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Abstract 

Currently, wireless communication is playing a very important role in everyone’s daily 

life. People can no longer live without internet, smart phones, Wi-Fi, cellular data service 

and wireless sensor networks. As a result of Moore’s law, the downsizing 

of silicon feature sizes has made the capabilities of mobile devices ever more powerful. 

In addition, the demand for ubiquitous and higher speed connection to the internet has 

resulted in the rapid growth of wireless communication systems. Wireless 

communications must provide higher data rates and wider coverage with limited 

spectrum resources.  

 As one of the major innovative technologies in the physical layer of 

communications systems, multiple-input multiple-output (MIMO) is playing an important 

role in current industry practice. MIMO techniques use multiple antennas at both the 

transmitter and receiver sides to achieve diversity gain, multiplexing gain, or both. It has 

been incorporated into modern wireless communication standards such as IEEE 802.11n 

(WiFi), 3GPP long term evolution (LTE), Worldwide Interoperability for Microwave 

Access (WiMAX) and Evolved High-Speed Packet Access (HSPA+) due to its high 

spectral efficiency.  MIMO continues to be a promising technology for future wireless 

communication systems, as it can be used to enhance both throughput and reliability. 

 MIMO detection methods may be divided into two categories, i.e., hard- and soft-

detection. The basic idea of hard-detection is to directly search the feasible set for the 

symbol vector that is closest to the transmitted signal vector and to generate the detected 
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symbol vector as an output.  On the other hand, a soft-detector outputs log-likelihood 

ratio (LLR) values for each bit in every symbol of the symbol vector. 

 One of the key challenges in exploiting the potential of MIMO systems is to 

design high-throughput, low-complexity detection algorithms while achieving near-

optimal performance. In this thesis, we design and optimize algorithms for MIMO 

detection and investigate the associated performance and field-programmable gate array 

(FPGA) implementation aspects.  

 First, we study and optimize a detection algorithm developed by Shabany and 

Gulak for a K-Best based high throughput and low energy hard output MIMO detection.  

To this end, we expand this algorithm to the complex domain. The new method is based 

on the use of simple lookup tables, and it is fully scalable for a wide range of K-values 

and constellation sizes. This technique reduces the computational complexity, without 

sacrificing performance. The complexity scales only sub-linearly with the constellation 

size. As a result, the implementation complexity of a K-best detector can be reduced by 

using this method without any significant performance loss. 

 Secondly, we apply the bidirectional technique to trellis search and propose a high 

performance soft output bidirectional path preserving trellis search (PPTS) detector for 

MIMO systems. The comparative error analysis between single direction and 

bidirectional PPTS detectors is given. We demonstrate that the bidirectional PPTS 

detector can minimize the detection error. 
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  Next, we design a novel bidirectional processing algorithm for soft-output MIMO 

systems. It combines features from several types of fixed complexity tree search 

procedures. The algorithm obtains a list of candidates used to calculate likelihood 

information in parallel and it includes two stages for tree searching, where each stage 

corresponds to one direction of the path selection process. The proposed approach 

achieves a higher performance than previously proposed algorithms while, at the same 

time, having a comparable computational cost. The algorithm can also make tradeoffs 

among different performance and complexity objectives. Moreover, its parallel nature 

and fixed throughput characteristics make it attractive for very large scale integration 

(VLSI) implementation. 

 Following that, we present a novel low-complexity hard output MIMO detection 

algorithm for LTE and WiFi applications. Our method provides a well-defined tradeoff 

between computational complexity and performance. The proposed algorithm is an 

enhancement of the zero-forcing (ZF) method. It does not require QR decomposition as a 

preprocessing step, as is commonly needed in sphere detection (SD) based algorithms 

such as K-best detection and lattice reduction. This results in significant complexity 

savings and provides designs over a large performance/complexity tradeoff region. 

Simulations have been performed for 3x3 and 4x4 MIMO configurations, with both 16- 

and 64-Quadrature Amplitude Modulation (QAM) constellations. The proposed 

algorithm uses a much smaller number of Euclidean distance (ED) calculations while 

attaining only a 0.5dB loss compared to maximum likelihood detection (MLD). A 3x3 

http://en.wikipedia.org/wiki/Very-large-scale_integration
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MIMO system with a 16QAM detector architecture is designed, and the latency and 

hardware costs are estimated. 

  Finally, we present a stochastic computing implementation of trigonometric and 

hyperbolic functions which can be used for QR decomposition and other wireless 

communications and signal processing applications. 
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Chapter 1  

Introduction 

1.1 Introduction 

Along with the emergence and rapid development of modern communication 

technologies, people’s lives have been enormously changed by several novel concepts 

such as streaming media, cloud storage, smart phones, and so on. The related market 

opportunities are very large and of increasing potential. The requirements for wireless 

communications systems are growing in terms of spectrum efficiency, power efficiency 

and error rate performance.  Multiple-input multiple-output (MIMO) technology 

increases link capacity and spectral efficiency without adding bandwidth and improves 

performance by reducing the error [1-3].  As a result, it has drawn much attention in both 

academia and industry. 

 The remainder of this chapter is organized as follows. Section 1.2 provides a brief 

introduction to the various gains enabled by MIMO systems. Section 1.3 introduces 

MIMO detection concepts. It includes the MIMO system model, hard and soft detection, 

and a classification of MIMO detection algorithms. Difficulties in hardware design and 
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QR based sphere detection (SD) algorithms are discussed in section 1.4.  A summary of 

the research contributions in this thesis is given in section 1.5, and section 1.6 provides an 

outline of the remaining chapters.   

1.2 MIMO Gain 

 

As its name indicates, a MIMO system uses multiple antennas at both the transmitter and 

the receiver to improve communication performance.   MIMO technology has become 

the air interface for many wireless communication standards, such as IEEE 802.11n, 

WiMAX, 3GPP long term evolution (LTE) and many other radio technologies [4]. 

Compared to a traditional single input and single output (SISO) system which has only 

one antenna at both sides, MIMO has several important advantages.  In particular, it 

provides a significant increase in data throughput and link range without requiring 

additional bandwidth or transmit power. It increases the transmission rate by introducing 

multiplexing gain [5-7] and its diversity gain [8-10] improves link reliability.  

 Multiplexing gain arises from the multiple parallel channels between the 

transmitter and receiver. The error rate performance in a fading channel is dominated by 

the worst case, which occurs in deep fading. The channel might have a significant 

probability of deep fading which will lead to a failure at the receiver side. The different 

channels between different antennas in a MIMO system have independent fading 

characteristics so that the reliability of the communication can be increased. Furthermore, 

by multiplexing the transmitted data streams among different antennas, an increase in the 
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overall data rate can be attained. This rate increase is proportional to the minimum of 

numbers of transmitter and receiver antennas, i.e. min{TX antennas, RX antennas}. 

 In a SISO system, the bit error rate (BER) performance is dominated by the worst 

case of fading. The larger the variance of signal to noise ratio (SNR), the higher the BER. 

The basic idea of diversity is to obtain multiple independent observations of the same 

information to lower the BER, since multiple paths are unlikely to fade simultaneously. 

Receive diversity in MIMO systems refers to the combination of independently faded 

signals from different receive antennas. It creates multiple independent faded branches so 

that the link reliability is improved significantly. The diversity order is a multiple of the 

number of transmitter antennas and the number of receiver antennas. Well-known spatial 

coding techniques include space-time trellis code (STTC) [11], space-time block code 

(STBC) [12], space-frequency block code (SFBC) [13] and space-time-frequency block 

code (STFBC) [14]. 

 Also, since multiple copies of the signals are obtained at the receiver side with 

more than one antenna, the signals can be combined coherently to achieve gain in the 

SNR.  Methods such as equal-gain combining (EGC) [15] and maximal ratio combing 

(MRC) [16] are very popular. With pre-coding, the signals will arrive at the receiving 

antenna coherently. 
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1.3 MIMO Detection Basics 

1.3.1 System model and notation 

Consider a spatial multiplexing Nr×Nt MIMO system with Nr receive antennas and Nt 

transmit antennas as shown in Figure 1.1. Let T

1, 2[ ,..., ]
tNs s ss  denote the transmitted 

symbol vector after the channel encoder.  The equivalent baseband system can be 

modeled as 

y=Hs+ω                                                  (1.1) 

RxTx

Nt

h21

Nr

h11
1 1

2 2

hNr Nt

 

Figure 1.1 A spatial-multiplexing MIMO system model has Nt × Nr antennas 

 

where T

1, 2[ ,..., ]
rNy y yy and T

1, 2[ ,..., ]
rN  ω are the received symbol vector and the 

identically independently distributed (IID) additive white Gaussian noise (AWGN) vector 

with zero mean and variance 2

0N   , respectively.  
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 The Nr×Nt channel information matrix  

11 12 1

21 22 2

1 1

t

t

r r r t

N

N

N N N N

h h h

h h h

h h h

 
 
 

  
 
  

H  is the 

equivalent baseband channel model between the transmitter and the receiver for each 

subcarrier. Here, hij (i= 1,2, … Nr, j= 1, 2, … Nt) is the channel coefficient from j-th 

transmit antenna to i-th receive antenna. Note that the vectors and matrices used here are 

all composed of complex values. Let Ω be the set of all constellation nodes. In a 

quadrature amplitude modulation (QAM) system with a constellation size of M, each 

element in Ω is represented by a log2M-bit symbol.    

 The objective of the MIMO detector is to estimate the transmitted symbol vector 

from the received symbol vector which contains the channel fading as well as the noise 

interference. The optimal detection is the maximum likelihood (ML) detection, which 

maximizes the probability of y on condition of the correct symbol s is sent. The ML 

detector is as follows: 

                                                       arg max ( | )
Nt

ML P



s

s y s                                              (1.2) 

where ΩNt denotes the set of all the possible symbol vectors from the M QAM symbols 

 . Since it is an AWGN system, the ML detection rule is simplified to a minimum 

distance rule, which gives the best symbol error rate (SER) by finding the closest 

estimate ŝ  given the received signal vector y: 

                               

2
ˆ arg min Nt
 

s
s y Hs

                                                 (1.3) 
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where ||·||2 stands for Euclidean distance (ED). Hence, ML detection will exhaustively 

search for the minimum squared Euclidean distance for y-Hs from all possible symbol 

vector combinations with symbols from the transmitted modulation constellation. 

Therefore, the search complexity will significantly increase with increased QAM 

constellation size. ML detection is impractical for hardware implementation, especially 

for the large QAM constellations of interest here.  

1.3.2 Hard detection and soft detection 

Detection methods may be divided into two categories, i.e., hard- and soft-detection [17, 

18]. The basic idea of hard-detection is to directly search the feasible set for the symbol 

vector that is closest to the transmitted signal vector and to generate the detected symbol 

vector as an output, as shown in equation (1.3).  

 On the other hand, a soft-detector outputs log-likelihood ratio (LLR) [19] values 

for each bit in every symbol of the symbol vector. Usually, the maximum a posteriori 

(MAP) probability is utilized. The soft output log-likelihood ratio values are then sent to 

a soft decoder.  

 The system can also be rewritten in matrix format as: 

11 12 1 11 1

21 22 2 22 2

1 1

t

t

tr rr r r t

N

N

NN NN N N N

h h h sy

h h h sy

sy h h h







      
      
             
      
          

                               (1.4) 

After QAM mapping, for the j-th transmit antenna, a real bit data stream xk=[xk,1 xk,2, …, 

xk,L]T of length L will be mapped to sk  by the QAM modulator where L= log2M and the b-
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th bit of xk is denoted as xk,b, b = 0,1,…, L-1.  

 The LLR value for the a posteriori probability (APP) of each transmitted bit is 

computed by the MAX-Log MAP detector, which can be represented as: 

, ,

,

,

,

2 2

2 ( 1) ( 1)

( 1)
LLR( ) ln

( 1)

1
min ( ) min ( )

2 k b k b

k b

k b

k b

x x x x

p x
x

p x

x x
    

 


 

 
      

 

y
y

y

y H s y H s

                       (1.5) 

where xk,b
(-1)

 and xk,b
(+1) stands for the sets of vector symbols having bit b in symbol j 

equal to -1 (i.e. logical ‘0’) and +1 (i.e. logical ‘1’), respectively. 

 A soft detector sends the soft information for each bit to indicate the probability 

of each bit to be equal to ‘1’ or ‘0’, which will give more information to the decoder. It is 

usually used iteratively with a decoder to improve the detection performance but at the 

cost of larger hardware consumption. Hard detection sends hard decisions for the symbol 

vector directly to the decoder and is much simpler in its hardware implementation. 

1.3.3 MIMO detection classification 

It can been seen from section 1.3.2 that both hard and soft detection have the objective to 

find the minimum distance between received the symbols and transmitted symbols by 

searching combinations from the signal space. According to the antenna size, the 

combination of symbols and bits can be very large. 

 The enumerative search for the minimum squared ED for y-Hs from all possible 

symbol vector combinations in ML and MAP detection make them too complicated and 

impractical for hardware implementation.  Therefore, many sub-optimal methods have 

been developed to reduce the complexity while at the same time attaining sufficient 
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performance. Figure 1.2 shows a taxonomy of MIMO detection algorithms. 

 

ML MAP ZF MMSE SIC OSIC K-best Trellis LORDPIC

MIMO 

Detection

Optimal Sub-Optimal Near-Optimal

Linear Non-Linear
SD-based Others

BF DF MF

 

Figure 1.2 Taxonomy of MIMO Detection Algorithms 

 

 Sub-optimal detection algorithms include both linear and non-linear detections. 

Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) are common linear 

detection methods. ZF has low complexity and assumes that the channel information is 

known at receiver side. However, it causes noise enhancement so that it will decrease the 

SNR. MMSE reduces the noise enhancement with respect to ZF by taking into account 

the noise variance, but it can still have poor performance in a fading channel. Non-linear 

algorithms include parallel interference cancellation (PIC) [20], which needs high SNR to 

obtain better performance. Other methods such as Successive Interference Cancellation 

(SIC) [21] and Ordered SIC (OSIC) both have the problem of error propagation.  

 A number of near-optimal detection algorithms have been proposed which have 

lower complexity and near to optimal performance as well. The most common near 

optimal methods include sphere detection [22-25], trellis search [26] and layered 
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orthogonal lattice detector (LORD) [27]. SD-based algorithms are divided into three 

categories: depth first (DF), metric first (MF) and breadth first (BF). MF has the 

disadvantage that it does not have constant throughput. BF detection methods, such as K-

best, have the advantage of constant throughput and fixed complexity, making them 

friendly for hardware implementation. 

   

1.3.4 Zero-forcing detection 

The operation of the ZF algorithm [28] is quite simple.  As a linear detector, the basic 

idea is to obtain the linear weighting of the received symbol vector  such that the 

interference generated from the superposition of signals from different antennas can be 

eliminated. According to (1.1), the linear weighting matrix G can be expressed as: 

G = (HHH)-1HH                                                                            (1.6) 

where HH is the Hermitian conjugate of the matrix H. In some cases H might not be an 

invertible matrix or even a square matrix.  Thus, the matrix G, which is the pseudo-

inverse of H, is used. 

 At the receiver side, G is directly multiplied with the received symbol vector y, so 

that: 

Gy = G(Hs+ω) = GHs+Gω= s+Gω                                  (1.7) 

 It is evident that the ZF algorithm can eliminate the interference between 

antennas. However, it can also significantly increase the noise component. This is a 

weakness of ZF algorithm. Hence, it is normally not used as the sole detection method. 
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1.3.5 Minimum mean square error detection 

The basic criterion of MMSE [29] is to minimize the error between the estimated and the 

transmitted vectors. Similar to ZF detection, MMSE is also a linear detection algorithm 

with low complexity. The weighting matrix of MMSE is: 

 

2

2

s





H -1 H
P = (H H + I) H                                                               (1.8) 

where 2

  and 2

s  are the variances of the noise and the signal, respectively. MMSE 

takes into consideration the suppression of noise. It has superior performance compared 

to the ZF algorithm and has a complexity similar to that of the ZF algorithm. 

1.4 Hardware Implementation Difficulties and QR 

Decomposition Based Sphere Detection  

 

In general, the most computationally intensive part of MIMO detection is the 

computation of the ED values. Usually, near-optimal searching methods have a search 

space that is a finite subset of the large search set. QR decomposition based SD has 

drawn much attention due to its reduction of the search space [30].  

 The preprocessing for SD is QR decomposition. The channel matrix H can be 

decomposed as into a product of two matrixes. Specifically, H=QR, where Q is a unitary 

matrix of size Nr×Nt with QHQ=I and R is an Nt×Nt upper triangular matrix. After 

multiplying by QH on the left in equation (1.1), the equation becomes  

                             H H
z Q QRs Q n Rs w                                        (1.9) 
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where  H
z Q y . 

 
 After QR decomposition is applied, ( )x y H s in equation (1.3) can be written 

as ( )x y QR s . Since ( ) ( )x x    H H H
Q y Q QR s Q y R s , the equivalent problem of 

finding the minimum ED value in equation (1.3) becomes 

 
1

2

0

( ) ( ) ( ) ( )
tN

k k

k

x x




       y H s z R s z R s                        (1.10) 

 

 Due to the upper triangular nature of the matrix R, equation (1.3) can be rewritten as: 

2
1

ˆ arg min
t

Nt
t

N

i ij js i N j i
z R s

  
  s                                         (1.11) 

Therefore, the search of the received symbol vector can be considered as a tree-search 

problem having Nt levels. The search proceeds from level i = Nt to level i = 1, with level 

Nt+1 as a pseudo root node. At level i, the partial Euclidean distance (PED) between two 

successive levels is expressed as: 

22
( )( )

tNi

i i ij jj i
e s z R s


                                                        (1.12) 

Thus, the search for the closet ŝ  in (1.3) can be calculated in an iterative manner as 

follows:                           

                             

2
( ) ( 1) ( )

1( ) ( ) ( )i i i

i i iT s T s e s

 
                                              (1.13) 

and 

          

( ) ( )( ) ( )
tNi i

i i ij j i ii ij i
e s z R s L s R s


   

                                      (1.14) 

where 

                                
( )

1
( )

tNi

i i ij jj i
L s z R s

 
                                                (1.15) 
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The quantity Ti(s
(i)) is the cumulative PED from level Nt to level i, where TNt+1(s

(Nt+1)) = 0. 

Also, s(i)= [si,si+1, …, sNt]
T is the partial received symbol vector from level Nt to level i. 

The nodes at the last search level (i.e., level 1) of the tree are the leaf nodes. The path 

having the lowest cumulative PED from the root node to a leaf node is the hard-decision 

output of the MIMO detector 

1.5 Summary of Thesis Contributions  

The goal of this thesis is to design and optimize algorithms for MIMO communications. 

To this end, we analyze and improve two hard-output and two soft-output MIMO 

detection algorithms and novel low-complexity solutions are developed. In addition, we 

compare the performance and complexity for different antenna numbers and QAM sizes 

in a detailed analysis. Moreover, we describe corresponding hardware architectures for 

one of the low complexity algorithms and provide implementation results. After that, we 

introduce stochastic computing from the perspective of trigonometric and hyperbolic 

function implementations, which can be used in QR decomposition and MIMO detection. 

 The specific contributions of this thesis are summarized as follows:  

 

Efficient Complex-Valued Enumeration for K-Best MIMO Detection Using Lookup 

Tables 

In Chapter 2, we begin with the detection algorithm developed by Shabany and Gulak 

[22] for a K-Best based high throughput and low energy hard output MIMO detection.  

Then, we expand this algorithm to the complex domain. In this way, an efficient 
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complex-valued enumeration scheme for K-best MIMO detection is proposed. This novel 

enumeration scheme is based on using lookup tables. The proposed scheme is fully 

scalable for a wide range of K-values and constellation sizes. Simulation results indicate 

that the proposed technique achieves a close-to-optional performance, with a complexity 

that scales sub-linearly with the constellation size.  

 

High Performance MIMO Detector Based on Bidirectional Path Preserving Trellis 

Search 

In Chapter 3, we describe enhancements to a path-preserving trellis-search (PPTS) 

algorithm for MIMO detection which was proposed in [31] and [26]. The algorithm is 

optimized by using a bidirectional search method. A high performance bidirectional 

PPTS detector for MIMO systems is then proposed. It is shown that the performance of 

the L-best bidirectional PPTS is better than that of the 2L-best single direction PPTS. 

Moreover, the bidirectional PPTS has much lower hardware cost than the traditional 

PPTS since only half of the paths are searched. The error analysis between the single 

direction and the bidirectional PPTS detector is given. We demonstrate that the 

bidirectional PPTS detector can minimize the detection error. The bidirectional PPTS 

requires that the QR decomposition be performed twice. However, since the channel is 

constant over the duration of the training sequence [32], the QR decomposition unit can 

be reused. Moreover, the cost of the QR decomposition unit is as low as 1% of that of the 

bidirectional PPTS detector [33].  
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A Novel Fixed-Complexity Soft-Output MIMO Detector using Parallel Bidirectional 

Scheme 

In Chapter 4, a novel detection algorithm for soft-output MIMO systems is presented. 

The algorithm obtains a list of candidates used to calculate likelihood information in 

parallel and it includes two stages for tree searching, where each stage corresponds to one 

direction of the path selection process. The fixed-complexity sphere decoder and its 

variations such as the soft-output K-Best MIMO detector [34], the soft fixed complexity 

sphere decoder (SFSD) [35] and the soft-output LORD [27] can be viewed as extensions 

of the breadth-first tree search algorithm. The key idea of the proposed algorithm is to 

process the tree in a bidirectional fashion by combining several aspects of the above 

algorithms. The bidirectional processing leads to a parallel method with fixed-complexity 

and constant throughput, making it suitable for hardware implementation. Finally, the 

simulation results indicate that the proposed bidirectional scheme outperforms the 

previously proposed methods. The simulation results indicate that the algorithm achieves 

better performance with lower complexity than a list-based fixed-complexity soft-output 

sphere decoder. Moreover, due to its parallel nature, it is well suited for hardware 

implementation. 

 

A Fixed and Low Complexity MIMO Detection Algorithm without QR 

Decomposition 

Chapter 5 addresses the need for efficient hardware implementation of LTE and WiFi 

applications. A novel MIMO detection method is presented which does not require QR 



 

 15 

decomposition as a preprocessing step.  Moreover, a variety of techniques at the 

algorithmic and architectural levels are employed in order to attain a low-complexity and 

high-performance architecture of the optimized algorithm. The hard output MIMO 

detection algorithm provides a well-defined tradeoff between computational complexity 

and performance. The proposed algorithm is an enhancement of the ZF method. 

Simulations have been performed for 3x3 and 4x4 MIMO configurations, with both 16 

and 64 QAM constellations. Results show that the proposed algorithm uses a much 

smaller number of ED calculations than competing techniques while attaining only a 

0.5dB loss compared to maximum likelihood detection (MLD). Finally, an efficient semi-

parallel architecture for a 3x3 MIMO system with 16QAM is designed. 

 

Stochastic Computing Implementation of Trigonometric and Hyperbolic Functions 

for QR decomposition 

In Chapter 6, we describe the stochastic computing implementation of trigonometric and 

hyperbolic functions that can be used in QR decomposition. Stochastic computing has 

drawn much attention in recent years due to its efficiency in hardware cost. Stochastic 

computing also moderates the output errors caused by bit-flips. By only using registers 

and multiplexers, the state machine architecture of stochastic computing can be applied 

for implementing various trigonometric and hyperbolic functions. We present a field-

programmable gate array (FPGA) implementation of trigonometric and hyperbolic 

functions using the stochastic computing methodology.  The results are compared to the 

well-known coordinate rotation digital computer (CORDIC) approach. Both designs are 
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synthesized and implemented on a Xilinx Virtex-5 FPGA. The results are compared in 

terms of delay and area for various input data widths. The results show that the proposed 

design method has advantages over the traditional CORDIC algorithm. Moreover, the 

same circuit can be used for all functions with only a change in the coefficient values. It 

is also more tolerant of soft errors (bit flips) than CORDIC implementations.  

 

1.6 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2, we expand the 

enumeration scheme for K-best MIMO detection this algorithm to the complex domain. 

The proposed technique achieves a close-to-optional performance, with a complexity that 

scales sub-linearly with the constellation size. In Chapter 3, the PPTS algorithm for 

MIMO detection proposed in [31] and [26] is further optimized by using of a 

bidirectional search method. We demonstrate that the performance of an L-best 

bidirectional PPTS is even better than the 2L-best single direction PPTS with a much 

lower hardware cost since only half as many paths are searched. A novel bidirectional 

detection algorithm for soft-output MIMO systems is proposed in Chapter 4. It processes 

the tree in a bidirectional way by combining several aspects of a soft-output K-Best 

MIMO detector [34], the soft fixed complexity sphere decoder [35] and the soft-output 

layered orthogonal lattice detector [27]. Chapter 5 describes a novel detection method 

which does not requires QR decomposition and which only needs a small number of 

calculations of the Euclidean distance, without affecting the algorithm’s performance. In 
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Chapter 6, we discuss stochastic computing implementations of trigonometric and 

hyperbolic functions for application to QR decomposition. Finally, the conclusions of the 

thesis are given in Chapter 7. 
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Chapter 2  

Efficient Complex-Valued Enumeration for 

K-Best Detection Using Lookup Tables 

2.1 Introduction 

 

MIMO systems have attracted significant attention due to their high spectral efficiency. 

MIMO techniques have been adopted in many recent standards such as IEEE802.11n, 

IEEE802.11e and the LTE project. Thus, it is particularly important to design low-

complexity high-performance MIMO detection schemes with near maximum-likelihood 

performance to satisfy the requirements of modern wireless systems. 

 The ML detection scheme achieves optimal performance by means of an 

exhaustive search. However, the complexity of this scheme grows exponentially with the 

number of transmit antennas and the constellation size. As a result, sub-optimal non-

linear detection schemes have been proposed in the literature. Sphere decoding is a 

typical example of a search technique. However, the throughput of depth-first SD is 

variable and its performance depends on the signal-to-noise-ratio. The K-best algorithm 

is a breadth-first search method that guarantees a fixed throughout, independent of the 
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SNR. With a suitable K value, the performance of the K-best algorithm is close to that of 

ML detection.  The standard K-best algorithm exhaustively searches all child nodes, 

which results in a large computational complexity. The Schnorr-Euchner (SE) 

enumeration technique proposed in [36] has been introduced to improve the search 

efficiency.  A distributed K-best algorithm based on a real domain SE enumeration 

technique has been proposed in [22] and [37], and an SE enumeration method in the 

complex domain was used in [23]. 

 Compared to the real-valued enumeration scheme, the complex-valued 

enumeration scheme visits a smaller number of nodes due to a reduction in the tree depth 

by a factor of 2, which leads to lower area, latency and complexity. The child node 

expansion and sorting schemes of the distributed K-best algorithm reported in [22] are 

efficient in the real domain and only 2K-1 nodes are visited at each level of the tree. 

