502 research outputs found

    A Survey of Processing Systems for Phylogenetics and Population Genetics

    Get PDF
    The COVID-19 pandemic brought Bioinformatics into the spotlight, revealing that several existing methods, algorithms, and tools were not well prepared to handle large amounts of genomic data efficiently. This led to prohibitively long execution times and the need to reduce the extent of analyses to obtain results in a reasonable amount of time. In this survey, we review available high-performance computing and hardware-accelerated systems based on FPGA and GPU technology. Optimized and hardware-accelerated systems can conduct more thorough analyses considerably faster than pure software implementations, allowing to reach important conclusions in a timely manner to drive scientific discoveries. We discuss the reasons that are currently hindering high-performance solutions from being widely deployed in real-world biological analyses and describe a research direction that can pave the way to enable this

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Evolutionary computation for software testing

    Get PDF
    A variety of products undergo a transformation from a pure mechanical design to more and more software and electronic components. A polarized example are watches. Several decades ago they have been purely mechanical. Modern smart watches are almost completely electronic devices which heavily rely on software. Further, a smart watch offers a lot more features than just the information about the current time. This change had a crucial impact on how software is being developed. A first attempt to control the rising complexity was to move to agile development practices such as extreme programming or scrum. This rise in complexity is not only affecting the development process but also quality assurance and software testing. If a product contains more and more features then this leads to a higher number of tests necessary to ensure quality standards. Furthermore agile development practices work in an iterative manner which leads to repetitive testing that puts more effort on the testing team. We aimed within the thesis to ease the pain of testing. Thereby we examined a series of subproblems that arise. A key complexity is the number of test cases. We intended to reduce the number of test cases before they are executed manually or implemented as automated tests. Thereby we examined the test specification and based on the requirements coverage of the individual tests, we were able to identify redundant tests. We relied on a novel metaheuristic called GCAIS which we improved upon iteratively. Another task is to control the remaining complexity. Testing is often time crucial and an appropriate subset of the available tests must be chosen in order to get a quick insight into the status of the device under test. We examined this challenge in two different testing scenarios. The first scenario is located in semi-automated testing where engineers execute a set of automated tests locally and closely observe the behaviour of the system under test. We extended GCAIS to compute test suites that satisfy different criteria if provided with sufficient search time. The second use case is located in fully automated testing in a continuous integration (CI) setting. CI focuses on frequent software build cycles which also include testing. These builds contain a testing stage which greatly emphasizes speed. Thus there we also have to compute crucial tests. However, due to the nature of the process we have to continuously recompute a test suite for each build as the software and maybe even the test cases at hand have changed. Hence it is hard to compute the test suite ahead of time and these tests have to be determined as part of the CI execution. Thus we switched to a computational lightweight learning classifier system (LCS) to prioritize and select test cases. We integrated a series of innovations we made into an LCS known as XCSF such as continuous priorities, experience replay and transfer learning. This enabled us to outperform a state of the art artificial neural network which is used by companies such as Netflix. We further investigated how LCS can be made faster using parallelism. We developed generic approaches which may run on any multicore computing device. This is of interest for our CI use case as the build server's architecture is unknown. However, the methods are also independent of the concrete LCS and are not linked to our testing problem. We identified that many of the challenges that need to be faced in the CI use case have been tackled by Organic Computing (OC), for example the need to adapt to an ever changing environment. Hence we relied on OC design principles to create a system architecture which wraps the LCS developed and integrates it into existing CI processes. The final system is robust and highly autonomous. A side-effect of the high degree of autonomy is a high level of automatization which fits CI well. We also gave insight on the usability and delivery of the full system to our industrial partner. Test engineers can easily integrate it with a few lines of code and need no knowledge about LCS and OC in order to use it. Another implication of the developed system is that OC's ideas and design principles can also be employed outside the field of embedded systems. This shows that OC has a greater level of generality. The process of testing and correcting found errors is still only partially automated. We make a first step into automating the entire process and thereby take an analogy to the concept of self-healing of OC. As a first proof of concept of this school of thought we take a look at touch interfaces. There we can automatically manipulate the software to fulfill the specified behaviour. Thus only a minimalistic amount of manual work is required

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    On the effect of exploiting gpus for a more Eco-sustainable lease of life

