298 research outputs found

    Performance - Complexity Comparison of Receivers for a LTE MIMO–OFDM System

    Get PDF
    Implementation of receivers for spatial multiplexing multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems is considered. The linear minimum mean-square error (LMMSE) and the K-best list sphere detector (LSD) are compared to the iterative successive interference cancellation (SIC) detector and the iterative K-best LSD. The performance of the algorithms is evaluated in 3G long-term evolution (LTE) system. The SIC algorithm is found to perform worse than the K-best LSD when the MIMO channels are highly correlated, while the performance difference diminishes when the correlation decreases. The receivers are designed for 2X2 and 4X4 antenna systems and three different modulation schemes. Complexity results for FPGA and ASIC implementations are found. A modification to the K-best LSD which increases its detection rate is introduced. The ASIC receivers are designed to meet the decoding throughput requirements in LTE and the K-best LSD is found to be the most complex receiver although it gives the best reliable data transmission throughput. The SIC receiver has the best performance–complexity tradeoff in the 2X2 system but in the 4X4 case, the K-best LSD is the most efficient. A receiver architecture which could be reconfigured to using a simple or a more complex detector as the channel conditions change would achieve the best performance while consuming the least amount of power in the receiver

    Low complexity MIMO detection algorithms and implementations

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2014. Major: Electrical Engineering. Advisor: Gerald E. Sobelman. 1 computer file (PDF); ix, 111 pages.MIMO techniques use multiple antennas at both the transmitter and receiver sides to achieve diversity gain, multiplexing gain, or both. One of the key challenges in exploiting the potential of MIMO systems is to design high-throughput, low-complexity detection algorithms while achieving near-optimal performance. In this thesis, we design and optimize algorithms for MIMO detection and investigate the associated performance and FPGA implementation aspects.First, we study and optimize a detection algorithm developed by Shabany and Gulak for a K-Best based high throughput and low energy hard output MIMO detection and expand it to the complex domain. The new method uses simple lookup tables, and it is fully scalable for a wide range of K-values and constellation sizes. This technique reduces the computational complexity, without sacrificing performance and the complexity scales only sub-linearly with the constellation size. Second, we apply the bidirectional technique to trellis search and propose a high performance soft output bidirectional path preserving trellis search (PPTS) detector for MIMO systems. The comparative error analysis between single direction and bidirectional PPTS detectors is given. We demonstrate that the bidirectional PPTS detector can minimize the detection error. Next, we design a novel bidirectional processing algorithm for soft-output MIMO systems. It combines features from several types of fixed complexity tree search procedures. The proposed approach achieves a higher performance than previously proposed algorithms and has a comparable computational cost. Moreover, its parallel nature and fixed throughput characteristics make it attractive for very large scale integration (VLSI) implementation.Following that, we present a novel low-complexity hard output MIMO detection algorithm for LTE and WiFi applications. We provide a well-defined tradeoff between computational complexity and performance. The proposed algorithm uses a much smaller number of Euclidean distance (ED) calculations while attaining only a 0.5dB loss compared to maximum likelihood detection (MLD). A 3x3 MIMO system with a 16QAM detector architecture is designed, and the latency and hardware costs are estimated.Finally, we present a stochastic computing implementation of trigonometric and hyperbolic functions which can be used for QR decomposition and other wireless communications and signal processing applications

    Soft MIMO Detection on Graphics Processing Units and Performance Study of Iterative MIMO Decoding