However, the current literature lacks an efficient expansion scheme in the complex 

domain. The expansion method proposed in [23] visits the same number of nodes as in 

the real-valued scheme. In this chapter, we propose a novel and efficient complex-valued 

enumeration scheme that is based on using lookup tables. 
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2.2 Efficient Complex-Valued Enumeration for K-Best MIMO 

Detection Using Lookup Tables 

2.2.1 Proposed complex-valued enumeration scheme 

The enumeration of the K-best nodes in the complex domain may be obtained by utilizing 

fixed look-up tables. In order to describe this process, we first briefly review the one-

dimensional SE enumeration method [24]. Consider the detection of one symbol in the 

symbol vector s at a given level. As shown in Figure. 2.1(a), when enumerating the K-

best nodes having the smallest PEDs in the real domain for 16-QAM, the order of the 

constellation node coordinates having increasing distances to the point si is {1, -1, 3, -3}, 

which we label as {P(1), P(2), P(3), P(4)}. P(1) is the first child (i.e. the best child) of the 

current layer from the parent node in the previous layer, while the other P(i) are the sibling 

nodes of P(1). P(1)
 is obtained by rounding si to the nearest point in the constellation, while 

the ordering of the other sibling nodes is found using the zigzag rule [24]:  

                                                    

                 
(1)

( ) (1)

1 P
P P ( 1) 2 ( / 2),

1

in

n

if s
Sb fix n where Sb

otherwise


      


                      (2.1) 

 

 In equation (2.1), Sb is a sign bit and the function fix returns the integer part of the 

input value. However, if si is located in a different region, the later portion of the ordering 

may violate the zigzag rule.  As an example, for the case shown in Figure 2.1(b), equation 

(9) is not correct for the calculation of nodes P(3) and P(4). 
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Figure 2.1 Order of the SE enumeration in the real domain for two different situations 
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Figure 2.2 Four zones of the 64-QAM constellation, and the applicable number of table 

entries for zones 2, 3 and 4 
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 Now consider the extension of the SE enumeration procedure to the complex 

domain. As an example, consider the case of 64-QAM. We partition the constellation into 

four different zones, as shown in Figure 2.2.  

 First assume that sxy is a randomly received signal symbol located in zone 1 of 

Figure 2.2. Each of the 64 points in the constellation can be labeled by P(re, im), where re, 

im = 1, 2,…,8. The re and im indices are used to represent the increasing sequence order 

of SE enumeration along the real and imaginary axes, respectively.  The point P(1,1) is 

called the first child node and the other P(re, im) are its sibling nodes. We extend the zigzag 

rule to the complex domain as follows: 

 

( , ) (1,1)

(1,1) (1,1)

(1,1) (1,1)

P P ( 1) 2 ( / 2) ( 1) 2 ( / 2)

1, Re{P } 1, Im{P }

1, Re{P } 1, Im{P }

re R im I

re im

x yR I

x y

Sb fix re j Sb fix im

s s
where Sb Sb

s s

        

    
  

  

                (2.2) 

 In equation (1.12), the complex domain PED |ei(s
(i))|2 was calculated using the ℓ2-

norm. Here, however, we will use the Manhattan distance, i.e. the ℓ1-norm. Simulations 

show that the difference in the BER performances from using these two norms is 

negligible [38]. 

 Our goal is to find the ℓ1-norm metric increment (LMI) order of the sibling nodes 

for a given point sxy. Let x and y denote the distances between P(1,1) and sxy along the real 

and imaginary axes, respectively. Also, let ei(P(re, im)) and Ti(P(re, im)) denote the current-

level partial LMI and the cumulative LMI, respectively.  The cumulative LMI of a point 

P(re,im) can be expressed as :  

                                                      Ti(P(re,im))=Ti+1(S)+ ei(P(re,im))                                (2.3) 
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where Ti+1(S) is the cumulative LMI value of its parent node. The distance increment 

ei(P(re, im)) can be calculated as: 

            ei(P(re, im)) = 2*fix(re/2) - (-1)(re) * x+ 2*fix(im/2)) -(-1)(im)*y                   (2.4) 

 By sorting the child node ei(P(re, im)) values, the 64 constellation points P(re, im) can 

be ordered with increasing ei(P(re, im)) for four different situations: 

1) if (x≥y and x+y<1): 

{P(1,1), P(2,1), P(1.2), P(1,3), P(3,1), P(2,2), P(2,3), P(4,1), P(3,2), P(1,4), P(3,3), P(1,5), P(5,1), P(4,2), 

P(2,4)….} 

2) if (x≥y and x+y≥1): 

{P(1,1), P(2,1), P(1,2), P(2,2), P(1,3), P(3,1), P(2,3), P(4,1), P(3,2), P(1,4), P(4,2), P(2,4), P(3,3), P(1,5), 

P(5,1)….} 

3) if(x<y and x+y<1): 

{P(1,1), P(1,2), P(2,1), P(3,1), P(1,3), P(2,2), P(3,2), P(1,4), P(2,3), P(4,1), P(3,3), P(5,1), P(1,5), P(2,4), 

P(4,2)….} 

4) if(x<y and x+y≥1): 

{P(1,1), P(1,2), P(2,1), P(2,2), P(3,1), P(1,3), P(3,2), P(1,4), P(2,3), P(4,1), P(2,4), P(4,2), P(3,3), P(5,1), 

P(1,5)….} 

 

 The above orderings of P(re, im) can be used as lookup tables when expanding the 

K-best nodes. According to [22], K = 10 is a reasonable value to use for 64-QAM, which 

means that only the first 10 elements of these tables are actually used.  

 When the first child node and the corresponding x, y values are known, the lookup 

tables will be used in the detection algorithm. Assume that  is the point of the first 
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child node along the real axis. Let k denote the sequence number of node  in the real 

axis ordering. The searching of node  can be described as follows: 

A. Turning Point 

R

(1)R

(1)

1 (P )
T M (P )

2

R

P

sign Sb
abs


  

 

B. Node PR
(k)   

  

if k <= Tp 

R R

(k) (1)P P ( 1) 2 ( / 2)k RSb fix k    
 

      else  

R

(1)R R R

(k) (1) (1)

M (P )
P P (P ) 1 2

2

abs
sign k fix

  
       

  
    

      end 

 

 The quantity Tp is the “Turning point.”  The node PR
(k) will violate the zigzag rule 

if k is larger than Tp. Also, the function sign returns the sign bit of the input value and abs 

returns the absolute value. Note that the above pseudo-code is applied in the real domain. 

However, by using the same operation twice, i.e. for both the real and imaginary axes, it 

can also be applied in the complex domain. 

 Note that the lookup table entries were obtained under the assumption that sxy is 

located in zone 1 of Figure 2.2.  If sxy is located outside of zone 1, equations (2.2) and 

(2.4) cannot be used for all of the points in the constellation. However, if sxy is located in 
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zone 2 then at least the first 4 elements of both the real and imaginary axes SE 

enumeration orders will obey the zigzag rule. This, in turn, means that the first 10 

elements of the lookup tables are still applicable. Similarly, the first 7 elements and first 3 

elements of the lookup tables are applicable for symbols located in areas 3 and area 4, 

respectively. Moreover, while the subsequent elements may not be in the correct order, it 

is still reasonable to use the table ordering in all of these cases. The reason for this is 

discussed in the following section. 

2.2.2 Modified K-best algorithm with complex-valued enumeration 

According to the distributed K-best algorithm as described in [22], after expanding the K 

first child nodes from each parent node, complex-valued enumeration can be applied to 

expand the sibling nodes until the K best nodes have been found.  During this process, 

zero, one or more than one child node are chosen as the K-best nodes from the same 

parent at the current level. This means that, for the case of complex-valued enumeration, 

the number of elements used in the lookup tables is variable.  Therefore, the modified K-

best algorithm can be described as follows: 

Step 1) Set one path at level Nt+1 with LMI=0; 

Step 2) Find the first child node at level Nt and calculate its LMI.     

            Select it as the surviving node of level Nt; 

Step 3) for l=2: K 

a. Perform the complex-valued enumeration on the current node and 

obtain the next best sibling node; 

b. Calculate the corresponding LMI, select it as the surviving node of 
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level Nt; 

  end 

Step 4) for i= Nt -1: -1: 2 

      Find all the first child nodes and their LMIs of all surviving 

nodes, and save them in a new set ς.  

      for k=1: K 

a. Select the child node in ς with the lowest LMI and  select it as the 

surviving node of  level i; 

b. Perform the complex-valued enumeration on the current node; 

obtain the next best sibling node; 

c. Calculate the corresponding LMI, and save them in ς; 

       end 

 end 

Step 5) Find the first child of all surviving nodes in the last level.  

  The one with the lowest LMI is the hard-decision output of the  

 detector.   

 

 As mentioned earlier, not all of the elements in the lookup tables will be used in 

the complex-valued enumeration. Figure. 2.3 shows the probability of usage of the 

lookup table elements for 64-QAM and 16-QAM. The horizontal axis is the sequence 

number of the elements in the lookup tables, while the vertical axis is the probability of 

visiting that element during the enumeration process. Figure. 2.3(a) indicates that the first 

three elements in the tables are used nearly 90% of the time. A similar phenomenon is 
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observed in the case of 16-QAM, as shown in Figure. 2.3(b). Thus, even though the 

ordering of the later elements in the tables is not exact, it will not have a significant 

impact on the detection performance since those elements are only rarely visited. 

Therefore, it is reasonable to use the above lookup tables for our proposed scheme no 

matter where the estimated node sxy is located. 
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Figure 2.3 Simulation results for the distribution of child nodes 
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2.2.3 Simulation results and complexity comparisons 

In this section, we first compare the complexity of the proposed K-best algorithm with 

other K-best schemes. Then, our simulation results are shown. 

Table 2.1 Complexity comparisons of K-best algorithms 

 
Operation 

[24] 

(real) 

[25] 

(real) 

[22] 

(real) 

[23] 

(complex) 

This work 

(complex) 

4 4 

16-QAM 

K=5 

expand 140 140 72 44 32 

multiply 273 696 287 304 232 

add 413 712 346 379 287 

compare 560 140 139 81 47 

4 4 

64-QAM 

K=10 

expand 552 552 152 84 67 

multiply 818 2776 601 590 482 

add 1370 3320 725 735 597 

compare 4610 560 461 240 150 

4 4 

256-QAM 

K=15 

expand 1696 1696 232 140 102 

multiply 2123 8448 919 966 732 

add 3819 8704 1108 1206 907 

compare 21210 1680 1184 579 367 

 

 

 Table 2.1 lists the complexity comparisons for various approaches. Note that 

these comparisons only include the detection portion, i.e. excluding the QR-

decomposition and channel preprocessing since these operations are common to all these 

schemes. The number of visited child nodes is referred as “expand” in the table. Multiply 

operations, add operations and the required number of compare operations in sorting are 

given for the detection of one transmit symbol vector. The value listed in the “expand” 

row refers to the number of PED or LMI values that must be calculated. For the same 

value of K, the BER performance of our proposed approach is the same as that of other 
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approaches using the ℓ1-norm. The complexity differences arise from the manner in 

which the K-best surviving nodes are found. From Table 2.1, it can be seen that the 

complex domain algorithms have a significant complexity savings compared to that of 

the real domain.  This is due to the fact that the tree depth is halved and the same value of 

K results in the same performance. Thus, the proposed complex-valued enumeration 

scheme has a significant complexity reduction compared to the enumeration scheme of 

[23].  
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(b) 16-QAM and 256-QAM 

Figure 2.4 BER performance for various constellation sizes 

  

 Simulation results for the bit error rate are shown in Figure. 2.4. In the figure, L2 

indicates the ℓ2-norm, while the ℓ1-norm is labeled as L1. Figure. 2.4(a) compares the 

BER performance for 64-QAM for the ℓ2-norm and ℓ1-norm in both real and complex 

domains. Over a wide range of interest (SNR in the range from 5-30 dB), the 

performance loss with our proposed scheme is small compared to the ML method. 

Furthermore, the difference in the BER performance between the ℓ2-norm and the ℓ1-

norm is negligible. The curves labeled by L2 depict the performance of the original K-

best algorithm, and the other curves display the performance of the modified algorithm 

proposed in this chapter. It can be seen that the performance curves in the complex 

domain are nearly overlapped with those in the real domain for both the ℓ2-norm and the 
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ℓ1-norm, which indicates that the proposed modified K-best algorithm does not have any 

significant performance loss compared to the previously proposed algorithms. Also, the 

performance curves for 16-QAM and 256-QAM are plotted in Figure. 2.4(b), which 

shows similar results. This demonstrates that the proposed complex-valued enumeration 

scheme can be used for a wide range of constellation sizes. 

2.3 Conclusions 

 

An efficient and flexible complex-valued enumeration scheme for K-best MIMO 

detection has been proposed. The new method is based on the use of simple lookup 

tables, and it is fully scalable for a wide range of K-values and constellation sizes. 

Simulation results indicate that the proposed technique achieves a close-to-optional 

performance, with a complexity that scales sub-linearly with the constellation size. As a 

result, the implementation complexity of a K-best detector can be reduced by using this 

method without any significant performance loss. 



