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code to a transformed application that can be efficiently mapped on the

Tms chapter describes the different design steps needed to go from legacy
hArtes platform.

2.1 Introduction

The technology trend continues to increase the computational power by en-
abling the incorporation of sophisticated functions in ever-smaller devices.
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However, power and heat dissipation, difficulties in increasing the clock fre-
quency, and the need for technology reuse to reduce time-to-market push to-
wards different solutions from the classic single-core or custom technology.
A solution that is gaining widespread momentum consists in exploiting the
inherent parallelism of applications, executing them on multiple off-the-shelf
processor cores. Unfortunately, the development of parallel applications is a
complex task. In fact, it largely depends on the availability of suitable software
tools and environments, and developers must face with problems not encoun-
tered during sequential programming, namely: non-determinism, communica-
tion, synchronization, data partitioning and distribution, load-balancing, het-
erogeneity, shared or distributed memory, deadlocks, and race conditions.
Since standard languages do not provide any support for parallel programming
some effort has been devoted to the definition of new languages or to the ex-
tension of the existing ones. One of the most interesting approaches is the
OpenMP standard based on pragma code annotations added to standard lan-
guages like C, C++ and Fortran [[7].

The aim of the hArtes toolchain is to have a new way for programming hetero-
geneous embedded architectures, dramatically minimizing the learning curve
for novice and simultaneously speed up computations by statically and trans-
parently allocating tasks to different Processing Elements.

Currently the hArtes toolchain addresses three platforms, based on Atmel
Diopsis SOC. This SOC embeds an ARM9EIJS and MAGIC, a floating point
DSP. The OMAP family will be supported soon. These target platforms sup-
port a Fork/Join, non preemptive threading model, where a master processor
spawns multiple software and hardware threads on the various processing ele-
ments (or on the FPGA) and retakes control after all of them terminate. This
model clearly fits well with the OpenMP standard. In fact, the OpenMP stan-
dard has been adopted in this project since it is well supported and accepted
among parallel application developers and hardware vendors. It is supported
by many commercial compilers (Microsoft and IBM) and, in the OpenSource
scene, by GCC, starting with the 4.2 release. The reasons behind the wide dif-
fusion of OpenMP lie in the fact that it is considered a good mean to achieve
portable parallel execution on shared-memory multiprocessor (SMP) systems,
it allows the incremental parallelization of existing codes and it has a very
powerful and complete syntax to express complex models of parallelism (e.g.
for loops parallelism), but, at the same time, it remains simple and effective.
A subset of the OpenMP pragmas is used in the context of the hArtes project:
#pragma omp parallel is used to express parts of code that potentially runs
in parallel and, inside it, the #pragma omp sections declares the single par-
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allel parts. Each #pragma omp parallel block acts as a fork and it implic-
itly joins the spawned threads at its end. It is interesting to note that nested
#pragma omp parallel are allowed, giving the possibility to support fork
from children threads. The annotations for the initial guesses on the mapping
of the tasks on the target platforms will instead adopt an ad-hoc, independent
syntax. Using an independent syntax for mapping makes sense since it is a
different problem from thread decomposition and it is tightly coupled with the
target platform. In this way the parallel code produced can be tested on differ-
ent hosts that support OpenMP, simply ignoring the mapping directives.

For these reasons, differently from CUDA or other architectures that address
the problem of “parallel computing”, the hArtes toolchain doesn’t impose to
write applications by using new syntaxes or new libraries. In fact, the pro-
grammer can express parallelism as he always did on a PC platform (threads,
OpenMP), or he may leave the toolchain to extract the parallelism automati-
cally. Then, at the end of the compilation process the harts toolchain produces a
single executable with all the symbols and debugging information for each pro-
cessing element. The programmer has only to execute/debug it on the targeted
heterogeneous platform as he was dealing with a single processor architecture
(just like a PC).

The following sections of the chapter will first introduce the overall toolchain
structure and then present the different tools composing it, concluding with the
introduction of the overall framework user interface, showing how it can be
used by the toolchain users for mapping their applications.

2.2 Tool chain structure

Figure|2.1|illustrates the overall hArtes toolchain flow. The flow is constituted
by several stages, and each stage can be iterated more than once. Informa-
tion produced in the execution of the different phases is transferred from one
phase to the next using C pragma annotations added to the application source
code and XML annotations contained in a dedicated file that is modified and
enriched by each tool. The pragma annotations are used to specify partition-
ing, mapping and profiling of the application that is currently analyzed by
the toolchain. The XML annotations contain information about the target ar-
chitecture (i.e., the available processing elements and their interconnections)
and about the characterization of the implementations for each function to be
mapped onto that architecture. In conclusion, all the information about the
structure of the application is contained in the application source code, while
the architecture description file provides all the information on the character-
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istics of the execution on the target architecture. The flow is composed of the
following three main blocks:

1. the Algorithm Exploration and Translation (AET) toolbox (detailed in

Section[2.4)

2. the Design Space Exploration (DSE) toolbox (detailed from Section
to Section

3. the System Synthesis (SysSyn) toolbox (detailed from Section [2.§] to
Section[2.10))

The Algorithm Exploration Tools (AET) are used in the first phase for the algo-
rithm design and exploration. Its output is the algorithm C code. The available
graphical or textual tools allow the designer to explore different algorithm solu-
tions, until the final correct C code of the application (plus possible notations)
has been obtained. The Design Space Exploration (DSE) tools are used in the
second phase to manipulate and optimize the C code. The profiled C code is
then partitioned in tasks taking into consideration the performance data just
obtained. The resulting partitioned code, is further annotated to provide an
initial guess on the mapping of each task on the processing elements of the tar-
get platform. Each task can then be transformed to optimize it for the specific
processing elements on which it has been mapped. To reduce the amount of
hardware required for an operation, the number of bits used to represent data
needs to be minimized. This goal is addressed by the Data Representation op-
timization stage. All these stages provide new information and can be repeated
several times to optimize the resulting code. Each task is finally committed to
each processing element before code generation. Finally, the System Synthesis
tools are used in the third (final) phase, to perform the compilation, the link-
ing and loading of the application onto the target hardware. In particular, the
code generation is performed by a specific back end for each target unit. The
ELF objects for the software parts are merged to generate the executable code,
while high level synthesis is performed and synthesizable VHDL is generated
for the FPGA part.

The hArtes project includes also the development of the hArtes IDE, which is
the human interface to the workspace. The integration in a unified toolchain
of a set of tools going from the very high level of the application development
to the lowest levels is an original contribution of hArtes and the integration
methodology adopted is generic enough to conceive the hArtes framework as
the basis on which other toolchain instances for embedded system develop-
ment can be built. The rest of the chapter describes the functionalities expected
from each tool represented in the toolchain.
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2.2.1 The Algorithm Exploration Tools

The user has three different options to enter the hArtes toolchain:
1. Describe the application with Scilab
2. Describe the application with NU-Tech

3. Describe the application directly in C language

The AET Tools have the aim of translating in C language the application de-
scribed with NU-Tech or with Scilab. Starting from an application described
as a NU-Tech network of Satellites (NUTSs), NU-Tech is able, thanks to the
GAE Tool feature, to produce a C description of the application and pass the
results to the toolchain DSE tools. In order to produce a C description of the
application the source code of each functional block is needed. The GAE Tool
feature handles the task of describing how each block interacts with each other
and with the system I/O. The ready-to-use NUTS library allows the user to
concentrate on the core of his/her own algorithm and write it down according
to the GAE Tool specifications. Specifications are few and very easy to follow:

o fixed sampling frequency for each streaming session: any streaming ses-
sion should work at a fixed sample rate.

¢ Init/Deinit/Process architecture: any algorithm should consist of these
three functions.

As an alternative option, the application can be described using the scripting
language of Scilab. A tool to translate the Scilab description into the C lan-
guage description is developed and is integrated with a library of functions to
support the DSP applications. The initial set of functions is selected accord-
ing to the application partners requirements. Addition of new library functions
is possible if the developer provides the underlying description in C, support-
ing all the different required implementations associated with the data types
supported by Scilab (e.g. implementation for scalar variables, operating on
individual items like float variables, or implementation for vectorial variables
operating on array of data mono or two dimensional). In order to optimize
the implementation on the embedded platform, dynamic memory allocation
and de-allocation shall be avoided. The last option is directly writing the C
description of the application. The code must respect some coding guidelines
and it is possible to add some annotations to control the behaviour of the tools
that will be subsequently called. The output of the AET tools is C code with
optional pragma annotations added by the user.
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2.2.2 The DSE Tools

The Design exploration tools are composed of a set of tools aiming at first at
collecting information on the application, then on proposing a task partition-
ing based on cost estimations and applying transformations to these tasks in
order to make them more suitable for their implementation on the given tar-
get platform. Finally, a phase of task mapping is performed to identify the
most suitable hardware/software assigment of the different tasks, in order to
optimize specific figures of merit.

At first a profiling of the application is performed. The Code Profiler provides
information necessary for the subsequent tasks since it generates information
on the CPU cycles of the different functions to identify computational hotspots
and analyzes the memory usage and the access patterns. CPU usage is com-
puted by pro, that has been modified to produce its output in the required for-
mat. The memory usage and access patterns provide as output a quantitative
usage graph containing information on the amount of data exchanged between
two functions. The tools output their results by annotating the C code of the
application. The computation time of a function will be provided as an an-
notation in the C-code with # pragma_profile directives. The two measures
num _calls and time are provided for each function. num_calls indicates the
number of times the function is called and the time expresses the running time
of the program.

Task Partitioning

The task partitioning tool identifies the parallelism available in the application
by analyzing the tree structure of the code and groups the identified indepen-
dent operation clusters at the appropriate granularity level. Moreover, the task
partitioning tool automatically proposes an initial guess on the tasks mapping,
defining which parts of the application should be implemented in hardware,
or which parts should be executed in software and on which kind of process-
ing element available in the target system. The mapping is based on an initial
cost estimation taken into account together with the performance. The require-
ment analysis shows that the problem can be clearly separated in two distinct
sub-problems:

1. in the first phase the tool identifies the parallelism in the application, i.e.
shall annotate, using task partitioning C pragma notations, how it can be
decomposed in separate threads, presenting the parallel tasks within

2. the annotated code; in the second phase the tool will indicate, using spe-
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cific code annotations, an initial guess concerning which processing el-
ement (GPP, DSP or programmable logic) should execute the identified
tasks, i.e. where each task should be mapped in the system.

The inputs are the C description of the application and an XML file containing
information about the architecture and the performance of the application on
each processing element. When the XML file does not provide any perfor-
mance estimation, the task partitioning tool performs an internal estimation of
the performance of the application. Feedback from the toolchain can improve
the accuracy of the performance estimations and therefore the quality of the
partitioning and of the initial mapping identified by the partitioning tool. The
result of Task partitioning is a code annotated with Task Partitioning annota-
tions and possibly with HW assignment annotations.

Task Mapping

The task mapping tool (hArmonic) has two main inputs: (1) the source code,
supporting an arbitrary number of C source files and (2) the XML platform
specification. The platform specification describes the main components of
the heterogeneous system, including the processing elements, the intercon-
nect, storage components, and system library functions. The output of the task
mapping tool is a set of C sources. Each source is compiled separtely for each
backend compiler targeting a processing element, and subsequently linked to
a single binary. The hArmonic tool is divided in four stages:

e C Guidelines Verification. Automatically determines whether the
source code complies with the restrictions of the mapping process, al-
lowing developers to revise their source in order to maximize the benefits
of the toolchain.

o Task Filtering. Determines which processing elements can support
each individual task in the application in order to generate feasible map-
ping solutions on the hArtes platform.

e Task Transformation. Generates several versions of the same task in
order to exploit the benefits of each individual processing element, and
maximize the effectiveness of the mapping selection process.

o Mapping Selection. Searches for a mapping solution that minimizes
overall execution time.
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Cost Estimation

The cost estimation process includes the contribution of Imperial, PoliMi and
TUD. Each contribution solves a different problem in the hArtes toolchain.
Imperial’s cost estimator is used for the task mapping process (hArmonic)
to determine the cost of each task when executed on a particular processing
element. In this way, the task mapper is able to decide, for instance, whether
there is a benefit to run a particular task on a DSP instead of a CPU. PoliMi’s
cost estimator is a module integrated in the partition tool (zebu) which assists
in deriving a better partition solution and reduces the design exploration time.
Finally, the cost estimator from TUD is used to aid early design exploration
by predicting the number of resources required to map a particular kernel into
hardware. Its output is a set of information added to the XML file.

2.2.3 The System Synthesis Tools

The System Synthesis tools purpose is to create a unified executable file to be
loaded on the HW platform starting from the C codes produced by the task
mapping tool. The System Synthesis tools are:

o a customized version of the C compiler for the GPP (hgcc),

e a DSP compiler enriched with tools to generate information required by
the hArtes toolchain,

e an RTL generator from the C code provided as input,

o alinker to generate the unified executable image for the hArtes HW plat-
form, containing the executable images associated with the GPP, DSP
and FPGA

e a loader to load the executable image sections into the associated HW
platform memory sections,

e additional tools and libraries for format conversion, metrics extractions,
interaction with the operating system running on the platform.

The hgee Compiler for the target GPP is extended to support pragma annota-
tions to call the selected HW implementation. The effect of these pragmas is to
expand functions into a sequence of Molen APIs (see later). This customized
version of the C compiler for the GPP is called hgcc since it is a customiza-
tion for hArtes (h) of the gcc compiler The DSP Compiler is the compiler
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available for the DSP. It must be completed by adding an executable format
conversion in order to create a unified elf file for the entire application (see
later mex2elf) and a tool to add the cost information to the XML file (see later
DSP2XML). The VHDL Generator tool (C2VHDL) generates an RTL HDL
from the C code provided as input. This tool include two steps. First, the input
C-description of the algorithm shall be presented as a graph, which shall be
then transformed into a set of equivalent graphs, introducing different graph
collapsing techniques. Second, a metric base decision on the optimal graph
representation shall be made and this graph representation shall be translated
into RTL level and then to a selected HDL. The DSP2XML tool collects
information about the code compiled on the DSP. The collected information
concerns the optimization achieved by the task allocated on the DSP, such as
code size and execution speed. The mex2elf: tool converts the executable for-
mat generated by the DSP C compiler into the object format used by the GPP
linker, i.e. ARM little endian elf format. The MASTER GPP Linker creates
an elf executable ready to be loaded by the target OS (Linux). It links Molen
Libraries, GPP and DSP codes. The FPGA bitstream is included as a binary
section. It is composed of a set of customization of the scripts controlling the
code production, and customization to the linker itself is avoided in order to
reuse the linker tool from the GNU toolchain. The MASTER GPP Loader
is in charge of loading DSP and MASTER codes on the Target platform. The
FPGA bitstream is loaded into a portion of the shared memory accessible by
the FPGA. The loading process is performed in the following steps:

1. Loading of the code sections following the default Linux OS strategy,
including the m-mapping of the hArtes memory sections associated with
the HW platform components (DSP, FPGA),

2. Customized C Run Time (CRT) performing the additional operations
required by the hArtes HW/SW architecture, such as copy of the mem-
ory sections to the physical devices using the appropriate Linux drivers
developed to access the HW platform components (DSP, FPGA).

Dynamic FPGA reconfiguration is performed by copying the required config-
uration bitstream to the FPGA from the system shared memory where all the
available configuration bitstreams were loaded during the loading phase.

2.3 hArtes Annotations

The high level hArtes APIs are POSIX compliant. Software layers have been
added to make uniform C, thread and signal libraries of PEs. The POSIX com-
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pliance makes easy the porting of application across different architectures.
Low level and not portable APIs are available to the application in order to ac-
cess directly particular HW resources like timers, audio interfaces. The hArtes
toolchain requires an XML architecture description, where main HW and SW
characteristics are described. Beside the XML description (provided by the
HW vendors), the toolchain uses source annotations via pragmas. From the
developer point of view source annotations are optional because they are gen-
erated automatically by the toolchain. Both source and XML annotations can
be used by the developer to tune the partitioning and mapping of the applica-
tion.

2.3.1 XML Architecture Description File

The XML Architecture Description File aims at providing a flexible specifica-
tion of the target architecture and it is used for information exchange between
the tools involved in the hArtes project. First we provide a brief overview of
the XML format. Next we present the organization of the XML file for archi-
tecture description. Then we describe the interaction of the hArtes tools with
the presented XML file.

There are many advantages of using the XML format for the Architecture
Description File. The XML format is both human and machine readable,
self-documenting, platform independent and its strict syntax and parsing con-
straints allow using efficient parsing algorithms. In consequence, the XML for-
mat is suitable for the structured architecture description needed by the tools
involved in the hArtes project.

The structure of an XML document relevant for the Architecture Description
File is shortly presented in this section. The first line of the XML file usually
specifies the version of the used xml format and additional information such as
character encoding and external dependencies (e.g. <?xml version="1.0"
encoding="IS0-8859-1"7>).

The basic component of an XML file is an element, which is delimited by a
start tag and an end tag. For example, the following element:

<name>hArtes</name>

has <name> as the start tag and </name> as the end tag of the “name” element.
The element content is the text that appears between the start and end tags.
Additionally, an element can have attributes, such as:

<name id="12">hArtes</name>
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An attribute is a pair of name-value, where the value must be quoted.

Finally, we mention that every XML document has a tree structure, thus it must
have exactly one top-level root element which includes all the other elements
of the file.

The root element of the XML description is named ORGANIZATION. It contains
the following elements:

o HARDWARE: which contains information about the hardware platform;

e OPERATIONS: which contains the list of operations (i.e., C functions)
and implementations;

e PROFILES: which contains additional information generated by tools.

<ORGANIZATION>
<HARDWARE>

</HARDWARE>
<OPERATIONS>

</OPERATIONS>
<PROFILES>

</PROFILES>
</ORGANIZATION>

The HARDWARE XML element
The HARDWARE element contains the following elements:

e NAME: name of the board/hardware;

FUNCTIONAL_COMPONENT: which describes each processing element;

STORAGE_COMPONENT: which describes the storage (memory) elements;

BUS_COMPONENT: which describes architectural interconnection ele-
ments;

VBUS_COMPONENT: which describes virtual (direct) interconnection ele-
ments.

Each FUNCTIONAL_COMPONENT is composed of:

e NAME: the unique identifier for the FUNCTIONAL_COMPONENT, such as
Virtex4 or ARM. It should be a valid C identifier as it can be used in
pragmas;
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e TYPE: the class of the functional component. Valid values are GPP,
DSP and FPGA. Based on this information, the proper compiler will be
invoked the related stitch code will be generated;

e MODEL: represents the specific model for the processing element (e.g.,
XILINX VIRTEX XC2VP30);

e MASTER: whether the functional component is the master processing ele-
ment or not. The element contains YES if the component is the master or
NO otherwise. Only one functional component can be defined as master.

e SIZE: which is relevant only for reconfigurable hardware and represents
the number of available Configurable Logic Blocks (CLBs).

e FREQUENCY: is the maximum frequency of the functional component,
expressed in MHz;

e START_XR: the starting range of the transfer registers associated with that
functional component.

o END_XR: the ending of the range of the transfer registers.

o HEADERS: contains the list of all headers to be included when the C code
is split to the corresponding backend compilers. It is composed of:

— NAME: (multiple) filename name of the header.

e DATA: contains C data (storage) specification. In particular, it specifies
the following elements:

— MAXSTACKSIZE: the maximum stack size.

— DATA_TYPE: is of list of the C basic types. Note that a typedef can
be treated as a basic type if included here. In this case, it does not
matter if the hidden type does not resolve to a basic type.

* NAME: name of the basic type;
* PRECISION: is the precision of the data type.

Example:

<FUNCTIONAL_COMPONENT>
<NAME>Arm</NAME>
<TYPE>GPP</TYPE>
<MODEL>ARMv9</MODEL>
<MASTER>YES</MASTER>
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<START_XR>1</START_XR>
<END_XR>512</END_XR>
<SIZE>0</SIZE>
<FREQUENCY>250</FREQUENCY>
<HEADERS>
<NAME>my_header.h</NAME>
<NAME>my_header2.h</NAME>
</HEADERS>
<DATA>
<MAXSTACKSIZE>1000</MAXSTACKSIZE>
<DATA_TYPE>
<NAME>int</NAME>
<PRECISION>32</PRECISION>
</DATA_TYPE>
</DATA>
</FUNCTIONAL_COMPONENT>

Similarly, each STORAGE_COMPONENT contains the following elements:

e NAME: for the name of the component. E.g. MEMI1. One storage com-
ponent, connected to FPGA must be named XREG.

e TYPE: type of the memory. E.g., SDRAM
e SIZE: the size of the memory in kilobytes. E.g, 16

e START_ADDRESS: is the starting range of memory addresses in the shared
memory. These should be hexadecimal number and thus you must use
”0x” prefix.

e END_ADDRESS: is the ending range of memory addresses in the shared
memory. These should be hexadecimal number and thus you must use
”0x” prefix.

Example:

<STORAGE_COMPONENT>
<NAME>MEM1</NAME>
<TYPE>SDRAM</TYPE>
<SIZE>128</SIZE>
<START_ADDRESS>0</START_ADDRESS>
<END_ADDRESS>0xFFFFFFFF</END_ADDRESS>
</STORAGE_COMPONENT>

The BUS_COMPONENT contains:

e NAME: used to identify the bus
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e BANDWIDTH: the size of one memory transfer in kbytes/sec (for example:
1024)

e FUNCTIONAL_COMPONENTS: functional components that can access this
bus

— NAME: the name of the functional component
o STORAGE_COMPONENTS: storage components connected on this bus
— NAME: the name of the storage component

o ADDR _BUS_WIDTH: The size in bits of the address bus to the correspond-
ing storage component. Used by the DWARYV toolset for CCU interface
generation, if the bus is not connected to a FPGA, the element is op-
tional.

e DATA BUS_WIDTH: The size in bits of the read and write data busses for
the corresponding storage component. Used by the DWARYV toolset for
CCU interface generation. If the bus is not connected to an FPGA, the
element is optional.

e READ CYCLES: The number of cycles to fetch a word from the corre-
sponding storage element. If the storage component runs at different
frequency than the CCU, the number of access cycles has to be trans-
ferred as CCU cycles. For example, if the storage component is clocked
at 200MHz and requires 2 cycles to fetch a word and the CCU operates
in 100MHz, the cycles in the component description are reported as 1.
If the storage component is clocked at 50 MHz, the CCU at 100MHz,
the fetch cycles are 2, then the component description contains 4 as read
cycles. If the storage component has non-deterministic access time, the
cycles element shall be set to unavailable”.

