has shown significant importance in a 

large range of applications, such as bacterial growth, process control, product quality, 

food and beverage processing, automotive, and meteorological industries [1,2]. The 

measurement of relative humidity (RH) has shown to be of significant importance in a 

large range of applications, such as bacterial growth, process control, product quality, 

food and beverage processing, automotive, and meteorological industries [1,2]. 

Regarding sensing methods of RH, the optical fiber sensors, in comparison to their 

electronics counterparts, are preferred, considering their specific advantages, such as their 

minimal size and low weight, immunity to electromagnetic interference, corrosion 

resistance, and remote sensing capability [3]. There are basically two operating 

mechanisms for the fabrication of fiber optic RH sensors. One is based on using specific 

technologies to form porous sensing structures, such as sputtering [4], electro-spinning 

[5], electron evaporation [6], or layer-by-layer nano-assembly [7,8]. The other type of RH 
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fiber optic sensors involves using humidity sensitive coatings or gels (hydrophilic 

materials) on the surface or end face of the optical fiber, such as polyvinyl alcohol [9,10], 

polyethylene glycol [11], chitosan [12,13], polyethylene oxide [14], graphene oxide [15], 

metallic oxide film [15,16], agar [17–20] and indium tin oxide [21,22]. This kind of polymer 

coatings have advantages of good performance [19], reproducibility, and long-term 

stability [14]. The hydrophilic materials normally swell physically and experience a 

refractive index change in response to change in RH. 

Different fiber sensing structures have been combined with polymer coatings. For 

instance, the use of fiber Bragg gratings [23], bended fibers [24], side-polished fibers 

[25,26], photonic crystal fibers [20,27], tapered fibers [13,15,16], Fabry-Perot cavities [28], 

Sagnac interferometers [29], hollow core fibers [15], and single-mode hetero-core fibers 

[14,30] have been proposed to detect environmental RH variations. 

Agarose is considered a biopolymer, originated from a marine alga (Gracilaria 

Verrucosa), whose use is commonly extended in the field of biochemistry for separation 

of DNA chains [31,32]. The agarose gel is considered a material with desirable humid 

sensitivity, able to readily absorb and desorb water, and also to restore a fast equilibrium 

with atmospheric humidity. Besides that, it is extremely stable, not soluble in water and 

can be easily handled for device manufacture [23,31]. 

In this work, a multimode interferometer based on a coreless fiber coated with 

agarose gel is proposed for the detection of RH. The sensor is easy to produce, presents 

good resolution, particularly for environments with values of RH higher than 60.0%RH. 

2. Sensor fabrication and operation principle 

The fabrication of the coated sensor, whose scheme is shown in Figure VII.1, involved 

two steps. The first step consisted on splicing a short section of coreless silica fiber (CSF, 

supplied by Thorlabs, Newton, NJ, USA) to single mode fiber (SMF 28e, supplied by 

Thorlabs, Newton, NJ, USA), using the manual mode program of the splicing machine 
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(Fujikura 40 S, Tokyo, Japan). The second step consisted in functionalizing the sensor with 

agarose gel, through dip coating technique. 

SMF

Functionalization

LCSF

DCSF

DCSF +2Z 

θ

 

Figure VII.1. Schematic diagram of the sensor structure. 

When the incident light comes from the SMF to the CSF, the high-order modes are 

excited and propagate within the CSF. These excited modes interfere with one another as 

they propagate along whole CSF length, giving rise to a multimode interference (MMI). 

According to Eq. 1, the interference wavelength, λ0, can be expressed by [33]: 

                                                   
CSF

CSF

n D
p

L

2

1

0
,

2
                                                              (1) 

where DCSF, LCSF, n1 and p are the CSF diameter, length, refractive index, and interference 

number, respectively. The length and diameter of the CSF used in this work were ~30 mm 

and 125 μm, respectively. Considering the refractive index to be 1.444 and the operation 

wavelength in air of ~1530 nm, p was estimated to be 4. 

