
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2013, Article ID 130765, 23 pages
http://dx.doi.org/10.1155/2013/130765

Research Article
An Impulse-C Hardware Accelerator for Packet Classification
Based on Fine/Coarse Grain Optimization

O. Ahmed, S. Areibi, R. Collier, and G. Grewal

Faculty of Engineering and Computer Science, University of Guelph, Guelph, ON, Canada

Correspondence should be addressed to S. Areibi; sareibi@uoguelph.ca

Received 26 March 2013; Revised 10 June 2013; Accepted 10 July 2013

Academic Editor: Walter Stechele

Copyright © 2013 O. Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current software-based packet classification algorithms exhibit relatively poor performance, prompting many researchers to
concentrate on novel frameworks and architectures that employ both hardware and software components.The Packet Classification
with Incremental Update (PCIU) algorithm, Ahmed et al. (2010), is a novel and efficient packet classification algorithm with a
unique incremental update capability that demonstrated excellent results and was shown to be scalable for many different tasks and
clients. While a pure software implementation can generate powerful results on a server machine, an embedded solution may be
more desirable for some applications and clients. Embedded, specialized hardware accelerator based solutions are typically much
more efficient in speed, cost, and size than solutions that are implemented on general-purpose processor systems.This paper seeks
to explore the design space of translating the PCIU algorithm into hardware by utilizing several optimization techniques, ranging
from fine grain to coarse grain and parallel coarse grain approaches. The paper presents a detailed implementation of a hardware
accelerator of the PCIUbased on anElectronic SystemLevel (ESL) approach. Results obtained indicate that the hardware accelerator
achieves on average 27x speedup over a state-of-the-art Xeon processor.

1. Introduction

The task of packet classification entails the matching of
an incoming packet with rules (established in an exist-
ing classifier) to determine the type of action that would
be appropriate. Although this problem has been studied
extensively, the fast emergence of new network applications,
coupled with the rapid growth of the Internet, has introduced
many new challenges, and the research community remains
motivated to design novel and efficient packet classification
solutions. Packet classification plays a crucial role for a
number of network services, including, but not limited to,
policy-based routing, traffic billing, and preventing unautho-
rized access using firewalls. Moreover, packet classification
algorithms that will scale to large, multifield databases are
becoming essential for a variety of applications, including
load balancers, network security appliances, and quality of
service filtering. Unfortunately, the current, software-based
packet classification algorithms exhibit relatively poor perfor-
mance, prompting many researchers to concentrate on novel
frameworks and architectures that employ both hardware and

software components. The continuous explosive growth of
Internet traffic will ultimately require that future packet clas-
sification algorithms are implementedwith a purely hardware
approach.

With our recent work [1] on the packet classification
problem, we proposed a novel algorithm, called “Packet Clas-
sificationwith an IncrementalUpdate” (PCIU), that exhibited
a substantial improvement over previous approaches. The
PCIU provides lower preprocessing time, lower memory
consumption, greater ease for incremental rule update, and
faster classification time (when compared to other state-of-
the-art algorithms), with the maximummemory required by
PCIU for accommodating 10,000 rules requiring less than
2.5MB for the worst case. In this paper, we attempt to give
detailed explanation of the implementation of the PCIU
algorithm that was previously published in [1] in order for the
readers to reproduce the work. We are releasing the design
and implementation publicly to assist those interested in
implementing the PCIU algorithm along with benchmarks
[2]. Furthermore, we propose enhancements to the PCIU
[1] in this paper by making it more accessible, for a variety

2 International Journal of Reconfigurable Computing

of applications, by way of a hardware implementation. Field
Programmable Gate Arrays (FPGAs) are considered to be
excellent platforms and candidates for mapping packet clas-
sification to hardware. FPGAs provide an excellent trade off
between reprogrammability and performance comparedwith
traditional Application Specific Integrated Circutis (ASICs).
The term flexibility refers to the concept of reprogramming
the FPGA as the algorithm is modified and updated. The
performance on the other hand refers to the performance that
can be achieved by exploiting parallelism at the bit level in
addition to instruction and task level. FPGAs are considered
to be a good fit for classification since the target is “embedded
systems” which with typically to consume less power than
current state-of-the-art general-purpose processors. In addi-
tion to reducing power consumption “Embedded systems”,
attempt to increase reliability and decrease operating cost.
Embedded systems are specialized HW/SW computer sys-
tems, that are custom-designed to perform an often highly
real-time constrained task in generally small form factor
designs. An FPGA is also an excellent candidate for run
time dynamic reconfiguration where only some parts of the
algorithm can be present while others are swapped in and out
as required.This enables any classification based algorithm to
consume less power and also to fit into FPGAs with different
sizes.

When mapping any algorithm onto a reconfigurable
computing platform such as FPGAs, an important step
involves using an appropriate language for design entry and
hardware synthesis. VHDL and Verilog are two popular
hardware description languages (HDL) used in both industry
and academia. The main advantage of these languages is the
efficient hardware produced via synthesis since they describe
the hardware at the register-transfer level. However, designers
consume quite a substantial amount of time dealing with
structural details of the actual hardware. On the other hand,
higher level languages or Electronic SystemLevel (ESL) based
languages such asHandel-C [3], Impulse-C [4], andCatapult-
C [5] have started to gain popularity as an alternative to
VHDL and Verilog for the purpose of hardware acceleration
of software-based applications. One of the goals of these
languages is to enable designers to focus their attention at
higher level of abstraction; that is, on the algorithm to be
mapped into hardware rather than the lower level details of
the circuit to be built. Designers can start with automatic
compilation and then focus their efforts on improving loops
and constructs to further enhance the performance of the
hardware accelerator. The designer’s required effort is, there-
fore, reduced in many cases to simply restructuring the code
or embedding simple compiler directives.

In this work we implement the PCIU algorithm [1]
using Impulse-C [4]. Impulse-C is compatible with standard
ANSI C, allowing standard C tools to be used for designing
and debugging applications targeting FPGAs.The Impulse-C
compiler accepts a subset of C and generates FPGA hardware
in the form of hardware description language (HDL) files.
Impulse-C allows embedded systems designers and software
programmers to target FPGAdevices for C-language applica-
tion acceleration. One of the main disadvantages of Impulse-
C is the loss of the fine-grained control over the resulting

hardware. Therefore, designers are encouraged to manually
restructure their code to optimize the resulting hardware.
Typically, this is done by applying various transformations to
the original source code. However, the sheer volume of these
language-level transformations leads to a whole design space
of potential solutions, all based on different optimizations.
The main goal of this paper is (i) to improve the run-time
performance of the PCIU packet classification algorithm
by parallelizing the algorithm and eventually mapping it
onto an FPGA, and (ii) to perform an empirical study to
determine the overall effectiveness of different language-level
transformations when using Impulse-C to implement the
PCIU algorithm.

Themain contributions of this paper can be clearly stated
as follows.

(1) The majority of networking applications are beyond
the capabilities of general-purpose processors since
current networking trends are pushing towards com-
plex protocols that provide additional and improved
network services. The Impulse-C based implemen-
tation proposed in this work achieves substantial
speedup (27x) over a pure software implementation
running on a state-of-the-art Xeon processor.

(2) An extensive experimental analysis is performed in
which all possible combinations of optimizations are
considered. To the best of our knowledge, this is the
first paper to propose such extensive exploration for
fine-grained optimization of Impulse-C. The explo-
ration performed can be easily extended to similar
applications that utilize ESL based approaches.

(3) In addition to a full factorial experiment that will
allow us to test interactions between different com-
binations of language-level transformation based on
fine grain optimization (FGO), the authors seek
to further improve performance via Coarse Grain
(CGO) and Parallel Coarse Grain Optimization
(PCGO) by exploiting both data parallelism and
pipelining.

The remainder of this paper is organized into six sections.
Section 2 provides an overview of the packet classification
problem, along with necessary background. Section 3 pro-
vides a brief overview of the most significant work published
in the field of packet classification. In Section 4, the PCIU
algorithm [1] is described briefly along with the different
stages of preprocessing, classification, and updating. An ESL
based implementation of the PCIU algorithm, using Impulse-
C, is described extensively in Section 5. Section 6 then pro-
vides a comparison between the Impulse-C implementation
and the pure software version running on a state-of-the-art
Xeon processor. Conclusions and future directions are finally
presented in Section 7.

2. Background

The principle objective of a packet classification algorithm is
to match the information contained in a packet’s header to a
set of rules to determine how the packet should be processed.

International Journal of Reconfigurable Computing 3

Table 1: A five-rule classifier.

No.
IP (64 bits) Port (32 bits) Protocol (8 bits)

Source (32 bits) Destination (32 bits) Source (16 bits) Destination (16 bits)
Chunk# 0 : 1 : 2 : 3 Chunk# 4 : 5 : 6 : 7 Chunk# 8 : 9 Chunk# 10 : 11 Chunk# 12

1 0.0.0.0/0 0.0.0.0/0 0 : 65535 21 : 21 0/ff
2 0.83.1.0/24 0.0.4.6/32 0 : 65535 20 : 30 17/ff
3 0.83.4.0/22 0.0.0.0/0 0 : 65535 21 : 21 0/0
4 0.0.9.0/24 0.0.0.0/0 0 : 65535 0 : 65535 0/ff
5 0.83.0.77/32 0.0.4.6/32 0 : 65535 0 : 65535 17/ff

A typical IP packet is usually classified according to the first
five fields in the packet header, and Table 1 exemplifies a
classifier that specifies five rules against which packet headers
could be matched. The first and second fields are each 32
bits in length and correspond to the network layer addresses
(the source IP and destination IP addresses, resp.). The third
and fourth fields are each 16 bits in length and correspond
to the transport layer addresses (the source and destination
ports, resp.). The fifth and final field is 8 bits in length
and corresponds to the protocol. It should be noted that
although the transport layer address fields are specified as
ranges, the network layer address and protocol fields are
specified by way of a prefix. As a clarifying example, for a
network layer address 0.83.4.0/22, let 𝐴 = 0.83.4.0 and let
𝑀 be a 22 bit mask equivalent to 255.255.252.0, the lower
bound of the range is the result of a logical “AND” operation
of 𝐴 with 𝑀, and the upper bound of the range is the
result of a logical “OR” operation of the lower bound with
2
32-Mask
−1. For the preceding example, the range specified

by the 22 bit mask would extend from 0.83.4.0 to 0.83.7.255.
When the mask is specified to be exactly 32 bits in length,
a network layer address is specified precisely by the field.
Contrarily, for shorter masks, the classifier can specify a
large range of addresses and could conceivably be matched
quite frequently. Given that the task of matching a packet
header to a set of rules would clearly entail a complex,
multidimensional search, support for large rule sets can be
difficult to obtain with a purely software approach. This has
led many researchers to explore reconfigurable computing
approaches and, more specifically, FPGAs.