Example:

<BUS_COMPONENT>
<NAME>Internal FPGA</NAME>
<TYPE>INTERNAL</TYPE>
<BANDWIDTH>1024</BANDWIDTH>
<ADDR_BUS_WIDTH>32</ADDR_BUS_WIDTH>
<DATA_BUS_WITH>64</DATA_BUS_WITH>
<READ_CYCLES>2</READ_CYCLES>
<FUNCTIONAL_COMPONENTS>

<NAME>FPGA</NAME>

</FUNCTIONAL_COMPONENTS>
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<STORAGE_COMPONENTS>
<NAME>MEM1</NAME>
</STORAGE_COMPONENTS>
</BUS_COMPONENT>

The VBUS_COMPONENT element represents the direct interconnection between
two functional elements

o NAUNME is the bus interconnect identifier. Example: VBUSI;

e FUNCTIONAL_COMPONENT NAME (multiple) name of the functional com-
ponent inside this bus;

e BITSPERUNIT the number of bits exchanged per unit;
e BANDWIDTH the number of units transferred per unit of time.

<ORGANIZATION>
<HARDWARE>
<VBUS_COMPONENT>
<NAME>id</NAME>
<FUNCTIONAL_COMPONENT_NAME>component 1</FUNCTIONAL_COMPONENT_NAME>
<FUNCTIONAL_COMPONENT_NAME>component 2</FUNCTIONAL_COMPONENT_NAME>
<BITSPERUNIT>21</BITSPERUNIT>
<BANDWIDTH>102</BANDWIDTH>
</VBUS_COMPONENT>
<HARDWARE>
<ORGANIZATION>

The OPERATIONS XML element

The OPERATIONS element is used for the description of the operations that are
implemented on the hardware components. It contains a list of OPERATION
elements which contain the associated functional components and describe the
hardware features of each specific implementation.

<ORGANIZATION>
<OPERATIONS>
<OPERATION>

<OPERATION>
<OPERATION>

<OPERATION>

</OPERATIONS>
</ORGANIZATION>
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The OPERATION element structure is:

e NAME, the name of the operation in the C file.

e multiple COMPONENT elements containing:

— NAME, this has to be a mname of an existing
FUNCTIONAL_COMPONENT.

— multiple IMPLEMENTATION elements containing

Example:

<OPERATION>

*

ID, an unique identifier (for all the XML) for each hardware
implementation

SIZE, for the implementation size. For each type of compo-
nent this will have a different meaning as follows: for the FPGA
it will be the number of 100 slices, for the GPP and for the
DSP it will be the code size in KB.

START_INPUT XR, START_OUTPUT _XR, for the first XRs with
the input /output parameters

SET_ADDRESS, EXEC_ADDRESS, for the memory addresses of
the microcode associated with SET/EXEC, can be omitted if
not FPGA

SET_CYCLES, EXEC_CYCLES, for the number of component cy-
cles associated with hardware configuration/execution phase,
can be omitted if not FPGA

FREQUENCY - the frequency of the implementation on FPGA
in MHz. If the functional component is not FPGA, this can be
omitted.

<NAME>SAD</NAME>
<COMPONENT>
<NAME>Arm</NAME>
<IMPLEMENTATION>
<ID>11</ID>
<SIZE>100</SIZE>
<START_INPUT_XR>3</START_INPUT_XR>
<START_OUTPUT_XR>10</START_OUTPUT_XR>
<SET_ADDRESS> 0X00000000 </SET_ADDRESS>
<EXEC_ADDRESS> 0X00000000 </EXEC_ADDRESS>
<SET_CYCLES> 100 </SET_CYCLES>
<EXEC_CYCLES> 200 </EXEC_CYCLES>
</IMPLEMENTATION>
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</COMPONENT>
</OPERATION>

In the presented Architecture Description File, there is a clear delimitation
about the hardware/software features of the target architecture/application.
The information contained in an OPERATION element (such as size, fre-
quency) has to be provided by the automatic synthesis tools that generates
a specific implementation for a specific operation. Finally, the information for
the HARDWARE element (such as Memory sizes, GPP type) is general and
should be introduced by the architecture designer.

The PROFILES XML element

The PROFILES element stores the result of some tools in the hArtes toolchain.
HGPROF is a profiling program which collects and arranges statistics of a pro-
gram. Basically, it captures performance information about specific elements
of the program such as functions, lines, etc. Currently, HGPROF captures the
following information which are stored in the PROFILES element:

e NAME: is the name of a function;

e STIME: is an average execution time (ms) of each function per call with-
out subroutine calls;

e CTIME: is an average execution time (ms) of each function per call with
subroutine calls;

e NCALLS: is the number of times a function is called;
e LINE element containing

— NUMBER is the line number;

— NCALLS is the number of time a line is executed.

Example:
<PROFILE>
<HGPROF>
<FUNCTION>

<NAME> functionl</NAME>
<STIME>134</TIME>
<CTIME>1340</TIME>
<NCALLS>32</NCALLS>
<LINE>
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<NUMBER> 34</NUMBER>
<NCALLS> 350</NCALLS>
</LINE>
</FUNCTION>
</HGPROF>}
</PROFILE>}

As HGPROF collect this information on the associated tag the same happened
for QUIPU and QUAD.

2.3.2 Pragma Notation in hArtes

Pragmas are used to embed annotations directly into the source-code. The ad-
vantage of pragmas over XML is that the code itself carries the annotations;
however it can also clutter the code and make it less easy to read. The biggest
benefit of using #pragmas is that they can be used to annotate constructs such
as assignment and loop statements, which, differently from functions, do not
have obvious identifiers. Moreover, it is worth noting that the program struc-
ture has to be revisited when there are functions that interact outside the pro-
gram itself. In fact, if the program contains IO directives or supervisor calls,
it is problematic to extract parallelism from them since memory side-effects
cannot be controlled or predicted. For this reason, functions are classified into
two different types:

o data interfacing functions
e data processing functions

The former ones should be excluded from the parallelism extraction. In partic-
ular, when a data-interfacing function contains calls to functions communicat-
ing with the external world (e.g. 1O or supervisor calls), it shall be marked with
a specific directive to be excluded from the partitioning. In this way, a better
performing code will be obtained since the parallelism extraction operates only
on the data processing region, where no interfacing with external world occurs.
For this reason, the source code has to be compliant with this structure to al-
low the parallelism extractor tool to concentrate its effort on meaningful parts
of the application. Note that how functions exchange data is not a constraint,
but the distinction between interfacing and processing functions is.

Few common format directives will be shared among the different pragma no-
tations used in hArtes. The common directives will refer to the format of a
single line pragma notation. No common rules will be defined to describe
grammar expressions built with the composition of multiple pragma lines. The
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notation is case sensitive. Pragma notation lines will be specified with the
following format:

pragma ::= #pragma <pragma_scope> [<pragma_directive>] [<clauses>]
new_line

White spaces can be used before and after the *#’ character and white spaces
shall be used to separate the pragma_scope and the pragma_directive. The
pragma_scope is composed of a single word; multiple words, separated by
white spaces, may compose a pragma_directive.

pragma_scope ::= <word>

pragma_directive ::= <word> [<word> [<word>...]]

The pragma_scope identifier specifies the different semantic domain of the par-
ticular pragma_directive. The specific hArtes pragma scopes are the following:

e omp for the OpenMP domain;
o profile for the profiling domain;
o map for the hardware assignment domain;

o issue for generic issues not related to the previous scopes, but mandatory
for hArtes toolchain.

They are used to reduce the potential conflict with other non-hArtes pragma
notations. The pragma_directive identifies the role of the pragma notation
within the scope of the specific semantic domain. For the different directives,
see the paragraph related to the specific scope.

<clauses> represents a set of clauses, where each clause is separated by white
space:

clauses ::= <clause> [<clause> [<clause>]]

The clause may be used to define a parameter or a quantitative notation use-
ful for a pragma_directive. Each clause is comprised by a name and a list of
variables separated by commas:

clause ::= <name> [(<variable>[,<variable>...])]

The order in which the clauses appear is not significant. The variable identi-
fier’s, if any, shall be used to define only variable parameters.

OpenMP Domain

We adopt a subset of the OpenMP pragmas to describe parallelism (task
partitioning and thread parallelism). OpenMP pragmas are denoted by the
pragma_scope omp. Note that the OpenMP syntax is used to annotate how
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tasks are partitioned. Inter-thread synchronization is not used except for bar-
riers, as the hArtes specifications explicitly ask for extraction of independent
threads with a load-execute-commit behaviour.

Parallel construct:  program code supposed to run in parallel is introduced
by the pragma:

#pragma omp parallel [clause[ [, Jclause] ...] new-line
{

structured-block

}

This #pragma creates a team of threads. The thread that first encounters this
pragma becomes the master of the new team. Note that all the spawned threads
execute the code in the structured-block. Code inside square brackets [ ] de-
notes optional elements.

Even if the OpenMP specs provide support for different clauses, we only con-
sider the num_threads and default(shared) clauses: the former to express the
number of threads spawned for the parallel region, the latter to explicit the only
supported variable management among the spawned threads. Other clauses are
not supported. It is worth noting that if unsupported clauses are present in the
original source code, the parallelism extraction analysis is aborted, since the
original semantics could be changed. Note also that without the num_threads
clause we cannot a priori determine the number of threads that will be created,
since the behaviour is compiler dependent. Nested #pragma omp parallel con-
structs are supported: each thread that reaches this nested pragma becomes
master of a new team of threads. Note that at the closing bracket } of the
#pragma omp parallel there is an implicit barrier that joins all the spawned
threads before returning control to the original master thread.

Worksharing constructs:  OpenMP allows the use of work-sharing con-
structs inside a parallel region to distribute the execution of the code in the
parallel region to the spawned threads. A work-sharing region must bind to
an active parallel region: worksharing constructs are thus introduced only in-
side #pragma omp parallel constructs. OpenMP defines the following work-
sharing constructs:

e loop (for) construct
e sections construct

e single construct
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At the moment, we only support the sections worksharing construct. This is
used to express the sections of code running in parallel. Each structured block
is executed once by one of the threads in the team. The other construct are
considered as invalid. The sections worksharing constructs is declared with
the following pragma:

#pragma omp sections [clause[[,] clause] ...] new-line

{

structured-block

}

Note that at the moment these clauses are ignored by the partitioning tool.
Inside the brackets { } the different parallel blocks of code are declared with
the pragma:

#pragma omp section

{

structured-block

}

Notice the lack of the s at the end of the section clause.
This is how #pragma omp sections combines with #pragma omp section:

#pragma omp sections [clause[[,] clause] ...] new-line

{
[structured-block]
#pragma omp section new-line

{
[structured-block]
}
#pragma omp section new-line
{
[structured-block]
}

Note that the first #pragma omp section can be omitted, since it is always
assumed that the following structured code is executed by one thread only. The
following #pragma omp section constructs must instead be present to signal
that the structured blocks of code below will be executed by other threads.
Note that nested parallel regions are always possible. So a nested #pragma
omp parallel can be declared in the structured code belonging to a #pragma
omp section.
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Barrier annotation:  Synchronization points (barriers) for parallel region
and for sections are implicit at their end. This means that a barrier is present
at the closing bracket } of each #pragma omp parallel, #pragma omp sections
and #pragma omp parallel sections.

Anyway the explicit pragma is supported by our tool for additional information
inside parallel regions and sections. The format is:

#pragma omp barrier new-line

Note that OpenMP allows the use of this pragma at least inside a first level
parallel region. Of course it can be used inside #pragma parallel sections
(which binds to a parallel region) to wait for the termination of certain struc-
tured blocks of code before starting the others. When this construct appears all
the threads spawned to execute the binding parallel region must reach the bar-
rier before proceeding. Note anyway that since implicit barriers are present at
the end of parallel regions and sections, the code can be written without using
this pragma, without losing expressive power. Since nested parallel regions are
possible, the barrier construct binds to the innermost region.

Profiling Domain

The profiling domain is used to capture performance information about spe-
cific elements of the program (functions, loops, etc.). In general, the #pragma
profiling directive must appear in the line before the construct it refers to. Note
that white spaces (newlines, spaces and tabulation characters) may exist be-

tween the pragma and the corresponding C construct.
The notation used for this directive is: #pragma profile data where data con-
tains the performance measures, defined by the following regular expression:

data := measure_name(mean,variance) [measure_name(mean,variance)]*

Profiling information is structured in clauses. These clauses contain statistical
measures on the performance of the application, in the sense that both mean
and standard deviation values should be given for each measure. This is due to

the fact that application behaviour is, in general, dependent on the input data.
So far two measures are used:

o num_calls
e time

The former indicates the number of times the function is called while the latter
expresses the running time of the program which was spent in the function in
micro seconds.
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The #pragma profile clause must appear immediately before the function it
refers to; at most there can be blank spaces (newline, spaces or tabulation
characters) among them. This clause can either be inserted before the function
prototype or before the function body; in case both of the notations are present,
only the one before the prototype will be considered Example:

#pragma profile num_calls(5,0.8)
void f1Q);

means that function f1 is called an average of 5 times and the standard devia-
tion of the measurements is 0.8.

#pragma profile time(30,0.02)
void f1Q;

means that 30 micro seconds of the execution time of the program is spent is
executing function f1; the standard deviation is 0.02

#pragma profile time(30,0.02) num_calls(5,0.8)
void f1Q);

is just the combination of the previous two notations; note that the order be-
tween time and num_calls is not important.

#pragma profile time(30,0.02) num_calls(5,0.8)
void f1Q)

is the same notation seen before, but this time used before the function body
and not the function prototype. The #pragma profile clauses are not manda-
tory, but the information they carry may be useful to improve the partitioning
process. The information depends of course on the platform used. The pro-
file information is given for the GPP processor, which is the processor that
contains the MASTER element in the architecture description file.

Mapping Domain

The mapping domain is used to instruct the backend compilers how tasks are
mapped to different processing elements. We use two pragma directives:

e generation pragmas, used to mark that, an implementation needs to be
built for one particular functional component (like FPGA or DSP)

e execution pragmas, used to indicate which functional component or
which specific implementation a particular function is mapped for being
executed.
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The generation pragma is placed immediately before the definition of the func-
tion to be compiled by one of the hardware compilers. The syntax is:

#pragma generate_hw impl_id

The <impl_id> corresponds to the implementation identifier in the XML file.
The hardware compilers (DWARYV, the Diopsis compiler) will read the XML
and determine if they need to generate bitstream/code for that function.

The execution pragma is placed immediately before the definition of the func-
tion to be executed or offloaded to the hardware component and the corre-
sponding pragma_directive is call_hw. The syntax is:

#pragma call_hw <component_name> [<impl_id>]

The <component_name> is the unique identifier of the hardware component
where the function will be executed. The <impl_id> is the identifier of the cho-
sen implementation associated with the function on the specified component.
Additional information about the implementation is in the XML architecture
file. If the <impl_id> is not specified, it means that no implementations are
still available and the mapping gives information only about the target pro-
cessing element and not the implementation (e.g., specific information about
area/performance is not available).

Examples:

#pragma call_hw ARM
void procl (int* input, int* outputl, int* output2)

{
}

#pragma call_hw FPGA 2
void proc2(int* input, int* outputl, int* output2)

{
}

#pragma call_hw ARM O
void proc3 (inputl, &outputl, &output);

The function procl will be executed by the ARM component, but no informa-
tion about a specific implementation is available. Note that, since this pragma
has been put before the declaration, it means that all the instances of the procl
function will be mapped in this way. The function proc2, instead, will be exe-
cuted on the component named FPGA, with the implementation identified by
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the id 2. In this case, the synthesis toolchain has also information about the
corresponding implementation that has to be generated. In the other hand, if
you desire to specify a different mapping for each call of the function, you
have to insert the pragma immediately before the related function call. In this
example, only the specified proc3 function call will be implemented on ARM
with the implementation with id 0 and no information is given about the other
calls of the same function in the program.

Issue Domain

These clauses contain general information or issues for the application. An
issue could be the desire for the programmer to exclude a routine from the
partitioning process. The notation used for this directive is: #pragma issue
and a list of directives to be applied to the function that follows:

#pragma issue [directive[[,] directive] ...] new-line

So far only the blackbox directive has been considered. This directive forces
the related routine to be excluded from the partitioning process. It can be used
by the programmer to indicate that the function will not been partitioned. This
directive is often applied to functions containing I/O since it is problematic
to extract parallelism when they are involved. For this reason the 1O regions
(data input and data output) should be marked with the #pragma issue blackbox
directive. In this way, these two regions will be excluded from parallelism
extraction and a better performing code will be obtained.

The #pragma issue clause must appear immediately before the function it
refers to; at most there can be blank spaces (newline, spaces or tabulation
characters) among them. This clause can either be inserted before the function
prototype or before the function body; in case both of the notations are present,
only the one before the prototype will be considered.

Example:

#pragma issue blackbox
void proc4 (int* input, int* outputl, int* output2)

{

}

In this case, the routine proc4 will be considered as a black-box and no parti-
tioning is tried to be extracted from it.
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2.4 Algorithm Exploration

The Algorithm Exploration Toolbox (AET) has the role of enabling the high
level description of the application, which shall be translated in C code. The
main aim of the AET is to provide tools with two basic functionalities:

e Assist the designers in tuning and possibly improving the input algo-
rithm at the highest level of abstraction in order to easily obtain feedback
concerning the numerical and other high-level algorithmic properties.

o Translate the input algorithms described in different formats and lan-
guages into a single internal description common for the tools to be em-
ployed further on. In the hArtes tool-chain, this internal description is
done in C language.

The Algorithm Exploration Toolbox, in particular, deals with high-level algo-
rithms design tools. Its main goal is to output a C description of the input
algorithm complemented by optional specification directives reflecting the al-
gorithmic properties obtained from the tools.

This ToolBox translates the multiple front-end algorithmic entries considered
into a single unified C code representation.

In these terms the most simple AET Tool may be just a traditional text editor,
for C programming, possibly with the typical features such as syntax high-
lighting, automatic indenting, quick navigation features, etc. The user which
is writing C code to be processed by the hArtes tool-chain, differently from
other C programmers, has the opportunity to enrich the code with additional
information that may be useful in the activity of task partitioning, code profil-
ing and code mapping. Nevertheless, the syntax that has been defined in the
hArtes project, shall be based on C pragma notation, and then compatible with
the use of a typical C text editor.

C code programming, anyway, is often not the most efficient way of designing
the application algorithms. The hArtes AET toolbox offers the opportunity of
describing the application also using both graphical entry and computational-
oriented languages.

The hArtes Consortium decided, since the beginning, to adopt NU-Tech as
Graphical Algorithm Exploration (GAE) solution and Scilab as computation-
oriented language. Later on this chapter the specific issues concerning the
integration of these tools in the hArtes ToolChain will be analyzed.
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2.4.1 Scilab

Scilab is a scientific software package for numerical computations providing a
powerful open computing environment for engineering and scientific applica-

tions.

Scilab is an open source software. It is currently used in educational and in-
dustrial environments around the world.

Scilab includes hundreds of mathematical functions with the possibility to add
interactively programs from various languages (C, C++, Fortran...). It has
sophisticated data structures (including lists, polynomials, rational functions,
linear systems...), an interpreter and a high level programming language.
Scilab supports the following features:

2-D and 3-D graphics, animation

Linear algebra, sparse matrices

Polynomials and rational functions

Interpolation, approximation

Simulation: ODE solver and DAE solver

Xcos: a hybrid dynamic systems modeler and simulator
Classic and robust control, LMI optimization
Differentiable and non-differentiable optimization
Signal processing

Metanet: graphs and networks

Parallel Scilab

Statistics

Interface with Computer Algebra: Maple package for Scilab code gen-
eration

Interface with Fortran, Tcl/Tk, C, C++, Java, LabVIEW
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Overview

Scilab2C is a tool capable to translate Scilab code into C code.

It is a standalone toolbox of Scilab and it has been primarily developed to
become the interface between the Scilab scientific software package and the
hArtes design flow.

The output C code is in a plain style and does not include any part of the
Scilab interpreter thus making it small, efficient and easy to interface to the
hArtes tool chain.

In other words, the generated C code is standalone and minimal in the sense
that Scilab interpreter is no longer needed and only the minimal number of C
files that are necessary to execute the application are generated. It follows that
the generated code can be embedded in processors or used as entries for other
software.

Scilab2C is a Scilab toolbox available through Atoms (AuTomatic mOdules
Management for Scilab) and can be directly installed/used in the Scilab Devel-

opment Environment.
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Copyright (c) 1989-2007 (ENEC) Conmin Author(s)
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From Scilab script to C code

The aim of the tool is to give an easy path, from Scilab code down to C code,
to a user who may not have any skills on low level language programming but
who wants to have an accelerated execution of its high level representation of
the algorithm.

Scilab takes advantage from:

e an easy high level programming and testing environment.
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e C code for quicker execution and possibly other optimizations (hardware
acceleration, parallelization, ...).