Taking into account Eq. 1, there is no apparent dependence of the wavelength with 

the external medium. However, if one considers the evanescent field produced at the 

CSF/external medium interface, the diameter can be considered as an effective value of 

DCSF + 2Z, where Z is the penetration depth. This parameter can be calculated through 

Eq. 2 [34]: 

                                                

 q

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s

Z
n n n

0

2 2

1 1

,
2 sin ( / )

                                                            (2) 

where ns is the surrounding medium refractive index and θ is the incident angle at the 

CSF/surrounding medium interface, as shown in Figure VII.1. Since the effective 
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refractive index of the agarose gel changes with the ambient relative humidity, as the 

environmental refractive index changes, the propagation constants for each guided mode 

within the CSF will change too, which leads to shifts in the output spectra [32, 35]. 

2.1. Agarose gel coating  

The agarose solution was prepared by dissolving 0.9 g of agarose (Fisher Scientific, 

BP160-100) in 60 mL of distilled water, corresponding to a proportion of 1.5 wt.%. The 

solution was then heated up to 65 °C and a magnetic stirrer was used to dissolve the 

agarose in distilled water.  

The sensing head was inserted in a silica capillary to ensure that the fiber was straight 

and stable (Figure VII.2). The sensor was dipped into the hot agarose solution and pulled 

out very fast, by moving the horizontal platform downwards. When the agarose solution 

cools down and reaches room temperature, it polymerizes to form hydrogel and will not 

assume a liquid form again unless it is heated above the melting point. The coated sensor 

was left to dry for 48 h at room temperature. 

 

Figure VII.2. Photograph of the experimental setup for agarose deposition. 

The agarose curing process was monitored with an optical interrogator (sm125, 

Micron Optics Inc., Atlanta, GA, USA, operating at 2.0 Hz). The response was obtained in 

a spectral range between 1530 and 1570 nm, immediately after removing the sensor from 

the agarose solution. This experiment was carried out in a controlled environment, with a 

room temperature of 25 °C.  As shown in the Figure VII.3, there is a higher wavelength 
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shift in the first five minutes. From that moment on until 30 minutes, there is a smaller 

wavelength variation, which tends to stabilize after that time.   
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Figure VII.3. Peak wavelength dependence with time during the agarose curing process.  

Figure VII.4 shows the spectra for the sensor with agarose coating (black solid line) 

and without coating (red dashed line). A spectral red shift was observed in the reflection 

spectrum of the device compared with its initial spectrum as shown in Figure VII.4. The 

shift in wavelength peak after coating is about 3.59 nm.  
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Figure VII.4. The wavelength peak before and after coating.  
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3. Experimental setup  

Two sensing heads, one uncoated and the other coated with agarose gel, with similar 

lengths (28.8 mm), were introduced in a thermal chamber (model Challenge 340, from 

Angelantoni Industrie, Cimacolle, Italy), and subjected to variations of relative humidity 

and temperature. The experiments in the thermal chamber were carried out 

simultaneously, to ensure that the sensors were exposed to the same environmental 

changes. This thermal chamber is equipped with a humidification–dehumidification 

system and a cooling–heating system that can change both RH and temperature in a 

controlled way. The optical fiber connector was preserved outside the thermal chamber 

and the reflection spectra were monitored using the interrogator sm125-500, Micron 

Optics Inc., operating at 2.0 Hz and wavelength accuracy of 1.0 pm. 

The RH experiments were carried out by keeping the temperature constant at 25 °C 

and by varying the RH between 20.0% and 98.5%RH, while the temperature 

measurements were done with a constant RH of 60.0%RH and a temperature variation 

between 10 and 70 °C. After each change in the parameters, a period of 30 min was 

allowed for the thermal chamber to stabilize. Figure VII.5 shows the scheme of the 

experimental setup for the characterization of the sensors. 

