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Abstract—In this paper, a comprehensive power performance
analysis of a novel Adaptive Switching Algorithm for an iterative-
MIMO system is investigated with the prime goal of minimizing
energy consumption in the receiver. The algorithm works by
switching between a high performance detection method, the
Fixed Sphere Decoding, and a much lower complexity algorithm,
the Vertical-Bell Laboratories Layered Space-Time Zero Forcing
technique, controlled by a threshold according to the mutual
information calculated during each transmission. Results show
significant improvements over current non-adaptive receivers,
where energy savings of more than 60% can be obtained using
on the latest Xilinx®Virtex-7 FPGA hardware.

I. INTRODUCTION

Decoding received signals from an iterative-Multiple Input
Multiple Output (MIMO) wireless system is computationally-
expensive. Receiver performance is not only based on the
success rate of the receiver recovering the data sent by the
transmitter, but also in achieving this with minimal energy
consumption. A system that could operate with low energy
consumption whenever feasible is advantageous. Such detec-
tion algorithms currently active include Zero Forcing (ZF)
with Decision Feedback (ZF-DF) [1], Sphere Decoder (SD)
[2], Semidefinite-Relaxation (SDR) [3] etc. Although most
work well in the detection process, they lack adaptivity,
whereby, most detectors behave independently of the received
signal characteristics and current channel conditions, which
may waste computational resources. Several detection methods
have been proposed to date to overcome this problem, how-
ever, one that could fit perfectly with MIMO characteristics
has not been very well investigated. Most publications focus
on saving power by using the Signal-to-Noise Ratio (SNR)
[4], channel matrix condition number [5] or reducing the
number of decoding iterations. These criteria are not enough to
optimize the information on the entire MIMO setup. To tackle
this, this paper considers the Mutual Information (MI) between
the MIMO transmitters and receivers so that the diversity of
the channels is fully exploited. Combining the MI with the
noise level give better information regarding a channel in
comparison to using either condition number or SNR alone.

This paper builds on the work of [7] by implementing the
Adaptive Switching Algorithm onto an Field Programmable

Gate Arrays (FPGA) hardware, in hope to gain further power
and energy savings during hardware implementation. This gain
is on top of the energy savings due to the switching receiver
described in [7]. The FPGA is chosen as an exemplar platform
for rapid prototyping purposes. Generally, even though it is
more efficient to use an Application-Specific Integrated Circuit
(ASIC) implementation, they usually require very long design
times. FPGA is expected to produce generally similar trends
and trade-offs with a fraction of the design time as other
hardware platforms due to its re-programmability. This means
it can provide a suitable platform for evaluating the imple-
mentation of the Adaptive Switching method in an iterative-
MIMO system. The key to power savings comes from the
algorithm exploiting the adaptivity in the detector according
to the current conditions. The main contributions of this paper
are summarized as follows:

• Realistic power and energy savings trends of the Adaptive
Switching Algorithm are computed for example hardware
circuitry.

• Detailed power analysis and the potential benefits of
Sleep Modes and Parallelization as power savings tech-
niques show more promising results in contrast to the
Voltage and Frequency Scaling.

The rest of the paper is organized as follows; the Adaptive
Switching Algorithm and its hardware design is given in
Section II; Section III outlines several power saving methods
evaluated in this paper; Section IV discusses the MIMO system
under consideration; whilst the key findings are summarized
in Section V; lastly, Section VI concludes the paper.

II. ADAPTIVE SWITCHING ALGORITHM

The Adaptive Switching Algorithm [7] is demonstrated
with two well-known detection algorithms, namely the Fixed
Sphere Decoder (FSD) [6], and the Vertical-Bell Laboratories
Layered Space-Time [1] with the Zero Forcing (V-BLAST/ZF)
technique. Switching between algorithms is determined by
thresholds pre-calculated from the MI between the transmitter
and the receiver, according to the real-time channel conditions.