Scilab Scripting language Scilab provides a powerful language to exploit
those capabilities:

e High level, non-typed and non-declarative programming language: the
user does not need to take care about memory allocation, variable type
declaration and other programming habits C programmers are used to.
Moreover Scilab is a non-declarative language which means the user is
allowed to use variables without declaring (nor typing) them before.

e Lazy syntax and control structure instructions: with respect to other pro-
gramming languages Scilab has a different way to write control struc-
tures (if / then, for, function) that will give the user some freedom writing
their scripts/function avoiding the syntax strictness of C code. Neverthe-
less Scilab language is as rich as other programming language regarding
control capabilities: if, for, while, select, try, ...

e Matrix oriented language with an extended choice of standard math-
ematics computations: Scilab provides and extended set of standard
mathematics capabilities, allowing the user to apply mathematical al-
gorithms and will be able to easily manipulate the obtained results.

To sum it up the user can write any algorithm, found in a publication or any
paper, using Scilab scripting language, and the result will “look like” the orig-
inal except that it can physically run on a PC and then be tested, improved, etc.
(see figure below).
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Example : High-pass filter
let us consider a simple example like this high-pass filter, the following equa-
tions can be extracted:
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Vour(t) = I(t) - R

Qc(t) = C - (Vin(t) = Vour(1)) 3
I(r) = 2

This equation can be discretized. For simplicity, assume that samples of the
input and output are taken at evenly-spaced points in time separated by A, time.

Vin(t) - Vin(t - At) _ Vout(t) - Vout(t - At)
Ay A,

Vour = RC(

{ Vour(i) = aVou(i = 1) + a (Vi (i) = Viu(i = 1))

a

= RC+A,

We can now easily implement this high-pass filter using Scilab:

i high_pass.sce (Di\high_pass.sce] - Scilab text editor

File Edit Search View Document Execute ?

CEE®m & cr &0 S

high_pass.sce

1 |// Return RC high-pass filter output signal samples,

2 |// given input_signal samples,
3 |// time interval dt,

4 |// Rand C

5 |function output_signal = high pass{input_signal, dt, R, C)

3 alpha =R * C / (R * C + dt)

7 output_signal(1l) = input signal{l)

8 for i = 2 : size(input_signal, "*")

9 output_signal(i) = alpha * output_signal{i-1) + alpha * (input_signal({i)} - input signal(i-1))
10 end

11 |endfunctior

C Code generator The output C code produced by the tool is written in
plain C style, so it can be easily manipulated by optimizing tools available in
the hArtes toolchain.

The generated code is standalone and minimal in the sense that Scilab inter-
preter is no longer needed and only the minimal number of C files, which are
necessary to execute the application, are generated and linked. The generated
code can then be embedded in processors or used as entries for other software.
As indicated in the following figure, from Scilab the user only has to:

1. annotate the Scilab functions in order to specify the size and type of the
output arguments;
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2. (optional) specify the precision to be used for the data;

3. launch a GUI to generate the corresponding C-Code.
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(input_signal(i) - input_signal(i-1))
15
it
16 [endfunction
Mainfiename: i lestsiestona_Filersalabcodewmainsa _ Browse |
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Run mode ° Al Translate () Generate library
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Pans style in C code: @ Windows () Unix

Convert Cancel

Using generated C Code The generated code follows some clear naming
rules that will allow the user to link this code with the given library or with a
dedicated one (DSP, GPU, ...)

Each time Scilab2C finds a function call to translate, it automatically generates
an explicit function name containing information about input and output types
and dimensions.

According to the naming rules, the user will be able (see figure below) to link
its generated code with the “implementation” he considers as the best:
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24.2 GAETool
NU-Tech Overview

Starting from the Leaff NU-Tech core the GAE Tool has been designed to play
a central role as a starting point in the hArtes tool chain.

NU-Tech is a platform aimed to real-time scenarios, where a strict control over
time and latencies is paramount. It represents a powerful DSP platform to val-
idate and real-time debug complex algorithms, simply relying on a common
PC. If the goal is implementing a new algorithm, no matter what kind of hard-
ware the final target will be, NU-Tech offers all the right benefits.

During the early stage of the development, it is possible to evaluate the feasi-
bility of a project saving time and money.

The user interface is simple and intuitive, based on a plug-in architecture: a
work area hosts the NUTSs (NU-Tech Satellites) that can be interconnected
to create very complex networks (limited only by the power of the computer).
The graphical representation of a NUTS is a white rectangle with a variable
number of pins, and it is the elementary unit of a network. From a developer
point of view it is nothing but a plug-in, a piece of code compiled as a DLL.
A basic set of logical and DSP NUTS is provided and an SDK shows how
to develop user’s own Satellites in few steps in C/C++ and immediately plug
them into the graphical interface design environment. That means the user can
strictly focus on his piece of code because all the rest is managed by the envi-
ronment.
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Figure 2.2: NU-Tech Graphical User Interface

The core of NU-Tech has been thought in a modular way so to connect to the
external world by means of interchangeable drivers. For audio real-time ap-
plications ASIO 2.1 has been adopted, providing compatibility with all sound-
cards supporting the protocol.

A switch to a different driver turns NU-Tech into another tool but NUTSs are
still there and the user can always take advantage of their functionalities. New
drivers will be continuously added in the future giving the platform even more
flexibility.
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NUTSs are not compelled to provide a settings window in order to change
algorithm parameters and for hArtes needs they should not. To ease the de-
veloper in quickly creating new NUTSs without having to deal with GUI pro-
gramming, NU-Tech provides a window called "RealTime Watch” to be asso-
ciated to each NUTS. In brief, the developer can choose, by code, to expose
some NUTSs’ internal variables on this window, and effectively control his
plug-in. The window is nothing but a tab on the bottom Multitab pane that au-
tomatically pops up when at least one parameter is exposed by the developer.
When the user double-clicks on a NUTS, the associated tab (if any) immedi-
ately jumps in foreground. A Profiling Window has been designed in NU-Tech
indicating:

e Time Consumption of all the NUTSs Process Functions
e Percentage of time slot (ex. FrameSize/Fs) used for Processing

NU-Tech distinguish between audio and video processing. This could be use-
ful in a scenario where audio and video processing are performed by two dif-
ferent dedicated hardware.

GAETool Overview

The Graphical Algorithm Exploration Tool is a new feature of the NU-Tech
Framework. Its main purpose is to produce a C description of an application
designed in NU-Tech as a network of functional blocks (NUTSs) intercon-
nected with each other and interacting with the PC inputs/outputs. Developing
an application with NU-Tech plus GAETool feature is the most straightforward
way to take advantage of the hArtes toolchain benefits. The user can use the li-
brary of CNUTS to build the core of his application, use the guidelines to code
his own algorithm and benefit by the graphical NUTS to get visual feedbacks,
plot diagrams and, most of all, real-time tune his parameters in order to obtain
satisfactory results and start the porting to the hArtes hardware.

In order to produce a C description of a network of NUTS the source code of
each block should be available to the tool. Moreover some specific guidelines
should be followed when coding a NUTS in order to let the tool work properly.
CNUTS blocks have been introduced for this purpose. A CNUTS is nothing
but a NUTS coded following the hArtes CNUTS specifications. A CNUTS is
a .dll that must export some functions in order to be considered by NU-Tech
a valid CNUTS. Very simple and easy to follow guidelines have been given to
those willing to code a CNUTS. Each CNUTS is characterized by three main
functions:
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Figure 2.3: NU-Tech RealTime Watch

e Init(...) : executed during CNUTS initialization phase.

e Process(...) : the main processing, starting from input data and internal
parameters produces output values.

e Delete(...) : frees CNUTS allocated resources.

Any algorithm should consist of these three functions. NUTSs and CNUTSs
programming therefore relies on the following structure:
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Figure 2.4: NU-Tech Profiling information

o LEPlugin_Init: Called by the host when streaming starts. Initialization
code should be here included.

e LEPlugin_Process: Called by host during streaming to process input data
and pass them to the output. Processing code should be placed here.
Parameters:

— Input[H]: Pointer to an array of pointers each identifying a PinType
structure. Each structure contains information about the type of
data of the related input.

— Output[P]: Pointer to an array of pointers each identifying a Pin-
Type structure. Each structure contains information about the type
of data of the related output.

e [LEPlugin_Delete: called by the host when streaming is stopped. It con-
tains deinitialization code.

GAETool is based on:
e Eclipse Ganymede version
e GNU Toolchain (MinGW 5.1.4 + GDB 6.8)
o GCC 3.4.5 compiler to compile CNUTS
GAETool is mainly composed by three different features:
o an Eclipse Wizard: to help the user to create a CNUTS from scratch;
o an Eclipse Feature: to export coded CNUTS to NU-Tech environment;

e a NU-Tech feature: to generate C code of CNUTS applications.
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Figure 2.5: GAETool

GAETool Eclipse Wizard

When creating a new C Project CNUTS template can be used to start a new
CNUTS from scratch. the wizard follows the user during the creation phase
and helps him defining:

e basic Settings (name, author, etc.. . );

e CNUTS mode: NUTS can work in ASIO, DirectSound, Trigger and
offline mode;
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e processing settings: which kind of processing flow to use (Audio, Video
or MIDI)

e NUTS I/O: defining each single input/output of the CNUTS, its name,
type and properties

e RTWatch settings: defining which variables should be monitored in re-
altime
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Figure 2.6: GAETool Eclipse Wizard

As a result the wizard generates a complete CNUTS projects with all source
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files needed to correctly compile a CNUTS. All needed functions to handle all
NUTS capabilities are included. The project is ready to host the programmer’s
code and properly compile using MinGW toolchain.

GAETool Eclipse Feature

Once the programmer compiled his project with no errors he can then export it
to NU-Tech environment through the GAETool Eclipse feature. A "Export to
GAETool” button is included in Eclips IDE. Pressing the button resulting in a
transfer to NU-Tech appropriate folders of CNUTS source code and compiled
DLL. The user can now run NU-Tech being able to use his new CNUTS.

GAETool NU-Tech Feature

Once the new CNUTS has been ported to NU-Tech it can be used in a con-
figuration together with other NUTS and CNUTS. At this stage of develop-
ment one can debug and tune his CNUTS in order to get desired behaviour.
Graphical NUTS can be also used to get visual feedback, for example: plot-
ting a waveform or a FFT can really help understanding if an audio algorithm
is correctly working. Once the user is satisfied with results he can drop all
non-CNUTS and prepare his code to be passed to the next stage: the hArtes
toolchain. All he has to do is to click on the GAETool icon in NU-Tech tool-
bar in order to generate the code of the whole configuration. The code is now
ready to be used by the hArtes toolchain.

2.5 Application Analysis

This phase aims at providing information on the current status of the applica-
tion in order to increase the effectiveness of the design space exploration, both
for the partitioning and the mapping. In fact, it can be executed not only at the
beginning of the exploration, to provide initial information, but also after the
partitioning, to support the decision mapping. Moreover, when the toolchain
is iteratively executed, the resulting application from each iteration can be fur-
ther analyzed to provide an additional support to lead the exploration towards
an efficient solution. In particular, two different analyses can be performed to
support the toolchain:

1. profiling information can improve the partitioning and reduce the com-
putation time focusing the analysis and the transformations only on the
most executed paths;
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2. cost estimation for the hardware implementations has to be provided to
support the decision mapping in deciding which tasks can fit into the
reconfigurable device.

2.5.1 HGPROF: profiling applications

In the context of hArtes, Hgprof is used as a preliminary profiling tool. Hg-
prof uses GNU profiling tools such as gprof [81] and gcov [78]] tools. Gprof
and gcov are an example of a software profiler that provides functional level
profiling. Gprof analyzes the program at functional level and provides var-
ious information on the functions. Gcov is a coverage tool and analyzes a
program to provide information such as how often each line of code executes.
Towards this end, the profiling information from gprof and gcov has been pro-
cessed to achieve various functional characteristics. Hgprof takes applications
(C sources) as an input and it generates profiling information as XML output.
Figure shows the Hgprof tool flow.

C | Profiling

Information

P>
Source |, prof2xml —
e 1

Figure 2.7: Hgprof Tool Flow

The tool provides the following profiling information:
e Number of times a function is called,

e Average execution time (ms) of each function per call without subroutine
calls,

e Average execution time (ms) of each function per call with subroutine
calls,

o Number of times a line is executed per function call.

An example of the profile information provided by the tool is shown below.
This information is provided in the .xml format under <HGPROF> tag under
<PROFILE>.

<PROFILE>
<HGPROF>
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<MODULE Filepath = "C:/application" >
<FUNCTION>
<NAME> functionl </NAME>
<STIME>134</TIME>
<CTIME>1340</TIME>
<NCALLS>32</NCALLS>
<LINE>
<NUMBER> 34 </NUMBER>
<NCALLS> 350 </NCALLS>

</LINE>
</FUNCTION>
</MODULE>
</HGPROF>
</PROFILE>

where,

<MODULE-> : is the header of the module section;

<NAME:> : is the name of a function;

<STIME> : is an average execution time (ms) of each function per call
without subroutine calls;

<CTIME> : is an average execution time (ms) of each function per call with
subroutine calls;

<NCALLS>: is a number of times a function is called;

<NUMBER:> : is a line number;

<NCALLS> : is a number of time a line is executed.

2.5.2 Cost Estimation for Design Space Exploration: QUIPU

During the implementation on reconfigurable heterogeneous platforms, devel-
opers need to evaluate many different alternatives of transforming, partition-
ing, and mapping the application to multiple possible architectures. In order
to assist developers in this process the hArtes project uses the Design Explo-
ration (DSE) ToolBox to analyze the application at hand and subsequently
transform and map the application. The profiling and analysis tools in this
toolbox identify compute-intensive kernels, estimate resource consumption of
tasks, quantify bandwidth requirements, etc.

The Quipu modeling approach is part of the DSE ToolBox and generates quan-
titative prediction models that provide early estimates of hardware resource
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Figure 2.8: Interaction of tools, scripts, and intermediate results in the Quipu model-
ing approach.

consumption with a focus on the Virtex FPGAs that are used within the hArtes
project. Usually estimation of hardware resources is performed during high-
level synthesis, but in contrast Quipu targets the very early stages of design
where only C-level descriptions are available. By quantifying typical software
characteristics like size, nesting, memory usage, etc. using so-called Software
Complexity Metrics, Quipu is able to capture the relation between hardware
resource consumption and C-code. These software complexity metrics are
measures like the number of variables, the number of loops, the cyclomatic
complexity of the CFG, and so on. These metrics can be determined in a short
time, which makes fast estimates possible. Especially in the early stages of
design where many iterations follow each other in a short amount of time, this
is an advantage.

The estimates of the quantitative models that Quipu generates help drive
system-level simulation, when reconfigurable architectures are targeted. Such
modeling and simulation frameworks require estimates for FPGA resource
consumption like area and power. Furthermore, Quipu models can provide
valuable information for task transformations, e.g. large tasks can be split,
while small tasks can be aggregated, etc. Also, task partitioning on reconfig-
urable heterogeneous platforms is possible when early estimates are available.
And of course, manual design decisions benefit from resource estimates.

Quipu Modeling Approach

The Quipu modeling approach uses software complexity metrics (SCM) to rep-
resent code characteristics relevant to hardware estimation. Based on a library
of kernels, it then extracts a set of SCMs for each every kernel, as well as a cal-
ibration set of corresponding actual resource consumption measurements. The
dependence of the two datasets is then quantified using statistical regression
techniques. The outcome of this process is a (linear) model that can be used
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to predict the resource consumption of kernels in applications that are being
targeted to a heterogeneous platform. There are two tools and a set of scripts
that implement the modeling approach as depicted in Figure 2.8

e Metrication Tool this tool parses the source code and calculates the
software complexity metrics needed for prediction. The tool is off-line,
although Quipu might also incorporate metrics from run-time in the fu-
ture.

e Prediction Tool this tool reads in an earlier generated model file and a set
of metric values in order to make predictions for the modeled hardware
characteristics.

e Modeling scripts These scripts generate calibration sets using a ker-
nel library and help choose and tune the correct regression techniques.
However, the process itself remains largely manual as building a good
statistical model requires creativity and insight in the problem at hand.

As Quipu is a modeling approach instead of only a model, it is able to generate
models for different combinations of architectures, tools, parameters, and hard-
ware characteristics. As an example, Quipu could generate an area estimation
model for Xilinx Virtex-5 XC5VLX330 FPGAs using the DWARV C2VHDL
compiler and Xilinx ISE 11.1. However, other models are possible, i.e. es-
timating interconnect or power, targeting Altera Stratix or Actel IGLOO FP-
GAs, considering optimizing area or speed-up, assuming Impulse-C or Sparc,
etc. As long as the predicted measure is to some extent linearly dependent
on software characteristics, Quipu can generate specific models. Within the
hArtes framework, Quipu has generated models for the Virtex2pro and Vir-
tex4 FPGAs using the DWARV C2VHDL compiler and Xilinx ISE 10.1. We
have shown that in those instances Quipu can produce area and interconnect
models that produce estimates within acceptable error bounds. Indeed, Quipu
trades in some precision for speed and applicability at a high level, but these
properties are very important in the highly iterative and changing context of
the early design stages. In the following we will discuss Quipu in more detail.

Statistics

In order to model the relation between software and hardware, Quipu utilizes
statistical regression techniques. Regression captures the relation between two
data sets. Observations of the dependent variables are assumed to be explained
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by observations of the independent variables within certain error bounds. Con-
sider the following equation:

Vi = F(Xily oo Xin) = E(xi1, - .., Xin) + € 2.1)

where y; is the i’th dependent variable, x;; are the independent variables, F()
is the relation between the variables, F() is the estimated relation, i.e. the re-
gression model, and ¢ is the error involved in using the regression model. The
linear regression techniques employed by Quipu generate regression models
that are of the form:

Ji=PBo+P1x1 +...+Buxy + € (2.2)

where §; are the regression coeflicients that were fitted to the model. It is clear
from this equation that predictions using such models requires the measure-
ment of the independent variables and a fixed amount of multiplications and
additions. This is one of the main reasons for the speed of Quipu models.
In order to perform linear regression, a calibration set of measurements of the
dependent and independent variables is needed translating to the following
equation:

yi = XiBi + & (2.3)

Using linear regression on this equation the vector of linear coefficients (5;) can
be estimated using the design matrix (X;) with all SCM observations and the
vector of dependent variable observations (j;) i.e. the hardware measurements.
There are several different regression techniques to choose from. Up to now,
we have used Principal Component Regression, Generalized Linear Regres-
sion, Partial Least Squares Regression, LEAPS Regression Subset Selection,
etc. in the context of Quipu.

A clear advantage of linear regression modeling is that the final prediction
consists of a few additions and multiplications in addition to measuring the
required SCMs for the kernel. On the other hand linear models are not capable
of capturing the non-linear aspects of the transformation of C to hardware, nor
can it predict run-time behavior without factoring in other variables that relate
to e.g. input data. These issues translate into a relatively large error for QUIPU
models. However, at the very early stages of design even a rough indication of
resource consumption can be invaluable.

Kernel Library

In order to perform regression we need to build a calibration set of measure-
ments for the dependent and independent variables. For this purpose we have
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Table 2.1: Number of functions in each domain with the main algorithmic character-
istics present in each application domain.

built a library of software kernels that represents a broad range of applications
and functionalities. We have shown that a model calibrated using this kernel
library can be used for area prediction with acceptable error bounds. Currently,
this library consists of over a hundred kernels. Table [2.1| shows the details on
the composition of this library. There are no floating point kernels in the library
at the time of writing, because when the library was constructed the C2VHDL
tools at hand were restricted to integer arithmetic.

Software Complexity

In order to quantify the software characteristics of a certain kernel, our ap-
proach utilizes software complexity metrics (SCM). The SCMs applied in
Quipu capture important features of the kernel source code that relate to the
hardware characteristics that it wants to predict. Some examples of SCMs are:
Halstead’s measures(# of operators, operands), McCabe’s cyclomatic number,
counts of programming constructs(# of loops, branches, etc.), nesting level,
Oviedo’s Def-Use pairs, and so on. At the moment, Quipu employs more than
50 SCMs in several categories: code size, data intensity, control intensity, nest-
ing, code volume, etc. The more complex SCMs come mostly from the field
of Software Measurement and were originally intended for planning source
code testing and project cost estimation. However, we also have introduced
some new metrics that specifically try to quantify features related to hardware
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Quipu model prediction quality for flip-flops.
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Figure 2.9: Predicted versus measured number of flip-flops on a Virtex-4 LX200
using the Quipu prediction model. These are validated predictions using leave-one-
out validation.

implementation.

Results

The Quipu modeling approach has been demonstrated to generate usable mod-
els for FPGA area and interconnect resources on Xilinx Virtex FPGAs. In
Figure[2.9 we see the predicted versus the measured number of flip-flops. The
predictions were made by a Quipu model generated for the Virtex-4 LX200
combined with the DWARV C2VHDL compiler and Xilinx ISE 10.1 Synthe-
sis toolchain optimizing for speed-up. We Observe that the predictions are
fairly accurate, however non-linear effects seem to affect smaller kernels more
severely. The overall expected error of this model is 27%.
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2.6 Application Partitioning

MultiProcessor systems are becoming common, not only in the high perfor-
mance segment, but also in the consumer and embedded markets. Developing
programs for these architectures is not easy: the developer needs to correctly
decompose the application in order to enhance its performance and to exploit
the available multiple processing elements.

There already exists a set of approaches which aim at developing hardware-
software co-design tools that also partially address some of the issues relevant
in this research.

Some prominent examples from academia are the COSMOS tool [[1]] from
TIMA laboratory, SpecC [2] from the UC Irvine, or the Ptolemy environ-
ment [3]] and the Polis/Metropolis [4] framework from the UC Berkeley. There
are also some commercial products, such as CoWare’s ConvergenSC, N2C [5]],
and the meanwhile discontinued VCC [6] environment from Cadence. These
approaches reveal significant drawbacks since they mainly restrict the design
exploration to predefined library-based components and focus on simulation
and manual refinement.