    Get PDF
    It has been estimated that about 2% of global carbon dioxide emissions can be attributed to IT systems. Green (or sustainable) computing refers to supporting business critical computing needs with the least possible amount of power. This phenomenon changes the priorities in the design of new software systems and in the way companies handle existing ones. In this paper, we present the results of a research project aimed to develop a migration strategy to give an existing software system a new and more eco-sustainable lease of life. We applied a strategy for migrating a subject system that performs intensive and massive computation to a target architecture based on a Graphics Processing Unit (GPU). We validated our solution on a system for path finding robot simulations. An analysis on execution time and energy consumption indicated that: (i) the execution time of the migrated system is less than the execution time of the original system; and (ii) the migrated system reduces energy waste, so suggesting that it is more eco-sustainable than its original version. Our findings improve the body of knowledge on the effect of using the GPU in green computing. © 2015 World Scientific Publishing Company

    Attentive Single-Tasking of Multiple Tasks

    Full text link
    In this work we address task interference in universal networks by considering that a network is trained on multiple tasks, but performs one task at a time, an approach we refer to as "single-tasking multiple tasks". The network thus modifies its behaviour through task-dependent feature adaptation, or task attention. This gives the network the ability to accentuate the features that are adapted to a task, while shunning irrelevant ones. We further reduce task interference by forcing the task gradients to be statistically indistinguishable through adversarial training, ensuring that the common backbone architecture serving all tasks is not dominated by any of the task-specific gradients. Results in three multi-task dense labelling problems consistently show: (i) a large reduction in the number of parameters while preserving, or even improving performance and (ii) a smooth trade-off between computation and multi-task accuracy. We provide our system's code and pre-trained models at http://vision.ee.ethz.ch/~kmaninis/astmt/.Comment: CVPR 2019 Camera Read

    Towards providing reliable job completion time predictions using PCS

    Full text link
    In this paper we build a case for providing job completion time predictions to cloud users, similar to the delivery date of a package or arrival time of a booked ride. Our analysis reveals that providing predictability can come at the expense of performance and fairness. Existing cloud scheduling systems optimize for extreme points in the trade-off space, making them either extremely unpredictable or impractical. To address this challenge, we present PCS, a new scheduling framework that aims to provide predictability while balancing other traditional objectives. The key idea behind PCS is to use Weighted-Fair-Queueing (WFQ) and find a suitable configuration of different WFQ parameters (e.g., class weights) that meets specific goals for predictability. It uses a simulation-aided search strategy, to efficiently discover WFQ configurations that lie on the Pareto front of the trade-off space between these objectives. We implement and evaluate PCS in the context of DNN job scheduling on GPUs. Our evaluation, on a small scale GPU testbed and larger-scale simulations, shows that PCS can provide accurate completion time estimates while marginally compromising on performance and fairness

    FaaSwap: SLO-Aware, GPU-Efficient Serverless Inference via Model Swapping

    Full text link
    The dynamic request patterns of machine learning (ML) inference workloads have driven an increasing trend towards exploiting serverless computing for scalable ML model serving. However, today's serverless platforms lack efficient support for GPUs -- provisioning functions on GPUs incurs extremely high overhead, forcing them to keep long-running even when idling for reduced cold starts. This leads to significant resource waste to perform ML inference and hinders the pay-per-use billing for GPUs. In this paper, we present FaaSwap, a serverless platform enabling fine-grained, request-level GPU sharing for resource-efficient ML inference. FaaSwap leverages model swapping to support fast inference execution at low resource cost. It keeps models in a host which has a large amount of cheap memory and quickly swaps models to GPUs when requested, reducing per-function keep-alive cost and enabling efficient GPU sharing across much more functions. FaaSwap also supports swapping models between GPUs for load balancing and improved inference performance. In FaaSwap, we design sophisticated request scheduling and memory management algorithms that efficiently exploit model swapping to reduce GPU cost and meet latency service-level objectives (SLOs) for all inference functions. We have implemented and integrated FaaSwap into Alibaba Cloud Function Compute (FC), one of the world's largest commercial serverless platform. Evaluation results show that FaaSwap can achieve low-latency model swapping, efficiently share a GPU across hundreds of functions, and satisfy per-function latency SLOs at scale