A. Breakdown of Algorithm Design

1) V-BLAST/ZF: V-BLAST/ZF [1] is best deployed in high
SNR environments, when the chances of successful decoding
are high. Figure 1 illustrates the block diagram of the algo-
rithm during implementation.

Fig. 1. Breakdown of V-BLAST/ZF Implementation Model

The algorithm minimizes the impact of noise by re-ordering
the beamformer matrix, G, which is the Moore-Penrose pseu-
doinverse of H, with respect to the received signal strength. It
processes the symbols, r, according to this order i.e. handling
the highest SNR antenna first. The signals are quantized to the
nearest estimates, Q, using the quantizer function followed by
linear combinatorial nulling and successive cancellation until
all signals, ŝ, are decoded.

2) FSD: The more complex detection method, the FSD,
published in [6] can be viewed as running multiple V-
BLAST/ZF detectors in parallel, each checking different trans-
mit data combinations. Figure 2 provides the breakdown of
the algorithm. The channel pseudoinverse, G, is obtained by
applying the QR decomposition to the channel matrix, H.

Fig. 2. Breakdown of FSD Implementation Model

The algorithm traverses down the tree, i, until the end of
the tree i.e. the leaf is discovered, computing the Euclidean
Distance (ED). FSD determines beforehand the number of
nodes s̃ around signal r that will be explored independent
of the noise level, which means the search of an FSD is fixed
for each candidate per antenna level. This yields an algorithm
suitable for parallel implementation. The symbols ŝ associated
with the minimum ED are the final solution.

3) Adaptive Switching Algorithm: The main idea behind
the Adaptive Switching Algorithm is shown in Figure 3.
The Threshold Control Block calculates the value of the
accumulated MI, denoted by Ī, obtained in the transmitter in
relation to the receiver and activates the appropriate detector,
either V-BLAST/ZF or FSD. Within the Threshold Control
Block sits the MI calculation as shown in Equation (1).

Ī(H) , log2 det

(
I +

HHT

N0

)
(1)

This calculation assumes the channel matrix H is perfectly
known at the receiver with independent elements representing

a block Rayleigh fading propagation environment, where T
denotes the transpose operator and N0 is the power of ad-
ditive, independent and identically distributed (i.i.d.) circular
symmetric complex Gaussian noise.

Fig. 3. Breakdown of Adaptive Switching Algorithm Implementation Model

The accumulated MI, Ī, is dependent on the current channel
conditions i.e. the noise level, N0. The thresholds, T1 and T2,
are pre-determined. If the MI computed is higher than the
T1 threshold, V-BLAST/ZF is chosen. FSD is selected when
the transmitting environment is acceptable, which is when the
MI value is in-between T1 and T2. When the channel is too
poor for reliable recovery of the received signals, the detector
block would send an Automatic Repeat reQuest (ARQ) for
a re-transmission, avoiding forward error correction decoding
when this is expected to fail, however, formally characterizing
this decoding effect is out of scope of the present paper.

III. POWER SAVING TECHNIQUES

This paper investigates several power saving techniques
when the Adaptive Switching Algorithm is implemented in
FPGA hardware.

A. Voltage and Frequency Scaling

The power and energy consumption of a circuit depends on
the number of computations performed over a fixed duration.
By lowering the number of computations and varying the
supply voltage to lower the internal clock frequency of the chip
at run-time, the overall power consumption is lowered. The
basic principle detailed in [8] states that the power consumed
by running the operation at a slower speed is less than to run
it at full power and finishing early. This study considers only
the dynamic power however, discarding other components of
power such as leakage, idle, overhead, static as well as the
power needed to activate the chip. This present paper attempts
to take all power components into consideration.