Many of the proposed methodologies for parallelism extraction have been im-
plemented by reusing an existing compiler framework and not by creating a
new one, even if this fact could limit the potential of the proposed approach.
For example Jin et al. extend CAPTools [8] to automatically generate OpenMP
directives with one ( [9]) or two ( [[10]) levels of parallelism; the implementa-
tion of their methodology can only be applied to Fortran 77 because this is the
only code language that CAPTools can take as input.

Banerjee et al. [[12]] present a valid overview of the different techniques adopted
for parallelization both at the instruction and coarse grained levels.

Most research works, dealing with partitioning of the initial specification,
adopt specific intermediate representations. Task graphs are used as intermedi-
ate representation by various methodologies that aim at extracting parallelism
and consider target architectures different from Shared Memory Multiproces-
sors. For example Vallerio and Jha [13]] propose a methodology for building
Task Graphs starting from C source code. These task graphs are then used as
input for HW/SW co-synthesis tools that do not necessarily address a fork-join
programming model, so they have fewer restrictions in the construction of the
Task Graphs.

Girkar et al. [11]] propose an intermediate representation, called Hierarchical
Task Graph (HTG), which encapsulates minimal data and control dependences
and which can be used for extraction of task level parallelism.

Similarly to [11] our intermediate representation is based on loop hierarchy
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even if we use a more recent loop identification algorithm [14]. Moreover, as
in [11]] and in [15]] we use data and control dependences (commonly named
Program Dependency Graph — PDG) as defined in [15]] but we target the ex-
plicit fork/join concurrency model. In fact, since they do not use this model to
control the execution of tasks their work mainly focuses on the simplification
of the condition for execution of task nodes (they define a sort of automatic
scheduling mechanism).

Luis et al. [[16] extend this work by using a Petri net model to represent parallel
code, and they apply optimization techniques to minimize the overhead due to
explicit synchronization.

Franke et al. [17] try to solve the problems posed by pointer arithmetic and by
the complex memory model on auto-parallelizing embedded applications for
multiple digital signal processors (DSP). They combine a pointer conversion
technique with a new modulo elimination transformation and they integrate
a data transformation technique that exposes to the processors the location of
partitioned data. Then, thanks to a new address resolution mechanism, they can
generate programs that run on multiple address spaces without using message
passing mechanisms.

Newburn and Shen [18]] present a complete flow for automatic parallelization
through the PEDIGREE compiler; this tool is targeted to Symmetric Multi-
Processor Systems. They work on assembly code thus their tool can exploit
standard compiler optimizations. They are also independent of the high level
programming language used to specify the application. The core of PEDI-
GREE works on a dependence graph, very similar to the CDG graph used by
our middle end; this graph encodes control dependences among the instruc-
tions. Parallelism is extracted among the instructions in control-equivalent re-
gions, i.e. regions predicated by the same control condition. Applying PEDI-
GREE to the SDIO benchmark suite, the authors show an average speed-up of
1.56 on two processors.

The work proposed in [[19] focuses on extracting parallelism inside loops: each
extracted thread acts as a pipeline-stage performing part of the computation
of the original loop; the authors fail to specify how synchronization among
the threads is implemented. By considering only loops inside benchmarks, a
speed-up of 25% to 48% is obtained.

Much work on thread decomposition has been done also for partitioning pro-
grams targeted to speculative multiprocessor systems. Speculative multipro-
cessors allow the execution of tasks without absolute guarantees of respecting
data and control dependences. The compiler is responsible for the decom-
position of the sequential program in speculative tasks. Johnson et al. [20]
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propose a min-cut-based approach for this operation, starting from a Control
Flow Graph (CFG) where each node is a basic block and each edge repre-
sents a control dependence. In their implementation the weights of every edge
are changed as the algorithm progresses in order to account for the overhead
related to the size of the threads being created.

The clustering and merging phases have been widely researched. Usually,
these two phases are addressed separately. Well known deterministic cluster-
ing algorithms are Dominant Sequence Clustering (DSC) by Yang and Gera-
soulis [21]], linear clustering by Kim and Browne [22] and Sarkar’s Internal-
ization Algorithm (SIA) [23]]. On the other hand, many researches explore the
cluster-scheduling problem with evolutionary algorithms [24}25]]. A unified
view is given by Kianzad and Bhattacharyya [26]], who modify some of the
deterministic clustering approaches by introducing probability in the choice of
elements for the clusters; they also propose an alternative single step evolu-
tionary approach for both the clustering and cluster scheduling aspects.

The approach proposed in hArtes is very similar to the one presented by New-
burn and Shen: GNU/GCC is used to generate the input to the partitioning
tool thus there is no need to re-implement standard compiler optimizations. In
addition to concentrating on extracting parallelism inside control-equivalent
regions, several Task Graph transformations have been implemented to im-
prove efficiency and to adapt it to OpenMP needs. In fact, as previously men-
tioned, we consider the explicit fork/join model of concurrency efficiently im-
plemented by the OpenMP standard; this concurrency model does not require
to explicitly define the conditions for which a task can execute.

2.6.1 Partitioning Toolchain Description

The Task Partitioning tool is named Zebu and it is developed inside PandA,
the HW/SW co-design framework shown in Figure [2.10] and currently under
development at Politecnico di Milano. It aims at identifying the tasks in which
the application can be decomposed to improve its performance. It also pro-
poses an initial mapping solution to be refined by the mapping tool.

In particular, the requirement analysis shows that the problem can be clearly
separated into two distinct sub-problems:

1. in the first phase the tool identifies the parallelism in the application,
i.e. it annotates, using task partitioning pragma notations, how it can be
decomposed in separate threads, presenting the parallel tasks within the
annotated code;
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2. in the second phase the tool indicates, using specific mapping pragma
annotations, an initial guess concerning which processing element (GPP,
DSP or programmable logic) should execute the identified tasks, i.e.
where each task should be mapped in the system.

The input of the tool is the C source code of the application and the XML file
containing information about the target architecture and available data of the
performance of the different parts of the application on each processing ele-
ment. It also contains information about library functions and the header files
where they are defined. It can also represent a feedback from the toolchain,
that can improve the accuracy of the performance estimations and therefore
the quality of the solution identified by the Zebu tool.

The output of Zebu is a C source code annotated with pragmas representing the
task partitioning and the mapping suggestions. Note that the tasks identified
by the tool will be represented as new functions. Moreover, it also reproduces
the XML file, augmented with these new functions. It is worth noting that the
internal performance estimations are not reported into the output XML since
they are almost related to the internal representation of the tool and, thus, they
could not exploited by the rest of the toolchain.

'.Q Metric Extraction
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Synthesis
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Figure 2.10: PandA framework.

This tool behaves as a compiler in that it is composed of

o the frontend, which creates the intermediate representation of the input
code,

e the middle-end, an internal part which manipulates the intermediate
representation, creates an efficient partitioning also exploiting internal
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performance estimation techniques and suggesting a initial guess of
mapping, and

e the backend, which prints the executable C code annotated with
OpenMP [7]] and mapping directives.
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Figure 2.11: PandA automatic parallelization.

Frontend

The frontend does not directly read C source code, but it invokes a slightly
modified version of the GNU/GCC compiler and parses the resulting GIMPLE
compliant tree-representation. In this way it is possible to control the code
optimizations performed by this compiler, avoiding to re-implement them into
Zebu. Note that, the analysis performed by Zebu can only take into account
target-independent optimizations, such as constant folding, constant propaga-
tion or dead code elimination, that have a direct impact on the GIMPLE rep-
resentation. In fact, since the different parts of the application could be exe-
cuted by any of the processing elements, based on mapping decisions, target-
dependent optimizations cannot be considered at this stage. These optimiza-
tions can be enabled or disabled directly passing to Zebu the same optimiza-
tion flags that would be given to the GNU/GCC compiler. Besides the code
optimizations, each original C instruction is converted by GNU/GCC in one
or more basic operations and the loop control statements while, do while
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B A: Db[1] = 0;
b(1] =0 B: a_l = b[1] + c_1;
a = b[1] + c; ) .
b[1] = a - 1; C: Db[1] = a_1 - 1;
c=d+ a ! D: c_.2 =d_1 + a_l;
if (¢ > O E: Ef (c_2 > 0)
{ . _ % .
d = b[1] * c: F: ) d_2 = b[1] c_2;
¥ else
else {
{ . _ _ .
d=b[1] - c: G: ) d_3 = b[1] c_2;
} . _ ; .
b[1] = 2: H: d_4 = phi(d_2, d_3);

-

b[1] = 2;
L: printf(%d, d_4);
(a) (b)

printf("%d", d);

Figure 2.12: Example of program in original format (a) and in the corresponding
SSA-form (b).

and for are replaced with if and goto, and have to be reconstructed in the
following.

Parsing: since the Zebu frontend does not directly parse the source code, this
part is mainly composed of a wrapper to an internally modified version of
the GNU/GCC 4.3 compiler, that exploits the Single Static Assignment (SSA)
form as representation. Currently, only few patches have been applied to the
original GCC version and most of them concern how the tree, which holds the
GCC internal representation, is written to file: what has been done is to make
GCC dump, in its debug files, as much useful information as possible. This was
necessary since part of its intermediate representation (virtual operands [28]] —
used for tracking dependencies among aggregate variables and for serialization
purposes —, the structure of the basic block control flow graph, operands of
some special operators, etc.) wasn’t originally printed out.

GCC is thus invoked to produce the ASCII file containing the intermediate
representation. We chose to dump the intermediate tree representation after
as many optimizations as possible have been performed on it by GCC. Ideally
the last created tree, after all GIMPLE optimizations are applied to it, should
be used. However the tree that satisfies our needs is the tree dumped after the
last phase of the phi-optimization since it is still in SSA-form [29]]. The SSA
form is based on the assumption that program variables are assigned in exactly
one location in the program. Multiple assignments to the same variable create
new versions of that variable (see Figure for an example). Naturally, ac-
tual programs are seldom in SSA form initially, thus the compiler modifies the
program representation so that every time a variable is assigned in the code, a
new version of the variable is created. Different versions of the same variable
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are distinguished by subscripting the variable name with its version number.
Variables used in the right-hand side of expressions are renamed so that their
version number matches that of the most recent assignment. SSA-form is used
in the GCC GIMPLE tree both for scalar and aggregated variables, but not in
the same way: scalar SSA variables are used directly as operands of GIM-
PLE operations replacing original operands, while aggregated SSA variables
are only used in annotation of GIMPLE statements to preserve their correct
semantic and they will be referred as virtual operands.

The optimizations that GCC performs on the input code are controlled by our
tool for mainly three reasons:

1. To evaluate the improvement of every single optimization on the paral-
lelization flow;

2. Some optimizations could reduce the available parallelism; an example
is the common subexpression elimination. In fact, suppose there are
two code fragments which do not have any inter-dependences but have a
common subexpression; at the end of the partitioning flow it is possible
that these two segments are assigned to two different parallel tasks. This
is true only if common subexpression elimination is not applied. Other-
wise, the two segments would share the same subexpression: in this way
an inter-dependence has been created and this prevents the two segments
from being assigned to parallel tasks.

3. Some optimizations and the precision of some analyses are parameter-
ized. For example it is possible to change the size threshold which con-
trols if a loop should be unrolled or not or it is possible to change the
maximum number of virtual operands used during alias analysis. Even
if these parameters could impact significantly on GCC compilation time,
it should be considered that this time is usually only a little fraction of
the total time spent in performing the parallelization, so direct impact
of these changes on execution time could be ignored. Nevertheless, the
choice of these parameters impacts indirectly on the total execution time
of the tool since it could change very much the size of the data on which
the tool works; these effects on timing must be taken into consideration
when deciding which optimizations have to be enabled. For example,
loop unrolling increases the number of statements of the specification.
In this way there is an obvious trade-off between total execution time
and analysis precision; this means a trade-off between the transforma-
tion time and quality of the results (in terms of amount of parallelism
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which could be extracted and therefore in terms of speed-up of the pro-
duced code).

After parsing the GIMPLE-compliant tree-representation, two different collec-
tions of graphs are built for each function of the original specification. In the
first one, a vertex corresponds to a basic block, as defined by GCC itself. In
particular, according to this definition, a function call does not start a new ba-
sic block. In the second one, instead, a Control Flow Graph (CFG) is created
for each C function. Every node of these graphs corresponds to one simple
GIMPLE operation and can represent zero, one or more C basic operations.
Phi-nodes of real variables or of virtual operands are treated as if they were
statements, since, in this way, the sequential behavior can be easily maintained.
In the first type of graphs an edge represents dependences or precedences be-
tween two basic blocks, while in the second type precedences or dependences
between two operations. The type of dependency or of precedence depends
upon which particular graph inside the collection is considered. During this
preliminary phase, the operations inside each basic block are also annotated
with some of the information present in the GCC tree such as the real and
virtual operands read and written by each operation (as shown in Figure [2.13).

BBO
b[1]=0
a_l=b[1]+c_1
bl[1]=a_1-1
c_2=d l+a_1

c_2>0

o

BEL BB2
d_2=b[1]*c_2 d _3=b[1]-c_2

N/

BE3
d_d4=phi(d_2(1), d_3(2))
bl1]=2
printf("sd", d_4)

Figure 2.13: Example of Control Flow Graph of basic blocks.

A first analysis of the specification is also performed and its results are anno-
tated onto the graphs. This analysis basically retrieves information about the
type of each operation and which variables are read/written by each of them.
Moreover at the end of this phase, Zebu analyzes the produced CFGs to iden-
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tify those edges that close a cycle in a path starting from the entry node (entry
node is a symbolic node which represents the beginning of the computation
flow into each function). The results of these analyses allow Zebu to correctly
identify and rebuild cycle constructs in the following phases.

Middle-end

As in traditional compilers, the middle-end can be considered the main part of
the compilation flow implemented in Zebu. This phase is mainly composed of
three steps:

o the dependence analysis and the manipulation of the intermediate repre-
sentation;

o the performance estimation and partitioning;

e the mapping onto the target platform.

Dependence Analysis and Manipulation of the Intermediate Representa-
tion: The dependence analysis step consists of the analysis of the Control
Flow Graphs and of the tree to compute all the dependences between each pair
of operations (nodes). Dependences between an operation A and an operation
B can be basically of one or more of the following types:

e Control Dependence: execution of operation B depends on the result
of operation A or operation B has to be executed after operation A;

o Data Dependence: operation B uses a variable which is defined by op-
eration A;

e Anti-Dependence: operation B writes a variable, which is previously
read by operation A. Even if we exploit the Static Single Assignment
(SSA) form, these dependences can still occur between pointer accesses
and they are necessary to maintain the correct semantic of the applica-
tion;

e Feedback Dependence: operation B depends on the execution of A in
the previous iteration of the loop which both the operations belong to.

Additional graphs are thus built to represent these dependences. All these
graphs are produced into two different versions, i.e., with or without feedback
dependences.
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These graphs are produced for each C function of the original specification. To
extract as much parallelism as possible, this dependence analysis must be very
precise. A false dependence added between two operations indicates that they
cannot be concurrently executed, so it eliminates the possibility of extracting
parallelism among those instructions. On the other hand, all the true depen-
dences have to be discovered otherwise the concurrent code produced by Zebu
could have a different functionality from the original one.

Before computing data dependences and anti-dependences, alias analysis has
to be performed: this is necessary to correctly deal with pointers. An inter-
procedural alias analysis model is used. In this way less conservative results
than those produced by intra-procedural methods are obtained, despite an over-
head in computation time.

In addition to the analyses of the original specification, Zebu also partially
manipulates the intermediate representation by applying different transforma-
tions. For example it applies further dead code elimination made possible by
alias analysis and by loop transformations, such as loop interchange.
Dependence extraction: loop detection is the first analysis performed. The
Control Flow Graph of basic blocks is analyzed to detect loops which are clas-
sified into reducible or irreducible ones. A loop forest is also built using a mod-
ified version of the Sreedhar-Gao-Lee algorithm [14]. Then the Control Flow
Graph of GIMPLE operations is built from the Control Flow Graph of Basic
Blocks simply by creating sequential connections among the operations inside
each basic block and among the operations ending and starting two connected
basic blocks. The next step is the creation of the dominator and post-dominator
tree of the Control Flow Graph of the Basic Blocks. In particular the second
of these trees is used to compute the Control Dependence Graph (CDG) of
Basic Blocks from which the Control Dependence Graph of operations is eas-
ily built. Edges in this class of graphs could be of two types: normal edges
or feedback edges. The latter indicates which operations control the execution
of the iterations of a loop execution. Moreover, each edge in the CDG is an-
notated with the condition on which a conditional construct operation controls
other operations. Values of these labels can be “true” or “false” for edges go-
ing out conditional constructs of type if, or a set of integers for edges going out
from switch constructs (each integer represents a case label). In this way all
information about control dependences between each pair of operations is ex-
tracted and annotated; this information will be used by the backend to correctly
write back the intermediate representation to C code.

After the control dependences analysis, the tool starts the computation of data
dependences. This is based on the information of variables in SSA-form read
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and written by the different GIMPLE statements, annotated in the correspond-
ing nodes of the Control Flow Graph. For each pair of definition and use of a
variable in SSA-form (either real or virtual), an edge in the Data Dependence
Graph is added starting from the node of operation which defines the SSA
variable and going to the target node where the variable is used. Since also
virtual operands are considered, in some cases, additional data flow edges are
inserted even if there are no real data dependences. This happens, for example,
when a fixed ordering between pair of operations is required to preserve the se-
mantic of the original C source code. For example, the order of the printf
calls between all functions of a program has to been maintained to force the
output of our produced code to be the same of the original one. In this case
the serialization of these function calls is forced by adding reading and writing
of special fake variables in all corresponding nodes with the same purpose of
GCC with virtual operands.

Thanks to the fact that scalar SSA-form variables are directly embedded into
the GIMPLE code, if different SSA versions of the same scalar variable are
dumped back in the produced source code, they are actually different variables
thus the anti-dependences (dependences of type write after read and write after
write) can be ignored during reordering of the operations: this type of depen-
dences never occurs in pure SSA code. On the other hand, dumping back
aggregated variables in SSA-form is more complex; the reasons are the impos-
sibility of writing back directly the phi-nodes of array of variables and the dif-
ficulty in managing situations where pointers could point to different variables
(so operations could represent define of multiple virtual operands). We de-
cided to maintain the original formulation of GIMPLE operations in all cases:
scalar variables will be printed out considering their SSA version (each SSA
form of a variable is treated as a different variable), while aggregated variables
are printed back using base form and using the SSA-form of virtual operands
only to track the dependences. As a consequence, simple data dependences of
type read after write are not enough to describe all possible correct orderings
between the operations. Consider for example the fragment of code shown in
Figure[2.12]b and suppose that no optimizations have been performed by GCC.
In this case, according to the previous definition, the assignments F and G use
the virtual definition of the element of the array defined in the assignment C;
then the assignment / redefines that definition.

Hence, according to simple data dependences, it could be possible to execute
the assignment / before the F' and G ones, that results in a wrong run-time
behaviour. In fact, it could happen that, in the following phases of the par-
titioning flow, these two assignments are clustered into different and parallel
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threads and so they could be executed in whatever order. This simple example
proves that data flow analysis based only on read after write dependences is not
sufficient to catch all the actual dependences between operations. For this rea-
son we build the anti-dependence graph to take correctly into account all the
dependences. As in the previous graph computations, this type of dependences
can be derived from the GCC GIMPLE tree. In fact, GIMPLE annotates a vir-
tual definition of a variable with an additional operand that is the related killed
definition. In this way, in the previous example, the assignment / is annotated
with the information on the killed definition, that is the one defined by the as-
signment C and used by the F' and G ones. Therefore anti-dependence edges
can be added between the C and the I assignments (write after write depen-
dence) and between F (and G) and the [ (write after read dependence) ones. In
this way, the correct behavior can be preserved (see Figure [2.14)).

The next phase of our flow tries to exploit the scalar replacement of aggregates
techniques presented in [30] by applying it to the data dependences analysis
just performed. The GCC SRA optimization is not applied directly because it
causes an increase of the size of the produced source code (indeed it is ap-
plicable only to arrays with very few elements) and it reduces its readability.
Moreover, in this way it is also possible to select where this replacement is
performed: for example this technique could be applied only in critical points
where the elimination of some false dependences (added by the compiler in a
conservative approach) could help to extract more parallelism.

Combining the Data Dependence, the Anti-Dependence and the Control De-
pendence Graph, we build the Program Dependence Graph which will be used
in the following phases of the task partitioning process (see Figure[2.15).

Parallelism extraction: this phase aims at the division of the created graphs
into subsets, trying to minimize the dependences among them; hence this phase
is often identified as the partitioning phase.

The first step consists in the analysis of the feedback edges in order to identify
the loops and separate each of them from the other nodes of the graph; from
now on, the partitioning steps will separately work on each of the identified
subgraphs: parallelism can be extracted either inside a loop, between loops or
by considering the nodes not part of any loop (see Figure [2.16)).

After computing the loop subgraphs, the core partitioning algorithm is exe-
cuted (refer to Figure[2.17).