2.1. Reconfigurable Computing. Reconfigurable computing
[6] is an innovative approach that attempts to cope with
the inefficiency of conventional computing systems and has
demonstrated significant potential for the acceleration of
general-purpose computing. More specifically, application
specific properties, such as parallelism, data granularity, and a
regularity of computation can be exploited by reconfigurable
computing approaches through the creation of pipelines,
custom operators, varying bit widths (compared to the fixed
width of general-purpose processors), and interconnection
pathways. At the heart of reconfigurable computing is the
SRAM-based FPGA, providing fine grained logic and inter-
connection elements that exhibit a function and structure
that users can customize to suit the specific requirements
of an application. FPGAs are designed to provide hardware

designers with the near flexibility of software at almost ASIC
hardware speeds. Flexibility in the context of FPGAs refers to
the ability of designers to program and reprogram the device
as the algorithm is modified over time. Using traditional
HDLs such as VHDL or Verilog limits the flexibility of
such devices since the compile time of such devices (place
and route) takes a substantial amount of time compared to
compiling software programs in traditional general-purpose
processors. However, raising the abstraction level by using
Electronic System Level (ESL) tends to reduce development
times since verification of the designs can be achieved much
faster.

Because of its capacity for reconfiguration and mas-
sive parallelism, FPGA technology has become an attrac-
tive option for implementing real-time network processing
engines. State-of-the-art FPGA devices, such as the Xilinx
Virtex-7, provide large amounts of on-chip dual-port mem-
ory and a high clock rate with configurable word widths.
However, if an FPGA device does not contain enough Block
RAM then designers have to resort to platforms with external
memory to accommodate the architecture and this will affect
the speed expected of the hardware accelerator due to com-
munication overhead. FPGA logic devices can achieve high
levels of performance if they are used to implement custom,
algorithm-specific circuits to accelerate the overall execution
speed of the algorithm.These systems remain flexible because
the same custom circuitry for one algorithm can be reused as
the custom circuitry for a completely separate (and different)
algorithm.

2.2. Electronic System Level. Designing hardware accelera-
tors based on the ESL [7] is considered a different form
of partnership between the hardware and software design
philosophies. An ESL is typically a high-level language, with
many similarities to software languages (such as C) in terms
of syntax, program structure, flow of execution, and design
methodology. The difference between such an implementa-
tion and a pure software implementation comes in the formof
constructs that are tailored to hardware development design,
such as the ability to write code that is executed in parallel.
This makes it very easy to translate a software application
into its HDL equivalent without the need to start the design
process from scratch.The high level of abstraction also allows
designers to develop HDL solutions more quickly and easily
than what would be possible in a pure hardware description
language such as VHDL or Verilog. Although the efficiency

4 International Journal of Reconfigurable Computing

of the hardware that is generated by an ESL is generally less
than that which can be achieved using VHDL or Verilog,
decrease in development time will often justify the trade-off.
Furthermore, most C programmers should be able to create
effective ESL hardware designs with little additional training
instead of investing the time to master VHDL and Verilog;
the programmer can, instead, take advantage of the long-
standing and widespread foundation of C.

3. Related Work

As stated previously, a considerable body of research has
been invested in the development of packet-classification
algorithms.The need for a standard approach to performance
evaluation was addressed in [8], where the authors intro-
duced a suite of benchmarking tools entitled ClassBench,
that has since then been frequently employed by researchers
for evaluating novel approaches. It has been noted that to
circumvent the shortcomings of software-based approaches
to packet classification, many novel techniques employ both
hardware and software components. It is emphasized that
pure software implementations typically suffer from three
major drawbacks: a relatively poor performance in terms of
speed (due to the number of memory accesses required), a
lack of generalizability (in order to exploit certain features of
a specific type of rule-set), and a large need for preprocessing.
In addressing the first of these shortcomings, the authors
in [9] proposed an algorithm that would employ binary
search on prefix length, reducing the average number of
memory accesses necessary to between 18 and 67 (for rule
sets of about 5000 rules). In an alternative effort to improve
performance (with respect to speed), the authors in [10]
made the assumption that the number of distinct overlapping
regions would be low even when the number of rules is high.
Although the performance improvement was noticeable,
the features exploited were specific to the networks being
considered, limiting the generalizability of the approach.

To achieve the flexibility of software at speeds normally
associated with hardware, researchers frequently employ
reconfigurable computing options using FPGAs. Although
the flexibility and the potential for parallelism are definite
incentives for FPGA-based approaches, the limited amount
of memory in state-of-the-art FPGA designs entails that
large routing tables are not easily supported. Consequently,
researchers frequently make use of ternary content address-
able memory (TCAM) when developing new packet classifi-
cation algorithms. Although TCAM can be used to achieve
high throughput, it does exhibit relatively poor performance
with respect to area and power efficiency. Nevertheless, the
authors in [11] were able to develop a scalable high throughput
firewall, using an extension to the Distributed Crosspro-
ducting of Field Labels (DCFL) and a novel reconfigurable
hardware implementation of Extended TCAM (ETCAM). A
Xilinx Virtex 2 Pro FPGAwas used for their implementation,
and as the technique employed was based on a memory
intensive approach, as opposed to the logic intensive one,
on-the-fly updating remained feasible. A throughput of 50
million packets per second (MPPS)was achieved for a rule set

of 128 entries, with the authors predicting that the throughput
could be increased to 24Gbps if the design were to be
implemented on Virtex-5 FPGAs. In their development of
a range reencoding scheme that fits in TCAM, the authors
of [12] proposed that the entire classifier be reencoded (as
opposed to previous approaches that elect not to reencode
the decision component of the classifier). The approach in
[12] (i.e., the treatment of the reencoding as though it were a
topological transformation process between hyperrectangles)
significantly outperforms previous re-encoding techniques,
achieving at least five times greater space reduction (in terms
of TCAM space) for an encoded classifier and at least three
times greater space reduction for a reencoded classifier and its
transformers. Another interesting range encoding scheme to
decrease TCAMusage was proposed in [13], with ClassBench
being used to evaluate the proposed scheme. The encoder
proposed in [13] used between 12% and 33% of the TCAM
space needed in DRIPE or SRGE and between 56% and 86%
of the TCAM space needed in PPC, for classifiers of up to 10 k
rules.

Several other works on increasing the storage efficiency
of rule sets and reducing power consumption have also
been investigated, with register transfer level (RTL) hardware
approaches proposed by many researchers [14, 15]. Although
the dual-port IP lookup (DuPI) SRAM-based architecture
proposed in [14] maintains packet input order and supports
in-place nonblocking route updates and a routing table of up
to 228K prefixes (using a single Virtex-4), the architecture
is only suitable for single-dimension classification tasks.
The authors of [15], on the other hand, proposed a five-
dimension packet classification flow, based on a memory-
efficient decomposition classification algorithm, which uses
multilevel Bloom Filters to combine the search results from
all fields. Bloom Filters, having recently grown in popularity,
were also applied in the approaches described in [15, 16].
The interesting architecture proposed in [16] used amemory-
efficient FPGA-based classification engine entitled Dual-
Stage Bloom Filter Classification Engine (2sBFCE) and was
able to support 4 K rules in 178K bytes memories. However,
the design takes 26 clock cycles on average to classify a
packet, resulting in a relatively lower average throughput
of 1.875Gbps. The hierarchical-based packet classification
algorithm described in [15] also made use of a Bloom Filter
(for the source prefix field), and the approach resulted in a
better average and worst-case performance in terms of the
search and memory requirements.

Several novel packet classification algorithms targeting
reconfigurable computing platforms (mapped on FPGAs)
have been published in recent years [17–21]. In [17] sev-
eral accelerators based on hardware/software codesign and
Handel-C were proposed. The hardware accelerators pro-
posed achieved different speedups over a traditional general-
purpose processor. In [21], a novel algorithm (GBSA) is
proposed. The GBSA was evaluated and compared to several
state-of-the-art techniques including RFC, HiCut, Tuple, and
PCIU. Results obtained indicate that the GBSA outperforms
these algorithms in terms of speed, memory usage, and pre-
processing time.The GBSA algorithm introduced in [21] was
mapped into hardware using different ESL flows (Impulse-C

International Journal of Reconfigurable Computing 5

and Handel-C). The resulting hardware accelerator based on
the above mentioned ESL techniques achieved on average 9x
speedup.

The authors of [18] proposed a multifield packet clas-
sification pipelined architecture called Set Pruning Multibit
Trie (SPMT). The proposed architecture was mapped onto
a Xilinx Virtex-5 FPGA device and achieved a throughput
of 100Gbps with dual-port memory. In [19] the authors
presented a novel classification technique that processes
packets at line rate and targets NetFPGA boards. However,
there is no report of preprocessing time nor evaluation of the
architecture on any known benchmarks. An interesting work
by [20] presented a novel decision-tree based linear algorithm
that targets the recently proposed OpenFlow that classifies
packets using up to 12 Tuple packet header fields.The authors
managed to exploit parallelism and proposed a multipipeline
architecture that is capable to sustain 40Gbps throughput.
However, the authors evaluated their architecture using only
the ACL benchmark from ClassBench.

From the previous discussion it is clear that there are
several deficiencies in the current published algorithms. The
proposed PCIU algorithm clearly distinguishes itself from
other algorithms published in the past. The PCIU attempts
to improve speed via clustering and also efficient hardware
implementations. The PCIU also can accommodate efficient
incremental updates to the rule set which is a key feature to
support session based packet classificationwhich is lacking in
many published algorithms.

4. The PCIU Algorithm

A taxonomy for packet classification algorithms was intro-
duced in [22] and specifies that these algorithms can be
categorized according to whether or not they are based
upon an exhaustive search, a decision tree, a decomposition
approach, or a Tuple space. Since the PCIU was designed as
a “divide-and-conquer” approach, our algorithm should be
categorized as a decomposition based approach. The follow-
ing subsections will briefly describe the three stages of the
PCIU algorithm: preprocessing, classification, and incremen-
tal update, andwill also describe our experimental design and
benchmarking approaches.

4.1.The Preprocessing Phase. ThePCIU algorithm [1] is based
on the simple notion that there is a redundancy that exists
in the rule set as it is divided into chunks. For a five-
dimensional packet classification problem, similar to that
which is depicted in Table 1, a hierarchical approach is used,
with the main classification task being decomposed into
subproblems and with the final results recombined at the end
of the process. The principle behind the PCIU algorithm can
be summarized in the following steps. The first two steps
involve converting the rule set from different presentations
to range presentations. The last two steps ((3) and (4)) are
more related to the detailed example presented in the next
subsection.