B. Sleep Mode

Sleep Mode is when the electronics operate in idle mode
with a very low power consumption so they appear switched
off for a certain period. When calculations do not possess the
same task length and/or processing speed, they do not finish
processing at the same time, meaning for some proportion
of the time, processor cores need not be active at all times.
Therefore, switching off the cores could be a means of saving
power. By running the application as fast as possible, longer
Sleep Modes can be deployed. This is a direct contradiction



to the findings of [8], where the reduction in dynamic power
is inferior to the savings gained by scaling above. This paper
attempts to discover, which power savings mode is best when
other power components are also considered.

C. Parallelization

Part of optimizing a system in current chip designs is to
construct the algorithms in such a way that parallel operations
are possible. Using multiple processors provide a trade-off be-
tween utilizing more chip space and increasing the throughput
of the algorithm. The cores split and share the computational
load evenly amongst them. Therefore, each core performs only
a fraction of the total computation depending on the number of
cores available [8]. Furthermore, hardware architectures that
can perform multiple tasks slowly in parallel should be more
power efficient in comparison to computing a single operation
at a higher clock speed [9]. Therefore, this paper will study
how to combine the level of Parallelization with Voltage and
Frequency Scaling technique.

IV. EXPERIMENTAL SETUP

The experiment uses a software/hardware setup using Mat-
lab™ and Xilinx® System Generator. The iterative-MIMO
system under consideration comprises M = 4 transmitters and
N = 4 receivers based on a Bit-Interleaved Coded Modulation
(BICM) setup, which has a transmit frame size of Ku = 1,024
bits transmitting over a random independent Rayleigh fading
propagation channel, H, with independent fading elements,
which is perfectly known at the receiver.

The transmitted bits, Ku, are encoded using an iterative-
turbo scheme at rate of Rc = 1/2, which are then interleaved
randomly to give, Ka coded bits, before mapping into a
Quadrature Amplitude Modulation (QAM) constellation, O,
of J = 16, forming a sequence of Ks = Ke/ log2 J symbols.
The 512 symbols are divided equally between the transmitters
for 100,000 channel realizations. This part of the system is
simulated using Matlab™. At the receiver, where the focus
of this paper lies, is where the Adaptive Switching Algo-
rithm detector is implemented using Xilinx®Virtex-7 chip.
The receiver FPGA implementation is obtained using the
Xilinx® System Generator.

V. RESULTS AND FINDINGS

The total resource allocation of the Adaptive Switching Al-
gorithm is given in Table I. The power usage can be calculated

TABLE I
RESOURCE ALLOCATION OF THE ADAPTIVE SWITCHING ALGORITHM

XILINX®VIRTEX-7 : XC7VLX330TFFG1157

Logic Resource Utilization Used Available Utilization
Slice Registers 12,528 408,000 3%

Flip Flops 4,361 51,000 8%
4-Input LUTs 11,429 204,000 5%

DSP48E 132 1,120 11%
Memory (RAM) 41 1,500 2%

when the algorithm is implemented on the Xilinx® System

Generator using the Xilinx® XPA™ tool. The power readings
specified by the tool is generally dominated by the dynamic
and static power terms, where dynamic is the power spent
within a chip due to toggling of transistors, the value of
voltage, the capacitance and is a function of the FPGA clock
frequency. Static power is consumed due to transistor leakage
and is highly dependent on the manufacturing process, the
ambient temperature of the circuit, and the operating voltage.
In order to determine the effectiveness of the algorithm, instead
of power, a better parameter to consider is the energy, which is
the power multiplied by the processing time. This information
gives a better understanding of the system’s efficiency in
transferring the same size data packets within an allocated
amount of time. Since this paper studies the energy efficiency
of the system instead of maximizing the throughput, it is
assumed that the system adopts low channel utilization policy,
where packets are decoded at a maximum time of 20 µs.