In a similar way to what performed in [18]] the algorithm starts by examin-
ing the control edges to identify the control-equivalent regions: each of them
groups together the nodes descending from the same branch condition (true or
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b[1]-0 a_l=b[1]+c_1 bll]=a_1-1 c_2=d_l+a_1 c_2:0 d_d=phi(d_2(1), d_3(2)) b[1]=2 printf("sd", d_1)

P

d_2=b[1]*c_2 d_3=b[1]-c_2
(a)

b[1]=0 b[l]=2

a_l=b[1]+c_1

s

b1]=a_1-1 c_2=d_l+a_1

ﬁu%%—z \KZ‘

d_2=b[1]*c_2 d_3=b[1]-c_2 c_2>0

/.

d_4=phi(d_2(1), d_3(2))

%_4

printf("sd", d_4)

(b)

b[1]=0 a_l=b[1]+c_1 c_Z=d_l+a_1 c_250 d_d=phi(d_2(1), d_3(2)) printf("sd", d_4)

N/

bll]=a_1-1 d 2=b[1]*c_2 d 3=b[1]-c_2

e

b[l]=2
(c)

Figure 2.14: Control Dependence Graph (a), Data Dependence Graph (b), Anti-
Dependence Graph (c).
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Figure 2.15: Program Dependence Graph.
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| instr9 |

NS
Figure 2.16: Nodes belonging to different loops are clustered in different subgraphs.

false) of predicated nodes; nodes representing switch statements are treated in
a similar way. Data dependences and anti-dependences among the nodes inside
each control-equivalent region are now analyzed to discover intra-dependent
subgraphs: all the elements inside such subgraphs must be serially executed
with respect to each other.

The analysis starts from a generic node in a control-equivalent region with
a depth-first exploration. A node is added to the cluster being formed if it is
dependent from one and only one node or if it is dependent from more than one
node, but all its predecessors have already been added to the current cluster.
Otherwise, the cluster is closed and the generation of a new set starts. These
operations are iterated until all the nodes in the control-equivalent partition are
added to a set.

Each obtained “partition” (subgraph) represents a single block of instructions,
with none, or minimal interdependence. Partitions that do not depend on each
other contain blocks of code that can potentially execute in parallel. Edges
among partitions express data dependences among blocks of code, thus the
data represented by in-edges of a partition must be ready before the code in
that partition can start. Note that the identified partitions are just a first ap-
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Figure 2.17: Phases of the parallelism extraction algorithm.

87



proximation of the tasks into which the input program is being divided.

The result of this partitioning is thus represented by Hierarchical Task Graphs
(HTGs). HTGs introduce the concept of hierarchy, and provide an easy repre-
sentation of cyclic task graphs and function calls.

Fork/Join task Creation and task grouping: since OpenMP [7] is used to
annotate the parallelism in the produced C specification, transformations to the
task graph are necessary in order to make it suitable for the OpenMP program-
ming model, that is the Fork/Join programming model. This programming
model requires that each task spawning threads (called fork task) has a cor-
responding join task, which can be executed only after all the created threads
have completed their execution. Figure [2.18] shows the leftmost task graph
compliant with the fork/join programming model and the one on the right not
compliant.

4

/\ (instr1 \

~
( 1nstr1 /
N
/ \ 1nstr2f)
- — VN
\< (\instr3/)

( lnstrZ \ 1nstr3 A <
\ \1nstr5\

NS

1nstr6 ]

( 1nstr4
‘,\\ﬂ \

1nstr7 ]

Figure 2.18: A task graph compliant with the fork/join programming model (on the
left) and one not compliant.

The algorithm which transforms a generic task graph into one compliant with
the fork/join programming model is composed of two main phases, which are
iterated until the whole graph is compliant:

1. identification of the non fork/join compliances; they are always discov-
ered in correspondence of join tasks (node 5 in the example);

2. reconstruction of the corrected task graph, that satisfies the tasks’ depen-
dences but with a compliant structure.
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Experiments show that the tasks, created with the presented algorithm, are
usually composed of a limited number of instructions: on most systems (even
the ones containing a lightweight operating systems) the overhead due to the
management (creation, destruction, synchronization) of these small tasks could
be higher than the advantages obtained by their concurrent execution.

The optimization phase (task grouping) tries to solve this problem by group-
ing tasks together. Two different techniques are used: optimizations based on
control dependences and optimizations based on data dependences.

Control statements, such as if clauses, must be executed before the code
situated beneath them, otherwise we would have speculation: it seems, then,
reasonable to group together the small tasks containing the instructions which
depend on the same control statement. Another optimization consists of group-
ing the then and else clauses in the same cluster: they are mutually exclusive,
the parallelism is not increased if they are in separate clusters.

Data dependent tasks can be joined together when their weight is smaller than
a predetermined number n. Those tasks, which are also neighbors of the same
fork node, are joined together; if all the tasks of the fork group are to be joined
together, then the whole fork group disappears and all its nodes (including the
fork and join ones) are collapsed in the same task.

Besides the optimization with respect to the fork-join compliance also the es-
timated target platform overhead is considered. In addition to parallel tasks,
sequential ones are also created in order to exploit the heterogeneity of the
architecture and obtain an overall speed-up of the application.

Initial mapping of the application onto the target platform: different ap-
proaches have been proposed for mapping the application onto the target plat-
form. In particular, a heuristic optimization methodology that has recently
gained interest in dealing with such class of problems for its performance and
the quality of the results is the Ant Colony Optimization (ACO) approach.
Starting from the HTG intermediate representation, we apply an Ant Colony
Optimization (ACO) approach that explores different mapping combinations.
Differently from previous approaches, the proposed solution iteratively builds
different combinations of mapping, evaluating the global effects and identi-
fying the decisions that improve the overall performance of the application.
Furthermore, it allows the share of the information at the different levels of the
hierarchy and it is able to support a large set of constraints that can be imposed
by the target architecture, such as the available area for the hardware devices.
We compared [38]] this solution with traditional techniques for mapping paral-
lel applications on heterogeneous platforms and the results are shown in Table

89



ACO SA TS
Proposed Only Only Mapping Mapping Dynamic
Benchmarks Approach Cpu(s) Mapping Scheduling Scheduling Cpu(s) Scheduling Cpu(s) Scheduling
sha 1.72 msec 4.20 2.28 12.14% 8.23% 5.18 6.71% 7.11 29.44%
FFT 13.41 sec 8.12 103.57 108.38% 31.11% 11.89 27.84% 17.20 257.21%
JPEG 0.46 sec 10.67 0.12 5.15% 1.13% 14.63 4.57% 13.07 27.64%
susan 9.31 sec 6.08 0.15 21.96% 4.41% 7.16 7.58% 9.18 21.30%
adpcm coder 1.42 msec 0.20 0.15 7.08% 9.10% 0.22 4.33% 0.25 7.08%
adpcm decoder 1.76 msec 0.19 0.05 4.65% 9.24% 0.23 8.96% 0.21 5.56%
bitcount 0.15 sec 0.10 1.12 1978.77% 11.02% 0.10 14.12% 0.11 2024.77%
1.14 sec 0.34 0.07 178.07% 35.30% 0.62 29.89% 0.58 178.77%
rijndacl 0.81 sec 2.58 2.12 6.30% 3.12% 3.36 1.01% 4.32 3.40%
8.36 sec 2.72 2.02 6.20% 0.09% 291 0.74% 3.10 3.39%
Avg. Difference +11.17% +232.87% +11.28% +27.53% +10.58% +45.21% +255.86%

Table 2.2: Comparison of results of Ant Colony Optimization (ACO), Simulated An-
nealing (SA) and the Tabu Search (TS), along with a dynamic policy.

In details, we compared the execution time needed to generate the so-
lution (Cpu column) for the different approaches, namely the proposed ACO,
the Simulated Annealing (SA) and the Tabu Search (TS). The quality of the
results, in terms of execution time of the emulation platform, has also been re-
ported for the proposed approach, along with the percentage difference for the
other solutions with respect to this one. A solution obtained with a dynamic
scheduling and allocation has also been reported to demonstrate the need for
such methodology on heterogeneous platforms.

Note that the proposed approach systematically outperforms existing method-
ologies by at least 10% in average and it is also much faster than the other
approaches to converge to a stable solution, as represented by the differences
in terms of computation time.

Backend

In the last phase, Zebu needs to produce a parallel executable C program con-
taining the results of the partitioning and of the initial mapping. In particular,
the code is annotated with hArtes pragma notations that express the partition-
ing in a set of tasks and, for each task, the target processing element suggested
for the execution. In the same way, the other annotations, contained in the
original specification, are reproduced without modifications in the produced
code.

As described in the previous paragraph, in order to be able to use this library
and address the MOLEN paradigm of execution, the task graph must strictly
adhere to the fork/join programming model and the OpenMP formalism. For
this reason, during the production of the concurrent C code, the backend has
to perform the following tasks:

1. identification of all the fork/join groups; note that different groups may
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share the fork node (Figure [2.19]a) or the join node (Figure 2.19]b).

2. identification of the task functions to be created and the related parame-
ters that have to be given to them,;

3. printing of the C code that respects the original semantic of the applica-
tion.

Finally, the resulting C code is provided to the rest of the toolchain for the
decision mapping phase.
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(a) Fork node sharing (b) Join node sharing
Figure 2.19: Fork (a) and Join (b) node sharing.

Note that not only phi-nodes of virtual operands, but also phi-nodes which
define scalar SSA-form variables, are not printed back. We could print back
them as assignments with “conditional expression”, but in this way a signifi-
cant overhead to the application execution occurs; moreover, this technique is
difficult to be used as it is for phi-nodes with more than two uses. For these
reasons a phi-node of a scalar variable is replaced by as many assignments
as the variable uses present in that node, placed immediately after the related
variable definition. For example, suppose you have a phi-node a_1 = PHI
<a_4(3), a_5(4)>, where a is a variable and the suffix _<index> identifies
its SSA version; note that the number inside the parentheses represents the ba-
sic block where the definition occurs. According to SSA-definition, variable
a_4 should be defined only in one statement of the function and according to
phi-node definition, this statement should be mutually exclusive with the oth-
ers in the same phi-node. Therefore, the assignment a_1 = a_4 can be added
after the statement that defines a_4, that will be in the basic block numbered as
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Number of Processors

Figure 2.20: Parallelization of JPEG encoder.

3. Then the same procedure is repeated for definition of variable a_5, that will
be in the basic block numbered as 4. In this way phi-nodes are not necessary
anymore and the consistency of the sequential model is maintained.

Case Studies: the JPEG encoder and the DRM decoder

In this section, we analyze two different case studies for our partitioning
methodology: the JPEG encoder and the core of the Digital Radio Mondiale
(DRM) decoding process, that was one of the benchmark applications pro-
posed in the hArtes project.

The kernel of the JPEG encoder contains a sequence of data transformations
applied to the raw image, as shown on the left side of Figure[2.20} Color Space
Transformation, Downsampling, Block Splitting, Discrete Cosine Transforma-
tion, Quantization and Entropy Encoding. Among these phases, Color Space
Transformation (RGBtoYUYV), Discrete Cosine Transformation (DCT) and
Quantization are the most computationally intensive. The analysis performed
by Zebu is able to identify some Single Instruction Multiple Data parallelism
in the first two functions. Then, after applying the different transformations
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Figure 2.21: Parallelization of DRM decoder.

to reduce the overhead, Zebu produces a hierarchical task graph representing
which parts can be executed in parallel, as shown on the right side of Figure
The task graph of the RGBtoYUV function contains a single parallel
section with four parallel tasks. The task graph of the DCT function has a
similar structure, but with only three tasks. This structure is then reproduced
in the output C code through the corresponding OpenMP pragmas compliant
with the hArtes guidelines.

The DRM refers to a set of digital audio broadcasting techniques designed to
work over shortwave. In particular, different MPEG-4 codecs are exploited
for the transmission and the core of this decoding process is mainly composed
of the Viterbi decoder. Exploiting GNU/GCC optimizations, Zebu is able to
identify and extract some data parallelism from the proposed implementation
of the algorithm, as shown in Figure 221] A task graph with four parallel
tasks describing the introduced parallelization is then reproduced annotating
the output C code through OpenMP as well.

Note that, in both the cases, the parallelism identified among loop iterations is
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Speed-up

Application Zebu | Simlt-ARM | ReSP
JPEG encoder | 2.17 2.56 2.36
DRM decoder | 1.72 1.87 1.40

Table 2.3: Speed-ups for the parallel versions of JPEG and DRM applications as
estimated by Zebu and measured on SimlIt-ARM and ReSP.

expressed through omp parallel sections instead of omp parallel for
pragmas. In fact, in the hArtes toolchain, the different tasks have to be repre-
sented as functions to support the mapping that is performed at complile time
and not during the execution of the code. For this reason, we explicitly repre-
sent the partitioning of the loop as omp sections.

To evaluate the obtained partitioning, we executed the resulting applications
on two different simulators: a modified version of the Simlt-ARM cycle accu-
rate simulator [31] and ReSP [32f], a MPSoC simulation platform developed at
Politecnico di Milano. Both the simulators have been configured to simulate a
homogeneous multiprocessor architecture composed of four ARM processors
and a shared memory, connected through a common bus. We decided to target
a homogeneous architecture to verify the potential benefits introduced by the
partitioning, without being affected by the mapping decisions.

In details, we modified the original version of Simlt-ARM in order to support
a multi-core simulation, with private caches and shared memory. The OpenMP
pragmas are substituted by code instrumentations that communicate with a co-
processor that manages the counting of the simulation time. In this way, our
version of SimIt-ARM is able to take into account the concurrent execution
of the different tasks. On the contrary, ReSP is able to model a complete
architecture where the OpenMP pragmas are translated into proper pthread
functions supported by a very light operating system. As a result, ReSP allows
an accurate simulation of the complete behaviour of a multiprocessor system
also considering the overhead due to bus contention and system calls.

Both the sequential and the partitioned versions of the two case studies have
been executed on these simulators and the resulting speed-ups are reported in
Table[2.3] Since SimIt-ARM does not consider the delays due to the contention
on accessing the resources (e.g., limit number of processors or concurrent ac-
cesses to the bus), it systematically produces an overestimation of the speed-
up with respect to the one obtained with ReSP that simulates a more complete
model of the target architecture. For this reason, it can represent the maximum
speed-up that can be obtained with the current parallelization.
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It is worth noting that Zebu completely parallelizes the whole Viterbi decoder
that takes most of the execution time of the DRM application. However, the
overheads due to thread management and synchronization costs reduce most
of the potential benefit in terms of parallelization.

Finally, we can conclude that Zebu is able to statically estimate the speed-up
with a good accuracy with respect to methods that require a dynamic simula-
tion of the entire application and the architectures. The corresponding method-
ology will be detailed in the following section.

2.6.2 Cost Estimation for Partitioning

In all the phases of Zebu, information about performance of the different parts
of the application on the different processing elements of the architecture is
crucial. Indeed, Zebu needs this type of information to correctly create tasks
of proper granularity, to manipulate the task graphs removing inefficient par-
allelism (i.e., a parallelism which slows down the processing because tasks
creation/synchronization/destruction overhead nullifies the gain) and to com-
pute the initial mapping of the application onto the target platform.

Such information could be provided by the tools that precede Zebu in the
hArtes toolchain, but, most of the time this information is incomplete and it
is limited to the execution time of existing functions, such as library ones. In
particular, there is no detailed information about the execution time of an arbi-
trary piece of code (i.e., a candidate task) clustered by Zebu. For this reason,
additional performance estimation techniques have been necessarily included
into the tool.

Two types of performance estimation techniques have been implemented in
Zebu:

o techniques for estimating the performance of a single task on each pro-
cessing element of the architecture;

e a technique for accurately estimating the performance of the whole task
graph, given a partitioning solution.

The first ones are based on the building of a linear performance model of the
different processing elements (GPP and DSP) exploiting a regression technique
both for software and hardware solutions.

Linear Regression Analysis

The approach for internal performance estimation is based on both standard

statistical and more advanced data mining techniques aimed at identifying
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some correlations between some characteristics of the piece of code to be an-
alyzed and the actual execution time on the given processing element. As
usually done in Data Mining applications, the model is viewed as a simple
black box with an output C representing the set of cost functions of the input
I representing a certain task and its mapping. Starting from the set of pairs <
Ij, Cj >, statistical and data mining techniques can extract interesting relation-
ships among inputs, i.e. among elements of partitioning configurations, trying
also to extrapolate the system model.

Note that, the number of pairs < Ij, Cj > usually contains only a small subset
of all the possible input-output configurations. The type of relations extracted
depends on the technique used. For instance, some statistical techniques (e.g.
linear regression) extract relations represented as linear combinations of the
input values; whereas data mining techniques (e.g. regression trees, neural
networks, or learning classifier systems) are able to extract highly non-linear
relations among input-output configurations. These models are then used to
evaluate the performance of arbitrary pieces of code during the early phases of
the partitioning. To improve the accuracy of the estimation, the performance
models are combined with profiling information (e.g., branch probability, loop
iteration numbers) retrieved by executing the application on the host machine
with a significant dataset for the input application.

The linearity of the models is known to introduce an approximation in the per-
formance estimation, but it simplifies the transformations performed on the
task graphs, speeding up the design space exploration. For example, in this
way the performance of a new task resulting from the merging of other two
existing ones is computed by summing their performance. Finally, the avail-
able performance information provided via XML is used during this phase to
evaluate the performance of library functions and of not-partitioned functions.

FPGA area estimation model

When the target architecture contains also hardware components, we need an
estimation not only for the execution time, but also for the area occupation, to
deal with the architectural constraints (e.g., the limited area into the device) in
the mapping phase. For this reason, given a candidate task, we first analyze
if it can be synthesized by the available synthesis tool (e.g., DWAREF in the
hArtes toolchain). In particular, if it contains constructs that cannot be synthe-
sized, the estimation is not performed and a mapping to this component will
be forbidden for this task. On the other hand, if the implementation is pos-
sible, the area model we use for fast estimation is obtained starting from the
results of a fast high-level synthesis (HLS) of the task, while the performance
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is related to the worst case execution time of the controller synthesized by the
HLS. The total area estimated by the model is composed of two distinct parts:
the sequential part (FF) and the combinatorial part (LUT). While the FF part
is easy to be estimated, since it is composed of the data registers used in the
data-path and of the flip flops used for the state encoding of the controller finite
state machine, the LUT part is a little more complex to estimate. Four contri-
butions define the LUT estimation value: FU, FSM, MUX and Glue. The FU
part corresponds to the contribution of the functional units and so its value is
the sum of the area occupied by each functional unit. The other three parts
(FSM, MUX, Glue) are obtained by using a linear regression-based approach
and they are defined as follows:

1. the FSM contribution is due to the combinatorial logic used to compute
the output and next state;

2. the MUX contribution is due to the number and size of multiplexers used
in the data-path;

3. the Glue contribution is due to the logic to enable writing in the flip flops
and to the logic used for the interaction between the controller and the
data-path.

The coefficients of the model have been obtained starting from a set of stan-
dard high-level synthesis benchmarks and the comparing the values with the
the ones obtained with actual synthesis tools (i.e. Xilinx ISE). The resulting
FPGA area model shows an average and a maximum error of 3.7% and 14%
respectively and Figure[2.22]shows The such a comparison where the bisector
represents the ideal situation (i.e., the estimated value is equal to the actual
one). Further details can be found in [33]].

Software cost model

The software cost estimation methodology is mainly based on linear regression
and it consists of two different steps: construction of a cost estimation model
for each processing element and estimation of the performance of the applica-
tion under analysis using the built cost models. Given a processing element,
the model is produced starting from a set of embedded system benchmarks sig-
nificant for the class of applications which should be estimated. These bench-
marks are then analyzed to extract a set of features from each of them that are
used as input training set for the building of the estimation model.
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Figure 2.22: Validation of the FPGA Area Model
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There are several different types of features which could be extracted by the
analysis of the application without executing it directly onto the target plat-
form. However, only a part of these features is suitable to be used as input
for building the cost model because some of them have no correlation with the
total performance cost and they can be ignored. Moreover, the larger is the
number of input features selected for building the model, the larger should be
the size of the training set. To choose among them, some characteristics of the
estimation problem have to be analyzed, such as the aspects of the architecture
that are usually difficult to be caught by a model. Considering the class of pro-
cessors and of the target applications of this methodology, the more relevant
aspects are the presence of the cache, the characteristics of the pipeline and the
type of possible optimizations introduced by the compiler.

The building of the model does not require information about the overall target
architecture but only information about the execution cost of a set of signif-
icant benchmarks on the target processing element. This information could
be retrieved by executing the instrumented code directly onto the element or
by using a cycle-accurate simulator of it. This is necessary only during the
training to produce the cost model, that will be then used for estimation. In
particular, to estimate the performance of an application onto a processing el-
ement, only its source code and the model related to the component are used.
The source code is compiled and translated into the intermediate representa-
tions, that are then analyzed and profiled to extract the selected features for
each function. These features are then given as input to the model obtained
by the previous phase which quickly produces the performance estimation for
each function of the application. By combining the information about cost and
the number of executions of each function the total performance cost of the
application can be easily estimated.

Besides the features described above, the following metrics have been also
considered:

e number of loop iterations;

e static metrics for tasks communication evaluation to be used during the
mapping to select an efficient assignment of tasks onto different process-
ing elements.

The number of loop iterations can be easily extracted from the source code for
countable loop. For uncountable loops, an estimation of the average number is
obtained by an internal dynamic profiling of a proper annotated source code.
Our metrics on communication are based on an abstract model that formalizes
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Processing | Opt. | Mean | Standard Deviation
Element | Level. | Error of Error
00 16.9% 15.6%
ARM 01 14.6% 14.2%
02 16.7% 158 %
DSP 18.0% 15.9%

Table 2.4: Performance Estimation Error on Single Processing Element.

most of the information of the communication aspects. Upon this model, we
defined a set of metrics that provide information useful for architectural map-
ping and hardware-software co-design. Further details can be found in [34].
Concerning the software cost model, we built models for the ARM processor
and the DSP MAGIC on a suitable set of benchmarks (see Figure for a
representation of the dataset). Since these performance estimations are ob-
tained by applying regression techniques and in order to evaluate the effective
accuracy of the resulting models, we exploit the cross-validation technique of
them. Cross-validation is a technique for assessing the performance of a static
analysis on an independent data set and can be performed with different meth-
ods. We used the K-fold cross-validation where the initial data set is randomly
divided into K subsets (in our case, K = 10). The model building process
is repeated K times and, at each iteration #, a performance model is built by
analysing all the subsets but the i-th, which is used to test the model. At the
end, the average error across all the K trials is computed and a unique model
is built by combining the K models. The obtained results are reported in Ta-
ble 2.4 Note that different optimization levels have been also considered in
building performance models of the ARM processor.