 

 32 

Chapter 3  

Bidirectional Path Preserving Trellis Search  

In this chapter we propose a high performance bidirectional path preserving trellis search 

detector for MIMO systems. The error analyses for single direction and bidirectional 

PPTS detectors are given. We show that the bidirectional PPTS detector can minimize the 

detection error. The proposed detector has a 0.1dB Frame Error Rate (FER) gain 

compared with traditional PPTS detectors. 

3.1 Introduction 

MIMO systems have been adopted in many wireless standards such as 3GPP LTE, IEEE 

802.16e, and IEEE 802.11 due to its high spectral efficiency [5]. Many research efforts 

focus on the high throughput and low cost MIMO detector design. The sphere detection 

algorithm proposed in [39-41] is a depth-first algorithm which finds the nearest lattice 

point. However the depth-first algorithm has limited throughput when the SNR is low. 

The K-best algorithm based on the breadth-first tree-search algorithm is a fixed-

complexity algorithm which requires a high sorting complexity to find the best candidates 

[24-25, 42]. 
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 In [31] and [26], a path-preserving trellis-search algorithm for MIMO detection 

was proposed. Different from the tree-search algorithm, the PPTS detector searches the 

MIMO signal with an unconstrained trellis. It maps each node of the trellis in a stage k to 

a possible complex-valued symbol from antenna k. Then, the soft-output MIMO 

detection problem is converted into a multiple shortest paths problem. A path reduction 

method is applied to reduce the algorithm complexity. The path extension method is also 

used to guarantee that every node in stage k is included in the selected path. The complex 

search algorithm in a traditional MIMO detector becomes a simple individual node-by-

node search problem in a PPTS detector. 

 The PPTS algorithm can be further optimized by using a bidirectional search 

method. The searching process of PPTS operates from antenna Txk to the Tx1, which 

maps on the trellis from source node to sink node. However, if noise affects the first stage 

of the trellis graph search signal, the result will have large errors. In this chapter, we 

demonstrate that the performance of L-best bidirectional PPTS is better than the 2L-best 

single direction PPTS. Moreover, the bidirectional PPTS has lower hardware cost than 

traditional PPTS since only half as many paths are searched. The bidirectional PPTS 

requires that the QR decomposition be performed twice. However, since the channel is 

constant over the duration of the training sequence [32], the QR decomposition unit can 

be reused. 

 The rest of this chapter is organized as follows: Section 3.2 gives a brief PPTS 

algorithm review. The bidirectional PPTS is proposed in Section 3.3, and section 3.4 

gives the conclusions.  
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3.2 PPTS Algorithm Review 

The main idea of PPTS is computing the Euclidean distance recursively by using an 

unconstrained trellis. The stage k symbol sk is transmitted by antenna k. The nodes are 

also ordered into Nt vertical stages. The search process begins from the root and ends 

with the virtual sink node. Each node in the trellis graph is mapped to a constellation 

point which belongs to a known alphabet. Each path from root to sink represents a 

transmitted symbol vector. 

 The weight ( 1)

1( )k

ke 

 q  between nodes ,k q  and 1, 'k q is given by 

     
2

1
( 1)

1 1 1,

1

ˆq
RN

k

k k k j j

j k

e y R s




  

 

                                           (3.1) 

where ( 1)k
q is the partial symbol vector 1 1[ ]

t

T

k k Nq q q  , and sj is the complex-valued 

symbol mapped by qj (q=0,1,…2M-1). The sum of edge weights along the search path is 

obtained by a partial path metric dk, which can be computed recursively as 

  ( 1)

1 1( ') ( ) k

k k kd q d q e 

   q                                           (3.2) 

The path weight can be obtained at the sink node with 0 ( )d  . Then, the soft MIMO 

detection problem is transformed into a multiple shortest paths problem. As stated in 

[31], “For each node ,k q in the trellis graph, find a shortest path from root to sink that 

must visit this node ,k q .” To reduce the search complexity, a path reduction method is 

proposed in which each node evaluates all its incoming paths and only preserves a 

predefined number (L) of them [31]. However, it is difficult to guarantee every node in 

the trellis has a shortest path through the node after the path reduction process. Hence, a 
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path extension processing is required which fills in missing paths for each trellis node, in 

which every node in each stage is included in a path from root to sink. According to the 

simulation result, the L=2 PPTS MIMO detector shows only 0.3dB performance 

degradation compared to the full search method. 

 As shown in [26], each node in stage 2 has two outgoing paths after path 

extension due to the path extension processing. When the L shortest paths of each node 

are selected, the LLR can be computed as: 

  ( ) ( )

, 2 : 1 : 1

1
LLR( ) min ( , , ) min ( , , )

2

L L

k b
i b i b

x k i t k i t 
  

                                   (3.3) 

where ( ) ( , , )L k i t are the selected L shortest paths. 

3.3 High Performance MIMO Detector Based on Bidirectional 

Path Preserving Trellis Search  

3.3.1 Error analysis 

The PPTS operates from the root trellis stage to the sink stage in the trellis graph as 

mentioned in the previous section. We find that the search path in the beginning stage 

largely determines the accuracy of the search result. In other words, if the received signal 

is corrupted by noise which causes the PPTS detector to select a wrong path in the first 

stage, the error between the search result and correct value is large. We provide a search 

error analysis for the PPTS algorithm to support this point.  

 In the full search Max-Log MAP (MLM) detection algorithm, the minimal 

Euclidian distance min(d(s)) between the received signal and R·s is required, where 
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
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  s y R s                                                    (3.4) 

 When symbol vector s equals to min
s , the minimal value of d(s) is obtained as 

 

1
2

min min

0

ˆmin( ( )) ( ) ( ) ( )
tN

k k

k

d d




   s s y R s                                 (3.5) 

 The full search MLM detector has the best performance but with a search 

complexity of 2tN
Q . That is to say, the full search MLM can be used as a benchmark for 

our proposed MIMO detection method. We define a variable δ to measure the error 

magnitude between full search MLM and the PPTS detector: 

 
min( ) ( ) ( ) 0,1, 1i i td d i N    s s s                        (3.6) 

Suppose that, in i
s , the i-th signal is different from the minimal search symbol vector 

min
s . This means that the search error happened at is  with bias value ( )i s . The search 

process starts from stage Nt -1 to stage 0. Since R is an t tN N upper triangular matrix, 

( , ) 0 0,1,2,kk i k  R s  1i  . The bias value ( )i s can be rewritten as 

       
2 2min

0 0

ˆ ˆ( ) ( ) ( ) ( ) ( )
i i

i k k k k

k k


 

      s y R s y R s                           (3.7) 

If the searching error happened at the j-th stage with j
s  where j > i when k i  then 

( ) ( )j i s s , since 
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That is, if the search error occurs at the j-th stage it will be transferred and amplified to 

the i-th stage on the search path. Thus, the first search stage will dominate the search 

error at the last search stage 0 as 

  ( ) ( ) 1, 0j i tj N i     s s                                               (3.9) 

Fortunately, the order of search stages can be changed by rearranging the channel matrix. 

The first search stage will become the last search stage. If we combine the search results 

from two directions, the search error can be reduced significantly. 

 

3.3.2 Bidirectional PPTS 

Now, we rearrange the channel matrix as H=H(:,Nt-1:0). Then, perform the QR 

decomposition again as   H Q R . According to equation (3.9), the search direction of 

  H Q R (referred to backward search) is the reverse direction of H QR (referred to 

forward search), as shown in Figure 3.1. 

 

 

0,0 0,1 0,2 0, 10 0

1,1 1,2 1, 11 1

2 22,2 2, 1

1 11, 1

ˆ

0ˆ

ˆ 0 0

ˆ 0 0 0 0

r

r

r

t t
t r

N

N

N

N NN N

R R R Ry s

R R Ry s

y sR R

y sR







  

    
    
    
     
    
    
    

     

0,0 0,1 0,2 0, 11 1

3,2 3, 12 2

2, 11 1

0 01, 1

ˆ

0 0ˆ

0 0 0ˆ

ˆ 0 0 0

r
t t

t t r

t r

t r

NN N

N N N

N N

N N

R R R Ry s

R Ry s

Ry s

y sR

 

  

 

 

       
    
    
      
    

    
         

S
e
a
rc

h
 D

ire
c
tio

n

S
e
a
rc

h
 D

ire
c
tio

n

A-1

 
(a) 



 

 38 

0 1 2 1tNs s s s 
 
 

R

R

Search Direction
 

(b) 

Figure 3.1 Search direction of the bidirectional MIMO detector 

 

 We define the minimal Euclidian distance in the forward search as
F( )d s   and for 

the backward search as
B( )d s . Then, we select the smaller value between 

F( )d s and
B( )d s  

after obtaining both the forward and backward search minimal Euclidian distances as 

 
F B

opt ( ) min( ( ), ( ))d d ds s s                                               (3.10) 

Then, the LLR of bidirectional PPTS is given by 

, ,
, opt opt2 x: 1 x: 1

1
LLR( ) min ( ) min ( )

2 k b k b
k b

s s
s d d

  

 
  

 
x x                      (3.11) 

In the following equations, it is shown that the bidirectional search result opt ( )d s has a 

smaller search bias value than the single direction search. 

 The bias value of backward search is given by 
1 1

22B B

min

0 0

ˆ ˆ( ) ( ) ( ) ( ) ( )
t tN i N i

i k k k i k

k k


   

 

       s y R s y R s                 (3.12) 

 Then, the relationship between 
F B( )and ( )i i s s is given by 

 

F B

F B

( ) ( ) / 2

( ) ( ) / 2

i i t

i i t

i N

i N

 

 

 

 

s s

s s
                                             (3.13) 

 The bias of the bidirectional search result is the minimal one between the forward 
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and backward search results: 

  F B

opt ( ) min ( ), ( )i i i  s s s                                     (3.14) 

 To illustrate the principle of the bidirectional PPTS search method, we give an 

example in Figure 3.2 which has failed to select the correct path at L=2 (L is the number 

of reserved paths in each stage) of the forward search but succeeds at the L=1 backward 

search. The red line is the correct transition path. As shown in Figure 3.2(a), at stage 2 

after the L=2 PRU, the paths 1→3 and 2→3 are preserved but the correct transition path 

3→3 is discarded. Hence, the error will be broadcast to the rest of the trellis stages, which 

leads to a large bias for node 3 in stage 0. However, the correct search path is selected 

after the backward L=1 search process, as shown in Figure 3.2(b). The Euclidian distance 

value of stage 0 node 3 will be replaced by the backward search result. 
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(b) Backward L=1 Search Trellis Path 

Figure 3.2 Bidirectional 4×4 QPSK MIMO detection method. (a) shows the forward L=2 

search trellis path with error path selected. (b) shows the backward L=1 search trellis path 

with correct path selected 

 

Table 3.1 Error simulation results based on 4 ×4 16-QAM MIMO with 10K transmitted 

symbols 

Single 

PPTS 

Bidirectional 

PPTS 

 
Bias   

 
Bias   

mean variance mean variance 

QPSK 

L=2 
1.154 4.091 

QPSK 

L=1 
0.645 0.668 

16QAM 

L=2 
1.19 7.69 

16QAM 

L=1 
0.76 2.01 

16QAM 

L=4 
0.457 1.609 

16QAM 

L=2 
0.258 0.261 

64QAM 

L=4 
1.09 5.3767 

64QAM 

L=2 
0.477 0.580 
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 Thus, the bidirectional search has better performance than the single direction 

search method. To verify this, we simulate the bias of PPTS based on a 4×4 16-QAM 

MIMO system with 10,000 transmitted symbols. The smaller mean and variance values 

in Table 3.1 represent a more accurate search result.  According to the simulation results, 

the L based bidirectional search PPTS performs better than the 2L based single direction 

search PPTS system. 

 The FER performance comparison between the single direction and bidirectional 

search MIMO systems based on the MLM algorithm is shown in Figure 3.3. The channel 

matrices are assumed to have independent Gaussian distributions. The AWGN channel 

model is used in the simulation work. From the FER simulation, it is observed that the L 

based bidirectional search PPTS performs better than the 2L single direction search PPTS 

by about 0.1dB. That is to say, the numbers of reserved paths L in traditional PPTS can 

be reduced by half in the bidirectional search PPTS with a better performance. Also, the 

L=2 bidirectional PPTS method has nearly the same FER as the full search MLM 

detector. 
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Figure 3.3 FER performance of a coded 4×4 16-QAM MIMO system using the proposed 

algorithm with sorted QRD.  The outer channel code is a WiMax LDPC code with rate 

1/2 and length 1296 MPA decoder 

3.4 Conclusion 

In this chapter, we have proposed a high performance PPTS MIMO detector based on a 

bidirectional search method, which has a 0.1dB performance gain compared to the single 

direction search architecture. The proposed bidirectional PPTS can be used in an iterative 

MIMO detection system to improve the performance even further. 
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Chapter 4  

Fixed-Complexity Soft-Output MIMO 

Detector Using Parallel Bidirectional Scheme  

 

This chapter presents a novel detection algorithm for soft-output, MIMO systems. The 

algorithm obtains a list of candidates used to calculate likelihood information in parallel 

and it includes two stages for tree searching, where each stage corresponds to one 

direction of the path selection process. The simulation results indicate that the algorithm 

achieves better performance with lower complexity than a list-based fixed-complexity 

soft-output sphere decoder. Moreover, due to its parallel nature, it is well suited for 

hardware implementation.  

4.1 Introduction 

In recent years, MIMO technology has been put into practice in several standards such as 

IEEE 802.11n and WiMax. Furthermore, soft-output MIMO signal detection is usually 

employed since most practical wireless systems use error correcting codes such as turbo 
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codes or low-density parity check (LDPC) codes which require soft information to 

perform the decoding [43]. One of the most challenging design aspects is to obtain high 

performance MIMO signal detection with reasonable complexity in order to make the 

approach feasible for hardware implementation. 

