218 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    An Impulse-C Hardware Accelerator for Packet Classification Based on Fine/Coarse Grain Optimization

    Get PDF
    Current software-based packet classification algorithms exhibit relatively poor performance, prompting many researchers to concentrate on novel frameworks and architectures that employ both hardware and software components. The Packet Classification with Incremental Update (PCIU) algorithm, Ahmed et al. (2010), is a novel and efficient packet classification algorithm with a unique incremental update capability that demonstrated excellent results and was shown to be scalable for many different tasks and clients. While a pure software implementation can generate powerful results on a server machine, an embedded solution may be more desirable for some applications and clients. Embedded, specialized hardware accelerator based solutions are typically much more efficient in speed, cost, and size than solutions that are implemented on general-purpose processor systems. This paper seeks to explore the design space of translating the PCIU algorithm into hardware by utilizing several optimization techniques, ranging from fine grain to coarse grain and parallel coarse grain approaches. The paper presents a detailed implementation of a hardware accelerator of the PCIU based on an Electronic System Level (ESL) approach. Results obtained indicate that the hardware accelerator achieves on average 27x speedup over a state-of-the-art Xeon processor

    A Survey and Evaluation of FPGA High-Level Synthesis Tools

    Get PDF
    High-level synthesis (HLS) is increasingly popular for the design of high-performance and energy-efficient heterogeneous systems, shortening time-to-market and addressing today's system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hardware functionality. Additionally, HLS is particularly interesting for designing field-programmable gate array circuits, where hardware implementations can be easily refined and replaced in the target device. Recent years have seen much activity in the HLS research community, with a plethora of HLS tool offerings, from both industry and academia. All these tools may have different input languages, perform different internal optimizations, and produce results of different quality, even for the very same input description. Hence, it is challenging to compare their performance and understand which is the best for the hardware to be implemented. We present a comprehensive analysis of recent HLS tools, as well as overview the areas of active interest in the HLS research community. We also present a first-published methodology to evaluate different HLS tools. We use our methodology to compare one commercial and three academic tools on a common set of C benchmarks, aiming at performing an in-depth evaluation in terms of performance and the use of resources

    Accelerating legacy applications with spatial computing devices

    Get PDF
    Heterogeneous computing is the major driving factor in designing new energy-efficient high-performance computing systems. Despite the broad adoption of GPUs and other specialized architectures, the interest in spatial architectures like field-programmable gate arrays (FPGAs) has grown. While combining high performance, low power consumption and high adaptability constitute an advantage, these devices still suffer from a weak software ecosystem, which forces application developers to use tools requiring deep knowledge of the underlying system, often leaving legacy code (e.g., Fortran applications) unsupported. By realizing this, we describe a methodology for porting Fortran (legacy) code on modern FPGA architectures, with the target of preserving performance/power ratios. Aimed as an experience report, we considered an industrial computational fluid dynamics application to demonstrate that our methodology produces synthesizable OpenCL codes targeting Intel Arria10 and Stratix10 devices. Although performance gain is not far beyond that of the original CPU code (we obtained a relative speedup of x 0.59 and x 0.63, respectively, for a single optimized main kernel, while only on the Stratix10 we achieved x 2.56 by replicating the main optimized kernel 4 times), our results are quite encouraging to drawn the path for further investigations. This paper also reports some major criticalities in porting Fortran code on FPGA architectures

    Exploiting Hardware Abstraction for Parallel Programming Framework: Platform and Multitasking

    Get PDF
    With the help of the parallelism provided by the fine-grained architecture, hardware accelerators on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many applications. However, designers are required to have excellent hardware programming skills and unique optimization techniques to explore the potential of FPGA resources fully. Intermediate frameworks above hardware circuits are proposed to improve either performance or productivity by leveraging parallel programming models beyond the multi-core era. In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which targets enhancing productivity without losing performance. It helps designers develop parallelized applications and implement them on FPGAs. The PolyPC framework implements a custom hardware platform, on which programs written in an OpenCL-like programming model can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a complete development environment including intermediate software framework, and automatic system builders. Designers\u27 programs can be either synthesized as hardware processing elements (PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both software and hardware PEs to improve the efficiency of utilizing hardware resources. The PolyPC framework is evaluated regarding performance, area efficiency, and multitasking. The results show a maximum 66 times speedup over a dual-core ARM processor and 1043 times speedup over a high-performance MicroBlaze with 125 times of area efficiency. It delivers a significant improvement in response time to high-priority tasks with the priority-aware scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the design flow, the OpenCL application programs are converted into executables through the front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and the framework is generated from users\u27 specifications

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu

    Efficient Elliptic Curve Cryptography Software Implementation on Embedded Platforms

    Get PDF

    The hArtes Tool Chain

    Get PDF
    This chapter describes the different design steps needed to go from legacy code to a transformed application that can be efficiently mapped on the hArtes platform
    corecore