Task Graph Estimation Model

Even if the created tasks are of proper granularity, the parallelism introduced
with the initial task graphs cannot produce an actual benefit because of the
overhead introduced by the threads creation and synchronization. For this rea-
son, we introduce a methodology to estimate the performance of the whole task
graphs highlighting the inefficient parallelism which has to be removed. Such
methodology has been introduced since computing the overall performance by
simply combining the performance of the single tasks can produce wrong es-
timations, in particular when the execution time of a task heavily depends on
control constructs, on the particular execution path that results to be activated
and on its frequency.
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performance: 2500
Real Average Executiontime: 3000 cycles

Average Execution time: 3000 cycles

Figure 2.25: Example of unprofitable parallelism

Consider for instance the example shown in Figure[2.25]

Annotating the tasks with their average performance with respect to the
branch probability and computing the task graph performance by consider-
ing the worst-case execution time on them would lead to a wrong estima-
tion (1000+500+1000=2500 cycles) with respect to the actual execution time
(3000 cycles in all the cases).

For this reason, we have proposed ( [36]]) a task graph performance estimation
technique which combines the performance models of the target processing el-
ement, the execution paths, the dynamic profiling information and the structure
of the task graph to produce a more accurate estimation of the performance of
a partitioned application. In particular we exploit the processing element per-
formance models described above to estimate the performance of the single
pieces of code (e.g.: functionl()). For each application execution path (e.g.,
Basic Block 1 — Basic Block 2 — Basic Block 4) identified by the profiling
of the code, we evaluate its contribution to the overall execution time of the
task graph (e.g.: 3000 Cycles for the considered path). This combination takes
also into account the cost for creating and synchronizing the parallel tasks.
These costs have been retrieved by averaging a set of measures obtained run-
ning parallelized and automatically instrumented code on the target platform
([37]D. Finally we obtain the overall performance of the task graph combining
the contribution of each execution path, that is averaged by its relative fre-
quency measured executing the application on the host machine on a set of
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Techniques
Worst Case Average Case Zebu
Optimization Level | Avg. | Max. | Avg. | Max. | Avg. | Max.
00 25.3% | 85.4% | 24.3% | 85.4% | 3.9% | 12.6%
02 20.9% | 85.7% | 21.6% | 85.7% | 4.3% | 11.5%

Table 2.5: Average and Maximum Speed-up Estimation Error on whole task graph
compared with techniques based on Worst Case and Average Case.

significant input datasets. These estimations are then used to evaluate the ef-
fects of the different parallelizations and accordingly transform the task graph
to improve the performance. In particular, all the unprofitable parallel sections
are removed by applying different transformations, such as merging the cor-
responding parallel tasks. Moreover, since OpenMP is used to annotate the
parallelism in the produced C specification, transformations of the task graph
are necessary to make it suitable for the OpenMP paradigm. The task graph
is thus arranged to accomplish this model and balance the number of parallel
tasks in each section.

Note that when different transformations are available, we choose the one that
introduces the greatest benefit (or the lowest degradation) in terms of perfor-
mance, according to the estimation techniques described above.

The methodology has been validated on a set of applications parallelized either
by hand or by Zebu. In particular, the parallel code has been executed on
the modified version of SimIt-ARM [31] described in the previous section.
Then, this cycle-accurate simulation has been compared with the estimation
obtained with the proposed methodology and the results that can be achieved
by traditional techniques based on the computation of Worst Case and Average
Case. The results about the error on speed-up estimation are reported in Table
These results show that the proposed methodology is able to obtain an esti-
mation of the speed-up much closer to the actual simulation with Simlt. It
has been thus integrated into Zebu since it better drives the exploration pro-
cess about the benefits that can be obtained with different parallelizations, as
described above.

2.7 Task Mapping

This section describes the task mapping process of the hArtes toolchain [83].
The goal of task mapping is to select parts of the C application to execute
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on specialized processors (DSP or FPGA), in order to minimize the overall
execution time of the application. The task mapping process is designed with
three novel features. The first is that near optimal solutions can be generated
by a heuristic search algorithm to find the optimal solution. The second is that
developers can guide the decision process by providing directives to constrain
the mapping solution. Finally, a transformation engine has been devised to
perform source-level transformations that can improve the execution of each
individual task on the selected processing element, and as a consequence helps
the mapping process generate a better solution. In this section we cover the
following topics:

1.

Task Mapping Approach (Section [2.7.1). We provide an overview of
the task mapping process including the basic design flow and its main
components.

Task Filtering (Section [2.7.2). The task filtering process is responsible
for constraining the mapping solution and ensuring that it complies to
the hArtes platform.

. Task Transformation (Section [2.7.3). The task transformation is part

of the task mapping approach which enables developers to select, de-
scribe and apply transformations to individual tasks, taking into account
application-specific and platform-specific requirements.

. Mapping Selection (Section [2.7.4). The mapping selection is respon-

sible for assigning a processing element to each task in the program
in order to exploit as much as possible the full capabilities of the het-
erogeneous system, while providing a feasible solution for the hArtes
platform.

. Experimental Features (Section 2.7.5). We report three research ex-

periments that have been performed in conjunction with the task map-
ping approach, and show that they improve the quality of the solution.

hArmonic Tool (Section [2.7.6). We illustrate some of the main features
of the hArmonic tool, which implements the task mapping process in the
hArtes toolchain. In addition, we summarize the key results.

2.7.1 Mapping Approach

The task mapping design flow and its main components are shown in Fig.[2.26]
There are two main inputs: (1) the source code, which supports an arbitrary
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Figure 2.26: The task mapping approach is comprised by four main modules: (1) an
automatic C guidelines verification process that automatically determines if the code
conforms to the restrictions of the task mapping process, (2) a filtering engine that
determines which processing elements can support each task, (3) a task transforma-
tion engine which produces one or more implementations of a given task that can
potentially exploit the capabilities of the processing elements in the system, and (4)
the mapping selection process which assigns a processing element implementation to
each task of the application.
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number of C source files, and (2) the platform specification. The platform
specification describes the main components of the heterogeneous system, in-
cluding the processing elements, the interconnect, storage components, and
system library functions.

The first stage of task mapping is the automatic C guidelines verification,
which determines whether the source code complies with the restrictions of
the mapping process. Some of these limitations correspond to language el-
ements and coding styles that can hinder the efficiency of the task mapping
process, such as the use of function pointers. Other limitations include for-
bidding language elements not supported by our approach, for instance static
function definitions. Hence, the C guidelines verification can provide hints to
improve the task mapping process, enabling developers to revise their code in
specific parts of the program. Furthermore, any violation of the C guidelines
found by the automatic verification process will terminate the task mapping
process.

The second stage of task mapping is task filtering. The objective of task fil-
tering is to determine which processing elements can support each individual
task in the application, and under what conditions. The filtering engine has two
main outputs. The first is a list of supported processing elements for each task
in the application. For instance, in Fig. the filtering engine determines
that task A can only be supported by the GPP and DSP processors, whereas
task C can only be synthesized to the FPGA. The second output of the fil-
tering engine is a set of mapping constraints which ensure that the mapping
result would comply with the hArtes platform requirements and limitations.
For instance, one mapping constraint could state that task B and task C must
be mapped to the same processing element. Another constraint could state
that task C can only be mapped to an FPGA. When combining these two con-
straints, the mapping solution should map task B to an FPGA to satisfy all
constraints, otherwise the mapping solution is infeasible. Section pro-
vides more details about the task filtering process.

The third stage of task mapping is task transformation [90]. Once each task has
been assigned to a list of feasible processors by the previous stage, the transfor-
mation engine generates one ore more implementations of each task according
to an established portfolio of transformations for each processing element. The
transformation engine has two main benefits. First, it can potentially uncover
optimizations that exploit the properties of each individual processing element
in the system, and can consequently improve the performance of the resulting
mapping solution. Second, it enables the mapping process to target a wide
range of implementations for each task, making the selection process less bi-
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ased towards a particular processing element. Section presents the task
transformation engine in more detail.

The fourth and final stage of task mapping is mapping selection [91]. At this
point, we have a set of tasks and associated implementations generated by the
task transformation engine, a set of mapping constraints produced by the filter
engine to comply with the hArtes platform as well as constraints provided by
the developer, and a cost estimator which computes the cost of each task. The
search process is geared towards finding a solution that minimizes as much as
possible the cost of the application and satisfies the mapping constraints. Once
a solution is found, and tasks have been assigned to their corresponding pro-
cessing elements, we generate the code for each processing element. The gen-
erated code is compiled separately by the corresponding backend compilers,
and linked afterwards to produce a single binary. Each individual compilation
unit corresponds to a subset of the application designed to realize the overall
mapping solution.

2.7.2 Task Filtering

The task filtering process relies on individual filters to determine what pro-
cessing elements can support each application task in order to find a feasible
mapping solution. A total of 15 different filters are employed, a sample of
which are shown below.
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Filter Description

Ensures that the main function is always mapped to the
master processor element (GPP)

Ensures that a function that calls another is either mapped
FRCall to the master processing element, or both functions are
mapped to the same processing element

Ensures that a function is not mapped to FPGA if it does
FRDwarvFPGA | not comply with the restrictions of the DWARYV compiler,
such as not supporting while loops

Ensures that a function is not mapped to DSP if it does not
FRTargetDSP comply with the restrictions of the DSP compiler, such as
the use of array declarations with nonconstant sizes
Ensures that functions that share one or more global vari-
ables are mapped to the same processing element
Ensures that a function cannot be mapped to a processing
element (other than the master processing element) if it
invokes a library function not specified in the platform
specification file

Ensures that if one function calls another, they are either
mapped to the same processing element or to different
processing elements if the parameter types can be used in
a remote call

Ensures that a function can only be mapped to a process-
FRTypes ing element if it supports the basic data types specified in
the platform specification file

FRMain

FRGlobal

FRLibrary

FRRemoteFn

Each individual filter is responsible for computing the list of processing ele-
ments to which each task can be mapped. Since the result of one filter can
affect the result of other filters, they are run sequentially in a loop until there
are no changes in the result. In addition to assigning a list of processing ele-
ments to each task, each filter can derive a set of mapping constraints which
can, for instance, specify that a task mapping is valid only if other task map-
pings are part of the solution (e.g. mapping task A to ARM = mapping task
B to ARM). By constraining the solution, the task filtering process can consid-
erably reduce the mapping selection search time as well as ensuring that the
resulting mapping solution can be realized on the hArtes platform.

2.7.3 Task Transformation Engine

The task transformation engine (Fig. applies pattern-based transforma-
tions, which involve recognizing and transforming the syntax or dataflow pat-
terns of design descriptions, to source code at task level. We offer two ways
of building task transformations: using the underlying compiler framework,
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Figure 2.27: An overview of the task transformation engine. The task transforma-
tion engine receives as input a task and additional parameters such as the processing
element that we wish to target, and generates a set of implementations. The set of
transformations to be applied to each processing element is provided by the user. The
implementations of transformations are stored as shared libraries for ROSE transfor-
mations, and as text files for CML-based transformations. A CML description consists
of three sections: the pattern to match, the matching conditions, and the resulting pat-

tern (Listing 2.T).
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ROSE [89], to capture transformations in C++; this is complex but offers the
full power of the ROSE infrastructure. Alternatively, our domain-specific lan-
guage CML simplifies description of transformations, abstracting away house-
keeping details such as keeping track of the progress of pattern matching, and
storing labeled subexpressions.

CML is compiled into a C++ description; the resulting program then performs
a source-to-source transformation. For design exploration, we also support
interpreting CML descriptions, allowing transformations to be added without
recompiling and linking. Task transformations could be written once by do-
main specialists or hardware experts, then used many times by non-experts.
We identify several kinds of transformations: input transformations, which
transform a design into a form suitable for model-based transformation; tool-
specific and hardware-specific transformations, which optimize for particular
synthesis tools or hardware platforms.

Each CML transformation (Fig. consists of three sections: 1) pattern,
2) conditions, and 3) result. The pattern section specifies what syntax pattern
to match and labels its parts for reference. The conditions section typically
contains a list of Boolean expressions, all of which must be true for the trans-
formation to apply. Conditions can check: a) validity, when the transformation
is legal; b) applicability: users can provide additional conditions to restrict ap-
plication. Finally, the result section contains a pattern that replaces the pattern
specified in the pattern section, when conditions apply.

A simple example of a CML transformation is loop coalescing (Listing [2.1)),
which contracts a nest of two loops into a single loop. Loop coalescing is
useful in software to avoid loop overhead of the inner loop, and in hardware to
reduce combinatorial depth. The transformation works as follows:

e Line 1: LSTR.I]starts a CML description and names the transformation

e Lines 2-7: LST[2.1] gives the pattern section, matching a loop nest. CML pat-
terns can be ordinary C code, or labelled patterns. Here var (a) matches any
lvalue and labels it ”’a”. From now on, each time var(a) appears in the CML
transform, the engine tries to match the labelled code with the source code.

e There is no conditions section (lines 8—10: LSTR.1)), as coalescing is always
valid and useful.

e Lines 11-20: LST[.1] gives the result section. The CML pattern newvar (nv)
creates a new variable which is guaranteed unique in the current scope. The
resulting loop behaves the same as the original loop nest. The values of
the iteration variables, var(a) and var(b), are calculated from the variable
newvar (nv) in the transformed code. This allows the original loop statement,
stmt(s), to be copied unchanged.
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transform coalesce {

1

2 pattern {

3 for (var(a)=0;var(a)<expr(el);var(a)++){
4 for (var(b)=0;var(b)<expr(e2);var(b)++)
5 stmt (s);

6 }

7 }

8 conditions {

10 }

11 result {

12 for (newvar(nv)=0;

13 newvar (nv)<expr (el) *expr(e2);

14 newvar (nv) ++)

15 {

16 var(a) = newvar(nv) / expr(l);

17 var(b) = newvar(nv) % expr(l);

18 stmt (s);

19 }

20 }

21 }

Listing 2.1: CML description of the loop coalescing transformation.

When the transformation engine is invoked, it triggers a set of transforma-
tions that are specific to each processing element, which results in a number of
implementations associated with different tasks and processor elements. The
implementation description of ROSE transformations are stored as shared li-
braries, and the CML definitions as text files. Because a CML description is
interpreted rather than compiled, users can customise the transformation by us-
ing a text editor, and quickly evaluate the effects of the transformation without
requiring an additional compilation stage.

To show the effect of our transformation engine, we apply a set of transforma-
tions to an application that models a vibrating guitar string (provided by UNI-
VPM). These transformations have been described in both CML and ROSE,
and allow the user to explore the available design space, optimizing for speed
and memory usage. We modify the application for a 200 second simulated
time to show the difference between the various sets of transformations. The
set of transformations includes:

e S: simplify (inline functions, make iteration variables integer, recover
expressions from three-address code)

e I: make iteration bounds integer

e N: normalise loop bounds (make loop run from 0 to N-2 instead of 1 to
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N-1)

M: merge two of the loops

C: cache one array element in a temporary variable to save it being
reread

H: hoist a constant assignment outside the loop

e R: remove an array, reducing 33% of memory usage (using two arrays
instead of three)

Fig. shows how the design space can be explored by composing these
transformations. Transformation S provides an almost three-fold improve-
ment, mostly by allowing the compiler to schedule the resulting code. Trans-
formation I gives nearly another two-fold improvement, by removing floating-
point operations from the inner loop. Transformation N gives a small improve-
ment after transformation I. Transformation M slows the code down, because
the merged loop uses the GPP cache badly. Transformation C improves the in-
teger code (I) but leaves the floating point version unimproved. Finally, trans-
formation R gives a small improvement to the integer version, but actually
slows down the floating-point version. Overall, we have explored the design
space of transformations to improve execution time from 61.5 seconds to 9.8
seconds, resulting in 6.3 times speedup.

2.7.4 Mapping Selection

Our mapping selection approach is unique in that we integrate mapping, clus-
tering and scheduling in a single step using tabu search with multiple neigh-
borhood functions to improve the quality of the solution, as well as the speed
to attain the solution [84]]. In other approaches, this problem is often solved
separately: a set of tasks are first mapped to each processing element, and a list
scheduling technique then determines the execution order of tasks [85]], which
can lead to suboptimal solutions.

Figure [2.29] shows an overview of the mapping selection approach. Given a
set of tasks and the description of the target hardware platform, the mapping
selection process uses tabu search to generate different solutions iteratively.
For each solution, a score is calculated and used as the quality measure to
guide the search. The goal is to find a configuration with the lowest score,
representing the execution time.

Fig. 2.30]illustrates the search process. At each point, the search process tries
multiple directions (solid arrows) using different neighborhood functions in
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Original S SM SMN SMNC SMNCR
—— — — — —
615 233 22.1 222 225 24.8

Y v v v v

S SIM SIMN SIMNC SIMNCR
— —_ —— —
10.3 205 20.7 205 19.4

Key:
*S: Simplify (inline, etc.)
*I: make iter vars ints

*M: merge 2 loops

SIN
10.2

SINCH
9.8

*N: normalise inner loop Note:

«C: cache y[x-1] *Times in seconds

_ 200 second
*R: remove
ypll simulated time

*H: hoist const assign.

Figure 2.28: Starting with the original code for the application that models the vi-
bration of a guitar string, we explore ways of using seven different transformations
to attempt to improve the run time and memory usage. Much of the speedup comes
from simplifying the code and making iteration variables integer, while the remainder
comes from caching to prevent repeat memory access and removing a constant assign-
ment from the loop body. The caching also enables one array to be eliminated (about
33% reduction in memory usage), possibly at the expense of performance.

mapping
tasks constraints

Tabu Search with

multiple
neighborhood
’ functions
overall mapping
processing time solution

‘ Cost Estimator

mapping selection

1 |

C code for each
processing
element

Figure 2.29: An overview of the mapping selection process.

113



optimal
solution

1st move
2 4

initial

/
solutioﬁ

(1 ()
(1 ()
00

a mapping and
scheduling solution

solution space

Figure 2.30: Searching for the best mapping and scheduling solution using multiple
neighborhood functions. The solid arrows show the moves generated by different
neighborhood functions. The dotted arrows denote the best move in each iteration of
the search. PE: processing element, tk: task.

each move, which can increase the diversification to find better solutions. In
the proposed technique, after an initial solution is generated, two neighbor-
hood functions are used to generate neighbors simultaneously. If there exists a
neighbor of lower cost than the best solution so far, and it is not in the tabu list,
this neighbor is recorded. Otherwise a neighbor that cannot be found in the
tabu list is recorded. If all the above conditions cannot be fulfilled, a solution
in the tabu list with the least degree, i.e. a solution resident in the tabu list for
the longest time, is recorded. If the recorded solution has a smaller cost than
the best solution so far, it is recorded as the best solution. The neighbors found
are added to the tabu list, and solutions with the least degree are removed.
This process is repeated until the search cannot find a better configuration for
a given number of iterations. An advantage of using multiple neighborhood
functions is that the algorithm can be parallelized, and therefore the time to
find a solution can be greatly reduced.

Another important component of the mapping selector is the cost estimator
(Fig.[2.29). The cost estimator computes the overall processing time, which is
the time for processing all the tasks using the target computing system includ-
ing data transfer time between processing elements. The processing time of a
task on a processing element is calculated as the execution time of this task on
the processing element plus the time to retrieve results from all of its prede-
cessors. The data transfer time between a task and its predecessor is assumed
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to be zero if they are assigned to the same processing element.

Our approach for estimating the cost of a task running on a particular process-
ing element currently exploits rule-based techniques. Our rule-based estimator
makes use of linear regression to estimate the cost based on a set of metrics:

N
EstTime = Tp,
i=1
where N is the number of instructions, P; is the type of instruction i, Tp, is the
execution time of instruction P;. Each processing element contains one set of
T'p, for each type of instruction. Instructions include conditionals and loops, as
well as function calls.

2.7.5 Experimental Features

In this section we provide a brief overview of three experiments that have been
developed independently from the task mapping approach. They have been
proved to enhance the task mapping process.

o Automatic Verification. A verification framework has been developed
in conjunction with the task transformation engine [86]. This framework
can automatically verify the correctness of the transformed code with
respect to the original source, and currently works for a subset of ANSI
C. The proposed approach preserves the correct functional behavior of
the application using equivalence checking methods in conjunction with
symbolic simulation techniques. The design verification step ensures
that the optimization process does not change the functional behavior of
the original design.

e Model-based Transformations. The task transformation engine (Sec-
tion[2.7.3)) supports pattern-based transformations, based on recognizing
and transforming simple syntax or dataflow patterns. We experiment
with combining such pattern-based transformations with model-based
transformations, which map the source code into an underlying mathe-
matical model and solution method such as geometric programming. We
show how the two approaches can benefit each other, with the pattern-
based approach allowing the model-based approach to be both simplified
and more widely applied [87]. Using a model-based approach for data
reuse and loop-level parallelization, the combined approach improves
system performance up to 57 times.
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e Data Representation Optimization. Another approach used in con-
junction with the task transformation engine is data representation op-
timization for hardware tasks. The goal of data representation opti-
mization is to allow developers to trade accuracy of computation with
performance metrics such as execution time, resource usage and power
consumption [88]]. In the context of reconfigurable hardware, such as
FPGAs, this means exploiting the ability to adjust the size of each data
unit on a bit-by-bit basis, as opposed to instruction processors where
data must be adjusted to be compatible with register and memory sizes
(such as 32 bits or 64 bits).