(1) The rule set is converted from the different possible
representations to a range representation, and an

upper bound and a lower bound on the range asso-
ciated with each of the five dimensions (or fields) in
the rule set are computed.

(2) Each of the five dimensions is divided into 8-bit
chunks. Since the rule size for this example would be
104 bits, the total number of chunks would be 13. The
range associatedwith each chunk (designated chunk

𝑖
)

would be (0 to 255), and, for each chunk, a lookup
table (designated table

𝑖
) of size 28 is assigned.

(3) A group of equivalent rules is then generated. The
goal is to exploit the overlap of rules (see Table 1) and
then generate clusters or groups of rules which share
similar features.

(4) The groups are converted to a binary vector, where
the bit locations correspond to the rule ID. This
information can be used in the classification phase.

4.2. A Detailed Preprocessing Example. In this subsection, we
present an example to clarify how preprocessing is performed
in our approach by PCIU. The example is based on the
information for chunk #10 found in Table 1. The overall
procedure is illustrated in Figure 1. Note that since the focus
is on a single, 1-byte chunk, the range used for representing
the rules is limited to values between 0 and 255.

Step 1. For each rule listed in Table 1, create a table entry of
the form (rule, range).

Step 2. For each table entry in Step 1, create a new table entry
of the form (start, end) by decomposing the range into “start-
ing” and “ending” values.

Step 3. For each table entry in Step 2, identify any duplicate
entries. For example, rules 1 and 3 are represented by the
same start and end values: (21, 21). Therefore, the table entry
associated with rule 3 can be considered redundant. This is
indicated in the table by the use of the keyword “void” in
the row corresponding to rule 3. A similar situation exists for
rules 4 and 5, which are also both represented by the same
start and end values: (0, 255).

Step 4. First, remove all redundant table entries (marked
void) identified in Step 3. Then sort into ascending order the
remaining values in the “Start” and “End” columns, respec-
tively.

Step 5. Merge (in ascending order) the values in the “Start”
and “End” columns (found in Step 4) into a single (ordered)
column. Then mark each value as either “Start” or “End.”

Step 6. Use the “Start” and “End” values (in column type)
from Step 5 to create a new set of clusters which we will refer
to as Init-Clu. In practice, this is done byworking from the top
of the table towards the bottomof the table of Step 5 and using
the information in consecutive rows of the table to generate
the new “Start” and “End” values of the table in Step 6. For
example, entry 0 of Step 5 has a “Start” value of 0, while entry
1 has a “Start” value of 20. These can be combined to form

6 International Journal of Reconfigurable Computing

Rule # Range

1

2

3

4

5

Starting

21

20

21

0

0

Ending

21

30

21

255

255

Range

decomposition

Starting

0

20

21

Ending

21

30

255

Combine
equivalent rule

sets into
groups

Starting

21

20

Void

0

Void

Ending

21

30

Void

255

Void

Sorting

Val
0
20
21
21
30
255

Combine

entries

Init-Clu
0
1
2
3
4

Start
0
20
21
22
31

End
19
20
21
30
255

Generating

ranges from
previous
 entry

0
1
2
3
4

Rule list
Final-Clu

0
1
2

Rule list Init-Clu value

2

Bit vector
11000
11010
11111

Redundancy

removal

Type
Start
Start
Start
End
End
End

Step #1 Step #2 Step #3

Step #4Step #5Step #6

Step #7
Step #8

Entry #
0
1
2
3
4
5

Init-Clu

20–30

21-21

21-21

0–255

0–255

Map rules
from Step #1
that overlap
with ranges
of Step #6

4, 5
2, 4, 5

1, 2, 3, 4, 5
1, 2, 3, 4, 52, 4, 5

2, 4, 5

4, 5

4, 5
1, 3
0, 4

Figure 1: Preprocessing phase: steps of processing chunk #10 in the rule set of Table 1.

a new Init-Clu starting at 0 and ending at 19. Note that it is
necessary to stop at 19, since 20 is a “Start” value not an “End”
value. As a further example, consider entries 3 and 4 of Step 5.
Entry 3 has an “End” value of 21, while entry 4 has an “End”
value of 30. Since entry 3 is marked as an “End” value, it can
be used to create a new Init-Clu that starts at “21,” one more
than 20.

Step 7. All Init-Clu formed in Step 6 will be preserved in
Step 7. In this step the preprocessing stage will attempt to
map rules from Step 1 to Init-Clu in Step 6. This is achieved
by grouping all rules identified in Step 1 that overlap with
the new “Start” and “End” Init-Clu formed in Step 6. For
example, rules 4 and 5 (0 to 255) from Step 1 overlap with
the “Start” and “End” values (0 and 19, resp.) of Init-Clu with
index 0 in Step 6, thus giving rise to this Init-Clu in Step 7.

Step 8. Remove any redundant rule sets found in Step 7. A
rule set is considered redundant if it obviously repeats.

(1) The number of Final-Clu created by this step is a
function of the original rule set existing and also the
overlap between the rules. The Final-Clu created in
this step is a simple postprocessing step that attempts
to combine all the Init-Clu formed in Step 7 that
overlap in the rule list. It is important to notice that
the total number of Final-Clu created in this step is
three which is less than the total number of original
rules (i.e., 5) found in Step 1.The newly created Final-
Clus are stored in a memory (Mem

1
).

(2) A bit vector contains all rules in the newly created
cluster. The length of the bit vector corresponds to

the original rule set size. In this example the original
rule set contained 5 rules and therefore each bit vector
has to be of length 5. A bit vector is created to signify
the values belonging to the new Final-Clu formed in
Step 8. These bit vectors are stored in yet a second
memory (Mem

2
). For example, since rules 4 and 5

are now part of Final-Clu with index 0, the bit vector
11000 is created.

The complexity of preprocessing a set of 𝑁 rules is Θ(𝑁)
[1]. As a result of the steps described in the preprocessing
phase, two memories (Mem

1
and Mem

2
) will be populated

with all the necessary information as shown in Figure 2. This
information is used in the classification phase.

4.3. Classification Phase. Following the construction of the
13 lookup tables and the corresponding bit vectors (as per
the previous example), the lookup tables are ready for the
process of classification, as seen in Figure 2. An incoming
packet header is first divided into 13 chunks (of eight bits) and
each is used as an address for its lookup table (Mem

1
). Each

lookup table (Mem
1
) points to a specific bit vector (Mem

2
)

and, as a result, for a rule set containing𝑁 rules, 13 bit vectors
of size𝑁 will be obtained. It follows then that the application
of a logical “AND” operation to these vectors will produce the
matched rule for the arriving packet.

4.4. Incremental Update Phase. This phase can be further
subdivided into two tasks—adding a new rule and deleting
an existing rule. The former represents one of the main
features of the PCIU algorithm, namely, that the algorithm

International Journal of Reconfigurable Computing 7

0 31 32 63 64 79 80 95 96 103

Source IP Destination IP Source port Destination

Winner
rule

number
generator

0 7

The incoming packet
3232 16 16 8

8 15 16 23 24 31 32 39 40 47 48 55 56 63 64 71 72 79 80 87 88 95 96 103

Mem1

Mem2

Mem1
Mem1

Mem1

Mem1

Mem1

Mem1
Mem1

Mem1

Mem1

Mem1

Mem1

Mem1
8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

ANDing
16-bit

Rule
number

Protocol port

Chunk #0

Chunk #1

Chunk #2

Chunk #3

Chunk #5
Chunk #6

Chunk #8

Chunk #7

Chunk #9

Chunk #10

Chunk #11

Chunk #12

Chunk #4

Bit vector #0

Bit vector #1

Bit vector #2

Bit vector #3

Bit vector #4

Bit-vector #5

Bit vector #6

Bit vector #7

Bit vector #8

Bit vector #9

Bit vector #10

Bit vector #11

Bit vector #12

N-bit N-bit
N-bit

N-bit
N-bit

N-bit
N-bit

N-bit

N-bit

N-bit

N-bit
N-bit

N-bit

N-bit

Figure 2: Classification phase of the PCIU algorithm.

can accommodate efficient incremental updates to the rule-
set. It is, however, necessary to specify a design constraint on
the capacity of the system (in terms of the number of rules).
Although this value cannot be exceeded during the update
phase, it is relatively simple to introduce a new rule through
the following process.

(1) Find the first empty location in the rule set (desig-
nated RuleID) and insert the new rule at that location.

(2) Divide the new rule into 13 chunks of eight bits each.
(3) Assign a lookup table for each chunk. Each chunkwill

represent a range within the lookup table.
(4) For the range associated with each chunk, apply a

bitwise logical OR operation of all bit vectors in this
range with 2RuleID.

The latter task (i.e., the deletion of an existing rule) can also
be easily accomplished, according to the following process.

(1) Mark the location in the rule set (again designated as
RuleID) as empty.

(2) Divide the rule to be deleted into 13 chunks, defining
the ranges according to the same method described
previously.

(3) For every bit vector in each range (from the lower
bound to the upper bound), apply a bitwise logical
“AND” operation between the vector and the comple-
ment of (2RuleID).

Incremental updates (adding and/or deleting rules) might
lead to internal fragmentation in the memory. Since prepro-
cessing in PCIU is a fast and efficient task, fragmentation is
not considered to be an issue since the packet classification
engine can be reset and restarted. However, incremental
update may cause some delay in the classification process

since adding or deleting rules might take several clock cycles
which will affect the real-time constraints imposed on the
system.

4.5. The Experimental Design and Benchmarking Approaches.
For our experiment we used ClassBench [8] as the source for
the rule sets. These benchmarks have been used extensively
by many researcher in the past to evaluate their proposed
packet classification algorithms along with their hardware
implementations. The advantage of using these specific
benchmarks is to compare our proposed current work with
previous work published in the literature. These benchmarks
not only reflect real life scenarios but also have different
characteristics since they were designed for miscellaneous
applications. The amount of overlap regions varies from
small to high which causes challenges for any new developed
classification algorithm.

ClassBench consists of three tools, (i) Filter Set Analyzer,
(ii) Filter Set Generator, and (iii) Trace Generator. Table 2
shows the size of each rule set and the trace file (i.e., testing
packets) associated with it. The seeds used by filter sets to
produce rule sets and the programs used to generate these
rule sets are also taken from [8].

ClassBench was used to perform a battery of analysis
on 12 real filter sets, provided by several Internet Service
Providers (ISPs), a network equipment vendor, and other
researchers working in the field. Each of these filter sets uses
one of the following formats.