 The detection procedure can be transformed into a tree-search problem and the 

soft information can be efficiently computed using a sphere decoding algorithm. Among 

various kinds of soft-output MIMO detectors, the ones having fixed complexity are 

especially attractive due to their constant throughput, independent of the channel 

conditions and the noise level. The fixed-complexity sphere decoder and its variations 

such as the soft-output K-Best MIMO detector [34], the soft fixed complexity sphere 

decoder [35] and the soft-output layered orthogonal lattice detector [27] can be viewed as 

extensions of the breadth-first tree search algorithm.  

 However, the soft-output K-Best detector may not achieve superior performance 

because it is simply an extension of the hard-output detector, which means the LLR 

values obtained may not be accurate enough. The LORD algorithm is capable of 

achieving good performance, but it requires many additional matrix permutations, which 

leads to a heavy computational load. The SFSD, which is based on the list fixed-

complexity sphere decoder (LFSD) [44], creates a new subset in order to obtain an 

accurate approximation of the LLR values, resulting in better performance than LFSD. 

The key idea of the new algorithm proposed in this chapter is to process the tree in a 

bidirectional fashion by combining several aspects of the above algorithms. The 

bidirectional processing leads to a parallel method with fixed-complexity and constant 
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throughput, making it suitable for hardware implementation. Finally, the simulation 

results indicate that the proposed bidirectional scheme outperforms the previously 

proposed methods. 

4.2 Complex to Real  

Consider a MIMO system with Nt transmit and Nr receive antennas. The coded bit-stream 

is mapped to Nt - dimensional transmit symbol vectors tN
s  with an M-QAM 

constellation. The complex-valued system can be transformed to an equivalent real-

valued model based on real-value decomposition (RVD) as follows: 
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In this case, the number of layers of the tree search will be doubled. 

4.3 Proposed Algorithm 

4.3.1 The motivation of the algorithm 

This work is motivated by several previously proposed fixed-complexity detectors 

including SFSD [35], LORD [27] and the Bidirectional Partial Tree Search technique 

[43]. The SFSD provides a simple way to generate a candidate list by identifying the 

distribution of expanding nodes at each layer. It can be seen that full expansion followed 
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by single expansion brings certain implementation advantages, e.g. low complexity, 

parallelism and pipelining. The LORD algorithm searches the tree using different layer 

orderings in such a way that each layer becomes the reference once [27]. It achieves more 

reliable diversity in bit values for the LLR calculation compared to similar methods 

without multiple permutations and it guarantees that a counter-hypothesis can be found. 

The basic idea of the proposed bidirectional technique is to perform a partial tree search 

in both the forward and backward directions. During the search process in each direction, 

only half of the list is generated. This means that only half of the levels of the tree need to 

be searched in one direction, which results a lower complexity compared to a full tree 

search. The aforementioned aspects will be utilized to advantage in the proposed 

algorithm. 

4.3.2 The bidirectional candidates adding algorithm 

The pseudo code for the proposed algorithm is shown in Figure 4.1. The notation p̂  

refers to the node having the minimum PED in the current i-th layer and q= log2M, which 

is the number of the bits each node contains. The detection operates in two directions. In 

the forward tree search stage, there is a full expansion at the root node of the tree, while 

half of the layers in the tree use the same candidate adding method [45-46] as in SFSD. 

First, the node having the minimum PED is selected. Then, its sibling nodes are added 

into ς via bit flipping. After the forward stage, the m best nodes in the last layer are kept 

in ς to become the top layer nodes in the backward stage, which processes the node 

expanding and candidate adding in an identical way. By the end of the procedure, every 

bit’s LLR value will have been estimated. 
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 The bidirectional technique leads to simplification since a zero-forcing (ZF) 

solution is used in half of the levels. In addition, the list used for LLR computation has 

better diversity for χ′(-1)
j,b and χ′(+1)

 j,b, which also ensures that there is at least one counter-

hypothesis for each bit. In addition, the layer ordering technique in [44] is adopted to 

improve the performance. The layer with largest noise amplification is detected first in 

the forward stage, and the rest of the layers use a strongest-first signal detection order. 

1: Forward: 

2: ς = all child nodes of root 

3: for i = 2 to Nt do 

4:  ς = Ʋnode ς{the best children of node} 

5: if i ≤ Nt /2 then 

6:  for j = (i - 1)·q +1 to i·q do 

7:   Flip jth of p̂ and add to ς 

8:  end for 

9: end if 

10: end for 

11: Permute H, sort and keep m nodes in ς 

12: Backward: 

13: ς = ςƲ{ q flipped nodes} 

14: Repeat step 3 to 10 

Figure 4.1 Pseudo code of the bidirectional algorithm 
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 As an example, Figure 4.2 shows the node expansion of the tree search for the 

case of 4QAM modulation. It uses m = 1 in a 4×4 MIMO configuration. The horizontal 

solid line stands for Zero-Forcing computing, and the nodes with vertical solid line are p̂  

with minimum PED. The dashed line indicates the new added partial solution based on 

flipping p̂ ’s bit. In this 4QAM case, there’s two added nodes for each p̂ . The bit flipping 

happens at the layer of antenna 2 in the forward stage, and antenna 3, 4 in backward stage. 

The dash-dot line indicates the sorting and pruning process. In this case m = 1, so only 

one node is kept for the backward case. The final set ς contains 11 solutions produced in 

two stages. 

 

Antenna
1

Antenna
2

Antenna
3

Antenna
4

 

Figure 4.2 The bidirectional search diagram for the case of 4QAM, where the dashed 

lines indicate the nodes introduced by the candidate adding method 



 

 49 

 

 

4.3.3 The techniques used in the algorithm 

This bidirectional algorithm introduced a combination of proposed techniques which 

improve detection performance. There are several reasons why the proposed algorithm 

produces good results based on the following.  

       1) Full Expansion: Note that a ZF solution does not achieve good performance 

because of error propagation, since only one child node is expanded in the tree search. 

Thus, in the proposed algorithm the forward processing uses a full expansion of the root 

node and candidate adding in the top-half layers, so that a performance loss can be 

alleviated.  

       2) Bit Flipping: Although only the node with minimum PED is chosen for bit-

flipping in the candidate adding procedure, the bit-flipped symbols are still likely to have 

small metrics in the case of Gray code mapping and QAM alphabets because the flipped 

sibling nodes are nearest neighbors of the transmitted symbol estimate. In addition, bit 

flipping is simple and implementation friendly. 

       3) Zero-Forcing on Lower Layers: At the lower layers in the decomposition H = QR, 

the diagonal elements ri,i of the upper triangular matrix R are distributed independently 

according to a standard Gamma distribution with n = N+1-i. This means that the 

probability that r2
i,i takes on small values increases with i. In other words, the lower the 

layer is, the higher its SNR value will be [47]. Therefore, it is reasonable to use the ZF 
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solution in the lower half layers to achieve a better overall complexity/performance 

tradeoff. 

       4) Reference Layer and Pruning: The bidirectional technique introduces an extra 

reference layer in detection, which has proven to be effective for soft detection in the 

LORD algorithm [27]. Furthermore, after the forward processing has been finished, a 

sorting and pruning procedure can be adopted to lower the backward processing 

complexity considering that the nodes in the last layer already have adequate reliability.  

In contrast to sphere detectors, two QR decompositions must be performed for each sub-

channel, but this pre-processing is done only once per channel estimate for orthogonal 

frequency-division multiplexing (OFDM) symbols at the receiver. Normally, the channel 

is assumed to be constant over a duration of several packets, so that this additional 

preprocessing cost would be fairly low. 

4.4 Simulation and Complexity Analysis  

All of the simulations use a rate 2/3 convolutional code in a MIMO-OFDM system with 

Nt = Nr = 4, 64QAM, and soft-input Viterbi decoding. Each subcarrier is subject to flat 

fading, i.e., all the entries in the MIMO channel matrix are independent random Gaussian 

variables. We also assume that the receiver has perfect channel knowledge. We compared 

the proposed algorithm with soft-output K-best, LORD and SFSD, using the FER as the 

performance metric, with the results shown in Figure 4.3. The parameter K = 25 in the K-

best algorithm is used. It can be seen that the bidirectional algorithm with m = 12 

achieves a better FER than the other algorithms. 
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Figure 4.3 Performance simulation: 64QAM, 4 × 4 antennas 

 

 In addition, it can be inferred that the value of m has an impact on both 

complexity and performance. So the performance attained with different m values was 

also considered. Figure 4.4 shows that the performance improves as m increases. But the 

improvement become negligible when m is larger than a certain value. So a given 

implementation choice can be selected as a performance/complexity trade-off depending 

on the circumstances. 
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Figure 4.4 Performance simulation for different m, 64QAM, 4 × 4 antennas 

 

 For the specific parameters chosen in Figure 4.3, the complexity results of the 

64QAM, 4×4 system are given in Table 4.1. The first column in the table shows the 

complexity in terms of checked symbols, which is the key metric [48]. The other columns 

list the required number of real multiplications, additions and comparisons for node 

expanding and the LLR computation, without the pre-processing stage. As can be seen, 

the K-best method requires a large number of comparisons in order to sort and prune the 

nodes in each layer, while the bidirectional algorithm only needs to sort once in order to 

choose the nodes for the backward processing. Compared to LORD, the proposed 

algorithm inherits the ZF solution’s computational characteristics and thereby saves more 

than half of the operations because only two reference layers are considered instead of 
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four. While SFSD has fewer nodes expanded so that it has fewer multiplication and 

addition operations, the proposed algorithm gives better performance than SFSD. 

 

Table 4.1 Number of real operations 

Detector Symbols  Multiplications  Additions  Comparisons 

K-best 

(K=25) 
364 2450 2462 10306 

LORD 1024 9792 9240 1488 

SFSD 292 2520 2504 1944 

Proposed 

 (m=12) 
346 3168 3134 1176 

 

4.5 Conclusion  

A novel bidirectional processing algorithm for soft-output MIMO systems has been 

proposed that combines features from several types of fixed complexity tree search 

procedures. The algorithm obtains a list of candidates used to calculate likelihood 

information in parallel and it includes two stages for tree searching, where each stage 

corresponds to one direction of the path selection process. The simulation results 

demonstrate that the proposed approach achieves a higher performance than previously 

proposed algorithms while, at the same time, having a comparable computational cost. 

The algorithm can also easily tradeoff for different performance and complexity 

objectives. Moreover, its parallel nature and fixed throughput characteristics make it 

attractive for VLSI implementation. 
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Chapter 5  

Fixed and Low Complexity MIMO Detection 

Algorithm without QR Decomposition 

 

This chapter presents a novel low-complexity hard output MIMO detection algorithm for 

LTE and WiFi applications. Our method provides a well-defined tradeoff between 

computational complexity and performance. The proposed algorithm is an enhancement 

of the ZF method. It does not require QR decomposition as a preprocessing step, as is 

commonly needed in SD based algorithms such as K-best detection and lattice reduction.  

Simulations have been performed for 3x3 and 4x4 MIMO configurations, with both 16 

and 64 QAM constellations. Results show that the proposed algorithm uses a much 

smaller number of ED calculations while attaining only a 0.5dB loss compared to MLD. 

5.1 Introduction 

MIMO techniques have been incorporated into modern wireless communication 

standards such as IEEE 802.11n (WiFi), 3GPP LTE, WiMAX and HSPA+ due to their 



 

 55 

high spectral efficiency. One of the key challenges in exploiting the potential of MIMO 

systems is to design high-throughput, low-complexity detection algorithms while 

achieving near-optimal performance. Unfortunately, most algorithms have a complexity 

that grows rapidly with the number of antennas and with the constellation size. 

 There are many detection algorithms for MIMO at the receiver side. The full 

search MLD [49-50] has the optimal bit error rate; however, its computational 

complexity makes it impractical for hardware implementation, especially for large QAM 

constellations. Other algorithms such as ZF and MMSE detection have reduced 

complexity but at the cost of poorer performance. Some other methods like sphere 

detection [51-52] appear to be promising alternatives, but their computational complexity 

is significant. Near-optimal detection algorithms such as K-best detection [27, 22] have 

constant complexity for a given K value. However, their performance is not acceptable 

for small values of K and the complexity increases with K. Moreover, most of these 

algorithms require QR decomposition [37, 24], which is computationally intensive. Here, 

we are interested in a system that can be used for both LTE and WiFi applications. That 

is to say, it must be able to function under worst-case conditions for both of these 

standards. Accordingly, the channel matrix H cannot be assumed to be flat fading or 

frequency-invariant and it must be treated as an independent matrix for each transmitted 

subcarrier. 

 This chapter introduces a low complexity MIMO detection algorithm which can 

be used for both LTE and WiFi systems. The key contribution is a methodology that 

combines ZF detection with obtaining the first neighbors of a constellation node while 
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eliminating the need for QR decomposition. The complexity of the initial phase of the 

algorithm depends on the constellation size but in the subsequent phase it is a function of 

number of neighbor nodes in the constellation and K, which is the number of s1,s2 pairs 

we kept in the first step. 

 The remainder of this chapter is organized as follows: Section 5.2 describes our 

proposed algorithm in detail. Section 5.3 presents the simulation environment and gives 

our results. In section 5.4, the architecture of 3x3 MIMO system for 16QAM are given. 

Lastly, we give our conclusions in Section 5.5. 