    Exploiting asymmetric multi-core systems with flexible system software

    Get PDF
    Asymmetric multi-cores (AMCs) are a successful architectural solution for both mobile devices and supercomputers. These architectures combine different types of processing cores designed at different performance and power optimization points, thus exposing a performance-power trade-off. By maintaining two types of cores, AMCs are able to provide high performance under the facility power budget. However, there are significant challenges when using AMCs such as scheduling and load balancing. This thesis initially explores the potential of AMCs when executing current HPC applications and searches for the most appropriate execution model. Specifically we evaluate several execution models on an Arm big.LITTLE AMC using the PARSEC benchmark suite that includes representative HPC applications. We compare schedulers at the user, OS and runtime system levels, using both static and dynamic options and multiple configurations, and assess the impact of these options on the well-known problem of balancing the load across AMCs. Our results demonstrate that scheduling is more effective when it takes place in the runtime system as it improves the user-level scheduling by 23%, while the heterogeneous-aware OS scheduling solution improves the user-level scheduling by 10%. Following this outcome, this thesis focuses on increasing performance of AMC systems by improving scheduling in the runtime system level. Scheduling in the runtime system level is provided by the use of task-based parallel programming models. These programming models offer programming flexibility as they consist of an interface and a runtime system to manage the underlying resources and threads. In this thesis we improve scheduling with task-based programming models by providing three novel task schedulers for AMCs. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with an existing state-of the art heterogeneous scheduler and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45x on a real 8-core AMC and up to 2.1x on a simulated 32-core AMC. Another enhancement we provide in task-based programming models is the adaptability to fine grained parallelism. The increasing number of cores on modern CMPs is pushing research towards the use of fine grained workloads, which is an important challenge for task-based programming models. Our study makes the observation that task creation becomes a bottleneck when executing fine grained workloads with task-based programming models. As the number of cores increases, the time spent generating tasks is becoming more critical to the entire execution. To overcome this issue, we propose TaskGenX. TaskGenX minimizes task creation overheads and relies both on the runtime system and a dedicated hardware. On the runtime system side, TaskGenX decouples the task creation from the other runtime activities. It then transfers this part of the runtime to a specialized hardware. From our evaluation using 11 HPC workloads on both symmetric and AMC systems, we obtain performance improvements up to 15x, averaging to 3.1x over the baseline. Finally, this thesis presents a showcase for a real-time CPU scheduler with the goal to increase the frames per second (FPS) of the game-play on mobile devices with AMC systems. We design and implement the RTS scheduler in the Android framework. RTS provides an efficient scheduling policy that takes into account the current temperature of the system to perform task migration. RTS solution increases the median FPS of the baseline mechanisms by up to 7.5% and at the same time it maintains temperature stable.Los procesadores multinúcleos asimétricos (AMC) son una solución arquitectónica exitosa para dispositivos móviles y supercomputadores. Estas