(1) Access Control List (ACL). This format is a standard
for security, VPN, and NAT filters for firewalls and
routers (enterprise, edge, and backbone).

(2) Firewall (FW).This is a proprietary format for speci-
fying security filters for firewalls.

8 International Journal of Reconfigurable Computing

Table 2: Benchmark rule sets and traces.

Benchmark ACL FW IPC
Size Rule Trace Rule Trace Rule Trace
0.1 k 98 1000 92 920 99 990
1 k 916 9380 791 8050 938 9380
5 k 4415 45600 4653 46700 4460 44790
10 k 9603 97000 9311 93250 9037 90640

(3) IPChain (IPC).This is a decision-tree format for secu-
rity, VPN, and NAT filters, for software-based sys-
tems.

The PCIU algorithm was evaluated and compared to
state-of-the-art techniques such as RFC andHiCut using sev-
eral benchmarks in [1]. Results obtained indicate that PCIU
outperforms these algorithms in terms of speed, memory
usage, incremental update capability, preprocessing time, and
classification time.

5. The Proposed Hardware Accelerator

While a pure software implementation can generate powerful
results on a server machine, an embedded solution may be
more desirable for some applications and clients. Embedded,
hardware based specialized solutions are typicallymuchmore
efficient in terms of speed, cost, and size than solutions
that are implemented on general-purpose processor systems.
This paper seeks to explore the design space of translating
the PCIU algorithm into hardware by utilizing several opti-
mization techniques, ranging from fine-grain to coarse grain
and parallel coarse grain approaches. The methodology is
presented in the following subsections and fully discloses the
implementation tools, techniques, strategies for optimization,
and results.

5.1. Experimental Setup and Impulse-C. Impulse-C [4] is a
powerful ESL language that supports the development of
highly parallel, mixed hardware/software algorithms and
applications. It is an extension of ANSI C using C-compatible
predefined library functions, with support for communicat-
ing process parallel programming models. Although these
extensions are minor in terms of additional data types
and predefined function calls, they allow multiple parallel
program segments to be described, interconnected, and
synchronized [23].

The Impulse-CCoDeveloper ApplicationManager Xilinx
Edition Version 3.70.a.10 was used to implement the PCIU
algorithm. Impulse-C CoDeveloper is an advanced software
tool enabling high-performance applications on FPGA-based
programmable platforms. In addition to its ability to convert
a C-coded algorithm to HDL, CoDeveloper Application
Manager also provides CoValidator tools to generate all nec-
essary test bench files. These testing files can be run directly
underModelSim hardware simulation tools.TheCoValidator
provides simulation and HDL generation for design test
and verification. Impulse CoDeveloper like many other ESLs
provides verification capabilities to analyse parallel data flow

Preprocessing

Impulse-C

Classification

FPGA

Impulse-C

Benchmark
files

Rule set files

Benchmark
files

Trace files

List of winning
rules

FPGA

Add/delete

Impulse-C

FPGA
Fragmentation

Figure 3: An overview of Impulse-C system (preprocessing and
classification).

within any application. Even though the Impulse-CCoDevel-
oper is capable of speeding up the behaviour simulation of the
application, since it is applied at a higher level of abstraction,
it fails to provide accurate cycle simulation which is provided
by tools such as Mentor Graphics ModelSim.

Figure 3 depicts the overall PCIU Impulse-C systemorga-
nization. The CoDeveloper tool is used to feed the system
with the preprocessed rule set and test packets and the Im-
pulse-C development tools generate all of the files needed to
synthesize and simulate the project using ModelSim. The
ModelSim tool is used to determine the required number
of clock cycles to classify the test packets during simulation.
The overall architecture of the original PCIU algorithm is
translated into hardware and mapped onto an FPGA using
the Impulse-C CoDeveloper along with the Xilinx synthesis
tools.

Since the graphical Stage Master Explorer tool performs
an analysis of the Impulse-C implementation, it represents a
rapidmethod bywhich design performance can be examined.
This tool can be used to determine, on a process-by-process
basis, the effectiveness of the compiler at the parallelization
of the C-language statements. An estimate of the critical-
path delay for the design is used to provide the user with a
general idea of the system timing (or performance) during
the implementation phase. Both the critical-path delay and
the clock-cycle count play a critical role in optimizing the
Impulse-C design. In our experiments, Xilinx ISE v12 was
used tomap the generatedHDLfiles to aVirtex-6 (xc6vlx760)
FPGA chip. The place and route reports and synthesis
reports are both used to determine the critical-path delay,
and ModelSim SE 6.6 is also used to simulate and count

International Journal of Reconfigurable Computing 9

Table 3: Preprocessing phase: number of clock cycles and overall time.

Size
Benchmark Average

ACL FW IPC
No. of cycles Time (ms) No. of cycles Time (ms) No. of cycles Time (ms) No. of cycles Time (ms)

0.1 k 382,423 2.58 362,496 2.44 391,704 2.64 378,874 2.55
1 k 3,247,248 21.87 2,808,021 18.91 3,340,964 22.50 3,132,077 21.09
5 k 15,052,497 101.38 15,771,953 106.22 15,218,285 102.50 15,347,578.33 103.37
10 k 32,452,174 218.57 31,339,626 211.07 30,663,219 206.52 31,485,006.33 212.05

the number of required clock cycles for each benchmark. It
is important to bring to the attention of the reader that the
proposed PCIU hardware accelerator can bemapped to other
less expensive FPGAs such as Virtex-5LX as long as enough
BlockRam is available to accommodate the bit vectors (stored
in Mem

2
) resulting from the preprocessing stage and used in

the classification phase. An alternative is to use a platform
with external memory that can be accessed by the hardware
accelerator at the expense of performance achieved.

In the next few sections wewill describe in detail the steps
to transform the pure software implementation of the PCIU
to hardware via the Impulse-C platform. First we will show
the transformation of the preprocessing stage into hardware
and this will be followed by a similar description for the
classification stage of the original algorithm.

5.2. Preprocessing Stage Design. Figure 4 shows the different
stages involved in the hardware implementation of the
preprocessing stage based on the Impulse-C tool. The main
phases of the hardware accelerator are based on bit vector
generation, redundancy removal, and populating memories
(Mem

1
, Mem

2
) with the corresponding vectors that are

eventually used in the classification phase. The original
PCIU’s preprocessing C-code was mapped to the CoDevel-
oper to generate the baseline implementation. A few code
transformations were applied to improve upon the baseline
design. Even though the speedup achieved by mapping
the preprocessing phase onto an FPGA is low as we will
learn from the results section, the objective of mapping
the preprocessing stage onto a reconfigurable computing
platform along with the classification phase is to realize a
single embedded system and thus lower power consumption,
increase reliability, and reduce cost which is essential for such
systems.

Table 3 presents the total clock cycles and preprocessing
time for all benchmarks based on different sizes. The average
across all benchmarks for a specific size is also presented
in the last column of the Table. It is important to note that
Figure 4 describes the processing of a single chunk of Table 1
introduced earlier.

The pure software implementation of the PCIU algorithm
was executed on a state-of-the-art x86 Family 15Model 4 Intel
Xeon processor operating at 3.4GHz. Table 4 summarizes
the performance obtained by both the Xeon processor and
hardware accelerator based on Impulse-C for preprocessing
and evaluated in Rule/Sec. The average speedups achieved

by the Impulse-C using either the rate of preprocessing
rules (Rules/Sec) or total time (in milliseconds) are around
1.16x over all benchmarks for the 10 K rule. It is clear
that the performance achieved by the hardware Impulse-C
accelerator is limited and this can be attributed to thememory
dependency of the preprocessing stage which translates to a
limited amount of parallelism that can be exploited thus the
modest speedup achieved.

(1) The hardware based preprocessing engine achieves on
average 1.16x speedup over a 3.4GHz single core Xeon
processor.

(2) Since the preprocessing time was based on processing
a single chunk, time can be reduced if the hardware
accelerator is implemented in parallel by processing
13 chunks simultaneously.

(3) Further improvement of the preprocessing engine
could be achieved if coarse grain and parallel coarse
grain optimization steps were performed.

Since the preprocessing phase is only performed once, it
would be an inefficient use of resources to perform further
optimization on the hardware accelerator built. In fact,
preprocessing can be implemented on a soft coreMicro-Blaze
embedded inside the FPGA if further resources are required
for the more important classification phase. However, if the
performance of the soft core does not meet the need for the
application then the designer will have to map it to hardware
as explained above.The incremental update capabilities of the
PCIU running on an FPGA are still preserved. The rules in
database can be either deleted or replaced by a new rule with
no side effects. If new rules need to be added to the existing
database then the designer has to make sure that enough
space in the bit vector exists for such an addition. However, if
not enough space is reserved a priori and new rules need to be
added then the entire PCIU algorithm needs to be remapped
and recompiled onto the FPGA.

5.3. Classification Stage Design. Since classification of packets
is performed on a regular basis and given the importance of
the classification phase, we will attempt to design a classi-
fication hardware accelerator engine by performing several
optimization techniques on the baseline based module using
fine grain, coarse grain, and parallel coarse grain approaches
to construct an efficient and robust hardware module that
can achieve at least an order of magnitude speedup over a

10 International Journal of Reconfigurable Computing

Table 4: Performance achieved in terms of preprocessing (Rule/sec) and time (ms).

Benchmark Preprocessing (rule/sec) Time (ms) Speedup over desktop (x)
Desktop Impulse-C Desktop Impulse-C Impulse-C

ACL (10K) 38,412.00 43,936.51 250 218.57 1.14
FW (10K) 39,621.28 44,112.83 235 211.07 1.11
IPC (10K) 36,148.00 43,759.16 250 206.52 1.21
Average 38,060.43 43,936.16 245 212.05 1.16

Increase the
scanned point

by one

Is the BV
unique?

No

Generate a bit vector

Yes

Add the new Bv to the

Have we
 reached the

Yes

No

End

Start

Redundancy removal

Check range

Add the address of the new
BV to the lookup table (Mem1) BV to the lookup table (Mem1)

Ignore the new BV

Add the address of existing

Start a scanned point of chunk (x) from the
beginning of the range to the end (0 to 255)

Generate a bIt vector (BV) from all rules
that comply with the scanned range

Bv list (Mem2)

scanned point?
end range of

Figure 4: The PCIU Impulse-C preprocessing stages.

state-of-the-art Xeon processor. Figure 5 illustrates the main
blocks of the PCIU Impulse-C implementation, including the
Reference Generator, classifier, and Rule ID Generator.