5.2 Proposed Algorithm 

5.2.1 Motivation 

Our goal is to create a modem design for both LTE and WiFi having acceptable detection 

performance and hardware cost.  We seek to develop an algorithm that has performance 

close to that of ML and which has relatively low complexity.  Specifically, QR 

decomposition will not be employed as it is computationally intensive. This leads to 

substantial savings in hardware costs. Specifically, we need to support 64 QAM for LTE 

and 256 QAM for WiFi. 

 In general, the most computationally intensive part of MIMO detection is the 

computation of the ED values. In order to reduce the computational complexity, we 

propose a novel approach combined with the well-known low complexity ZF method.  
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5.2.2 The proposed algorithm 

We will use a 4x4 MIMO system as an example to explain our algorithm. In this case, the 

baseband system model is expressed as: 

11 12 13 141 1 1

21 22 23 242 2 2

31 32 33 343 3 3

41 42 43 444 4 4

h h h hy s

h h h hy s

h h h hy s

h h h hy s









      
      
       
      
      

      

                             (5.1) 

 First, we reorder the columns of H (as well as the corresponding elements of 

vectors s and y) in increasing order of the power of the columns. That is, after the 

reordering, column four will have the largest power. On average, then, more reliable 

information will be carried on symbol s4 and less reliable information will be contained in 

s1. For simplicity, we keep the same notation for the reordered channel and vectors. 

 So as to provide greater options for the least-reliable symbol s1, we first move all 

terms containing s1 to the left side of (5.1).  

12 13 141

2

22 23 242

1 1 234 3 234

32 33 343

4

42 43 444

,

h h h
s

h h h
s where

h h h
s

h h h








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        
    
     

   

r y h s H H                    (5.2) 

If the QAM constellation size is M, there are M possible s1 values. Afterwards, for each 

possible symbol of s1 we solve the ZF solution for [s2, s3, s4]
T  which gives us 234

ZFs  .  

ZF H -1 H

234 234 234 234=( )s H H H r                                                  (5.3) 
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By slicing them into constellation nodes, we get M different [s1, s2, s3, s4]
T values. After 

that, we calculate all ED values from the M different [s1, s2, s3, s4]
T vectors and keep only 

the K best pairs of  s1, s2. 

 Next, for each pair of s1 and s2, we obtain the first neighbors of s2. “Neighbors” 

means the closest surrounding nodes of the given node in the QAM constellation. We 

keep s2 and its first neighbors as a new set s2_1nei_set. As in Figure 5.1, for an s2 located at 

any of the solid points, all of the nodes inside its enclosing dashed rectangle are the new 

sets s2_1nei_set. 

Q

I

 

Figure 5.1 First neighbors in 16 QAM 

 

 

 We only keep the first neighbors because simulation results show that this will 

have a favorable balance of performance vs. complexity. As can be seen from the figure, 

the new set s2_1nei_set will contain up to 9 nodes. After that, for each symbol inside 

s2_1nei_set, move the terms containing s1, s2 to the left of (5.1): 
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Then, obtain the ZF solution for s3, s4. Thus we have: 

  
ZF H -1 H

34 34 34 34=( ) s H H H r                                                (5.5) 

 Assuming there are b symbols in each s2_1nei_set, after quantization we obtain b of 

[s1, s2, s3, s4]
T vectors. Then we calculate all ED values for the b vectors and keep the best 

one. After K iterations of this operation, we will have K of the best symbol vectors. At the 

last stage, we find the best solution which yields the minimum squared ED value. The 

algorithm can be summarized as shown in the following table: 

 

Table 5.1 Proposed algorithm for a 4x4 MIMO system 

Step 1) Initialization: Reorder H, y and s 

Step 2) Move s1 to the left-hand side and find M  234

ZFs   

Step 3) Calculate EDs of all M s vectors; 

                     Keep the K best pairs of s1, s2 

Step 4)  

for i =1 to K do 

 s2_1nei ← Obtain b 1st neighbors of s2 

           for j =1 to b do 

                 Move s1, s2 to the left-hand side and find  34

ZFs
  

end 

Calculate EDs of all b s vectors 

           Keep the best s vector 

end 
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 The proposed algorithm has the following features: 

 Aside from Step 2, all other steps have a complexity independent of the 

constellation size. 

 We only need to calculate the ED K∙b times, which is the main cost of the 

computation. 

 The complexity does not depend on the SNR. 

 It has a fixed complexity for a given K and neighbor size, which makes its 

hardware implementation simpler. 

 The computational complexity scales up only moderately with an increase in 

constellation size. 

 It can be extended in a straightforward manner to more antennas and/or larger 

constellations. 

 There is no need to compute QR decompositions, as is required in most other fast 

search algorithms. 

 

  For a 3x3 system, the algorithm is similar to that of 4x4 system. The only 

difference is in step 4) above. Instead of 34

ZFs  , we find 3

ZFs  .  Aside from this, the other 

steps remain the same. 

   For a larger constellation size, we can still achieve good performance by slightly 

increasing the K value or by increasing the neighbor region to include 2nd neighbors or 3rd 

neighbors.  This would still have a relatively low complexity compared to other 

algorithms. 
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5.3 Simulation and Complexity Analysis 

In this section the performance results of our proposed algorithm are reported. We tested 

3x3 and 4x4 MIMO systems with both 16 QAM and 64 QAM sizes.  10,000 simulation 

trials were used to obtain the probabilistic results. We used SNR values such that the SER 

is in the range near 10-3. We also compared our proposed algorithm with ML, MMSE, 

and the K-best algorithm with different K values. The results for a 3x3 system and are 

shown in Figures 5.2 and 5.3. The results for a 4x4 system are shown in Figures 5.4 and 

5.5. 

 It is evident from Figures 5.2 through 5.5 that our proposed algorithm 

outperforms the MMSE and K-best algorithms. Even when the K value of K-best is as 

high as 15 for 16QAM modulation in a 4x4 system, the performance is similar to our 

performance. The proposed algorithm has only a 0.5dB performance loss at high SNR 

compared with ML detection. 

      The complexity comparisons are given in Table 5.2 in terms of the total number 

of times that the ED needs to be calculated. As can be seen, the K-best method requires a 

large number of ED calculations in order to sort and prune the nodes in each layer, 

whereas the proposed algorithm only needs M+K∙b ED calculations, where M  is the 

QAM constellation size, K is the number of  s1, s2 pairs saved, and b is the number of 

symbols in the set of neighbor nodes. In particular, it only depends on M initially and 

subsequently it depends on the product of K and b. 

     It is also noteworthy that the proposed algorithm is accomplished without the 

need for QR decomposition in the pre-processing part. In LTE, we have to allow for a 
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new channel matrix for each subcarrier and for each OFDM symbol. If QR 

decomposition had been required in the algorithm, this would have represented a 

significant additional computational cost. The K-best or K-best based methods in [22] 

need QR decomposition, which will greatly increase their actual complexity. 

 

Table 5.2 Number of times ED is calculated for different algorithms 

Antennas & QAM 

size 

Proposed alg. 

(Avg. No.) 
Ref. [22] K-best 

3x3, 16QAM 35 -- 144 

3x3, 64QAM 79 -- 448 

4x4, 16QAM 54 72 736 

4x4, 64QAM 117 152 2944 

 

       

 To determine the complexity, we used the average value of b, weighted by the 

number of occurrences of each possible value. In the case of 16QAM, b is a value in the 

set {4, 6, 9}.  In the constellation, there will be 4 occurrences of the value 4, 8 

occurrences of the value 6 and 4 occurrences of the value 9, so that the weighted average 

value of b is 6.25.  For 64QAM, a similar calculation yields a weighted average value of 

b equal to 7.56.  The complexity is compared with the advanced detection method in [22] 

and also the K-best algorithm. 
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Figure 5.2 SER vs. SNR performance of a 3x3 MIMO system using 16 QAM 
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Figure 5.3 SER vs. SNR performance of a 3x3 MIMO system using 64 QAM 
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Figure 5.4 SER vs. SNR performance of a 4x4 MIMO system using 16 QAM 
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Figure 5.5 SER vs. SNR performance of a 4x4 MIMO system using 64 QAM 
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5.4 Low-Complexity High-Throughput 3x3 MIMO Detector 

Architecture 

While the performance of the proposed algorithm is close to that of ML detection, its 

efficient implementation is challenging. In particular, the proper tradeoff between the 

hardware requirements and throughput is a critical issue. 

5.4.1 Overall architecture of MIMO detector 

SORTER

EDC2-1 EDC2-2 … EDC2-K 

MFU

EDC1-1 EDC1-2 … EDC1-16

y
H

H_PRE

 

Figure 5.6 Block diagram of the proposed semi-parallel MIMO detector 

 

As an example of a 3-by-3 MIMO system implementation, we use a pipeline structure to 

design the MIMO detector following the steps in Table 5.1. For the calculation of the 
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EDCs (which stands for Euclidean distance calculation units), we use a parallel 

architecture to increase the output data rate. The overall semi-parallel architecture of the 

proposed detector is shown in Figure 5.6.  

 The inputs y and H are a complex-valued vector and matrix, respectively. H is fed 

into a preprocessing unit H_PRE. This unit calculates 
H -1

3 3( )H H  and 
H -1

23 23( )H H , and 

sorts the columns of H. Note that 
H

3 3H H  and 
H

23 23H H  are a scalar and a 2-by-2 Hermitian 

matrix, respectively.  These calculations will be discussed in more detail in the following 

section. 

 y is input to M (i.e., the QAM size) EDC1 blocks, each of which computes the ED 

value of y-Hs. The EDC1 block consists of the ZF calculation, constellation node 

quantization and the ED calculation. After these calculations, the ED values are sorted. 

We only keep the K best of the nodes having the minimum ED values. 

 In the next pipeline layer, each of the s2 is expanded to its neighbor set s2_1nei_set  

and the ED values are calculated serially using one EDC2 block. There are a total of K 

instances of the EDC2 unit so that the calculations can be performed in parallel. Finally, 

the minimum finding unit (MFU) is used to obtain the minimum among the K best nodes 

and produces the final output. 

5.4.2 H_PRE architecture  

The block diagram of H_PRE is shown in Figure 5.7. As noted above, the function of the 

H_PRE block is to sort the columns of H and to generate 
H -1

3 3( )H H and 
H -1

23 23( )H H , 

which requires matrix inversion. However, since this is followed by the QUAN block we 
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do not need to perform the inversion here. Instead, it can effectively be performed in the 

QUAN block through a scaling operation. 

 We define
H

3 3p  H H ,
H

23 23P H H .  Note that p is a scalar and P is of size 2-by-2, 

which will largely reduce the computational complexity. Also, 22p  = p. Then, 

1 / d P C , where C is the adjugate matrix of P and d   is the determinant of P. Since P 

and C are 2-by-2 Hermitian matrices, not all of their elements have to be directly 

calculated. For P and p, we only need to calculate 3 terms, i.e., 

* * *

11 12 12 22 22 32 32p h h h h h h   , 
* * *

22 13 13 23 23 33 33p h h h h h h p    , 
* * *

12 12 13 22 23 32 33p h h h h h h   .  

The remaining element,  
*

2 1 1 2p p , is obtained by complex conjugation.  The C_MAC 

(complex multiplier accumulator) block in Figure 5.9 is used to calculate these values. 

CVM

SORTER

CVM

 

Figure 5.7 Block diagram of H_PRE 
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 First, the 9 elements of H are fed into the CVM (complex vector multiplier) block 

in Figure 5.7. This block is used to calculate the power of the columns of H. The outputs 

of the CVM are passed to a SORTER, which sorts the columns in increasing order. Then, 

the subsequent CVM block is used to calculate P, C and p. 

 The CVM block diagram is shown in Figure 5.8. The values of H, C and d are 

stored in registers.  Control logic is used to activate reading input values, sending values 

to the C_MAC block and for writing output values.  

Read_in/

Control

C_MAC

Writeback/

Control

Read port Write port

 

Figure 5.8 CVM block architecture 

 

 Since it is costly to compute inverses in hardware, an alternative procedure is 

used. First, the conjugate of the determinant, d*, is multiplied with C.  Then, the scalar 

d*∙ d = |d|2 will be used as a scale factor in the QUAN block. Similarly, for the inversion 

of p, 1/ p =p* /( p*∙ p)= p* /|p|2 . We will use p* instead and send |p|2 as scale factor to 

the QUAN block. 
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 The detailed architecture of the C_MAC is shown in Figure 5.9.  Two complex 

values are input to the multiplier Complex_mu and accumulated to obtain a final output.  
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Figure 5.9 C_MAC block diagram 

 

 

5.4.3 EDC1 and EDC2 block architectures 

The structures of the EDC1 and EDC2 blocks are shown in Figure 5.10 (a) and (b), 

respectively. As mentioned in the previous section, the EDC blocks consist of 

constellation node multiplier (Con_MULT) units, the CVM, the constellation node 

quantization block QUAN, and the ED calculation.  

 In EDC1, the H and constellation values are fed in to a constellation node 

multiplier Con_MULT.  In EDC2, H values and the s2 neighbors are sent to Con_MULT. 
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The outputs are used to compute r or r as in equations (5.2) and (5.4), respectively. In 

EDC1, the calculated r values are stored in a register. The subsequent CVM is used to 

generate H23·r.  Next, C and d* are multiplied to H23·r.  A quantizer QUAN maps the s 

symbols to the constellation nodes. The quantized 23

ZFs  or 3

ZFs  is sent to a Con_MULT to 

complete the calculation of H23·s23 or H3·s3 and is then subtracted from r or r in order to 

obtain y-Hs. Afterward, there is an ED calculator to obtain its Euclidean distance value. 