arquitecturas combinan diferentes tipos de núcleos de procesamiento diseñados con diferentes propiedades de rendimiento y potencia. Al mantener dos o más tipos de núcleos, los AMCs pueden proporcionar un alto rendimiento con un consumo bajo de energía de las infraestructuras. Sin embargo, existen importantes desafíos al usar los AMC, como la programación y el equilibrio de carga. Esta tesis explora inicialmente el potencial de los AMC al ejecutar aplicaciones actuales de Computacion de Alto Rendimiento (HPC) y busca el modelo de ejecución más apropiado para ellas. Específicamente evaluamos varios modelos de ejecución en un procesador asimétrico Arm big.LITTLE utilizando las aplicaciones PARSEC que son aplicaciones representativas de HPC. En este trabajo se compara la programación en los niveles de usuario, sistema operativo y librería y evaluamos el impacto de estas opciones en el conocido problema de equilibrar la carga entre los AMCs. Nuestros resultados demuestran que la programación es más efectiva cuando se lleva a cabo en el nivel del runtime, ya que mejora la programación del nivel de usuario en un 23%, mientras que la solución de programación del sistema operativo heterogéneo mejora la programación del nivel de usuario en un 10%. Siguiendo este resultado, esta tesis se centra en aumentar el rendimiento de los sistemas AMC mejorando la programación al nivel de librería. La programación en este nivel se proporciona mediante el uso de Modelos de Programación Paralelos Basados en Tareas (MPBT). Estos modelos de programación ofrecen flexibilidad de programación, ya que consisten en una interfaz y un runtime para administrar los recursos e hilos subyacentes. En esta tesis, mejoramos la programación con MPBT al proporcionar tres nuevos planificadores de tareas para AMCs. Estos planificadores dinámicos reducen el tiempo total de ejecución ya sea detectando la camino más largo o el camino crítico del grafo de dependencia de tareas de la aplicación, que es generado dinámicamente. En nuestra evaluación, comparamos estos planificadores con un planificador heterogéneo existente y demonstramos su mejora sobre un planificador FIFO. Mostramos que los planificadores heterogéneos mejoran el planificador FIFO en hasta 1.45x en un AMC real de 8 núcleos y hasta 2.1x en un AMC simulado de 32 núcleos. Otra contribución en los MPBT es la adaptabilidad al paralelismo de grano fino. El creciente número de núcleos en los chip multinúcleos modernos está empujando la investigación hacia el uso de cargas de trabajo de grano fino, que es un desafío importante para los MPBT. Nuestro estudio observa que la creación de tareas bloquea la ejecución con cargas de trabajo de grano fino con MPBT. Cuando el número de núcleos aumenta, el tiempo empleado en generar tareas pasa a ser más crítico para toda la ejecución. Nuestra solución es TaskGenX, que minimiza los costes de creación de tareas y se basa en una extensión del runtime y en un hardware dedicado. En el runtime, TaskGenX desacopla la creación de tareas de las otras actividades del runtime, ejecutando esta actividad en un hardware especializado. Evaluamos 11 aplicaciones de HPC con TaskGenX en sistemas simétricos y AMC y obtenemos mejoras de rendimiento de hasta 15x, con un promedio de 3.1x sobre la implementación de referencia. Finalmente, esta tesis presenta un planificador de CPU con el objetivo de aumentar los fotogramas por segundo (FPS) para juegos en dispositivos móviles con sistemas AMC. Diseñamos e implementamos el planificador de Real-Time Scheduler (RTS) en Android. El RTS proporciona una política de programación eficiente que tiene en cuenta la temperatura actual del sistema para realizar la migración de tareas. La solución RTS aumenta la FPS mediana de los mecanismos de referenciaPostprint (published version