Fig. 4. Energy Trends with (a) the voltage applied and (b) the variation of
clock frequencies on the Xilinx®Virtex-5 and Virtex-7 respectively

The energy trends are shown in Figure 4, where the
dynamic and static energy consumption are compared on
Xilinx®Virtex-5 [7] and Virtex-7. By comparing Figure 4(a),
similar trends for scaling up the voltage in both chips can be
observed, whereby, the energy is directly proportional to the
voltage. When comparing the frequency however shown in
4(b), the energy consumption decreases with every frequency
increment. From now on, the only chip under consideration is
the Xilinx®Virtex-7. First, the main difference to note here is
that dynamic energy dominates and therefore, the Voltage and
Frequency Scaling may be able to save power in the detector
[8]. Secondly, “high performance” and “low power” modes
can be obtained by taking the extreme ends of the scaling
ranges. If running the algorithm at the highest possible mode
would save power, then the Sleep Mode would be an energy
efficient method for the algorithm. Lastly, due to the small
percentage of the area utilization, summarized in Table I,
the algorithm has the potential for Parallelization, i.e. having
multiple copies of the detector. This paper attempts to instigate
the three techniques mentioned in Section III and determines
if they might increase energy savings.

A. Voltage and Frequency Scaling

Figure 4 shows that, due to the higher level of dynamic to
static energy, where it is approximately six times larger, the



overall energy of the circuit can be optimized. However, when
considering the total energy of the chip, this might no longer
be the case.

Fig. 5. Voltage and Frequency Scaling Effects where (a) and (b) are with
voltage applied, (c) and (d) are with the variation of frequencies respectively

Figure 4(b) confirms this as the energy required to run
the task at 400 MHz is less than 0.6 µJ in comparison to
2.9 µJ at 100 MHz, giving a difference of more than 65%.
From this, it can be said that running the algorithm as quickly
as possible at the lowest possible voltage and switching it
off would be better than running it at a slower clock speed.
The total power and energy consumption during the Voltage
and Frequency Scaling are given in Figure 5. Similar to the
previous experiment, the scaling of voltage is proportional to
the power and energy consumption, which can be seen in
Figure 5(a) and 5(c). Taking a clock speed of 200 MHz as
an example, at voltages of 0.97 V and 1.03 V, the latter gives
an increased power usage of 12%. Though minimal, it is still
an undesired result. In contrast, Figure 5(b) illustrates that
even with a minimal increment of power in frequency scaling,
the reduction in energy shown in Figure 5(d) is substantial.
Looking at a voltage of 0.99 V, running the algorithm four
times faster provides 51% energy savings.

Moreover, Figure 5(d) shows the total energy required to
decode the same packet of data is less, due to the faster
decoding process. It suggests that running the algorithm at full
speed would be better than to finish processing just in time.
This means that instead of having it running at lower power
and taking the maximum 20 µs to decode the data packet,
the system would finish processing in less than 3 µs and be
put into Sleep Mode for 78% of the time. This concludes that
voltage scaling is not suitable as a power savings technique
for the Adaptive Switching Algorithm on an architecture where
static power is a significant component of power consumption.

B. Sleep Mode
Taking the extreme cases of the chip’s lower and upper limit

of voltage and frequency operations into consideration, “low
power” and “high performance” modes can be evaluated. Table
II reviews the parameters of the Xilinx®Virtex-7 when running
the Adaptive Switching Algorithm in two separate modes. The
power usage analyzed by the Xilinx® XPA™ tool are given
as 1.5 W and 2.2 W for low power and high performance
modes respectively, contributing to 19% increase in power
usage when high performance mode is selected. The total
maximum energy saving is equivalent to 69%.

TABLE II
LOW POWER AND HIGH PERFORMANCE PARAMETERS

Operation Mode/ Low Power High Performance
Parameters

Core Voltage 0.97 V 1.03 V
Operating Frequency 60 MHz 400 MHz

Max Throughput 240 Mbps 1200 Mbps
Total Power Consumption - 19%

Total Energy Savings - 69%

This section confirms the previous conclusion where, it
takes less energy to transfer the same data packet in “high
performance” mode. Therefore, by running the algorithm as
fast as possible and then switching the cores off would save
more energy, and thus, Sleep Modes are a good way to save
energy (and power) in the detector.