The structure of EDC2 is similar; the only difference is that the output of CVM does not 

multiply the C matrix but only multiplies p*. 

-

-   Con_MULT CVM QUAN  Con_MULT
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Figure 5.10 EDC block diagrams: (a) EDC1, (b) EDC2 

 

hi,j_Re S_Imhi,j_Im hi,j_Re hi,j_Ims_Re s_Ims_Im

SUMSUM

P-r P-i

Clk

Con_MU Con_MU Con_MUCon_MU

 

Figure 5.11 Complex multiplier architecture for constellation nodes 
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Figure 5.12 Con_MU architecture  

 

 Figure 5.11 shows the complex multiplier for the constellation nodes and matrix 

elements. Since the constellation node values are restricted to being symmetric odd 
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integers, the multiplier architecture is much simpler than for a general multiplier. For a 

16QAM constellation, the real and imaginary parts of symbol s can only be from the set 

{-3, -1, 1, 3}. Thus, the Con_MU in Figure 5.11 is implemented as shown in Figure 5.12. 

First, h_re/im is shifted left by 1 bit and added to h to obtain {-3∙h_re/im, -1∙h_re/im, 

1∙h_re/im, 3∙h_re/im}.  Then, the least significant bit (LSB) and most significant bit 

(MSB) of s_re/im are used to select the correct value. 

 Since r is calculated in EDC1, there is no need to calculate y-h1s1 again in EDC2. 

It can simply be passed from the EDC1 blocks to the EDC2 blocks and reused. Similarly, 

the {s1, s2} pairs used in EDC2 can be obtained from EDC1 level after obtaining the 

quantized
23

ZFs .  Between the stages of EDC1 and EDC2, there is a SORTER block to sort 

the M ED values and to find the K best {s1, s2} pairs. 

 After passing the {s1, s2} pairs to the EDC2 stage, s2 is input to a Get_neighbors 

block to generate s2_1nei_set. Then, EDC2 is used to calculate the ED values. This process is 

similar to tree expansion from a parent node to b child nodes. Since there are K parent 

nodes, there are a total of K parallel EDC2 blocks at this stage. And after getting every b 

ED values, there is a MIN block to find the minimum among them. The detailed 

architecture is show in Figure 5.13. 
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Figure 5.13 Parallel architecture of EDC1 and EDC2 

  

 The structure of the quantization block diagram QUAN is shown in Figure 5.14.  

For a 16QAM constellation, the values for either the real and imaginary parts of symbol s 

come from the set {-3, -1, 1, 3}, and the slicing boundary is {2, -2}. Accordingly, the 

scalar obtained from the H_PRE block is shifted left by 1 bit position prior to being input 

to the comparator. 
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Figure 5.14 Block diagram of QUAN 

 

5.4.4 SORTER and MFU blocks architectures 

Between the two stages of EDC1 and EDC2, there is a SORTER block to sort the M ED 

values and to find the K best {s1, s2} pairs. The detailed architecture of this block is 

shown in Figure 5.15. Block “max” and “min” are used to find the max and min value 

between two values. 
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Figure 5.15 SORTER architecture for 16QAM 

 

 On the first clock cycle, 16 ED values are grouped into pairs and are compared 

simultaneously. Then, the adjacent max output and min output values are compared. In 

this way, the min values are gradually shifted left. As a result, over 8 clock cycles the 16 

values will be sorted and stored in increasing order in the 16 N-bit registers, from left to 

right. In general, it will take K/2 clock cycles to sort K values using this structure. 

 The MFU block is shown in Figure 5.16. The figures illustrates an example of 

finding the minimum of 9 values.  
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Figure 5.16 Block diagram for MFU  
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5.4.5 FPGA results 

A Xilinx Virtex 5 FPGA was used for estimating the latency and hardware cost of the 

3x3 MIMO detector architecture. The xc5vsx95t-2ff1136, 65-nm CMOS technology was 

chosen. The particular device contains 58880 FF/LUTs and 640 DSP48 blocks. 

 The CVM block consumes a considerable amount of resources, since the C_MAC 

portion of this unit by itself requires 3 DSP48 blocks. The EDC1 and EDC2 are similar to 

each other in hardware consumption. The EDC1 block contains 2 CVM, 1 complex 

multipliers, 2 complex adders, 2 ED calculators, 2 constellation node multipliers and the 

QUAN block. The EDC2 unit has only 1 complex multipliers but has one additional MIN 

block after it. A complex multiplier uses 3 DSP48, and a complex adder requires 1 

DSP48. 

 We use the notation Qm.n to represent a fixed point number having m integer bits 

and n fractional bits so that the total word length is m+n. The signed numbers will have 

one additional sign bit. Table 5.3 summarizes the fixed point design parameters for the 

scaled H, received y and ED values. 

Table 5.3 Fixed point design parameters for the 3x3 16-QAM system 

Received y 

(signed fixed point) 

Scaled H 

(signed fixed point) 

ED 

(unsigned fixed point) 

Q3.6 Q0.9 Q4.4 

 

 For the 16QAM 3x3 system, the estimated latency results are listed in Table 5.4.  
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Table 5.4 Latency of various blocks for 16QAM 3x3 MIMO system (K=3) 

Unit Latency (clock cycles) 

H_PRE 34 

EDC1 26 

SORTER-16 8 

EDC2 16*9=144 

MFU 1 

 

 Using the fixed point numbers in Table 5.3, the hardware cost results for the 

16QAM 3x3 MIMO detection system are given in Table 5.5.  The estimated value for the 

total design was obtained by adding the values for each of the components that are used; 

it does not include some additional control and associated “glue logic” that would also be 

needed in the full design. 

 

Table 5.5 Hardware cost values for a 16QAM 3x3 MIMO detection system 

Unit 
Resource utilization 

LUT FF DSP48 

H_PRE 1102 984 6 

EDC1 1488x16=23808 890x16=14240 13x16=208 

SORTER-16 414 358 0 

EDC2 1375x3=4125 740x3=2220 10x3=30 

MFU 52 24 0 

Estimated total 

(percent utilized) 
29501 (50.1%) 17826 (30.3%) 244 (38.1%) 
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 Of course, one can always make a trade-off between throughput and hardware 

cost.  Here we use 16 EDC1 blocks in parallel in the first stage and K EDC2 blocks at the 

later stage.  Each EDC2 block is used serially to calculate ED values. If lower latency is 

required, we can use a parallel set of C_MAC blocks in the CVM unit. 

5.5 Conclusion 

In this chapter, a novel MIMO detection algorithm with low complexity has been 

proposed. This algorithm does not need to perform QR decomposition as a pre-

processing step. It fulfills the requirements of LTE and WiFi even in worst-case 

situations in which the channel matrix is varying for all the sub-carriers. Thus, it 

overcomes a major disadvantage present in SD algorithms that are based on QR 

decomposition. The simulation results show that the proposed algorithm only has a 0.5dB 

SER performance loss compared to ML detection and it is achieved with a significantly 

reduced computational complexity.  The algorithm is scalable to large QAM constellation 

sizes.  In addition, we have designed the architecture for a 16QAM 3x3 MIMO detector 

based on this algorithm, and the estimated resource costs and latency values have been 

determined on a Xilinx Virtex 5 FPGA. 
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Chapter 6  

QR Decomposition and Stochastic Computing 

6.1 Implementation Methods of QR Decomposition and 

Stochastic Computing  

QR decomposition is widely used in MIMO detection systems to reduce the search 

complexity. The most commonly used QR decomposition [53-55] algorithms are the 

Gram-Schmidt process, the Householder transformation and Givens rotations. Since 

Givens rotations do not require inversion or square root calculation, they are often used 

for hardware implementation. The matrix elements involved in Givens rotations consist 

of trigonometric functions. More generally, trigonometric and hyperbolic functions are 

required in many computational applications. 

 This chapter presents a FPGA implementation of trigonometric and hyperbolic 

functions using the stochastic computing methodology.  The results are compared to the 

well-known CORDIC approach. Both designs are synthesized and implemented on a 

Xilinx Virtex-5 FPGA. The results are compared in terms of delay and area for various 

input data widths. The results show that the proposed design method has advantages over 
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the traditional CORDIC algorithm. Moreover, the same circuit can be used for all 

functions with only a change in coefficient values. In addition, it is more tolerant of soft 

errors (bit flips) than CORDIC implementations. 

6.2 Stochastic Computing Implementation of Trigonometric 

and Hyperbolic Functions 

  

There is a high demand for reducing the area of VLSI hardware designs so that the 

implementation cost can be reduced. Trigonometric and hyperbolic functions, which are 

used in a wide array of applications, are among the most area-consuming portions of 

some designs. The most convenient way to implement these functions is to use a look-up 

table [56]. However, such a table needs considerable memory to store the table values, 

which accounts for the majority of the hardware overhead. The CORDIC algorithm, 

invented by Jack E. Volder more than fifty years ago [57], has drawn considerable 

attention due to its easy implementation in hardware using only adders and shifters [58]. 

Therefore, CORDIC units are commonly used in systems that require a low hardware 

cost. However, in some applications even the CORDIC method may not be able to satisfy 

the area requirements. 

 Stochastic computing has drawn much attention recently due to its efficiency in 

hardware cost. Also, with the downsizing of semiconductor feature sizes due to Moore's 

Law, soft errors caused by ionizing radiation have become important, especially for 

circuits operating in harsh environments. Stochastic computing moderates the output 

errors caused by bit-flips. It has been used in applications such as image processing [59] 
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and LDPC decoding [60].  Recently, a novel structure used to compute mathematical 

functions has been proposed by Li et al. [59]. By using registers and multiplexers, the 

state machine architecture of stochastic computing can be applied for implementing 

various trigonometric and hyperbolic functions. A specific function is obtained by using 

an appropriate set of coefficient values. Thus, the same design structure can be reused for 

many different applications. In this paper, several different trigonometric and hyperbolic 

functions are implemented and compared using the stochastic computing and CORDIC 

methods.  The superior tolerance to soft errors by the stochastic computing technique is 

also demonstrated. 

6.3 Proposed Stochastic Computing Method 

The Stochastic Computational Element (SCE) makes use of conventional digital logic 

gates to perform computations on stochastic bits streams, i.e., random bits [59]. There are 

two coding formats for stochastic computing. One is unipolar and the other one is bipolar. 

Here we use unipolar coding format. In a unipolar format, the range of a real number x is 

0≤x≤1. The probability that each bit in the stream is one is P(X = 1) = x and, 

consequently, P(X=0) =1-x. In a stochastic bit stream, if there are k ones out of a length 

N, then the real value represented by the bit stream is k/N. Li et al. proposed a general 

approach to synthesize a linear finite state machine (FSM) based SCE for a target 

function and applied it to image processing [59].  

 In this paper, we adopt the linear FSM structure in [59] to construct the 

trigonometric functions sine, cosine, arctangent, and their hyperbolic counterparts. The 



 

 82 

functions are implemented in sequential logic with the FSM shown in Figure 6.1. Here, in 

order to achieve appropriate precision, we use 16 states. There are two inputs to the FSM, 

namely X and K. Each of them takes the form of a unipolar stochastic bit stream. Their 

actual values are the probabilities of 1s among all the bits and are each in the range of   

[0, 1]. There is one output t indicating the current state number St (0 < t < 15). The FSM 

has 16 possible output values, encoded as a 4-bit binary number t. In Figure 6.1, the 

number below each state symbol St  is the decimal output value when the current state is 

St. The numbers along the arcs represent the transition condition, with the first value 

corresponding to the input X and the second value corresponding to the input K.  
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Figure 6.1 FSM transition diagram 

 

 Since the state transition is a special case of a Markov chain [61-62], the output of 

the FSM is the encoded output St. It depends on and only on the current state. 

 Let PX, PK, Pt represent the probability of ones in X, K, and t, respectively. Pt 

represents the probability of FSM output is t. It is derived that [59]  
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 The basic structure of the stochastic computing circuit is shown in Figure 6.2 

[59]. As shown in Figure 6.2, it has two inputs X and K and one output Y.  X and K are the 

inputs of the FSM. The current state number is the output t and it is used as the select 

inputs to the multiplexer. The multiplexer has 16 data inputs (ω0, ω1, …, ω15).  If the 

FSM has a current state St (0 ≤ t ≤15), then the output Y of the multiplexer will be 

selected as ωt. 