The input stream is used both to supply the system with
the preprocessed rule set and to feed the classifier with testing
packets, while the output stream is used by the classifier to
output the best match rule number for the incoming packet.
The original PCIU’s C-code was mapped to the CoDeveloper
to generate the baseline implementation and required only
the following code transformations:

(i) adding the stream reading/writing from/to the buses,
(ii) changing the variables to fixed sizes,
(iii) collapsing all functions to a single “main” function,
(iv) converting all dynamic arrays to local static arrays.

Although Impulse-C is an Electronic System Level
design-based language, its implementation and optimization
are different from other traditional ESLs. Whereas conven-
tional ESLs are oriented more towards statement-level opti-
mization, Impulse-C is oriented more towards system and
streaming-level optimization similar to Xilinx Vivado HLS
software [24]. Furthermore Impulse-C adopts a main block-
based approach to optimize the target application, instead
of using a timing model where each statement executes in
a single clock cycle. In particular, Impulse-C provides three
main pragmas—PIPELINE, UNROLL, and FLATTEN—to
improve execution time. Using the Stage Master tools, these
optimization pragmas provide an efficientmethod to improve
the target design. Additionally, Impulse-C designs can take
advantage of dual-port RAM optimization, allowing the
design to access two (different) locations simultaneously and,

International Journal of Reconfigurable Computing 11

Read packet from input stream Stage one

Generate the bit vectors index from the
packet header values

Stage two

Read the 13-bit vectors

Stage three

Write the rule number to output stream

Stage four

Convert the bit position and the matching
value to the rule number

Stage five

Stage six

Decompose the packet to 13 chunks

Match bit vectors

Match No

Stage seven

Yes

Reference

Classifier

Rule ID
Generator

Generator

Figure 5: The PCIU Impulse-C classification stages.

consequently, helping to reduce the total number of clock
cycles. As noted previously, the three different optimization
strategies used to improve the PCIU code can be classified as
either (a) fine grain, (b) coarse grain, or (c) parallel coarse
grain, as will be described in the following sections.

5.4. Fine-Grain Optimization (FGO). The first step taken to
improve the original Impulse-C implementation of the PCIU
was by applying the PIPELINE and FLATTEN pragmas, sep-
arately, to all of the inner loops of the initial implementation.

The purpose of this optimization step is to convert the
generated HDL block from a sequential block into either
a pipelined or parallel block. The selection between the
PIPELINE and FLATTEN pragma can be performed via
the Stage Master exploration tool. The main optimization
techniques applied in FGO are referred to as FGO-A, FGO-B,
FGO-C, FGO-D, and FGO-E and will be described in detail
in the following paragraphs.

(1) The FGO-A technique specifies that, since an outer
loop cannot be pipelined in Impulse-C, the best
option is to collapse the nested loops into a single
pipelined loop. Algorithm 1 illustrates the conversion
of a nested FOR construct into a single loop with
the addition of a conditional statement for the outer
loop.This optimization technique tends to reduce the
number of clock cycles needed for the original (i.e.,
nested) loop by 50%.

(2) The FGO-B technique entails converting the FOR
loops intoWHILE loops as depicted in Algorithm 2.
Although the Impulse-C compiler converts other
loops intoWHILE loops when generating HDL code,
adding the FLATTEN pragma tends to improve the
loop execution time.

(3) The FGO-C technique represents an attempt to im-
prove the performance of the RuleID Generator Block.
An ideal approach to its optimization is to employ
a modified technique that is more suitable for hard-
ware than the original software approach used on a
general-purpose processor. The modified code uti-
lizes a series of IF statements as shown inAlgorithm 3
in addition to a FLATTEN pragma which tends to
reduce the number of clock cycles. It is important to
distinguish between sequential code for classification
phase running on a general-purpose processor and
that running in parallel on hardware.

(4) The FGO-D technique takes advantages of the dis-
tributed dual-port RAM to ensure that multiple
locations can be accessed simultaneously, without
the need for memory duplication. Algorithm 4 illus-
trates the usage of dual-port RAM in the code.
Although this technique tends to dramatically reduce
the required clock cycles, it does often result in an
increase in the length of the critical path.

(5) The final optimization technique, FGO-E, seeks to
adapt the width/depth of streams. Since the stream
width and depth effects have a huge influence on the
system performance, the result of the optimization
is prominent when the stream is reading or writing
inside the pipeline loops. In this case, the depth of the
stream (buffer size) has to be at least one more than
the pipeline depth, to ensure that the stream does not
become a system bottleneck. The stream width and
depth improve the speed of reading/writing per cycle,
which, when performed in place, adds the additional
constraint that the pipeline must be kept full and
running at maximum throughput.

5.4.1. FGO: Experimental Setup. In this section we intend
to explore the effect of each optimization technique on
the performance of the Impulse-C implementation of the
PCIU algorithm. Accordingly, an extensive experimental
analysis is performed, in which all possible combinations of
optimizations are considered. If we assume that 𝑆 is the set of
five groups of enhancements (optimizations), our extensive
analysis exploration process proposes the examination of
each element of the power set of 𝑆 (excluding the empty
set), which entails that 31 different hardware versions are
considered. It is important to note that each of these 31
versions is modified from the Impulse-C baseline implemen-
tation described previously. The entire process of generating
all 31 versions, as well as the baseline, took a few months to
complete.

Due to the deterministic nature of PCIU algorithm, and
the fact that none of the optimizations techniques change
the functionality of the algorithm, all 31 hardware versions

12 International Journal of Reconfigurable Computing

/*Nested For Loop */
for(slice = 0; slice < 13; ++slice)
{
for(bv = 0; bv < 256; ++bv)
{
co stream read(InPut, &Read,32);
Table[slice*256+bv]=Read;
}
}
/*Nested For Loop with Pipeline in inner loop */

for(slice = 0; slice < 13; ++slice)
{
for(bv = 0; bv < 256; ++bv)
{
pragma CO PIPELINE
co stream read(InPut, &Read,32);
Table[slice*256+bv]=Read;
}

}
/*Collapsing For Loop*/

bv=0;
for(slice = 0; slice < 13; bv++)
{
pragma CO PIPELINE
co uint16 idx = (slice 8) + bv;
co stream read(InPut, &Read, 32);
Table[idx]=Read;
if(bv==255)slice++;

}

Algorithm 1: FGO-A: nested FOR loop collapsing code example.

/* Do While Code*/
/* For Code*/ i=0;

for(i=0;i < 10;i++) do{
{ pragma CO FLATTEN

MyRam[i]=i; MyRam[i]=i;
} i++;

} while(i < 10);

Algorithm 2: FGO-B: loop optimization (FLATTEN pragma).

/* Serial IF Statement*/
p = 0;
if(value){
pragma CO FLATTEN

/* While Code*/ if (value & 0xffffffffffffffff0000000000000000){
/* Search for the first set bit p = 64; value = 64; }
in the BV(value)*/ if (value & 0xffffffff00000000){
/* Similar to Sequential search */ p += 32; value = 32; }
p = 0; if (value & 0xffff0000){
while(value) p += 16; value = 16; }
{ if (value & 0xff00) {

p++; p += 8; value = 8; }
/* Shift Right by 1 */ if (value & 0xf0){
value=value 1; p += 4; value = 4; }

} if (value & 0xc){
p += 2; value = 2; }

if (value & 0x2){
p += 1; value = 1; }

p += (value & 0x1);

Algorithm 3: FGO-C: aWhile to IF statement conversion.

International Journal of Reconfigurable Computing 13

i = 0; i = 0;
Sum = 0; Sum = 0;
while(i< = 10) while(i< = 10)
{ {

pragma CO FLATTEN pragma CO FLATTEN
/* Adding one location from memory */ /* Adding two locations from memory */
Sum = Sum + MyRam[i]; Sum = Sum + MyRam[i]+ MyRam[i | 1];
i = i + 1; i = i + 2;

} }

Algorithm 4: FGO-D: dual port RAM code optimization.

produce the same solutions for the same problem instances
and, consequently, when comparing the hardware versions
among themselves it is not necessary to consider solution
quality. Contrarily, the different hardware versions need only
to be compared with respect to run time.

Since Impulse-C requires the clock period for a design to
be longer than the longest path through the combinational
logic in the design, the run-time of each architecture can
only be determined once the circuit has been placed and
routed on the FPGA. After placement and routing, the clock
rate (frequency) of the design can be determined from the
reciprocal of the clock period, and the clock rate can then be
multiplied by the number of clock cycles required to execute
the design to determine the actual run-time of the algorithm
mapped onto the FPGA.

Compiling each of the three benchmarks (i.e., ACL, IPC,
and FW) of ClassBench [8] with one of four possible rule
set sizes (i.e., 0.1 k, 1 k, 5 k, and 10 k) resulted in a total of
12 benchmarks for our experiment. All 31 versions of PCIU
were tested using these 12 benchmarks, and the number of
clock cycles in addition to the clock period was recorded.
The total clock cycles along with the clock period were then
used to calculate the speedup achieved over the baseline
implementation, as demonstrated by

SpeedUp (𝑥)

=
num of clk cycles of baseline ∗ clock period of baseline

num of clk cycles for PCIU rev
𝑥
∗ clock period of rev

𝑥

.
(1)

5.4.2. FGO: Analysis of Results. Table 5 summarizes the
expected effects of the three main block optimization prag-
mas on the chip area, in terms of the maximum critical-
path delay and the number of clock cycles needed. It is
important to highlight that the performance of different
FGO combined techniques that will be evaluated in this
section could vary based on the interaction and dependency
among these techniques. In some cases the resultant speedup
achieved from combining these different FGO optimization
approaches could be attributed to the addition, product, or
combination of each individual method.

Figures 6, 7, and 8 present the speedup performance
achieved by all proposed FGO architectures with respect to
the baseline Impulse-C architecture. Each figure describes a
different evaluation metric as will be described below.

Figure 6 depicts the average classification speedup
achieved for each of the three benchmarks (ACL, IPC, and

Table 5: Summary of impulse optimization pragma.

Pragma Area Frequency Cycles

FLATTEN Sharp
increase Decrease Sharp

decrease
PIPELINE Increase Increase Decrease

UNROLL Sharp
increase Decrease Sharp

decrease

FW) where one way indicates applying a single optimization
step, two way a combination of two optimization steps, and
so on. The first observation that can be made from Figure 6
is that consistent results are achieved for the individual and
combined optimization techniques, across all benchmarks
compiled with similar sizes. This indicates that changing
the benchmark does not affect the speedup achieved for
any FGO technique. This clearly indicates that the PCIU
algorithm is robust and scales well with benchmark size.
Therefore, we can conclude that neither the PCIU algorithm
nor the optimization technique selection is affected by the
complexity of the benchmark.