C. Parallelization
The Adaptive Switching Algorithm has quite low complex-

ity and only uses a small percentage of the Xilinx®Virtex-7 as
evident in Table I. This suggests promising results for parallel
implementation, which are shown in Figure 6.

Fig. 6. Results for Parallel Implementation, (a) and (c) with the voltage
applied, (b) and (d) with the variation of frequencies respectively

Multiple copies of the Adaptive Switching Algorithm are
utilized with one core matching one copy of the algorithm



being used on the FPGA. As predicted, the more cores are
used on the FPGA, the more power the chip needs as evident
in Figure 6(a). This is due to the extra power needed to activate
the multiple cores on the chip. However, the increase in power
consumption is small, at maximum, 20%, with every quadruple
number of cores used, which is evident at every voltage point.
When it comes to energy however, although voltage scaling
has little effect, the parallel setup does save significant overall
energy savings seen in Figure 6(d).

TABLE III
“LOW POWER” AND “HIGH PERFORMANCE” PARALLEL

IMPLEMENTATIONS

The same can be said in frequency scaling, evident in Figure
6(b) and Figure 6(d), for power and energy respectively, where,
taking frequency of 200 MHz as an example, running four
cores instead of one gives 42% energy savings with only
a 14% increase in power. The energy saved whilst running
parallel cores in comparison to running a single thread is
substantial, ranging from 3% to 68% across all frequencies,
with particularly large differences at lower clock frequencies.
These results show that, Parallelization is a good way to
minimize the energy consumption.

A combination of the techniques is evaluated to see if
more energy savings can be gained. Table III summarizes
the parameters of the power consumption and energy savings
when the algorithm is run in parallel on “low power” and “high
performance” modes, calculated against the “low power”,
single core baseline. The “low power” mode in fact uses more
energy to process the same data packet in comparison to the
“high performance” mode. Moreover, Parallelization offers
significant energy savings regardless of which mode is on,
with a minimal increase in power to activate the extra cores.
For example, by using four cores, in “low power” mode, the
single core design uses 55% more energy than its multicore
counterpart, with only a 6% increase in power.

Fig. 7. Modes Comparison on Parallel Implementation

Figure 7 shows the energy used and time needed to decode
the data packet received. These can be calculated from the
power usage listed in Table III. Parallelization causes the chip

to use less energy on four cores, giving a total energy savings
of 55% and 33% for considering separately the “low power”
and “high performance” modes respectively. With these re-
sults, it can be concluded that, the more cores deployed,
the more energy efficient the Adaptive Switching Algorithm
becomes. Instead of having one core running the algorithm
for the entire 20 µs, using four cores running at for a quarter
of the duration, and shutting them off for 75% of the time
would minimize the energy consumption. Furthermore, the
more cores being utilized, the more energy can be saved. When
combining Voltage and Frequency Scaling and Parallelization
techniques, i.e. comparing one core “low power” mode and
“high performance” multicore mode, with energy values of
30.4 µJ and 2.8 µJ respectively, saves a total of more than
80%. This shows that combining the two saving techniques
achieves significant combined energy savings.

VI. CONCLUSION

In contrast that running the detector at a slower speed
would improve energy consumption [8], when considering
the overall power usage, i.e. dynamic and static, the results
obtained for the Xilinx®Virtex-7 recommend the Adaptive
Switching Algorithm to be run as fast as possible and be put
into Sleep Mode. Additionally, the benefits of voltage scaling
are not significant as the limited voltage scaling range gives
a negligible difference in energy consumption. On the other
hand, the frequency scaling suggests that the algorithm works
best when running at the highest frequency so that it can be
put into Sleep Mode sooner, conserving energy. In addition, the
more cores are used, the faster the task completion, the faster
it can be put into idle mode, thus saves significant energy,
where more than 60% can be saved.
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