    Get PDF
    In this thesis we have presented an implementation of soft Multi Input Multi Output (MIMO) detection, single tree search algorithm on Graphics Processing Units (GPUs). We have compared its performance on different GPUs and a Central Processing Unit (CPU). We have also done a performance study of iterative decoding algorithms. We have shown that by increasing the number of outer iterations error rate performance can be further improved. GPUs are specialized devices specially designed to accelerate graphics processing. They are massively parallel devices which can run thousands of threads simultaneously. Because of their tremendous processing power there is an increasing interest in using them for scientific and general purpose computations. Hence companies like Nvidia, Advanced Micro Devices (AMD) etc. have started their support for General Purpose GPU (GPGPU) applications. Nvidia came up with Compute Unified Device Architecture (CUDA) to program its GPUs. Efforts are made to come up with a standard language for parallel computing that can be used across platforms. OpenCL is the first such language which is supported by all major GPU and CPU vendors. MIMO detector has a high computational complexity. We have implemented a soft MIMO detector on GPUs and studied its throughput and latency performance. We have shown that a GPU can give throughput of up to 4Mbps for a soft detection algorithm which is more than sufficient for most general purpose tasks like voice communication etc. Compare to CPU a throughput increase of ~7x is achieved. We also compared the performances of two GPUs one with low computational power and one with high computational power. These comparisons show effect of thread serialization on algorithms with the lower end GPU's execution time curve shows a slope of 1/2. To further improve error rate performance iterative decoding techniques are employed where a feedback path is employed between detector and decoder. With an eye towards GPU implementation we have explored these algorithms. Better error rate performance however, comes at a price of higher power dissipation and more latency. By simulations we have shown that one can predict based on the Signal to Noise Ratio (SNR) values how many iterations need to be done before getting an acceptable Bit Error Rate (BER) and Frame Error Rate (FER) performance. Iterative decoding technique shows that a SNR gain of ~1:5dB is achieved when number of outer iterations is increased from zero. To reduce the complexity one can adjust number of possible candidates the algorithm can generate. We showed that where a candidate list of 128 is not sufficient for acceptable error rate performance for a 4x4 MIMO system using 16-QAM modulation scheme, performances are comparable with the list size of 512 and 1024 respectively

    Energy efficient design of an adaptive switching algorithm for the iterative-MIMO receiver

    Get PDF
    An efficient design dedicated for iterative-multiple-input multiple-output (MIMO) receiver systems is now imperative in our world since data demands are increasing tremendously in wireless networks. This puts a massive burden on the signal processing power especially in small receiver systems where power sources are often shared or limited. This thesis proposes an attractive solution to both the wireless signal processing and the architectural implementation design sides of the problem. A novel algorithm, dubbed the Adaptive Switching Algorithm, is proven to not only save more than a third of the energy consumption in the algorithmic design, but is also able to achieve an energy reduction of more than 50% in terms of processing power when the design is mapped onto state-of-the-art programmable hardware. Simulations are based in MatlabTM using the Monte Carlo approach, where multiple additive white Gaussian noise (AWGN) and Rayleigh fading channels for both fast and slow fading environments were investigated. The software selects the appropriate detection algorithm depending on the current channel conditions. The design for the hardware is based on the latest field programmable gate arrays (FPGA) hardware from Xilinx R , specifically the Virtex-5 and Virtex-7 chipsets. They were chosen during the experimental phase to verify the results in order to examine trends for energy consumption in the proposed algorithm design. Savings come from dynamic allocation of the hardware resources by implementing power minimization techniques depending on the processing requirements of the system. Having demonstrated the feasibility of the algorithm in controlled environments, realistic channel conditions were simulated using spatially correlated MIMO channels to test the algorithm’s readiness for real-world deployment. The proposed algorithm is placed in both the MIMO detector and the iterative-decoder blocks of the receiver. When the final full receiver design setup is implemented, it shows that the key to energy saving lies in the fact that both software and hardware components of the Adaptive Switching Algorithm adopt adaptivity in the respective designs. The detector saves energy by selecting suitable detection schemes while the decoder provides adaptivity by limiting the number of decoding iterations, both of which are updated in real-time. The overall receiver can achieve more than 70% energy savings in comparison to state-of-the-art iterative-MIMO receivers and thus it can be concluded that this level of ‘intelligence’ is an important direction towards a more efficient iterative-MIMO receiver designs in the future

    Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization

    Full text link
    This is the author’s version of a work that was accepted for publication in Signal Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Signal Processing 125 (2016) 249–260. DOI 10.1016/j.sigpro.2016.02.006.This paper focuses on the improvement of known algorithms for maximum likelihood soft-output detection. These algorithms usually have large computational complexity, that can be reduced by using clipping. Taking two well-known soft-output maximum likelihood algorithms (Repeated Tree Search and Single Tree Search) as a starting point, a number of modifications (based mainly on box optimization techniques) are proposed to improve the efficiency of the search. As a result, two new algorithms are proposed for soft-output maximum likelihood detection. One of them is based on Repeated Tree Search (which can be applied with and without clipping). The other one is based on Single Tree Search, which can only be applied to the case with clipping. The proposed algorithms are compared with the Single Tree Search algorithm, and their efficiency is evaluated in standard detection problems (4 4 16-QAM and 4 4 64-QAM) with and without clipping. The results show that the efficiency of the proposed algorithms is similar to that of the Single Tree Search algorithm in the case 4 4 16-QAM; however, in the case 4 4 64- QAM, the new algorithms are far more efficient than the Single Tree Search algorithm. & 2016 Elsevier B.V. All rights reserved.This work has been partially funded by Generalitat Valenciana through the projects ISIC/2012/006 and PROMETEO II/2014/003, and by Ministerio Espanol de Economia y Competitividad through the project TEC2012-38142-C04 and through the Grant RACHEL TEC2013-47141-C4-4-R.García Mollá, VM.; Simarro Haro, MDLA.; Martínez Zaldívar, FJ.; González Salvador, A.; Vidal Maciá, AM. (2016). Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization. Signal Processing. 125:249-260. https://doi.org/10.1016/j.sigpro.2016.02.006S24926012