 X, K, ωt and Y are all stochastic bit streams. Let Pωt and PY denote the probability 

of ones in ωt and the probability of ones in Y, respectively. As seen from Figure 6.2, the 

probability input ωt to the multiplexer is selected when the current state output is St. It is 

derived that [59]  

15

0

Y t t

t

P P P


                                                               (6.2) 

 The method for calculating PK and Pωt for a given function is given in [59]. After 

we obtain the optimal PK and Pωt, the stochastic bit streams K and ωt are generated to 

implement the target function T(PX) stochastically. 
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Figure 6.2 The circuit for synthesizing target function 

 

 The coefficient values of Pω0, Pω1, …, Pω15 and PK for the trigonometric 

functions are pre-calculated and are given in Table 6.1. We have calculated these values 

using the quadratic programming method described in [59]. The coefficients can be 

stored in a look-up-table if flexibility is needed, or they can be hardwired if desired. 
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Table 6.1 Coefficient values for various functions 

Func. sin cos atanh sinh cosh arctanh 

Pω0 0 1 0 0 0.16 0 

Pω1 0.95 1 0.79 0.12 0.16 0.02 

Pω2 1 0.76 0.66 0.08 0.23 0.02 

Pω3 0.35 0.97 0.22 0.10 0.17 0.05 

Pω4 0 0.83 0.78 0.11 0.24 0 

Pω5 1 0.95 0.44 0.07 0.15 0 

Pω6 1 0.79 0.39 0.11 0.25 0.05 

Pω7 1 1 0.88 0.09 0.16 0.01 

Pω8 1 0.53 0.96 0.28 0.32 0.35 

Pω9 1 0.37 0.98 0.72 0.68 0.98 

Pω10 1 0.53 0.93 0.31 0.34 0.37 

Pω11 0 0.43 0.99 0.63 0.69 0.44 

Pω12 0.35 0.48 0.95 0.35 0.26 0.75 

Pω13 1 0.38 0.97 0.69 0.85 1 

Pω14 0.95 0.69 0.96 0.19 0.07 0.12 

Pω15 0 0 0.98 0.91 0.98 0.97 

PK 0.3125 0.4375 0.1875 0.3125 

 

0.3750 0.0625 

6.4 Simulation Results  

The simulations are based on the state machine in Figure 6.2. Simulation results of all the 

functions and their comparisons to the target functions are shown in Figure 6.3.  

 Due to the fact that the input and output must each be within the range of [0,1] in 

stochastic computing, we multiplied both axes by scaling factors in order to ensure the 

coordinate values are within the required range. 
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Figure 6.3 Simulation results compared with target functions: (a) sin, (b) cos, (c) sinh, (d) 

cosh, (e) atan, (f) atanh 
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The trigonometric functions have periodicity and symmetry properties, such as 

even symmetric or odd symmetric, etc. We only plot curves within part of a period (for 

periodic functions such as sin and cos) or plot a portion of the curve for the aperiodic 

functions. By using different scale factors, we can determine the curves over a larger span 

of the horizontal axis. From the figure, it can be seen that, all of simulation curves nearly 

overlap with the target curves. The approximation error for the stochastic logic 

computation is 1.79e-11. This small error is due to the relatively large 16-state structure 

of the state machine, since the error is reduced as more states are used. 

 All of our designs have been implemented on a Xilinx Virtex-5 Xc5clx50t FPGA. 

The Xilinx Core Generator [61] was used to synthesize separate CORDIC cores for sin, 

cos, arctangent and their hyperbolic counterparts, and the stochastic design was 

implemented using the structure of Figure 6.1. 

 We have implemented all of these functions in several different data widths, 

namely 10 bits, 9 bits, and 8 bits. The results for delay, number of slices, maximum clock 

cycles, and the delay-area product are given in Tables 6.2, 6.3 and 6.4, for the cases of 

10-bit data, 9-bit data and 8-bit data, respectively. 

 The second column in each of the tables gives the system delay, in clock cycles. 

The third and fourth columns show the number of FPGA slices and the maximum clock 

periods at which the circuits can run, respectively. The fifth column gives the product of 

delay and area, which is the metric used to compare circuit effectiveness. The final 

column gives the normalized product of delay and area expressed as a percentage, with 

the stochastic implementation normalized to 100%. In the majority of cases, the 
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stochastic computing method outperforms the CORDIC algorithm in terms of the delay-

area product, particularly for the 8-bit and 9-bit data widths. 

Table 6.2 Delay and area comparison for 10-bit inputs 

Function 
No. of clk 

(cycles) 

Area 

(slices) 

Clk cycle 

time (ns) 
delay×area Percentage  

sin or cos 13 123 3.699 5914.701 124.27 

sinh or cosh 13 79 3.648 3746.496 78.72 

arctangent  13 103 3.646 4881.994 102.57 

hyperbolic 

arctan 
13 77 3.730 3733.73 78.45 

stochastic 

computing 
1024 4 1.162 4759.552 100 

 

Table 6.3 Delay and area comparison for 9-bit inputs 

Function 
No. of clk 

(cycles) 

Area 

(slices) 

Clk cycle 

time (ns) 
delay×area Percentage 

sin or cos 13 118 3.699 5674.266 238.44 

sinh or cosh 13 80 3.648 3793.92 159.423 

arctangent 13 107 3.646 5071.586 213.11 

hyperbolic 

arctan 
13 85 3.730 4121.65 173.19 

stochastic 

computing 
512 4 1.162 2379.776 100 
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Table 6.4 Delay and area comparison for 8-bit inputs 

Function 
No. of clk 

(cycles) 

Area 

(slices) 

Clk cycle 

time (ns) 

delay×area Percentage 

sin or cos 13 112 3.699 5385.744 452.63 

sinh or cosh 13 75 3.648 3556.8 298.92 

arctangent 13 108 3.646 5118.984 430.21 

hyperbolic 

arctan 

13 77 3.652 3733.73 313.79 

stochastic 

computing 

256 4 1.162 1189.888 100 

 

6.5 Soft Error Tolerance  

 

According to [63], there are three kinds of errors that are introduced by the nature of 

stochastic logic. They are state machine approximation error, quantization error and 

random fluctuation error. Among these errors, the random fluctuation error is the most 

significant. As mentioned earlier, soft errors are caused by bits flipping due to natural 

disturbances in the environment. We tested the output under various error conditions, and 

compared the results with those of a CORDIC implementation.  

 We define the soft error ratio to be the percentage of unwanted bit flipping. For 

example, a 5% error rate means 5% of the bits are flipped during process.  For 10-bit 

data, in the stochastic computing case 1024 bits will represent a number, so with a 5% 

error rate there are 0.05*1024=51 bits are flipped to their opposite values.   
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 In Figure 6.4, the 10-bit stochastic computing implementation results for the sine 

function are compared to the ideal curves. The curves are for 0%, 0.5%, 1%, 5%, 10% 

and 15% soft errors, respectively.  For the input on the x-axis, we uniformly obtain 1024 

points from 0 to π (normalized to 0 to 1). For each input point, 1000 error trials were 

performed, which means each of the 1000 1024-bit numbers are randomly flipped with a 

certain error rate. Then, the root mean square (RMS) errors are obtained from the 1000 

trials results by comparing the outputs to the desired results.  

 In Figure 6.4 (a), the error injection rate is 0, which mean there is no soft error 

injection. However, the implementation result still has a small difference with the optimal 

target curve. These errors are caused by the other previously mentioned error sources. It 

is evident from Figure 6.4 that with increasing rates of soft errors, the agreement becomes 

worse. However, compared to CORDIC, this deterioration is much less.  

 Tables 6.5, 6.6 and 6.7 present the error results for Stochastic Computing and 

CORDIC implementations for several different soft error rates. 
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Figure 6.4 Sin function implementation results compared with target function with soft 

error ratio (%): (a) 0, (b) 0.5, (c) 1, (d) 5, (e) 10, (f) 15 
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 It can be seen from Tables 6.5, 6.6 and 6.7 that the stochastic computing 

technique has better error tolerance than CORDIC when the soft error rate is greater than 

1%. Also, as the soft error increases, the error tolerance characteristics become better on 

a relative basis compared to CORDIC. This is because for stochastic computing, each bit 

has the same weight, so that the effect of any single bit flip will not significantly affect 

the value. On the other hand, in the case of binary weighting used in CORDIC, there is a 

possibility that the flipped bit is one of the most significant bits of a number. If that 

should occur, then the effect on the error would be large. 

 

 

Table 6.5 The average output error (%) of proposed implementation and CORDIC 

implementation for functions with 10-bit inputs 

Function 

Injected Error 

1% 2% 10% 

S.C. Cordic S.C. Cordic S.C. Cordic 

atan 2.70 11.50 2.30 15.40 7.80 33.90 

atanh 3.48 10.60 3.50 14.80 5.90 32.70 

cos 2.80 12.70 2.80 8.50 6.90 32.10 

sin 4.40 6.50 5.20 12.60 15.60 26.70 

cosh 3.04 6.80  2.93 5.00 7.65  11.90 

sinh  2.30 9.90 3.57 7.30 7.52 13.80 

Average 3.12 9.70 3.38 10.60 8.56 25.20 
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Table 6.6 The average output error (%) of proposed implementation and CORDIC 

implementation for functions with 9-bit inputs 

Function 

Injected Error 

1% 2% 10% 

S.C. Cordic S.C. Cordic S.C. Cordic 

atan 3.16  4.10 3.76 10.23 5.67 17.80 

atanh 4.71 8.10 4.93 12.48 8.01 30.50 

cos 4.35 5.90 4.43 14.53 7.53 29.77 

sin 6.68 9.62 6.88 10.38 12.12 28.77 

cosh 4.16  3.69 3.67 6.89  9.35 11.17 

sinh 3.81 4.33 6.89 7.42 6.35 14.72 

Average 4.48 5.96 5.09 10.32 8.17  22.12 

 

Table 6.7 The average output error (%) of proposed implementation and CORDIC 

implementation for functions with 8-bit inputs 

Function 

Injected Error 

1% 2% 10% 

S.C. Cordic S.C. Cordic S.C. Cordic 

atan 4.97 8.90 4.85 9.13 7.05 28.62 

atanh 6.87 8.72 6.75 17.33 7.70 24.98 

cos 4.91 11.28 5.74 18.78 9.23 35.03 

sin 9.01 14.36 8.62 14.54 17.20 25.66 

cosh  5.00 5.18  5.20 4.10 7.14  10.35 

sinh 5.15  6.48 4.86 7.41 10.28 15.95 

Average 5.99 9.15 6.00 11.88 9.77 23.43 
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6.6 Conclusion 

We have applied the stochastic computing approach to efficiently implement several 

different trigonometric and hyperbolic functions. Our stochastic computing 

implementation and the CORDIC cores have all been implemented on a Virtex-5 FPGA. 

The results show that the proposed stochastic computing approach achieves considerably 

lower delay-area products than the traditional CORDIC method, especially for smaller 

data width applications.  In addition, the results are more robust in the presence of soft 

errors. 
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Chapter 7  

Conclusions  

 

 

By using multiple antennas at both the transmitter and receiver sides, MIMO systems 

obtain diversity gain or multiplexing gain without requiring additional bandwidth. 

However, with the increasing requirements on the data transmission rate, reliability and 

implementation cost for handset devices, it is a challenging problem to design MIMO 

detectors that are both hardware-friendly and of high performance.  This thesis has 

described several approaches for designing high-performance, low-complexity MIMO 

detection algorithms for modern communication systems. 

  Performance and hardware complexity are the two main metrics in the design of a 

MIMO detector. Previous work on implementation aspects of MIMO detection mainly 

focused on techniques that require low implementation complexity and hence, achieve 

relatively poor performance. In this thesis, we investigated efficient MIMO detection 

schemes that are able to approach near optimal performance.  

 In Chapter 2, we developed an efficient and flexible complex-valued enumeration 

scheme for K-best MIMO detection. The new method is based on the use of simple 

lookup tables, and it is fully scalable for a wide range of K-values and constellation sizes. 
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It has a complexity that scales sub-linearly with the constellation size and which at the 

same time attains performance that is close to optional.  

 A high performance PPTS detector for MIMO systems was proposed in Chapter 3. 

The bidirectional PPTS detector can effectively reduce detection errors. The error 

analysis between single direction and bidirectional PPTS detectors was given. 

Additionally, the proposed detector has a 0.1dB FER gain compared with traditional 

PPTS detectors.  

 In Chapter 4, we designed a novel bidirectional processing soft-output MIMO 

detection algorithm. It adopts features from several different types of fixed complexity 

tree search procedures. The candidates used to calculate soft likelihood information are 

determined in parallel from two stages of tree searching. Each stage corresponds to one 

direction of the path selection process. The proposed approach achieves a higher 

performance than previously proposed algorithms while, at the same time, having a 

comparable computational cost. This algorithm has a good tradeoff between performance 

and complexity objectives. Furthermore, its parallel and fixed throughput characteristics 

make it friendly for hardware implementation. 

 Chapter 5 introduced a novel MIMO detection algorithm with low complexity and 

without requiring QR decomposition. It fulfills the requirements of LTE and WiFi even 

in worst-case situations when the environment causes the channel information to change 

for all sub-carriers. The proposed algorithm only has a 0.5dB SER performance loss 

compared to ML detection and it is achieved with a greatly reduced computational 

complexity.  Moreover, the algorithm is scalable to large QAM constellation sizes. After 
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that, a 3x3 MIMO system with a 16QAM detector architecture is designed, and the 

latency and hardware costs are estimated. 

 In Chapter 6, we introduced a stochastic computing technique, which has drawn 

much attention in recent years because of its efficiency in hardware cost as well as its 

ability to moderate errors caused by bit-flips.  Specifically, we investigated the stochastic 

computing implementation of trigonometric and hyperbolic functions, of which the 

former may be applied in QR decomposition. Using only simple registers and 

multiplexers, the state machine architecture of stochastic computing was adapted to the 

computation of various trigonometric and hyperbolic functions. An FPGA 

implementation of trigonometric and hyperbolic functions using the stochastic computing 

was compared to the well-known CORDIC approach. Both designs were synthesized and 

implemented on a Xilinx Virtex-5 FPGA. The proposed method has advantages over the 

traditional CORDIC algorithm in terms of delay and area for various input data widths. 

Moreover, the same circuit can be used for all functions with only a change in coefficient 

values. Furthermore, it is more tolerant of soft errors (bit flips) than a CORDIC 

implementation. This fault tolerance advantage becomes more significant as the number 

of soft errors increases. Future work in this area may include the combination of 

stochastic computing with MIMO detection.  
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