Figure 7 presents the speedup achieved by different com-
binations of FGO averaged over all the benchmarks. It shows
how the PCIU performs as the benchmark size increases
from 100 to 10K rules. Interestingly, no generalization can
be made about whether the individual FGO techniques are
positively or negatively affected by the size of the rule-set.
Whereas FGO-A has speedups of 1.9x to 2.8x with the 0.1 k
and 10 k rule sets, respectively, FGO-C has a 9x speedup with
the 0.1 k rule set but will deteriorate to a 2x speedup when
the size of the rule set increases to 10 k. The highest average
speedup was achieved by FGO-C (5x)—an enhancement due
to the replacement of the original search technique running
on a general-purpose processor with modified approach in
the form of flattened IF statement that is more suitable for
hardware implementation that can take advantage of the
FLATTEN pragma that exploits further parallelism in the
system.

Table 6 presents the performance achieved by different
FGO techniques along with resource utilization of the FPGA
chip. It is evident from Table 6 that realizing the different
FGO architectures on an FPGA entails a challenge sincemore
than 80% of the resources are utilized. It should be noted
that the different FGO techniques also differ in their usage
of the FPGA chip resources—it is clear from Table 6 that
FGO-Ehas the lowest resource consumption in terms of slices

14 International Journal of Reconfigurable Computing

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

D
ep

th
64 A B C D E

FL
AT

TE
N

PI
PE

LI
N

E

A
B

AC A
D A
E

BC BD BE CD CE D
E

A
BC

A
BD A
BE

AC
D

AC
E

A
D

E
BC

D
BC

E
BD

E
CD

E
A

BC
D

A
BC

E
A

BD
E

AC
D

E
BC

D
E

A
BC

D
E

Sp
ee

du
p

(x
)

Implementation

ACL benchmark: FGO performance summary

(a)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

D
ep

th
64 A B C D E

FL
AT

TE
N

PI
PE

LI
N

E

A
B

AC A
D A
E

BC BD BE CD CE D
E

A
BC

A
BD A
BE

AC
D

AC
E

A
D

E
BC

D
BC

E
BD

E
CD

E
A

BC
D

A
BC

E
A

BD
E

AC
D

E
BC

D
E

A
BC

D
E

Sp
ee

du
p

(x
)

Implementation

FW benchmark: FGO performance summary

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Sp
ee

du
p

(x
)

D
ep

th
64 A B C D E

FL
AT

TE
N

PI
PE

LI
N

E A
B

AC A
D A
E

BC BD BE CD CE D
E

A
BC

A
BD A
BE

AC
D

AC
E

A
D

E
BC

D
BC

E
BD

E
CD

E
A

BC
D

A
BC

E
A

BD
E

AC
D

E
BC

D
E

A
BC

D
E

Implementation

IPC benchmark: FGO performance summary

One-way
Two-way

Three-way
One-way

(c)

Figure 6: Speedup achieved by FGO techniques over the baseline (averaged over different benchmark sizes).

among the five techniques. However, FGO-E consumes a
considerable amount of Block RAMs compared to other FGO
implementations which poses some constraints on the type
of FPGA chip that can be used to accommodate it. It is also
important to notice that the resources required by FGO-D
exceed the resources available in the Xilinx Virtex 6 (LX760).
However, we still manage to report the maximum frequency
and number of cycles from the place and route andModelSim
package. Furthermore, the implemented FGO techniques
have different effects on the critical time delay andmaximum
frequency, and it is also clear that the PIPELINE pragma
decreases the critical time delay (which, when performed in-
place, tends to increase the maximum frequency).

Figure 8 presents the speedup achieved averaged over
both benchmarks and sizes used in the evaluation process.
This figure clearly highlights the performance of all FGO
architectures along with their different combinations.

Based on the description of FGO-E earlier, the stream
width and depth have substantial influence on the system
performance. Referring back to Figure 3 it is clear that two
types of streaming occur in the hardware Impulse-C pro-
posed architecture. The first is used to fill up the memories

(Mem
1
and Mem

2
) with the preprocessed information in the

form of Final Clusters and bit-vectors. The second streaming
is in the form of trace packets that need to be classified and
the generation of list of winning rules. Table 6 suggests that
when the stream depth is modified from 2 to 64, fine grained
optimization techniques tend to perform better in terms of
classification. This is attributed to the reduction of cycles
needed to fill the memory.

Figure 8 clearly demonstrates that when the FGO-B
and FGO-C techniques were combined (designated FGO-
BC), a classification speedup of 8.5x was achieved for all
benchmarks—although the speedups achieved by combining
(addition or multiplication) FGO-B and FGO-C are sub-
stantially less than 8.5x, if we consider the effect of pipeline
pragmas in each FGO-B loop, we get a factor of nearly 8x.
FGO-B alone does not achieve the effect of the pipeline
pragma, due to the multiple nested loops. Furthermore,
although FGO-AE has the highest memory filling speedup,
it should be noted that this combined effect is not well rep-
resented by the sum of the individual effects associated with
the FGO-A and FGO-E techniques, since FGO-E tends
to reconstruct the size of the reading and, consequently,

International Journal of Reconfigurable Computing 15

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

A B C D E

FL
AT

TE
N

PI
PE

LI
N

E

Sp
ee

du
p

(x
)

Implementation

FGO one-way optimization

(a)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Sp
ee

du
p

(x
)

FGO two-way optimization

A
B

AC A
D A
E

BC BD BE CD CE D
E

Implementation

(b)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Sp
ee

du
p

(x
)

FGO three-way optimization

A
BC

A
BD A
BE

AC
D

AC
E

A
D

E

BC
D

BC
E

BD
E

CD
E

Implementation
0.1 K
1 K

5 K
10 K

(c)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Sp
ee

du
p

(x
)

FGO four-way and higher optimization

A
BC

D

A
BC

E

A
BD

E

AC
D

E

BC
D

E

A
BC

D
E

Implementation
0.1 K
1 K

5 K
10 K

(d)

Figure 7: Speedup of FGO techniques over baseline (averaged over all benchmarks).

minimize the net effect of FGO-A. It could be concluded
that the use of multiple fine-grain optimization techniques
will often improve performance levels over the use of
a single technique, but since additional combinations of
techniques do not always result in a significant perfor-
mance improvement, the techniques should be combined
judiciously; although the combination of all five techniques
produces a significant (but not optimal) speedup, it does
require the most effort on the part of the developer.

Based on the 31 combinations of fine-grain optimization
techniques, the greatest speedup was achieved by the FGO-
BCD three-way technique. This enhancement can be largely
explained by examining the individual contributions of each
technique used.

(1) FGO-B seeks to reduce the number of clock cycles by
converting FOR loops intoWHILE loops, pipelining,

and reducing deep logic (and, thus, increasing the
clock frequency).

(2) FGO-C also seeks to reduce clock cycles by perform-
ing FLATTEN IF statements instead of loop search
(reducing the critical-path delay).

(3) FGO-D tends to reduce the number of clock cycles by
exploiting the dual-port-RAM.

When applied individually, optimizations FGO-B, FGO-
C, and FGO-D result in speedups of 1.05x, 4.92x, and
1.14x, respectively, but when these techniques are combined,
abundant opportunities exist for the restructured and sim-
plified statements produced by optimization FGO-B to be
performed in pipeline with other statements. This leads to
a significant reduction in the total number of clock cycles as
well as a further improvement in clock frequency over the
baseline implementation.

16 International Journal of Reconfigurable Computing

Table 6: Performance achieved/FPGA resource utilization for “one-way” FGO designs.

Implementation
Baseline Stream depth 64 A B C D E

Resources
Block RAM 641 642 643 642 642 643 1668
Slice Reg 4,816 5,041 9,075 9,265 2,925 7064 3120
Slice LUTS 888,597 888,545 889,151 888,276 888,659 1,768,916 3,133
Slice LUT-FF 890,467 892,889 894,014 896,557 890,878 1,771,482 5,298

Performance
Maximum Freq (MHz) 103.896 108.982 121.772 110.331 106.490 103.331 197.449
Num of Clocks ACL (10 k) 33,680,692 32,710,703 11,843,100 32,613,702 16,203,627 27,352,703 32,710,701
Time 324.18ms 300.15ms 97.26ms 295.60ms 152.16ms 264.71ms 165.67ms
Speedup over previous — 1.1x 3.3x 1.1x 2.1x 1.2x 2.0x

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Sp
ee

du
p

(x
)

FGO one-way optimization

One-way
Implementation

D
ep

th
64 A C D E

FL
AT

TE
N

PI
PE

LI
N

EB

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

A
B

AC A
D A
E

BC BD BE CD CE D
E

Sp
ee

du
p

(x
)

Implementation

FGO two-way optimization

Two-way

(b)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

A
BC

A
BD A
BE

AC
D

AC
E

A
D

E

BC
D

BC
E

BD
E

CD
E

Sp
ee

du
p

(x
)

Implementation

FGO three-way optimization

Three-way

(c)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

A
BC

D

A
BC

E

A
BD

E

AC
D

E

BC
D

E

A
BC

D
E

Sp
ee

du
p

(x
)

Implementation

FGO four-way and higher optimization

Four-way

(d)

Figure 8: Speedup of FGO techniques over baseline (averaged over all benchmarks with different sizes).

International Journal of Reconfigurable Computing 17

Reference
Generator

Ref 1

Ref 13

Rule ID
Generator

Value

Location

Output stream

Input stream 2

Input stream 1 1

8

13

1

Ref 1
2

2

Classifier
Width 32 bits

depth 64
Width 32 bits

depth 64

Width 32 bits
depth 64

Width 8 bits
depth 64

Width 128 bits
depth 64

Width 128 bits
depth 64

Width 128 bit
depth 64

Figure 9: Parallel coarse grain optimization (PCGO).

These observations clearly indicate that fine-grain opti-
mization can play a crucial role in enhancing the design
in terms of reducing clock cycles, maximum delay time,
and resource utilization. Moreover, adding more of the FGO
techniqueswill not always lead to improvement of design, and
the effects of individual FGO are not always additive.

5.5. Coarse Grain Optimization (CGO). One of the key
methods of exploiting parallelism for the PCIU algorithm
is to divide the system into three main, independent blocks
(as shown previously in Figure 5). The PCIU system can be
mapped to three processes operating in parallel and commu-
nicating via streams (for CGO the width of InputStream

2
is

32 bits and only two values are sent to the Rule ID Generator
from the classifier) as seen in Figure 9. The InputStream

1

is used to feed the system with both the 13 referencing
tables and the headers of the testing packet for classification,
while InputStream

2
is used to supply the bit vectors both

at system start-up and in the incremental updating stage.
During the memory filling phase, both streams are used to
supply the system with the needed lookup tables, and during
the classification phase, the Reference Generator process
reads the headers of the packet provided by InputStream

1
.