The data representation optimization approach has two key features.
First, it can be used to generate resource-efficient designs by provid-
ing the ranges of input variables and the desired output precision. In this
case, the optimization process analyzes the code statically and derives
the minimum word-lengths of variables and expressions that satisfy user
requirements. In addition, a dynamic analysis can be employed to au-
tomatically determine the input ranges and output requirements for a
particular set of test data.

Second, this approach can be used to generate power-efficient designs
using an accuracy-guaranteed word-length optimization. In addition,
this approach takes into account library functions where implementa-
tion details are not provided. Results show power savings of 32% can
be achived by reducing the accuracy from 32 bits to 20 bits.

2.7.6 The hArmonic Tool

This section describes some of the features of the hArmonic tool which imple-
ments the functionality described in Fig. The hArmonic tool receives as
input an arbitrary number of C sources, and generates subsets of the applica-
tion for each individual processing element according to the derived mapping
solution. The list of features include:

e System and Processor Driver Architecture. hArmonic uses a driver-
based architecture. Each driver captures the specific elements of the
platform (system driver) and the processor elements (processor driver)
and interfaces with the mapping process which is generic. For instance,
the system driver is responsible for estimating the cost of the whole ap-
plication for the corresponding platform. The processor driver, on the
other hand, shows whether a particular task can be supported by asso-
ciated processing elements. This way, hArmonic can be customized to
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support different hardware platforms and processing elements by adding
new drivers, without the need to change the interfaces or the core map-
ping engine.

Automatic C Guidelines Verifier. The automatic C guidelines veri-
fier analyzes the input C source and highlights any guideline violation
and makes recommendations about the code, to ensure conformance
and integration between the tools. For instance, it automatically de-
tected instances of static functions in code generated by SCILAB-to-C
tool (AET), and the use of function pointers in the x264 source-code.
The former is a violation because static functions are constrained to the
source-file where they are located, whereas hArmonic must move func-
tions to different source-files according to the mapping solution. Avoid-
ing the use of function pointers, on the other hand, is a recommendation,
as hArmonic does not support dynamic mapping and therefore the qual-
ity of the solution can be diminished. Developers are therefore invited to
change their sources or tools in a way that can maximize the efficiency
of the toolchain and the mapping solutions.

The C guidelines supported by hArmonic are shown in Fig. 2.31} This
figure also presents a screenshot of the corresponding graphical user in-
terface, which illustrates how hArmonic automatically pinpoints poten-
tial problems in the source-code that prevent either good mapping or a
feasible solution.

Multiple Source Files Support. To support full C projects where appli-
cations can span multiple source files and contain preprocessing macros
and directives, hArmonic requires a complex analysis of the code to rec-
oncile multiple symbols in each compilation unit and to obtain a com-
plete picture of the application.

Mapping Constraint System. To facilitate design exploration and to
allow tools and developers to influence the task mapping process, hAr-
monic supports a mapping constraint system that can be used to guide
the mapping process. For instance, a tool can automatically generate C
code specifically for DSP and instruct hArmonic to map those functions
to DSP. There are three ways in which developers can define mapping
constraints:

— Source Annotation. In this case, a #pragma annotation can be
optionally placed next to a function declaration or a function call
to set the final mapping for that task. In the example below, any
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Guidelines Description

Avoid function pointers  Detects the use of function pointers

Avoid union types Detects the use of union types
No static functions Detects the use of static functions
No comma operators Detects the use of complex expressions using comma operators

No implicit function calls Detects the use of function calls which were not previously declared

(O A = I = & ©
run  reset  selectall selectenabled selectreverse unselectall  sortbyname sortbytime  sortby violations  done!
checkers D timing issues
| NoCommaop 0.040s 4
| AvoidFunctionPtr 0.040s 0
| Avoidunion 0.140s o
[1] DET center xi(): Rule 2.C - no comma operators (manda |
[2] DFT_center xr(): Rule 2.C - no comma operators {manda Rule 2.C - no comma operators (mandatory)
[3] FFT_center_xr(): Rule 2.C - no comma operators (mandat
4 entel : Bule -n nera n Reasons comma operators are not supported
source: | contiguous._float.c [/homejjgfc/Work/hArtesApps/DSE/tcf/lib] 2] pigoto @) zoom+ (3 zoom-
a0 Ly
247
2 I
249 Nane DFT center xr
250 Purpose: this function perforns samples reordering
251 Argunents: 1 - (float[l) xr: reordered fft real part
252 2 - (int) nfft: fft size in samples
253
2514 |- -
255
256 _ void DFT center xr(float * restrict xr,int32 t nfft)
257 O
258 inta2 t ks
259 loat tap;
260 float * restrict  pxl;
261 float * restrict pxz
262 pxl = xr;
263 px2 = (xr + (nfft 7 2));
264 for (k = (0); k < (nfft / 2); WE(RSNTpRIRINT0x28)) {
265 | tap = 4oxl

Figure 2.31: A description of C guidelines automatically detected by hArmonic, and
a screenshot of its graphical user-interface.
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task relating to function f () will be mapped to MAGIC (DSP) or
to VIRTEX4 (FPGA).

#pragma map call hw MAGIC VIRTEX4
void £Q {...}

— Constraint File. Rather than annotating the source which can span
through many files and require parsing the code, the mapping con-
straints can be placed in a separate text file making it easier for
tools to interact with hArmonic. In the example below, all tasks
related to function f() are mapped to either ARM or MAGIC, task
g() with id 12 must be mapped to VIRTEX4, and all tasks defined
in source-file dsp_fn.c are to be mapped to MAGIC.

£ := ARM,MAGIC
g()/12:= VIRTEX4
dsp_fn.c:=MAGIC

— Graphical User Interface. Additionally, developers can use hAr-
monic’s graphical user-interface to set the constraints directly by
selecting one or more tasks and associating them to the desired
processing element as shown below:

m = I = 4 4+ + 4+ ®

reset select all  select reverse  unselect all clear constraint ~ map ARM ~ map MAGIC ~ map VIRTEX4 run mapper

MAGIC VIRTEX4 Constraint

T o | |
YES NO

tasks

ARM
FFT_apply window(}/416 “
YES

=

FFT_apply window(}/468

FFT_dfto_rdx2_cf()/426
FFT_dfto_rdx2_cf()/448 YES YES NO
FFT_generate twiddles();263 YES NO NO
FFT_generate twiddles();325 YES NO NO
FFT_idfto_rdx2_cf(}/431 YES YES NO

FFT_idfto_rdx2_cf()/453 YES YES NO

[«

o OpenMP support. OpenMP directives can be introduced to indicate
that two or more tasks can be parallelized. When the OpenMP mode is
enabled, hArmonic is able to provide a mapping solution that exploits
parallelization. In the example below, depending on the cost estimation
of f() and g(), these functions may be mapped to different processing
elements (such as DSP and FPGA) to reduce the execution time of the
application.

119




#pragma omp parallel sections

{
#pragma omp section
£O;
}
#pragma omp section
{
90;
}

e Source Splitting. In the initial versions of hArmonic, the mapping
process would generate a single C source file with source annotations
for each function indicating to which processing element they were as-
signed, and therefore which compiler to use. However, this approach
turns out to be infeasible because (a) compilers would have to be made
more complex so that they could compile selectively, (b) there are sub-
tle and not so subtle differences between the C languages supported by
the compilers, which mean that it would be difficult to generate one sin-
gle source that all parsers could support, (c) there are specific headers
required for each processing element which can be incompatible when
used together in a single source. To avoid these problems, later versions
of hArmonic generate one source file for each processing element that
is a part of the mapping solution. Each compilation unit is a subset of
the application and includes all the necessary function definitions that
are mapped to a particular processing element, as well as every type
and symbol definitions required for a correct compilation and execu-
tion. Furthermore, hArmonic supports C customizations in the source
for each processing element to conform to the hArtes platform, backend
compilers and system headers.

Table [2.6] summarizes the results of the complete automatic mapping per-
formed by the final version of the hArmonic tool on all hArtes applications.
For the largest application (Audio Enhancement) with more than 1000 tasks,
it takes a single minute to complete the whole task mapping process, result-
ing in a 30 times speed-up. The speed-up corresponds to the ratio between
the application running solely on the GPP (no mapping) and execution of the
application where selected tasks have been automatically assigned to the avail-
able accelerators on the hArtes platform. The hArtes constraints column corre-
sponds to the number of mapping restrictions generated by the mapping filter
rules (see Section in order to comply with the hArtes platform and en-
sure that the mapping solution is feasible.
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Table 2.6: Evaluation of the main hArtes applications.

hArtes Total Number of Tasks hArtes Time to compute Speed up
Application [Mapped to DSP] Constraints solution (sec)
From UNIVPM
Xfir 313 [250] 1180 8 9.8
PEQ 87 [39] 261 3 9.1
FracShift 79 [13] 251 24 40.7
Octave 201 [137] 692 6 93.3
Audio Enhancement 1021 [854] 4366 59 31.6
From Thales
Stationary Noise Filter 537 [100] 3101 17 5.2
From FHG-IGD
Beamformer 168 [38] 677 6 7.9
Wave-field Synthesis 145 [24] 455 5 9.2

In addition, the hArmonic tool automatically achieves speed-ups that ranges
from 5.7 times to more than 90 times by mapping selected tasks to available
processing elements in the hArtes platform. Several factors contribute to the
quality of the solution: (a) the hArtes applications have been developed with
the recommended C guidelines and best practices to exploit the toolchain, (b)
the performance and efficiency of the hArtes toolchain synthesis tools (GPP,
DSP and FPGA compilers), (c) the use of specialized libraries such as DSPLib,
and finally (d) the architecture and efficiency of the hArtes hardware platform.
Further descriptions of the hArtes applications and the automatic mapping ap-
proach can be found in Chapters [4] and [5]

2.8 Compiling for the hArtes platform

In order to execute the produced application on the hArtes target platform, the
following steps have to be performed:

o compiling the code for the GPP processing element and generating the
additional code to address the MOLEN paradigm;

e compiling the code for the DSP processor;
e generating the hardware components;

¢ linking and creating the effective executable.

121



2.8.1 HGCC Compiler and MOLEN programming paradigm

The MOLEN programming paradigm is a paradigm [56] that offers a standard
model of interaction between the processing elements of a heterogeneous sys-
tems. By extending the run-time system and the compiler with 6 primitives a
theoretically unlimited number of different processing elements can be man-
aged transparently. New types of processing elements can be added without
complex modifications to the existing infrastructure - the only thing needed
being the specific implementation of the 6 primitives for the new element.
The paradigm is based on the processor/coprocessor model and the basic com-
putation unit is a function. We consider that the application is running on the
General Purpose Processor (GPP) and the computationally intensive functions
(named from this point on kernels) are executed by different accelerators or
processing elements (PE). The memory is considered to be shared between
the GPP and all the PE-s. The parameters have to be placed in special transfer
registers that have to be accessible by both the GPP and the PE.

The modified GPP compiler, namely HGCC, will replace a normal call to the
function with the 6 primitives as shown in Figure[2.32]

Each of the primitive has to be implemented for each processing element. The
list of the primitives for one processing element is the following:

e SET(int id) - performs any initialization needed by the processing ele-
ment. In the context of hArtes it means: reconfiguration for FPGA, load
of binary executable file for Diopsis DSP.

e MOVTXval(int id, int reg, int val) - moves the value val to the specific
transfer registers reg that will be used by the kernel identified by id

o EXECUTEC(d) - starts the kernel identified by id on the processing ele-
ment processing element. The GPP can continue execution as this call
as asynchronous.

e BREAK(id) - used as a synchronization primitive, will not return until
the PE execution the kernel identified by id, has not finished execution.

e MOVFXuval(int id, int reg, int &val) - does the reverse of MOVTXwval.
Will transfer the value from the register reg, used by kernel identified by
id and will store it at val.

These functions are provided in a library, and are linked with the binary gen-
erated by the GPP compiler.

To mark a function is a kernel that has to be accelerated a pragma is used. The
syntax of the pragma is the following:
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C source code

#pragma map call_hw Virtex4 11

r = £(50,10);

Normal
compilation

movr0, #50 ——»
movr1 #10
<f>

M

mov r1,r0
ARM assembly \

Compiled for MOLEN
platform

movr0, #11

bl <molen_SET>
movr0, #11

movr1, #0

movr2, #50

bl <molen_MOVTXval>
movr1, #1

movr2, #10

movr0, #11

bl <molen_MOVTXval>
movr0, #11

bl <molen_EXECUTE>
movr0, #11

bl  <molen_BREAK>
add r2, sp, #4

movr0, #11

movr1, #0

bl <molen_MOVFX>

MOLEN primitives

Figure 2.32: Example of MOLEN

123



C source code MOLEN primitives Execution Schedule
(SET, MOVTX and MOVFX

omitted for brevity) GPP(ARM)  PE(FPGA)

mov 10, #11
bl <molen_EXECUTE> __

#pragma map call_hw Virtex4 11 mov r0, #11 ; Oxb
F (10); bl <molen_BREAK> f
#pragma map call_hw Virtex4 12
g (90); mov r0, #12 ; Oxc ‘ ‘
bl <molen_EXECUTE>
mov r0, #12 ; Oxc B
bl <molen_BREAK>
9
]

Figure 2.33: Molen without parallelism

#pragma map call_hw Virtex4 1

The third element in the pragma is the processing element, while the fourth
element is the unique identifier of the kernel. This pragma can be placed at the
following points in the program:

e function declaration - which means all the calls to that function will be
replaced with MOLEN primitives.

o function call - which means that just that call will be called accelerated.

Parallel execution and MOLEN

Even if it is not explicitly specified MOLEN is a asynchronous paradigm, i.e.
the PE can execute in parallel with the GPP. To describe this in the application
we use the OpenMP parallel pragma, because it is a well established syntax.
We do not use any other feature of the OpenMP specification so far.

Let’s assume we have two independent kernels: kernelA and kernelB. Without
taking into account the parallelism the compiler will generate the code and
schedule in Figure

Assuming kernelA and kernelB are put in an OpenMP parallel section the com-
piler will generate the optimized code and schedule as in Figure[2.34]

An important aspect is that even though it uses OpenMP syntax, the parallelism
is obtained without any threading on the general purpose processor, which can
save a lot of execution time. To obtain such an effect the compiler does the
following steps:
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C source code MOLEN primitives Execution Schedule
(SET, MOVTX and MOVFX
omitted for brevity)

?pragma omp parallel GPP(ARM)  PE(FPGA)
; mov r0, #11 ; Oxb
#pragma omp sections BI <molen EXECUTE> —— 4
#pragma omp section ‘r,'n'ov 10, #12 : Oxc
. bl <molen_EXECUTE>
#pragmafm%) F:all_hw Virtex4 11 mov 10, #11 ; Oxb / f
) (10); bl <molen.BREAK> g
; mov r0, #12 ; Oxc /
?pragma omp section bl <molen BREAK>
#pragma map call_hw Virtex4 12

g (90)

}
}

Figure 2.34: Molen with parallelism expressed with OpenMP syntax

e it replaces the calls with the MOLEN primitives

e when it generates the assembly code, the compiler starts processing the
parallel regions one by one. For each of them, it copies to the sequential
output all the code before the last BREAK primitive of the section.

e copies the rest of each section

2.8.2 DSP compiler

For the DSP Processing Element, the hArtes toolchain uses a commercial
toolchain from Target™. This toolchain has its own binary format, the C-
compiler is not fully C99 compliant and has particular syntaxes to optimize C
code. One of the goal of the hArtes toolchain is to behave exactly as the com-
pilation chain of a GPP where one single executable is created containing all
symbol and debug information. So the main integration task has been to con-
vert this proprietary image into something that could be linked together with
the GPP compiler.

The integration of this tool inside the hArtes toolchain has been made possible
through the mex2elf tool that translates Target’s DSP proprietary format into
an ARM ELF compliant format. A more complex task has been to re-create
debugging information following DWARF?2 specifications, from logs and dis-
assembler outputs of the Target compiler. There is some debug information
still missing such as: frame and variable info. However debugging location
information has been produced, so it’s possible put line/file or function break-
point.
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2.8.3 Hardware Generation

In this section, we present the Delft Workbench Automated Reconfigurable
VHDL Generator (DWARV) C-to-VHDL generation toolset. The purpose of
the compiler is to exploit available parallelism of algorithms and generate de-
signs suitable for hardware/software co-execution. This chapter is structures
as follows: First, an overview of the toolset and description of the modules
it is composed of is given(Section 2). An explanation of the current C subset
it accepts and a brief overview of possible transformation needed to make c-
functions DWARV-compatible is given in Section 3. Finally, in Section 4, we
will present results obtained when using the toolset with the Molen computing
organisation.

DWARYV compiler

This subsection is focused on the design and implementation of the DWARV
toolset for automatic generation of VHDL designs from C code considering
execution on a hardware prototyping platform. We present the design flow of
the DWARYV toolset and explain the main components in details.

The main objective of the DWARV toolset is generation of VHDL designs
from C code considering execution on a real hardware prototyping platform
and without limitations on the application domain. The toolset consists of
two modules, namely Data-Flow Graph (DFG) Builder and VHDL Generator,
depicted in Figure 1.

The input of the toolset is a pragma annotated C code. The pragma annotation
identifies the C code segments to be translated into VHDL code. Currently,
the translation is performed at function-level. Hence, the pragma annotation is
placed just prior the function signature.

The input C code is processed by the DFG Builder. This module is imple-
mented as a pass within the SUIF2 compiler framework [47]. Its current pur-
pose is to transform the C code into a data-flow representation suitable for
hardware generation. The SUIF2 front-end is used to generate SUIF interme-
diate representation (IR) of the input file. A series of code transformations are
applied by the DFG Builder:

1. The code is transformed into static single assignment (SSA) form;

2. Scalar replacement is performed. During, the scalar replacement pass,
the memory access expressions are analyzed and if necessary and possi-
bly, un-aliased;

3. A second SSA pass goes over the newly generated scalar variables.
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o

DFG Builder
< > IP Library
VHDL Generator

Figure 2.35: The DWARY toolset.

After the code is normalized, the actual data-flow graph construction is per-
formed. For that purpose, the SUIF IR is traversed and for each operation,
a corresponding DFG node is created. The edges, corresponding to the data-
dependencies between the operations are also constructed. During this traver-
sal, if-conversion is performed. In addition, the precedence order between the
memory accesses as well as between the operations within the loop bodies is
analyzed and the corresponding edges are inserted. As a final optimization,
common sub-expression and dead code elimination are performed. The out-
put of the DFG Builder module is a Hierarchical Data-Flow Graph (HDFG),
serialized into a binary file (*.dfg).

The HDFG, used as intermediate representation, is a directed cyclic graph G;V,
E; . The vertices of the graph are divided into two major types: simple and
compound. The simple nodes correspond to the arithmetic and logic oper-
ations, the memory transfers, the input/output parameters transfers, the con-
stants, and the registers. Simple nodes corresponding to registers in the graph
represent only the function parameters and the local variables used to transfer
values produced in one loop iteration and consumed in the next iteration. The
compound nodes correspond to the loops in the function body. These nodes
contain the sub-HDFG of the loop body.
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The edges of the graph are also two types: data-dependency edges and prece-
dence edges. A data-dependency edge e(v — u),v € V,u € V, indicates
that the value produced by node v is consumed by node u. A precedence edge
e(v = u),v € V,u € V, indicates that the operation(s) in node v has to complete
before the operation(s) in node u is initiated. The precedence edges prevent a
value, prepared for the next loop iteration to be consumed in the same loop
iteration. These edges are also used to order the (possibly) dependent memory
accesses.

The HDFG is the input of the second module in the toolset called VHDL Gen-
erator. This module is implemented as a stand-alone Linux executable. Its
current purpose is to schedule the input graph and to generate the final VHDL
code. The performed scheduling is As-Soon-As-Possible. During the schedul-
ing, each executable node, except the memory and parameters transfer and
loop nodes, is assumed to take one cycle. An operation is scheduled at a given
level (cycle) if all node inputs are already available (scheduled at preceding
cycles) and there are no precedence constraints. The scheduling of the loop
nodes is merged with the scheduling of the rest of the graph. These nodes are
considered as normal nodes, until they are ready to be scheduled. When a loop
node is ready to be scheduled, first all other ready nodes are scheduled. Then
the scheduling of the upper-level graph nodes is suspended and the scheduling
of the compound node sub-graph is started. When the loop body is completely
scheduled, the scheduling of the upper-level nodes is resumed.

The number of cycles, necessary for the memory and parameters transfers is
provided as an additional input to the DFGBuilder. These data are specified
in the configuration file (*.xml) shown in Figure 1. This file also containing
the memory and the register banks bandwidth and the address size of the cor-
responding busses. As additional configuration parameters, the endianess of
the system and the sizes of the standard data types are also specified in this
file. The xml file is transformed in a text file (*.cfg) that is more suitable for
processing by the VHDL Generator.

The last block in Figure 1 constitutes the IP Library. The purpose of this
is to provide VHDL components (primitives and cores) that are functionally
equivalent to C code fragments which can not be translated automatically to a
very efficient VHDL code. As an example of what is described in this library,
consider the floating point division of two variables in ¢ code. This opera-
tion would be translated to VHDL by instantiating the fp_sp_div core that is
described in the IP Library, e.g. number of cycles the operation takes, port
names of the inputs and output, size of the operands.

The generated output VHDL code represents a FSM-based design. Only one
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FSM is instantiated for the entire design. The transition between the states
is consecutive, unless a loop-back transition is performed. The generated
VHDL code is RTL as specified in IEEE-Std 1076.6-2004 [48]] and uses the
numeric_std synthesis packages [49]]. In addition, the RTL designs are gener-
ated with the MOLEN CCU interface [?], which allows actual execution on a
real hardware prototype platform.