Thermal 

chamber

SMF

CSF

 

Figure VII.5. Experimental setup for the characterization of the sensors. 
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4. Discussion 

Figure VII.6 shows the wavelength shift dependence on the relative humidity for both 

sensors. As expected, the uncoated sensing head revealed to be insensitive to the RH 

variations. Although the refractive index of air depends on the RH [36], the variation is 

lower than the resolution of the proposed sensor, compromising its response. A linear 

fitting was adjusted to the experimental data, and a sensitivity of 0.9 pm/%RH was 

attained. On the other hand, the coated sensor presented a non-linear wavelength shift 

towards longer wavelengths (red shift) with the external RH variations, which is more 

prominent for higher values of RH. This non-linear behavior has already been observed 

for this type of multimode interferometer sensors when subjected to refractive index 

variations [35], being related to the increase of the agarose gel refractive index with RH.  
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Figure VII.6.  Measured wavelength shift dependence with relative humidity (RH), considering 

both sensors. 

Two different linear regions were considered to estimate the coated sensor sensitivity. 

The first region, for lower RH variations, ranges from 20.0% to 50.0%RH, whereas the 

second region, for higher RH variations ranges from 60.0% up to 98.5%RH. The 

sensitivities attained were of 18.6 pm/%RH (r2 = 0.988) and 44.2 pm/%RH (r2 = 0.922), for 

the first and second regions, respectively. 
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The temperature responses of the sensors without and with agarose were measured 

using the same interrogation scheme as shown in Figure VII.5. The temperature was 

raised in steps of 10 °C, from 10 up to 70 °C and RH was fixed to 60.0%RH. The response, 

shown in Figure VII.7, was linear in both cases. However, there was a drop in the 

sensitivity, from 13.6 pm/°C (uncoated sensor) to 7.8 pm/°C for the coated sensor. The 

sensor with agarose became approximately 2× less sensitive than the sensor without 

agarose. The cross-sensitivity between RH and temperature, for the coated sensor, was 

determined to be 0.2 RH/°C. 
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Figure VII.7. Response of the uncoated and coated sensors to the temperature variations. 

The coated sensor response time was evaluated through monitoring, in real time, the 

response when the RH of the thermal chamber was changed from 60% to 80% 

(Figure VII.8). Although the response time of the sensor is of ~1 min, it is prudent to wait 

at least for 5 min for the signal stabilization. This period is also related to the stabilization 

of the thermal chamber. 
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Figure VII.8. Response time of the sensor when subjected to a step humidity change from 60% to 

80%. 

With reference to the stability of the projected sensor, preliminary tests were also 

carried out. In the future, long-term and repeatability experiments will be performed to 

investigate the sensor stability. The coated sensor was placed in the thermal chamber at a 

constant RH and temperature of 60.0%RH and 25 °C, respectively. The peak wavelength 

was monitored during 120 min and the spectra were acquired once per 2 min. The same 

procedure was followed for a RH of 70.0%RH and 90%RH. The results are shown in 

Figure VII.9. For the first step, a mean wavelength of 1545.08 nm was determined, with a 

standard deviation of 4.7 pm. Regarding the second and third steps, the mean wavelength 

were of 1545.29 nm and 1546.11 nm, with a standard deviation of 5.1 pm and 4.1 pm, 

respectively. It should be highlighted that during the experiment, a temperature 

oscillation of 0.2 °C occurred in the thermal chamber, which might have also influenced 

the sensor response. 
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Figure VII.9. Step technique to estimate the resolution of the humidity sensor. 

The minimum value of humidity, δRH that the sensor is able to discriminate is given 

by Equation (3) [37]: 







2
RH

σ RH
δ

λ
 (1) 

where σλ is the maximum standard deviation of λ for both values of RH, and ΔRH and Δλ 

are the variation of RH and the mean wavelength shift between the two steps, 

respectively. By applying Equation (3), a resolution of 0.5%RH was obtained, considering 

the sensor operation in the higher RH region. It is important to note that this value is also 

influenced by the spectral resolution of the equipment used for data acquisition (in this 

case, of 1.0 pm). 