    Spectrum Optimisation in Wireless Communication Systems: Technology Evaluation, System Design and Practical Implementation

    Get PDF
    Two key technology enablers for next generation networks are examined in this thesis, namely Cognitive Radio (CR) and Spectrally Efficient Frequency Division Multiplexing (SEFDM). The first part proposes the use of traffic prediction in CR systems to improve the Quality of Service (QoS) for CR users. A framework is presented which allows CR users to capture a frequency slot in an idle licensed channel occupied by primary users. This is achieved by using CR to sense and select target spectrum bands combined with traffic prediction to determine the optimum channel-sensing order. The latter part of this thesis considers the design, practical implementation and performance evaluation of SEFDM. The key challenge that arises in SEFDM is the self-created interference which complicates the design of receiver architectures. Previous work has focused on the development of sophisticated detection algorithms, however, these suffer from an impractical computational complexity. Consequently, the aim of this work is two-fold; first, to reduce the complexity of existing algorithms to make them better-suited for application in the real world; second, to develop hardware prototypes to assess the feasibility of employing SEFDM in practical systems. The impact of oversampling and fixed-point effects on the performance of SEFDM is initially determined, followed by the design and implementation of linear detection techniques using Field Programmable Gate Arrays (FPGAs). The performance of these FPGA based linear receivers is evaluated in terms of throughput, resource utilisation and Bit Error Rate (BER). Finally, variants of the Sphere Decoding (SD) algorithm are investigated to ameliorate the error performance of SEFDM systems with targeted reduction in complexity. The Fixed SD (FSD) algorithm is implemented on a Digital Signal Processor (DSP) to measure its computational complexity. Modified sorting and decomposition strategies are then applied to this FSD algorithm offering trade-offs between execution speed and BER

    Cooperative Partial Detection for MIMO Relay Networks

    Get PDF
    This paper was submitted by the author prior to final official version. For official version please see http://hdl.handle.net/1911/64372Cooperative communication has recently re-emerged as a possible paradigm shift to realize the promises of the ever increasing wireless communication market; how- ever, there have been few, if any, studies to translate theoretical results into feasi- ble schemes with their particular practical challenges. The multiple-input multiple- output (MIMO) technique is another method that has been recently employed in different standards and protocols, often as an optional scenario, to further improve the reliability and data rate of different wireless communication applications. In this work, we look into possible methods and algorithms for combining these two tech- niques to take advantage of the benefits of both. In this thesis, we will consider methods that consider the limitations of practical solutions, which, to the best of our knowledge, are the first time to be considered in this context. We will present complexity reduction techniques for MIMO systems in cooperative systems. Furthermore, we will present architectures for flexible and configurable MIMO detectors. These architectures could support a range of data rates, modulation orders and numbers of antennas, and therefore, are crucial in the different nodes of cooperative systems. The breadth-first search employed in our realization presents a large opportunity to exploit the parallelism of the FPGA in order to achieve high data rates. Algorithmic modifications to address potential sequential bottlenecks in the traditional bread-first search-based SD are highlighted in the thesis. We will present a novel Cooperative Partial Detection (CPD) approach in MIMO relay channels, where instead of applying the conventional full detection in the relay, the relay performs a partial detection and forwards the detected parts of the message to the destination. We will demonstrate how this approach leads to controlling the complexity in the relay and helping it choose how much it is willing to cooperate based on its available resources. We will discuss the complexity implications of this method, and more importantly, present hardware verification and over-the-air experimentation of CPD using the Wireless Open-access Research Platform (WARP).NSF grants EIA-0321266, CCF-0541363, CNS-0551692, CNS-0619767, EECS-0925942, and CNS-0923479, Nokia, Xilinx, Nokia Siemens Networks, Texas Instruments, and Azimuth Systems
    • …
    corecore