C Language and Restrictions

An objective of the toolset described above is to provide support for almost all
standard C-constructs that can be used in the input C code. Nevertheless, in
the current version of the toolset several syntax limitations are imposed. These
limitations are listed below. A note should be made that the listed restrictions
apply only to the functions translated into VHDL code:

e Data types: the supported data types are integer (up to 32-bit) and one-
dimensional arrays and pointers. There is not support for 64-bit data
types, multi-dimensional arrays and pointers, structures, and unions;

e Storage types: only auto local storage type is supported with limitation
for arrays initialization;

o Expressions: there is full support for the arithmetic and logic operations.
One-dimensional array subscripting and indirection operation as mem-
ory access are also supported. There is no support for function calls,
field selection, and address-of operation;

o Statements: The expression statement is limited to the supported ex-
pressions, the selection statements are limited to if-selection, and the
iteration statements are limited to for-statements. There is no support
for jump and labeled statements. The compound statements are fully
supported.

Although currently limitations on the input C code are imposed and no so-
phisticated optimizations are implemented, the toolset is able to translate ker-
nels from different application domains that exhibit different characteristics.
In addition, performance improvement over pure software execution is also
observed [45]]. For a detailed overview of the current C language support, the
reader is referred to table 1-4.

Although the DWARV toolset does not restrict the application domain, based
on the presented C Language limitations above (see Table 1.), some transfor-
mations still have to be performed on the original c-code to make it compliant
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[ DataTypes | Current support [ Future Support | Future work |
Integer Types long long not supported Full Use other compiler framework
Real FP Types Supported Full N/A

Complex Types Not supported Not supported N/A
Pointer Types 1D, memory location ND, local un-aliasing Pointer analysis
Aggregate Types 1d arrays Full Data manipulation extension
Unions Not supported Full Data manipulation extension
Table 2.7: C Language Support - Data Types
[ Storage [ Current support [ Future Support Future work ]
Auto /Local | No array initialization | Full for supported data types | VHDL model extension
Auto / Global Not supported Constant VHDL model extension
Static Not supported Not supported N/A
Extern Not supported Not supported N/A
Register Ignored Ignored N/A
Typedef Full Full N/A
Table 2.8: C Language Support - Storage
[ Expressions [ Current support [ Future Support [ Future work
Arithmetic and Logic FOR & IF Full Expression restore analysis extension
Function calls Not supported Partial Function analysis and VHDL extension
Array subscripting 1D Full Data manipulation extension
Field selection Not supported Full Data manipulation extension
Address-of Not supported Full Data manipulation extension
Indirection 1D mem ND mem Pointer analysis
Table 2.9: C Language Support - Expressions
[ Statements | Current support [ Future Support [ Future work
Expression | Limited to supported expr Limited to supported expr N/A
Labeled Not supported Switch-case Data-flow analysis extension
Jump Not supported (Switch-) break & continue | Data-flow analysis extension
Selection If-statement Full Data-flow analysis extension
Iteration For-loop Full Data-flow analysis extension
Compound Full Full N/A

Table 2.10: C Language Support - Statements
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with the current version of the DWARYV compiler. In the future, these restric-
tions will be relaxed. The transformations needed to make a function DWARV-
compliant are summarized below:

e The code to be transformed to VHDL has to be extracted as annotated C
function.

o All external data have to be passed as function parameters.

e Multi-dimensional array accesses have to be transformed to 1D memory
accesses.

e Pointers are interpreted as memory accesses (hence, no pointers to local
data).

e Switch statements have to be re-written as series of if-statements.
e While and do-while loops have to be re-written as for-loops.
e Function calls have to be inlined.

e Structures or unions have to be serialized as function parameters.

Results

For the evaluation of the DWARV compiler, kernels from various applica-
tion domains identified as candidates for acceleration were used. These gen-
erated designs were implemented in Xilinx’s VirtexII Pro XC2VP30 FPGA
and Virtex-4 XC4VFX100 and the carried experiments on the MOLEN poly-
morphic processor prototype [?] suggest overall application speedups between
1.4x and 6.8x, corresponding to 13% to 94% of the theoretically achievable
maximums, constituted by Amdahl’s law [45[]. For a more detailed explana-
tion of the carried experiments and results obtained, the reader is referred to
the applications chapter.

Hardware Cores for arithmetic operations

Many complex arithmetic operations and functions can be more efficiently im-
plemented in hardware than software, when utilizing optimized IP cores de-
signed from FPGA vendors. For example, Xilinx provides a complete IP core
suite [S0] for all widely used mathematical operations, ranging from simple
integer multipliers and dividers, to customizable double precision division and
square root. These IP cores are finely-tuned for speed or area optimization,
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thus providing robust solutions that can be used as sub-modules for larger de-
signs. Based on this fact, we developed a hardware components library that
consists of all widely-used mathematical functions. The latter are built using
various Xilinx IP cores. In the next section, we describe which functions are
supported by pre-designed hardware modules and elaborate on their specifica-
tions.

Operations supported by the library components:  Table 2.11] shows all
the operations that are supported by the library components. The latter can be
divided into three main categories, based on the operands used:

¢ IEEE Floating-Point Arithmetic Single Precision Format (32 bits);
¢ [EEE Floating-Point Arithmetic Double Precision Format (64 bits);

o Integer (32 bits).

As it is shown in Table 2.T1] all mathematical operations are supported for
both floating point formats. The reason we decided to support these operations
with hardware modules, is that they require less cycles when executed with
custom hardware modules, than executed on an embedded PowerPC processor
in emulation mode. In addition, we developed hardware modules that perform
various types of comparisons between two floating point numbers, like > or
>=. All these hardware accelerators can be designed to be also pipelined, thus
reducing even more the application total execution time [51].

Except from all mathematical operations, we developed custom accelerators
for functions that are commonly used in software applications written in C.
These functions are also shown in Table while Table [2.12] describes each
one of them.

Implementation of the hardware modules: In order to implement all li-
brary elements we use the Xilinx ISE 9.2i CAD tools. Xilinx provides dedi-
cated IP cores [52] that utilize the IEEE 754 Standard [53]] for all basic math-
ematical operations, like addition, subtraction, multiplication, division and
square root. We used these IP cores as the fundamental building block for
all single and double precision hardware accelerators. During the develop-
ment of each library element, we tried to keep a trade-off between its latency
and maximum operating frequency.

The hArtes hardware platform accommodates a Virtex4 FX100 FPGA with an
external clock of 125 MHz, thus all hardware accelerators should be able to
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Table 2.11: hArtes library components specifications.

Precision H Operation ‘
single x+y, X-y, X*y, x/y, Vx, x%y, X>y, X<y, X>=y, X<=y, X==Y, X!=y,
neg(x), round(x), floor(x), ceiling(x), x2int, x2short, x2char, zero(x)
double X+y, X-y, X*¥y, Xy, Vx, X%y, x>y, X<y, X>=y, X<=y, X==y, X!=y,
neg(x), round(x), floor(x), ceiling(x), x2int, x2short, x2char, zero(x)
int x/y, x2fp_sp, x2fp_dp, x%y
short x/y, X%y
char x/y, X%y
Table 2.12: hArtes library components specifications.
‘ Function H Explanation ‘
round(x) if the decimal part of x is >=0.5, then round(x)=[x1, else round(x)=|x]|
floor(x) floor(x)=[x]
ceiling(x) ceiling(x)=[x]
x2int(x) keep x integer part and convert it to integer format
x2short(x) keep x integer part and convert it to short format
x2char(x) keep x integer part and convert it to char format
zero(X) if x==0.0 or x==-0.0 then zero(x)=1, else zero(x)=0

operate at least to that frequency when mapped onto the FPGA. On the other
hand, increasing an element maximum operating frequency much more than
125 MHz, would introduce additional latency cycles. In this case, the ele-
ment performance would be degraded, since it would never have to operate at
a frequency more than 125 MHz. Based on these facts, all hardware acceler-
ators were designed with an operating frequency up to 150 MHz, in order to
make sure that they would not introduce any implementation bottlenecks when
mapped with other hardware sub-modules. Furthermore, every design is fully
pipelined, where a new instruction can be issued every clock cycle.

Finally, regarding the FPGA resource utilization, we tried to exploit as much
as possible the dedicated XtremeDSP slices [54]]. This way, we achieved two
major goals: The first one is that, because of the hardwired XtremeDSP slices,
all accelerators could easily operate at the target frequency of 150 MHz. The
second one is that we leave more FPGA slices available to map other sub-
modules, that are automatically generated by the DWARV C-to-VHDL tool. In
practise, the majority of the library elements occupies only 1% of the hArtes
platform Virtex4 FPGA regular slices.
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2.8.4 Linking

The hArtes linker produces a single executable, linking all the contributes com-
ing from the different PE’ compilation chains.

We use the standard GNU Linker (LD) targeted for ARM Linux and a cus-
tomized hArtes Linker script (farget_dek_linux.ld) that instructs the Linker on
how to build the hArtes executable from the different PE’s input sections. Each
PE has an associated fext (program section), bss (not initialized data) , data
(initialized data) section, plus some additional sections that correspond to plat-
form’s shared memories (if any).

Hartes
Runtime Lib

+ Linker Script
target_linux_dek Id

HARTES EXECUTABLE

Figure 2.36: Representation of the linking process in the hArtes toolchain.

The Linker and the customized linker scripts have been integrated inside the
hArtes framework as last hArtes compilation pass, as shown in Figure 2.36
The Linker script, at linking time, generates additional global GPP variables
in the hArtes executable that describe the PE sections that must be loaded by
the hArtes runtime. Once the executable starts the hArtes runtime uses these
variables to retrieve addresses and size of the sections that must be loaded.

2.9 Runtime Support

The hArtes Runtime provides a simple device driver interface for programs to
connect to the underlying Processing Elements and GPP Operating System.
The hArtes runtime it is also integrated with the GPP ANSI C standard library
and provides hosted I/O services to the PE (printf, fopen..).
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Different functionalities have been implemented inside the hArtes Runtime to
support the runtime analysis of the application on the target platform. The
main features are:

e memory allocation
e profiling support

e debug support

2.9.1 Memory Allocation

Memory allocation is performed by the runtime support. It keeps trace of
allocations performed by the PEs and the GPP, in order to figure out how to
move and optimize data to/from GPP and PEs. It also performs basic checking
on pointers passed in remote calls.

2.9.2 Profiling and benchmarking support

The aim of the hArtes toolchain is to optimize an application by partitioning it
into pieces and mapping it onto the heterogeneous PEs of a given architecture.
Profiling and benchmarking activities are thus fundamental to understand to
improve harts toolchain outputs by analyzing the execution of the current status
of the application.

Manual instrumentation of the code

The hArtes runtime provides a very accurate function to get time, that is
hget_tick. This function can be used in the code to compute the actual time ex-
pressed in ticks (order on NS). This function cannot be used to measure time
greater than 4s (32 bit counter). Use standard timer.h functions to measure
seconds.

Automatic instrumentation of the code

The HGCC compiler provides options to automatically instrument code, cur-
rently supporingt:

e -dspstat that instruments all DSP remote calls.
e -fpgastat that instruments all FPGA calls.

e -gppstat that instruments all GPP calls.

135



Measure Power Consumption

Some HW targets have the support to measure currents. For instance the DEB
board can measure power consumption via a SPI current sensor on the board.

2.9.3 Debug support

We used Gnu DeBugger (GDB) targeted for ARM Linux, plus an additional
hArtes patch to support multiple PE. This patch essentially adds an additional
signal handler coming from the hArtes Runtime. This signal is treated as a
standard ARM Linux breakpoint trap, interrupting the application flow execu-
tion, meanwhile the hArtes Runtime suspends the execution of other PEs (if
the HW provides support). In this way a “soft” synchronization is realized and
the user can inspect a stopped application.

In the current implementation we are supporting ARM + MAGIC(DSP) de-
bugging, that is because FPGA does not support, at the moment, any kind of
debugging facilities (debugging symbols, HW mechanism to suspend execu-
tion), so remote FPGA calls behave as a black box, providing the possibility to
inspect only inputs and outputs before and after remote execution.

At the moment it is possible:

e To inspect the hArtes address space, including PE I/O spaces;
e to add DSP breakpoints;

e to inspect DSP program frame;

o to read/write and decode DSP registers;

e to provide GPP/DSP inter block (a breakpoint or an event on the GPP
blocks the DSP and vice versa)

The hArtes runtime keeps trace of every thread and remote function is being
executed. The user can dump the status of a running hArtes application just
sending a HUP signal (see POSIX signals) to it. Exceptions or abnormal situa-
tions caught by the runtime generate an immediate dump of the process status.

2.10 hArtes Framework

The hArtes Framework makes it easy to develop Linux applications for GPP-
based platforms (in our case ARM). It reduces the learning curve, shortens
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the development and testing cycle, and helps building reliable applications
quickly.

In the hArtes view, the program flow is executed on the GPP, PEs are used
to speed up computing intensive tasks. The GPP runs Linux. For the GPP
the hArtes toolchain uses a standard GNU toolchain plus an additional hArtes
patch, in order to support hArtes XML and pragma annotations.

Text based workbench

The hArtes projects are makefile based, the makefile contains all the informa-
tion needed to build an hArtes application, starting from sources. Once the
hArtes framework is installed, the user has to provide application sources and
a simple makefile that essentially lists the files to be passed through the hArtes
toolchain.

hArtes project compilation The creation of an hArtes project requires a
very simple very simple makefile.

The following example shows a typical hArtes makefile for a system composed
of a GPP and two PEs (DSP and FPGA):

PROJECT = hArtesProject

## put here the common includes -I<DIR> and defines -D<your Define> for the project
HARTESCOMMON =

####HR AR DSE TOOLS SETTINGS ##########H####HH####

## put here the sources that you want to pass to the hArtes toolchain
DSECOMPILESRC =

## put here the flags for zebu (partioner)

DSEPARTITIONFLAGS =

## put here the flags for hArmonics (mapper)

DSEMAPPINGFLAGS =

i R i e i i

#####H# AR Synthesis TOOLS SETTINGS ################H###

####### HGCC COMPILER [GPP] #######
## put here the source you want compile for the ARM

COMPILESRC =

## GPP Compiler flags (include directories, defines..)

CFLAGS =

## GPP Linker flags (include libraries, additional libraries)
LDFLAGS =

####### CHESS COMPILER [DSP]#######
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## put here the source you want compile for the DSP
DSPCOMPILESRC =

## DSP Compiler flags (include directories, defines..)
DSPCCFLAGS =

## DSP Linker flags (include libraries, additional libraries)
DSPLDFLAGS =

####### DWARV COMPILER [FPGA]#######

## put here the source you want compile for the FPGA
FPGACOMPILESRC =

## FPGA Compiler flags (include directories, defines..)
FPGACCFLAGS =

include $(GNAMDIR)/config.mak

The above makefile can be generated by the hproject_create.sh command,
available once installed the hArtes framework.
The same project can be compiled in three different configurations:

e No mapping (low effort, low results)
e Manual mapping (medium effort, best results)

o Completely automatic mapping (low effort, good/best results)

No mapping This means that the application is compiled entirely for the
GPP.

This pass will provide a working reference and allow to evaluate the baseline
performance.

Manual mapping (martes) The user does a manual partitioning and map-
ping, by using #pragma for mapping and by putting the sources on the appro-
priate PE section. This pass is useful to evaluate the maximum performance of
the application on the system.

Completely automatic mapping This kind of project is entirely managed
by the hArtes toolchain that will partition and will map the application on the
available PEs.

This pass is useful to evaluate the performance obtained with a very low human
effort.
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Figure 2.56: Source Code Editing

hArtes Execution

This pass is very intuitive, since it requires just to copy to the target board the
single executable image produced by the toolchain and then execute it.

Graphical based workbench

The hArtes Eclipse workbench is built on the standard Eclipse development en-
vironment providing outstanding windows management, project management,
and C/C++ source code editing tools. We provided additional plugins to man-
age hArtes projects. This plugin allows the creation of hArtes projects with
two possible configurations: no mapping and completely automatic mapping.
The Eclipse IDE’s fully featured C/C++ source editor provides syntax check-
ing.

e Outline view which lists functions, variables, and declarations
e Highlights syntax errors in your C/C++ source code

e Configurable syntax colorization and code formatting for C/C++ and
ARM/Thumb/Thumb?2 assembly
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e Full change history which can be integrated with popular source code
control systems, including CVS and SVN

e Graphical configuration of parameters in the source code via menus and
pull-down lists

File Transfer to Target The hArtes Eclipse distribution includes a Remote
System Explorer (RSE) perspective for easy transfer of applications and li-
braries to the Linux file system on the target.

RSE enables the host computer to access the Linux file system on hardware
targets.

e FTP connection to the target to explore its file system, create new fold-
ers, and drag & drop files from the host machine

e Open files on the target’s file system by double-clicking on them in the
FTP view. Edit them within Eclipse and save them directly to the target’s
file system

e Shell and terminal windows enable running Linux commands on the
target system without a monitor and keyboard

e Display of a list of processes running on the target

Window Management The flexible window management system in Eclipse
enables the optimal use of the visual workspace.

e Support for multiple source code and debugger views

o Arrange windows: floating (detached), docked, tabbed, or minimized
into the Fast View bar

o Support of multi-screen set-ups by dragging and dropping detached win-
dows to additional monitors

Debugger Overview: The Eclipse debugger is a powerful graphical de-
bugger supporting end-to-end development of GPP Linux-based systems. It
makes it easy to debug Linux applications with its comprehensive and in-
tuitive Eclipse-based views, including synchronized source and disassembly,
memory, registers, variables, threads, call stack, and conditional breakpoints.
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Figure 2.39: The version of the debugger in the hArtes framework focuses on Linux
application debug using an ethernet connection.
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Target Connection The hArtes debugger automates target connection, ap-
plication download and debugger connection to gdbserver on supported plat-
forms.

o The debugger connects to a gdbserver debug agent running on the target,
using an Ethernet cable;

o A launcher panel automates the download of Linux applications to the
hardware target by using a telnet or ssh connection

e The debugger can connect to GPP Linux target. The Remote System
Explorer (RSE) is used to manually transfer files to the target, open a
terminal window, and start gdbserver

Run Control Control the target’s execution with high (C/C++) and low (as-
sembler) level single-stepping and powerful conditional breakpoints.
All aspects of CPU operation can be controlled from Eclipse.

e Run control: run, stop, step through source code and disassembly

o Set an unlimited number of software breakpoints by double clicking in
the source or disassembly views

e Conditional breakpoints halt the processor when hit a pre-defined num-
ber of times or when a condition is true

e Assignment of actions to breakpoints, allows message logging, update
views, or output messages

o If the debugger detects a slow target connection it disables the system
views until the user stops stepping. This enables fast single-stepping
operation

System Views The hArtes Eclipse debugger provides access to the resources
inside the target device, including processor and peripheral registers, code,
memory, and variables.

Synchronized source code and disassembly views provide easy application de-
bug since they provide the possibility to

¢ Open as many system views at the same type as necessary. Freeze them
for easy comparison of their contents over time
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Wame: | My Mistral Board - gnometris

Platfiorm Mistral - OMAP3_EVYM

Project Type  Linux Application Debug

~Connections
Address | 10,33.0.172
(¥) GDB Server (TCP)
Port | 5000
-GDB
Path to application on host:
() Download and Debug Application | path(s) to Bbraries on host:
Destination folder on target: |
(O Debug Resident Application Path to application on target:

ﬂCu'rﬂ:tl:nal‘.I)Bsxﬂrm
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i i e =1
¢, arm_inkctrl.c L& arm_kimer.c % O

L.¢| Fireworks.c

*TIHERD_ICLR = 0; -
= timertick++;
e if (tvimer event callback)

{
cimer event callback(timertick):

' w
< >
14} Disassembly a0 At G
Address: | <Next Instruction> v |Size: [ 100 | Type: |[AUTO] |
 |ox00802F4C LDR £0, {pct+0x4c : OxB02£98 A
O0x00202F50 LDR el [0, H#0]
0x00202F54 ADD o, 0, #1
0x0020Z2F55 LDR ri,{pct+0x40 ; OxB0Z2f98
0x00802ZF5C STR ro, [£1, #0]
@ 0x00S0ZF60 LDR r0, {pct+0x58 ; OxB80Z2fb8 a
< >

e Color code synchronized source code and disassembly for easy debug
of highly optimized C/C++ code

e View and modify C variables and C++ classes, whether local to a func-
tion or global

e View a list of current threads and the call stack for each thread. Click on
a thread or a call stack entry to focus the debugger views on that frame

e Use expressions in C-syntax on any of the system views. For example,
write to a memory location the contents pointed at by pointer ptr by

typing =*ptr

hArtes Debugging customization

Debugging an hArtes application it’s not easy. However we added to GDB, the
capability to debug a GPP+DSP+(FPGA) hArtes application, as indicated in
the Runtime support section.

In the following chapters will be described techniques to debug an hArtes ap-
plication for GPP+DSP.
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For the GPP and DSP we use the GNU GDB targeted for ARM and customized
for hArtes. Both local (target) or remote debugging configuration are possible.
Local debugging is performed directly on the Target HW (HHP or DEB) by
running gdb , while remote debugging is performed by running gdbserver
on the target HW and gdb on the local host.

New GDB commands For the DSP new commands have been added:

o info hframe that gives information about the current hArtes frame

e mreset that performs a DSP HW reset

2.11 Conclusion

This Chapter aimed at presenting a global overview of the hArtes methodology
to map a C-application onto an heterogeneous reconfigurable platform com-
posed of different processors and reconfigurable logic. The different features
provided by the different tools provide a large set of options to the designer
to explore the design space, from the algorithm down to the mapping deci-
sions. The main restrictions of the actual design flow is the assumption of a
shared memory model and a fork/join programming model, on which OpenMP
is based.
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