    Exploiting asymmetric multi-core systems with flexible system software

    Get PDF
    Asymmetric multi-cores (AMCs) are a successful architectural solution for both mobile devices and supercomputers. These architectures combine different types of processing cores designed at different performance and power optimization points, thus exposing a performance-power trade-off. By maintaining two types of cores, AMCs are able to provide high performance under the facility power budget. However, there are significant challenges when using AMCs such as scheduling and load balancing. This thesis initially explores the potential of AMCs when executing current HPC applications and searches for the most appropriate execution model. Specifically we evaluate several execution models on an Arm big.LITTLE AMC using the PARSEC benchmark suite that includes representative HPC applications. We compare schedulers at the user, OS and runtime system levels, using both static and dynamic options and multiple configurations, and assess the impact of these options on the well-known problem of balancing the load across AMCs. Our results demonstrate that scheduling is more effective when it takes place in the runtime system as it improves the user-level scheduling by 23%, while the heterogeneous-aware OS scheduling solution improves the user-level scheduling by 10%. Following this outcome, this thesis focuses on increasing performance of AMC systems by improving scheduling in the runtime system level. Scheduling in the runtime system level is provided by the use of task-based parallel programming models. These programming models offer programming flexibility as they consist of an interface and a runtime system to manage the underlying resources and threads. In this thesis we improve scheduling with task-based programming models by providing three novel task schedulers for AMCs. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with an existing state-of the art heterogeneous scheduler and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45x on a real 8-core AMC and up to 2.1x on a simulated 32-core AMC. Another enhancement we provide in task-based programming models is the adaptability to fine grained parallelism. The increasing number of cores on modern CMPs is pushing research towards the use of fine grained workloads, which is an important challenge for task-based programming models. Our study makes the observation that task creation becomes a bottleneck when executing fine grained workloads with task-based programming models. As the number of cores increases, the time spent generating tasks is becoming more critical to the entire execution. To overcome this issue, we propose TaskGenX. TaskGenX minimizes task creation overheads and relies both on the runtime system and a dedicated hardware. On the runtime system side, TaskGenX decouples the task creation from the other runtime activities. It then transfers this part of the runtime to a specialized hardware. From our evaluation using 11 HPC workloads on both symmetric and AMC systems, we obtain performance improvements up to 15x, averaging to 3.1x over the baseline. Finally, this thesis presents a showcase for a real-time CPU scheduler with the goal to increase the frames per second (FPS) of the game-play on mobile devices with AMC systems. We design and implement the RTS scheduler in the Android framework. RTS provides an efficient scheduling policy that takes into account the current temperature of the system to perform task migration. RTS solution increases the median FPS of the baseline mechanisms by up to 7.5% and at the same time it maintains temperature stable.Los procesadores multinúcleos asimétricos (AMC) son una solución arquitectónica exitosa para dispositivos móviles y supercomputadores. Estas arquitecturas combinan diferentes tipos de núcleos de procesamiento diseñados con diferentes propiedades de rendimiento y potencia. Al mantener dos o más tipos de núcleos, los AMCs pueden proporcionar un alto rendimiento con un consumo bajo de energía de las infraestructuras. Sin embargo, existen importantes desafíos al usar los AMC, como la programación y el equilibrio de carga. Esta tesis explora inicialmente el potencial de los AMC al ejecutar aplicaciones actuales de Computacion de Alto Rendimiento (HPC) y busca el modelo de ejecución más apropiado para ellas. Específicamente evaluamos varios modelos de ejecución en un procesador asimétrico Arm big.LITTLE utilizando las aplicaciones PARSEC que son aplicaciones representativas de HPC. En este trabajo se compara la programación en los niveles de usuario, sistema operativo y librería y evaluamos el impacto de estas opciones en el conocido problema de equilibrar la carga entre los AMCs. Nuestros resultados demuestran que la programación es más efectiva cuando se lleva a cabo en el nivel del runtime, ya que mejora la programación del nivel de usuario en un 23%, mientras que la solución de programación del sistema operativo heterogéneo mejora la programación del nivel de usuario en un 10%. Siguiendo este resultado, esta tesis se centra en aumentar el rendimiento de los sistemas AMC mejorando la programación al nivel de librería. La programación en este nivel se proporciona mediante el uso de Modelos de Programación Paralelos Basados en Tareas (MPBT). Estos modelos de programación ofrecen flexibilidad de programación, ya que consisten en una interfaz y un runtime para administrar los recursos e hilos subyacentes. En esta tesis, mejoramos la programación con MPBT al proporcionar tres nuevos planificadores de tareas para AMCs. Estos planificadores dinámicos reducen el tiempo total de ejecución ya sea detectando la camino más largo o el camino crítico del grafo de dependencia de tareas de la aplicación, que es generado dinámicamente. En nuestra evaluación, comparamos estos planificadores con un planificador heterogéneo existente y demonstramos su mejora sobre un planificador FIFO. Mostramos que los planificadores heterogéneos mejoran el planificador FIFO en hasta 1.45x en un AMC real de 8 núcleos y hasta 2.1x en un AMC simulado de 32 núcleos. Otra contribución en los MPBT es la adaptabilidad al paralelismo de grano fino. El creciente número de núcleos en los chip multinúcleos modernos está empujando la investigación hacia el uso de cargas de trabajo de grano fino, que es un desafío importante para los MPBT. Nuestro estudio observa que la creación de tareas bloquea la ejecución con cargas de trabajo de grano fino con MPBT. Cuando el número de núcleos aumenta, el tiempo empleado en generar tareas pasa a ser más crítico para toda la ejecución. Nuestra solución es TaskGenX, que minimiza los costes de creación de tareas y se basa en una extensión del runtime y en un hardware dedicado. En el runtime, TaskGenX desacopla la creación de tareas de las otras actividades del runtime, ejecutando esta actividad en un hardware especializado. Evaluamos 11 aplicaciones de HPC con TaskGenX en sistemas simétricos y AMC y obtenemos mejoras de rendimiento de hasta 15x, con un promedio de 3.1x sobre la implementación de referencia. Finalmente, esta tesis presenta un planificador de CPU con el objetivo de aumentar los fotogramas por segundo (FPS) para juegos en dispositivos móviles con sistemas AMC. Diseñamos e implementamos el planificador de Real-Time Scheduler (RTS) en Android. El RTS proporciona una política de programación eficiente que tiene en cuenta la temperatura actual del sistema para realizar la migración de tareas. La solución RTS aumenta la FPS mediana de los mecanismos de referenci
    corecore