The incoming packet header is decomposed into 13
chunks and each is used as an address to calculate the effective
location (pointers) of the bit vector which will be used for
matching. Since each bit vector maps to a 128-bit memory
width, the bit vectorwill be decomposed intomultiple chunks
depending on the rule set size. A chunk from each of the
thirteen bit vectors is subjected to a bitwise logical “AND”
operation, and if the result is zero, the next chunk of the
bit vectors is accessed. This operation will terminate when a
nonzero value is obtained indicating a match.

By utilizing the dual-port memory, the system can read
two chunks of the bit vector simultaneously and perform the
matching operation. Thus, two results can be generated in
each cycle. The results are then sent to the Rule ID Generator
process with the location of the first value (in case a nonzero
value is found between them).TheRule IDGenerator process
reads Value 1 and Value 2 in addition to the location streams
and generates the winning rule number, which is then

written to the Output Stream. This organization of the PCIU
system attempts to reduce the number of cycles needed by
the system for completing the classification process. Since
each process of the coarse grain optimization (CGO) still
incorporates the fine grain optimization techniques, CGO
achieves, on average, a speedup of almost 1.53x over the best
FGO implementation.

5.6. Parallel Coarse Grain Optimization (PCGO). The final
optimization phase, to further improve the Impulse-C PCIU
implementation, was based on the idea of splitting the bit
vector into four memory banks (instead of a single bank). By
incorporating dual-port RAM, eight chunks of each of the 13
bit vectors can be read simultaneously from the memory and
subjected to a matching operation in parallel to producing
eight results. A winning rule is found when one of these
results has a nonzero value. Figure 9 illustrates the PCGO
configuration given that the InputStream

2
now has a width of

128 bits versus 32 bits for the coarse grain optimization flow.
The PCGO classification process provides eight values to the
Rule IDGenerator (instead of two values in theCGO system),
and this division of the memory tends to reduce the total
clock cycles needed for the classification an improvement that
can be attributed to the parallel application of the match-
ing operation. Although the memory partitioning sharply
reduces the number of clock cycles, it tends to increase
the critical-path delay. The overall system performance can
thus be expressed as the product of the number of clock
cycles and the critical-path delay. In this regard, the PCGO
technique did not achieve a dramatic speedup over the CGO
technique, as one divides the memory further, the total
amount of resources must be increased for accuracy, but
the improvement in terms of speedup far outweighs the
additional chip resource usage. Although PCGO achieves
between 0.8x and 3x speedup (depending on the rule sets size)
over the CGO implementation, the overall speedup achieved
using FGO, CGO, and PCGO combined is significant.

5.7. Comparative Evaluation. Figure 10 shows the execu-
tion time of the four implementations (i.e., the baseline

18 International Journal of Reconfigurable Computing

Table 7: Impulse-C: FPGA Resource Utilization for PCIU Design.

Resources
Implementation

Preprocessing Classification
Baseline FGO (BCD) CGO PCGO

Block RAM 3,077 641 642 647 711
Slice Reg 1,019 4,816 8,970 10,123 24,187
Slice LUTS 2,827 888,597 1,768,713 1,766,927 1,666,331
Slice LUT-FF 3,053 890,467 1,776,316 1,771,434 1,674,215
Maximum Freq (MHz) 148.478 103.896 107.66 112.717 65.542

 0

 50

 100

 150

 200

 250

 300

 350

Ti
m

e (
m

s)

ACL: classification time

The trace packets size (K)
0.1 1 5 10

(a)

 0

 50

 100

 150

 200

 250

 300

 350

Ti
m

e (
m

s)

FW: classification time

The trace packets size (K)
0.1 1 5 10

(b)

 0

 50

 100

 150

 200

 250

 300

Ti
m

e (
m

s)

IPC: classification time

Baseline
FGO(BCD)

CGO
PPCGO

The trace packets size (K)
0.1 1 5 10

(c)

Figure 10: PCIU’s Impulse-C implementation: execution time.

implementation and the average performance of the FGO,
CGO, and PCGO techniques). Although it is clear that PCGO
achieves the best performance over the other implemen-
tations, it also has the highest chip resource utilization as
seen in Table 7. Although PCGO requires less than half the
number of clock cycles required by CGO, the increase in
its critical-path delay leads to an overall speedup of 0.83x.

Table 7 illustrates in detail the chip utilization associated
with each of the implementations. It is clear that FGO
(BCD) consumes almost twice the amount of resources as the
baseline, except for the Block Ram. CGO, on the other hand,
consumes almost the same resources as FGO (BCD) (because
of the partitioning of the design into three subsystems and the
use of the streams for communication) with a slight overuse

International Journal of Reconfigurable Computing 19

Table 8: Classification time and speedup achieved by different implementations.

Size Baseline FGO (BCD) CGO PCGO Overall
Time (ms) Time (ms) Baseline/FGO Time (ms) FGO/CGO Time (ms) CGO/PCGO Baseline/PCGO

0.1 K 1.6 0.14 11.14x 0.09 1.52x 0.15 0.62x 10.67x
1 K 15.08 1.432 10.53x 0.87 1.65x 1.49 0.58x 10.12x
5K 108.65 10.3 10.54x 6.60 1.56x 7.66 0.86x 14.18x
10K 307.7 29.31 10.5x 21.35 1.37x 17.23 1.24x 17.86x
Average — — 10.67x — 1.53x — 0.83x 13.54x

of the Slice Register. The PCGO architecture requires (on
average) an increase of 1.88x the chip utilization over the
baseline in terms of lookup tables (LUTS) and Slice Registers.

6. Discussion and Comparison of Results

The previous results of this study show that a direct conver-
sion from PCIU into Impulse-C does not produce a hard-
ware accelerator implementation that executes with high-
est speed. However, by carefully employing language-level
transformations to improve the hardware that is synthesized,
it is possible to produce hardware that runs dramatically
faster than software. The initial largest speedup of one-way
based implementation (FGO-C) speedup (5x) (as seen in
Figure 8) was achieved by converting the loops to flatten
IF statement, collapsing nested complex loops to singular
pipelined loops and then using dual-port-RAM to reduce
the memory access time effect. Furthermore, the adoption of
the stream width and depth surely has an additional effect
on system performance in terms of both the critical-time
delay and the number of clock cycles. Although the results
obtained in this paper target the PCIU packet classification
algorithm in particular, we believe that they will generalize
to other implementations that use Impulse-C, as these FGO
optimizations are very general and applicable across a wide
range of implementations.

6.1. Incremental Improvement. Table 8 summarizes the per-
formance achieved by the baseline, best FGO-BCD three-way
approach, and CGO and PCGO implementations.

Table 8 also shows the amount of speedup achieved by:
FGO over the baseline and CGO over FGO and finally the
speedup achieved by PCGO over CGO.The average speedup
of the PCGO implementation over the baseline over all
benchmark sizes is almost 13x. However it is important to
notice that the amount of speedup achieved increases as the
rule set increases in size (i.e., 10 K). The key parameters of
interest when examining the effectiveness of any implemen-
tation of PCIU are classification time, prprocessing time, and
memory usage. The preprocessing time is considered to be
of the least concern since it represents a one-time operation
completed for a larger, continuous process (i.e., classifica-
tion). That being said, improvements to preprocessing time
are still sought especially in light of the incremental update
capability of the PCIU. A shorter preprocessing time means

less downtime of the system and a more versatile, resilient,
and effective classification procedure overall.

6.2. GPP versusHardwareAccelerator. Apure software imple-
mentation on a general-purpose processor (desktop) has
excellent results since it runs on a powerful processor
(with several dedicated ALUs) and large amount of mem-
ory resources to use, but this hardware is generally not
appropriate for anything but a server implementation, and
in that respect a purely software approach is not directly
comparable to the embedded alternatives. An “embedded
system” tends to enhance power consumption and increase
reliability at the expense of less flexibility in comparison to
a server architecture. An alternative would be to utilize a
soft processor like a Micro-Blaze or even a dedicated hard
processor available on the FPGA to accomplish the task.

Table 9 presents the performance obtained for classifica-
tion (evaluated in packet/sec) and the speedup achieved by
the Impulse-C implementation over the Xeon processor. The
average speedups shown in Table 9 are calculated either by
using the ratio of the rate of classification (packets/sec) or
total time (in milliseconds).

Figure 11 on the other hand presents the classification
time of the final parallel coarse grained implementation along
with that obtained by a general-purpose processor. Results
obtained clearly indicate the following.

(1) The hardware based approach using Impulse-C
achieves on average 27x classification speedup over
the Xeon processor. In addition, the Impulse-C
approach has themost straightforwardway to convert
any C-code to HDL compared to other ESLs and
provides an easy way to improve any design and can
be verified using the most popular verification CAD
tools like ModelSim.

(2) Even with the vast resources and power of the
desktop (32-bit WinXP running on Xeon 3.4GHz
with 2GRAM) the performance of a general-purpose
processor is inferior in terms of classification time to
that obtained by the Impulse-C hardware accelerator.

Table 10 presents a comparison between the current Impulse-
C proposed architecture and the Handel-C implementation
in [17] in terms of resources (Block Ram, LUTs, etc.) and
design effort. It is clear from Table 10 that the Handel-C
implementation is slightly faster than the Impulse-C design.
The number of clock cycles in Handel-C is almost twice
that of the Impulse-C yet the minimum period of the clock

20 International Journal of Reconfigurable Computing

Table 9: Performance achieved in terms of classification (packet/sec) and time (ms).

Benchmark Classification (packet/sec) Classification (time (ms)) Speedup over desktop (x)
Desktop Impulse-C Desktop Impulse-C Impulse-C

ACL (10K) 200,413.22 5,371,212.25 484 18.06 26.80
FW (10K) 207,264.96 5,436,462.69 468 17.15 27.28
IPC (10K) 214,128.04 5,503,311.31 453 16.47 27.50
Average 207,268.74 5,436,995.42 468 17.23 27.17

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time ACL

The trace packets size (K)
0.1 1 5 10

(a)

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time FW

The trace packets size (K)
0.1 1 5 10

(b)

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time IPC

Desktop
Parallel coarse grained Impulse-C

The trace packets size (K)
0.1 1 5 10

(c)

Figure 11: Software and hardware implementation of the PCIU: a comparison of classification time.

of Handel-C is almost half of that of the Impulse-C which
translates to higher frequency of operation. Also, in terms
of resources, Handel-C tends to occupy more LUTs than the
Impulse-C; however the latter consumes more Block Ram.
Finally, in terms of design effort the designer would spend
less time modifying his/her original C implementation to
port the code to Impulse-C environment than that spent
mapping it to Handel-C. The advantage of the Handel-C
is that every statement in the ported code takes exactly a
single clock cycle and therefore the designer can anticipate

the performance of the resulting hardware.The Impulse-C on
the other hand requiresmuchhigher optimization effort since
it requires more intervention from the designer to enhance
the performance for each block of code.