5. Conclusions 

A relative humidity (RH) sensor based on multimode interference fiber structure, 

coated with hydrophilic agarose gel was proposed. For comparison purposes, both an 

uncoated sensing structure and a coated one were subjected to the same experiments. As 

expected, the uncoated sensor was insensitive to the environmental RH changes. On the 

other hand, the sensor with agarose gel exhibited a maximum sensitivity of 44.2 pm/%RH 
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with a resolution of 0.5%RH. The proposed sensor has a great potential in real time RH 

monitoring, particularly in environments with high percentages of relative humidity. One 

example of such applications are the lodges where Madeira wine is stored for ageing, 

where the RH is usually in the range between 65.0%RH–75.0%RH. However, the 

environment should be carefully controlled to ensure the desired quality of the product. 

The proposed sensor presented low manufacturing cost and easy fabrication, being an 

alternative to other sensors. 
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VIIA - Additional Information 

In parallel with the above work, a new RH sensor based on a Fabry-Perot (FP) 

interferometer and coated with agarose was developed and experimentally demonstrated. 

The preliminary results here presented will be completed in the near future and a Journal 

paper is expected to be published. 

The sensor is fabricated by producing an air bubble in multimode fiber and reshaping 

the tip in order to produce a thin silica diaphragm (Figure VII.10), following the 

procedures described in Chapter IV. The proposed sensor contains three reflection 

mirrors, M1, M2, M3, that will create a 3-wave interferometer. The first cavity results from 

the reflections occurring between M1 and M2. The second cavity corresponds to the 

diaphragm formed between M2 and the MMF end face with agarose, M3. The third cavity 

results from the combination between two previous cavities.  

M1

M2 M3

 
Figure VII.10. Scheme of the fiber tip FP sensor, where M1, M2, M3 correspond to the sensor 

mirrors. 

With this structure, the swelling effect of agarose can be fully utilized for RH 

detection. The refractive index of agarose exhibits a linear increase with the increase of 

ambient RH level [38]. The thickness of agar film, expands when environmental RH 

increases, exhibiting a good linearity based on [18-20]. This will cause a change in the 

second cavity length, translating in a wavelength shift. As the layer becomes thicker, the 

RH sensitivity can be greatly enhanced. The interference spectrum of the FPI with 

different coating layers is shown in Figure VII.11.  
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Figure VII.11. The interference spectrum of the FP interferometer with different coating layers. 

The sensor head with an air cavity length of the 155.6 µm, was introduced in a 

thermal chamber, and subjected to variations of relative humidity and temperature. The 

experimental setup used was similar to the one described in Section 3. To investigate the 

effect of coating layers, the same sensor was coated 2 times. The RH was varied between 

20-80%, keeping the temperature constant at 25 °C, and the spectral changes were 

evaluated for each step. The experiments were repeated using the sensor with no coating, 

with one layer, and with two layers of agarose. Figure VII.12 shows the wavelength shift 

dependence on the RH. As expected, the uncoated sensing head revealed to be insensitive 

to the RH variations. On the other hand, the coated sensor presents a linear response 

towards longer wavelengths (red shift). Furthermore, as the number of agarose layers 

increases, the sensitivity of the sensor also increases. The sensitivity attained for the 

sensor with one coating layer was of 11.15 pm/%RH (r2 = 0.985), and for the two coating 

layers, was of 33.45 pm/%RH (r2 = 0.997), i.e. the sensitivity has doubled.  
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Figure VII.12. RH response of the sensor with a different number of agarose gel layers. 

The temperature response of the sensor was evaluated in the range between 10 °C and 

70 °C, and is depicted in Figure VII.13. The response was linear in all cases, and it did not 

change significantly after coating. The reason behind the different response, when 

compared to the previous sensing head, is still not fully understood, and more 

experiments need to be performed. Nevertheless, sensitivities of 3.71 pm/°C (r2=0.981), 

3.86 pm/°C (r2=0.956) and 3.27 pm/°C (r2=0.9725), were obtained for the uncoated sensor, 

with one, and two coating layers, respectively.  
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Figure VII.13. Response of the sensor with a different number of agarose gel layers to the 

temperature variations. 
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The stability of the sensor was also explored, under the same conditions as in the 

previous work, and the results are shown in Figure VII.14.  
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Figure VII.14. Step technique to estimate the resolution of the humidity sensor.  