6.3. Comparing the PCIU and GBSA Algorithms. Based on
results obtained in [21] the GBSA algorithm achieves better
performance over the proposed PCIU algorithm in terms
of preprocessing and classification time when implemented

International Journal of Reconfigurable Computing 21

 0

 5

 10

 15

 20

 25

 30

 35
Ti

m
e (

m
s)

The trace packets size (K)

Classification time ACL

0.1 1 5 10

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Ti
m

e (
m

s)

Classification time FW

The trace packets size (K)
0.1 1 5 10

(b)

 0

 5

 10

 15

 20

 25

 30

Ti
m

e (
m

s)

Classification time IPC

PCIU Impulse-C
GBSA Impulse-C

The trace packets size (K)
0.1 1 5 10

(c)

PCIU Impulse-C
GBSA Impulse-C

 10

 100

 1000

 10000

 100000

Bl
oc

k
RA

M

Sl
ic

e R
eg

Sl
ic

e L
U

TS

Sl
ic

e L
U

T-
FF

M
ax

 fr
eq

 (M
H

z)

Specification

Resources

1e+006

1e+007

(d)

Figure 12: Impulse-C implementation of PCIU and GBSA: a comparison.

Table 10: PCIU: Impulse-C and Handel-C “PCGO” Design.

Resources PCIU implementation (PCGO)
Impulse-C Handel-C

Block RAM 711 0
Slice Reg 24,187 2,282
Slice LUTS 1,666,331 2,579,800
Slice LUT-FF 1,674,215 2,580,882
Maximum Freq (MHz) 65.542 111.435
Clock# ACL (10 k) 1,183,669 1,941,198
Time ACL (10 k) (ms) 18.06 17.42
Design (effort) Medium High
Optimization (effort) High Medium

on a general-purpose processor (Xeon 3.4GHz with 2G
RAM). However, as the two implementations are mapped

into hardware (RTL translation) using the Impulse-C tools
the performance achieved by the PCIU algorithm surpasses
that obtained by the GBSA algorithm. As can be seen in
Figure 12 and Table 11 the PCIU algorithm Impulse-C based
implementation achieves better performance than the GBSA
implementation in terms of classification time. The average
speedup achieved by the GBSA hardware implementation
over its counterpart software implementation is almost 7.96x;
however the amount of speedup achieved by the PCIU
hardware implementation over the original software imple-
mentation running on a general-purpose processor is almost
26.8x. This is attributed to the memory dependency of the
GBSA and also the sequential search nature which has a
negative effect on the coarse grain implementation. However,
the PCIU consumes extra resources since more parallelism
has been exploited.This indicates that the PCIU is more suit-
able for mapping it into hardware even though the original
software implementation on a general-purpose processor

22 International Journal of Reconfigurable Computing

Table 11: Software and hardware implementations of PCIU and GBSA algorithms: a comparison.

Benchmark Desktop Impulse-C
GBSA (ms) PCIU (ms) PCIU (speedup

𝑥
) GBSA (ms) PCIU (ms) PCIU (speedup

𝑥
)

ACL (10K) 192.1 484 0.4x 24.15 18.06 1.34x
FW (10K) 163.9 468 0.35x 16.91 17.15 0.98x
IPC (10K) 190.6 453 0.42x 23.58 16.47 1.43x
Average 182.2 468 0.39 21.55 17.23 1.25x

lagged in terms of performance when compared to the GBSA
algorithm.

7. Conclusion and Future Work

The PCIU is a novel packet classification algorithm (with a
unique incremental update capability) that has demonstrated
powerful results. We have shown that this algorithm scales
well for many different tasks and clients, and the incremental
update capability allows it to change its rule set with minimal
down-time.This allows implementations of PCIU to continue
performing classification at a steady rate while remaining
very adaptive and versatile. As we demonstrated in this
paper, the PCIU is also an algorithm that greatly benefits
fromhardware acceleration andRTL translation and achieves
greater performance boosts than competing algorithms—
most of its shortcomings in terms of performance, when
compared to other algorithms, are nullified by the incor-
poration of dedicated hardware. An extensive experimental
analysis was performed in which all possible combinations
of optimizations were considered. The study performed an
extensive analysis for fine-grain optimization of Impulse-C.
The analysis performed can be easily extended to similar
applications that utilize ESL based approaches. The pure
hardware based implementations using Impulse-C achieved
on average a speedup of 27x over a pure software implementa-
tion running on a powerful, general-purpose processor. Our
future work will target implementations of a pure RTL design
based on VHDL against which we can compare our current
results, in terms of area, power consumption, and maximum
clock frequency. We also seek to compare our Impulse-C
implementation with an Application Specific Instruction Set
processor (ASIP) that is considered to be more flexible in
terms of implementation changes and updates. Adopting
both the PCIU and GBSA algorithms to operate under IPv6
is yet another goal that we seek to achieve in our future work.
We also plan to extend the benchmarks that were used in this
work (IPV4 ClassBench) to generate the IPv6 rule set and
testing packets.

Conflict of Interests

The authors (O. Ahmed, S. Areibi, R. Collier, and G. Grewal)
state that they do not have any personal or financial rela-
tionships with the above mentioned commercial identities
(Impulse, Xilinx and Mentor Graphics) and, accordingly,
there is no conflict of interests.

Acknowledgments

This work was partially funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC). The
authors would like to thank Impulse Accelerated Technolo-
gies for allowing them to use their tools. The authors would
also like to thank theCanadianMicroelectronicsCorporation
for providing them with all the necessary CAD tools (Xilinx,
and Mentor Graphics) used in this paper.

References

[1] O. Ahmed, S. Areibi, and D. Fayek, “PCIU: an efficient packet
classification algorithm with an incremental update capabil-
ity,” in Proceedings of the International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems
(SPECTS ’10), pp. 81–88, Ottawa, Canada, July 2010.

[2] O. Ahmed and S. Areibi, “Software implementation of the
PCIU algorithm,” 2013, http://deimos.eos.uoguelph.ca/sareibi/
PUBLICATIONS dr/software code dr/PCIU Software.html.

[3] RG, “Handel-C language reference manual,” Tech. Rep., Celox-
ica, Europe, 2005.

[4] IC, “Impulse accelerated technologies,” 2011, http://www.im-
pulseccelerated.com/.

[5] Calypto, “Catapult C synthesis,” 2012, http://www.calypto.com.
[6] C. Bobda, Introduction to Reconfigurable Computing: Architec-

tures, Algorithms and Applications, Springer, Dordrecht, The
Netherlands, 2007.

[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z.
Zhang, “High-level synthesis for FPGAs: from prototyping to
deployment,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[8] D. E. Taylor and J. S. Turner, “ClassBench: a packet classification
benchmark,” in Proceedings of the 24th IEEE International
Conference on Computer Communications (INFOCOM ’05), pp.
2068–2079, Miami, Fla, USA, March 2005.

[9] H. Lim and J. H. Mun, “High-speed packet classification using
binary search on length,” in Proceedings of the 3rd ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (ANCS ’07), pp. 137–144, New York, NY, USA,
December 2007.

[10] P. Gupta and N. McKeown, “Packet classification on multiple
fields,” in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communi-
cation, pp. 147–160, ACM, New York, NY, USA, 1999.

[11] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable
high throughput firewall in FPGA,” in Proceedings of the 16th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’08), pp. 43–52, Palo Alto, Calif, USA, April
2008.

International Journal of Reconfigurable Computing 23

[12] C. R. Meiners, A. X. Liu, and E. Torng, “Topological trans-
formation approaches to TCAM-Based packet classification,”
IEEE/ACM Transactions on Networking, vol. 19, no. 1, pp. 237–
250, 2011.

[13] Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-field range encod-
ing for packet classification inTCAM,” inProceedings of the 30th
IEEE International Conference on Computer Communications
(INFOCOM ’11), pp. 196–200, Shanghai, China, April 2011.

[14] H. Le, W. Jiang, and V. K. Prasanna, “Scalable high-throughput
sram-based architecture for ip-lookup using FPGA,” in Proceed-
ings of the International Conference on Field Programmable Logic
and Applications (FPL ’08), pp. 137–142, September 2008.

[15] I. Papaefstathiou and V. Papaefstathiou, “Memory-efficient 5D
packet classification at 40 Gbps,” in Proceedings of the 26th
IEEE International Conference on Computer Communications
(INFOCOM ’07), pp. 1370–1378, Anchorage , Alaska , USA,May
2007.

[16] A. Nikitakis and I. Papaefstathiou, “A memory-efficient FPGA-
based classification engine,” inProceedings of the 16th IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’08), pp. 53–62, April 2008.

[17] O. Ahmed, S. Areibi, K. Chattha, and B. Kelly, “PCIU:Hardware
implementations of an efficient packet classification algorithm
with an incremental update capability,” International Journal
of Reconfigurable Computing, vol. 2011, Article ID 648483, 21
pages, 2011.

[18] Y.-K. Chang, Y.-S. Lin, and C.-C. Su, “A high-speed and
memory efficient pipeline architecture for packet classification,”
in Proceedings of the 18th IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM ’10),
pp. 215–218, usa, May 2010.

[19] G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, D. Ficara,
and F. Vitucci, “On the use of compressed DFAs for packet
classification,” in Proceedings of the 15th IEEE International
Workshop on Computer Aided Modeling, Analysis and Design of
Communication Links and Networks (CAMAD ’10), pp. 21–25,
December 2010.

[20] W. Jiang and V. K. Prasanna, “Scalable packet classification
on FPGA,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, no. 99, pp. 1668–1680, 2011.

[21] O. Ahmed, S. Areibi, and G. Grewal, “Hardware accelerators
targeting a novel group based packet classification algorithm,”
Journal of Reconfigurable Computing, vol. 2013, Article ID
681894, 33 pages, 2013.

[22] D. E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238–
275, 2005.

[23] D. Pellerin and S. Thibault, Practical FPGA Programming in C,
Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition,
2005.

[24] Xilinx, “C-based design: high level synthesis with vivado hls,”
2013, http://www.xilinx.com/training/dsp/high-level-synthesis-
with-vivado-hls.htm.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