By applying the Eq. 3 of Chapter VII, a resolution of 6.06%RH is obtained, considering 

that the sensor is operating in whole RH region. More experiments with increasing 

number of layers need be done and further studies are still required to fully understand 

the influence of the number of layers in the spectra as well as in the sensors response. 
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Final remarks and future work 

The work developed in the context of this PhD programme had the aim of developing 

new optical fiber sensors for challenging media. This Thesis, structured in 8 Chapters, 

started by revising the general concepts that set the basis for the work carried out over the 

PhD programme, as well as a contextualization of the work developed, comparing the 

configurations here proposed with the ones found in the literature. 

Considering an overall perspective, the work developed in this PhD was broadband, 

both on the number of sensing configurations and applications. New optical fiber sensors 

designs were explored in different contexts. Some were post-processed, either by 

producing microspheres with the aid of a fusion splicer, by developing new 

configurations by chemical etching or even by depositing specific materials in the sensing 

area. 

Regarding the second Chapter, it should be highlighted that, typically, the monitoring 

of lithium ion batteries is done externally, by measuring current, voltage, temperature, 

and resistance. Taking into account the complex and harsh chemical environment of 

batteries, the optical fiber sensors, due to its characteristics seem to be the best option to 

be embedded between the separators. For this reason, in the context of the European 

Project SIRBATT the first work was developed. FBGs were successfully embedded in 

pouch cells and a comparison between the external and internal temperature variations 

was performed. From this work it can be concluded that the permanent and immediate 

control of the internal temperature was feasible with the FBG sensor technology 

presented, offering the possibility of safe operation of Li-ion batteries by early detection of 

heat generation. However, a better understanding of the temperature and pressure 

variations in Li-ion cells under heavy-duty cycling is key for the improvement of cell 

components as well as battery management systems. Therefore, to complement the work 

done in this Chapter, the long-term study of embedded sensors could be done, i.e. after 

constant charge, discharge cycles, for a long period (1 year or more). It would also be 

interesting to dismantle the pouch cells after that time and observe whether the fibers 

were damaged or if they were still in good operating conditions. Still in this context, new 
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optical fiber sensors should be developed to detect other internal parameters, to guarantee 

favorable operating conditions and to allow a stable electrolyte interface. 

As part of the sensors presented in this Thesis were based on the Fabry-Perot (FP) 

interferometer, therefore it was essential to have an overview of what was published in 

the field. The state-of-the-art was done in the first Chapter, focusing in the configurations, 

the applications and the sensitivities obtained over the last four years. The FP 

configurations developed in the third Chapter were based on microcavities fabricated 

between a section of single mode fiber and multimode fiber. The results and the way of 

manufacturing the sensors were quite interesting, since only commercial fibers and a 

fusion splicer were needed. No liquids, oils or etching solutions were involved, emerging 

as an alternative to the previously developed air bubble sensors. 

These sensors have the potential to be applied in other fields. For example, by using 

them as non-destructive testing technique, in structural monitoring and in the detection of 

defects in different materials. The monitoring of additive manufacturing based hybrid 

processes for long or continuous fiber reinforced polymeric matrix composites is of vital 

importance in many industries. In the case of embedding these sensors in polymeric 

matrix composites, different encasing geometry can be explored. By combining these 

sensing devices with other configurations, such as the FBGs, simultaneous measurement 

of different parameters can be achieved. 

Furthermore, the geometry of the microspheres could still be improved in order to 

minimize losses and maximize the sensitivity. Using the same fabrication principles, these 

sensors could be fabricated at the tip of the fiber, and the sensor sensitivity to lateral 

loading could be further enhanced. The fabrication of the microsphere sensors with 

capillary tubes is other interesting matter of study. Different diameters of the hollow core 

fiber could give rise to different results, improving the sensitivity of the sensors.  

The microcavities developed in fourth Chapter were fabricated by producing an air 

bubble near the end face of a multimode fiber section and by reshaping the tip in order to 

produce a thin silica diaphragm. This Chapter was focused on measurement water-

glycerin mixtures. Taking these measurements into account, the sensor stability should be 
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evaluated by placing it in one solution, at a constant temperature, during a long period.  

The development of this sensor can be an added value, since this type of mixtures 

measurements are so important, for both for industry and medicine, since one of the most 

important parameters in the glycerin characterization process is the purity degree, 

especially when it is used in the pharmaceutical and cosmetic area. However this 

configuration has the possibility to expand to a wide variety of possible applications. For 

example, we could try to fabricate a micro-hole in the sensor tip using a focused ion beam, 

in order to develop a gas pressure sensor. In many industries, it is vital to monitor 

different gases, such as methane, carbon monoxide and dioxide, hydrogen, or even 

hydrogen sulfide. If, instead of a single micro-hole, the sensing structure had two micro-

holes, the sensor could potentially be used for refractive index sensing, both of gases or 

liquids. These new configurations will be taken into account in future work. 

The sensors developed in Chapters five, six, and seven are based on multimode 

interference for different applications. All these sensors are fabricated by splicing a short 

section of coreless silica fiber (CSF) to a standard single mode fiber and operate in 

reflection, which can represent a great advantage in practical applications. The influence 

on the CSF dimensions was the object of study in Chapter 5. The sensor was, in this case, 

applied for the measurement of refractive index variations in different glucose aqueous 

solutions. It was concluded that, although the CSF length does not play an important role 

in the sensor sensitivity, the reduction of diameter leads to a significant enhancement of 

the sensor response. 

The sixth Chapter was focused in determination of the thermo-optic coefficient (TOC) 

of ethanol-water mixtures, through refractive index and temperature measurements using 

an etched CSF tip. The measurement of TOC has attracted a lot of attention, due to its 

importance in chemical and bio-chemical analysis. To my knowledge, this was the first 

time that this coefficient was determined for solutions with different concentrations of 

ethanol in water using a fiber sensor. 

In Chapter seven, two relative humidity (RH) sensors were proposed and 

experimentally demonstrated. The first sensor also is based on multimode interference by 
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splicing a coreless fiber section to a single mode fiber, and by dip coating it with a 

hydrophilic agarose gel. A comparison between an uncoated and a coated sensor was 

made, and as expected, the uncoated sensor was insensitive to the environmental RH 

changes, whereas the sensor with agarose proved to be sensitive. As additional 

information, also presented in Chapter VII, a new moisture sensor based on a Fabry-Perot 

interferometer coated with agarose gel is proposed. These sensors have a great potential 

for real time RH monitoring, particularly in environments with high percentages of 

moisture, such as the lodges where Madeira wine is stored for ageing. 

The sensors developed in the last three Chapters have attractive advantages, such as 

simple structure, fast response and stability. However, there is still a lot of work to be 

done with these types of sensors. For instance, in a future work, it could be interesting to 

compare different techniques to manufacture tapers with this kind of MMI structures. 

Tapered fibers can be manufactured using a splicing machine, a CO2 laser or by chemical 

etching.  As the fiber becomes thinner, the evanescent field becomes more exposed to the 

environment, enhancing the sensor response to external media. One can also transform 

these MMI structures to measure different parameters such as flow or magnetic fluids 

with adequate post-processing through chemical etching or focused ion beam.  

In future developments it is also intended to address the challenge of detecting aroma 

compounds using purpose-designed optical fiber sensors. The detection of aroma 

compounds has been a subject of extensive study by the scientific community. The aroma 

can be constituted by a single chemical volatile organic compound (VOC) or by complex 

mixtures that, when present in air above a given concentration, can be detected by 

animals through the sense of olfaction [1]. The relevance of these compounds is 

undeniable in many industries, like food, beverages, and cosmetics. However, some VOCs 

can be extremely toxic for humans. Therefore, it is fundamental to detect the presence of 

VOCs with systems that present high sensitivity/resolution, fast response and are reliable 

[2]. The sensors here developed, together with new configurations based on evanescent 

field interaction will be further investigated for this application, particularly for the 

detection of specific aroma compounds that act as ageing markers in Madeira wine. 
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